]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/emulate.c
tracing: Prevent PROFILE_ALL_BRANCHES when FORTIFY_SOURCE=y
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / emulate.c
1 /******************************************************************************
2 * emulate.c
3 *
4 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
5 *
6 * Copyright (c) 2005 Keir Fraser
7 *
8 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
9 * privileged instructions:
10 *
11 * Copyright (C) 2006 Qumranet
12 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 *
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
21 */
22
23 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
25 #include <asm/kvm_emulate.h>
26 #include <linux/stringify.h>
27 #include <asm/debugreg.h>
28
29 #include "x86.h"
30 #include "tss.h"
31 #include "mmu.h"
32
33 /*
34 * Operand types
35 */
36 #define OpNone 0ull
37 #define OpImplicit 1ull /* No generic decode */
38 #define OpReg 2ull /* Register */
39 #define OpMem 3ull /* Memory */
40 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
41 #define OpDI 5ull /* ES:DI/EDI/RDI */
42 #define OpMem64 6ull /* Memory, 64-bit */
43 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
44 #define OpDX 8ull /* DX register */
45 #define OpCL 9ull /* CL register (for shifts) */
46 #define OpImmByte 10ull /* 8-bit sign extended immediate */
47 #define OpOne 11ull /* Implied 1 */
48 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
49 #define OpMem16 13ull /* Memory operand (16-bit). */
50 #define OpMem32 14ull /* Memory operand (32-bit). */
51 #define OpImmU 15ull /* Immediate operand, zero extended */
52 #define OpSI 16ull /* SI/ESI/RSI */
53 #define OpImmFAddr 17ull /* Immediate far address */
54 #define OpMemFAddr 18ull /* Far address in memory */
55 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
56 #define OpES 20ull /* ES */
57 #define OpCS 21ull /* CS */
58 #define OpSS 22ull /* SS */
59 #define OpDS 23ull /* DS */
60 #define OpFS 24ull /* FS */
61 #define OpGS 25ull /* GS */
62 #define OpMem8 26ull /* 8-bit zero extended memory operand */
63 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
64 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
65 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
66 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
67
68 #define OpBits 5 /* Width of operand field */
69 #define OpMask ((1ull << OpBits) - 1)
70
71 /*
72 * Opcode effective-address decode tables.
73 * Note that we only emulate instructions that have at least one memory
74 * operand (excluding implicit stack references). We assume that stack
75 * references and instruction fetches will never occur in special memory
76 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
77 * not be handled.
78 */
79
80 /* Operand sizes: 8-bit operands or specified/overridden size. */
81 #define ByteOp (1<<0) /* 8-bit operands. */
82 /* Destination operand type. */
83 #define DstShift 1
84 #define ImplicitOps (OpImplicit << DstShift)
85 #define DstReg (OpReg << DstShift)
86 #define DstMem (OpMem << DstShift)
87 #define DstAcc (OpAcc << DstShift)
88 #define DstDI (OpDI << DstShift)
89 #define DstMem64 (OpMem64 << DstShift)
90 #define DstMem16 (OpMem16 << DstShift)
91 #define DstImmUByte (OpImmUByte << DstShift)
92 #define DstDX (OpDX << DstShift)
93 #define DstAccLo (OpAccLo << DstShift)
94 #define DstMask (OpMask << DstShift)
95 /* Source operand type. */
96 #define SrcShift 6
97 #define SrcNone (OpNone << SrcShift)
98 #define SrcReg (OpReg << SrcShift)
99 #define SrcMem (OpMem << SrcShift)
100 #define SrcMem16 (OpMem16 << SrcShift)
101 #define SrcMem32 (OpMem32 << SrcShift)
102 #define SrcImm (OpImm << SrcShift)
103 #define SrcImmByte (OpImmByte << SrcShift)
104 #define SrcOne (OpOne << SrcShift)
105 #define SrcImmUByte (OpImmUByte << SrcShift)
106 #define SrcImmU (OpImmU << SrcShift)
107 #define SrcSI (OpSI << SrcShift)
108 #define SrcXLat (OpXLat << SrcShift)
109 #define SrcImmFAddr (OpImmFAddr << SrcShift)
110 #define SrcMemFAddr (OpMemFAddr << SrcShift)
111 #define SrcAcc (OpAcc << SrcShift)
112 #define SrcImmU16 (OpImmU16 << SrcShift)
113 #define SrcImm64 (OpImm64 << SrcShift)
114 #define SrcDX (OpDX << SrcShift)
115 #define SrcMem8 (OpMem8 << SrcShift)
116 #define SrcAccHi (OpAccHi << SrcShift)
117 #define SrcMask (OpMask << SrcShift)
118 #define BitOp (1<<11)
119 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
120 #define String (1<<13) /* String instruction (rep capable) */
121 #define Stack (1<<14) /* Stack instruction (push/pop) */
122 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
123 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
124 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
125 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
126 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
127 #define Escape (5<<15) /* Escape to coprocessor instruction */
128 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
129 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
130 #define Sse (1<<18) /* SSE Vector instruction */
131 /* Generic ModRM decode. */
132 #define ModRM (1<<19)
133 /* Destination is only written; never read. */
134 #define Mov (1<<20)
135 /* Misc flags */
136 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
137 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
138 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
139 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
140 #define Undefined (1<<25) /* No Such Instruction */
141 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
142 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
143 #define No64 (1<<28)
144 #define PageTable (1 << 29) /* instruction used to write page table */
145 #define NotImpl (1 << 30) /* instruction is not implemented */
146 /* Source 2 operand type */
147 #define Src2Shift (31)
148 #define Src2None (OpNone << Src2Shift)
149 #define Src2Mem (OpMem << Src2Shift)
150 #define Src2CL (OpCL << Src2Shift)
151 #define Src2ImmByte (OpImmByte << Src2Shift)
152 #define Src2One (OpOne << Src2Shift)
153 #define Src2Imm (OpImm << Src2Shift)
154 #define Src2ES (OpES << Src2Shift)
155 #define Src2CS (OpCS << Src2Shift)
156 #define Src2SS (OpSS << Src2Shift)
157 #define Src2DS (OpDS << Src2Shift)
158 #define Src2FS (OpFS << Src2Shift)
159 #define Src2GS (OpGS << Src2Shift)
160 #define Src2Mask (OpMask << Src2Shift)
161 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
162 #define AlignMask ((u64)7 << 41)
163 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
164 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
165 #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
166 #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
167 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
168 #define NoWrite ((u64)1 << 45) /* No writeback */
169 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
170 #define NoMod ((u64)1 << 47) /* Mod field is ignored */
171 #define Intercept ((u64)1 << 48) /* Has valid intercept field */
172 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
173 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
174 #define NearBranch ((u64)1 << 52) /* Near branches */
175 #define No16 ((u64)1 << 53) /* No 16 bit operand */
176 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
177 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
178
179 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
180
181 #define X2(x...) x, x
182 #define X3(x...) X2(x), x
183 #define X4(x...) X2(x), X2(x)
184 #define X5(x...) X4(x), x
185 #define X6(x...) X4(x), X2(x)
186 #define X7(x...) X4(x), X3(x)
187 #define X8(x...) X4(x), X4(x)
188 #define X16(x...) X8(x), X8(x)
189
190 #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
191 #define FASTOP_SIZE 8
192
193 /*
194 * fastop functions have a special calling convention:
195 *
196 * dst: rax (in/out)
197 * src: rdx (in/out)
198 * src2: rcx (in)
199 * flags: rflags (in/out)
200 * ex: rsi (in:fastop pointer, out:zero if exception)
201 *
202 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
203 * different operand sizes can be reached by calculation, rather than a jump
204 * table (which would be bigger than the code).
205 *
206 * fastop functions are declared as taking a never-defined fastop parameter,
207 * so they can't be called from C directly.
208 */
209
210 struct fastop;
211
212 struct opcode {
213 u64 flags : 56;
214 u64 intercept : 8;
215 union {
216 int (*execute)(struct x86_emulate_ctxt *ctxt);
217 const struct opcode *group;
218 const struct group_dual *gdual;
219 const struct gprefix *gprefix;
220 const struct escape *esc;
221 const struct instr_dual *idual;
222 const struct mode_dual *mdual;
223 void (*fastop)(struct fastop *fake);
224 } u;
225 int (*check_perm)(struct x86_emulate_ctxt *ctxt);
226 };
227
228 struct group_dual {
229 struct opcode mod012[8];
230 struct opcode mod3[8];
231 };
232
233 struct gprefix {
234 struct opcode pfx_no;
235 struct opcode pfx_66;
236 struct opcode pfx_f2;
237 struct opcode pfx_f3;
238 };
239
240 struct escape {
241 struct opcode op[8];
242 struct opcode high[64];
243 };
244
245 struct instr_dual {
246 struct opcode mod012;
247 struct opcode mod3;
248 };
249
250 struct mode_dual {
251 struct opcode mode32;
252 struct opcode mode64;
253 };
254
255 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
256
257 enum x86_transfer_type {
258 X86_TRANSFER_NONE,
259 X86_TRANSFER_CALL_JMP,
260 X86_TRANSFER_RET,
261 X86_TRANSFER_TASK_SWITCH,
262 };
263
264 static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
265 {
266 if (!(ctxt->regs_valid & (1 << nr))) {
267 ctxt->regs_valid |= 1 << nr;
268 ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
269 }
270 return ctxt->_regs[nr];
271 }
272
273 static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
274 {
275 ctxt->regs_valid |= 1 << nr;
276 ctxt->regs_dirty |= 1 << nr;
277 return &ctxt->_regs[nr];
278 }
279
280 static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
281 {
282 reg_read(ctxt, nr);
283 return reg_write(ctxt, nr);
284 }
285
286 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
287 {
288 unsigned reg;
289
290 for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
291 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
292 }
293
294 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
295 {
296 ctxt->regs_dirty = 0;
297 ctxt->regs_valid = 0;
298 }
299
300 /*
301 * These EFLAGS bits are restored from saved value during emulation, and
302 * any changes are written back to the saved value after emulation.
303 */
304 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
305 X86_EFLAGS_PF|X86_EFLAGS_CF)
306
307 #ifdef CONFIG_X86_64
308 #define ON64(x) x
309 #else
310 #define ON64(x)
311 #endif
312
313 static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
314
315 #define FOP_FUNC(name) \
316 ".align " __stringify(FASTOP_SIZE) " \n\t" \
317 ".type " name ", @function \n\t" \
318 name ":\n\t"
319
320 #define FOP_RET "ret \n\t"
321
322 #define FOP_START(op) \
323 extern void em_##op(struct fastop *fake); \
324 asm(".pushsection .text, \"ax\" \n\t" \
325 ".global em_" #op " \n\t" \
326 FOP_FUNC("em_" #op)
327
328 #define FOP_END \
329 ".popsection")
330
331 #define FOPNOP() \
332 FOP_FUNC(__stringify(__UNIQUE_ID(nop))) \
333 FOP_RET
334
335 #define FOP1E(op, dst) \
336 FOP_FUNC(#op "_" #dst) \
337 "10: " #op " %" #dst " \n\t" FOP_RET
338
339 #define FOP1EEX(op, dst) \
340 FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
341
342 #define FASTOP1(op) \
343 FOP_START(op) \
344 FOP1E(op##b, al) \
345 FOP1E(op##w, ax) \
346 FOP1E(op##l, eax) \
347 ON64(FOP1E(op##q, rax)) \
348 FOP_END
349
350 /* 1-operand, using src2 (for MUL/DIV r/m) */
351 #define FASTOP1SRC2(op, name) \
352 FOP_START(name) \
353 FOP1E(op, cl) \
354 FOP1E(op, cx) \
355 FOP1E(op, ecx) \
356 ON64(FOP1E(op, rcx)) \
357 FOP_END
358
359 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
360 #define FASTOP1SRC2EX(op, name) \
361 FOP_START(name) \
362 FOP1EEX(op, cl) \
363 FOP1EEX(op, cx) \
364 FOP1EEX(op, ecx) \
365 ON64(FOP1EEX(op, rcx)) \
366 FOP_END
367
368 #define FOP2E(op, dst, src) \
369 FOP_FUNC(#op "_" #dst "_" #src) \
370 #op " %" #src ", %" #dst " \n\t" FOP_RET
371
372 #define FASTOP2(op) \
373 FOP_START(op) \
374 FOP2E(op##b, al, dl) \
375 FOP2E(op##w, ax, dx) \
376 FOP2E(op##l, eax, edx) \
377 ON64(FOP2E(op##q, rax, rdx)) \
378 FOP_END
379
380 /* 2 operand, word only */
381 #define FASTOP2W(op) \
382 FOP_START(op) \
383 FOPNOP() \
384 FOP2E(op##w, ax, dx) \
385 FOP2E(op##l, eax, edx) \
386 ON64(FOP2E(op##q, rax, rdx)) \
387 FOP_END
388
389 /* 2 operand, src is CL */
390 #define FASTOP2CL(op) \
391 FOP_START(op) \
392 FOP2E(op##b, al, cl) \
393 FOP2E(op##w, ax, cl) \
394 FOP2E(op##l, eax, cl) \
395 ON64(FOP2E(op##q, rax, cl)) \
396 FOP_END
397
398 /* 2 operand, src and dest are reversed */
399 #define FASTOP2R(op, name) \
400 FOP_START(name) \
401 FOP2E(op##b, dl, al) \
402 FOP2E(op##w, dx, ax) \
403 FOP2E(op##l, edx, eax) \
404 ON64(FOP2E(op##q, rdx, rax)) \
405 FOP_END
406
407 #define FOP3E(op, dst, src, src2) \
408 FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
409 #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
410
411 /* 3-operand, word-only, src2=cl */
412 #define FASTOP3WCL(op) \
413 FOP_START(op) \
414 FOPNOP() \
415 FOP3E(op##w, ax, dx, cl) \
416 FOP3E(op##l, eax, edx, cl) \
417 ON64(FOP3E(op##q, rax, rdx, cl)) \
418 FOP_END
419
420 /* Special case for SETcc - 1 instruction per cc */
421 #define FOP_SETCC(op) \
422 ".align 4 \n\t" \
423 ".type " #op ", @function \n\t" \
424 #op ": \n\t" \
425 #op " %al \n\t" \
426 FOP_RET
427
428 asm(".pushsection .fixup, \"ax\"\n"
429 ".global kvm_fastop_exception \n"
430 "kvm_fastop_exception: xor %esi, %esi; ret\n"
431 ".popsection");
432
433 FOP_START(setcc)
434 FOP_SETCC(seto)
435 FOP_SETCC(setno)
436 FOP_SETCC(setc)
437 FOP_SETCC(setnc)
438 FOP_SETCC(setz)
439 FOP_SETCC(setnz)
440 FOP_SETCC(setbe)
441 FOP_SETCC(setnbe)
442 FOP_SETCC(sets)
443 FOP_SETCC(setns)
444 FOP_SETCC(setp)
445 FOP_SETCC(setnp)
446 FOP_SETCC(setl)
447 FOP_SETCC(setnl)
448 FOP_SETCC(setle)
449 FOP_SETCC(setnle)
450 FOP_END;
451
452 FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
453 FOP_END;
454
455 /*
456 * XXX: inoutclob user must know where the argument is being expanded.
457 * Relying on CC_HAVE_ASM_GOTO would allow us to remove _fault.
458 */
459 #define asm_safe(insn, inoutclob...) \
460 ({ \
461 int _fault = 0; \
462 \
463 asm volatile("1:" insn "\n" \
464 "2:\n" \
465 ".pushsection .fixup, \"ax\"\n" \
466 "3: movl $1, %[_fault]\n" \
467 " jmp 2b\n" \
468 ".popsection\n" \
469 _ASM_EXTABLE(1b, 3b) \
470 : [_fault] "+qm"(_fault) inoutclob ); \
471 \
472 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
473 })
474
475 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
476 enum x86_intercept intercept,
477 enum x86_intercept_stage stage)
478 {
479 struct x86_instruction_info info = {
480 .intercept = intercept,
481 .rep_prefix = ctxt->rep_prefix,
482 .modrm_mod = ctxt->modrm_mod,
483 .modrm_reg = ctxt->modrm_reg,
484 .modrm_rm = ctxt->modrm_rm,
485 .src_val = ctxt->src.val64,
486 .dst_val = ctxt->dst.val64,
487 .src_bytes = ctxt->src.bytes,
488 .dst_bytes = ctxt->dst.bytes,
489 .ad_bytes = ctxt->ad_bytes,
490 .next_rip = ctxt->eip,
491 };
492
493 return ctxt->ops->intercept(ctxt, &info, stage);
494 }
495
496 static void assign_masked(ulong *dest, ulong src, ulong mask)
497 {
498 *dest = (*dest & ~mask) | (src & mask);
499 }
500
501 static void assign_register(unsigned long *reg, u64 val, int bytes)
502 {
503 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
504 switch (bytes) {
505 case 1:
506 *(u8 *)reg = (u8)val;
507 break;
508 case 2:
509 *(u16 *)reg = (u16)val;
510 break;
511 case 4:
512 *reg = (u32)val;
513 break; /* 64b: zero-extend */
514 case 8:
515 *reg = val;
516 break;
517 }
518 }
519
520 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
521 {
522 return (1UL << (ctxt->ad_bytes << 3)) - 1;
523 }
524
525 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
526 {
527 u16 sel;
528 struct desc_struct ss;
529
530 if (ctxt->mode == X86EMUL_MODE_PROT64)
531 return ~0UL;
532 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
533 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
534 }
535
536 static int stack_size(struct x86_emulate_ctxt *ctxt)
537 {
538 return (__fls(stack_mask(ctxt)) + 1) >> 3;
539 }
540
541 /* Access/update address held in a register, based on addressing mode. */
542 static inline unsigned long
543 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
544 {
545 if (ctxt->ad_bytes == sizeof(unsigned long))
546 return reg;
547 else
548 return reg & ad_mask(ctxt);
549 }
550
551 static inline unsigned long
552 register_address(struct x86_emulate_ctxt *ctxt, int reg)
553 {
554 return address_mask(ctxt, reg_read(ctxt, reg));
555 }
556
557 static void masked_increment(ulong *reg, ulong mask, int inc)
558 {
559 assign_masked(reg, *reg + inc, mask);
560 }
561
562 static inline void
563 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
564 {
565 ulong *preg = reg_rmw(ctxt, reg);
566
567 assign_register(preg, *preg + inc, ctxt->ad_bytes);
568 }
569
570 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
571 {
572 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
573 }
574
575 static u32 desc_limit_scaled(struct desc_struct *desc)
576 {
577 u32 limit = get_desc_limit(desc);
578
579 return desc->g ? (limit << 12) | 0xfff : limit;
580 }
581
582 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
583 {
584 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
585 return 0;
586
587 return ctxt->ops->get_cached_segment_base(ctxt, seg);
588 }
589
590 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
591 u32 error, bool valid)
592 {
593 WARN_ON(vec > 0x1f);
594 ctxt->exception.vector = vec;
595 ctxt->exception.error_code = error;
596 ctxt->exception.error_code_valid = valid;
597 return X86EMUL_PROPAGATE_FAULT;
598 }
599
600 static int emulate_db(struct x86_emulate_ctxt *ctxt)
601 {
602 return emulate_exception(ctxt, DB_VECTOR, 0, false);
603 }
604
605 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
606 {
607 return emulate_exception(ctxt, GP_VECTOR, err, true);
608 }
609
610 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
611 {
612 return emulate_exception(ctxt, SS_VECTOR, err, true);
613 }
614
615 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
616 {
617 return emulate_exception(ctxt, UD_VECTOR, 0, false);
618 }
619
620 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
621 {
622 return emulate_exception(ctxt, TS_VECTOR, err, true);
623 }
624
625 static int emulate_de(struct x86_emulate_ctxt *ctxt)
626 {
627 return emulate_exception(ctxt, DE_VECTOR, 0, false);
628 }
629
630 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
631 {
632 return emulate_exception(ctxt, NM_VECTOR, 0, false);
633 }
634
635 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
636 {
637 u16 selector;
638 struct desc_struct desc;
639
640 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
641 return selector;
642 }
643
644 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
645 unsigned seg)
646 {
647 u16 dummy;
648 u32 base3;
649 struct desc_struct desc;
650
651 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
652 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
653 }
654
655 /*
656 * x86 defines three classes of vector instructions: explicitly
657 * aligned, explicitly unaligned, and the rest, which change behaviour
658 * depending on whether they're AVX encoded or not.
659 *
660 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
661 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their
662 * 512 bytes of data must be aligned to a 16 byte boundary.
663 */
664 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
665 {
666 u64 alignment = ctxt->d & AlignMask;
667
668 if (likely(size < 16))
669 return 1;
670
671 switch (alignment) {
672 case Unaligned:
673 case Avx:
674 return 1;
675 case Aligned16:
676 return 16;
677 case Aligned:
678 default:
679 return size;
680 }
681 }
682
683 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
684 struct segmented_address addr,
685 unsigned *max_size, unsigned size,
686 bool write, bool fetch,
687 enum x86emul_mode mode, ulong *linear)
688 {
689 struct desc_struct desc;
690 bool usable;
691 ulong la;
692 u32 lim;
693 u16 sel;
694 u8 va_bits;
695
696 la = seg_base(ctxt, addr.seg) + addr.ea;
697 *max_size = 0;
698 switch (mode) {
699 case X86EMUL_MODE_PROT64:
700 *linear = la;
701 va_bits = ctxt_virt_addr_bits(ctxt);
702 if (get_canonical(la, va_bits) != la)
703 goto bad;
704
705 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
706 if (size > *max_size)
707 goto bad;
708 break;
709 default:
710 *linear = la = (u32)la;
711 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
712 addr.seg);
713 if (!usable)
714 goto bad;
715 /* code segment in protected mode or read-only data segment */
716 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
717 || !(desc.type & 2)) && write)
718 goto bad;
719 /* unreadable code segment */
720 if (!fetch && (desc.type & 8) && !(desc.type & 2))
721 goto bad;
722 lim = desc_limit_scaled(&desc);
723 if (!(desc.type & 8) && (desc.type & 4)) {
724 /* expand-down segment */
725 if (addr.ea <= lim)
726 goto bad;
727 lim = desc.d ? 0xffffffff : 0xffff;
728 }
729 if (addr.ea > lim)
730 goto bad;
731 if (lim == 0xffffffff)
732 *max_size = ~0u;
733 else {
734 *max_size = (u64)lim + 1 - addr.ea;
735 if (size > *max_size)
736 goto bad;
737 }
738 break;
739 }
740 if (la & (insn_alignment(ctxt, size) - 1))
741 return emulate_gp(ctxt, 0);
742 return X86EMUL_CONTINUE;
743 bad:
744 if (addr.seg == VCPU_SREG_SS)
745 return emulate_ss(ctxt, 0);
746 else
747 return emulate_gp(ctxt, 0);
748 }
749
750 static int linearize(struct x86_emulate_ctxt *ctxt,
751 struct segmented_address addr,
752 unsigned size, bool write,
753 ulong *linear)
754 {
755 unsigned max_size;
756 return __linearize(ctxt, addr, &max_size, size, write, false,
757 ctxt->mode, linear);
758 }
759
760 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
761 enum x86emul_mode mode)
762 {
763 ulong linear;
764 int rc;
765 unsigned max_size;
766 struct segmented_address addr = { .seg = VCPU_SREG_CS,
767 .ea = dst };
768
769 if (ctxt->op_bytes != sizeof(unsigned long))
770 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
771 rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
772 if (rc == X86EMUL_CONTINUE)
773 ctxt->_eip = addr.ea;
774 return rc;
775 }
776
777 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
778 {
779 return assign_eip(ctxt, dst, ctxt->mode);
780 }
781
782 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
783 const struct desc_struct *cs_desc)
784 {
785 enum x86emul_mode mode = ctxt->mode;
786 int rc;
787
788 #ifdef CONFIG_X86_64
789 if (ctxt->mode >= X86EMUL_MODE_PROT16) {
790 if (cs_desc->l) {
791 u64 efer = 0;
792
793 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
794 if (efer & EFER_LMA)
795 mode = X86EMUL_MODE_PROT64;
796 } else
797 mode = X86EMUL_MODE_PROT32; /* temporary value */
798 }
799 #endif
800 if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
801 mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
802 rc = assign_eip(ctxt, dst, mode);
803 if (rc == X86EMUL_CONTINUE)
804 ctxt->mode = mode;
805 return rc;
806 }
807
808 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
809 {
810 return assign_eip_near(ctxt, ctxt->_eip + rel);
811 }
812
813 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
814 struct segmented_address addr,
815 void *data,
816 unsigned size)
817 {
818 int rc;
819 ulong linear;
820
821 rc = linearize(ctxt, addr, size, false, &linear);
822 if (rc != X86EMUL_CONTINUE)
823 return rc;
824 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
825 }
826
827 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
828 struct segmented_address addr,
829 void *data,
830 unsigned int size)
831 {
832 int rc;
833 ulong linear;
834
835 rc = linearize(ctxt, addr, size, true, &linear);
836 if (rc != X86EMUL_CONTINUE)
837 return rc;
838 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception);
839 }
840
841 /*
842 * Prefetch the remaining bytes of the instruction without crossing page
843 * boundary if they are not in fetch_cache yet.
844 */
845 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
846 {
847 int rc;
848 unsigned size, max_size;
849 unsigned long linear;
850 int cur_size = ctxt->fetch.end - ctxt->fetch.data;
851 struct segmented_address addr = { .seg = VCPU_SREG_CS,
852 .ea = ctxt->eip + cur_size };
853
854 /*
855 * We do not know exactly how many bytes will be needed, and
856 * __linearize is expensive, so fetch as much as possible. We
857 * just have to avoid going beyond the 15 byte limit, the end
858 * of the segment, or the end of the page.
859 *
860 * __linearize is called with size 0 so that it does not do any
861 * boundary check itself. Instead, we use max_size to check
862 * against op_size.
863 */
864 rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
865 &linear);
866 if (unlikely(rc != X86EMUL_CONTINUE))
867 return rc;
868
869 size = min_t(unsigned, 15UL ^ cur_size, max_size);
870 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
871
872 /*
873 * One instruction can only straddle two pages,
874 * and one has been loaded at the beginning of
875 * x86_decode_insn. So, if not enough bytes
876 * still, we must have hit the 15-byte boundary.
877 */
878 if (unlikely(size < op_size))
879 return emulate_gp(ctxt, 0);
880
881 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
882 size, &ctxt->exception);
883 if (unlikely(rc != X86EMUL_CONTINUE))
884 return rc;
885 ctxt->fetch.end += size;
886 return X86EMUL_CONTINUE;
887 }
888
889 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
890 unsigned size)
891 {
892 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
893
894 if (unlikely(done_size < size))
895 return __do_insn_fetch_bytes(ctxt, size - done_size);
896 else
897 return X86EMUL_CONTINUE;
898 }
899
900 /* Fetch next part of the instruction being emulated. */
901 #define insn_fetch(_type, _ctxt) \
902 ({ _type _x; \
903 \
904 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
905 if (rc != X86EMUL_CONTINUE) \
906 goto done; \
907 ctxt->_eip += sizeof(_type); \
908 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
909 ctxt->fetch.ptr += sizeof(_type); \
910 _x; \
911 })
912
913 #define insn_fetch_arr(_arr, _size, _ctxt) \
914 ({ \
915 rc = do_insn_fetch_bytes(_ctxt, _size); \
916 if (rc != X86EMUL_CONTINUE) \
917 goto done; \
918 ctxt->_eip += (_size); \
919 memcpy(_arr, ctxt->fetch.ptr, _size); \
920 ctxt->fetch.ptr += (_size); \
921 })
922
923 /*
924 * Given the 'reg' portion of a ModRM byte, and a register block, return a
925 * pointer into the block that addresses the relevant register.
926 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
927 */
928 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
929 int byteop)
930 {
931 void *p;
932 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
933
934 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
935 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
936 else
937 p = reg_rmw(ctxt, modrm_reg);
938 return p;
939 }
940
941 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
942 struct segmented_address addr,
943 u16 *size, unsigned long *address, int op_bytes)
944 {
945 int rc;
946
947 if (op_bytes == 2)
948 op_bytes = 3;
949 *address = 0;
950 rc = segmented_read_std(ctxt, addr, size, 2);
951 if (rc != X86EMUL_CONTINUE)
952 return rc;
953 addr.ea += 2;
954 rc = segmented_read_std(ctxt, addr, address, op_bytes);
955 return rc;
956 }
957
958 FASTOP2(add);
959 FASTOP2(or);
960 FASTOP2(adc);
961 FASTOP2(sbb);
962 FASTOP2(and);
963 FASTOP2(sub);
964 FASTOP2(xor);
965 FASTOP2(cmp);
966 FASTOP2(test);
967
968 FASTOP1SRC2(mul, mul_ex);
969 FASTOP1SRC2(imul, imul_ex);
970 FASTOP1SRC2EX(div, div_ex);
971 FASTOP1SRC2EX(idiv, idiv_ex);
972
973 FASTOP3WCL(shld);
974 FASTOP3WCL(shrd);
975
976 FASTOP2W(imul);
977
978 FASTOP1(not);
979 FASTOP1(neg);
980 FASTOP1(inc);
981 FASTOP1(dec);
982
983 FASTOP2CL(rol);
984 FASTOP2CL(ror);
985 FASTOP2CL(rcl);
986 FASTOP2CL(rcr);
987 FASTOP2CL(shl);
988 FASTOP2CL(shr);
989 FASTOP2CL(sar);
990
991 FASTOP2W(bsf);
992 FASTOP2W(bsr);
993 FASTOP2W(bt);
994 FASTOP2W(bts);
995 FASTOP2W(btr);
996 FASTOP2W(btc);
997
998 FASTOP2(xadd);
999
1000 FASTOP2R(cmp, cmp_r);
1001
1002 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
1003 {
1004 /* If src is zero, do not writeback, but update flags */
1005 if (ctxt->src.val == 0)
1006 ctxt->dst.type = OP_NONE;
1007 return fastop(ctxt, em_bsf);
1008 }
1009
1010 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1011 {
1012 /* If src is zero, do not writeback, but update flags */
1013 if (ctxt->src.val == 0)
1014 ctxt->dst.type = OP_NONE;
1015 return fastop(ctxt, em_bsr);
1016 }
1017
1018 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1019 {
1020 u8 rc;
1021 void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
1022
1023 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
1024 asm("push %[flags]; popf; call *%[fastop]"
1025 : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags));
1026 return rc;
1027 }
1028
1029 static void fetch_register_operand(struct operand *op)
1030 {
1031 switch (op->bytes) {
1032 case 1:
1033 op->val = *(u8 *)op->addr.reg;
1034 break;
1035 case 2:
1036 op->val = *(u16 *)op->addr.reg;
1037 break;
1038 case 4:
1039 op->val = *(u32 *)op->addr.reg;
1040 break;
1041 case 8:
1042 op->val = *(u64 *)op->addr.reg;
1043 break;
1044 }
1045 }
1046
1047 static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
1048 {
1049 switch (reg) {
1050 case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
1051 case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
1052 case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
1053 case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
1054 case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
1055 case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
1056 case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
1057 case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
1058 #ifdef CONFIG_X86_64
1059 case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
1060 case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
1061 case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
1062 case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
1063 case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
1064 case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
1065 case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
1066 case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
1067 #endif
1068 default: BUG();
1069 }
1070 }
1071
1072 static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
1073 int reg)
1074 {
1075 switch (reg) {
1076 case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
1077 case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
1078 case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
1079 case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
1080 case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
1081 case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
1082 case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
1083 case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
1084 #ifdef CONFIG_X86_64
1085 case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
1086 case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
1087 case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
1088 case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
1089 case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
1090 case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
1091 case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
1092 case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
1093 #endif
1094 default: BUG();
1095 }
1096 }
1097
1098 static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
1099 {
1100 switch (reg) {
1101 case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
1102 case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
1103 case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
1104 case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
1105 case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
1106 case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
1107 case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
1108 case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
1109 default: BUG();
1110 }
1111 }
1112
1113 static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
1114 {
1115 switch (reg) {
1116 case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
1117 case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
1118 case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
1119 case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
1120 case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
1121 case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
1122 case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
1123 case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
1124 default: BUG();
1125 }
1126 }
1127
1128 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1129 {
1130 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1131 return emulate_nm(ctxt);
1132
1133 asm volatile("fninit");
1134 return X86EMUL_CONTINUE;
1135 }
1136
1137 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1138 {
1139 u16 fcw;
1140
1141 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1142 return emulate_nm(ctxt);
1143
1144 asm volatile("fnstcw %0": "+m"(fcw));
1145
1146 ctxt->dst.val = fcw;
1147
1148 return X86EMUL_CONTINUE;
1149 }
1150
1151 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1152 {
1153 u16 fsw;
1154
1155 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1156 return emulate_nm(ctxt);
1157
1158 asm volatile("fnstsw %0": "+m"(fsw));
1159
1160 ctxt->dst.val = fsw;
1161
1162 return X86EMUL_CONTINUE;
1163 }
1164
1165 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1166 struct operand *op)
1167 {
1168 unsigned reg = ctxt->modrm_reg;
1169
1170 if (!(ctxt->d & ModRM))
1171 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1172
1173 if (ctxt->d & Sse) {
1174 op->type = OP_XMM;
1175 op->bytes = 16;
1176 op->addr.xmm = reg;
1177 read_sse_reg(ctxt, &op->vec_val, reg);
1178 return;
1179 }
1180 if (ctxt->d & Mmx) {
1181 reg &= 7;
1182 op->type = OP_MM;
1183 op->bytes = 8;
1184 op->addr.mm = reg;
1185 return;
1186 }
1187
1188 op->type = OP_REG;
1189 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1190 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1191
1192 fetch_register_operand(op);
1193 op->orig_val = op->val;
1194 }
1195
1196 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1197 {
1198 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1199 ctxt->modrm_seg = VCPU_SREG_SS;
1200 }
1201
1202 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1203 struct operand *op)
1204 {
1205 u8 sib;
1206 int index_reg, base_reg, scale;
1207 int rc = X86EMUL_CONTINUE;
1208 ulong modrm_ea = 0;
1209
1210 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1211 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1212 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1213
1214 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1215 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1216 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1217 ctxt->modrm_seg = VCPU_SREG_DS;
1218
1219 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1220 op->type = OP_REG;
1221 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1222 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1223 ctxt->d & ByteOp);
1224 if (ctxt->d & Sse) {
1225 op->type = OP_XMM;
1226 op->bytes = 16;
1227 op->addr.xmm = ctxt->modrm_rm;
1228 read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
1229 return rc;
1230 }
1231 if (ctxt->d & Mmx) {
1232 op->type = OP_MM;
1233 op->bytes = 8;
1234 op->addr.mm = ctxt->modrm_rm & 7;
1235 return rc;
1236 }
1237 fetch_register_operand(op);
1238 return rc;
1239 }
1240
1241 op->type = OP_MEM;
1242
1243 if (ctxt->ad_bytes == 2) {
1244 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1245 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1246 unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1247 unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1248
1249 /* 16-bit ModR/M decode. */
1250 switch (ctxt->modrm_mod) {
1251 case 0:
1252 if (ctxt->modrm_rm == 6)
1253 modrm_ea += insn_fetch(u16, ctxt);
1254 break;
1255 case 1:
1256 modrm_ea += insn_fetch(s8, ctxt);
1257 break;
1258 case 2:
1259 modrm_ea += insn_fetch(u16, ctxt);
1260 break;
1261 }
1262 switch (ctxt->modrm_rm) {
1263 case 0:
1264 modrm_ea += bx + si;
1265 break;
1266 case 1:
1267 modrm_ea += bx + di;
1268 break;
1269 case 2:
1270 modrm_ea += bp + si;
1271 break;
1272 case 3:
1273 modrm_ea += bp + di;
1274 break;
1275 case 4:
1276 modrm_ea += si;
1277 break;
1278 case 5:
1279 modrm_ea += di;
1280 break;
1281 case 6:
1282 if (ctxt->modrm_mod != 0)
1283 modrm_ea += bp;
1284 break;
1285 case 7:
1286 modrm_ea += bx;
1287 break;
1288 }
1289 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1290 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1291 ctxt->modrm_seg = VCPU_SREG_SS;
1292 modrm_ea = (u16)modrm_ea;
1293 } else {
1294 /* 32/64-bit ModR/M decode. */
1295 if ((ctxt->modrm_rm & 7) == 4) {
1296 sib = insn_fetch(u8, ctxt);
1297 index_reg |= (sib >> 3) & 7;
1298 base_reg |= sib & 7;
1299 scale = sib >> 6;
1300
1301 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1302 modrm_ea += insn_fetch(s32, ctxt);
1303 else {
1304 modrm_ea += reg_read(ctxt, base_reg);
1305 adjust_modrm_seg(ctxt, base_reg);
1306 /* Increment ESP on POP [ESP] */
1307 if ((ctxt->d & IncSP) &&
1308 base_reg == VCPU_REGS_RSP)
1309 modrm_ea += ctxt->op_bytes;
1310 }
1311 if (index_reg != 4)
1312 modrm_ea += reg_read(ctxt, index_reg) << scale;
1313 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1314 modrm_ea += insn_fetch(s32, ctxt);
1315 if (ctxt->mode == X86EMUL_MODE_PROT64)
1316 ctxt->rip_relative = 1;
1317 } else {
1318 base_reg = ctxt->modrm_rm;
1319 modrm_ea += reg_read(ctxt, base_reg);
1320 adjust_modrm_seg(ctxt, base_reg);
1321 }
1322 switch (ctxt->modrm_mod) {
1323 case 1:
1324 modrm_ea += insn_fetch(s8, ctxt);
1325 break;
1326 case 2:
1327 modrm_ea += insn_fetch(s32, ctxt);
1328 break;
1329 }
1330 }
1331 op->addr.mem.ea = modrm_ea;
1332 if (ctxt->ad_bytes != 8)
1333 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1334
1335 done:
1336 return rc;
1337 }
1338
1339 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1340 struct operand *op)
1341 {
1342 int rc = X86EMUL_CONTINUE;
1343
1344 op->type = OP_MEM;
1345 switch (ctxt->ad_bytes) {
1346 case 2:
1347 op->addr.mem.ea = insn_fetch(u16, ctxt);
1348 break;
1349 case 4:
1350 op->addr.mem.ea = insn_fetch(u32, ctxt);
1351 break;
1352 case 8:
1353 op->addr.mem.ea = insn_fetch(u64, ctxt);
1354 break;
1355 }
1356 done:
1357 return rc;
1358 }
1359
1360 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1361 {
1362 long sv = 0, mask;
1363
1364 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1365 mask = ~((long)ctxt->dst.bytes * 8 - 1);
1366
1367 if (ctxt->src.bytes == 2)
1368 sv = (s16)ctxt->src.val & (s16)mask;
1369 else if (ctxt->src.bytes == 4)
1370 sv = (s32)ctxt->src.val & (s32)mask;
1371 else
1372 sv = (s64)ctxt->src.val & (s64)mask;
1373
1374 ctxt->dst.addr.mem.ea = address_mask(ctxt,
1375 ctxt->dst.addr.mem.ea + (sv >> 3));
1376 }
1377
1378 /* only subword offset */
1379 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1380 }
1381
1382 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1383 unsigned long addr, void *dest, unsigned size)
1384 {
1385 int rc;
1386 struct read_cache *mc = &ctxt->mem_read;
1387
1388 if (mc->pos < mc->end)
1389 goto read_cached;
1390
1391 WARN_ON((mc->end + size) >= sizeof(mc->data));
1392
1393 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1394 &ctxt->exception);
1395 if (rc != X86EMUL_CONTINUE)
1396 return rc;
1397
1398 mc->end += size;
1399
1400 read_cached:
1401 memcpy(dest, mc->data + mc->pos, size);
1402 mc->pos += size;
1403 return X86EMUL_CONTINUE;
1404 }
1405
1406 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1407 struct segmented_address addr,
1408 void *data,
1409 unsigned size)
1410 {
1411 int rc;
1412 ulong linear;
1413
1414 rc = linearize(ctxt, addr, size, false, &linear);
1415 if (rc != X86EMUL_CONTINUE)
1416 return rc;
1417 return read_emulated(ctxt, linear, data, size);
1418 }
1419
1420 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1421 struct segmented_address addr,
1422 const void *data,
1423 unsigned size)
1424 {
1425 int rc;
1426 ulong linear;
1427
1428 rc = linearize(ctxt, addr, size, true, &linear);
1429 if (rc != X86EMUL_CONTINUE)
1430 return rc;
1431 return ctxt->ops->write_emulated(ctxt, linear, data, size,
1432 &ctxt->exception);
1433 }
1434
1435 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1436 struct segmented_address addr,
1437 const void *orig_data, const void *data,
1438 unsigned size)
1439 {
1440 int rc;
1441 ulong linear;
1442
1443 rc = linearize(ctxt, addr, size, true, &linear);
1444 if (rc != X86EMUL_CONTINUE)
1445 return rc;
1446 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1447 size, &ctxt->exception);
1448 }
1449
1450 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1451 unsigned int size, unsigned short port,
1452 void *dest)
1453 {
1454 struct read_cache *rc = &ctxt->io_read;
1455
1456 if (rc->pos == rc->end) { /* refill pio read ahead */
1457 unsigned int in_page, n;
1458 unsigned int count = ctxt->rep_prefix ?
1459 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1460 in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1461 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1462 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1463 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1464 if (n == 0)
1465 n = 1;
1466 rc->pos = rc->end = 0;
1467 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1468 return 0;
1469 rc->end = n * size;
1470 }
1471
1472 if (ctxt->rep_prefix && (ctxt->d & String) &&
1473 !(ctxt->eflags & X86_EFLAGS_DF)) {
1474 ctxt->dst.data = rc->data + rc->pos;
1475 ctxt->dst.type = OP_MEM_STR;
1476 ctxt->dst.count = (rc->end - rc->pos) / size;
1477 rc->pos = rc->end;
1478 } else {
1479 memcpy(dest, rc->data + rc->pos, size);
1480 rc->pos += size;
1481 }
1482 return 1;
1483 }
1484
1485 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1486 u16 index, struct desc_struct *desc)
1487 {
1488 struct desc_ptr dt;
1489 ulong addr;
1490
1491 ctxt->ops->get_idt(ctxt, &dt);
1492
1493 if (dt.size < index * 8 + 7)
1494 return emulate_gp(ctxt, index << 3 | 0x2);
1495
1496 addr = dt.address + index * 8;
1497 return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
1498 &ctxt->exception);
1499 }
1500
1501 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1502 u16 selector, struct desc_ptr *dt)
1503 {
1504 const struct x86_emulate_ops *ops = ctxt->ops;
1505 u32 base3 = 0;
1506
1507 if (selector & 1 << 2) {
1508 struct desc_struct desc;
1509 u16 sel;
1510
1511 memset (dt, 0, sizeof *dt);
1512 if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1513 VCPU_SREG_LDTR))
1514 return;
1515
1516 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1517 dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1518 } else
1519 ops->get_gdt(ctxt, dt);
1520 }
1521
1522 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1523 u16 selector, ulong *desc_addr_p)
1524 {
1525 struct desc_ptr dt;
1526 u16 index = selector >> 3;
1527 ulong addr;
1528
1529 get_descriptor_table_ptr(ctxt, selector, &dt);
1530
1531 if (dt.size < index * 8 + 7)
1532 return emulate_gp(ctxt, selector & 0xfffc);
1533
1534 addr = dt.address + index * 8;
1535
1536 #ifdef CONFIG_X86_64
1537 if (addr >> 32 != 0) {
1538 u64 efer = 0;
1539
1540 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1541 if (!(efer & EFER_LMA))
1542 addr &= (u32)-1;
1543 }
1544 #endif
1545
1546 *desc_addr_p = addr;
1547 return X86EMUL_CONTINUE;
1548 }
1549
1550 /* allowed just for 8 bytes segments */
1551 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1552 u16 selector, struct desc_struct *desc,
1553 ulong *desc_addr_p)
1554 {
1555 int rc;
1556
1557 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1558 if (rc != X86EMUL_CONTINUE)
1559 return rc;
1560
1561 return ctxt->ops->read_std(ctxt, *desc_addr_p, desc, sizeof(*desc),
1562 &ctxt->exception);
1563 }
1564
1565 /* allowed just for 8 bytes segments */
1566 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1567 u16 selector, struct desc_struct *desc)
1568 {
1569 int rc;
1570 ulong addr;
1571
1572 rc = get_descriptor_ptr(ctxt, selector, &addr);
1573 if (rc != X86EMUL_CONTINUE)
1574 return rc;
1575
1576 return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
1577 &ctxt->exception);
1578 }
1579
1580 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1581 u16 selector, int seg, u8 cpl,
1582 enum x86_transfer_type transfer,
1583 struct desc_struct *desc)
1584 {
1585 struct desc_struct seg_desc, old_desc;
1586 u8 dpl, rpl;
1587 unsigned err_vec = GP_VECTOR;
1588 u32 err_code = 0;
1589 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1590 ulong desc_addr;
1591 int ret;
1592 u16 dummy;
1593 u32 base3 = 0;
1594
1595 memset(&seg_desc, 0, sizeof seg_desc);
1596
1597 if (ctxt->mode == X86EMUL_MODE_REAL) {
1598 /* set real mode segment descriptor (keep limit etc. for
1599 * unreal mode) */
1600 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1601 set_desc_base(&seg_desc, selector << 4);
1602 goto load;
1603 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1604 /* VM86 needs a clean new segment descriptor */
1605 set_desc_base(&seg_desc, selector << 4);
1606 set_desc_limit(&seg_desc, 0xffff);
1607 seg_desc.type = 3;
1608 seg_desc.p = 1;
1609 seg_desc.s = 1;
1610 seg_desc.dpl = 3;
1611 goto load;
1612 }
1613
1614 rpl = selector & 3;
1615
1616 /* TR should be in GDT only */
1617 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1618 goto exception;
1619
1620 /* NULL selector is not valid for TR, CS and (except for long mode) SS */
1621 if (null_selector) {
1622 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1623 goto exception;
1624
1625 if (seg == VCPU_SREG_SS) {
1626 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1627 goto exception;
1628
1629 /*
1630 * ctxt->ops->set_segment expects the CPL to be in
1631 * SS.DPL, so fake an expand-up 32-bit data segment.
1632 */
1633 seg_desc.type = 3;
1634 seg_desc.p = 1;
1635 seg_desc.s = 1;
1636 seg_desc.dpl = cpl;
1637 seg_desc.d = 1;
1638 seg_desc.g = 1;
1639 }
1640
1641 /* Skip all following checks */
1642 goto load;
1643 }
1644
1645 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1646 if (ret != X86EMUL_CONTINUE)
1647 return ret;
1648
1649 err_code = selector & 0xfffc;
1650 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1651 GP_VECTOR;
1652
1653 /* can't load system descriptor into segment selector */
1654 if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1655 if (transfer == X86_TRANSFER_CALL_JMP)
1656 return X86EMUL_UNHANDLEABLE;
1657 goto exception;
1658 }
1659
1660 if (!seg_desc.p) {
1661 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1662 goto exception;
1663 }
1664
1665 dpl = seg_desc.dpl;
1666
1667 switch (seg) {
1668 case VCPU_SREG_SS:
1669 /*
1670 * segment is not a writable data segment or segment
1671 * selector's RPL != CPL or segment selector's RPL != CPL
1672 */
1673 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1674 goto exception;
1675 break;
1676 case VCPU_SREG_CS:
1677 if (!(seg_desc.type & 8))
1678 goto exception;
1679
1680 if (seg_desc.type & 4) {
1681 /* conforming */
1682 if (dpl > cpl)
1683 goto exception;
1684 } else {
1685 /* nonconforming */
1686 if (rpl > cpl || dpl != cpl)
1687 goto exception;
1688 }
1689 /* in long-mode d/b must be clear if l is set */
1690 if (seg_desc.d && seg_desc.l) {
1691 u64 efer = 0;
1692
1693 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1694 if (efer & EFER_LMA)
1695 goto exception;
1696 }
1697
1698 /* CS(RPL) <- CPL */
1699 selector = (selector & 0xfffc) | cpl;
1700 break;
1701 case VCPU_SREG_TR:
1702 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1703 goto exception;
1704 old_desc = seg_desc;
1705 seg_desc.type |= 2; /* busy */
1706 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1707 sizeof(seg_desc), &ctxt->exception);
1708 if (ret != X86EMUL_CONTINUE)
1709 return ret;
1710 break;
1711 case VCPU_SREG_LDTR:
1712 if (seg_desc.s || seg_desc.type != 2)
1713 goto exception;
1714 break;
1715 default: /* DS, ES, FS, or GS */
1716 /*
1717 * segment is not a data or readable code segment or
1718 * ((segment is a data or nonconforming code segment)
1719 * and (both RPL and CPL > DPL))
1720 */
1721 if ((seg_desc.type & 0xa) == 0x8 ||
1722 (((seg_desc.type & 0xc) != 0xc) &&
1723 (rpl > dpl && cpl > dpl)))
1724 goto exception;
1725 break;
1726 }
1727
1728 if (seg_desc.s) {
1729 /* mark segment as accessed */
1730 if (!(seg_desc.type & 1)) {
1731 seg_desc.type |= 1;
1732 ret = write_segment_descriptor(ctxt, selector,
1733 &seg_desc);
1734 if (ret != X86EMUL_CONTINUE)
1735 return ret;
1736 }
1737 } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1738 ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3,
1739 sizeof(base3), &ctxt->exception);
1740 if (ret != X86EMUL_CONTINUE)
1741 return ret;
1742 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1743 ((u64)base3 << 32), ctxt))
1744 return emulate_gp(ctxt, 0);
1745 }
1746 load:
1747 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1748 if (desc)
1749 *desc = seg_desc;
1750 return X86EMUL_CONTINUE;
1751 exception:
1752 return emulate_exception(ctxt, err_vec, err_code, true);
1753 }
1754
1755 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1756 u16 selector, int seg)
1757 {
1758 u8 cpl = ctxt->ops->cpl(ctxt);
1759
1760 /*
1761 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1762 * they can load it at CPL<3 (Intel's manual says only LSS can,
1763 * but it's wrong).
1764 *
1765 * However, the Intel manual says that putting IST=1/DPL=3 in
1766 * an interrupt gate will result in SS=3 (the AMD manual instead
1767 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1768 * and only forbid it here.
1769 */
1770 if (seg == VCPU_SREG_SS && selector == 3 &&
1771 ctxt->mode == X86EMUL_MODE_PROT64)
1772 return emulate_exception(ctxt, GP_VECTOR, 0, true);
1773
1774 return __load_segment_descriptor(ctxt, selector, seg, cpl,
1775 X86_TRANSFER_NONE, NULL);
1776 }
1777
1778 static void write_register_operand(struct operand *op)
1779 {
1780 return assign_register(op->addr.reg, op->val, op->bytes);
1781 }
1782
1783 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1784 {
1785 switch (op->type) {
1786 case OP_REG:
1787 write_register_operand(op);
1788 break;
1789 case OP_MEM:
1790 if (ctxt->lock_prefix)
1791 return segmented_cmpxchg(ctxt,
1792 op->addr.mem,
1793 &op->orig_val,
1794 &op->val,
1795 op->bytes);
1796 else
1797 return segmented_write(ctxt,
1798 op->addr.mem,
1799 &op->val,
1800 op->bytes);
1801 break;
1802 case OP_MEM_STR:
1803 return segmented_write(ctxt,
1804 op->addr.mem,
1805 op->data,
1806 op->bytes * op->count);
1807 break;
1808 case OP_XMM:
1809 write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
1810 break;
1811 case OP_MM:
1812 write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
1813 break;
1814 case OP_NONE:
1815 /* no writeback */
1816 break;
1817 default:
1818 break;
1819 }
1820 return X86EMUL_CONTINUE;
1821 }
1822
1823 static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
1824 {
1825 struct segmented_address addr;
1826
1827 rsp_increment(ctxt, -bytes);
1828 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1829 addr.seg = VCPU_SREG_SS;
1830
1831 return segmented_write(ctxt, addr, data, bytes);
1832 }
1833
1834 static int em_push(struct x86_emulate_ctxt *ctxt)
1835 {
1836 /* Disable writeback. */
1837 ctxt->dst.type = OP_NONE;
1838 return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1839 }
1840
1841 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1842 void *dest, int len)
1843 {
1844 int rc;
1845 struct segmented_address addr;
1846
1847 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1848 addr.seg = VCPU_SREG_SS;
1849 rc = segmented_read(ctxt, addr, dest, len);
1850 if (rc != X86EMUL_CONTINUE)
1851 return rc;
1852
1853 rsp_increment(ctxt, len);
1854 return rc;
1855 }
1856
1857 static int em_pop(struct x86_emulate_ctxt *ctxt)
1858 {
1859 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1860 }
1861
1862 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1863 void *dest, int len)
1864 {
1865 int rc;
1866 unsigned long val, change_mask;
1867 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1868 int cpl = ctxt->ops->cpl(ctxt);
1869
1870 rc = emulate_pop(ctxt, &val, len);
1871 if (rc != X86EMUL_CONTINUE)
1872 return rc;
1873
1874 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1875 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1876 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1877 X86_EFLAGS_AC | X86_EFLAGS_ID;
1878
1879 switch(ctxt->mode) {
1880 case X86EMUL_MODE_PROT64:
1881 case X86EMUL_MODE_PROT32:
1882 case X86EMUL_MODE_PROT16:
1883 if (cpl == 0)
1884 change_mask |= X86_EFLAGS_IOPL;
1885 if (cpl <= iopl)
1886 change_mask |= X86_EFLAGS_IF;
1887 break;
1888 case X86EMUL_MODE_VM86:
1889 if (iopl < 3)
1890 return emulate_gp(ctxt, 0);
1891 change_mask |= X86_EFLAGS_IF;
1892 break;
1893 default: /* real mode */
1894 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1895 break;
1896 }
1897
1898 *(unsigned long *)dest =
1899 (ctxt->eflags & ~change_mask) | (val & change_mask);
1900
1901 return rc;
1902 }
1903
1904 static int em_popf(struct x86_emulate_ctxt *ctxt)
1905 {
1906 ctxt->dst.type = OP_REG;
1907 ctxt->dst.addr.reg = &ctxt->eflags;
1908 ctxt->dst.bytes = ctxt->op_bytes;
1909 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1910 }
1911
1912 static int em_enter(struct x86_emulate_ctxt *ctxt)
1913 {
1914 int rc;
1915 unsigned frame_size = ctxt->src.val;
1916 unsigned nesting_level = ctxt->src2.val & 31;
1917 ulong rbp;
1918
1919 if (nesting_level)
1920 return X86EMUL_UNHANDLEABLE;
1921
1922 rbp = reg_read(ctxt, VCPU_REGS_RBP);
1923 rc = push(ctxt, &rbp, stack_size(ctxt));
1924 if (rc != X86EMUL_CONTINUE)
1925 return rc;
1926 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1927 stack_mask(ctxt));
1928 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1929 reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1930 stack_mask(ctxt));
1931 return X86EMUL_CONTINUE;
1932 }
1933
1934 static int em_leave(struct x86_emulate_ctxt *ctxt)
1935 {
1936 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1937 stack_mask(ctxt));
1938 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1939 }
1940
1941 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1942 {
1943 int seg = ctxt->src2.val;
1944
1945 ctxt->src.val = get_segment_selector(ctxt, seg);
1946 if (ctxt->op_bytes == 4) {
1947 rsp_increment(ctxt, -2);
1948 ctxt->op_bytes = 2;
1949 }
1950
1951 return em_push(ctxt);
1952 }
1953
1954 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1955 {
1956 int seg = ctxt->src2.val;
1957 unsigned long selector;
1958 int rc;
1959
1960 rc = emulate_pop(ctxt, &selector, 2);
1961 if (rc != X86EMUL_CONTINUE)
1962 return rc;
1963
1964 if (ctxt->modrm_reg == VCPU_SREG_SS)
1965 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1966 if (ctxt->op_bytes > 2)
1967 rsp_increment(ctxt, ctxt->op_bytes - 2);
1968
1969 rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1970 return rc;
1971 }
1972
1973 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1974 {
1975 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1976 int rc = X86EMUL_CONTINUE;
1977 int reg = VCPU_REGS_RAX;
1978
1979 while (reg <= VCPU_REGS_RDI) {
1980 (reg == VCPU_REGS_RSP) ?
1981 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1982
1983 rc = em_push(ctxt);
1984 if (rc != X86EMUL_CONTINUE)
1985 return rc;
1986
1987 ++reg;
1988 }
1989
1990 return rc;
1991 }
1992
1993 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1994 {
1995 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1996 return em_push(ctxt);
1997 }
1998
1999 static int em_popa(struct x86_emulate_ctxt *ctxt)
2000 {
2001 int rc = X86EMUL_CONTINUE;
2002 int reg = VCPU_REGS_RDI;
2003 u32 val;
2004
2005 while (reg >= VCPU_REGS_RAX) {
2006 if (reg == VCPU_REGS_RSP) {
2007 rsp_increment(ctxt, ctxt->op_bytes);
2008 --reg;
2009 }
2010
2011 rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
2012 if (rc != X86EMUL_CONTINUE)
2013 break;
2014 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
2015 --reg;
2016 }
2017 return rc;
2018 }
2019
2020 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2021 {
2022 const struct x86_emulate_ops *ops = ctxt->ops;
2023 int rc;
2024 struct desc_ptr dt;
2025 gva_t cs_addr;
2026 gva_t eip_addr;
2027 u16 cs, eip;
2028
2029 /* TODO: Add limit checks */
2030 ctxt->src.val = ctxt->eflags;
2031 rc = em_push(ctxt);
2032 if (rc != X86EMUL_CONTINUE)
2033 return rc;
2034
2035 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2036
2037 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2038 rc = em_push(ctxt);
2039 if (rc != X86EMUL_CONTINUE)
2040 return rc;
2041
2042 ctxt->src.val = ctxt->_eip;
2043 rc = em_push(ctxt);
2044 if (rc != X86EMUL_CONTINUE)
2045 return rc;
2046
2047 ops->get_idt(ctxt, &dt);
2048
2049 eip_addr = dt.address + (irq << 2);
2050 cs_addr = dt.address + (irq << 2) + 2;
2051
2052 rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
2053 if (rc != X86EMUL_CONTINUE)
2054 return rc;
2055
2056 rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
2057 if (rc != X86EMUL_CONTINUE)
2058 return rc;
2059
2060 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2061 if (rc != X86EMUL_CONTINUE)
2062 return rc;
2063
2064 ctxt->_eip = eip;
2065
2066 return rc;
2067 }
2068
2069 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2070 {
2071 int rc;
2072
2073 invalidate_registers(ctxt);
2074 rc = __emulate_int_real(ctxt, irq);
2075 if (rc == X86EMUL_CONTINUE)
2076 writeback_registers(ctxt);
2077 return rc;
2078 }
2079
2080 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2081 {
2082 switch(ctxt->mode) {
2083 case X86EMUL_MODE_REAL:
2084 return __emulate_int_real(ctxt, irq);
2085 case X86EMUL_MODE_VM86:
2086 case X86EMUL_MODE_PROT16:
2087 case X86EMUL_MODE_PROT32:
2088 case X86EMUL_MODE_PROT64:
2089 default:
2090 /* Protected mode interrupts unimplemented yet */
2091 return X86EMUL_UNHANDLEABLE;
2092 }
2093 }
2094
2095 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2096 {
2097 int rc = X86EMUL_CONTINUE;
2098 unsigned long temp_eip = 0;
2099 unsigned long temp_eflags = 0;
2100 unsigned long cs = 0;
2101 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2102 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2103 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2104 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2105 X86_EFLAGS_AC | X86_EFLAGS_ID |
2106 X86_EFLAGS_FIXED;
2107 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2108 X86_EFLAGS_VIP;
2109
2110 /* TODO: Add stack limit check */
2111
2112 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2113
2114 if (rc != X86EMUL_CONTINUE)
2115 return rc;
2116
2117 if (temp_eip & ~0xffff)
2118 return emulate_gp(ctxt, 0);
2119
2120 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2121
2122 if (rc != X86EMUL_CONTINUE)
2123 return rc;
2124
2125 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2126
2127 if (rc != X86EMUL_CONTINUE)
2128 return rc;
2129
2130 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2131
2132 if (rc != X86EMUL_CONTINUE)
2133 return rc;
2134
2135 ctxt->_eip = temp_eip;
2136
2137 if (ctxt->op_bytes == 4)
2138 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2139 else if (ctxt->op_bytes == 2) {
2140 ctxt->eflags &= ~0xffff;
2141 ctxt->eflags |= temp_eflags;
2142 }
2143
2144 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2145 ctxt->eflags |= X86_EFLAGS_FIXED;
2146 ctxt->ops->set_nmi_mask(ctxt, false);
2147
2148 return rc;
2149 }
2150
2151 static int em_iret(struct x86_emulate_ctxt *ctxt)
2152 {
2153 switch(ctxt->mode) {
2154 case X86EMUL_MODE_REAL:
2155 return emulate_iret_real(ctxt);
2156 case X86EMUL_MODE_VM86:
2157 case X86EMUL_MODE_PROT16:
2158 case X86EMUL_MODE_PROT32:
2159 case X86EMUL_MODE_PROT64:
2160 default:
2161 /* iret from protected mode unimplemented yet */
2162 return X86EMUL_UNHANDLEABLE;
2163 }
2164 }
2165
2166 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2167 {
2168 int rc;
2169 unsigned short sel;
2170 struct desc_struct new_desc;
2171 u8 cpl = ctxt->ops->cpl(ctxt);
2172
2173 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2174
2175 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2176 X86_TRANSFER_CALL_JMP,
2177 &new_desc);
2178 if (rc != X86EMUL_CONTINUE)
2179 return rc;
2180
2181 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
2182 /* Error handling is not implemented. */
2183 if (rc != X86EMUL_CONTINUE)
2184 return X86EMUL_UNHANDLEABLE;
2185
2186 return rc;
2187 }
2188
2189 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2190 {
2191 return assign_eip_near(ctxt, ctxt->src.val);
2192 }
2193
2194 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2195 {
2196 int rc;
2197 long int old_eip;
2198
2199 old_eip = ctxt->_eip;
2200 rc = assign_eip_near(ctxt, ctxt->src.val);
2201 if (rc != X86EMUL_CONTINUE)
2202 return rc;
2203 ctxt->src.val = old_eip;
2204 rc = em_push(ctxt);
2205 return rc;
2206 }
2207
2208 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2209 {
2210 u64 old = ctxt->dst.orig_val64;
2211
2212 if (ctxt->dst.bytes == 16)
2213 return X86EMUL_UNHANDLEABLE;
2214
2215 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2216 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2217 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2218 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2219 ctxt->eflags &= ~X86_EFLAGS_ZF;
2220 } else {
2221 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2222 (u32) reg_read(ctxt, VCPU_REGS_RBX);
2223
2224 ctxt->eflags |= X86_EFLAGS_ZF;
2225 }
2226 return X86EMUL_CONTINUE;
2227 }
2228
2229 static int em_ret(struct x86_emulate_ctxt *ctxt)
2230 {
2231 int rc;
2232 unsigned long eip;
2233
2234 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2235 if (rc != X86EMUL_CONTINUE)
2236 return rc;
2237
2238 return assign_eip_near(ctxt, eip);
2239 }
2240
2241 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2242 {
2243 int rc;
2244 unsigned long eip, cs;
2245 int cpl = ctxt->ops->cpl(ctxt);
2246 struct desc_struct new_desc;
2247
2248 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2249 if (rc != X86EMUL_CONTINUE)
2250 return rc;
2251 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2252 if (rc != X86EMUL_CONTINUE)
2253 return rc;
2254 /* Outer-privilege level return is not implemented */
2255 if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
2256 return X86EMUL_UNHANDLEABLE;
2257 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2258 X86_TRANSFER_RET,
2259 &new_desc);
2260 if (rc != X86EMUL_CONTINUE)
2261 return rc;
2262 rc = assign_eip_far(ctxt, eip, &new_desc);
2263 /* Error handling is not implemented. */
2264 if (rc != X86EMUL_CONTINUE)
2265 return X86EMUL_UNHANDLEABLE;
2266
2267 return rc;
2268 }
2269
2270 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2271 {
2272 int rc;
2273
2274 rc = em_ret_far(ctxt);
2275 if (rc != X86EMUL_CONTINUE)
2276 return rc;
2277 rsp_increment(ctxt, ctxt->src.val);
2278 return X86EMUL_CONTINUE;
2279 }
2280
2281 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2282 {
2283 /* Save real source value, then compare EAX against destination. */
2284 ctxt->dst.orig_val = ctxt->dst.val;
2285 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2286 ctxt->src.orig_val = ctxt->src.val;
2287 ctxt->src.val = ctxt->dst.orig_val;
2288 fastop(ctxt, em_cmp);
2289
2290 if (ctxt->eflags & X86_EFLAGS_ZF) {
2291 /* Success: write back to memory; no update of EAX */
2292 ctxt->src.type = OP_NONE;
2293 ctxt->dst.val = ctxt->src.orig_val;
2294 } else {
2295 /* Failure: write the value we saw to EAX. */
2296 ctxt->src.type = OP_REG;
2297 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2298 ctxt->src.val = ctxt->dst.orig_val;
2299 /* Create write-cycle to dest by writing the same value */
2300 ctxt->dst.val = ctxt->dst.orig_val;
2301 }
2302 return X86EMUL_CONTINUE;
2303 }
2304
2305 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2306 {
2307 int seg = ctxt->src2.val;
2308 unsigned short sel;
2309 int rc;
2310
2311 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2312
2313 rc = load_segment_descriptor(ctxt, sel, seg);
2314 if (rc != X86EMUL_CONTINUE)
2315 return rc;
2316
2317 ctxt->dst.val = ctxt->src.val;
2318 return rc;
2319 }
2320
2321 static int emulator_has_longmode(struct x86_emulate_ctxt *ctxt)
2322 {
2323 u32 eax, ebx, ecx, edx;
2324
2325 eax = 0x80000001;
2326 ecx = 0;
2327 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
2328 return edx & bit(X86_FEATURE_LM);
2329 }
2330
2331 #define GET_SMSTATE(type, smbase, offset) \
2332 ({ \
2333 type __val; \
2334 int r = ctxt->ops->read_phys(ctxt, smbase + offset, &__val, \
2335 sizeof(__val)); \
2336 if (r != X86EMUL_CONTINUE) \
2337 return X86EMUL_UNHANDLEABLE; \
2338 __val; \
2339 })
2340
2341 static void rsm_set_desc_flags(struct desc_struct *desc, u32 flags)
2342 {
2343 desc->g = (flags >> 23) & 1;
2344 desc->d = (flags >> 22) & 1;
2345 desc->l = (flags >> 21) & 1;
2346 desc->avl = (flags >> 20) & 1;
2347 desc->p = (flags >> 15) & 1;
2348 desc->dpl = (flags >> 13) & 3;
2349 desc->s = (flags >> 12) & 1;
2350 desc->type = (flags >> 8) & 15;
2351 }
2352
2353 static int rsm_load_seg_32(struct x86_emulate_ctxt *ctxt, u64 smbase, int n)
2354 {
2355 struct desc_struct desc;
2356 int offset;
2357 u16 selector;
2358
2359 selector = GET_SMSTATE(u32, smbase, 0x7fa8 + n * 4);
2360
2361 if (n < 3)
2362 offset = 0x7f84 + n * 12;
2363 else
2364 offset = 0x7f2c + (n - 3) * 12;
2365
2366 set_desc_base(&desc, GET_SMSTATE(u32, smbase, offset + 8));
2367 set_desc_limit(&desc, GET_SMSTATE(u32, smbase, offset + 4));
2368 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, offset));
2369 ctxt->ops->set_segment(ctxt, selector, &desc, 0, n);
2370 return X86EMUL_CONTINUE;
2371 }
2372
2373 static int rsm_load_seg_64(struct x86_emulate_ctxt *ctxt, u64 smbase, int n)
2374 {
2375 struct desc_struct desc;
2376 int offset;
2377 u16 selector;
2378 u32 base3;
2379
2380 offset = 0x7e00 + n * 16;
2381
2382 selector = GET_SMSTATE(u16, smbase, offset);
2383 rsm_set_desc_flags(&desc, GET_SMSTATE(u16, smbase, offset + 2) << 8);
2384 set_desc_limit(&desc, GET_SMSTATE(u32, smbase, offset + 4));
2385 set_desc_base(&desc, GET_SMSTATE(u32, smbase, offset + 8));
2386 base3 = GET_SMSTATE(u32, smbase, offset + 12);
2387
2388 ctxt->ops->set_segment(ctxt, selector, &desc, base3, n);
2389 return X86EMUL_CONTINUE;
2390 }
2391
2392 static int rsm_enter_protected_mode(struct x86_emulate_ctxt *ctxt,
2393 u64 cr0, u64 cr4)
2394 {
2395 int bad;
2396
2397 /*
2398 * First enable PAE, long mode needs it before CR0.PG = 1 is set.
2399 * Then enable protected mode. However, PCID cannot be enabled
2400 * if EFER.LMA=0, so set it separately.
2401 */
2402 bad = ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PCIDE);
2403 if (bad)
2404 return X86EMUL_UNHANDLEABLE;
2405
2406 bad = ctxt->ops->set_cr(ctxt, 0, cr0);
2407 if (bad)
2408 return X86EMUL_UNHANDLEABLE;
2409
2410 if (cr4 & X86_CR4_PCIDE) {
2411 bad = ctxt->ops->set_cr(ctxt, 4, cr4);
2412 if (bad)
2413 return X86EMUL_UNHANDLEABLE;
2414 }
2415
2416 return X86EMUL_CONTINUE;
2417 }
2418
2419 static int rsm_load_state_32(struct x86_emulate_ctxt *ctxt, u64 smbase)
2420 {
2421 struct desc_struct desc;
2422 struct desc_ptr dt;
2423 u16 selector;
2424 u32 val, cr0, cr4;
2425 int i;
2426
2427 cr0 = GET_SMSTATE(u32, smbase, 0x7ffc);
2428 ctxt->ops->set_cr(ctxt, 3, GET_SMSTATE(u32, smbase, 0x7ff8));
2429 ctxt->eflags = GET_SMSTATE(u32, smbase, 0x7ff4) | X86_EFLAGS_FIXED;
2430 ctxt->_eip = GET_SMSTATE(u32, smbase, 0x7ff0);
2431
2432 for (i = 0; i < 8; i++)
2433 *reg_write(ctxt, i) = GET_SMSTATE(u32, smbase, 0x7fd0 + i * 4);
2434
2435 val = GET_SMSTATE(u32, smbase, 0x7fcc);
2436 ctxt->ops->set_dr(ctxt, 6, (val & DR6_VOLATILE) | DR6_FIXED_1);
2437 val = GET_SMSTATE(u32, smbase, 0x7fc8);
2438 ctxt->ops->set_dr(ctxt, 7, (val & DR7_VOLATILE) | DR7_FIXED_1);
2439
2440 selector = GET_SMSTATE(u32, smbase, 0x7fc4);
2441 set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7f64));
2442 set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7f60));
2443 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7f5c));
2444 ctxt->ops->set_segment(ctxt, selector, &desc, 0, VCPU_SREG_TR);
2445
2446 selector = GET_SMSTATE(u32, smbase, 0x7fc0);
2447 set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7f80));
2448 set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7f7c));
2449 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7f78));
2450 ctxt->ops->set_segment(ctxt, selector, &desc, 0, VCPU_SREG_LDTR);
2451
2452 dt.address = GET_SMSTATE(u32, smbase, 0x7f74);
2453 dt.size = GET_SMSTATE(u32, smbase, 0x7f70);
2454 ctxt->ops->set_gdt(ctxt, &dt);
2455
2456 dt.address = GET_SMSTATE(u32, smbase, 0x7f58);
2457 dt.size = GET_SMSTATE(u32, smbase, 0x7f54);
2458 ctxt->ops->set_idt(ctxt, &dt);
2459
2460 for (i = 0; i < 6; i++) {
2461 int r = rsm_load_seg_32(ctxt, smbase, i);
2462 if (r != X86EMUL_CONTINUE)
2463 return r;
2464 }
2465
2466 cr4 = GET_SMSTATE(u32, smbase, 0x7f14);
2467
2468 ctxt->ops->set_smbase(ctxt, GET_SMSTATE(u32, smbase, 0x7ef8));
2469
2470 return rsm_enter_protected_mode(ctxt, cr0, cr4);
2471 }
2472
2473 static int rsm_load_state_64(struct x86_emulate_ctxt *ctxt, u64 smbase)
2474 {
2475 struct desc_struct desc;
2476 struct desc_ptr dt;
2477 u64 val, cr0, cr4;
2478 u32 base3;
2479 u16 selector;
2480 int i, r;
2481
2482 for (i = 0; i < 16; i++)
2483 *reg_write(ctxt, i) = GET_SMSTATE(u64, smbase, 0x7ff8 - i * 8);
2484
2485 ctxt->_eip = GET_SMSTATE(u64, smbase, 0x7f78);
2486 ctxt->eflags = GET_SMSTATE(u32, smbase, 0x7f70) | X86_EFLAGS_FIXED;
2487
2488 val = GET_SMSTATE(u32, smbase, 0x7f68);
2489 ctxt->ops->set_dr(ctxt, 6, (val & DR6_VOLATILE) | DR6_FIXED_1);
2490 val = GET_SMSTATE(u32, smbase, 0x7f60);
2491 ctxt->ops->set_dr(ctxt, 7, (val & DR7_VOLATILE) | DR7_FIXED_1);
2492
2493 cr0 = GET_SMSTATE(u64, smbase, 0x7f58);
2494 ctxt->ops->set_cr(ctxt, 3, GET_SMSTATE(u64, smbase, 0x7f50));
2495 cr4 = GET_SMSTATE(u64, smbase, 0x7f48);
2496 ctxt->ops->set_smbase(ctxt, GET_SMSTATE(u32, smbase, 0x7f00));
2497 val = GET_SMSTATE(u64, smbase, 0x7ed0);
2498 ctxt->ops->set_msr(ctxt, MSR_EFER, val & ~EFER_LMA);
2499
2500 selector = GET_SMSTATE(u32, smbase, 0x7e90);
2501 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7e92) << 8);
2502 set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7e94));
2503 set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7e98));
2504 base3 = GET_SMSTATE(u32, smbase, 0x7e9c);
2505 ctxt->ops->set_segment(ctxt, selector, &desc, base3, VCPU_SREG_TR);
2506
2507 dt.size = GET_SMSTATE(u32, smbase, 0x7e84);
2508 dt.address = GET_SMSTATE(u64, smbase, 0x7e88);
2509 ctxt->ops->set_idt(ctxt, &dt);
2510
2511 selector = GET_SMSTATE(u32, smbase, 0x7e70);
2512 rsm_set_desc_flags(&desc, GET_SMSTATE(u32, smbase, 0x7e72) << 8);
2513 set_desc_limit(&desc, GET_SMSTATE(u32, smbase, 0x7e74));
2514 set_desc_base(&desc, GET_SMSTATE(u32, smbase, 0x7e78));
2515 base3 = GET_SMSTATE(u32, smbase, 0x7e7c);
2516 ctxt->ops->set_segment(ctxt, selector, &desc, base3, VCPU_SREG_LDTR);
2517
2518 dt.size = GET_SMSTATE(u32, smbase, 0x7e64);
2519 dt.address = GET_SMSTATE(u64, smbase, 0x7e68);
2520 ctxt->ops->set_gdt(ctxt, &dt);
2521
2522 r = rsm_enter_protected_mode(ctxt, cr0, cr4);
2523 if (r != X86EMUL_CONTINUE)
2524 return r;
2525
2526 for (i = 0; i < 6; i++) {
2527 r = rsm_load_seg_64(ctxt, smbase, i);
2528 if (r != X86EMUL_CONTINUE)
2529 return r;
2530 }
2531
2532 return X86EMUL_CONTINUE;
2533 }
2534
2535 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2536 {
2537 unsigned long cr0, cr4, efer;
2538 u64 smbase;
2539 int ret;
2540
2541 if ((ctxt->ops->get_hflags(ctxt) & X86EMUL_SMM_MASK) == 0)
2542 return emulate_ud(ctxt);
2543
2544 /*
2545 * Get back to real mode, to prepare a safe state in which to load
2546 * CR0/CR3/CR4/EFER. It's all a bit more complicated if the vCPU
2547 * supports long mode.
2548 */
2549 cr4 = ctxt->ops->get_cr(ctxt, 4);
2550 if (emulator_has_longmode(ctxt)) {
2551 struct desc_struct cs_desc;
2552
2553 /* Zero CR4.PCIDE before CR0.PG. */
2554 if (cr4 & X86_CR4_PCIDE) {
2555 ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PCIDE);
2556 cr4 &= ~X86_CR4_PCIDE;
2557 }
2558
2559 /* A 32-bit code segment is required to clear EFER.LMA. */
2560 memset(&cs_desc, 0, sizeof(cs_desc));
2561 cs_desc.type = 0xb;
2562 cs_desc.s = cs_desc.g = cs_desc.p = 1;
2563 ctxt->ops->set_segment(ctxt, 0, &cs_desc, 0, VCPU_SREG_CS);
2564 }
2565
2566 /* For the 64-bit case, this will clear EFER.LMA. */
2567 cr0 = ctxt->ops->get_cr(ctxt, 0);
2568 if (cr0 & X86_CR0_PE)
2569 ctxt->ops->set_cr(ctxt, 0, cr0 & ~(X86_CR0_PG | X86_CR0_PE));
2570
2571 /* Now clear CR4.PAE (which must be done before clearing EFER.LME). */
2572 if (cr4 & X86_CR4_PAE)
2573 ctxt->ops->set_cr(ctxt, 4, cr4 & ~X86_CR4_PAE);
2574
2575 /* And finally go back to 32-bit mode. */
2576 efer = 0;
2577 ctxt->ops->set_msr(ctxt, MSR_EFER, efer);
2578
2579 smbase = ctxt->ops->get_smbase(ctxt);
2580
2581 /*
2582 * Give pre_leave_smm() a chance to make ISA-specific changes to the
2583 * vCPU state (e.g. enter guest mode) before loading state from the SMM
2584 * state-save area.
2585 */
2586 if (ctxt->ops->pre_leave_smm(ctxt, smbase))
2587 return X86EMUL_UNHANDLEABLE;
2588
2589 if (emulator_has_longmode(ctxt))
2590 ret = rsm_load_state_64(ctxt, smbase + 0x8000);
2591 else
2592 ret = rsm_load_state_32(ctxt, smbase + 0x8000);
2593
2594 if (ret != X86EMUL_CONTINUE) {
2595 /* FIXME: should triple fault */
2596 return X86EMUL_UNHANDLEABLE;
2597 }
2598
2599 if ((ctxt->ops->get_hflags(ctxt) & X86EMUL_SMM_INSIDE_NMI_MASK) == 0)
2600 ctxt->ops->set_nmi_mask(ctxt, false);
2601
2602 ctxt->ops->set_hflags(ctxt, ctxt->ops->get_hflags(ctxt) &
2603 ~(X86EMUL_SMM_INSIDE_NMI_MASK | X86EMUL_SMM_MASK));
2604 return X86EMUL_CONTINUE;
2605 }
2606
2607 static void
2608 setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
2609 struct desc_struct *cs, struct desc_struct *ss)
2610 {
2611 cs->l = 0; /* will be adjusted later */
2612 set_desc_base(cs, 0); /* flat segment */
2613 cs->g = 1; /* 4kb granularity */
2614 set_desc_limit(cs, 0xfffff); /* 4GB limit */
2615 cs->type = 0x0b; /* Read, Execute, Accessed */
2616 cs->s = 1;
2617 cs->dpl = 0; /* will be adjusted later */
2618 cs->p = 1;
2619 cs->d = 1;
2620 cs->avl = 0;
2621
2622 set_desc_base(ss, 0); /* flat segment */
2623 set_desc_limit(ss, 0xfffff); /* 4GB limit */
2624 ss->g = 1; /* 4kb granularity */
2625 ss->s = 1;
2626 ss->type = 0x03; /* Read/Write, Accessed */
2627 ss->d = 1; /* 32bit stack segment */
2628 ss->dpl = 0;
2629 ss->p = 1;
2630 ss->l = 0;
2631 ss->avl = 0;
2632 }
2633
2634 static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
2635 {
2636 u32 eax, ebx, ecx, edx;
2637
2638 eax = ecx = 0;
2639 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
2640 return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
2641 && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
2642 && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
2643 }
2644
2645 static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
2646 {
2647 const struct x86_emulate_ops *ops = ctxt->ops;
2648 u32 eax, ebx, ecx, edx;
2649
2650 /*
2651 * syscall should always be enabled in longmode - so only become
2652 * vendor specific (cpuid) if other modes are active...
2653 */
2654 if (ctxt->mode == X86EMUL_MODE_PROT64)
2655 return true;
2656
2657 eax = 0x00000000;
2658 ecx = 0x00000000;
2659 ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
2660 /*
2661 * Intel ("GenuineIntel")
2662 * remark: Intel CPUs only support "syscall" in 64bit
2663 * longmode. Also an 64bit guest with a
2664 * 32bit compat-app running will #UD !! While this
2665 * behaviour can be fixed (by emulating) into AMD
2666 * response - CPUs of AMD can't behave like Intel.
2667 */
2668 if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
2669 ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
2670 edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
2671 return false;
2672
2673 /* AMD ("AuthenticAMD") */
2674 if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
2675 ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
2676 edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
2677 return true;
2678
2679 /* AMD ("AMDisbetter!") */
2680 if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
2681 ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
2682 edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
2683 return true;
2684
2685 /* default: (not Intel, not AMD), apply Intel's stricter rules... */
2686 return false;
2687 }
2688
2689 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2690 {
2691 const struct x86_emulate_ops *ops = ctxt->ops;
2692 struct desc_struct cs, ss;
2693 u64 msr_data;
2694 u16 cs_sel, ss_sel;
2695 u64 efer = 0;
2696
2697 /* syscall is not available in real mode */
2698 if (ctxt->mode == X86EMUL_MODE_REAL ||
2699 ctxt->mode == X86EMUL_MODE_VM86)
2700 return emulate_ud(ctxt);
2701
2702 if (!(em_syscall_is_enabled(ctxt)))
2703 return emulate_ud(ctxt);
2704
2705 ops->get_msr(ctxt, MSR_EFER, &efer);
2706 setup_syscalls_segments(ctxt, &cs, &ss);
2707
2708 if (!(efer & EFER_SCE))
2709 return emulate_ud(ctxt);
2710
2711 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2712 msr_data >>= 32;
2713 cs_sel = (u16)(msr_data & 0xfffc);
2714 ss_sel = (u16)(msr_data + 8);
2715
2716 if (efer & EFER_LMA) {
2717 cs.d = 0;
2718 cs.l = 1;
2719 }
2720 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2721 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2722
2723 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2724 if (efer & EFER_LMA) {
2725 #ifdef CONFIG_X86_64
2726 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2727
2728 ops->get_msr(ctxt,
2729 ctxt->mode == X86EMUL_MODE_PROT64 ?
2730 MSR_LSTAR : MSR_CSTAR, &msr_data);
2731 ctxt->_eip = msr_data;
2732
2733 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2734 ctxt->eflags &= ~msr_data;
2735 ctxt->eflags |= X86_EFLAGS_FIXED;
2736 #endif
2737 } else {
2738 /* legacy mode */
2739 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2740 ctxt->_eip = (u32)msr_data;
2741
2742 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2743 }
2744
2745 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2746 return X86EMUL_CONTINUE;
2747 }
2748
2749 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2750 {
2751 const struct x86_emulate_ops *ops = ctxt->ops;
2752 struct desc_struct cs, ss;
2753 u64 msr_data;
2754 u16 cs_sel, ss_sel;
2755 u64 efer = 0;
2756
2757 ops->get_msr(ctxt, MSR_EFER, &efer);
2758 /* inject #GP if in real mode */
2759 if (ctxt->mode == X86EMUL_MODE_REAL)
2760 return emulate_gp(ctxt, 0);
2761
2762 /*
2763 * Not recognized on AMD in compat mode (but is recognized in legacy
2764 * mode).
2765 */
2766 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
2767 && !vendor_intel(ctxt))
2768 return emulate_ud(ctxt);
2769
2770 /* sysenter/sysexit have not been tested in 64bit mode. */
2771 if (ctxt->mode == X86EMUL_MODE_PROT64)
2772 return X86EMUL_UNHANDLEABLE;
2773
2774 setup_syscalls_segments(ctxt, &cs, &ss);
2775
2776 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2777 if ((msr_data & 0xfffc) == 0x0)
2778 return emulate_gp(ctxt, 0);
2779
2780 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2781 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2782 ss_sel = cs_sel + 8;
2783 if (efer & EFER_LMA) {
2784 cs.d = 0;
2785 cs.l = 1;
2786 }
2787
2788 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2789 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2790
2791 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2792 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2793
2794 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2795 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2796 (u32)msr_data;
2797
2798 return X86EMUL_CONTINUE;
2799 }
2800
2801 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2802 {
2803 const struct x86_emulate_ops *ops = ctxt->ops;
2804 struct desc_struct cs, ss;
2805 u64 msr_data, rcx, rdx;
2806 int usermode;
2807 u16 cs_sel = 0, ss_sel = 0;
2808
2809 /* inject #GP if in real mode or Virtual 8086 mode */
2810 if (ctxt->mode == X86EMUL_MODE_REAL ||
2811 ctxt->mode == X86EMUL_MODE_VM86)
2812 return emulate_gp(ctxt, 0);
2813
2814 setup_syscalls_segments(ctxt, &cs, &ss);
2815
2816 if ((ctxt->rex_prefix & 0x8) != 0x0)
2817 usermode = X86EMUL_MODE_PROT64;
2818 else
2819 usermode = X86EMUL_MODE_PROT32;
2820
2821 rcx = reg_read(ctxt, VCPU_REGS_RCX);
2822 rdx = reg_read(ctxt, VCPU_REGS_RDX);
2823
2824 cs.dpl = 3;
2825 ss.dpl = 3;
2826 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2827 switch (usermode) {
2828 case X86EMUL_MODE_PROT32:
2829 cs_sel = (u16)(msr_data + 16);
2830 if ((msr_data & 0xfffc) == 0x0)
2831 return emulate_gp(ctxt, 0);
2832 ss_sel = (u16)(msr_data + 24);
2833 rcx = (u32)rcx;
2834 rdx = (u32)rdx;
2835 break;
2836 case X86EMUL_MODE_PROT64:
2837 cs_sel = (u16)(msr_data + 32);
2838 if (msr_data == 0x0)
2839 return emulate_gp(ctxt, 0);
2840 ss_sel = cs_sel + 8;
2841 cs.d = 0;
2842 cs.l = 1;
2843 if (emul_is_noncanonical_address(rcx, ctxt) ||
2844 emul_is_noncanonical_address(rdx, ctxt))
2845 return emulate_gp(ctxt, 0);
2846 break;
2847 }
2848 cs_sel |= SEGMENT_RPL_MASK;
2849 ss_sel |= SEGMENT_RPL_MASK;
2850
2851 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2852 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2853
2854 ctxt->_eip = rdx;
2855 *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2856
2857 return X86EMUL_CONTINUE;
2858 }
2859
2860 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2861 {
2862 int iopl;
2863 if (ctxt->mode == X86EMUL_MODE_REAL)
2864 return false;
2865 if (ctxt->mode == X86EMUL_MODE_VM86)
2866 return true;
2867 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2868 return ctxt->ops->cpl(ctxt) > iopl;
2869 }
2870
2871 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2872 u16 port, u16 len)
2873 {
2874 const struct x86_emulate_ops *ops = ctxt->ops;
2875 struct desc_struct tr_seg;
2876 u32 base3;
2877 int r;
2878 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2879 unsigned mask = (1 << len) - 1;
2880 unsigned long base;
2881
2882 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2883 if (!tr_seg.p)
2884 return false;
2885 if (desc_limit_scaled(&tr_seg) < 103)
2886 return false;
2887 base = get_desc_base(&tr_seg);
2888 #ifdef CONFIG_X86_64
2889 base |= ((u64)base3) << 32;
2890 #endif
2891 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
2892 if (r != X86EMUL_CONTINUE)
2893 return false;
2894 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2895 return false;
2896 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
2897 if (r != X86EMUL_CONTINUE)
2898 return false;
2899 if ((perm >> bit_idx) & mask)
2900 return false;
2901 return true;
2902 }
2903
2904 static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
2905 u16 port, u16 len)
2906 {
2907 if (ctxt->perm_ok)
2908 return true;
2909
2910 if (emulator_bad_iopl(ctxt))
2911 if (!emulator_io_port_access_allowed(ctxt, port, len))
2912 return false;
2913
2914 ctxt->perm_ok = true;
2915
2916 return true;
2917 }
2918
2919 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2920 {
2921 /*
2922 * Intel CPUs mask the counter and pointers in quite strange
2923 * manner when ECX is zero due to REP-string optimizations.
2924 */
2925 #ifdef CONFIG_X86_64
2926 if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt))
2927 return;
2928
2929 *reg_write(ctxt, VCPU_REGS_RCX) = 0;
2930
2931 switch (ctxt->b) {
2932 case 0xa4: /* movsb */
2933 case 0xa5: /* movsd/w */
2934 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2935 /* fall through */
2936 case 0xaa: /* stosb */
2937 case 0xab: /* stosd/w */
2938 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2939 }
2940 #endif
2941 }
2942
2943 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2944 struct tss_segment_16 *tss)
2945 {
2946 tss->ip = ctxt->_eip;
2947 tss->flag = ctxt->eflags;
2948 tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2949 tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2950 tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2951 tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2952 tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2953 tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2954 tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2955 tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2956
2957 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2958 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2959 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2960 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2961 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2962 }
2963
2964 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2965 struct tss_segment_16 *tss)
2966 {
2967 int ret;
2968 u8 cpl;
2969
2970 ctxt->_eip = tss->ip;
2971 ctxt->eflags = tss->flag | 2;
2972 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2973 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2974 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2975 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2976 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2977 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2978 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2979 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2980
2981 /*
2982 * SDM says that segment selectors are loaded before segment
2983 * descriptors
2984 */
2985 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2986 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2987 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2988 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2989 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2990
2991 cpl = tss->cs & 3;
2992
2993 /*
2994 * Now load segment descriptors. If fault happens at this stage
2995 * it is handled in a context of new task
2996 */
2997 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2998 X86_TRANSFER_TASK_SWITCH, NULL);
2999 if (ret != X86EMUL_CONTINUE)
3000 return ret;
3001 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
3002 X86_TRANSFER_TASK_SWITCH, NULL);
3003 if (ret != X86EMUL_CONTINUE)
3004 return ret;
3005 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
3006 X86_TRANSFER_TASK_SWITCH, NULL);
3007 if (ret != X86EMUL_CONTINUE)
3008 return ret;
3009 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
3010 X86_TRANSFER_TASK_SWITCH, NULL);
3011 if (ret != X86EMUL_CONTINUE)
3012 return ret;
3013 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
3014 X86_TRANSFER_TASK_SWITCH, NULL);
3015 if (ret != X86EMUL_CONTINUE)
3016 return ret;
3017
3018 return X86EMUL_CONTINUE;
3019 }
3020
3021 static int task_switch_16(struct x86_emulate_ctxt *ctxt,
3022 u16 tss_selector, u16 old_tss_sel,
3023 ulong old_tss_base, struct desc_struct *new_desc)
3024 {
3025 const struct x86_emulate_ops *ops = ctxt->ops;
3026 struct tss_segment_16 tss_seg;
3027 int ret;
3028 u32 new_tss_base = get_desc_base(new_desc);
3029
3030 ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
3031 &ctxt->exception);
3032 if (ret != X86EMUL_CONTINUE)
3033 return ret;
3034
3035 save_state_to_tss16(ctxt, &tss_seg);
3036
3037 ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
3038 &ctxt->exception);
3039 if (ret != X86EMUL_CONTINUE)
3040 return ret;
3041
3042 ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
3043 &ctxt->exception);
3044 if (ret != X86EMUL_CONTINUE)
3045 return ret;
3046
3047 if (old_tss_sel != 0xffff) {
3048 tss_seg.prev_task_link = old_tss_sel;
3049
3050 ret = ops->write_std(ctxt, new_tss_base,
3051 &tss_seg.prev_task_link,
3052 sizeof tss_seg.prev_task_link,
3053 &ctxt->exception);
3054 if (ret != X86EMUL_CONTINUE)
3055 return ret;
3056 }
3057
3058 return load_state_from_tss16(ctxt, &tss_seg);
3059 }
3060
3061 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
3062 struct tss_segment_32 *tss)
3063 {
3064 /* CR3 and ldt selector are not saved intentionally */
3065 tss->eip = ctxt->_eip;
3066 tss->eflags = ctxt->eflags;
3067 tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
3068 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
3069 tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
3070 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
3071 tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
3072 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
3073 tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
3074 tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
3075
3076 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
3077 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
3078 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
3079 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
3080 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
3081 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
3082 }
3083
3084 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
3085 struct tss_segment_32 *tss)
3086 {
3087 int ret;
3088 u8 cpl;
3089
3090 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
3091 return emulate_gp(ctxt, 0);
3092 ctxt->_eip = tss->eip;
3093 ctxt->eflags = tss->eflags | 2;
3094
3095 /* General purpose registers */
3096 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
3097 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
3098 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
3099 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
3100 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
3101 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
3102 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
3103 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
3104
3105 /*
3106 * SDM says that segment selectors are loaded before segment
3107 * descriptors. This is important because CPL checks will
3108 * use CS.RPL.
3109 */
3110 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
3111 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
3112 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
3113 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
3114 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
3115 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
3116 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
3117
3118 /*
3119 * If we're switching between Protected Mode and VM86, we need to make
3120 * sure to update the mode before loading the segment descriptors so
3121 * that the selectors are interpreted correctly.
3122 */
3123 if (ctxt->eflags & X86_EFLAGS_VM) {
3124 ctxt->mode = X86EMUL_MODE_VM86;
3125 cpl = 3;
3126 } else {
3127 ctxt->mode = X86EMUL_MODE_PROT32;
3128 cpl = tss->cs & 3;
3129 }
3130
3131 /*
3132 * Now load segment descriptors. If fault happenes at this stage
3133 * it is handled in a context of new task
3134 */
3135 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
3136 cpl, X86_TRANSFER_TASK_SWITCH, NULL);
3137 if (ret != X86EMUL_CONTINUE)
3138 return ret;
3139 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
3140 X86_TRANSFER_TASK_SWITCH, NULL);
3141 if (ret != X86EMUL_CONTINUE)
3142 return ret;
3143 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
3144 X86_TRANSFER_TASK_SWITCH, NULL);
3145 if (ret != X86EMUL_CONTINUE)
3146 return ret;
3147 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
3148 X86_TRANSFER_TASK_SWITCH, NULL);
3149 if (ret != X86EMUL_CONTINUE)
3150 return ret;
3151 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
3152 X86_TRANSFER_TASK_SWITCH, NULL);
3153 if (ret != X86EMUL_CONTINUE)
3154 return ret;
3155 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
3156 X86_TRANSFER_TASK_SWITCH, NULL);
3157 if (ret != X86EMUL_CONTINUE)
3158 return ret;
3159 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
3160 X86_TRANSFER_TASK_SWITCH, NULL);
3161
3162 return ret;
3163 }
3164
3165 static int task_switch_32(struct x86_emulate_ctxt *ctxt,
3166 u16 tss_selector, u16 old_tss_sel,
3167 ulong old_tss_base, struct desc_struct *new_desc)
3168 {
3169 const struct x86_emulate_ops *ops = ctxt->ops;
3170 struct tss_segment_32 tss_seg;
3171 int ret;
3172 u32 new_tss_base = get_desc_base(new_desc);
3173 u32 eip_offset = offsetof(struct tss_segment_32, eip);
3174 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
3175
3176 ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
3177 &ctxt->exception);
3178 if (ret != X86EMUL_CONTINUE)
3179 return ret;
3180
3181 save_state_to_tss32(ctxt, &tss_seg);
3182
3183 /* Only GP registers and segment selectors are saved */
3184 ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
3185 ldt_sel_offset - eip_offset, &ctxt->exception);
3186 if (ret != X86EMUL_CONTINUE)
3187 return ret;
3188
3189 ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
3190 &ctxt->exception);
3191 if (ret != X86EMUL_CONTINUE)
3192 return ret;
3193
3194 if (old_tss_sel != 0xffff) {
3195 tss_seg.prev_task_link = old_tss_sel;
3196
3197 ret = ops->write_std(ctxt, new_tss_base,
3198 &tss_seg.prev_task_link,
3199 sizeof tss_seg.prev_task_link,
3200 &ctxt->exception);
3201 if (ret != X86EMUL_CONTINUE)
3202 return ret;
3203 }
3204
3205 return load_state_from_tss32(ctxt, &tss_seg);
3206 }
3207
3208 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
3209 u16 tss_selector, int idt_index, int reason,
3210 bool has_error_code, u32 error_code)
3211 {
3212 const struct x86_emulate_ops *ops = ctxt->ops;
3213 struct desc_struct curr_tss_desc, next_tss_desc;
3214 int ret;
3215 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
3216 ulong old_tss_base =
3217 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
3218 u32 desc_limit;
3219 ulong desc_addr, dr7;
3220
3221 /* FIXME: old_tss_base == ~0 ? */
3222
3223 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
3224 if (ret != X86EMUL_CONTINUE)
3225 return ret;
3226 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
3227 if (ret != X86EMUL_CONTINUE)
3228 return ret;
3229
3230 /* FIXME: check that next_tss_desc is tss */
3231
3232 /*
3233 * Check privileges. The three cases are task switch caused by...
3234 *
3235 * 1. jmp/call/int to task gate: Check against DPL of the task gate
3236 * 2. Exception/IRQ/iret: No check is performed
3237 * 3. jmp/call to TSS/task-gate: No check is performed since the
3238 * hardware checks it before exiting.
3239 */
3240 if (reason == TASK_SWITCH_GATE) {
3241 if (idt_index != -1) {
3242 /* Software interrupts */
3243 struct desc_struct task_gate_desc;
3244 int dpl;
3245
3246 ret = read_interrupt_descriptor(ctxt, idt_index,
3247 &task_gate_desc);
3248 if (ret != X86EMUL_CONTINUE)
3249 return ret;
3250
3251 dpl = task_gate_desc.dpl;
3252 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
3253 return emulate_gp(ctxt, (idt_index << 3) | 0x2);
3254 }
3255 }
3256
3257 desc_limit = desc_limit_scaled(&next_tss_desc);
3258 if (!next_tss_desc.p ||
3259 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
3260 desc_limit < 0x2b)) {
3261 return emulate_ts(ctxt, tss_selector & 0xfffc);
3262 }
3263
3264 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3265 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
3266 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
3267 }
3268
3269 if (reason == TASK_SWITCH_IRET)
3270 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
3271
3272 /* set back link to prev task only if NT bit is set in eflags
3273 note that old_tss_sel is not used after this point */
3274 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
3275 old_tss_sel = 0xffff;
3276
3277 if (next_tss_desc.type & 8)
3278 ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
3279 old_tss_base, &next_tss_desc);
3280 else
3281 ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
3282 old_tss_base, &next_tss_desc);
3283 if (ret != X86EMUL_CONTINUE)
3284 return ret;
3285
3286 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
3287 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
3288
3289 if (reason != TASK_SWITCH_IRET) {
3290 next_tss_desc.type |= (1 << 1); /* set busy flag */
3291 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
3292 }
3293
3294 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
3295 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
3296
3297 if (has_error_code) {
3298 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
3299 ctxt->lock_prefix = 0;
3300 ctxt->src.val = (unsigned long) error_code;
3301 ret = em_push(ctxt);
3302 }
3303
3304 ops->get_dr(ctxt, 7, &dr7);
3305 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
3306
3307 return ret;
3308 }
3309
3310 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
3311 u16 tss_selector, int idt_index, int reason,
3312 bool has_error_code, u32 error_code)
3313 {
3314 int rc;
3315
3316 invalidate_registers(ctxt);
3317 ctxt->_eip = ctxt->eip;
3318 ctxt->dst.type = OP_NONE;
3319
3320 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
3321 has_error_code, error_code);
3322
3323 if (rc == X86EMUL_CONTINUE) {
3324 ctxt->eip = ctxt->_eip;
3325 writeback_registers(ctxt);
3326 }
3327
3328 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
3329 }
3330
3331 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
3332 struct operand *op)
3333 {
3334 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3335
3336 register_address_increment(ctxt, reg, df * op->bytes);
3337 op->addr.mem.ea = register_address(ctxt, reg);
3338 }
3339
3340 static int em_das(struct x86_emulate_ctxt *ctxt)
3341 {
3342 u8 al, old_al;
3343 bool af, cf, old_cf;
3344
3345 cf = ctxt->eflags & X86_EFLAGS_CF;
3346 al = ctxt->dst.val;
3347
3348 old_al = al;
3349 old_cf = cf;
3350 cf = false;
3351 af = ctxt->eflags & X86_EFLAGS_AF;
3352 if ((al & 0x0f) > 9 || af) {
3353 al -= 6;
3354 cf = old_cf | (al >= 250);
3355 af = true;
3356 } else {
3357 af = false;
3358 }
3359 if (old_al > 0x99 || old_cf) {
3360 al -= 0x60;
3361 cf = true;
3362 }
3363
3364 ctxt->dst.val = al;
3365 /* Set PF, ZF, SF */
3366 ctxt->src.type = OP_IMM;
3367 ctxt->src.val = 0;
3368 ctxt->src.bytes = 1;
3369 fastop(ctxt, em_or);
3370 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3371 if (cf)
3372 ctxt->eflags |= X86_EFLAGS_CF;
3373 if (af)
3374 ctxt->eflags |= X86_EFLAGS_AF;
3375 return X86EMUL_CONTINUE;
3376 }
3377
3378 static int em_aam(struct x86_emulate_ctxt *ctxt)
3379 {
3380 u8 al, ah;
3381
3382 if (ctxt->src.val == 0)
3383 return emulate_de(ctxt);
3384
3385 al = ctxt->dst.val & 0xff;
3386 ah = al / ctxt->src.val;
3387 al %= ctxt->src.val;
3388
3389 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3390
3391 /* Set PF, ZF, SF */
3392 ctxt->src.type = OP_IMM;
3393 ctxt->src.val = 0;
3394 ctxt->src.bytes = 1;
3395 fastop(ctxt, em_or);
3396
3397 return X86EMUL_CONTINUE;
3398 }
3399
3400 static int em_aad(struct x86_emulate_ctxt *ctxt)
3401 {
3402 u8 al = ctxt->dst.val & 0xff;
3403 u8 ah = (ctxt->dst.val >> 8) & 0xff;
3404
3405 al = (al + (ah * ctxt->src.val)) & 0xff;
3406
3407 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3408
3409 /* Set PF, ZF, SF */
3410 ctxt->src.type = OP_IMM;
3411 ctxt->src.val = 0;
3412 ctxt->src.bytes = 1;
3413 fastop(ctxt, em_or);
3414
3415 return X86EMUL_CONTINUE;
3416 }
3417
3418 static int em_call(struct x86_emulate_ctxt *ctxt)
3419 {
3420 int rc;
3421 long rel = ctxt->src.val;
3422
3423 ctxt->src.val = (unsigned long)ctxt->_eip;
3424 rc = jmp_rel(ctxt, rel);
3425 if (rc != X86EMUL_CONTINUE)
3426 return rc;
3427 return em_push(ctxt);
3428 }
3429
3430 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3431 {
3432 u16 sel, old_cs;
3433 ulong old_eip;
3434 int rc;
3435 struct desc_struct old_desc, new_desc;
3436 const struct x86_emulate_ops *ops = ctxt->ops;
3437 int cpl = ctxt->ops->cpl(ctxt);
3438 enum x86emul_mode prev_mode = ctxt->mode;
3439
3440 old_eip = ctxt->_eip;
3441 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3442
3443 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3444 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3445 X86_TRANSFER_CALL_JMP, &new_desc);
3446 if (rc != X86EMUL_CONTINUE)
3447 return rc;
3448
3449 rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
3450 if (rc != X86EMUL_CONTINUE)
3451 goto fail;
3452
3453 ctxt->src.val = old_cs;
3454 rc = em_push(ctxt);
3455 if (rc != X86EMUL_CONTINUE)
3456 goto fail;
3457
3458 ctxt->src.val = old_eip;
3459 rc = em_push(ctxt);
3460 /* If we failed, we tainted the memory, but the very least we should
3461 restore cs */
3462 if (rc != X86EMUL_CONTINUE) {
3463 pr_warn_once("faulting far call emulation tainted memory\n");
3464 goto fail;
3465 }
3466 return rc;
3467 fail:
3468 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3469 ctxt->mode = prev_mode;
3470 return rc;
3471
3472 }
3473
3474 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3475 {
3476 int rc;
3477 unsigned long eip;
3478
3479 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3480 if (rc != X86EMUL_CONTINUE)
3481 return rc;
3482 rc = assign_eip_near(ctxt, eip);
3483 if (rc != X86EMUL_CONTINUE)
3484 return rc;
3485 rsp_increment(ctxt, ctxt->src.val);
3486 return X86EMUL_CONTINUE;
3487 }
3488
3489 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3490 {
3491 /* Write back the register source. */
3492 ctxt->src.val = ctxt->dst.val;
3493 write_register_operand(&ctxt->src);
3494
3495 /* Write back the memory destination with implicit LOCK prefix. */
3496 ctxt->dst.val = ctxt->src.orig_val;
3497 ctxt->lock_prefix = 1;
3498 return X86EMUL_CONTINUE;
3499 }
3500
3501 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3502 {
3503 ctxt->dst.val = ctxt->src2.val;
3504 return fastop(ctxt, em_imul);
3505 }
3506
3507 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3508 {
3509 ctxt->dst.type = OP_REG;
3510 ctxt->dst.bytes = ctxt->src.bytes;
3511 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3512 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3513
3514 return X86EMUL_CONTINUE;
3515 }
3516
3517 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3518 {
3519 u64 tsc = 0;
3520
3521 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3522 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3523 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3524 return X86EMUL_CONTINUE;
3525 }
3526
3527 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3528 {
3529 u64 pmc;
3530
3531 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3532 return emulate_gp(ctxt, 0);
3533 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3534 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3535 return X86EMUL_CONTINUE;
3536 }
3537
3538 static int em_mov(struct x86_emulate_ctxt *ctxt)
3539 {
3540 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3541 return X86EMUL_CONTINUE;
3542 }
3543
3544 #define FFL(x) bit(X86_FEATURE_##x)
3545
3546 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3547 {
3548 u32 ebx, ecx, edx, eax = 1;
3549 u16 tmp;
3550
3551 /*
3552 * Check MOVBE is set in the guest-visible CPUID leaf.
3553 */
3554 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3555 if (!(ecx & FFL(MOVBE)))
3556 return emulate_ud(ctxt);
3557
3558 switch (ctxt->op_bytes) {
3559 case 2:
3560 /*
3561 * From MOVBE definition: "...When the operand size is 16 bits,
3562 * the upper word of the destination register remains unchanged
3563 * ..."
3564 *
3565 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3566 * rules so we have to do the operation almost per hand.
3567 */
3568 tmp = (u16)ctxt->src.val;
3569 ctxt->dst.val &= ~0xffffUL;
3570 ctxt->dst.val |= (unsigned long)swab16(tmp);
3571 break;
3572 case 4:
3573 ctxt->dst.val = swab32((u32)ctxt->src.val);
3574 break;
3575 case 8:
3576 ctxt->dst.val = swab64(ctxt->src.val);
3577 break;
3578 default:
3579 BUG();
3580 }
3581 return X86EMUL_CONTINUE;
3582 }
3583
3584 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3585 {
3586 if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
3587 return emulate_gp(ctxt, 0);
3588
3589 /* Disable writeback. */
3590 ctxt->dst.type = OP_NONE;
3591 return X86EMUL_CONTINUE;
3592 }
3593
3594 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3595 {
3596 unsigned long val;
3597
3598 if (ctxt->mode == X86EMUL_MODE_PROT64)
3599 val = ctxt->src.val & ~0ULL;
3600 else
3601 val = ctxt->src.val & ~0U;
3602
3603 /* #UD condition is already handled. */
3604 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3605 return emulate_gp(ctxt, 0);
3606
3607 /* Disable writeback. */
3608 ctxt->dst.type = OP_NONE;
3609 return X86EMUL_CONTINUE;
3610 }
3611
3612 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3613 {
3614 u64 msr_data;
3615
3616 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3617 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3618 if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
3619 return emulate_gp(ctxt, 0);
3620
3621 return X86EMUL_CONTINUE;
3622 }
3623
3624 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3625 {
3626 u64 msr_data;
3627
3628 if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
3629 return emulate_gp(ctxt, 0);
3630
3631 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3632 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3633 return X86EMUL_CONTINUE;
3634 }
3635
3636 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3637 {
3638 if (ctxt->modrm_reg > VCPU_SREG_GS)
3639 return emulate_ud(ctxt);
3640
3641 ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
3642 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3643 ctxt->dst.bytes = 2;
3644 return X86EMUL_CONTINUE;
3645 }
3646
3647 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3648 {
3649 u16 sel = ctxt->src.val;
3650
3651 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3652 return emulate_ud(ctxt);
3653
3654 if (ctxt->modrm_reg == VCPU_SREG_SS)
3655 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3656
3657 /* Disable writeback. */
3658 ctxt->dst.type = OP_NONE;
3659 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3660 }
3661
3662 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3663 {
3664 u16 sel = ctxt->src.val;
3665
3666 /* Disable writeback. */
3667 ctxt->dst.type = OP_NONE;
3668 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3669 }
3670
3671 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3672 {
3673 u16 sel = ctxt->src.val;
3674
3675 /* Disable writeback. */
3676 ctxt->dst.type = OP_NONE;
3677 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3678 }
3679
3680 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3681 {
3682 int rc;
3683 ulong linear;
3684
3685 rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
3686 if (rc == X86EMUL_CONTINUE)
3687 ctxt->ops->invlpg(ctxt, linear);
3688 /* Disable writeback. */
3689 ctxt->dst.type = OP_NONE;
3690 return X86EMUL_CONTINUE;
3691 }
3692
3693 static int em_clts(struct x86_emulate_ctxt *ctxt)
3694 {
3695 ulong cr0;
3696
3697 cr0 = ctxt->ops->get_cr(ctxt, 0);
3698 cr0 &= ~X86_CR0_TS;
3699 ctxt->ops->set_cr(ctxt, 0, cr0);
3700 return X86EMUL_CONTINUE;
3701 }
3702
3703 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3704 {
3705 int rc = ctxt->ops->fix_hypercall(ctxt);
3706
3707 if (rc != X86EMUL_CONTINUE)
3708 return rc;
3709
3710 /* Let the processor re-execute the fixed hypercall */
3711 ctxt->_eip = ctxt->eip;
3712 /* Disable writeback. */
3713 ctxt->dst.type = OP_NONE;
3714 return X86EMUL_CONTINUE;
3715 }
3716
3717 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3718 void (*get)(struct x86_emulate_ctxt *ctxt,
3719 struct desc_ptr *ptr))
3720 {
3721 struct desc_ptr desc_ptr;
3722
3723 if (ctxt->mode == X86EMUL_MODE_PROT64)
3724 ctxt->op_bytes = 8;
3725 get(ctxt, &desc_ptr);
3726 if (ctxt->op_bytes == 2) {
3727 ctxt->op_bytes = 4;
3728 desc_ptr.address &= 0x00ffffff;
3729 }
3730 /* Disable writeback. */
3731 ctxt->dst.type = OP_NONE;
3732 return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3733 &desc_ptr, 2 + ctxt->op_bytes);
3734 }
3735
3736 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3737 {
3738 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3739 }
3740
3741 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3742 {
3743 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3744 }
3745
3746 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3747 {
3748 struct desc_ptr desc_ptr;
3749 int rc;
3750
3751 if (ctxt->mode == X86EMUL_MODE_PROT64)
3752 ctxt->op_bytes = 8;
3753 rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3754 &desc_ptr.size, &desc_ptr.address,
3755 ctxt->op_bytes);
3756 if (rc != X86EMUL_CONTINUE)
3757 return rc;
3758 if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3759 emul_is_noncanonical_address(desc_ptr.address, ctxt))
3760 return emulate_gp(ctxt, 0);
3761 if (lgdt)
3762 ctxt->ops->set_gdt(ctxt, &desc_ptr);
3763 else
3764 ctxt->ops->set_idt(ctxt, &desc_ptr);
3765 /* Disable writeback. */
3766 ctxt->dst.type = OP_NONE;
3767 return X86EMUL_CONTINUE;
3768 }
3769
3770 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3771 {
3772 return em_lgdt_lidt(ctxt, true);
3773 }
3774
3775 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3776 {
3777 return em_lgdt_lidt(ctxt, false);
3778 }
3779
3780 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3781 {
3782 if (ctxt->dst.type == OP_MEM)
3783 ctxt->dst.bytes = 2;
3784 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3785 return X86EMUL_CONTINUE;
3786 }
3787
3788 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3789 {
3790 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3791 | (ctxt->src.val & 0x0f));
3792 ctxt->dst.type = OP_NONE;
3793 return X86EMUL_CONTINUE;
3794 }
3795
3796 static int em_loop(struct x86_emulate_ctxt *ctxt)
3797 {
3798 int rc = X86EMUL_CONTINUE;
3799
3800 register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3801 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3802 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3803 rc = jmp_rel(ctxt, ctxt->src.val);
3804
3805 return rc;
3806 }
3807
3808 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3809 {
3810 int rc = X86EMUL_CONTINUE;
3811
3812 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3813 rc = jmp_rel(ctxt, ctxt->src.val);
3814
3815 return rc;
3816 }
3817
3818 static int em_in(struct x86_emulate_ctxt *ctxt)
3819 {
3820 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3821 &ctxt->dst.val))
3822 return X86EMUL_IO_NEEDED;
3823
3824 return X86EMUL_CONTINUE;
3825 }
3826
3827 static int em_out(struct x86_emulate_ctxt *ctxt)
3828 {
3829 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3830 &ctxt->src.val, 1);
3831 /* Disable writeback. */
3832 ctxt->dst.type = OP_NONE;
3833 return X86EMUL_CONTINUE;
3834 }
3835
3836 static int em_cli(struct x86_emulate_ctxt *ctxt)
3837 {
3838 if (emulator_bad_iopl(ctxt))
3839 return emulate_gp(ctxt, 0);
3840
3841 ctxt->eflags &= ~X86_EFLAGS_IF;
3842 return X86EMUL_CONTINUE;
3843 }
3844
3845 static int em_sti(struct x86_emulate_ctxt *ctxt)
3846 {
3847 if (emulator_bad_iopl(ctxt))
3848 return emulate_gp(ctxt, 0);
3849
3850 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3851 ctxt->eflags |= X86_EFLAGS_IF;
3852 return X86EMUL_CONTINUE;
3853 }
3854
3855 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3856 {
3857 u32 eax, ebx, ecx, edx;
3858 u64 msr = 0;
3859
3860 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3861 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3862 ctxt->ops->cpl(ctxt)) {
3863 return emulate_gp(ctxt, 0);
3864 }
3865
3866 eax = reg_read(ctxt, VCPU_REGS_RAX);
3867 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3868 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
3869 *reg_write(ctxt, VCPU_REGS_RAX) = eax;
3870 *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3871 *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3872 *reg_write(ctxt, VCPU_REGS_RDX) = edx;
3873 return X86EMUL_CONTINUE;
3874 }
3875
3876 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3877 {
3878 u32 flags;
3879
3880 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3881 X86_EFLAGS_SF;
3882 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3883
3884 ctxt->eflags &= ~0xffUL;
3885 ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3886 return X86EMUL_CONTINUE;
3887 }
3888
3889 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3890 {
3891 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3892 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3893 return X86EMUL_CONTINUE;
3894 }
3895
3896 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3897 {
3898 switch (ctxt->op_bytes) {
3899 #ifdef CONFIG_X86_64
3900 case 8:
3901 asm("bswap %0" : "+r"(ctxt->dst.val));
3902 break;
3903 #endif
3904 default:
3905 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3906 break;
3907 }
3908 return X86EMUL_CONTINUE;
3909 }
3910
3911 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3912 {
3913 /* emulating clflush regardless of cpuid */
3914 return X86EMUL_CONTINUE;
3915 }
3916
3917 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3918 {
3919 ctxt->dst.val = (s32) ctxt->src.val;
3920 return X86EMUL_CONTINUE;
3921 }
3922
3923 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3924 {
3925 u32 eax = 1, ebx, ecx = 0, edx;
3926
3927 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3928 if (!(edx & FFL(FXSR)))
3929 return emulate_ud(ctxt);
3930
3931 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3932 return emulate_nm(ctxt);
3933
3934 /*
3935 * Don't emulate a case that should never be hit, instead of working
3936 * around a lack of fxsave64/fxrstor64 on old compilers.
3937 */
3938 if (ctxt->mode >= X86EMUL_MODE_PROT64)
3939 return X86EMUL_UNHANDLEABLE;
3940
3941 return X86EMUL_CONTINUE;
3942 }
3943
3944 /*
3945 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3946 * and restore MXCSR.
3947 */
3948 static size_t __fxstate_size(int nregs)
3949 {
3950 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3951 }
3952
3953 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3954 {
3955 bool cr4_osfxsr;
3956 if (ctxt->mode == X86EMUL_MODE_PROT64)
3957 return __fxstate_size(16);
3958
3959 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3960 return __fxstate_size(cr4_osfxsr ? 8 : 0);
3961 }
3962
3963 /*
3964 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3965 * 1) 16 bit mode
3966 * 2) 32 bit mode
3967 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
3968 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3969 * save and restore
3970 * 3) 64-bit mode with REX.W prefix
3971 * - like (2), but XMM 8-15 are being saved and restored
3972 * 4) 64-bit mode without REX.W prefix
3973 * - like (3), but FIP and FDP are 64 bit
3974 *
3975 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3976 * desired result. (4) is not emulated.
3977 *
3978 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3979 * and FPU DS) should match.
3980 */
3981 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3982 {
3983 struct fxregs_state fx_state;
3984 int rc;
3985
3986 rc = check_fxsr(ctxt);
3987 if (rc != X86EMUL_CONTINUE)
3988 return rc;
3989
3990 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3991
3992 if (rc != X86EMUL_CONTINUE)
3993 return rc;
3994
3995 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3996 fxstate_size(ctxt));
3997 }
3998
3999 /*
4000 * FXRSTOR might restore XMM registers not provided by the guest. Fill
4001 * in the host registers (via FXSAVE) instead, so they won't be modified.
4002 * (preemption has to stay disabled until FXRSTOR).
4003 *
4004 * Use noinline to keep the stack for other functions called by callers small.
4005 */
4006 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
4007 const size_t used_size)
4008 {
4009 struct fxregs_state fx_tmp;
4010 int rc;
4011
4012 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
4013 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
4014 __fxstate_size(16) - used_size);
4015
4016 return rc;
4017 }
4018
4019 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
4020 {
4021 struct fxregs_state fx_state;
4022 int rc;
4023 size_t size;
4024
4025 rc = check_fxsr(ctxt);
4026 if (rc != X86EMUL_CONTINUE)
4027 return rc;
4028
4029 size = fxstate_size(ctxt);
4030 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
4031 if (rc != X86EMUL_CONTINUE)
4032 return rc;
4033
4034 if (size < __fxstate_size(16)) {
4035 rc = fxregs_fixup(&fx_state, size);
4036 if (rc != X86EMUL_CONTINUE)
4037 goto out;
4038 }
4039
4040 if (fx_state.mxcsr >> 16) {
4041 rc = emulate_gp(ctxt, 0);
4042 goto out;
4043 }
4044
4045 if (rc == X86EMUL_CONTINUE)
4046 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
4047
4048 out:
4049 return rc;
4050 }
4051
4052 static bool valid_cr(int nr)
4053 {
4054 switch (nr) {
4055 case 0:
4056 case 2 ... 4:
4057 case 8:
4058 return true;
4059 default:
4060 return false;
4061 }
4062 }
4063
4064 static int check_cr_read(struct x86_emulate_ctxt *ctxt)
4065 {
4066 if (!valid_cr(ctxt->modrm_reg))
4067 return emulate_ud(ctxt);
4068
4069 return X86EMUL_CONTINUE;
4070 }
4071
4072 static int check_cr_write(struct x86_emulate_ctxt *ctxt)
4073 {
4074 u64 new_val = ctxt->src.val64;
4075 int cr = ctxt->modrm_reg;
4076 u64 efer = 0;
4077
4078 static u64 cr_reserved_bits[] = {
4079 0xffffffff00000000ULL,
4080 0, 0, 0, /* CR3 checked later */
4081 CR4_RESERVED_BITS,
4082 0, 0, 0,
4083 CR8_RESERVED_BITS,
4084 };
4085
4086 if (!valid_cr(cr))
4087 return emulate_ud(ctxt);
4088
4089 if (new_val & cr_reserved_bits[cr])
4090 return emulate_gp(ctxt, 0);
4091
4092 switch (cr) {
4093 case 0: {
4094 u64 cr4;
4095 if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
4096 ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
4097 return emulate_gp(ctxt, 0);
4098
4099 cr4 = ctxt->ops->get_cr(ctxt, 4);
4100 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
4101
4102 if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
4103 !(cr4 & X86_CR4_PAE))
4104 return emulate_gp(ctxt, 0);
4105
4106 break;
4107 }
4108 case 3: {
4109 u64 rsvd = 0;
4110
4111 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
4112 if (efer & EFER_LMA) {
4113 u64 maxphyaddr;
4114 u32 eax, ebx, ecx, edx;
4115
4116 eax = 0x80000008;
4117 ecx = 0;
4118 if (ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx,
4119 &edx, false))
4120 maxphyaddr = eax & 0xff;
4121 else
4122 maxphyaddr = 36;
4123 rsvd = rsvd_bits(maxphyaddr, 62);
4124 }
4125
4126 if (new_val & rsvd)
4127 return emulate_gp(ctxt, 0);
4128
4129 break;
4130 }
4131 case 4: {
4132 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
4133
4134 if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
4135 return emulate_gp(ctxt, 0);
4136
4137 break;
4138 }
4139 }
4140
4141 return X86EMUL_CONTINUE;
4142 }
4143
4144 static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
4145 {
4146 unsigned long dr7;
4147
4148 ctxt->ops->get_dr(ctxt, 7, &dr7);
4149
4150 /* Check if DR7.Global_Enable is set */
4151 return dr7 & (1 << 13);
4152 }
4153
4154 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
4155 {
4156 int dr = ctxt->modrm_reg;
4157 u64 cr4;
4158
4159 if (dr > 7)
4160 return emulate_ud(ctxt);
4161
4162 cr4 = ctxt->ops->get_cr(ctxt, 4);
4163 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
4164 return emulate_ud(ctxt);
4165
4166 if (check_dr7_gd(ctxt)) {
4167 ulong dr6;
4168
4169 ctxt->ops->get_dr(ctxt, 6, &dr6);
4170 dr6 &= ~15;
4171 dr6 |= DR6_BD | DR6_RTM;
4172 ctxt->ops->set_dr(ctxt, 6, dr6);
4173 return emulate_db(ctxt);
4174 }
4175
4176 return X86EMUL_CONTINUE;
4177 }
4178
4179 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
4180 {
4181 u64 new_val = ctxt->src.val64;
4182 int dr = ctxt->modrm_reg;
4183
4184 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
4185 return emulate_gp(ctxt, 0);
4186
4187 return check_dr_read(ctxt);
4188 }
4189
4190 static int check_svme(struct x86_emulate_ctxt *ctxt)
4191 {
4192 u64 efer = 0;
4193
4194 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
4195
4196 if (!(efer & EFER_SVME))
4197 return emulate_ud(ctxt);
4198
4199 return X86EMUL_CONTINUE;
4200 }
4201
4202 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
4203 {
4204 u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
4205
4206 /* Valid physical address? */
4207 if (rax & 0xffff000000000000ULL)
4208 return emulate_gp(ctxt, 0);
4209
4210 return check_svme(ctxt);
4211 }
4212
4213 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
4214 {
4215 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
4216
4217 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
4218 return emulate_ud(ctxt);
4219
4220 return X86EMUL_CONTINUE;
4221 }
4222
4223 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
4224 {
4225 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
4226 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
4227
4228 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
4229 ctxt->ops->check_pmc(ctxt, rcx))
4230 return emulate_gp(ctxt, 0);
4231
4232 return X86EMUL_CONTINUE;
4233 }
4234
4235 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
4236 {
4237 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
4238 if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
4239 return emulate_gp(ctxt, 0);
4240
4241 return X86EMUL_CONTINUE;
4242 }
4243
4244 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
4245 {
4246 ctxt->src.bytes = min(ctxt->src.bytes, 4u);
4247 if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
4248 return emulate_gp(ctxt, 0);
4249
4250 return X86EMUL_CONTINUE;
4251 }
4252
4253 #define D(_y) { .flags = (_y) }
4254 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
4255 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
4256 .intercept = x86_intercept_##_i, .check_perm = (_p) }
4257 #define N D(NotImpl)
4258 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
4259 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
4260 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
4261 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
4262 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
4263 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
4264 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
4265 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
4266 #define II(_f, _e, _i) \
4267 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
4268 #define IIP(_f, _e, _i, _p) \
4269 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
4270 .intercept = x86_intercept_##_i, .check_perm = (_p) }
4271 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
4272
4273 #define D2bv(_f) D((_f) | ByteOp), D(_f)
4274 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
4275 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
4276 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
4277 #define I2bvIP(_f, _e, _i, _p) \
4278 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
4279
4280 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
4281 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
4282 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
4283
4284 static const struct opcode group7_rm0[] = {
4285 N,
4286 I(SrcNone | Priv | EmulateOnUD, em_hypercall),
4287 N, N, N, N, N, N,
4288 };
4289
4290 static const struct opcode group7_rm1[] = {
4291 DI(SrcNone | Priv, monitor),
4292 DI(SrcNone | Priv, mwait),
4293 N, N, N, N, N, N,
4294 };
4295
4296 static const struct opcode group7_rm3[] = {
4297 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
4298 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
4299 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
4300 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
4301 DIP(SrcNone | Prot | Priv, stgi, check_svme),
4302 DIP(SrcNone | Prot | Priv, clgi, check_svme),
4303 DIP(SrcNone | Prot | Priv, skinit, check_svme),
4304 DIP(SrcNone | Prot | Priv, invlpga, check_svme),
4305 };
4306
4307 static const struct opcode group7_rm7[] = {
4308 N,
4309 DIP(SrcNone, rdtscp, check_rdtsc),
4310 N, N, N, N, N, N,
4311 };
4312
4313 static const struct opcode group1[] = {
4314 F(Lock, em_add),
4315 F(Lock | PageTable, em_or),
4316 F(Lock, em_adc),
4317 F(Lock, em_sbb),
4318 F(Lock | PageTable, em_and),
4319 F(Lock, em_sub),
4320 F(Lock, em_xor),
4321 F(NoWrite, em_cmp),
4322 };
4323
4324 static const struct opcode group1A[] = {
4325 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4326 };
4327
4328 static const struct opcode group2[] = {
4329 F(DstMem | ModRM, em_rol),
4330 F(DstMem | ModRM, em_ror),
4331 F(DstMem | ModRM, em_rcl),
4332 F(DstMem | ModRM, em_rcr),
4333 F(DstMem | ModRM, em_shl),
4334 F(DstMem | ModRM, em_shr),
4335 F(DstMem | ModRM, em_shl),
4336 F(DstMem | ModRM, em_sar),
4337 };
4338
4339 static const struct opcode group3[] = {
4340 F(DstMem | SrcImm | NoWrite, em_test),
4341 F(DstMem | SrcImm | NoWrite, em_test),
4342 F(DstMem | SrcNone | Lock, em_not),
4343 F(DstMem | SrcNone | Lock, em_neg),
4344 F(DstXacc | Src2Mem, em_mul_ex),
4345 F(DstXacc | Src2Mem, em_imul_ex),
4346 F(DstXacc | Src2Mem, em_div_ex),
4347 F(DstXacc | Src2Mem, em_idiv_ex),
4348 };
4349
4350 static const struct opcode group4[] = {
4351 F(ByteOp | DstMem | SrcNone | Lock, em_inc),
4352 F(ByteOp | DstMem | SrcNone | Lock, em_dec),
4353 N, N, N, N, N, N,
4354 };
4355
4356 static const struct opcode group5[] = {
4357 F(DstMem | SrcNone | Lock, em_inc),
4358 F(DstMem | SrcNone | Lock, em_dec),
4359 I(SrcMem | NearBranch, em_call_near_abs),
4360 I(SrcMemFAddr | ImplicitOps, em_call_far),
4361 I(SrcMem | NearBranch, em_jmp_abs),
4362 I(SrcMemFAddr | ImplicitOps, em_jmp_far),
4363 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
4364 };
4365
4366 static const struct opcode group6[] = {
4367 DI(Prot | DstMem, sldt),
4368 DI(Prot | DstMem, str),
4369 II(Prot | Priv | SrcMem16, em_lldt, lldt),
4370 II(Prot | Priv | SrcMem16, em_ltr, ltr),
4371 N, N, N, N,
4372 };
4373
4374 static const struct group_dual group7 = { {
4375 II(Mov | DstMem, em_sgdt, sgdt),
4376 II(Mov | DstMem, em_sidt, sidt),
4377 II(SrcMem | Priv, em_lgdt, lgdt),
4378 II(SrcMem | Priv, em_lidt, lidt),
4379 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4380 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4381 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
4382 }, {
4383 EXT(0, group7_rm0),
4384 EXT(0, group7_rm1),
4385 N, EXT(0, group7_rm3),
4386 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4387 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4388 EXT(0, group7_rm7),
4389 } };
4390
4391 static const struct opcode group8[] = {
4392 N, N, N, N,
4393 F(DstMem | SrcImmByte | NoWrite, em_bt),
4394 F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
4395 F(DstMem | SrcImmByte | Lock, em_btr),
4396 F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
4397 };
4398
4399 static const struct group_dual group9 = { {
4400 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4401 }, {
4402 N, N, N, N, N, N, N, N,
4403 } };
4404
4405 static const struct opcode group11[] = {
4406 I(DstMem | SrcImm | Mov | PageTable, em_mov),
4407 X7(D(Undefined)),
4408 };
4409
4410 static const struct gprefix pfx_0f_ae_7 = {
4411 I(SrcMem | ByteOp, em_clflush), N, N, N,
4412 };
4413
4414 static const struct group_dual group15 = { {
4415 I(ModRM | Aligned16, em_fxsave),
4416 I(ModRM | Aligned16, em_fxrstor),
4417 N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4418 }, {
4419 N, N, N, N, N, N, N, N,
4420 } };
4421
4422 static const struct gprefix pfx_0f_6f_0f_7f = {
4423 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4424 };
4425
4426 static const struct instr_dual instr_dual_0f_2b = {
4427 I(0, em_mov), N
4428 };
4429
4430 static const struct gprefix pfx_0f_2b = {
4431 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4432 };
4433
4434 static const struct gprefix pfx_0f_28_0f_29 = {
4435 I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4436 };
4437
4438 static const struct gprefix pfx_0f_e7 = {
4439 N, I(Sse, em_mov), N, N,
4440 };
4441
4442 static const struct escape escape_d9 = { {
4443 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4444 }, {
4445 /* 0xC0 - 0xC7 */
4446 N, N, N, N, N, N, N, N,
4447 /* 0xC8 - 0xCF */
4448 N, N, N, N, N, N, N, N,
4449 /* 0xD0 - 0xC7 */
4450 N, N, N, N, N, N, N, N,
4451 /* 0xD8 - 0xDF */
4452 N, N, N, N, N, N, N, N,
4453 /* 0xE0 - 0xE7 */
4454 N, N, N, N, N, N, N, N,
4455 /* 0xE8 - 0xEF */
4456 N, N, N, N, N, N, N, N,
4457 /* 0xF0 - 0xF7 */
4458 N, N, N, N, N, N, N, N,
4459 /* 0xF8 - 0xFF */
4460 N, N, N, N, N, N, N, N,
4461 } };
4462
4463 static const struct escape escape_db = { {
4464 N, N, N, N, N, N, N, N,
4465 }, {
4466 /* 0xC0 - 0xC7 */
4467 N, N, N, N, N, N, N, N,
4468 /* 0xC8 - 0xCF */
4469 N, N, N, N, N, N, N, N,
4470 /* 0xD0 - 0xC7 */
4471 N, N, N, N, N, N, N, N,
4472 /* 0xD8 - 0xDF */
4473 N, N, N, N, N, N, N, N,
4474 /* 0xE0 - 0xE7 */
4475 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4476 /* 0xE8 - 0xEF */
4477 N, N, N, N, N, N, N, N,
4478 /* 0xF0 - 0xF7 */
4479 N, N, N, N, N, N, N, N,
4480 /* 0xF8 - 0xFF */
4481 N, N, N, N, N, N, N, N,
4482 } };
4483
4484 static const struct escape escape_dd = { {
4485 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4486 }, {
4487 /* 0xC0 - 0xC7 */
4488 N, N, N, N, N, N, N, N,
4489 /* 0xC8 - 0xCF */
4490 N, N, N, N, N, N, N, N,
4491 /* 0xD0 - 0xC7 */
4492 N, N, N, N, N, N, N, N,
4493 /* 0xD8 - 0xDF */
4494 N, N, N, N, N, N, N, N,
4495 /* 0xE0 - 0xE7 */
4496 N, N, N, N, N, N, N, N,
4497 /* 0xE8 - 0xEF */
4498 N, N, N, N, N, N, N, N,
4499 /* 0xF0 - 0xF7 */
4500 N, N, N, N, N, N, N, N,
4501 /* 0xF8 - 0xFF */
4502 N, N, N, N, N, N, N, N,
4503 } };
4504
4505 static const struct instr_dual instr_dual_0f_c3 = {
4506 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4507 };
4508
4509 static const struct mode_dual mode_dual_63 = {
4510 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4511 };
4512
4513 static const struct opcode opcode_table[256] = {
4514 /* 0x00 - 0x07 */
4515 F6ALU(Lock, em_add),
4516 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4517 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4518 /* 0x08 - 0x0F */
4519 F6ALU(Lock | PageTable, em_or),
4520 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4521 N,
4522 /* 0x10 - 0x17 */
4523 F6ALU(Lock, em_adc),
4524 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4525 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4526 /* 0x18 - 0x1F */
4527 F6ALU(Lock, em_sbb),
4528 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4529 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4530 /* 0x20 - 0x27 */
4531 F6ALU(Lock | PageTable, em_and), N, N,
4532 /* 0x28 - 0x2F */
4533 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4534 /* 0x30 - 0x37 */
4535 F6ALU(Lock, em_xor), N, N,
4536 /* 0x38 - 0x3F */
4537 F6ALU(NoWrite, em_cmp), N, N,
4538 /* 0x40 - 0x4F */
4539 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4540 /* 0x50 - 0x57 */
4541 X8(I(SrcReg | Stack, em_push)),
4542 /* 0x58 - 0x5F */
4543 X8(I(DstReg | Stack, em_pop)),
4544 /* 0x60 - 0x67 */
4545 I(ImplicitOps | Stack | No64, em_pusha),
4546 I(ImplicitOps | Stack | No64, em_popa),
4547 N, MD(ModRM, &mode_dual_63),
4548 N, N, N, N,
4549 /* 0x68 - 0x6F */
4550 I(SrcImm | Mov | Stack, em_push),
4551 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4552 I(SrcImmByte | Mov | Stack, em_push),
4553 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4554 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4555 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4556 /* 0x70 - 0x7F */
4557 X16(D(SrcImmByte | NearBranch)),
4558 /* 0x80 - 0x87 */
4559 G(ByteOp | DstMem | SrcImm, group1),
4560 G(DstMem | SrcImm, group1),
4561 G(ByteOp | DstMem | SrcImm | No64, group1),
4562 G(DstMem | SrcImmByte, group1),
4563 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4564 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4565 /* 0x88 - 0x8F */
4566 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4567 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4568 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4569 D(ModRM | SrcMem | NoAccess | DstReg),
4570 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4571 G(0, group1A),
4572 /* 0x90 - 0x97 */
4573 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4574 /* 0x98 - 0x9F */
4575 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4576 I(SrcImmFAddr | No64, em_call_far), N,
4577 II(ImplicitOps | Stack, em_pushf, pushf),
4578 II(ImplicitOps | Stack, em_popf, popf),
4579 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4580 /* 0xA0 - 0xA7 */
4581 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4582 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4583 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4584 F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4585 /* 0xA8 - 0xAF */
4586 F2bv(DstAcc | SrcImm | NoWrite, em_test),
4587 I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4588 I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4589 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4590 /* 0xB0 - 0xB7 */
4591 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4592 /* 0xB8 - 0xBF */
4593 X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4594 /* 0xC0 - 0xC7 */
4595 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4596 I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
4597 I(ImplicitOps | NearBranch, em_ret),
4598 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4599 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4600 G(ByteOp, group11), G(0, group11),
4601 /* 0xC8 - 0xCF */
4602 I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
4603 I(ImplicitOps | SrcImmU16, em_ret_far_imm),
4604 I(ImplicitOps, em_ret_far),
4605 D(ImplicitOps), DI(SrcImmByte, intn),
4606 D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
4607 /* 0xD0 - 0xD7 */
4608 G(Src2One | ByteOp, group2), G(Src2One, group2),
4609 G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4610 I(DstAcc | SrcImmUByte | No64, em_aam),
4611 I(DstAcc | SrcImmUByte | No64, em_aad),
4612 F(DstAcc | ByteOp | No64, em_salc),
4613 I(DstAcc | SrcXLat | ByteOp, em_mov),
4614 /* 0xD8 - 0xDF */
4615 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4616 /* 0xE0 - 0xE7 */
4617 X3(I(SrcImmByte | NearBranch, em_loop)),
4618 I(SrcImmByte | NearBranch, em_jcxz),
4619 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4620 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4621 /* 0xE8 - 0xEF */
4622 I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
4623 I(SrcImmFAddr | No64, em_jmp_far),
4624 D(SrcImmByte | ImplicitOps | NearBranch),
4625 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4626 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4627 /* 0xF0 - 0xF7 */
4628 N, DI(ImplicitOps, icebp), N, N,
4629 DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4630 G(ByteOp, group3), G(0, group3),
4631 /* 0xF8 - 0xFF */
4632 D(ImplicitOps), D(ImplicitOps),
4633 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4634 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4635 };
4636
4637 static const struct opcode twobyte_table[256] = {
4638 /* 0x00 - 0x0F */
4639 G(0, group6), GD(0, &group7), N, N,
4640 N, I(ImplicitOps | EmulateOnUD, em_syscall),
4641 II(ImplicitOps | Priv, em_clts, clts), N,
4642 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4643 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4644 /* 0x10 - 0x1F */
4645 N, N, N, N, N, N, N, N,
4646 D(ImplicitOps | ModRM | SrcMem | NoAccess),
4647 N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess),
4648 /* 0x20 - 0x2F */
4649 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
4650 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4651 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4652 check_cr_write),
4653 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4654 check_dr_write),
4655 N, N, N, N,
4656 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4657 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4658 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4659 N, N, N, N,
4660 /* 0x30 - 0x3F */
4661 II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4662 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4663 II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4664 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4665 I(ImplicitOps | EmulateOnUD, em_sysenter),
4666 I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
4667 N, N,
4668 N, N, N, N, N, N, N, N,
4669 /* 0x40 - 0x4F */
4670 X16(D(DstReg | SrcMem | ModRM)),
4671 /* 0x50 - 0x5F */
4672 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4673 /* 0x60 - 0x6F */
4674 N, N, N, N,
4675 N, N, N, N,
4676 N, N, N, N,
4677 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4678 /* 0x70 - 0x7F */
4679 N, N, N, N,
4680 N, N, N, N,
4681 N, N, N, N,
4682 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4683 /* 0x80 - 0x8F */
4684 X16(D(SrcImm | NearBranch)),
4685 /* 0x90 - 0x9F */
4686 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4687 /* 0xA0 - 0xA7 */
4688 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4689 II(ImplicitOps, em_cpuid, cpuid),
4690 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4691 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4692 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4693 /* 0xA8 - 0xAF */
4694 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4695 II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4696 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4697 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4698 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4699 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4700 /* 0xB0 - 0xB7 */
4701 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4702 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4703 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4704 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4705 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4706 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4707 /* 0xB8 - 0xBF */
4708 N, N,
4709 G(BitOp, group8),
4710 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4711 I(DstReg | SrcMem | ModRM, em_bsf_c),
4712 I(DstReg | SrcMem | ModRM, em_bsr_c),
4713 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4714 /* 0xC0 - 0xC7 */
4715 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4716 N, ID(0, &instr_dual_0f_c3),
4717 N, N, N, GD(0, &group9),
4718 /* 0xC8 - 0xCF */
4719 X8(I(DstReg, em_bswap)),
4720 /* 0xD0 - 0xDF */
4721 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4722 /* 0xE0 - 0xEF */
4723 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4724 N, N, N, N, N, N, N, N,
4725 /* 0xF0 - 0xFF */
4726 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4727 };
4728
4729 static const struct instr_dual instr_dual_0f_38_f0 = {
4730 I(DstReg | SrcMem | Mov, em_movbe), N
4731 };
4732
4733 static const struct instr_dual instr_dual_0f_38_f1 = {
4734 I(DstMem | SrcReg | Mov, em_movbe), N
4735 };
4736
4737 static const struct gprefix three_byte_0f_38_f0 = {
4738 ID(0, &instr_dual_0f_38_f0), N, N, N
4739 };
4740
4741 static const struct gprefix three_byte_0f_38_f1 = {
4742 ID(0, &instr_dual_0f_38_f1), N, N, N
4743 };
4744
4745 /*
4746 * Insns below are selected by the prefix which indexed by the third opcode
4747 * byte.
4748 */
4749 static const struct opcode opcode_map_0f_38[256] = {
4750 /* 0x00 - 0x7f */
4751 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4752 /* 0x80 - 0xef */
4753 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4754 /* 0xf0 - 0xf1 */
4755 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4756 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4757 /* 0xf2 - 0xff */
4758 N, N, X4(N), X8(N)
4759 };
4760
4761 #undef D
4762 #undef N
4763 #undef G
4764 #undef GD
4765 #undef I
4766 #undef GP
4767 #undef EXT
4768 #undef MD
4769 #undef ID
4770
4771 #undef D2bv
4772 #undef D2bvIP
4773 #undef I2bv
4774 #undef I2bvIP
4775 #undef I6ALU
4776
4777 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4778 {
4779 unsigned size;
4780
4781 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4782 if (size == 8)
4783 size = 4;
4784 return size;
4785 }
4786
4787 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4788 unsigned size, bool sign_extension)
4789 {
4790 int rc = X86EMUL_CONTINUE;
4791
4792 op->type = OP_IMM;
4793 op->bytes = size;
4794 op->addr.mem.ea = ctxt->_eip;
4795 /* NB. Immediates are sign-extended as necessary. */
4796 switch (op->bytes) {
4797 case 1:
4798 op->val = insn_fetch(s8, ctxt);
4799 break;
4800 case 2:
4801 op->val = insn_fetch(s16, ctxt);
4802 break;
4803 case 4:
4804 op->val = insn_fetch(s32, ctxt);
4805 break;
4806 case 8:
4807 op->val = insn_fetch(s64, ctxt);
4808 break;
4809 }
4810 if (!sign_extension) {
4811 switch (op->bytes) {
4812 case 1:
4813 op->val &= 0xff;
4814 break;
4815 case 2:
4816 op->val &= 0xffff;
4817 break;
4818 case 4:
4819 op->val &= 0xffffffff;
4820 break;
4821 }
4822 }
4823 done:
4824 return rc;
4825 }
4826
4827 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4828 unsigned d)
4829 {
4830 int rc = X86EMUL_CONTINUE;
4831
4832 switch (d) {
4833 case OpReg:
4834 decode_register_operand(ctxt, op);
4835 break;
4836 case OpImmUByte:
4837 rc = decode_imm(ctxt, op, 1, false);
4838 break;
4839 case OpMem:
4840 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4841 mem_common:
4842 *op = ctxt->memop;
4843 ctxt->memopp = op;
4844 if (ctxt->d & BitOp)
4845 fetch_bit_operand(ctxt);
4846 op->orig_val = op->val;
4847 break;
4848 case OpMem64:
4849 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4850 goto mem_common;
4851 case OpAcc:
4852 op->type = OP_REG;
4853 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4854 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4855 fetch_register_operand(op);
4856 op->orig_val = op->val;
4857 break;
4858 case OpAccLo:
4859 op->type = OP_REG;
4860 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4861 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4862 fetch_register_operand(op);
4863 op->orig_val = op->val;
4864 break;
4865 case OpAccHi:
4866 if (ctxt->d & ByteOp) {
4867 op->type = OP_NONE;
4868 break;
4869 }
4870 op->type = OP_REG;
4871 op->bytes = ctxt->op_bytes;
4872 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4873 fetch_register_operand(op);
4874 op->orig_val = op->val;
4875 break;
4876 case OpDI:
4877 op->type = OP_MEM;
4878 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4879 op->addr.mem.ea =
4880 register_address(ctxt, VCPU_REGS_RDI);
4881 op->addr.mem.seg = VCPU_SREG_ES;
4882 op->val = 0;
4883 op->count = 1;
4884 break;
4885 case OpDX:
4886 op->type = OP_REG;
4887 op->bytes = 2;
4888 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4889 fetch_register_operand(op);
4890 break;
4891 case OpCL:
4892 op->type = OP_IMM;
4893 op->bytes = 1;
4894 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4895 break;
4896 case OpImmByte:
4897 rc = decode_imm(ctxt, op, 1, true);
4898 break;
4899 case OpOne:
4900 op->type = OP_IMM;
4901 op->bytes = 1;
4902 op->val = 1;
4903 break;
4904 case OpImm:
4905 rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4906 break;
4907 case OpImm64:
4908 rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4909 break;
4910 case OpMem8:
4911 ctxt->memop.bytes = 1;
4912 if (ctxt->memop.type == OP_REG) {
4913 ctxt->memop.addr.reg = decode_register(ctxt,
4914 ctxt->modrm_rm, true);
4915 fetch_register_operand(&ctxt->memop);
4916 }
4917 goto mem_common;
4918 case OpMem16:
4919 ctxt->memop.bytes = 2;
4920 goto mem_common;
4921 case OpMem32:
4922 ctxt->memop.bytes = 4;
4923 goto mem_common;
4924 case OpImmU16:
4925 rc = decode_imm(ctxt, op, 2, false);
4926 break;
4927 case OpImmU:
4928 rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4929 break;
4930 case OpSI:
4931 op->type = OP_MEM;
4932 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4933 op->addr.mem.ea =
4934 register_address(ctxt, VCPU_REGS_RSI);
4935 op->addr.mem.seg = ctxt->seg_override;
4936 op->val = 0;
4937 op->count = 1;
4938 break;
4939 case OpXLat:
4940 op->type = OP_MEM;
4941 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4942 op->addr.mem.ea =
4943 address_mask(ctxt,
4944 reg_read(ctxt, VCPU_REGS_RBX) +
4945 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4946 op->addr.mem.seg = ctxt->seg_override;
4947 op->val = 0;
4948 break;
4949 case OpImmFAddr:
4950 op->type = OP_IMM;
4951 op->addr.mem.ea = ctxt->_eip;
4952 op->bytes = ctxt->op_bytes + 2;
4953 insn_fetch_arr(op->valptr, op->bytes, ctxt);
4954 break;
4955 case OpMemFAddr:
4956 ctxt->memop.bytes = ctxt->op_bytes + 2;
4957 goto mem_common;
4958 case OpES:
4959 op->type = OP_IMM;
4960 op->val = VCPU_SREG_ES;
4961 break;
4962 case OpCS:
4963 op->type = OP_IMM;
4964 op->val = VCPU_SREG_CS;
4965 break;
4966 case OpSS:
4967 op->type = OP_IMM;
4968 op->val = VCPU_SREG_SS;
4969 break;
4970 case OpDS:
4971 op->type = OP_IMM;
4972 op->val = VCPU_SREG_DS;
4973 break;
4974 case OpFS:
4975 op->type = OP_IMM;
4976 op->val = VCPU_SREG_FS;
4977 break;
4978 case OpGS:
4979 op->type = OP_IMM;
4980 op->val = VCPU_SREG_GS;
4981 break;
4982 case OpImplicit:
4983 /* Special instructions do their own operand decoding. */
4984 default:
4985 op->type = OP_NONE; /* Disable writeback. */
4986 break;
4987 }
4988
4989 done:
4990 return rc;
4991 }
4992
4993 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
4994 {
4995 int rc = X86EMUL_CONTINUE;
4996 int mode = ctxt->mode;
4997 int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4998 bool op_prefix = false;
4999 bool has_seg_override = false;
5000 struct opcode opcode;
5001 u16 dummy;
5002 struct desc_struct desc;
5003
5004 ctxt->memop.type = OP_NONE;
5005 ctxt->memopp = NULL;
5006 ctxt->_eip = ctxt->eip;
5007 ctxt->fetch.ptr = ctxt->fetch.data;
5008 ctxt->fetch.end = ctxt->fetch.data + insn_len;
5009 ctxt->opcode_len = 1;
5010 if (insn_len > 0)
5011 memcpy(ctxt->fetch.data, insn, insn_len);
5012 else {
5013 rc = __do_insn_fetch_bytes(ctxt, 1);
5014 if (rc != X86EMUL_CONTINUE)
5015 return rc;
5016 }
5017
5018 switch (mode) {
5019 case X86EMUL_MODE_REAL:
5020 case X86EMUL_MODE_VM86:
5021 def_op_bytes = def_ad_bytes = 2;
5022 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
5023 if (desc.d)
5024 def_op_bytes = def_ad_bytes = 4;
5025 break;
5026 case X86EMUL_MODE_PROT16:
5027 def_op_bytes = def_ad_bytes = 2;
5028 break;
5029 case X86EMUL_MODE_PROT32:
5030 def_op_bytes = def_ad_bytes = 4;
5031 break;
5032 #ifdef CONFIG_X86_64
5033 case X86EMUL_MODE_PROT64:
5034 def_op_bytes = 4;
5035 def_ad_bytes = 8;
5036 break;
5037 #endif
5038 default:
5039 return EMULATION_FAILED;
5040 }
5041
5042 ctxt->op_bytes = def_op_bytes;
5043 ctxt->ad_bytes = def_ad_bytes;
5044
5045 /* Legacy prefixes. */
5046 for (;;) {
5047 switch (ctxt->b = insn_fetch(u8, ctxt)) {
5048 case 0x66: /* operand-size override */
5049 op_prefix = true;
5050 /* switch between 2/4 bytes */
5051 ctxt->op_bytes = def_op_bytes ^ 6;
5052 break;
5053 case 0x67: /* address-size override */
5054 if (mode == X86EMUL_MODE_PROT64)
5055 /* switch between 4/8 bytes */
5056 ctxt->ad_bytes = def_ad_bytes ^ 12;
5057 else
5058 /* switch between 2/4 bytes */
5059 ctxt->ad_bytes = def_ad_bytes ^ 6;
5060 break;
5061 case 0x26: /* ES override */
5062 case 0x2e: /* CS override */
5063 case 0x36: /* SS override */
5064 case 0x3e: /* DS override */
5065 has_seg_override = true;
5066 ctxt->seg_override = (ctxt->b >> 3) & 3;
5067 break;
5068 case 0x64: /* FS override */
5069 case 0x65: /* GS override */
5070 has_seg_override = true;
5071 ctxt->seg_override = ctxt->b & 7;
5072 break;
5073 case 0x40 ... 0x4f: /* REX */
5074 if (mode != X86EMUL_MODE_PROT64)
5075 goto done_prefixes;
5076 ctxt->rex_prefix = ctxt->b;
5077 continue;
5078 case 0xf0: /* LOCK */
5079 ctxt->lock_prefix = 1;
5080 break;
5081 case 0xf2: /* REPNE/REPNZ */
5082 case 0xf3: /* REP/REPE/REPZ */
5083 ctxt->rep_prefix = ctxt->b;
5084 break;
5085 default:
5086 goto done_prefixes;
5087 }
5088
5089 /* Any legacy prefix after a REX prefix nullifies its effect. */
5090
5091 ctxt->rex_prefix = 0;
5092 }
5093
5094 done_prefixes:
5095
5096 /* REX prefix. */
5097 if (ctxt->rex_prefix & 8)
5098 ctxt->op_bytes = 8; /* REX.W */
5099
5100 /* Opcode byte(s). */
5101 opcode = opcode_table[ctxt->b];
5102 /* Two-byte opcode? */
5103 if (ctxt->b == 0x0f) {
5104 ctxt->opcode_len = 2;
5105 ctxt->b = insn_fetch(u8, ctxt);
5106 opcode = twobyte_table[ctxt->b];
5107
5108 /* 0F_38 opcode map */
5109 if (ctxt->b == 0x38) {
5110 ctxt->opcode_len = 3;
5111 ctxt->b = insn_fetch(u8, ctxt);
5112 opcode = opcode_map_0f_38[ctxt->b];
5113 }
5114 }
5115 ctxt->d = opcode.flags;
5116
5117 if (ctxt->d & ModRM)
5118 ctxt->modrm = insn_fetch(u8, ctxt);
5119
5120 /* vex-prefix instructions are not implemented */
5121 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
5122 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
5123 ctxt->d = NotImpl;
5124 }
5125
5126 while (ctxt->d & GroupMask) {
5127 switch (ctxt->d & GroupMask) {
5128 case Group:
5129 goffset = (ctxt->modrm >> 3) & 7;
5130 opcode = opcode.u.group[goffset];
5131 break;
5132 case GroupDual:
5133 goffset = (ctxt->modrm >> 3) & 7;
5134 if ((ctxt->modrm >> 6) == 3)
5135 opcode = opcode.u.gdual->mod3[goffset];
5136 else
5137 opcode = opcode.u.gdual->mod012[goffset];
5138 break;
5139 case RMExt:
5140 goffset = ctxt->modrm & 7;
5141 opcode = opcode.u.group[goffset];
5142 break;
5143 case Prefix:
5144 if (ctxt->rep_prefix && op_prefix)
5145 return EMULATION_FAILED;
5146 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
5147 switch (simd_prefix) {
5148 case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
5149 case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
5150 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
5151 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
5152 }
5153 break;
5154 case Escape:
5155 if (ctxt->modrm > 0xbf)
5156 opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
5157 else
5158 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
5159 break;
5160 case InstrDual:
5161 if ((ctxt->modrm >> 6) == 3)
5162 opcode = opcode.u.idual->mod3;
5163 else
5164 opcode = opcode.u.idual->mod012;
5165 break;
5166 case ModeDual:
5167 if (ctxt->mode == X86EMUL_MODE_PROT64)
5168 opcode = opcode.u.mdual->mode64;
5169 else
5170 opcode = opcode.u.mdual->mode32;
5171 break;
5172 default:
5173 return EMULATION_FAILED;
5174 }
5175
5176 ctxt->d &= ~(u64)GroupMask;
5177 ctxt->d |= opcode.flags;
5178 }
5179
5180 /* Unrecognised? */
5181 if (ctxt->d == 0)
5182 return EMULATION_FAILED;
5183
5184 ctxt->execute = opcode.u.execute;
5185
5186 if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD)))
5187 return EMULATION_FAILED;
5188
5189 if (unlikely(ctxt->d &
5190 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
5191 No16))) {
5192 /*
5193 * These are copied unconditionally here, and checked unconditionally
5194 * in x86_emulate_insn.
5195 */
5196 ctxt->check_perm = opcode.check_perm;
5197 ctxt->intercept = opcode.intercept;
5198
5199 if (ctxt->d & NotImpl)
5200 return EMULATION_FAILED;
5201
5202 if (mode == X86EMUL_MODE_PROT64) {
5203 if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
5204 ctxt->op_bytes = 8;
5205 else if (ctxt->d & NearBranch)
5206 ctxt->op_bytes = 8;
5207 }
5208
5209 if (ctxt->d & Op3264) {
5210 if (mode == X86EMUL_MODE_PROT64)
5211 ctxt->op_bytes = 8;
5212 else
5213 ctxt->op_bytes = 4;
5214 }
5215
5216 if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5217 ctxt->op_bytes = 4;
5218
5219 if (ctxt->d & Sse)
5220 ctxt->op_bytes = 16;
5221 else if (ctxt->d & Mmx)
5222 ctxt->op_bytes = 8;
5223 }
5224
5225 /* ModRM and SIB bytes. */
5226 if (ctxt->d & ModRM) {
5227 rc = decode_modrm(ctxt, &ctxt->memop);
5228 if (!has_seg_override) {
5229 has_seg_override = true;
5230 ctxt->seg_override = ctxt->modrm_seg;
5231 }
5232 } else if (ctxt->d & MemAbs)
5233 rc = decode_abs(ctxt, &ctxt->memop);
5234 if (rc != X86EMUL_CONTINUE)
5235 goto done;
5236
5237 if (!has_seg_override)
5238 ctxt->seg_override = VCPU_SREG_DS;
5239
5240 ctxt->memop.addr.mem.seg = ctxt->seg_override;
5241
5242 /*
5243 * Decode and fetch the source operand: register, memory
5244 * or immediate.
5245 */
5246 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5247 if (rc != X86EMUL_CONTINUE)
5248 goto done;
5249
5250 /*
5251 * Decode and fetch the second source operand: register, memory
5252 * or immediate.
5253 */
5254 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5255 if (rc != X86EMUL_CONTINUE)
5256 goto done;
5257
5258 /* Decode and fetch the destination operand: register or memory. */
5259 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5260
5261 if (ctxt->rip_relative && likely(ctxt->memopp))
5262 ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5263 ctxt->memopp->addr.mem.ea + ctxt->_eip);
5264
5265 done:
5266 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5267 }
5268
5269 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5270 {
5271 return ctxt->d & PageTable;
5272 }
5273
5274 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5275 {
5276 /* The second termination condition only applies for REPE
5277 * and REPNE. Test if the repeat string operation prefix is
5278 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5279 * corresponding termination condition according to:
5280 * - if REPE/REPZ and ZF = 0 then done
5281 * - if REPNE/REPNZ and ZF = 1 then done
5282 */
5283 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5284 (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5285 && (((ctxt->rep_prefix == REPE_PREFIX) &&
5286 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5287 || ((ctxt->rep_prefix == REPNE_PREFIX) &&
5288 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5289 return true;
5290
5291 return false;
5292 }
5293
5294 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5295 {
5296 int rc;
5297
5298 rc = asm_safe("fwait");
5299
5300 if (unlikely(rc != X86EMUL_CONTINUE))
5301 return emulate_exception(ctxt, MF_VECTOR, 0, false);
5302
5303 return X86EMUL_CONTINUE;
5304 }
5305
5306 static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
5307 struct operand *op)
5308 {
5309 if (op->type == OP_MM)
5310 read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
5311 }
5312
5313 static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
5314 {
5315 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
5316
5317 if (!(ctxt->d & ByteOp))
5318 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
5319
5320 asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
5321 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
5322 [fastop]"+S"(fop), ASM_CALL_CONSTRAINT
5323 : "c"(ctxt->src2.val));
5324
5325 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
5326 if (!fop) /* exception is returned in fop variable */
5327 return emulate_de(ctxt);
5328 return X86EMUL_CONTINUE;
5329 }
5330
5331 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5332 {
5333 memset(&ctxt->rip_relative, 0,
5334 (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
5335
5336 ctxt->io_read.pos = 0;
5337 ctxt->io_read.end = 0;
5338 ctxt->mem_read.end = 0;
5339 }
5340
5341 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
5342 {
5343 const struct x86_emulate_ops *ops = ctxt->ops;
5344 int rc = X86EMUL_CONTINUE;
5345 int saved_dst_type = ctxt->dst.type;
5346 unsigned emul_flags;
5347
5348 ctxt->mem_read.pos = 0;
5349
5350 /* LOCK prefix is allowed only with some instructions */
5351 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5352 rc = emulate_ud(ctxt);
5353 goto done;
5354 }
5355
5356 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5357 rc = emulate_ud(ctxt);
5358 goto done;
5359 }
5360
5361 emul_flags = ctxt->ops->get_hflags(ctxt);
5362 if (unlikely(ctxt->d &
5363 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5364 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5365 (ctxt->d & Undefined)) {
5366 rc = emulate_ud(ctxt);
5367 goto done;
5368 }
5369
5370 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5371 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5372 rc = emulate_ud(ctxt);
5373 goto done;
5374 }
5375
5376 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5377 rc = emulate_nm(ctxt);
5378 goto done;
5379 }
5380
5381 if (ctxt->d & Mmx) {
5382 rc = flush_pending_x87_faults(ctxt);
5383 if (rc != X86EMUL_CONTINUE)
5384 goto done;
5385 /*
5386 * Now that we know the fpu is exception safe, we can fetch
5387 * operands from it.
5388 */
5389 fetch_possible_mmx_operand(ctxt, &ctxt->src);
5390 fetch_possible_mmx_operand(ctxt, &ctxt->src2);
5391 if (!(ctxt->d & Mov))
5392 fetch_possible_mmx_operand(ctxt, &ctxt->dst);
5393 }
5394
5395 if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && ctxt->intercept) {
5396 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5397 X86_ICPT_PRE_EXCEPT);
5398 if (rc != X86EMUL_CONTINUE)
5399 goto done;
5400 }
5401
5402 /* Instruction can only be executed in protected mode */
5403 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5404 rc = emulate_ud(ctxt);
5405 goto done;
5406 }
5407
5408 /* Privileged instruction can be executed only in CPL=0 */
5409 if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5410 if (ctxt->d & PrivUD)
5411 rc = emulate_ud(ctxt);
5412 else
5413 rc = emulate_gp(ctxt, 0);
5414 goto done;
5415 }
5416
5417 /* Do instruction specific permission checks */
5418 if (ctxt->d & CheckPerm) {
5419 rc = ctxt->check_perm(ctxt);
5420 if (rc != X86EMUL_CONTINUE)
5421 goto done;
5422 }
5423
5424 if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && (ctxt->d & Intercept)) {
5425 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5426 X86_ICPT_POST_EXCEPT);
5427 if (rc != X86EMUL_CONTINUE)
5428 goto done;
5429 }
5430
5431 if (ctxt->rep_prefix && (ctxt->d & String)) {
5432 /* All REP prefixes have the same first termination condition */
5433 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5434 string_registers_quirk(ctxt);
5435 ctxt->eip = ctxt->_eip;
5436 ctxt->eflags &= ~X86_EFLAGS_RF;
5437 goto done;
5438 }
5439 }
5440 }
5441
5442 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5443 rc = segmented_read(ctxt, ctxt->src.addr.mem,
5444 ctxt->src.valptr, ctxt->src.bytes);
5445 if (rc != X86EMUL_CONTINUE)
5446 goto done;
5447 ctxt->src.orig_val64 = ctxt->src.val64;
5448 }
5449
5450 if (ctxt->src2.type == OP_MEM) {
5451 rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5452 &ctxt->src2.val, ctxt->src2.bytes);
5453 if (rc != X86EMUL_CONTINUE)
5454 goto done;
5455 }
5456
5457 if ((ctxt->d & DstMask) == ImplicitOps)
5458 goto special_insn;
5459
5460
5461 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5462 /* optimisation - avoid slow emulated read if Mov */
5463 rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5464 &ctxt->dst.val, ctxt->dst.bytes);
5465 if (rc != X86EMUL_CONTINUE) {
5466 if (!(ctxt->d & NoWrite) &&
5467 rc == X86EMUL_PROPAGATE_FAULT &&
5468 ctxt->exception.vector == PF_VECTOR)
5469 ctxt->exception.error_code |= PFERR_WRITE_MASK;
5470 goto done;
5471 }
5472 }
5473 /* Copy full 64-bit value for CMPXCHG8B. */
5474 ctxt->dst.orig_val64 = ctxt->dst.val64;
5475
5476 special_insn:
5477
5478 if (unlikely(emul_flags & X86EMUL_GUEST_MASK) && (ctxt->d & Intercept)) {
5479 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5480 X86_ICPT_POST_MEMACCESS);
5481 if (rc != X86EMUL_CONTINUE)
5482 goto done;
5483 }
5484
5485 if (ctxt->rep_prefix && (ctxt->d & String))
5486 ctxt->eflags |= X86_EFLAGS_RF;
5487 else
5488 ctxt->eflags &= ~X86_EFLAGS_RF;
5489
5490 if (ctxt->execute) {
5491 if (ctxt->d & Fastop) {
5492 void (*fop)(struct fastop *) = (void *)ctxt->execute;
5493 rc = fastop(ctxt, fop);
5494 if (rc != X86EMUL_CONTINUE)
5495 goto done;
5496 goto writeback;
5497 }
5498 rc = ctxt->execute(ctxt);
5499 if (rc != X86EMUL_CONTINUE)
5500 goto done;
5501 goto writeback;
5502 }
5503
5504 if (ctxt->opcode_len == 2)
5505 goto twobyte_insn;
5506 else if (ctxt->opcode_len == 3)
5507 goto threebyte_insn;
5508
5509 switch (ctxt->b) {
5510 case 0x70 ... 0x7f: /* jcc (short) */
5511 if (test_cc(ctxt->b, ctxt->eflags))
5512 rc = jmp_rel(ctxt, ctxt->src.val);
5513 break;
5514 case 0x8d: /* lea r16/r32, m */
5515 ctxt->dst.val = ctxt->src.addr.mem.ea;
5516 break;
5517 case 0x90 ... 0x97: /* nop / xchg reg, rax */
5518 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5519 ctxt->dst.type = OP_NONE;
5520 else
5521 rc = em_xchg(ctxt);
5522 break;
5523 case 0x98: /* cbw/cwde/cdqe */
5524 switch (ctxt->op_bytes) {
5525 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5526 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5527 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5528 }
5529 break;
5530 case 0xcc: /* int3 */
5531 rc = emulate_int(ctxt, 3);
5532 break;
5533 case 0xcd: /* int n */
5534 rc = emulate_int(ctxt, ctxt->src.val);
5535 break;
5536 case 0xce: /* into */
5537 if (ctxt->eflags & X86_EFLAGS_OF)
5538 rc = emulate_int(ctxt, 4);
5539 break;
5540 case 0xe9: /* jmp rel */
5541 case 0xeb: /* jmp rel short */
5542 rc = jmp_rel(ctxt, ctxt->src.val);
5543 ctxt->dst.type = OP_NONE; /* Disable writeback. */
5544 break;
5545 case 0xf4: /* hlt */
5546 ctxt->ops->halt(ctxt);
5547 break;
5548 case 0xf5: /* cmc */
5549 /* complement carry flag from eflags reg */
5550 ctxt->eflags ^= X86_EFLAGS_CF;
5551 break;
5552 case 0xf8: /* clc */
5553 ctxt->eflags &= ~X86_EFLAGS_CF;
5554 break;
5555 case 0xf9: /* stc */
5556 ctxt->eflags |= X86_EFLAGS_CF;
5557 break;
5558 case 0xfc: /* cld */
5559 ctxt->eflags &= ~X86_EFLAGS_DF;
5560 break;
5561 case 0xfd: /* std */
5562 ctxt->eflags |= X86_EFLAGS_DF;
5563 break;
5564 default:
5565 goto cannot_emulate;
5566 }
5567
5568 if (rc != X86EMUL_CONTINUE)
5569 goto done;
5570
5571 writeback:
5572 if (ctxt->d & SrcWrite) {
5573 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5574 rc = writeback(ctxt, &ctxt->src);
5575 if (rc != X86EMUL_CONTINUE)
5576 goto done;
5577 }
5578 if (!(ctxt->d & NoWrite)) {
5579 rc = writeback(ctxt, &ctxt->dst);
5580 if (rc != X86EMUL_CONTINUE)
5581 goto done;
5582 }
5583
5584 /*
5585 * restore dst type in case the decoding will be reused
5586 * (happens for string instruction )
5587 */
5588 ctxt->dst.type = saved_dst_type;
5589
5590 if ((ctxt->d & SrcMask) == SrcSI)
5591 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5592
5593 if ((ctxt->d & DstMask) == DstDI)
5594 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5595
5596 if (ctxt->rep_prefix && (ctxt->d & String)) {
5597 unsigned int count;
5598 struct read_cache *r = &ctxt->io_read;
5599 if ((ctxt->d & SrcMask) == SrcSI)
5600 count = ctxt->src.count;
5601 else
5602 count = ctxt->dst.count;
5603 register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5604
5605 if (!string_insn_completed(ctxt)) {
5606 /*
5607 * Re-enter guest when pio read ahead buffer is empty
5608 * or, if it is not used, after each 1024 iteration.
5609 */
5610 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5611 (r->end == 0 || r->end != r->pos)) {
5612 /*
5613 * Reset read cache. Usually happens before
5614 * decode, but since instruction is restarted
5615 * we have to do it here.
5616 */
5617 ctxt->mem_read.end = 0;
5618 writeback_registers(ctxt);
5619 return EMULATION_RESTART;
5620 }
5621 goto done; /* skip rip writeback */
5622 }
5623 ctxt->eflags &= ~X86_EFLAGS_RF;
5624 }
5625
5626 ctxt->eip = ctxt->_eip;
5627
5628 done:
5629 if (rc == X86EMUL_PROPAGATE_FAULT) {
5630 WARN_ON(ctxt->exception.vector > 0x1f);
5631 ctxt->have_exception = true;
5632 }
5633 if (rc == X86EMUL_INTERCEPTED)
5634 return EMULATION_INTERCEPTED;
5635
5636 if (rc == X86EMUL_CONTINUE)
5637 writeback_registers(ctxt);
5638
5639 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5640
5641 twobyte_insn:
5642 switch (ctxt->b) {
5643 case 0x09: /* wbinvd */
5644 (ctxt->ops->wbinvd)(ctxt);
5645 break;
5646 case 0x08: /* invd */
5647 case 0x0d: /* GrpP (prefetch) */
5648 case 0x18: /* Grp16 (prefetch/nop) */
5649 case 0x1f: /* nop */
5650 break;
5651 case 0x20: /* mov cr, reg */
5652 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5653 break;
5654 case 0x21: /* mov from dr to reg */
5655 ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
5656 break;
5657 case 0x40 ... 0x4f: /* cmov */
5658 if (test_cc(ctxt->b, ctxt->eflags))
5659 ctxt->dst.val = ctxt->src.val;
5660 else if (ctxt->op_bytes != 4)
5661 ctxt->dst.type = OP_NONE; /* no writeback */
5662 break;
5663 case 0x80 ... 0x8f: /* jnz rel, etc*/
5664 if (test_cc(ctxt->b, ctxt->eflags))
5665 rc = jmp_rel(ctxt, ctxt->src.val);
5666 break;
5667 case 0x90 ... 0x9f: /* setcc r/m8 */
5668 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5669 break;
5670 case 0xb6 ... 0xb7: /* movzx */
5671 ctxt->dst.bytes = ctxt->op_bytes;
5672 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5673 : (u16) ctxt->src.val;
5674 break;
5675 case 0xbe ... 0xbf: /* movsx */
5676 ctxt->dst.bytes = ctxt->op_bytes;
5677 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5678 (s16) ctxt->src.val;
5679 break;
5680 default:
5681 goto cannot_emulate;
5682 }
5683
5684 threebyte_insn:
5685
5686 if (rc != X86EMUL_CONTINUE)
5687 goto done;
5688
5689 goto writeback;
5690
5691 cannot_emulate:
5692 return EMULATION_FAILED;
5693 }
5694
5695 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5696 {
5697 invalidate_registers(ctxt);
5698 }
5699
5700 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5701 {
5702 writeback_registers(ctxt);
5703 }
5704
5705 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5706 {
5707 if (ctxt->rep_prefix && (ctxt->d & String))
5708 return false;
5709
5710 if (ctxt->d & TwoMemOp)
5711 return false;
5712
5713 return true;
5714 }