]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/i8254.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40
41 #ifndef CONFIG_X86_64
42 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
43 #else
44 #define mod_64(x, y) ((x) % (y))
45 #endif
46
47 #define RW_STATE_LSB 1
48 #define RW_STATE_MSB 2
49 #define RW_STATE_WORD0 3
50 #define RW_STATE_WORD1 4
51
52 /* Compute with 96 bit intermediate result: (a*b)/c */
53 static u64 muldiv64(u64 a, u32 b, u32 c)
54 {
55 union {
56 u64 ll;
57 struct {
58 u32 low, high;
59 } l;
60 } u, res;
61 u64 rl, rh;
62
63 u.ll = a;
64 rl = (u64)u.l.low * (u64)b;
65 rh = (u64)u.l.high * (u64)b;
66 rh += (rl >> 32);
67 res.l.high = div64_u64(rh, c);
68 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
69 return res.ll;
70 }
71
72 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
73 {
74 struct kvm_kpit_channel_state *c =
75 &kvm->arch.vpit->pit_state.channels[channel];
76
77 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
78
79 switch (c->mode) {
80 default:
81 case 0:
82 case 4:
83 /* XXX: just disable/enable counting */
84 break;
85 case 1:
86 case 2:
87 case 3:
88 case 5:
89 /* Restart counting on rising edge. */
90 if (c->gate < val)
91 c->count_load_time = ktime_get();
92 break;
93 }
94
95 c->gate = val;
96 }
97
98 static int pit_get_gate(struct kvm *kvm, int channel)
99 {
100 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
101
102 return kvm->arch.vpit->pit_state.channels[channel].gate;
103 }
104
105 static s64 __kpit_elapsed(struct kvm *kvm)
106 {
107 s64 elapsed;
108 ktime_t remaining;
109 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
110
111 if (!ps->period)
112 return 0;
113
114 /*
115 * The Counter does not stop when it reaches zero. In
116 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
117 * the highest count, either FFFF hex for binary counting
118 * or 9999 for BCD counting, and continues counting.
119 * Modes 2 and 3 are periodic; the Counter reloads
120 * itself with the initial count and continues counting
121 * from there.
122 */
123 remaining = hrtimer_get_remaining(&ps->timer);
124 elapsed = ps->period - ktime_to_ns(remaining);
125
126 return elapsed;
127 }
128
129 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
130 int channel)
131 {
132 if (channel == 0)
133 return __kpit_elapsed(kvm);
134
135 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
136 }
137
138 static int pit_get_count(struct kvm *kvm, int channel)
139 {
140 struct kvm_kpit_channel_state *c =
141 &kvm->arch.vpit->pit_state.channels[channel];
142 s64 d, t;
143 int counter;
144
145 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
146
147 t = kpit_elapsed(kvm, c, channel);
148 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
149
150 switch (c->mode) {
151 case 0:
152 case 1:
153 case 4:
154 case 5:
155 counter = (c->count - d) & 0xffff;
156 break;
157 case 3:
158 /* XXX: may be incorrect for odd counts */
159 counter = c->count - (mod_64((2 * d), c->count));
160 break;
161 default:
162 counter = c->count - mod_64(d, c->count);
163 break;
164 }
165 return counter;
166 }
167
168 static int pit_get_out(struct kvm *kvm, int channel)
169 {
170 struct kvm_kpit_channel_state *c =
171 &kvm->arch.vpit->pit_state.channels[channel];
172 s64 d, t;
173 int out;
174
175 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
176
177 t = kpit_elapsed(kvm, c, channel);
178 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
179
180 switch (c->mode) {
181 default:
182 case 0:
183 out = (d >= c->count);
184 break;
185 case 1:
186 out = (d < c->count);
187 break;
188 case 2:
189 out = ((mod_64(d, c->count) == 0) && (d != 0));
190 break;
191 case 3:
192 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
193 break;
194 case 4:
195 case 5:
196 out = (d == c->count);
197 break;
198 }
199
200 return out;
201 }
202
203 static void pit_latch_count(struct kvm *kvm, int channel)
204 {
205 struct kvm_kpit_channel_state *c =
206 &kvm->arch.vpit->pit_state.channels[channel];
207
208 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
209
210 if (!c->count_latched) {
211 c->latched_count = pit_get_count(kvm, channel);
212 c->count_latched = c->rw_mode;
213 }
214 }
215
216 static void pit_latch_status(struct kvm *kvm, int channel)
217 {
218 struct kvm_kpit_channel_state *c =
219 &kvm->arch.vpit->pit_state.channels[channel];
220
221 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
222
223 if (!c->status_latched) {
224 /* TODO: Return NULL COUNT (bit 6). */
225 c->status = ((pit_get_out(kvm, channel) << 7) |
226 (c->rw_mode << 4) |
227 (c->mode << 1) |
228 c->bcd);
229 c->status_latched = 1;
230 }
231 }
232
233 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
234 {
235 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
236 irq_ack_notifier);
237 int value;
238
239 spin_lock(&ps->inject_lock);
240 value = atomic_dec_return(&ps->pending);
241 if (value < 0)
242 /* spurious acks can be generated if, for example, the
243 * PIC is being reset. Handle it gracefully here
244 */
245 atomic_inc(&ps->pending);
246 else if (value > 0)
247 /* in this case, we had multiple outstanding pit interrupts
248 * that we needed to inject. Reinject
249 */
250 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
251 ps->irq_ack = 1;
252 spin_unlock(&ps->inject_lock);
253 }
254
255 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
256 {
257 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
258 struct hrtimer *timer;
259
260 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
261 return;
262
263 timer = &pit->pit_state.timer;
264 if (hrtimer_cancel(timer))
265 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
266 }
267
268 static void destroy_pit_timer(struct kvm_pit *pit)
269 {
270 hrtimer_cancel(&pit->pit_state.timer);
271 flush_kthread_work(&pit->expired);
272 }
273
274 static void pit_do_work(struct kthread_work *work)
275 {
276 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
277 struct kvm *kvm = pit->kvm;
278 struct kvm_vcpu *vcpu;
279 int i;
280 struct kvm_kpit_state *ps = &pit->pit_state;
281 int inject = 0;
282
283 /* Try to inject pending interrupts when
284 * last one has been acked.
285 */
286 spin_lock(&ps->inject_lock);
287 if (ps->irq_ack) {
288 ps->irq_ack = 0;
289 inject = 1;
290 }
291 spin_unlock(&ps->inject_lock);
292 if (inject) {
293 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
294 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
295
296 /*
297 * Provides NMI watchdog support via Virtual Wire mode.
298 * The route is: PIT -> PIC -> LVT0 in NMI mode.
299 *
300 * Note: Our Virtual Wire implementation is simplified, only
301 * propagating PIT interrupts to all VCPUs when they have set
302 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
303 * VCPU0, and only if its LVT0 is in EXTINT mode.
304 */
305 if (kvm->arch.vapics_in_nmi_mode > 0)
306 kvm_for_each_vcpu(i, vcpu, kvm)
307 kvm_apic_nmi_wd_deliver(vcpu);
308 }
309 }
310
311 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
312 {
313 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
314 struct kvm_pit *pt = ps->kvm->arch.vpit;
315
316 if (ps->reinject || !atomic_read(&ps->pending)) {
317 atomic_inc(&ps->pending);
318 queue_kthread_work(&pt->worker, &pt->expired);
319 }
320
321 if (ps->is_periodic) {
322 hrtimer_add_expires_ns(&ps->timer, ps->period);
323 return HRTIMER_RESTART;
324 } else
325 return HRTIMER_NORESTART;
326 }
327
328 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
329 {
330 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
331 s64 interval;
332
333 if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
334 return;
335
336 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
337
338 pr_debug("create pit timer, interval is %llu nsec\n", interval);
339
340 /* TODO The new value only affected after the retriggered */
341 hrtimer_cancel(&ps->timer);
342 flush_kthread_work(&ps->pit->expired);
343 ps->period = interval;
344 ps->is_periodic = is_period;
345
346 ps->timer.function = pit_timer_fn;
347 ps->kvm = ps->pit->kvm;
348
349 atomic_set(&ps->pending, 0);
350 ps->irq_ack = 1;
351
352 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
353 HRTIMER_MODE_ABS);
354 }
355
356 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
357 {
358 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
359
360 WARN_ON(!mutex_is_locked(&ps->lock));
361
362 pr_debug("load_count val is %d, channel is %d\n", val, channel);
363
364 /*
365 * The largest possible initial count is 0; this is equivalent
366 * to 216 for binary counting and 104 for BCD counting.
367 */
368 if (val == 0)
369 val = 0x10000;
370
371 ps->channels[channel].count = val;
372
373 if (channel != 0) {
374 ps->channels[channel].count_load_time = ktime_get();
375 return;
376 }
377
378 /* Two types of timer
379 * mode 1 is one shot, mode 2 is period, otherwise del timer */
380 switch (ps->channels[0].mode) {
381 case 0:
382 case 1:
383 /* FIXME: enhance mode 4 precision */
384 case 4:
385 create_pit_timer(kvm, val, 0);
386 break;
387 case 2:
388 case 3:
389 create_pit_timer(kvm, val, 1);
390 break;
391 default:
392 destroy_pit_timer(kvm->arch.vpit);
393 }
394 }
395
396 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
397 {
398 u8 saved_mode;
399 if (hpet_legacy_start) {
400 /* save existing mode for later reenablement */
401 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
402 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
403 pit_load_count(kvm, channel, val);
404 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
405 } else {
406 pit_load_count(kvm, channel, val);
407 }
408 }
409
410 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
411 {
412 return container_of(dev, struct kvm_pit, dev);
413 }
414
415 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
416 {
417 return container_of(dev, struct kvm_pit, speaker_dev);
418 }
419
420 static inline int pit_in_range(gpa_t addr)
421 {
422 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
423 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
424 }
425
426 static int pit_ioport_write(struct kvm_io_device *this,
427 gpa_t addr, int len, const void *data)
428 {
429 struct kvm_pit *pit = dev_to_pit(this);
430 struct kvm_kpit_state *pit_state = &pit->pit_state;
431 struct kvm *kvm = pit->kvm;
432 int channel, access;
433 struct kvm_kpit_channel_state *s;
434 u32 val = *(u32 *) data;
435 if (!pit_in_range(addr))
436 return -EOPNOTSUPP;
437
438 val &= 0xff;
439 addr &= KVM_PIT_CHANNEL_MASK;
440
441 mutex_lock(&pit_state->lock);
442
443 if (val != 0)
444 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
445 (unsigned int)addr, len, val);
446
447 if (addr == 3) {
448 channel = val >> 6;
449 if (channel == 3) {
450 /* Read-Back Command. */
451 for (channel = 0; channel < 3; channel++) {
452 s = &pit_state->channels[channel];
453 if (val & (2 << channel)) {
454 if (!(val & 0x20))
455 pit_latch_count(kvm, channel);
456 if (!(val & 0x10))
457 pit_latch_status(kvm, channel);
458 }
459 }
460 } else {
461 /* Select Counter <channel>. */
462 s = &pit_state->channels[channel];
463 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
464 if (access == 0) {
465 pit_latch_count(kvm, channel);
466 } else {
467 s->rw_mode = access;
468 s->read_state = access;
469 s->write_state = access;
470 s->mode = (val >> 1) & 7;
471 if (s->mode > 5)
472 s->mode -= 4;
473 s->bcd = val & 1;
474 }
475 }
476 } else {
477 /* Write Count. */
478 s = &pit_state->channels[addr];
479 switch (s->write_state) {
480 default:
481 case RW_STATE_LSB:
482 pit_load_count(kvm, addr, val);
483 break;
484 case RW_STATE_MSB:
485 pit_load_count(kvm, addr, val << 8);
486 break;
487 case RW_STATE_WORD0:
488 s->write_latch = val;
489 s->write_state = RW_STATE_WORD1;
490 break;
491 case RW_STATE_WORD1:
492 pit_load_count(kvm, addr, s->write_latch | (val << 8));
493 s->write_state = RW_STATE_WORD0;
494 break;
495 }
496 }
497
498 mutex_unlock(&pit_state->lock);
499 return 0;
500 }
501
502 static int pit_ioport_read(struct kvm_io_device *this,
503 gpa_t addr, int len, void *data)
504 {
505 struct kvm_pit *pit = dev_to_pit(this);
506 struct kvm_kpit_state *pit_state = &pit->pit_state;
507 struct kvm *kvm = pit->kvm;
508 int ret, count;
509 struct kvm_kpit_channel_state *s;
510 if (!pit_in_range(addr))
511 return -EOPNOTSUPP;
512
513 addr &= KVM_PIT_CHANNEL_MASK;
514 if (addr == 3)
515 return 0;
516
517 s = &pit_state->channels[addr];
518
519 mutex_lock(&pit_state->lock);
520
521 if (s->status_latched) {
522 s->status_latched = 0;
523 ret = s->status;
524 } else if (s->count_latched) {
525 switch (s->count_latched) {
526 default:
527 case RW_STATE_LSB:
528 ret = s->latched_count & 0xff;
529 s->count_latched = 0;
530 break;
531 case RW_STATE_MSB:
532 ret = s->latched_count >> 8;
533 s->count_latched = 0;
534 break;
535 case RW_STATE_WORD0:
536 ret = s->latched_count & 0xff;
537 s->count_latched = RW_STATE_MSB;
538 break;
539 }
540 } else {
541 switch (s->read_state) {
542 default:
543 case RW_STATE_LSB:
544 count = pit_get_count(kvm, addr);
545 ret = count & 0xff;
546 break;
547 case RW_STATE_MSB:
548 count = pit_get_count(kvm, addr);
549 ret = (count >> 8) & 0xff;
550 break;
551 case RW_STATE_WORD0:
552 count = pit_get_count(kvm, addr);
553 ret = count & 0xff;
554 s->read_state = RW_STATE_WORD1;
555 break;
556 case RW_STATE_WORD1:
557 count = pit_get_count(kvm, addr);
558 ret = (count >> 8) & 0xff;
559 s->read_state = RW_STATE_WORD0;
560 break;
561 }
562 }
563
564 if (len > sizeof(ret))
565 len = sizeof(ret);
566 memcpy(data, (char *)&ret, len);
567
568 mutex_unlock(&pit_state->lock);
569 return 0;
570 }
571
572 static int speaker_ioport_write(struct kvm_io_device *this,
573 gpa_t addr, int len, const void *data)
574 {
575 struct kvm_pit *pit = speaker_to_pit(this);
576 struct kvm_kpit_state *pit_state = &pit->pit_state;
577 struct kvm *kvm = pit->kvm;
578 u32 val = *(u32 *) data;
579 if (addr != KVM_SPEAKER_BASE_ADDRESS)
580 return -EOPNOTSUPP;
581
582 mutex_lock(&pit_state->lock);
583 pit_state->speaker_data_on = (val >> 1) & 1;
584 pit_set_gate(kvm, 2, val & 1);
585 mutex_unlock(&pit_state->lock);
586 return 0;
587 }
588
589 static int speaker_ioport_read(struct kvm_io_device *this,
590 gpa_t addr, int len, void *data)
591 {
592 struct kvm_pit *pit = speaker_to_pit(this);
593 struct kvm_kpit_state *pit_state = &pit->pit_state;
594 struct kvm *kvm = pit->kvm;
595 unsigned int refresh_clock;
596 int ret;
597 if (addr != KVM_SPEAKER_BASE_ADDRESS)
598 return -EOPNOTSUPP;
599
600 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
601 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
602
603 mutex_lock(&pit_state->lock);
604 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
605 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
606 if (len > sizeof(ret))
607 len = sizeof(ret);
608 memcpy(data, (char *)&ret, len);
609 mutex_unlock(&pit_state->lock);
610 return 0;
611 }
612
613 void kvm_pit_reset(struct kvm_pit *pit)
614 {
615 int i;
616 struct kvm_kpit_channel_state *c;
617
618 mutex_lock(&pit->pit_state.lock);
619 pit->pit_state.flags = 0;
620 for (i = 0; i < 3; i++) {
621 c = &pit->pit_state.channels[i];
622 c->mode = 0xff;
623 c->gate = (i != 2);
624 pit_load_count(pit->kvm, i, 0);
625 }
626 mutex_unlock(&pit->pit_state.lock);
627
628 atomic_set(&pit->pit_state.pending, 0);
629 pit->pit_state.irq_ack = 1;
630 }
631
632 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
633 {
634 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
635
636 if (!mask) {
637 atomic_set(&pit->pit_state.pending, 0);
638 pit->pit_state.irq_ack = 1;
639 }
640 }
641
642 static const struct kvm_io_device_ops pit_dev_ops = {
643 .read = pit_ioport_read,
644 .write = pit_ioport_write,
645 };
646
647 static const struct kvm_io_device_ops speaker_dev_ops = {
648 .read = speaker_ioport_read,
649 .write = speaker_ioport_write,
650 };
651
652 /* Caller must hold slots_lock */
653 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
654 {
655 struct kvm_pit *pit;
656 struct kvm_kpit_state *pit_state;
657 struct pid *pid;
658 pid_t pid_nr;
659 int ret;
660
661 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
662 if (!pit)
663 return NULL;
664
665 pit->irq_source_id = kvm_request_irq_source_id(kvm);
666 if (pit->irq_source_id < 0) {
667 kfree(pit);
668 return NULL;
669 }
670
671 mutex_init(&pit->pit_state.lock);
672 mutex_lock(&pit->pit_state.lock);
673 spin_lock_init(&pit->pit_state.inject_lock);
674
675 pid = get_pid(task_tgid(current));
676 pid_nr = pid_vnr(pid);
677 put_pid(pid);
678
679 init_kthread_worker(&pit->worker);
680 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
681 "kvm-pit/%d", pid_nr);
682 if (IS_ERR(pit->worker_task)) {
683 mutex_unlock(&pit->pit_state.lock);
684 kvm_free_irq_source_id(kvm, pit->irq_source_id);
685 kfree(pit);
686 return NULL;
687 }
688 init_kthread_work(&pit->expired, pit_do_work);
689
690 kvm->arch.vpit = pit;
691 pit->kvm = kvm;
692
693 pit_state = &pit->pit_state;
694 pit_state->pit = pit;
695 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
696 pit_state->irq_ack_notifier.gsi = 0;
697 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
698 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
699 pit_state->reinject = true;
700 mutex_unlock(&pit->pit_state.lock);
701
702 kvm_pit_reset(pit);
703
704 pit->mask_notifier.func = pit_mask_notifer;
705 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
706
707 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
708 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
709 KVM_PIT_MEM_LENGTH, &pit->dev);
710 if (ret < 0)
711 goto fail;
712
713 if (flags & KVM_PIT_SPEAKER_DUMMY) {
714 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
715 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
716 KVM_SPEAKER_BASE_ADDRESS, 4,
717 &pit->speaker_dev);
718 if (ret < 0)
719 goto fail_unregister;
720 }
721
722 return pit;
723
724 fail_unregister:
725 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
726
727 fail:
728 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
729 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
730 kvm_free_irq_source_id(kvm, pit->irq_source_id);
731 kthread_stop(pit->worker_task);
732 kfree(pit);
733 return NULL;
734 }
735
736 void kvm_free_pit(struct kvm *kvm)
737 {
738 struct hrtimer *timer;
739
740 if (kvm->arch.vpit) {
741 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
742 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
743 &kvm->arch.vpit->speaker_dev);
744 kvm_unregister_irq_mask_notifier(kvm, 0,
745 &kvm->arch.vpit->mask_notifier);
746 kvm_unregister_irq_ack_notifier(kvm,
747 &kvm->arch.vpit->pit_state.irq_ack_notifier);
748 mutex_lock(&kvm->arch.vpit->pit_state.lock);
749 timer = &kvm->arch.vpit->pit_state.timer;
750 hrtimer_cancel(timer);
751 flush_kthread_work(&kvm->arch.vpit->expired);
752 kthread_stop(kvm->arch.vpit->worker_task);
753 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
754 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
755 kfree(kvm->arch.vpit);
756 }
757 }