]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/lapic.c
treewide: Use fallthrough pseudo-keyword
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / lapic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "ioapic.h"
40 #include "trace.h"
41 #include "x86.h"
42 #include "cpuid.h"
43 #include "hyperv.h"
44
45 #ifndef CONFIG_X86_64
46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
47 #else
48 #define mod_64(x, y) ((x) % (y))
49 #endif
50
51 #define PRId64 "d"
52 #define PRIx64 "llx"
53 #define PRIu64 "u"
54 #define PRIo64 "o"
55
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
58 #define LAPIC_MMIO_LENGTH (1 << 12)
59 /* followed define is not in apicdef.h */
60 #define MAX_APIC_VECTOR 256
61 #define APIC_VECTORS_PER_REG 32
62
63 static bool lapic_timer_advance_dynamic __read_mostly;
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
68 /* step-by-step approximation to mitigate fluctuation */
69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
70
71 static inline int apic_test_vector(int vec, void *bitmap)
72 {
73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
74 }
75
76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
77 {
78 struct kvm_lapic *apic = vcpu->arch.apic;
79
80 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
81 apic_test_vector(vector, apic->regs + APIC_IRR);
82 }
83
84 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
85 {
86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
87 }
88
89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
90 {
91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
92 }
93
94 struct static_key_deferred apic_hw_disabled __read_mostly;
95 struct static_key_deferred apic_sw_disabled __read_mostly;
96
97 static inline int apic_enabled(struct kvm_lapic *apic)
98 {
99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
100 }
101
102 #define LVT_MASK \
103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
104
105 #define LINT_MASK \
106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
108
109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
110 {
111 return apic->vcpu->vcpu_id;
112 }
113
114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
115 {
116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
117 }
118
119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
120 {
121 return kvm_x86_ops.set_hv_timer
122 && !(kvm_mwait_in_guest(vcpu->kvm) ||
123 kvm_can_post_timer_interrupt(vcpu));
124 }
125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer);
126
127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
130 }
131
132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
134 switch (map->mode) {
135 case KVM_APIC_MODE_X2APIC: {
136 u32 offset = (dest_id >> 16) * 16;
137 u32 max_apic_id = map->max_apic_id;
138
139 if (offset <= max_apic_id) {
140 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
141
142 offset = array_index_nospec(offset, map->max_apic_id + 1);
143 *cluster = &map->phys_map[offset];
144 *mask = dest_id & (0xffff >> (16 - cluster_size));
145 } else {
146 *mask = 0;
147 }
148
149 return true;
150 }
151 case KVM_APIC_MODE_XAPIC_FLAT:
152 *cluster = map->xapic_flat_map;
153 *mask = dest_id & 0xff;
154 return true;
155 case KVM_APIC_MODE_XAPIC_CLUSTER:
156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
157 *mask = dest_id & 0xf;
158 return true;
159 default:
160 /* Not optimized. */
161 return false;
162 }
163 }
164
165 static void kvm_apic_map_free(struct rcu_head *rcu)
166 {
167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
168
169 kvfree(map);
170 }
171
172 /*
173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
174 *
175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
176 * apic_map_lock_held.
177 */
178 enum {
179 CLEAN,
180 UPDATE_IN_PROGRESS,
181 DIRTY
182 };
183
184 void kvm_recalculate_apic_map(struct kvm *kvm)
185 {
186 struct kvm_apic_map *new, *old = NULL;
187 struct kvm_vcpu *vcpu;
188 int i;
189 u32 max_id = 255; /* enough space for any xAPIC ID */
190
191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
193 return;
194
195 mutex_lock(&kvm->arch.apic_map_lock);
196 /*
197 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
198 * (if clean) or the APIC registers (if dirty).
199 */
200 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
201 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
202 /* Someone else has updated the map. */
203 mutex_unlock(&kvm->arch.apic_map_lock);
204 return;
205 }
206
207 kvm_for_each_vcpu(i, vcpu, kvm)
208 if (kvm_apic_present(vcpu))
209 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
210
211 new = kvzalloc(sizeof(struct kvm_apic_map) +
212 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
213 GFP_KERNEL_ACCOUNT);
214
215 if (!new)
216 goto out;
217
218 new->max_apic_id = max_id;
219
220 kvm_for_each_vcpu(i, vcpu, kvm) {
221 struct kvm_lapic *apic = vcpu->arch.apic;
222 struct kvm_lapic **cluster;
223 u16 mask;
224 u32 ldr;
225 u8 xapic_id;
226 u32 x2apic_id;
227
228 if (!kvm_apic_present(vcpu))
229 continue;
230
231 xapic_id = kvm_xapic_id(apic);
232 x2apic_id = kvm_x2apic_id(apic);
233
234 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
235 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
236 x2apic_id <= new->max_apic_id)
237 new->phys_map[x2apic_id] = apic;
238 /*
239 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
240 * prevent them from masking VCPUs with APIC ID <= 0xff.
241 */
242 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
243 new->phys_map[xapic_id] = apic;
244
245 if (!kvm_apic_sw_enabled(apic))
246 continue;
247
248 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
249
250 if (apic_x2apic_mode(apic)) {
251 new->mode |= KVM_APIC_MODE_X2APIC;
252 } else if (ldr) {
253 ldr = GET_APIC_LOGICAL_ID(ldr);
254 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
255 new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
256 else
257 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
258 }
259
260 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
261 continue;
262
263 if (mask)
264 cluster[ffs(mask) - 1] = apic;
265 }
266 out:
267 old = rcu_dereference_protected(kvm->arch.apic_map,
268 lockdep_is_held(&kvm->arch.apic_map_lock));
269 rcu_assign_pointer(kvm->arch.apic_map, new);
270 /*
271 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
272 * If another update has come in, leave it DIRTY.
273 */
274 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
275 UPDATE_IN_PROGRESS, CLEAN);
276 mutex_unlock(&kvm->arch.apic_map_lock);
277
278 if (old)
279 call_rcu(&old->rcu, kvm_apic_map_free);
280
281 kvm_make_scan_ioapic_request(kvm);
282 }
283
284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
285 {
286 bool enabled = val & APIC_SPIV_APIC_ENABLED;
287
288 kvm_lapic_set_reg(apic, APIC_SPIV, val);
289
290 if (enabled != apic->sw_enabled) {
291 apic->sw_enabled = enabled;
292 if (enabled)
293 static_key_slow_dec_deferred(&apic_sw_disabled);
294 else
295 static_key_slow_inc(&apic_sw_disabled.key);
296
297 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
298 }
299 }
300
301 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
302 {
303 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
304 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
305 }
306
307 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
308 {
309 kvm_lapic_set_reg(apic, APIC_LDR, id);
310 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
311 }
312
313 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
314 {
315 return ((id >> 4) << 16) | (1 << (id & 0xf));
316 }
317
318 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
319 {
320 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
321
322 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
323
324 kvm_lapic_set_reg(apic, APIC_ID, id);
325 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
326 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
327 }
328
329 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
330 {
331 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
332 }
333
334 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
335 {
336 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
337 }
338
339 static inline int apic_lvtt_period(struct kvm_lapic *apic)
340 {
341 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
342 }
343
344 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
345 {
346 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
347 }
348
349 static inline int apic_lvt_nmi_mode(u32 lvt_val)
350 {
351 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
352 }
353
354 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
355 {
356 struct kvm_lapic *apic = vcpu->arch.apic;
357 u32 v = APIC_VERSION;
358
359 if (!lapic_in_kernel(vcpu))
360 return;
361
362 /*
363 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
364 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
365 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
366 * version first and level-triggered interrupts never get EOIed in
367 * IOAPIC.
368 */
369 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
370 !ioapic_in_kernel(vcpu->kvm))
371 v |= APIC_LVR_DIRECTED_EOI;
372 kvm_lapic_set_reg(apic, APIC_LVR, v);
373 }
374
375 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
376 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */
377 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */
378 LVT_MASK | APIC_MODE_MASK, /* LVTPC */
379 LINT_MASK, LINT_MASK, /* LVT0-1 */
380 LVT_MASK /* LVTERR */
381 };
382
383 static int find_highest_vector(void *bitmap)
384 {
385 int vec;
386 u32 *reg;
387
388 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
389 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
390 reg = bitmap + REG_POS(vec);
391 if (*reg)
392 return __fls(*reg) + vec;
393 }
394
395 return -1;
396 }
397
398 static u8 count_vectors(void *bitmap)
399 {
400 int vec;
401 u32 *reg;
402 u8 count = 0;
403
404 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
405 reg = bitmap + REG_POS(vec);
406 count += hweight32(*reg);
407 }
408
409 return count;
410 }
411
412 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
413 {
414 u32 i, vec;
415 u32 pir_val, irr_val, prev_irr_val;
416 int max_updated_irr;
417
418 max_updated_irr = -1;
419 *max_irr = -1;
420
421 for (i = vec = 0; i <= 7; i++, vec += 32) {
422 pir_val = READ_ONCE(pir[i]);
423 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
424 if (pir_val) {
425 prev_irr_val = irr_val;
426 irr_val |= xchg(&pir[i], 0);
427 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
428 if (prev_irr_val != irr_val) {
429 max_updated_irr =
430 __fls(irr_val ^ prev_irr_val) + vec;
431 }
432 }
433 if (irr_val)
434 *max_irr = __fls(irr_val) + vec;
435 }
436
437 return ((max_updated_irr != -1) &&
438 (max_updated_irr == *max_irr));
439 }
440 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
441
442 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
443 {
444 struct kvm_lapic *apic = vcpu->arch.apic;
445
446 return __kvm_apic_update_irr(pir, apic->regs, max_irr);
447 }
448 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
449
450 static inline int apic_search_irr(struct kvm_lapic *apic)
451 {
452 return find_highest_vector(apic->regs + APIC_IRR);
453 }
454
455 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
456 {
457 int result;
458
459 /*
460 * Note that irr_pending is just a hint. It will be always
461 * true with virtual interrupt delivery enabled.
462 */
463 if (!apic->irr_pending)
464 return -1;
465
466 result = apic_search_irr(apic);
467 ASSERT(result == -1 || result >= 16);
468
469 return result;
470 }
471
472 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
473 {
474 struct kvm_vcpu *vcpu;
475
476 vcpu = apic->vcpu;
477
478 if (unlikely(vcpu->arch.apicv_active)) {
479 /* need to update RVI */
480 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
481 kvm_x86_ops.hwapic_irr_update(vcpu,
482 apic_find_highest_irr(apic));
483 } else {
484 apic->irr_pending = false;
485 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
486 if (apic_search_irr(apic) != -1)
487 apic->irr_pending = true;
488 }
489 }
490
491 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
492 {
493 struct kvm_vcpu *vcpu;
494
495 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
496 return;
497
498 vcpu = apic->vcpu;
499
500 /*
501 * With APIC virtualization enabled, all caching is disabled
502 * because the processor can modify ISR under the hood. Instead
503 * just set SVI.
504 */
505 if (unlikely(vcpu->arch.apicv_active))
506 kvm_x86_ops.hwapic_isr_update(vcpu, vec);
507 else {
508 ++apic->isr_count;
509 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
510 /*
511 * ISR (in service register) bit is set when injecting an interrupt.
512 * The highest vector is injected. Thus the latest bit set matches
513 * the highest bit in ISR.
514 */
515 apic->highest_isr_cache = vec;
516 }
517 }
518
519 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
520 {
521 int result;
522
523 /*
524 * Note that isr_count is always 1, and highest_isr_cache
525 * is always -1, with APIC virtualization enabled.
526 */
527 if (!apic->isr_count)
528 return -1;
529 if (likely(apic->highest_isr_cache != -1))
530 return apic->highest_isr_cache;
531
532 result = find_highest_vector(apic->regs + APIC_ISR);
533 ASSERT(result == -1 || result >= 16);
534
535 return result;
536 }
537
538 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
539 {
540 struct kvm_vcpu *vcpu;
541 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
542 return;
543
544 vcpu = apic->vcpu;
545
546 /*
547 * We do get here for APIC virtualization enabled if the guest
548 * uses the Hyper-V APIC enlightenment. In this case we may need
549 * to trigger a new interrupt delivery by writing the SVI field;
550 * on the other hand isr_count and highest_isr_cache are unused
551 * and must be left alone.
552 */
553 if (unlikely(vcpu->arch.apicv_active))
554 kvm_x86_ops.hwapic_isr_update(vcpu,
555 apic_find_highest_isr(apic));
556 else {
557 --apic->isr_count;
558 BUG_ON(apic->isr_count < 0);
559 apic->highest_isr_cache = -1;
560 }
561 }
562
563 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
564 {
565 /* This may race with setting of irr in __apic_accept_irq() and
566 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
567 * will cause vmexit immediately and the value will be recalculated
568 * on the next vmentry.
569 */
570 return apic_find_highest_irr(vcpu->arch.apic);
571 }
572 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
573
574 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
575 int vector, int level, int trig_mode,
576 struct dest_map *dest_map);
577
578 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
579 struct dest_map *dest_map)
580 {
581 struct kvm_lapic *apic = vcpu->arch.apic;
582
583 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
584 irq->level, irq->trig_mode, dest_map);
585 }
586
587 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
588 struct kvm_lapic_irq *irq, u32 min)
589 {
590 int i, count = 0;
591 struct kvm_vcpu *vcpu;
592
593 if (min > map->max_apic_id)
594 return 0;
595
596 for_each_set_bit(i, ipi_bitmap,
597 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
598 if (map->phys_map[min + i]) {
599 vcpu = map->phys_map[min + i]->vcpu;
600 count += kvm_apic_set_irq(vcpu, irq, NULL);
601 }
602 }
603
604 return count;
605 }
606
607 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
608 unsigned long ipi_bitmap_high, u32 min,
609 unsigned long icr, int op_64_bit)
610 {
611 struct kvm_apic_map *map;
612 struct kvm_lapic_irq irq = {0};
613 int cluster_size = op_64_bit ? 64 : 32;
614 int count;
615
616 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
617 return -KVM_EINVAL;
618
619 irq.vector = icr & APIC_VECTOR_MASK;
620 irq.delivery_mode = icr & APIC_MODE_MASK;
621 irq.level = (icr & APIC_INT_ASSERT) != 0;
622 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
623
624 rcu_read_lock();
625 map = rcu_dereference(kvm->arch.apic_map);
626
627 count = -EOPNOTSUPP;
628 if (likely(map)) {
629 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
630 min += cluster_size;
631 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
632 }
633
634 rcu_read_unlock();
635 return count;
636 }
637
638 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
639 {
640
641 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
642 sizeof(val));
643 }
644
645 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
646 {
647
648 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
649 sizeof(*val));
650 }
651
652 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
653 {
654 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
655 }
656
657 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
658 {
659 u8 val;
660 if (pv_eoi_get_user(vcpu, &val) < 0) {
661 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
662 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
663 return false;
664 }
665 return val & 0x1;
666 }
667
668 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
669 {
670 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
671 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
672 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
673 return;
674 }
675 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
676 }
677
678 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
679 {
680 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
681 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
682 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
683 return;
684 }
685 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
686 }
687
688 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
689 {
690 int highest_irr;
691 if (apic->vcpu->arch.apicv_active)
692 highest_irr = kvm_x86_ops.sync_pir_to_irr(apic->vcpu);
693 else
694 highest_irr = apic_find_highest_irr(apic);
695 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
696 return -1;
697 return highest_irr;
698 }
699
700 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
701 {
702 u32 tpr, isrv, ppr, old_ppr;
703 int isr;
704
705 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
706 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
707 isr = apic_find_highest_isr(apic);
708 isrv = (isr != -1) ? isr : 0;
709
710 if ((tpr & 0xf0) >= (isrv & 0xf0))
711 ppr = tpr & 0xff;
712 else
713 ppr = isrv & 0xf0;
714
715 *new_ppr = ppr;
716 if (old_ppr != ppr)
717 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
718
719 return ppr < old_ppr;
720 }
721
722 static void apic_update_ppr(struct kvm_lapic *apic)
723 {
724 u32 ppr;
725
726 if (__apic_update_ppr(apic, &ppr) &&
727 apic_has_interrupt_for_ppr(apic, ppr) != -1)
728 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
729 }
730
731 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
732 {
733 apic_update_ppr(vcpu->arch.apic);
734 }
735 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
736
737 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
738 {
739 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
740 apic_update_ppr(apic);
741 }
742
743 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
744 {
745 return mda == (apic_x2apic_mode(apic) ?
746 X2APIC_BROADCAST : APIC_BROADCAST);
747 }
748
749 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
750 {
751 if (kvm_apic_broadcast(apic, mda))
752 return true;
753
754 if (apic_x2apic_mode(apic))
755 return mda == kvm_x2apic_id(apic);
756
757 /*
758 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
759 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and
760 * this allows unique addressing of VCPUs with APIC ID over 0xff.
761 * The 0xff condition is needed because writeable xAPIC ID.
762 */
763 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
764 return true;
765
766 return mda == kvm_xapic_id(apic);
767 }
768
769 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
770 {
771 u32 logical_id;
772
773 if (kvm_apic_broadcast(apic, mda))
774 return true;
775
776 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
777
778 if (apic_x2apic_mode(apic))
779 return ((logical_id >> 16) == (mda >> 16))
780 && (logical_id & mda & 0xffff) != 0;
781
782 logical_id = GET_APIC_LOGICAL_ID(logical_id);
783
784 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
785 case APIC_DFR_FLAT:
786 return (logical_id & mda) != 0;
787 case APIC_DFR_CLUSTER:
788 return ((logical_id >> 4) == (mda >> 4))
789 && (logical_id & mda & 0xf) != 0;
790 default:
791 return false;
792 }
793 }
794
795 /* The KVM local APIC implementation has two quirks:
796 *
797 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
798 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
799 * KVM doesn't do that aliasing.
800 *
801 * - in-kernel IOAPIC messages have to be delivered directly to
802 * x2APIC, because the kernel does not support interrupt remapping.
803 * In order to support broadcast without interrupt remapping, x2APIC
804 * rewrites the destination of non-IPI messages from APIC_BROADCAST
805 * to X2APIC_BROADCAST.
806 *
807 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
808 * important when userspace wants to use x2APIC-format MSIs, because
809 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
810 */
811 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
812 struct kvm_lapic *source, struct kvm_lapic *target)
813 {
814 bool ipi = source != NULL;
815
816 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
817 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
818 return X2APIC_BROADCAST;
819
820 return dest_id;
821 }
822
823 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
824 int shorthand, unsigned int dest, int dest_mode)
825 {
826 struct kvm_lapic *target = vcpu->arch.apic;
827 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
828
829 ASSERT(target);
830 switch (shorthand) {
831 case APIC_DEST_NOSHORT:
832 if (dest_mode == APIC_DEST_PHYSICAL)
833 return kvm_apic_match_physical_addr(target, mda);
834 else
835 return kvm_apic_match_logical_addr(target, mda);
836 case APIC_DEST_SELF:
837 return target == source;
838 case APIC_DEST_ALLINC:
839 return true;
840 case APIC_DEST_ALLBUT:
841 return target != source;
842 default:
843 return false;
844 }
845 }
846 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
847
848 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
849 const unsigned long *bitmap, u32 bitmap_size)
850 {
851 u32 mod;
852 int i, idx = -1;
853
854 mod = vector % dest_vcpus;
855
856 for (i = 0; i <= mod; i++) {
857 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
858 BUG_ON(idx == bitmap_size);
859 }
860
861 return idx;
862 }
863
864 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
865 {
866 if (!kvm->arch.disabled_lapic_found) {
867 kvm->arch.disabled_lapic_found = true;
868 printk(KERN_INFO
869 "Disabled LAPIC found during irq injection\n");
870 }
871 }
872
873 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
874 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
875 {
876 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
877 if ((irq->dest_id == APIC_BROADCAST &&
878 map->mode != KVM_APIC_MODE_X2APIC))
879 return true;
880 if (irq->dest_id == X2APIC_BROADCAST)
881 return true;
882 } else {
883 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
884 if (irq->dest_id == (x2apic_ipi ?
885 X2APIC_BROADCAST : APIC_BROADCAST))
886 return true;
887 }
888
889 return false;
890 }
891
892 /* Return true if the interrupt can be handled by using *bitmap as index mask
893 * for valid destinations in *dst array.
894 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
895 * Note: we may have zero kvm_lapic destinations when we return true, which
896 * means that the interrupt should be dropped. In this case, *bitmap would be
897 * zero and *dst undefined.
898 */
899 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
900 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
901 struct kvm_apic_map *map, struct kvm_lapic ***dst,
902 unsigned long *bitmap)
903 {
904 int i, lowest;
905
906 if (irq->shorthand == APIC_DEST_SELF && src) {
907 *dst = src;
908 *bitmap = 1;
909 return true;
910 } else if (irq->shorthand)
911 return false;
912
913 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
914 return false;
915
916 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
917 if (irq->dest_id > map->max_apic_id) {
918 *bitmap = 0;
919 } else {
920 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
921 *dst = &map->phys_map[dest_id];
922 *bitmap = 1;
923 }
924 return true;
925 }
926
927 *bitmap = 0;
928 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
929 (u16 *)bitmap))
930 return false;
931
932 if (!kvm_lowest_prio_delivery(irq))
933 return true;
934
935 if (!kvm_vector_hashing_enabled()) {
936 lowest = -1;
937 for_each_set_bit(i, bitmap, 16) {
938 if (!(*dst)[i])
939 continue;
940 if (lowest < 0)
941 lowest = i;
942 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
943 (*dst)[lowest]->vcpu) < 0)
944 lowest = i;
945 }
946 } else {
947 if (!*bitmap)
948 return true;
949
950 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
951 bitmap, 16);
952
953 if (!(*dst)[lowest]) {
954 kvm_apic_disabled_lapic_found(kvm);
955 *bitmap = 0;
956 return true;
957 }
958 }
959
960 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
961
962 return true;
963 }
964
965 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
966 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
967 {
968 struct kvm_apic_map *map;
969 unsigned long bitmap;
970 struct kvm_lapic **dst = NULL;
971 int i;
972 bool ret;
973
974 *r = -1;
975
976 if (irq->shorthand == APIC_DEST_SELF) {
977 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
978 return true;
979 }
980
981 rcu_read_lock();
982 map = rcu_dereference(kvm->arch.apic_map);
983
984 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
985 if (ret) {
986 *r = 0;
987 for_each_set_bit(i, &bitmap, 16) {
988 if (!dst[i])
989 continue;
990 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
991 }
992 }
993
994 rcu_read_unlock();
995 return ret;
996 }
997
998 /*
999 * This routine tries to handle interrupts in posted mode, here is how
1000 * it deals with different cases:
1001 * - For single-destination interrupts, handle it in posted mode
1002 * - Else if vector hashing is enabled and it is a lowest-priority
1003 * interrupt, handle it in posted mode and use the following mechanism
1004 * to find the destination vCPU.
1005 * 1. For lowest-priority interrupts, store all the possible
1006 * destination vCPUs in an array.
1007 * 2. Use "guest vector % max number of destination vCPUs" to find
1008 * the right destination vCPU in the array for the lowest-priority
1009 * interrupt.
1010 * - Otherwise, use remapped mode to inject the interrupt.
1011 */
1012 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1013 struct kvm_vcpu **dest_vcpu)
1014 {
1015 struct kvm_apic_map *map;
1016 unsigned long bitmap;
1017 struct kvm_lapic **dst = NULL;
1018 bool ret = false;
1019
1020 if (irq->shorthand)
1021 return false;
1022
1023 rcu_read_lock();
1024 map = rcu_dereference(kvm->arch.apic_map);
1025
1026 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1027 hweight16(bitmap) == 1) {
1028 unsigned long i = find_first_bit(&bitmap, 16);
1029
1030 if (dst[i]) {
1031 *dest_vcpu = dst[i]->vcpu;
1032 ret = true;
1033 }
1034 }
1035
1036 rcu_read_unlock();
1037 return ret;
1038 }
1039
1040 /*
1041 * Add a pending IRQ into lapic.
1042 * Return 1 if successfully added and 0 if discarded.
1043 */
1044 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1045 int vector, int level, int trig_mode,
1046 struct dest_map *dest_map)
1047 {
1048 int result = 0;
1049 struct kvm_vcpu *vcpu = apic->vcpu;
1050
1051 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1052 trig_mode, vector);
1053 switch (delivery_mode) {
1054 case APIC_DM_LOWEST:
1055 vcpu->arch.apic_arb_prio++;
1056 fallthrough;
1057 case APIC_DM_FIXED:
1058 if (unlikely(trig_mode && !level))
1059 break;
1060
1061 /* FIXME add logic for vcpu on reset */
1062 if (unlikely(!apic_enabled(apic)))
1063 break;
1064
1065 result = 1;
1066
1067 if (dest_map) {
1068 __set_bit(vcpu->vcpu_id, dest_map->map);
1069 dest_map->vectors[vcpu->vcpu_id] = vector;
1070 }
1071
1072 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1073 if (trig_mode)
1074 kvm_lapic_set_vector(vector,
1075 apic->regs + APIC_TMR);
1076 else
1077 kvm_lapic_clear_vector(vector,
1078 apic->regs + APIC_TMR);
1079 }
1080
1081 if (kvm_x86_ops.deliver_posted_interrupt(vcpu, vector)) {
1082 kvm_lapic_set_irr(vector, apic);
1083 kvm_make_request(KVM_REQ_EVENT, vcpu);
1084 kvm_vcpu_kick(vcpu);
1085 }
1086 break;
1087
1088 case APIC_DM_REMRD:
1089 result = 1;
1090 vcpu->arch.pv.pv_unhalted = 1;
1091 kvm_make_request(KVM_REQ_EVENT, vcpu);
1092 kvm_vcpu_kick(vcpu);
1093 break;
1094
1095 case APIC_DM_SMI:
1096 result = 1;
1097 kvm_make_request(KVM_REQ_SMI, vcpu);
1098 kvm_vcpu_kick(vcpu);
1099 break;
1100
1101 case APIC_DM_NMI:
1102 result = 1;
1103 kvm_inject_nmi(vcpu);
1104 kvm_vcpu_kick(vcpu);
1105 break;
1106
1107 case APIC_DM_INIT:
1108 if (!trig_mode || level) {
1109 result = 1;
1110 /* assumes that there are only KVM_APIC_INIT/SIPI */
1111 apic->pending_events = (1UL << KVM_APIC_INIT);
1112 kvm_make_request(KVM_REQ_EVENT, vcpu);
1113 kvm_vcpu_kick(vcpu);
1114 }
1115 break;
1116
1117 case APIC_DM_STARTUP:
1118 result = 1;
1119 apic->sipi_vector = vector;
1120 /* make sure sipi_vector is visible for the receiver */
1121 smp_wmb();
1122 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1123 kvm_make_request(KVM_REQ_EVENT, vcpu);
1124 kvm_vcpu_kick(vcpu);
1125 break;
1126
1127 case APIC_DM_EXTINT:
1128 /*
1129 * Should only be called by kvm_apic_local_deliver() with LVT0,
1130 * before NMI watchdog was enabled. Already handled by
1131 * kvm_apic_accept_pic_intr().
1132 */
1133 break;
1134
1135 default:
1136 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1137 delivery_mode);
1138 break;
1139 }
1140 return result;
1141 }
1142
1143 /*
1144 * This routine identifies the destination vcpus mask meant to receive the
1145 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1146 * out the destination vcpus array and set the bitmap or it traverses to
1147 * each available vcpu to identify the same.
1148 */
1149 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1150 unsigned long *vcpu_bitmap)
1151 {
1152 struct kvm_lapic **dest_vcpu = NULL;
1153 struct kvm_lapic *src = NULL;
1154 struct kvm_apic_map *map;
1155 struct kvm_vcpu *vcpu;
1156 unsigned long bitmap;
1157 int i, vcpu_idx;
1158 bool ret;
1159
1160 rcu_read_lock();
1161 map = rcu_dereference(kvm->arch.apic_map);
1162
1163 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1164 &bitmap);
1165 if (ret) {
1166 for_each_set_bit(i, &bitmap, 16) {
1167 if (!dest_vcpu[i])
1168 continue;
1169 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1170 __set_bit(vcpu_idx, vcpu_bitmap);
1171 }
1172 } else {
1173 kvm_for_each_vcpu(i, vcpu, kvm) {
1174 if (!kvm_apic_present(vcpu))
1175 continue;
1176 if (!kvm_apic_match_dest(vcpu, NULL,
1177 irq->shorthand,
1178 irq->dest_id,
1179 irq->dest_mode))
1180 continue;
1181 __set_bit(i, vcpu_bitmap);
1182 }
1183 }
1184 rcu_read_unlock();
1185 }
1186
1187 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1188 {
1189 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1190 }
1191
1192 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1193 {
1194 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1195 }
1196
1197 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1198 {
1199 int trigger_mode;
1200
1201 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1202 if (!kvm_ioapic_handles_vector(apic, vector))
1203 return;
1204
1205 /* Request a KVM exit to inform the userspace IOAPIC. */
1206 if (irqchip_split(apic->vcpu->kvm)) {
1207 apic->vcpu->arch.pending_ioapic_eoi = vector;
1208 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1209 return;
1210 }
1211
1212 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1213 trigger_mode = IOAPIC_LEVEL_TRIG;
1214 else
1215 trigger_mode = IOAPIC_EDGE_TRIG;
1216
1217 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1218 }
1219
1220 static int apic_set_eoi(struct kvm_lapic *apic)
1221 {
1222 int vector = apic_find_highest_isr(apic);
1223
1224 trace_kvm_eoi(apic, vector);
1225
1226 /*
1227 * Not every write EOI will has corresponding ISR,
1228 * one example is when Kernel check timer on setup_IO_APIC
1229 */
1230 if (vector == -1)
1231 return vector;
1232
1233 apic_clear_isr(vector, apic);
1234 apic_update_ppr(apic);
1235
1236 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1237 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1238
1239 kvm_ioapic_send_eoi(apic, vector);
1240 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1241 return vector;
1242 }
1243
1244 /*
1245 * this interface assumes a trap-like exit, which has already finished
1246 * desired side effect including vISR and vPPR update.
1247 */
1248 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1249 {
1250 struct kvm_lapic *apic = vcpu->arch.apic;
1251
1252 trace_kvm_eoi(apic, vector);
1253
1254 kvm_ioapic_send_eoi(apic, vector);
1255 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1256 }
1257 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1258
1259 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1260 {
1261 struct kvm_lapic_irq irq;
1262
1263 irq.vector = icr_low & APIC_VECTOR_MASK;
1264 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1265 irq.dest_mode = icr_low & APIC_DEST_MASK;
1266 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1267 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1268 irq.shorthand = icr_low & APIC_SHORT_MASK;
1269 irq.msi_redir_hint = false;
1270 if (apic_x2apic_mode(apic))
1271 irq.dest_id = icr_high;
1272 else
1273 irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1274
1275 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1276
1277 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1278 }
1279
1280 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1281 {
1282 ktime_t remaining, now;
1283 s64 ns;
1284 u32 tmcct;
1285
1286 ASSERT(apic != NULL);
1287
1288 /* if initial count is 0, current count should also be 0 */
1289 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1290 apic->lapic_timer.period == 0)
1291 return 0;
1292
1293 now = ktime_get();
1294 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1295 if (ktime_to_ns(remaining) < 0)
1296 remaining = 0;
1297
1298 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1299 tmcct = div64_u64(ns,
1300 (APIC_BUS_CYCLE_NS * apic->divide_count));
1301
1302 return tmcct;
1303 }
1304
1305 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1306 {
1307 struct kvm_vcpu *vcpu = apic->vcpu;
1308 struct kvm_run *run = vcpu->run;
1309
1310 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1311 run->tpr_access.rip = kvm_rip_read(vcpu);
1312 run->tpr_access.is_write = write;
1313 }
1314
1315 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1316 {
1317 if (apic->vcpu->arch.tpr_access_reporting)
1318 __report_tpr_access(apic, write);
1319 }
1320
1321 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1322 {
1323 u32 val = 0;
1324
1325 if (offset >= LAPIC_MMIO_LENGTH)
1326 return 0;
1327
1328 switch (offset) {
1329 case APIC_ARBPRI:
1330 break;
1331
1332 case APIC_TMCCT: /* Timer CCR */
1333 if (apic_lvtt_tscdeadline(apic))
1334 return 0;
1335
1336 val = apic_get_tmcct(apic);
1337 break;
1338 case APIC_PROCPRI:
1339 apic_update_ppr(apic);
1340 val = kvm_lapic_get_reg(apic, offset);
1341 break;
1342 case APIC_TASKPRI:
1343 report_tpr_access(apic, false);
1344 fallthrough;
1345 default:
1346 val = kvm_lapic_get_reg(apic, offset);
1347 break;
1348 }
1349
1350 return val;
1351 }
1352
1353 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1354 {
1355 return container_of(dev, struct kvm_lapic, dev);
1356 }
1357
1358 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1359 #define APIC_REGS_MASK(first, count) \
1360 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1361
1362 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1363 void *data)
1364 {
1365 unsigned char alignment = offset & 0xf;
1366 u32 result;
1367 /* this bitmask has a bit cleared for each reserved register */
1368 u64 valid_reg_mask =
1369 APIC_REG_MASK(APIC_ID) |
1370 APIC_REG_MASK(APIC_LVR) |
1371 APIC_REG_MASK(APIC_TASKPRI) |
1372 APIC_REG_MASK(APIC_PROCPRI) |
1373 APIC_REG_MASK(APIC_LDR) |
1374 APIC_REG_MASK(APIC_DFR) |
1375 APIC_REG_MASK(APIC_SPIV) |
1376 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1377 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1378 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1379 APIC_REG_MASK(APIC_ESR) |
1380 APIC_REG_MASK(APIC_ICR) |
1381 APIC_REG_MASK(APIC_ICR2) |
1382 APIC_REG_MASK(APIC_LVTT) |
1383 APIC_REG_MASK(APIC_LVTTHMR) |
1384 APIC_REG_MASK(APIC_LVTPC) |
1385 APIC_REG_MASK(APIC_LVT0) |
1386 APIC_REG_MASK(APIC_LVT1) |
1387 APIC_REG_MASK(APIC_LVTERR) |
1388 APIC_REG_MASK(APIC_TMICT) |
1389 APIC_REG_MASK(APIC_TMCCT) |
1390 APIC_REG_MASK(APIC_TDCR);
1391
1392 /* ARBPRI is not valid on x2APIC */
1393 if (!apic_x2apic_mode(apic))
1394 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1395
1396 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1397 return 1;
1398
1399 result = __apic_read(apic, offset & ~0xf);
1400
1401 trace_kvm_apic_read(offset, result);
1402
1403 switch (len) {
1404 case 1:
1405 case 2:
1406 case 4:
1407 memcpy(data, (char *)&result + alignment, len);
1408 break;
1409 default:
1410 printk(KERN_ERR "Local APIC read with len = %x, "
1411 "should be 1,2, or 4 instead\n", len);
1412 break;
1413 }
1414 return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1417
1418 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1419 {
1420 return addr >= apic->base_address &&
1421 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1422 }
1423
1424 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1425 gpa_t address, int len, void *data)
1426 {
1427 struct kvm_lapic *apic = to_lapic(this);
1428 u32 offset = address - apic->base_address;
1429
1430 if (!apic_mmio_in_range(apic, address))
1431 return -EOPNOTSUPP;
1432
1433 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1434 if (!kvm_check_has_quirk(vcpu->kvm,
1435 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1436 return -EOPNOTSUPP;
1437
1438 memset(data, 0xff, len);
1439 return 0;
1440 }
1441
1442 kvm_lapic_reg_read(apic, offset, len, data);
1443
1444 return 0;
1445 }
1446
1447 static void update_divide_count(struct kvm_lapic *apic)
1448 {
1449 u32 tmp1, tmp2, tdcr;
1450
1451 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1452 tmp1 = tdcr & 0xf;
1453 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1454 apic->divide_count = 0x1 << (tmp2 & 0x7);
1455 }
1456
1457 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1458 {
1459 /*
1460 * Do not allow the guest to program periodic timers with small
1461 * interval, since the hrtimers are not throttled by the host
1462 * scheduler.
1463 */
1464 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1465 s64 min_period = min_timer_period_us * 1000LL;
1466
1467 if (apic->lapic_timer.period < min_period) {
1468 pr_info_ratelimited(
1469 "kvm: vcpu %i: requested %lld ns "
1470 "lapic timer period limited to %lld ns\n",
1471 apic->vcpu->vcpu_id,
1472 apic->lapic_timer.period, min_period);
1473 apic->lapic_timer.period = min_period;
1474 }
1475 }
1476 }
1477
1478 static void cancel_hv_timer(struct kvm_lapic *apic);
1479
1480 static void apic_update_lvtt(struct kvm_lapic *apic)
1481 {
1482 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1483 apic->lapic_timer.timer_mode_mask;
1484
1485 if (apic->lapic_timer.timer_mode != timer_mode) {
1486 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1487 APIC_LVT_TIMER_TSCDEADLINE)) {
1488 hrtimer_cancel(&apic->lapic_timer.timer);
1489 preempt_disable();
1490 if (apic->lapic_timer.hv_timer_in_use)
1491 cancel_hv_timer(apic);
1492 preempt_enable();
1493 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1494 apic->lapic_timer.period = 0;
1495 apic->lapic_timer.tscdeadline = 0;
1496 }
1497 apic->lapic_timer.timer_mode = timer_mode;
1498 limit_periodic_timer_frequency(apic);
1499 }
1500 }
1501
1502 /*
1503 * On APICv, this test will cause a busy wait
1504 * during a higher-priority task.
1505 */
1506
1507 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1508 {
1509 struct kvm_lapic *apic = vcpu->arch.apic;
1510 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1511
1512 if (kvm_apic_hw_enabled(apic)) {
1513 int vec = reg & APIC_VECTOR_MASK;
1514 void *bitmap = apic->regs + APIC_ISR;
1515
1516 if (vcpu->arch.apicv_active)
1517 bitmap = apic->regs + APIC_IRR;
1518
1519 if (apic_test_vector(vec, bitmap))
1520 return true;
1521 }
1522 return false;
1523 }
1524
1525 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1526 {
1527 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1528
1529 /*
1530 * If the guest TSC is running at a different ratio than the host, then
1531 * convert the delay to nanoseconds to achieve an accurate delay. Note
1532 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1533 * always for VMX enabled hardware.
1534 */
1535 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1536 __delay(min(guest_cycles,
1537 nsec_to_cycles(vcpu, timer_advance_ns)));
1538 } else {
1539 u64 delay_ns = guest_cycles * 1000000ULL;
1540 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1541 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1542 }
1543 }
1544
1545 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1546 s64 advance_expire_delta)
1547 {
1548 struct kvm_lapic *apic = vcpu->arch.apic;
1549 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1550 u64 ns;
1551
1552 /* Do not adjust for tiny fluctuations or large random spikes. */
1553 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1554 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1555 return;
1556
1557 /* too early */
1558 if (advance_expire_delta < 0) {
1559 ns = -advance_expire_delta * 1000000ULL;
1560 do_div(ns, vcpu->arch.virtual_tsc_khz);
1561 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1562 } else {
1563 /* too late */
1564 ns = advance_expire_delta * 1000000ULL;
1565 do_div(ns, vcpu->arch.virtual_tsc_khz);
1566 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1567 }
1568
1569 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1570 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1571 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1572 }
1573
1574 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1575 {
1576 struct kvm_lapic *apic = vcpu->arch.apic;
1577 u64 guest_tsc, tsc_deadline;
1578
1579 if (apic->lapic_timer.expired_tscdeadline == 0)
1580 return;
1581
1582 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1583 apic->lapic_timer.expired_tscdeadline = 0;
1584 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1585 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1586
1587 if (guest_tsc < tsc_deadline)
1588 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1589
1590 if (lapic_timer_advance_dynamic)
1591 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1592 }
1593
1594 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1595 {
1596 if (lapic_timer_int_injected(vcpu))
1597 __kvm_wait_lapic_expire(vcpu);
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1600
1601 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1602 {
1603 struct kvm_timer *ktimer = &apic->lapic_timer;
1604
1605 kvm_apic_local_deliver(apic, APIC_LVTT);
1606 if (apic_lvtt_tscdeadline(apic)) {
1607 ktimer->tscdeadline = 0;
1608 } else if (apic_lvtt_oneshot(apic)) {
1609 ktimer->tscdeadline = 0;
1610 ktimer->target_expiration = 0;
1611 }
1612 }
1613
1614 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1615 {
1616 struct kvm_vcpu *vcpu = apic->vcpu;
1617 struct kvm_timer *ktimer = &apic->lapic_timer;
1618
1619 if (atomic_read(&apic->lapic_timer.pending))
1620 return;
1621
1622 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1623 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1624
1625 if (!from_timer_fn && vcpu->arch.apicv_active) {
1626 WARN_ON(kvm_get_running_vcpu() != vcpu);
1627 kvm_apic_inject_pending_timer_irqs(apic);
1628 return;
1629 }
1630
1631 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1632 if (apic->lapic_timer.timer_advance_ns)
1633 __kvm_wait_lapic_expire(vcpu);
1634 kvm_apic_inject_pending_timer_irqs(apic);
1635 return;
1636 }
1637
1638 atomic_inc(&apic->lapic_timer.pending);
1639 kvm_set_pending_timer(vcpu);
1640 }
1641
1642 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1643 {
1644 struct kvm_timer *ktimer = &apic->lapic_timer;
1645 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1646 u64 ns = 0;
1647 ktime_t expire;
1648 struct kvm_vcpu *vcpu = apic->vcpu;
1649 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1650 unsigned long flags;
1651 ktime_t now;
1652
1653 if (unlikely(!tscdeadline || !this_tsc_khz))
1654 return;
1655
1656 local_irq_save(flags);
1657
1658 now = ktime_get();
1659 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1660
1661 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1662 do_div(ns, this_tsc_khz);
1663
1664 if (likely(tscdeadline > guest_tsc) &&
1665 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1666 expire = ktime_add_ns(now, ns);
1667 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1668 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1669 } else
1670 apic_timer_expired(apic, false);
1671
1672 local_irq_restore(flags);
1673 }
1674
1675 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1676 {
1677 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1678 }
1679
1680 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1681 {
1682 ktime_t now, remaining;
1683 u64 ns_remaining_old, ns_remaining_new;
1684
1685 apic->lapic_timer.period =
1686 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1687 limit_periodic_timer_frequency(apic);
1688
1689 now = ktime_get();
1690 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1691 if (ktime_to_ns(remaining) < 0)
1692 remaining = 0;
1693
1694 ns_remaining_old = ktime_to_ns(remaining);
1695 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1696 apic->divide_count, old_divisor);
1697
1698 apic->lapic_timer.tscdeadline +=
1699 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1700 nsec_to_cycles(apic->vcpu, ns_remaining_old);
1701 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1702 }
1703
1704 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1705 {
1706 ktime_t now;
1707 u64 tscl = rdtsc();
1708 s64 deadline;
1709
1710 now = ktime_get();
1711 apic->lapic_timer.period =
1712 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1713
1714 if (!apic->lapic_timer.period) {
1715 apic->lapic_timer.tscdeadline = 0;
1716 return false;
1717 }
1718
1719 limit_periodic_timer_frequency(apic);
1720 deadline = apic->lapic_timer.period;
1721
1722 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1723 if (unlikely(count_reg != APIC_TMICT)) {
1724 deadline = tmict_to_ns(apic,
1725 kvm_lapic_get_reg(apic, count_reg));
1726 if (unlikely(deadline <= 0))
1727 deadline = apic->lapic_timer.period;
1728 else if (unlikely(deadline > apic->lapic_timer.period)) {
1729 pr_info_ratelimited(
1730 "kvm: vcpu %i: requested lapic timer restore with "
1731 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1732 "Using initial count to start timer.\n",
1733 apic->vcpu->vcpu_id,
1734 count_reg,
1735 kvm_lapic_get_reg(apic, count_reg),
1736 deadline, apic->lapic_timer.period);
1737 kvm_lapic_set_reg(apic, count_reg, 0);
1738 deadline = apic->lapic_timer.period;
1739 }
1740 }
1741 }
1742
1743 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1744 nsec_to_cycles(apic->vcpu, deadline);
1745 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
1746
1747 return true;
1748 }
1749
1750 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1751 {
1752 ktime_t now = ktime_get();
1753 u64 tscl = rdtsc();
1754 ktime_t delta;
1755
1756 /*
1757 * Synchronize both deadlines to the same time source or
1758 * differences in the periods (caused by differences in the
1759 * underlying clocks or numerical approximation errors) will
1760 * cause the two to drift apart over time as the errors
1761 * accumulate.
1762 */
1763 apic->lapic_timer.target_expiration =
1764 ktime_add_ns(apic->lapic_timer.target_expiration,
1765 apic->lapic_timer.period);
1766 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1767 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1768 nsec_to_cycles(apic->vcpu, delta);
1769 }
1770
1771 static void start_sw_period(struct kvm_lapic *apic)
1772 {
1773 if (!apic->lapic_timer.period)
1774 return;
1775
1776 if (ktime_after(ktime_get(),
1777 apic->lapic_timer.target_expiration)) {
1778 apic_timer_expired(apic, false);
1779
1780 if (apic_lvtt_oneshot(apic))
1781 return;
1782
1783 advance_periodic_target_expiration(apic);
1784 }
1785
1786 hrtimer_start(&apic->lapic_timer.timer,
1787 apic->lapic_timer.target_expiration,
1788 HRTIMER_MODE_ABS_HARD);
1789 }
1790
1791 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1792 {
1793 if (!lapic_in_kernel(vcpu))
1794 return false;
1795
1796 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1799
1800 static void cancel_hv_timer(struct kvm_lapic *apic)
1801 {
1802 WARN_ON(preemptible());
1803 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1804 kvm_x86_ops.cancel_hv_timer(apic->vcpu);
1805 apic->lapic_timer.hv_timer_in_use = false;
1806 }
1807
1808 static bool start_hv_timer(struct kvm_lapic *apic)
1809 {
1810 struct kvm_timer *ktimer = &apic->lapic_timer;
1811 struct kvm_vcpu *vcpu = apic->vcpu;
1812 bool expired;
1813
1814 WARN_ON(preemptible());
1815 if (!kvm_can_use_hv_timer(vcpu))
1816 return false;
1817
1818 if (!ktimer->tscdeadline)
1819 return false;
1820
1821 if (kvm_x86_ops.set_hv_timer(vcpu, ktimer->tscdeadline, &expired))
1822 return false;
1823
1824 ktimer->hv_timer_in_use = true;
1825 hrtimer_cancel(&ktimer->timer);
1826
1827 /*
1828 * To simplify handling the periodic timer, leave the hv timer running
1829 * even if the deadline timer has expired, i.e. rely on the resulting
1830 * VM-Exit to recompute the periodic timer's target expiration.
1831 */
1832 if (!apic_lvtt_period(apic)) {
1833 /*
1834 * Cancel the hv timer if the sw timer fired while the hv timer
1835 * was being programmed, or if the hv timer itself expired.
1836 */
1837 if (atomic_read(&ktimer->pending)) {
1838 cancel_hv_timer(apic);
1839 } else if (expired) {
1840 apic_timer_expired(apic, false);
1841 cancel_hv_timer(apic);
1842 }
1843 }
1844
1845 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1846
1847 return true;
1848 }
1849
1850 static void start_sw_timer(struct kvm_lapic *apic)
1851 {
1852 struct kvm_timer *ktimer = &apic->lapic_timer;
1853
1854 WARN_ON(preemptible());
1855 if (apic->lapic_timer.hv_timer_in_use)
1856 cancel_hv_timer(apic);
1857 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1858 return;
1859
1860 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1861 start_sw_period(apic);
1862 else if (apic_lvtt_tscdeadline(apic))
1863 start_sw_tscdeadline(apic);
1864 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1865 }
1866
1867 static void restart_apic_timer(struct kvm_lapic *apic)
1868 {
1869 preempt_disable();
1870
1871 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1872 goto out;
1873
1874 if (!start_hv_timer(apic))
1875 start_sw_timer(apic);
1876 out:
1877 preempt_enable();
1878 }
1879
1880 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1881 {
1882 struct kvm_lapic *apic = vcpu->arch.apic;
1883
1884 preempt_disable();
1885 /* If the preempt notifier has already run, it also called apic_timer_expired */
1886 if (!apic->lapic_timer.hv_timer_in_use)
1887 goto out;
1888 WARN_ON(rcuwait_active(&vcpu->wait));
1889 cancel_hv_timer(apic);
1890 apic_timer_expired(apic, false);
1891
1892 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1893 advance_periodic_target_expiration(apic);
1894 restart_apic_timer(apic);
1895 }
1896 out:
1897 preempt_enable();
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1900
1901 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1902 {
1903 restart_apic_timer(vcpu->arch.apic);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1906
1907 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1908 {
1909 struct kvm_lapic *apic = vcpu->arch.apic;
1910
1911 preempt_disable();
1912 /* Possibly the TSC deadline timer is not enabled yet */
1913 if (apic->lapic_timer.hv_timer_in_use)
1914 start_sw_timer(apic);
1915 preempt_enable();
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1918
1919 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1920 {
1921 struct kvm_lapic *apic = vcpu->arch.apic;
1922
1923 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1924 restart_apic_timer(apic);
1925 }
1926
1927 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
1928 {
1929 atomic_set(&apic->lapic_timer.pending, 0);
1930
1931 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1932 && !set_target_expiration(apic, count_reg))
1933 return;
1934
1935 restart_apic_timer(apic);
1936 }
1937
1938 static void start_apic_timer(struct kvm_lapic *apic)
1939 {
1940 __start_apic_timer(apic, APIC_TMICT);
1941 }
1942
1943 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1944 {
1945 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1946
1947 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1948 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1949 if (lvt0_in_nmi_mode) {
1950 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1951 } else
1952 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1953 }
1954 }
1955
1956 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1957 {
1958 int ret = 0;
1959
1960 trace_kvm_apic_write(reg, val);
1961
1962 switch (reg) {
1963 case APIC_ID: /* Local APIC ID */
1964 if (!apic_x2apic_mode(apic))
1965 kvm_apic_set_xapic_id(apic, val >> 24);
1966 else
1967 ret = 1;
1968 break;
1969
1970 case APIC_TASKPRI:
1971 report_tpr_access(apic, true);
1972 apic_set_tpr(apic, val & 0xff);
1973 break;
1974
1975 case APIC_EOI:
1976 apic_set_eoi(apic);
1977 break;
1978
1979 case APIC_LDR:
1980 if (!apic_x2apic_mode(apic))
1981 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1982 else
1983 ret = 1;
1984 break;
1985
1986 case APIC_DFR:
1987 if (!apic_x2apic_mode(apic)) {
1988 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
1989 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
1990 } else
1991 ret = 1;
1992 break;
1993
1994 case APIC_SPIV: {
1995 u32 mask = 0x3ff;
1996 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
1997 mask |= APIC_SPIV_DIRECTED_EOI;
1998 apic_set_spiv(apic, val & mask);
1999 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2000 int i;
2001 u32 lvt_val;
2002
2003 for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
2004 lvt_val = kvm_lapic_get_reg(apic,
2005 APIC_LVTT + 0x10 * i);
2006 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
2007 lvt_val | APIC_LVT_MASKED);
2008 }
2009 apic_update_lvtt(apic);
2010 atomic_set(&apic->lapic_timer.pending, 0);
2011
2012 }
2013 break;
2014 }
2015 case APIC_ICR:
2016 /* No delay here, so we always clear the pending bit */
2017 val &= ~(1 << 12);
2018 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2019 kvm_lapic_set_reg(apic, APIC_ICR, val);
2020 break;
2021
2022 case APIC_ICR2:
2023 if (!apic_x2apic_mode(apic))
2024 val &= 0xff000000;
2025 kvm_lapic_set_reg(apic, APIC_ICR2, val);
2026 break;
2027
2028 case APIC_LVT0:
2029 apic_manage_nmi_watchdog(apic, val);
2030 fallthrough;
2031 case APIC_LVTTHMR:
2032 case APIC_LVTPC:
2033 case APIC_LVT1:
2034 case APIC_LVTERR: {
2035 /* TODO: Check vector */
2036 size_t size;
2037 u32 index;
2038
2039 if (!kvm_apic_sw_enabled(apic))
2040 val |= APIC_LVT_MASKED;
2041 size = ARRAY_SIZE(apic_lvt_mask);
2042 index = array_index_nospec(
2043 (reg - APIC_LVTT) >> 4, size);
2044 val &= apic_lvt_mask[index];
2045 kvm_lapic_set_reg(apic, reg, val);
2046 break;
2047 }
2048
2049 case APIC_LVTT:
2050 if (!kvm_apic_sw_enabled(apic))
2051 val |= APIC_LVT_MASKED;
2052 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2053 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2054 apic_update_lvtt(apic);
2055 break;
2056
2057 case APIC_TMICT:
2058 if (apic_lvtt_tscdeadline(apic))
2059 break;
2060
2061 hrtimer_cancel(&apic->lapic_timer.timer);
2062 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2063 start_apic_timer(apic);
2064 break;
2065
2066 case APIC_TDCR: {
2067 uint32_t old_divisor = apic->divide_count;
2068
2069 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2070 update_divide_count(apic);
2071 if (apic->divide_count != old_divisor &&
2072 apic->lapic_timer.period) {
2073 hrtimer_cancel(&apic->lapic_timer.timer);
2074 update_target_expiration(apic, old_divisor);
2075 restart_apic_timer(apic);
2076 }
2077 break;
2078 }
2079 case APIC_ESR:
2080 if (apic_x2apic_mode(apic) && val != 0)
2081 ret = 1;
2082 break;
2083
2084 case APIC_SELF_IPI:
2085 if (apic_x2apic_mode(apic)) {
2086 kvm_lapic_reg_write(apic, APIC_ICR,
2087 APIC_DEST_SELF | (val & APIC_VECTOR_MASK));
2088 } else
2089 ret = 1;
2090 break;
2091 default:
2092 ret = 1;
2093 break;
2094 }
2095
2096 kvm_recalculate_apic_map(apic->vcpu->kvm);
2097
2098 return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
2101
2102 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2103 gpa_t address, int len, const void *data)
2104 {
2105 struct kvm_lapic *apic = to_lapic(this);
2106 unsigned int offset = address - apic->base_address;
2107 u32 val;
2108
2109 if (!apic_mmio_in_range(apic, address))
2110 return -EOPNOTSUPP;
2111
2112 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2113 if (!kvm_check_has_quirk(vcpu->kvm,
2114 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2115 return -EOPNOTSUPP;
2116
2117 return 0;
2118 }
2119
2120 /*
2121 * APIC register must be aligned on 128-bits boundary.
2122 * 32/64/128 bits registers must be accessed thru 32 bits.
2123 * Refer SDM 8.4.1
2124 */
2125 if (len != 4 || (offset & 0xf))
2126 return 0;
2127
2128 val = *(u32*)data;
2129
2130 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2131
2132 return 0;
2133 }
2134
2135 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2136 {
2137 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2138 }
2139 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2140
2141 /* emulate APIC access in a trap manner */
2142 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2143 {
2144 u32 val = 0;
2145
2146 /* hw has done the conditional check and inst decode */
2147 offset &= 0xff0;
2148
2149 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2150
2151 /* TODO: optimize to just emulate side effect w/o one more write */
2152 kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2153 }
2154 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2155
2156 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2157 {
2158 struct kvm_lapic *apic = vcpu->arch.apic;
2159
2160 if (!vcpu->arch.apic)
2161 return;
2162
2163 hrtimer_cancel(&apic->lapic_timer.timer);
2164
2165 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2166 static_key_slow_dec_deferred(&apic_hw_disabled);
2167
2168 if (!apic->sw_enabled)
2169 static_key_slow_dec_deferred(&apic_sw_disabled);
2170
2171 if (apic->regs)
2172 free_page((unsigned long)apic->regs);
2173
2174 kfree(apic);
2175 }
2176
2177 /*
2178 *----------------------------------------------------------------------
2179 * LAPIC interface
2180 *----------------------------------------------------------------------
2181 */
2182 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2183 {
2184 struct kvm_lapic *apic = vcpu->arch.apic;
2185
2186 if (!lapic_in_kernel(vcpu) ||
2187 !apic_lvtt_tscdeadline(apic))
2188 return 0;
2189
2190 return apic->lapic_timer.tscdeadline;
2191 }
2192
2193 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2194 {
2195 struct kvm_lapic *apic = vcpu->arch.apic;
2196
2197 if (!kvm_apic_present(vcpu) || apic_lvtt_oneshot(apic) ||
2198 apic_lvtt_period(apic))
2199 return;
2200
2201 hrtimer_cancel(&apic->lapic_timer.timer);
2202 apic->lapic_timer.tscdeadline = data;
2203 start_apic_timer(apic);
2204 }
2205
2206 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2207 {
2208 struct kvm_lapic *apic = vcpu->arch.apic;
2209
2210 apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2211 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2212 }
2213
2214 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2215 {
2216 u64 tpr;
2217
2218 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2219
2220 return (tpr & 0xf0) >> 4;
2221 }
2222
2223 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2224 {
2225 u64 old_value = vcpu->arch.apic_base;
2226 struct kvm_lapic *apic = vcpu->arch.apic;
2227
2228 if (!apic)
2229 value |= MSR_IA32_APICBASE_BSP;
2230
2231 vcpu->arch.apic_base = value;
2232
2233 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2234 kvm_update_cpuid_runtime(vcpu);
2235
2236 if (!apic)
2237 return;
2238
2239 /* update jump label if enable bit changes */
2240 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2241 if (value & MSR_IA32_APICBASE_ENABLE) {
2242 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2243 static_key_slow_dec_deferred(&apic_hw_disabled);
2244 } else {
2245 static_key_slow_inc(&apic_hw_disabled.key);
2246 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2247 }
2248 }
2249
2250 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2251 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2252
2253 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2254 kvm_x86_ops.set_virtual_apic_mode(vcpu);
2255
2256 apic->base_address = apic->vcpu->arch.apic_base &
2257 MSR_IA32_APICBASE_BASE;
2258
2259 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2260 apic->base_address != APIC_DEFAULT_PHYS_BASE)
2261 pr_warn_once("APIC base relocation is unsupported by KVM");
2262 }
2263
2264 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2265 {
2266 struct kvm_lapic *apic = vcpu->arch.apic;
2267
2268 if (vcpu->arch.apicv_active) {
2269 /* irr_pending is always true when apicv is activated. */
2270 apic->irr_pending = true;
2271 apic->isr_count = 1;
2272 } else {
2273 apic->irr_pending = (apic_search_irr(apic) != -1);
2274 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2275 }
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv);
2278
2279 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2280 {
2281 struct kvm_lapic *apic = vcpu->arch.apic;
2282 int i;
2283
2284 if (!apic)
2285 return;
2286
2287 /* Stop the timer in case it's a reset to an active apic */
2288 hrtimer_cancel(&apic->lapic_timer.timer);
2289
2290 if (!init_event) {
2291 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2292 MSR_IA32_APICBASE_ENABLE);
2293 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2294 }
2295 kvm_apic_set_version(apic->vcpu);
2296
2297 for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2298 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2299 apic_update_lvtt(apic);
2300 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2301 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2302 kvm_lapic_set_reg(apic, APIC_LVT0,
2303 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2304 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2305
2306 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU);
2307 apic_set_spiv(apic, 0xff);
2308 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2309 if (!apic_x2apic_mode(apic))
2310 kvm_apic_set_ldr(apic, 0);
2311 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2312 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2313 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2314 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2315 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2316 for (i = 0; i < 8; i++) {
2317 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2318 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2319 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2320 }
2321 kvm_apic_update_apicv(vcpu);
2322 apic->highest_isr_cache = -1;
2323 update_divide_count(apic);
2324 atomic_set(&apic->lapic_timer.pending, 0);
2325 if (kvm_vcpu_is_bsp(vcpu))
2326 kvm_lapic_set_base(vcpu,
2327 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2328 vcpu->arch.pv_eoi.msr_val = 0;
2329 apic_update_ppr(apic);
2330 if (vcpu->arch.apicv_active) {
2331 kvm_x86_ops.apicv_post_state_restore(vcpu);
2332 kvm_x86_ops.hwapic_irr_update(vcpu, -1);
2333 kvm_x86_ops.hwapic_isr_update(vcpu, -1);
2334 }
2335
2336 vcpu->arch.apic_arb_prio = 0;
2337 vcpu->arch.apic_attention = 0;
2338
2339 kvm_recalculate_apic_map(vcpu->kvm);
2340 }
2341
2342 /*
2343 *----------------------------------------------------------------------
2344 * timer interface
2345 *----------------------------------------------------------------------
2346 */
2347
2348 static bool lapic_is_periodic(struct kvm_lapic *apic)
2349 {
2350 return apic_lvtt_period(apic);
2351 }
2352
2353 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2354 {
2355 struct kvm_lapic *apic = vcpu->arch.apic;
2356
2357 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2358 return atomic_read(&apic->lapic_timer.pending);
2359
2360 return 0;
2361 }
2362
2363 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2364 {
2365 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2366 int vector, mode, trig_mode;
2367
2368 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2369 vector = reg & APIC_VECTOR_MASK;
2370 mode = reg & APIC_MODE_MASK;
2371 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2372 return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2373 NULL);
2374 }
2375 return 0;
2376 }
2377
2378 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2379 {
2380 struct kvm_lapic *apic = vcpu->arch.apic;
2381
2382 if (apic)
2383 kvm_apic_local_deliver(apic, APIC_LVT0);
2384 }
2385
2386 static const struct kvm_io_device_ops apic_mmio_ops = {
2387 .read = apic_mmio_read,
2388 .write = apic_mmio_write,
2389 };
2390
2391 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2392 {
2393 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2394 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2395
2396 apic_timer_expired(apic, true);
2397
2398 if (lapic_is_periodic(apic)) {
2399 advance_periodic_target_expiration(apic);
2400 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2401 return HRTIMER_RESTART;
2402 } else
2403 return HRTIMER_NORESTART;
2404 }
2405
2406 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2407 {
2408 struct kvm_lapic *apic;
2409
2410 ASSERT(vcpu != NULL);
2411
2412 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2413 if (!apic)
2414 goto nomem;
2415
2416 vcpu->arch.apic = apic;
2417
2418 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2419 if (!apic->regs) {
2420 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2421 vcpu->vcpu_id);
2422 goto nomem_free_apic;
2423 }
2424 apic->vcpu = vcpu;
2425
2426 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2427 HRTIMER_MODE_ABS_HARD);
2428 apic->lapic_timer.timer.function = apic_timer_fn;
2429 if (timer_advance_ns == -1) {
2430 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2431 lapic_timer_advance_dynamic = true;
2432 } else {
2433 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2434 lapic_timer_advance_dynamic = false;
2435 }
2436
2437 /*
2438 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2439 * thinking that APIC state has changed.
2440 */
2441 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2442 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2443 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2444
2445 return 0;
2446 nomem_free_apic:
2447 kfree(apic);
2448 vcpu->arch.apic = NULL;
2449 nomem:
2450 return -ENOMEM;
2451 }
2452
2453 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2454 {
2455 struct kvm_lapic *apic = vcpu->arch.apic;
2456 u32 ppr;
2457
2458 if (!kvm_apic_hw_enabled(apic))
2459 return -1;
2460
2461 __apic_update_ppr(apic, &ppr);
2462 return apic_has_interrupt_for_ppr(apic, ppr);
2463 }
2464
2465 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2466 {
2467 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2468
2469 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2470 return 1;
2471 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2472 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2473 return 1;
2474 return 0;
2475 }
2476
2477 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2478 {
2479 struct kvm_lapic *apic = vcpu->arch.apic;
2480
2481 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2482 kvm_apic_inject_pending_timer_irqs(apic);
2483 atomic_set(&apic->lapic_timer.pending, 0);
2484 }
2485 }
2486
2487 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2488 {
2489 int vector = kvm_apic_has_interrupt(vcpu);
2490 struct kvm_lapic *apic = vcpu->arch.apic;
2491 u32 ppr;
2492
2493 if (vector == -1)
2494 return -1;
2495
2496 /*
2497 * We get here even with APIC virtualization enabled, if doing
2498 * nested virtualization and L1 runs with the "acknowledge interrupt
2499 * on exit" mode. Then we cannot inject the interrupt via RVI,
2500 * because the process would deliver it through the IDT.
2501 */
2502
2503 apic_clear_irr(vector, apic);
2504 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2505 /*
2506 * For auto-EOI interrupts, there might be another pending
2507 * interrupt above PPR, so check whether to raise another
2508 * KVM_REQ_EVENT.
2509 */
2510 apic_update_ppr(apic);
2511 } else {
2512 /*
2513 * For normal interrupts, PPR has been raised and there cannot
2514 * be a higher-priority pending interrupt---except if there was
2515 * a concurrent interrupt injection, but that would have
2516 * triggered KVM_REQ_EVENT already.
2517 */
2518 apic_set_isr(vector, apic);
2519 __apic_update_ppr(apic, &ppr);
2520 }
2521
2522 return vector;
2523 }
2524
2525 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2526 struct kvm_lapic_state *s, bool set)
2527 {
2528 if (apic_x2apic_mode(vcpu->arch.apic)) {
2529 u32 *id = (u32 *)(s->regs + APIC_ID);
2530 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2531
2532 if (vcpu->kvm->arch.x2apic_format) {
2533 if (*id != vcpu->vcpu_id)
2534 return -EINVAL;
2535 } else {
2536 if (set)
2537 *id >>= 24;
2538 else
2539 *id <<= 24;
2540 }
2541
2542 /* In x2APIC mode, the LDR is fixed and based on the id */
2543 if (set)
2544 *ldr = kvm_apic_calc_x2apic_ldr(*id);
2545 }
2546
2547 return 0;
2548 }
2549
2550 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2551 {
2552 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2553
2554 /*
2555 * Get calculated timer current count for remaining timer period (if
2556 * any) and store it in the returned register set.
2557 */
2558 __kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2559 __apic_read(vcpu->arch.apic, APIC_TMCCT));
2560
2561 return kvm_apic_state_fixup(vcpu, s, false);
2562 }
2563
2564 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2565 {
2566 struct kvm_lapic *apic = vcpu->arch.apic;
2567 int r;
2568
2569 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2570 /* set SPIV separately to get count of SW disabled APICs right */
2571 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2572
2573 r = kvm_apic_state_fixup(vcpu, s, true);
2574 if (r) {
2575 kvm_recalculate_apic_map(vcpu->kvm);
2576 return r;
2577 }
2578 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2579
2580 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2581 kvm_recalculate_apic_map(vcpu->kvm);
2582 kvm_apic_set_version(vcpu);
2583
2584 apic_update_ppr(apic);
2585 hrtimer_cancel(&apic->lapic_timer.timer);
2586 apic_update_lvtt(apic);
2587 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2588 update_divide_count(apic);
2589 __start_apic_timer(apic, APIC_TMCCT);
2590 kvm_apic_update_apicv(vcpu);
2591 apic->highest_isr_cache = -1;
2592 if (vcpu->arch.apicv_active) {
2593 kvm_x86_ops.apicv_post_state_restore(vcpu);
2594 kvm_x86_ops.hwapic_irr_update(vcpu,
2595 apic_find_highest_irr(apic));
2596 kvm_x86_ops.hwapic_isr_update(vcpu,
2597 apic_find_highest_isr(apic));
2598 }
2599 kvm_make_request(KVM_REQ_EVENT, vcpu);
2600 if (ioapic_in_kernel(vcpu->kvm))
2601 kvm_rtc_eoi_tracking_restore_one(vcpu);
2602
2603 vcpu->arch.apic_arb_prio = 0;
2604
2605 return 0;
2606 }
2607
2608 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2609 {
2610 struct hrtimer *timer;
2611
2612 if (!lapic_in_kernel(vcpu) ||
2613 kvm_can_post_timer_interrupt(vcpu))
2614 return;
2615
2616 timer = &vcpu->arch.apic->lapic_timer.timer;
2617 if (hrtimer_cancel(timer))
2618 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2619 }
2620
2621 /*
2622 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2623 *
2624 * Detect whether guest triggered PV EOI since the
2625 * last entry. If yes, set EOI on guests's behalf.
2626 * Clear PV EOI in guest memory in any case.
2627 */
2628 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2629 struct kvm_lapic *apic)
2630 {
2631 bool pending;
2632 int vector;
2633 /*
2634 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2635 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2636 *
2637 * KVM_APIC_PV_EOI_PENDING is unset:
2638 * -> host disabled PV EOI.
2639 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2640 * -> host enabled PV EOI, guest did not execute EOI yet.
2641 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2642 * -> host enabled PV EOI, guest executed EOI.
2643 */
2644 BUG_ON(!pv_eoi_enabled(vcpu));
2645 pending = pv_eoi_get_pending(vcpu);
2646 /*
2647 * Clear pending bit in any case: it will be set again on vmentry.
2648 * While this might not be ideal from performance point of view,
2649 * this makes sure pv eoi is only enabled when we know it's safe.
2650 */
2651 pv_eoi_clr_pending(vcpu);
2652 if (pending)
2653 return;
2654 vector = apic_set_eoi(apic);
2655 trace_kvm_pv_eoi(apic, vector);
2656 }
2657
2658 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2659 {
2660 u32 data;
2661
2662 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2663 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2664
2665 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2666 return;
2667
2668 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2669 sizeof(u32)))
2670 return;
2671
2672 apic_set_tpr(vcpu->arch.apic, data & 0xff);
2673 }
2674
2675 /*
2676 * apic_sync_pv_eoi_to_guest - called before vmentry
2677 *
2678 * Detect whether it's safe to enable PV EOI and
2679 * if yes do so.
2680 */
2681 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2682 struct kvm_lapic *apic)
2683 {
2684 if (!pv_eoi_enabled(vcpu) ||
2685 /* IRR set or many bits in ISR: could be nested. */
2686 apic->irr_pending ||
2687 /* Cache not set: could be safe but we don't bother. */
2688 apic->highest_isr_cache == -1 ||
2689 /* Need EOI to update ioapic. */
2690 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2691 /*
2692 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2693 * so we need not do anything here.
2694 */
2695 return;
2696 }
2697
2698 pv_eoi_set_pending(apic->vcpu);
2699 }
2700
2701 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2702 {
2703 u32 data, tpr;
2704 int max_irr, max_isr;
2705 struct kvm_lapic *apic = vcpu->arch.apic;
2706
2707 apic_sync_pv_eoi_to_guest(vcpu, apic);
2708
2709 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2710 return;
2711
2712 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2713 max_irr = apic_find_highest_irr(apic);
2714 if (max_irr < 0)
2715 max_irr = 0;
2716 max_isr = apic_find_highest_isr(apic);
2717 if (max_isr < 0)
2718 max_isr = 0;
2719 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2720
2721 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2722 sizeof(u32));
2723 }
2724
2725 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2726 {
2727 if (vapic_addr) {
2728 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2729 &vcpu->arch.apic->vapic_cache,
2730 vapic_addr, sizeof(u32)))
2731 return -EINVAL;
2732 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2733 } else {
2734 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2735 }
2736
2737 vcpu->arch.apic->vapic_addr = vapic_addr;
2738 return 0;
2739 }
2740
2741 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2742 {
2743 struct kvm_lapic *apic = vcpu->arch.apic;
2744 u32 reg = (msr - APIC_BASE_MSR) << 4;
2745
2746 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2747 return 1;
2748
2749 if (reg == APIC_ICR2)
2750 return 1;
2751
2752 /* if this is ICR write vector before command */
2753 if (reg == APIC_ICR)
2754 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2755 return kvm_lapic_reg_write(apic, reg, (u32)data);
2756 }
2757
2758 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2759 {
2760 struct kvm_lapic *apic = vcpu->arch.apic;
2761 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2762
2763 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2764 return 1;
2765
2766 if (reg == APIC_DFR || reg == APIC_ICR2)
2767 return 1;
2768
2769 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2770 return 1;
2771 if (reg == APIC_ICR)
2772 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2773
2774 *data = (((u64)high) << 32) | low;
2775
2776 return 0;
2777 }
2778
2779 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2780 {
2781 struct kvm_lapic *apic = vcpu->arch.apic;
2782
2783 if (!lapic_in_kernel(vcpu))
2784 return 1;
2785
2786 /* if this is ICR write vector before command */
2787 if (reg == APIC_ICR)
2788 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2789 return kvm_lapic_reg_write(apic, reg, (u32)data);
2790 }
2791
2792 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2793 {
2794 struct kvm_lapic *apic = vcpu->arch.apic;
2795 u32 low, high = 0;
2796
2797 if (!lapic_in_kernel(vcpu))
2798 return 1;
2799
2800 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2801 return 1;
2802 if (reg == APIC_ICR)
2803 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2804
2805 *data = (((u64)high) << 32) | low;
2806
2807 return 0;
2808 }
2809
2810 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2811 {
2812 u64 addr = data & ~KVM_MSR_ENABLED;
2813 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2814 unsigned long new_len;
2815
2816 if (!IS_ALIGNED(addr, 4))
2817 return 1;
2818
2819 vcpu->arch.pv_eoi.msr_val = data;
2820 if (!pv_eoi_enabled(vcpu))
2821 return 0;
2822
2823 if (addr == ghc->gpa && len <= ghc->len)
2824 new_len = ghc->len;
2825 else
2826 new_len = len;
2827
2828 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2829 }
2830
2831 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2832 {
2833 struct kvm_lapic *apic = vcpu->arch.apic;
2834 u8 sipi_vector;
2835 unsigned long pe;
2836
2837 if (!lapic_in_kernel(vcpu) || !apic->pending_events)
2838 return;
2839
2840 /*
2841 * INITs are latched while CPU is in specific states
2842 * (SMM, VMX non-root mode, SVM with GIF=0).
2843 * Because a CPU cannot be in these states immediately
2844 * after it has processed an INIT signal (and thus in
2845 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2846 * and leave the INIT pending.
2847 */
2848 if (kvm_vcpu_latch_init(vcpu)) {
2849 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2850 if (test_bit(KVM_APIC_SIPI, &apic->pending_events))
2851 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2852 return;
2853 }
2854
2855 pe = xchg(&apic->pending_events, 0);
2856 if (test_bit(KVM_APIC_INIT, &pe)) {
2857 kvm_vcpu_reset(vcpu, true);
2858 if (kvm_vcpu_is_bsp(apic->vcpu))
2859 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2860 else
2861 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2862 }
2863 if (test_bit(KVM_APIC_SIPI, &pe) &&
2864 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2865 /* evaluate pending_events before reading the vector */
2866 smp_rmb();
2867 sipi_vector = apic->sipi_vector;
2868 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2869 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2870 }
2871 }
2872
2873 void kvm_lapic_init(void)
2874 {
2875 /* do not patch jump label more than once per second */
2876 jump_label_rate_limit(&apic_hw_disabled, HZ);
2877 jump_label_rate_limit(&apic_sw_disabled, HZ);
2878 }
2879
2880 void kvm_lapic_exit(void)
2881 {
2882 static_key_deferred_flush(&apic_hw_disabled);
2883 static_key_deferred_flush(&apic_sw_disabled);
2884 }