]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kvm/hyperv.c
Merge tag 'sh-pfc-for-v5.1-tag2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kvm / hyperv.c
1 /*
2 * KVM Microsoft Hyper-V emulation
3 *
4 * derived from arch/x86/kvm/x86.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 * Andrey Smetanin <asmetanin@virtuozzo.com>
18 *
19 * This work is licensed under the terms of the GNU GPL, version 2. See
20 * the COPYING file in the top-level directory.
21 *
22 */
23
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36
37 #include "trace.h"
38
39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
40
41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
42 bool vcpu_kick);
43
44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
45 {
46 return atomic64_read(&synic->sint[sint]);
47 }
48
49 static inline int synic_get_sint_vector(u64 sint_value)
50 {
51 if (sint_value & HV_SYNIC_SINT_MASKED)
52 return -1;
53 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
54 }
55
56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
57 int vector)
58 {
59 int i;
60
61 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
62 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
63 return true;
64 }
65 return false;
66 }
67
68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
69 int vector)
70 {
71 int i;
72 u64 sint_value;
73
74 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
75 sint_value = synic_read_sint(synic, i);
76 if (synic_get_sint_vector(sint_value) == vector &&
77 sint_value & HV_SYNIC_SINT_AUTO_EOI)
78 return true;
79 }
80 return false;
81 }
82
83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
84 int vector)
85 {
86 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
87 return;
88
89 if (synic_has_vector_connected(synic, vector))
90 __set_bit(vector, synic->vec_bitmap);
91 else
92 __clear_bit(vector, synic->vec_bitmap);
93
94 if (synic_has_vector_auto_eoi(synic, vector))
95 __set_bit(vector, synic->auto_eoi_bitmap);
96 else
97 __clear_bit(vector, synic->auto_eoi_bitmap);
98 }
99
100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
101 u64 data, bool host)
102 {
103 int vector, old_vector;
104 bool masked;
105
106 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107 masked = data & HV_SYNIC_SINT_MASKED;
108
109 /*
110 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
111 * default '0x10000' value on boot and this should not #GP. We need to
112 * allow zero-initing the register from host as well.
113 */
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115 return 1;
116 /*
117 * Guest may configure multiple SINTs to use the same vector, so
118 * we maintain a bitmap of vectors handled by synic, and a
119 * bitmap of vectors with auto-eoi behavior. The bitmaps are
120 * updated here, and atomically queried on fast paths.
121 */
122 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123
124 atomic64_set(&synic->sint[sint], data);
125
126 synic_update_vector(synic, old_vector);
127
128 synic_update_vector(synic, vector);
129
130 /* Load SynIC vectors into EOI exit bitmap */
131 kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
132 return 0;
133 }
134
135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
136 {
137 struct kvm_vcpu *vcpu = NULL;
138 int i;
139
140 if (vpidx >= KVM_MAX_VCPUS)
141 return NULL;
142
143 vcpu = kvm_get_vcpu(kvm, vpidx);
144 if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
145 return vcpu;
146 kvm_for_each_vcpu(i, vcpu, kvm)
147 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
148 return vcpu;
149 return NULL;
150 }
151
152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 {
154 struct kvm_vcpu *vcpu;
155 struct kvm_vcpu_hv_synic *synic;
156
157 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158 if (!vcpu)
159 return NULL;
160 synic = vcpu_to_synic(vcpu);
161 return (synic->active) ? synic : NULL;
162 }
163
164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
165 {
166 struct kvm *kvm = vcpu->kvm;
167 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
168 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
169 struct kvm_vcpu_hv_stimer *stimer;
170 int gsi, idx;
171
172 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173
174 /* Try to deliver pending Hyper-V SynIC timers messages */
175 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
176 stimer = &hv_vcpu->stimer[idx];
177 if (stimer->msg_pending && stimer->config.enable &&
178 !stimer->config.direct_mode &&
179 stimer->config.sintx == sint)
180 stimer_mark_pending(stimer, false);
181 }
182
183 idx = srcu_read_lock(&kvm->irq_srcu);
184 gsi = atomic_read(&synic->sint_to_gsi[sint]);
185 if (gsi != -1)
186 kvm_notify_acked_gsi(kvm, gsi);
187 srcu_read_unlock(&kvm->irq_srcu, idx);
188 }
189
190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
191 {
192 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
193 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
194
195 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
196 hv_vcpu->exit.u.synic.msr = msr;
197 hv_vcpu->exit.u.synic.control = synic->control;
198 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
199 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
200
201 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
202 }
203
204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
205 u32 msr, u64 data, bool host)
206 {
207 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
208 int ret;
209
210 if (!synic->active && !host)
211 return 1;
212
213 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
214
215 ret = 0;
216 switch (msr) {
217 case HV_X64_MSR_SCONTROL:
218 synic->control = data;
219 if (!host)
220 synic_exit(synic, msr);
221 break;
222 case HV_X64_MSR_SVERSION:
223 if (!host) {
224 ret = 1;
225 break;
226 }
227 synic->version = data;
228 break;
229 case HV_X64_MSR_SIEFP:
230 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
231 !synic->dont_zero_synic_pages)
232 if (kvm_clear_guest(vcpu->kvm,
233 data & PAGE_MASK, PAGE_SIZE)) {
234 ret = 1;
235 break;
236 }
237 synic->evt_page = data;
238 if (!host)
239 synic_exit(synic, msr);
240 break;
241 case HV_X64_MSR_SIMP:
242 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
243 !synic->dont_zero_synic_pages)
244 if (kvm_clear_guest(vcpu->kvm,
245 data & PAGE_MASK, PAGE_SIZE)) {
246 ret = 1;
247 break;
248 }
249 synic->msg_page = data;
250 if (!host)
251 synic_exit(synic, msr);
252 break;
253 case HV_X64_MSR_EOM: {
254 int i;
255
256 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
257 kvm_hv_notify_acked_sint(vcpu, i);
258 break;
259 }
260 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262 break;
263 default:
264 ret = 1;
265 break;
266 }
267 return ret;
268 }
269
270 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
271 bool host)
272 {
273 int ret;
274
275 if (!synic->active && !host)
276 return 1;
277
278 ret = 0;
279 switch (msr) {
280 case HV_X64_MSR_SCONTROL:
281 *pdata = synic->control;
282 break;
283 case HV_X64_MSR_SVERSION:
284 *pdata = synic->version;
285 break;
286 case HV_X64_MSR_SIEFP:
287 *pdata = synic->evt_page;
288 break;
289 case HV_X64_MSR_SIMP:
290 *pdata = synic->msg_page;
291 break;
292 case HV_X64_MSR_EOM:
293 *pdata = 0;
294 break;
295 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
296 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
297 break;
298 default:
299 ret = 1;
300 break;
301 }
302 return ret;
303 }
304
305 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
306 {
307 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
308 struct kvm_lapic_irq irq;
309 int ret, vector;
310
311 if (sint >= ARRAY_SIZE(synic->sint))
312 return -EINVAL;
313
314 vector = synic_get_sint_vector(synic_read_sint(synic, sint));
315 if (vector < 0)
316 return -ENOENT;
317
318 memset(&irq, 0, sizeof(irq));
319 irq.shorthand = APIC_DEST_SELF;
320 irq.dest_mode = APIC_DEST_PHYSICAL;
321 irq.delivery_mode = APIC_DM_FIXED;
322 irq.vector = vector;
323 irq.level = 1;
324
325 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
326 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
327 return ret;
328 }
329
330 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
331 {
332 struct kvm_vcpu_hv_synic *synic;
333
334 synic = synic_get(kvm, vpidx);
335 if (!synic)
336 return -EINVAL;
337
338 return synic_set_irq(synic, sint);
339 }
340
341 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
342 {
343 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
344 int i;
345
346 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
347
348 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
349 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
350 kvm_hv_notify_acked_sint(vcpu, i);
351 }
352
353 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
354 {
355 struct kvm_vcpu_hv_synic *synic;
356
357 synic = synic_get(kvm, vpidx);
358 if (!synic)
359 return -EINVAL;
360
361 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
362 return -EINVAL;
363
364 atomic_set(&synic->sint_to_gsi[sint], gsi);
365 return 0;
366 }
367
368 void kvm_hv_irq_routing_update(struct kvm *kvm)
369 {
370 struct kvm_irq_routing_table *irq_rt;
371 struct kvm_kernel_irq_routing_entry *e;
372 u32 gsi;
373
374 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
375 lockdep_is_held(&kvm->irq_lock));
376
377 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
378 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
379 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
380 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
381 e->hv_sint.sint, gsi);
382 }
383 }
384 }
385
386 static void synic_init(struct kvm_vcpu_hv_synic *synic)
387 {
388 int i;
389
390 memset(synic, 0, sizeof(*synic));
391 synic->version = HV_SYNIC_VERSION_1;
392 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
393 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
394 atomic_set(&synic->sint_to_gsi[i], -1);
395 }
396 }
397
398 static u64 get_time_ref_counter(struct kvm *kvm)
399 {
400 struct kvm_hv *hv = &kvm->arch.hyperv;
401 struct kvm_vcpu *vcpu;
402 u64 tsc;
403
404 /*
405 * The guest has not set up the TSC page or the clock isn't
406 * stable, fall back to get_kvmclock_ns.
407 */
408 if (!hv->tsc_ref.tsc_sequence)
409 return div_u64(get_kvmclock_ns(kvm), 100);
410
411 vcpu = kvm_get_vcpu(kvm, 0);
412 tsc = kvm_read_l1_tsc(vcpu, rdtsc());
413 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
414 + hv->tsc_ref.tsc_offset;
415 }
416
417 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
418 bool vcpu_kick)
419 {
420 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
421
422 set_bit(stimer->index,
423 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
424 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
425 if (vcpu_kick)
426 kvm_vcpu_kick(vcpu);
427 }
428
429 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
430 {
431 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
432
433 trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
434 stimer->index);
435
436 hrtimer_cancel(&stimer->timer);
437 clear_bit(stimer->index,
438 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
439 stimer->msg_pending = false;
440 stimer->exp_time = 0;
441 }
442
443 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
444 {
445 struct kvm_vcpu_hv_stimer *stimer;
446
447 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
448 trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
449 stimer->index);
450 stimer_mark_pending(stimer, true);
451
452 return HRTIMER_NORESTART;
453 }
454
455 /*
456 * stimer_start() assumptions:
457 * a) stimer->count is not equal to 0
458 * b) stimer->config has HV_STIMER_ENABLE flag
459 */
460 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
461 {
462 u64 time_now;
463 ktime_t ktime_now;
464
465 time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
466 ktime_now = ktime_get();
467
468 if (stimer->config.periodic) {
469 if (stimer->exp_time) {
470 if (time_now >= stimer->exp_time) {
471 u64 remainder;
472
473 div64_u64_rem(time_now - stimer->exp_time,
474 stimer->count, &remainder);
475 stimer->exp_time =
476 time_now + (stimer->count - remainder);
477 }
478 } else
479 stimer->exp_time = time_now + stimer->count;
480
481 trace_kvm_hv_stimer_start_periodic(
482 stimer_to_vcpu(stimer)->vcpu_id,
483 stimer->index,
484 time_now, stimer->exp_time);
485
486 hrtimer_start(&stimer->timer,
487 ktime_add_ns(ktime_now,
488 100 * (stimer->exp_time - time_now)),
489 HRTIMER_MODE_ABS);
490 return 0;
491 }
492 stimer->exp_time = stimer->count;
493 if (time_now >= stimer->count) {
494 /*
495 * Expire timer according to Hypervisor Top-Level Functional
496 * specification v4(15.3.1):
497 * "If a one shot is enabled and the specified count is in
498 * the past, it will expire immediately."
499 */
500 stimer_mark_pending(stimer, false);
501 return 0;
502 }
503
504 trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
505 stimer->index,
506 time_now, stimer->count);
507
508 hrtimer_start(&stimer->timer,
509 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
510 HRTIMER_MODE_ABS);
511 return 0;
512 }
513
514 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
515 bool host)
516 {
517 union hv_stimer_config new_config = {.as_uint64 = config},
518 old_config = {.as_uint64 = stimer->config.as_uint64};
519
520 trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
521 stimer->index, config, host);
522
523 stimer_cleanup(stimer);
524 if (old_config.enable &&
525 !new_config.direct_mode && new_config.sintx == 0)
526 new_config.enable = 0;
527 stimer->config.as_uint64 = new_config.as_uint64;
528
529 stimer_mark_pending(stimer, false);
530 return 0;
531 }
532
533 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
534 bool host)
535 {
536 trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
537 stimer->index, count, host);
538
539 stimer_cleanup(stimer);
540 stimer->count = count;
541 if (stimer->count == 0)
542 stimer->config.enable = 0;
543 else if (stimer->config.auto_enable)
544 stimer->config.enable = 1;
545 stimer_mark_pending(stimer, false);
546 return 0;
547 }
548
549 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
550 {
551 *pconfig = stimer->config.as_uint64;
552 return 0;
553 }
554
555 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
556 {
557 *pcount = stimer->count;
558 return 0;
559 }
560
561 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
562 struct hv_message *src_msg, bool no_retry)
563 {
564 struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
565 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
566 gfn_t msg_page_gfn;
567 struct hv_message_header hv_hdr;
568 int r;
569
570 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
571 return -ENOENT;
572
573 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
574
575 /*
576 * Strictly following the spec-mandated ordering would assume setting
577 * .msg_pending before checking .message_type. However, this function
578 * is only called in vcpu context so the entire update is atomic from
579 * guest POV and thus the exact order here doesn't matter.
580 */
581 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
582 msg_off + offsetof(struct hv_message,
583 header.message_type),
584 sizeof(hv_hdr.message_type));
585 if (r < 0)
586 return r;
587
588 if (hv_hdr.message_type != HVMSG_NONE) {
589 if (no_retry)
590 return 0;
591
592 hv_hdr.message_flags.msg_pending = 1;
593 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
594 &hv_hdr.message_flags,
595 msg_off +
596 offsetof(struct hv_message,
597 header.message_flags),
598 sizeof(hv_hdr.message_flags));
599 if (r < 0)
600 return r;
601 return -EAGAIN;
602 }
603
604 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
605 sizeof(src_msg->header) +
606 src_msg->header.payload_size);
607 if (r < 0)
608 return r;
609
610 r = synic_set_irq(synic, sint);
611 if (r < 0)
612 return r;
613 if (r == 0)
614 return -EFAULT;
615 return 0;
616 }
617
618 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
619 {
620 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
621 struct hv_message *msg = &stimer->msg;
622 struct hv_timer_message_payload *payload =
623 (struct hv_timer_message_payload *)&msg->u.payload;
624
625 /*
626 * To avoid piling up periodic ticks, don't retry message
627 * delivery for them (within "lazy" lost ticks policy).
628 */
629 bool no_retry = stimer->config.periodic;
630
631 payload->expiration_time = stimer->exp_time;
632 payload->delivery_time = get_time_ref_counter(vcpu->kvm);
633 return synic_deliver_msg(vcpu_to_synic(vcpu),
634 stimer->config.sintx, msg,
635 no_retry);
636 }
637
638 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
639 {
640 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
641 struct kvm_lapic_irq irq = {
642 .delivery_mode = APIC_DM_FIXED,
643 .vector = stimer->config.apic_vector
644 };
645
646 return !kvm_apic_set_irq(vcpu, &irq, NULL);
647 }
648
649 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
650 {
651 int r, direct = stimer->config.direct_mode;
652
653 stimer->msg_pending = true;
654 if (!direct)
655 r = stimer_send_msg(stimer);
656 else
657 r = stimer_notify_direct(stimer);
658 trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
659 stimer->index, direct, r);
660 if (!r) {
661 stimer->msg_pending = false;
662 if (!(stimer->config.periodic))
663 stimer->config.enable = 0;
664 }
665 }
666
667 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
668 {
669 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
670 struct kvm_vcpu_hv_stimer *stimer;
671 u64 time_now, exp_time;
672 int i;
673
674 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
675 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
676 stimer = &hv_vcpu->stimer[i];
677 if (stimer->config.enable) {
678 exp_time = stimer->exp_time;
679
680 if (exp_time) {
681 time_now =
682 get_time_ref_counter(vcpu->kvm);
683 if (time_now >= exp_time)
684 stimer_expiration(stimer);
685 }
686
687 if ((stimer->config.enable) &&
688 stimer->count) {
689 if (!stimer->msg_pending)
690 stimer_start(stimer);
691 } else
692 stimer_cleanup(stimer);
693 }
694 }
695 }
696
697 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
698 {
699 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
700 int i;
701
702 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
703 stimer_cleanup(&hv_vcpu->stimer[i]);
704 }
705
706 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
707 {
708 if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
709 return false;
710 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
711 }
712 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
713
714 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
715 struct hv_vp_assist_page *assist_page)
716 {
717 if (!kvm_hv_assist_page_enabled(vcpu))
718 return false;
719 return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
720 assist_page, sizeof(*assist_page));
721 }
722 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
723
724 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
725 {
726 struct hv_message *msg = &stimer->msg;
727 struct hv_timer_message_payload *payload =
728 (struct hv_timer_message_payload *)&msg->u.payload;
729
730 memset(&msg->header, 0, sizeof(msg->header));
731 msg->header.message_type = HVMSG_TIMER_EXPIRED;
732 msg->header.payload_size = sizeof(*payload);
733
734 payload->timer_index = stimer->index;
735 payload->expiration_time = 0;
736 payload->delivery_time = 0;
737 }
738
739 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
740 {
741 memset(stimer, 0, sizeof(*stimer));
742 stimer->index = timer_index;
743 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
744 stimer->timer.function = stimer_timer_callback;
745 stimer_prepare_msg(stimer);
746 }
747
748 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
749 {
750 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
751 int i;
752
753 synic_init(&hv_vcpu->synic);
754
755 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
756 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
757 stimer_init(&hv_vcpu->stimer[i], i);
758 }
759
760 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
761 {
762 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
763
764 hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
765 }
766
767 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
768 {
769 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
770
771 /*
772 * Hyper-V SynIC auto EOI SINT's are
773 * not compatible with APICV, so deactivate APICV
774 */
775 kvm_vcpu_deactivate_apicv(vcpu);
776 synic->active = true;
777 synic->dont_zero_synic_pages = dont_zero_synic_pages;
778 return 0;
779 }
780
781 static bool kvm_hv_msr_partition_wide(u32 msr)
782 {
783 bool r = false;
784
785 switch (msr) {
786 case HV_X64_MSR_GUEST_OS_ID:
787 case HV_X64_MSR_HYPERCALL:
788 case HV_X64_MSR_REFERENCE_TSC:
789 case HV_X64_MSR_TIME_REF_COUNT:
790 case HV_X64_MSR_CRASH_CTL:
791 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
792 case HV_X64_MSR_RESET:
793 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
794 case HV_X64_MSR_TSC_EMULATION_CONTROL:
795 case HV_X64_MSR_TSC_EMULATION_STATUS:
796 r = true;
797 break;
798 }
799
800 return r;
801 }
802
803 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
804 u32 index, u64 *pdata)
805 {
806 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
807
808 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
809 return -EINVAL;
810
811 *pdata = hv->hv_crash_param[index];
812 return 0;
813 }
814
815 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
816 {
817 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
818
819 *pdata = hv->hv_crash_ctl;
820 return 0;
821 }
822
823 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
824 {
825 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
826
827 if (host)
828 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
829
830 if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
831
832 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
833 hv->hv_crash_param[0],
834 hv->hv_crash_param[1],
835 hv->hv_crash_param[2],
836 hv->hv_crash_param[3],
837 hv->hv_crash_param[4]);
838
839 /* Send notification about crash to user space */
840 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
841 }
842
843 return 0;
844 }
845
846 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
847 u32 index, u64 data)
848 {
849 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
850
851 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
852 return -EINVAL;
853
854 hv->hv_crash_param[index] = data;
855 return 0;
856 }
857
858 /*
859 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
860 * between them is possible:
861 *
862 * kvmclock formula:
863 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
864 * + system_time
865 *
866 * Hyper-V formula:
867 * nsec/100 = ticks * scale / 2^64 + offset
868 *
869 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
870 * By dividing the kvmclock formula by 100 and equating what's left we get:
871 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
872 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
873 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
874 *
875 * Now expand the kvmclock formula and divide by 100:
876 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
877 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
878 * + system_time
879 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
880 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
881 * + system_time / 100
882 *
883 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
884 * nsec/100 = ticks * scale / 2^64
885 * - tsc_timestamp * scale / 2^64
886 * + system_time / 100
887 *
888 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
889 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
890 *
891 * These two equivalencies are implemented in this function.
892 */
893 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
894 HV_REFERENCE_TSC_PAGE *tsc_ref)
895 {
896 u64 max_mul;
897
898 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
899 return false;
900
901 /*
902 * check if scale would overflow, if so we use the time ref counter
903 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
904 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
905 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
906 */
907 max_mul = 100ull << (32 - hv_clock->tsc_shift);
908 if (hv_clock->tsc_to_system_mul >= max_mul)
909 return false;
910
911 /*
912 * Otherwise compute the scale and offset according to the formulas
913 * derived above.
914 */
915 tsc_ref->tsc_scale =
916 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
917 hv_clock->tsc_to_system_mul,
918 100);
919
920 tsc_ref->tsc_offset = hv_clock->system_time;
921 do_div(tsc_ref->tsc_offset, 100);
922 tsc_ref->tsc_offset -=
923 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
924 return true;
925 }
926
927 void kvm_hv_setup_tsc_page(struct kvm *kvm,
928 struct pvclock_vcpu_time_info *hv_clock)
929 {
930 struct kvm_hv *hv = &kvm->arch.hyperv;
931 u32 tsc_seq;
932 u64 gfn;
933
934 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
935 BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
936
937 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
938 return;
939
940 mutex_lock(&kvm->arch.hyperv.hv_lock);
941 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
942 goto out_unlock;
943
944 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
945 /*
946 * Because the TSC parameters only vary when there is a
947 * change in the master clock, do not bother with caching.
948 */
949 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
950 &tsc_seq, sizeof(tsc_seq))))
951 goto out_unlock;
952
953 /*
954 * While we're computing and writing the parameters, force the
955 * guest to use the time reference count MSR.
956 */
957 hv->tsc_ref.tsc_sequence = 0;
958 if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
959 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
960 goto out_unlock;
961
962 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
963 goto out_unlock;
964
965 /* Ensure sequence is zero before writing the rest of the struct. */
966 smp_wmb();
967 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
968 goto out_unlock;
969
970 /*
971 * Now switch to the TSC page mechanism by writing the sequence.
972 */
973 tsc_seq++;
974 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
975 tsc_seq = 1;
976
977 /* Write the struct entirely before the non-zero sequence. */
978 smp_wmb();
979
980 hv->tsc_ref.tsc_sequence = tsc_seq;
981 kvm_write_guest(kvm, gfn_to_gpa(gfn),
982 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
983 out_unlock:
984 mutex_unlock(&kvm->arch.hyperv.hv_lock);
985 }
986
987 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
988 bool host)
989 {
990 struct kvm *kvm = vcpu->kvm;
991 struct kvm_hv *hv = &kvm->arch.hyperv;
992
993 switch (msr) {
994 case HV_X64_MSR_GUEST_OS_ID:
995 hv->hv_guest_os_id = data;
996 /* setting guest os id to zero disables hypercall page */
997 if (!hv->hv_guest_os_id)
998 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
999 break;
1000 case HV_X64_MSR_HYPERCALL: {
1001 u64 gfn;
1002 unsigned long addr;
1003 u8 instructions[4];
1004
1005 /* if guest os id is not set hypercall should remain disabled */
1006 if (!hv->hv_guest_os_id)
1007 break;
1008 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1009 hv->hv_hypercall = data;
1010 break;
1011 }
1012 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1013 addr = gfn_to_hva(kvm, gfn);
1014 if (kvm_is_error_hva(addr))
1015 return 1;
1016 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1017 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1018 if (__copy_to_user((void __user *)addr, instructions, 4))
1019 return 1;
1020 hv->hv_hypercall = data;
1021 mark_page_dirty(kvm, gfn);
1022 break;
1023 }
1024 case HV_X64_MSR_REFERENCE_TSC:
1025 hv->hv_tsc_page = data;
1026 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1027 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1028 break;
1029 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1030 return kvm_hv_msr_set_crash_data(vcpu,
1031 msr - HV_X64_MSR_CRASH_P0,
1032 data);
1033 case HV_X64_MSR_CRASH_CTL:
1034 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1035 case HV_X64_MSR_RESET:
1036 if (data == 1) {
1037 vcpu_debug(vcpu, "hyper-v reset requested\n");
1038 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1039 }
1040 break;
1041 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1042 hv->hv_reenlightenment_control = data;
1043 break;
1044 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1045 hv->hv_tsc_emulation_control = data;
1046 break;
1047 case HV_X64_MSR_TSC_EMULATION_STATUS:
1048 hv->hv_tsc_emulation_status = data;
1049 break;
1050 case HV_X64_MSR_TIME_REF_COUNT:
1051 /* read-only, but still ignore it if host-initiated */
1052 if (!host)
1053 return 1;
1054 break;
1055 default:
1056 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1057 msr, data);
1058 return 1;
1059 }
1060 return 0;
1061 }
1062
1063 /* Calculate cpu time spent by current task in 100ns units */
1064 static u64 current_task_runtime_100ns(void)
1065 {
1066 u64 utime, stime;
1067
1068 task_cputime_adjusted(current, &utime, &stime);
1069
1070 return div_u64(utime + stime, 100);
1071 }
1072
1073 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1074 {
1075 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1076
1077 switch (msr) {
1078 case HV_X64_MSR_VP_INDEX: {
1079 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1080 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1081 u32 new_vp_index = (u32)data;
1082
1083 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1084 return 1;
1085
1086 if (new_vp_index == hv_vcpu->vp_index)
1087 return 0;
1088
1089 /*
1090 * The VP index is initialized to vcpu_index by
1091 * kvm_hv_vcpu_postcreate so they initially match. Now the
1092 * VP index is changing, adjust num_mismatched_vp_indexes if
1093 * it now matches or no longer matches vcpu_idx.
1094 */
1095 if (hv_vcpu->vp_index == vcpu_idx)
1096 atomic_inc(&hv->num_mismatched_vp_indexes);
1097 else if (new_vp_index == vcpu_idx)
1098 atomic_dec(&hv->num_mismatched_vp_indexes);
1099
1100 hv_vcpu->vp_index = new_vp_index;
1101 break;
1102 }
1103 case HV_X64_MSR_VP_ASSIST_PAGE: {
1104 u64 gfn;
1105 unsigned long addr;
1106
1107 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1108 hv_vcpu->hv_vapic = data;
1109 if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1110 return 1;
1111 break;
1112 }
1113 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1114 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1115 if (kvm_is_error_hva(addr))
1116 return 1;
1117
1118 /*
1119 * Clear apic_assist portion of f(struct hv_vp_assist_page
1120 * only, there can be valuable data in the rest which needs
1121 * to be preserved e.g. on migration.
1122 */
1123 if (__clear_user((void __user *)addr, sizeof(u32)))
1124 return 1;
1125 hv_vcpu->hv_vapic = data;
1126 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1127 if (kvm_lapic_enable_pv_eoi(vcpu,
1128 gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1129 sizeof(struct hv_vp_assist_page)))
1130 return 1;
1131 break;
1132 }
1133 case HV_X64_MSR_EOI:
1134 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1135 case HV_X64_MSR_ICR:
1136 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1137 case HV_X64_MSR_TPR:
1138 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1139 case HV_X64_MSR_VP_RUNTIME:
1140 if (!host)
1141 return 1;
1142 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1143 break;
1144 case HV_X64_MSR_SCONTROL:
1145 case HV_X64_MSR_SVERSION:
1146 case HV_X64_MSR_SIEFP:
1147 case HV_X64_MSR_SIMP:
1148 case HV_X64_MSR_EOM:
1149 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1150 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1151 case HV_X64_MSR_STIMER0_CONFIG:
1152 case HV_X64_MSR_STIMER1_CONFIG:
1153 case HV_X64_MSR_STIMER2_CONFIG:
1154 case HV_X64_MSR_STIMER3_CONFIG: {
1155 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1156
1157 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1158 data, host);
1159 }
1160 case HV_X64_MSR_STIMER0_COUNT:
1161 case HV_X64_MSR_STIMER1_COUNT:
1162 case HV_X64_MSR_STIMER2_COUNT:
1163 case HV_X64_MSR_STIMER3_COUNT: {
1164 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1165
1166 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1167 data, host);
1168 }
1169 case HV_X64_MSR_TSC_FREQUENCY:
1170 case HV_X64_MSR_APIC_FREQUENCY:
1171 /* read-only, but still ignore it if host-initiated */
1172 if (!host)
1173 return 1;
1174 break;
1175 default:
1176 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1177 msr, data);
1178 return 1;
1179 }
1180
1181 return 0;
1182 }
1183
1184 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1185 {
1186 u64 data = 0;
1187 struct kvm *kvm = vcpu->kvm;
1188 struct kvm_hv *hv = &kvm->arch.hyperv;
1189
1190 switch (msr) {
1191 case HV_X64_MSR_GUEST_OS_ID:
1192 data = hv->hv_guest_os_id;
1193 break;
1194 case HV_X64_MSR_HYPERCALL:
1195 data = hv->hv_hypercall;
1196 break;
1197 case HV_X64_MSR_TIME_REF_COUNT:
1198 data = get_time_ref_counter(kvm);
1199 break;
1200 case HV_X64_MSR_REFERENCE_TSC:
1201 data = hv->hv_tsc_page;
1202 break;
1203 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1204 return kvm_hv_msr_get_crash_data(vcpu,
1205 msr - HV_X64_MSR_CRASH_P0,
1206 pdata);
1207 case HV_X64_MSR_CRASH_CTL:
1208 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1209 case HV_X64_MSR_RESET:
1210 data = 0;
1211 break;
1212 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1213 data = hv->hv_reenlightenment_control;
1214 break;
1215 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1216 data = hv->hv_tsc_emulation_control;
1217 break;
1218 case HV_X64_MSR_TSC_EMULATION_STATUS:
1219 data = hv->hv_tsc_emulation_status;
1220 break;
1221 default:
1222 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1223 return 1;
1224 }
1225
1226 *pdata = data;
1227 return 0;
1228 }
1229
1230 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1231 bool host)
1232 {
1233 u64 data = 0;
1234 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1235
1236 switch (msr) {
1237 case HV_X64_MSR_VP_INDEX:
1238 data = hv_vcpu->vp_index;
1239 break;
1240 case HV_X64_MSR_EOI:
1241 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1242 case HV_X64_MSR_ICR:
1243 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1244 case HV_X64_MSR_TPR:
1245 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1246 case HV_X64_MSR_VP_ASSIST_PAGE:
1247 data = hv_vcpu->hv_vapic;
1248 break;
1249 case HV_X64_MSR_VP_RUNTIME:
1250 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1251 break;
1252 case HV_X64_MSR_SCONTROL:
1253 case HV_X64_MSR_SVERSION:
1254 case HV_X64_MSR_SIEFP:
1255 case HV_X64_MSR_SIMP:
1256 case HV_X64_MSR_EOM:
1257 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1258 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1259 case HV_X64_MSR_STIMER0_CONFIG:
1260 case HV_X64_MSR_STIMER1_CONFIG:
1261 case HV_X64_MSR_STIMER2_CONFIG:
1262 case HV_X64_MSR_STIMER3_CONFIG: {
1263 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1264
1265 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1266 pdata);
1267 }
1268 case HV_X64_MSR_STIMER0_COUNT:
1269 case HV_X64_MSR_STIMER1_COUNT:
1270 case HV_X64_MSR_STIMER2_COUNT:
1271 case HV_X64_MSR_STIMER3_COUNT: {
1272 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1273
1274 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1275 pdata);
1276 }
1277 case HV_X64_MSR_TSC_FREQUENCY:
1278 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1279 break;
1280 case HV_X64_MSR_APIC_FREQUENCY:
1281 data = APIC_BUS_FREQUENCY;
1282 break;
1283 default:
1284 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1285 return 1;
1286 }
1287 *pdata = data;
1288 return 0;
1289 }
1290
1291 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1292 {
1293 if (kvm_hv_msr_partition_wide(msr)) {
1294 int r;
1295
1296 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1297 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1298 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1299 return r;
1300 } else
1301 return kvm_hv_set_msr(vcpu, msr, data, host);
1302 }
1303
1304 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1305 {
1306 if (kvm_hv_msr_partition_wide(msr)) {
1307 int r;
1308
1309 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1310 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1311 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1312 return r;
1313 } else
1314 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1315 }
1316
1317 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1318 struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1319 u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1320 {
1321 struct kvm_hv *hv = &kvm->arch.hyperv;
1322 struct kvm_vcpu *vcpu;
1323 int i, bank, sbank = 0;
1324
1325 memset(vp_bitmap, 0,
1326 KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1327 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1328 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1329 vp_bitmap[bank] = sparse_banks[sbank++];
1330
1331 if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1332 /* for all vcpus vp_index == vcpu_idx */
1333 return (unsigned long *)vp_bitmap;
1334 }
1335
1336 bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1337 kvm_for_each_vcpu(i, vcpu, kvm) {
1338 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1339 (unsigned long *)vp_bitmap))
1340 __set_bit(i, vcpu_bitmap);
1341 }
1342 return vcpu_bitmap;
1343 }
1344
1345 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1346 u16 rep_cnt, bool ex)
1347 {
1348 struct kvm *kvm = current_vcpu->kvm;
1349 struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1350 struct hv_tlb_flush_ex flush_ex;
1351 struct hv_tlb_flush flush;
1352 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1353 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1354 unsigned long *vcpu_mask;
1355 u64 valid_bank_mask;
1356 u64 sparse_banks[64];
1357 int sparse_banks_len;
1358 bool all_cpus;
1359
1360 if (!ex) {
1361 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1362 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1363
1364 trace_kvm_hv_flush_tlb(flush.processor_mask,
1365 flush.address_space, flush.flags);
1366
1367 valid_bank_mask = BIT_ULL(0);
1368 sparse_banks[0] = flush.processor_mask;
1369 all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
1370 } else {
1371 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1372 sizeof(flush_ex))))
1373 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1374
1375 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1376 flush_ex.hv_vp_set.format,
1377 flush_ex.address_space,
1378 flush_ex.flags);
1379
1380 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1381 all_cpus = flush_ex.hv_vp_set.format !=
1382 HV_GENERIC_SET_SPARSE_4K;
1383
1384 sparse_banks_len =
1385 bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1386 sizeof(sparse_banks[0]);
1387
1388 if (!sparse_banks_len && !all_cpus)
1389 goto ret_success;
1390
1391 if (!all_cpus &&
1392 kvm_read_guest(kvm,
1393 ingpa + offsetof(struct hv_tlb_flush_ex,
1394 hv_vp_set.bank_contents),
1395 sparse_banks,
1396 sparse_banks_len))
1397 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1398 }
1399
1400 cpumask_clear(&hv_vcpu->tlb_flush);
1401
1402 vcpu_mask = all_cpus ? NULL :
1403 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1404 vp_bitmap, vcpu_bitmap);
1405
1406 /*
1407 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1408 * analyze it here, flush TLB regardless of the specified address space.
1409 */
1410 kvm_make_vcpus_request_mask(kvm,
1411 KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1412 vcpu_mask, &hv_vcpu->tlb_flush);
1413
1414 ret_success:
1415 /* We always do full TLB flush, set rep_done = rep_cnt. */
1416 return (u64)HV_STATUS_SUCCESS |
1417 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1418 }
1419
1420 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1421 unsigned long *vcpu_bitmap)
1422 {
1423 struct kvm_lapic_irq irq = {
1424 .delivery_mode = APIC_DM_FIXED,
1425 .vector = vector
1426 };
1427 struct kvm_vcpu *vcpu;
1428 int i;
1429
1430 kvm_for_each_vcpu(i, vcpu, kvm) {
1431 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1432 continue;
1433
1434 /* We fail only when APIC is disabled */
1435 kvm_apic_set_irq(vcpu, &irq, NULL);
1436 }
1437 }
1438
1439 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1440 bool ex, bool fast)
1441 {
1442 struct kvm *kvm = current_vcpu->kvm;
1443 struct hv_send_ipi_ex send_ipi_ex;
1444 struct hv_send_ipi send_ipi;
1445 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1446 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1447 unsigned long *vcpu_mask;
1448 unsigned long valid_bank_mask;
1449 u64 sparse_banks[64];
1450 int sparse_banks_len;
1451 u32 vector;
1452 bool all_cpus;
1453
1454 if (!ex) {
1455 if (!fast) {
1456 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1457 sizeof(send_ipi))))
1458 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1459 sparse_banks[0] = send_ipi.cpu_mask;
1460 vector = send_ipi.vector;
1461 } else {
1462 /* 'reserved' part of hv_send_ipi should be 0 */
1463 if (unlikely(ingpa >> 32 != 0))
1464 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1465 sparse_banks[0] = outgpa;
1466 vector = (u32)ingpa;
1467 }
1468 all_cpus = false;
1469 valid_bank_mask = BIT_ULL(0);
1470
1471 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1472 } else {
1473 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1474 sizeof(send_ipi_ex))))
1475 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1476
1477 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1478 send_ipi_ex.vp_set.format,
1479 send_ipi_ex.vp_set.valid_bank_mask);
1480
1481 vector = send_ipi_ex.vector;
1482 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1483 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1484 sizeof(sparse_banks[0]);
1485
1486 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1487
1488 if (!sparse_banks_len)
1489 goto ret_success;
1490
1491 if (!all_cpus &&
1492 kvm_read_guest(kvm,
1493 ingpa + offsetof(struct hv_send_ipi_ex,
1494 vp_set.bank_contents),
1495 sparse_banks,
1496 sparse_banks_len))
1497 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1498 }
1499
1500 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1501 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1502
1503 vcpu_mask = all_cpus ? NULL :
1504 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1505 vp_bitmap, vcpu_bitmap);
1506
1507 kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1508
1509 ret_success:
1510 return HV_STATUS_SUCCESS;
1511 }
1512
1513 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1514 {
1515 return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1516 }
1517
1518 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1519 {
1520 bool longmode;
1521
1522 longmode = is_64_bit_mode(vcpu);
1523 if (longmode)
1524 kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1525 else {
1526 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1527 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1528 }
1529 }
1530
1531 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1532 {
1533 kvm_hv_hypercall_set_result(vcpu, result);
1534 ++vcpu->stat.hypercalls;
1535 return kvm_skip_emulated_instruction(vcpu);
1536 }
1537
1538 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1539 {
1540 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1541 }
1542
1543 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1544 {
1545 struct eventfd_ctx *eventfd;
1546
1547 if (unlikely(!fast)) {
1548 int ret;
1549 gpa_t gpa = param;
1550
1551 if ((gpa & (__alignof__(param) - 1)) ||
1552 offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1553 return HV_STATUS_INVALID_ALIGNMENT;
1554
1555 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1556 if (ret < 0)
1557 return HV_STATUS_INVALID_ALIGNMENT;
1558 }
1559
1560 /*
1561 * Per spec, bits 32-47 contain the extra "flag number". However, we
1562 * have no use for it, and in all known usecases it is zero, so just
1563 * report lookup failure if it isn't.
1564 */
1565 if (param & 0xffff00000000ULL)
1566 return HV_STATUS_INVALID_PORT_ID;
1567 /* remaining bits are reserved-zero */
1568 if (param & ~KVM_HYPERV_CONN_ID_MASK)
1569 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1570
1571 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1572 rcu_read_lock();
1573 eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1574 rcu_read_unlock();
1575 if (!eventfd)
1576 return HV_STATUS_INVALID_PORT_ID;
1577
1578 eventfd_signal(eventfd, 1);
1579 return HV_STATUS_SUCCESS;
1580 }
1581
1582 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1583 {
1584 u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1585 uint16_t code, rep_idx, rep_cnt;
1586 bool fast, longmode, rep;
1587
1588 /*
1589 * hypercall generates UD from non zero cpl and real mode
1590 * per HYPER-V spec
1591 */
1592 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1593 kvm_queue_exception(vcpu, UD_VECTOR);
1594 return 1;
1595 }
1596
1597 longmode = is_64_bit_mode(vcpu);
1598
1599 if (!longmode) {
1600 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1601 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1602 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1603 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1604 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1605 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1606 }
1607 #ifdef CONFIG_X86_64
1608 else {
1609 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1610 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1611 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1612 }
1613 #endif
1614
1615 code = param & 0xffff;
1616 fast = !!(param & HV_HYPERCALL_FAST_BIT);
1617 rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1618 rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1619 rep = !!(rep_cnt || rep_idx);
1620
1621 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1622
1623 switch (code) {
1624 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1625 if (unlikely(rep)) {
1626 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1627 break;
1628 }
1629 kvm_vcpu_on_spin(vcpu, true);
1630 break;
1631 case HVCALL_SIGNAL_EVENT:
1632 if (unlikely(rep)) {
1633 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1634 break;
1635 }
1636 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1637 if (ret != HV_STATUS_INVALID_PORT_ID)
1638 break;
1639 /* fall through - maybe userspace knows this conn_id. */
1640 case HVCALL_POST_MESSAGE:
1641 /* don't bother userspace if it has no way to handle it */
1642 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1643 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1644 break;
1645 }
1646 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1647 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1648 vcpu->run->hyperv.u.hcall.input = param;
1649 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1650 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1651 vcpu->arch.complete_userspace_io =
1652 kvm_hv_hypercall_complete_userspace;
1653 return 0;
1654 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1655 if (unlikely(fast || !rep_cnt || rep_idx)) {
1656 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1657 break;
1658 }
1659 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1660 break;
1661 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1662 if (unlikely(fast || rep)) {
1663 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1664 break;
1665 }
1666 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1667 break;
1668 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1669 if (unlikely(fast || !rep_cnt || rep_idx)) {
1670 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1671 break;
1672 }
1673 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1674 break;
1675 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1676 if (unlikely(fast || rep)) {
1677 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1678 break;
1679 }
1680 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1681 break;
1682 case HVCALL_SEND_IPI:
1683 if (unlikely(rep)) {
1684 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1685 break;
1686 }
1687 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1688 break;
1689 case HVCALL_SEND_IPI_EX:
1690 if (unlikely(fast || rep)) {
1691 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1692 break;
1693 }
1694 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1695 break;
1696 default:
1697 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1698 break;
1699 }
1700
1701 return kvm_hv_hypercall_complete(vcpu, ret);
1702 }
1703
1704 void kvm_hv_init_vm(struct kvm *kvm)
1705 {
1706 mutex_init(&kvm->arch.hyperv.hv_lock);
1707 idr_init(&kvm->arch.hyperv.conn_to_evt);
1708 }
1709
1710 void kvm_hv_destroy_vm(struct kvm *kvm)
1711 {
1712 struct eventfd_ctx *eventfd;
1713 int i;
1714
1715 idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1716 eventfd_ctx_put(eventfd);
1717 idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1718 }
1719
1720 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1721 {
1722 struct kvm_hv *hv = &kvm->arch.hyperv;
1723 struct eventfd_ctx *eventfd;
1724 int ret;
1725
1726 eventfd = eventfd_ctx_fdget(fd);
1727 if (IS_ERR(eventfd))
1728 return PTR_ERR(eventfd);
1729
1730 mutex_lock(&hv->hv_lock);
1731 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1732 GFP_KERNEL);
1733 mutex_unlock(&hv->hv_lock);
1734
1735 if (ret >= 0)
1736 return 0;
1737
1738 if (ret == -ENOSPC)
1739 ret = -EEXIST;
1740 eventfd_ctx_put(eventfd);
1741 return ret;
1742 }
1743
1744 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1745 {
1746 struct kvm_hv *hv = &kvm->arch.hyperv;
1747 struct eventfd_ctx *eventfd;
1748
1749 mutex_lock(&hv->hv_lock);
1750 eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1751 mutex_unlock(&hv->hv_lock);
1752
1753 if (!eventfd)
1754 return -ENOENT;
1755
1756 synchronize_srcu(&kvm->srcu);
1757 eventfd_ctx_put(eventfd);
1758 return 0;
1759 }
1760
1761 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1762 {
1763 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1764 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1765 return -EINVAL;
1766
1767 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1768 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1769 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1770 }
1771
1772 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1773 struct kvm_cpuid_entry2 __user *entries)
1774 {
1775 uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
1776 struct kvm_cpuid_entry2 cpuid_entries[] = {
1777 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1778 { .function = HYPERV_CPUID_INTERFACE },
1779 { .function = HYPERV_CPUID_VERSION },
1780 { .function = HYPERV_CPUID_FEATURES },
1781 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1782 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1783 { .function = HYPERV_CPUID_NESTED_FEATURES },
1784 };
1785 int i, nent = ARRAY_SIZE(cpuid_entries);
1786
1787 /* Skip NESTED_FEATURES if eVMCS is not supported */
1788 if (!evmcs_ver)
1789 --nent;
1790
1791 if (cpuid->nent < nent)
1792 return -E2BIG;
1793
1794 if (cpuid->nent > nent)
1795 cpuid->nent = nent;
1796
1797 for (i = 0; i < nent; i++) {
1798 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1799 u32 signature[3];
1800
1801 switch (ent->function) {
1802 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1803 memcpy(signature, "Linux KVM Hv", 12);
1804
1805 ent->eax = HYPERV_CPUID_NESTED_FEATURES;
1806 ent->ebx = signature[0];
1807 ent->ecx = signature[1];
1808 ent->edx = signature[2];
1809 break;
1810
1811 case HYPERV_CPUID_INTERFACE:
1812 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1813 ent->eax = signature[0];
1814 break;
1815
1816 case HYPERV_CPUID_VERSION:
1817 /*
1818 * We implement some Hyper-V 2016 functions so let's use
1819 * this version.
1820 */
1821 ent->eax = 0x00003839;
1822 ent->ebx = 0x000A0000;
1823 break;
1824
1825 case HYPERV_CPUID_FEATURES:
1826 ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
1827 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
1828 ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
1829 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
1830 ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
1831 ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
1832 ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
1833 ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
1834 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
1835 ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
1836 ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
1837
1838 ent->ebx |= HV_X64_POST_MESSAGES;
1839 ent->ebx |= HV_X64_SIGNAL_EVENTS;
1840
1841 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
1842 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1843 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
1844
1845 break;
1846
1847 case HYPERV_CPUID_ENLIGHTMENT_INFO:
1848 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
1849 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
1850 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
1851 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
1852 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1853 if (evmcs_ver)
1854 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1855
1856 /*
1857 * Default number of spinlock retry attempts, matches
1858 * HyperV 2016.
1859 */
1860 ent->ebx = 0x00000FFF;
1861
1862 break;
1863
1864 case HYPERV_CPUID_IMPLEMENT_LIMITS:
1865 /* Maximum number of virtual processors */
1866 ent->eax = KVM_MAX_VCPUS;
1867 /*
1868 * Maximum number of logical processors, matches
1869 * HyperV 2016.
1870 */
1871 ent->ebx = 64;
1872
1873 break;
1874
1875 case HYPERV_CPUID_NESTED_FEATURES:
1876 ent->eax = evmcs_ver;
1877
1878 break;
1879
1880 default:
1881 break;
1882 }
1883 }
1884
1885 if (copy_to_user(entries, cpuid_entries,
1886 nent * sizeof(struct kvm_cpuid_entry2)))
1887 return -EFAULT;
1888
1889 return 0;
1890 }