]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kvm/lapic.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kvm / lapic.c
1
2 /*
3 * Local APIC virtualization
4 *
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright (C) 2007 Novell
7 * Copyright (C) 2007 Intel
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Dor Laor <dor.laor@qumranet.com>
12 * Gregory Haskins <ghaskins@novell.com>
13 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
14 *
15 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/smp.h>
26 #include <linux/hrtimer.h>
27 #include <linux/io.h>
28 #include <linux/export.h>
29 #include <linux/math64.h>
30 #include <linux/slab.h>
31 #include <asm/processor.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "trace.h"
42 #include "x86.h"
43 #include "cpuid.h"
44 #include "hyperv.h"
45
46 #ifndef CONFIG_X86_64
47 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
48 #else
49 #define mod_64(x, y) ((x) % (y))
50 #endif
51
52 #define PRId64 "d"
53 #define PRIx64 "llx"
54 #define PRIu64 "u"
55 #define PRIo64 "o"
56
57 /* #define apic_debug(fmt,arg...) printk(KERN_WARNING fmt,##arg) */
58 #define apic_debug(fmt, arg...)
59
60 /* 14 is the version for Xeon and Pentium 8.4.8*/
61 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
62 #define LAPIC_MMIO_LENGTH (1 << 12)
63 /* followed define is not in apicdef.h */
64 #define APIC_SHORT_MASK 0xc0000
65 #define APIC_DEST_NOSHORT 0x0
66 #define APIC_DEST_MASK 0x800
67 #define MAX_APIC_VECTOR 256
68 #define APIC_VECTORS_PER_REG 32
69
70 #define APIC_BROADCAST 0xFF
71 #define X2APIC_BROADCAST 0xFFFFFFFFul
72
73 static inline int apic_test_vector(int vec, void *bitmap)
74 {
75 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
76 }
77
78 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
79 {
80 struct kvm_lapic *apic = vcpu->arch.apic;
81
82 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
83 apic_test_vector(vector, apic->regs + APIC_IRR);
84 }
85
86 static inline void apic_clear_vector(int vec, void *bitmap)
87 {
88 clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
89 }
90
91 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
92 {
93 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
94 }
95
96 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
97 {
98 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
99 }
100
101 struct static_key_deferred apic_hw_disabled __read_mostly;
102 struct static_key_deferred apic_sw_disabled __read_mostly;
103
104 static inline int apic_enabled(struct kvm_lapic *apic)
105 {
106 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
107 }
108
109 #define LVT_MASK \
110 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
111
112 #define LINT_MASK \
113 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
114 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
115
116 static inline u8 kvm_xapic_id(struct kvm_lapic *apic)
117 {
118 return kvm_lapic_get_reg(apic, APIC_ID) >> 24;
119 }
120
121 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
122 {
123 return apic->vcpu->vcpu_id;
124 }
125
126 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
127 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
128 switch (map->mode) {
129 case KVM_APIC_MODE_X2APIC: {
130 u32 offset = (dest_id >> 16) * 16;
131 u32 max_apic_id = map->max_apic_id;
132
133 if (offset <= max_apic_id) {
134 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
135
136 *cluster = &map->phys_map[offset];
137 *mask = dest_id & (0xffff >> (16 - cluster_size));
138 } else {
139 *mask = 0;
140 }
141
142 return true;
143 }
144 case KVM_APIC_MODE_XAPIC_FLAT:
145 *cluster = map->xapic_flat_map;
146 *mask = dest_id & 0xff;
147 return true;
148 case KVM_APIC_MODE_XAPIC_CLUSTER:
149 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
150 *mask = dest_id & 0xf;
151 return true;
152 default:
153 /* Not optimized. */
154 return false;
155 }
156 }
157
158 static void kvm_apic_map_free(struct rcu_head *rcu)
159 {
160 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
161
162 kvfree(map);
163 }
164
165 static void recalculate_apic_map(struct kvm *kvm)
166 {
167 struct kvm_apic_map *new, *old = NULL;
168 struct kvm_vcpu *vcpu;
169 int i;
170 u32 max_id = 255; /* enough space for any xAPIC ID */
171
172 mutex_lock(&kvm->arch.apic_map_lock);
173
174 kvm_for_each_vcpu(i, vcpu, kvm)
175 if (kvm_apic_present(vcpu))
176 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
177
178 new = kvzalloc(sizeof(struct kvm_apic_map) +
179 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), GFP_KERNEL);
180
181 if (!new)
182 goto out;
183
184 new->max_apic_id = max_id;
185
186 kvm_for_each_vcpu(i, vcpu, kvm) {
187 struct kvm_lapic *apic = vcpu->arch.apic;
188 struct kvm_lapic **cluster;
189 u16 mask;
190 u32 ldr;
191 u8 xapic_id;
192 u32 x2apic_id;
193
194 if (!kvm_apic_present(vcpu))
195 continue;
196
197 xapic_id = kvm_xapic_id(apic);
198 x2apic_id = kvm_x2apic_id(apic);
199
200 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
201 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
202 x2apic_id <= new->max_apic_id)
203 new->phys_map[x2apic_id] = apic;
204 /*
205 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
206 * prevent them from masking VCPUs with APIC ID <= 0xff.
207 */
208 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
209 new->phys_map[xapic_id] = apic;
210
211 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
212
213 if (apic_x2apic_mode(apic)) {
214 new->mode |= KVM_APIC_MODE_X2APIC;
215 } else if (ldr) {
216 ldr = GET_APIC_LOGICAL_ID(ldr);
217 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
218 new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
219 else
220 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
221 }
222
223 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
224 continue;
225
226 if (mask)
227 cluster[ffs(mask) - 1] = apic;
228 }
229 out:
230 old = rcu_dereference_protected(kvm->arch.apic_map,
231 lockdep_is_held(&kvm->arch.apic_map_lock));
232 rcu_assign_pointer(kvm->arch.apic_map, new);
233 mutex_unlock(&kvm->arch.apic_map_lock);
234
235 if (old)
236 call_rcu(&old->rcu, kvm_apic_map_free);
237
238 kvm_make_scan_ioapic_request(kvm);
239 }
240
241 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
242 {
243 bool enabled = val & APIC_SPIV_APIC_ENABLED;
244
245 kvm_lapic_set_reg(apic, APIC_SPIV, val);
246
247 if (enabled != apic->sw_enabled) {
248 apic->sw_enabled = enabled;
249 if (enabled) {
250 static_key_slow_dec_deferred(&apic_sw_disabled);
251 recalculate_apic_map(apic->vcpu->kvm);
252 } else
253 static_key_slow_inc(&apic_sw_disabled.key);
254 }
255 }
256
257 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
258 {
259 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
260 recalculate_apic_map(apic->vcpu->kvm);
261 }
262
263 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
264 {
265 kvm_lapic_set_reg(apic, APIC_LDR, id);
266 recalculate_apic_map(apic->vcpu->kvm);
267 }
268
269 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
270 {
271 u32 ldr = ((id >> 4) << 16) | (1 << (id & 0xf));
272
273 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
274
275 kvm_lapic_set_reg(apic, APIC_ID, id);
276 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
277 recalculate_apic_map(apic->vcpu->kvm);
278 }
279
280 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
281 {
282 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
283 }
284
285 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type)
286 {
287 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
288 }
289
290 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
291 {
292 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
293 }
294
295 static inline int apic_lvtt_period(struct kvm_lapic *apic)
296 {
297 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
298 }
299
300 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
301 {
302 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
303 }
304
305 static inline int apic_lvt_nmi_mode(u32 lvt_val)
306 {
307 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
308 }
309
310 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
311 {
312 struct kvm_lapic *apic = vcpu->arch.apic;
313 struct kvm_cpuid_entry2 *feat;
314 u32 v = APIC_VERSION;
315
316 if (!lapic_in_kernel(vcpu))
317 return;
318
319 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0);
320 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))))
321 v |= APIC_LVR_DIRECTED_EOI;
322 kvm_lapic_set_reg(apic, APIC_LVR, v);
323 }
324
325 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
326 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */
327 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */
328 LVT_MASK | APIC_MODE_MASK, /* LVTPC */
329 LINT_MASK, LINT_MASK, /* LVT0-1 */
330 LVT_MASK /* LVTERR */
331 };
332
333 static int find_highest_vector(void *bitmap)
334 {
335 int vec;
336 u32 *reg;
337
338 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
339 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
340 reg = bitmap + REG_POS(vec);
341 if (*reg)
342 return __fls(*reg) + vec;
343 }
344
345 return -1;
346 }
347
348 static u8 count_vectors(void *bitmap)
349 {
350 int vec;
351 u32 *reg;
352 u8 count = 0;
353
354 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
355 reg = bitmap + REG_POS(vec);
356 count += hweight32(*reg);
357 }
358
359 return count;
360 }
361
362 int __kvm_apic_update_irr(u32 *pir, void *regs)
363 {
364 u32 i, vec;
365 u32 pir_val, irr_val;
366 int max_irr = -1;
367
368 for (i = vec = 0; i <= 7; i++, vec += 32) {
369 pir_val = READ_ONCE(pir[i]);
370 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
371 if (pir_val) {
372 irr_val |= xchg(&pir[i], 0);
373 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
374 }
375 if (irr_val)
376 max_irr = __fls(irr_val) + vec;
377 }
378
379 return max_irr;
380 }
381 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
382
383 int kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir)
384 {
385 struct kvm_lapic *apic = vcpu->arch.apic;
386
387 return __kvm_apic_update_irr(pir, apic->regs);
388 }
389 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
390
391 static inline int apic_search_irr(struct kvm_lapic *apic)
392 {
393 return find_highest_vector(apic->regs + APIC_IRR);
394 }
395
396 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
397 {
398 int result;
399
400 /*
401 * Note that irr_pending is just a hint. It will be always
402 * true with virtual interrupt delivery enabled.
403 */
404 if (!apic->irr_pending)
405 return -1;
406
407 result = apic_search_irr(apic);
408 ASSERT(result == -1 || result >= 16);
409
410 return result;
411 }
412
413 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
414 {
415 struct kvm_vcpu *vcpu;
416
417 vcpu = apic->vcpu;
418
419 if (unlikely(vcpu->arch.apicv_active)) {
420 /* need to update RVI */
421 apic_clear_vector(vec, apic->regs + APIC_IRR);
422 kvm_x86_ops->hwapic_irr_update(vcpu,
423 apic_find_highest_irr(apic));
424 } else {
425 apic->irr_pending = false;
426 apic_clear_vector(vec, apic->regs + APIC_IRR);
427 if (apic_search_irr(apic) != -1)
428 apic->irr_pending = true;
429 }
430 }
431
432 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
433 {
434 struct kvm_vcpu *vcpu;
435
436 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
437 return;
438
439 vcpu = apic->vcpu;
440
441 /*
442 * With APIC virtualization enabled, all caching is disabled
443 * because the processor can modify ISR under the hood. Instead
444 * just set SVI.
445 */
446 if (unlikely(vcpu->arch.apicv_active))
447 kvm_x86_ops->hwapic_isr_update(vcpu, vec);
448 else {
449 ++apic->isr_count;
450 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
451 /*
452 * ISR (in service register) bit is set when injecting an interrupt.
453 * The highest vector is injected. Thus the latest bit set matches
454 * the highest bit in ISR.
455 */
456 apic->highest_isr_cache = vec;
457 }
458 }
459
460 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
461 {
462 int result;
463
464 /*
465 * Note that isr_count is always 1, and highest_isr_cache
466 * is always -1, with APIC virtualization enabled.
467 */
468 if (!apic->isr_count)
469 return -1;
470 if (likely(apic->highest_isr_cache != -1))
471 return apic->highest_isr_cache;
472
473 result = find_highest_vector(apic->regs + APIC_ISR);
474 ASSERT(result == -1 || result >= 16);
475
476 return result;
477 }
478
479 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
480 {
481 struct kvm_vcpu *vcpu;
482 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
483 return;
484
485 vcpu = apic->vcpu;
486
487 /*
488 * We do get here for APIC virtualization enabled if the guest
489 * uses the Hyper-V APIC enlightenment. In this case we may need
490 * to trigger a new interrupt delivery by writing the SVI field;
491 * on the other hand isr_count and highest_isr_cache are unused
492 * and must be left alone.
493 */
494 if (unlikely(vcpu->arch.apicv_active))
495 kvm_x86_ops->hwapic_isr_update(vcpu,
496 apic_find_highest_isr(apic));
497 else {
498 --apic->isr_count;
499 BUG_ON(apic->isr_count < 0);
500 apic->highest_isr_cache = -1;
501 }
502 }
503
504 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
505 {
506 /* This may race with setting of irr in __apic_accept_irq() and
507 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
508 * will cause vmexit immediately and the value will be recalculated
509 * on the next vmentry.
510 */
511 return apic_find_highest_irr(vcpu->arch.apic);
512 }
513 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
514
515 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
516 int vector, int level, int trig_mode,
517 struct dest_map *dest_map);
518
519 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
520 struct dest_map *dest_map)
521 {
522 struct kvm_lapic *apic = vcpu->arch.apic;
523
524 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
525 irq->level, irq->trig_mode, dest_map);
526 }
527
528 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
529 {
530
531 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
532 sizeof(val));
533 }
534
535 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
536 {
537
538 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
539 sizeof(*val));
540 }
541
542 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
543 {
544 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
545 }
546
547 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
548 {
549 u8 val;
550 if (pv_eoi_get_user(vcpu, &val) < 0)
551 apic_debug("Can't read EOI MSR value: 0x%llx\n",
552 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
553 return val & 0x1;
554 }
555
556 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
557 {
558 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
559 apic_debug("Can't set EOI MSR value: 0x%llx\n",
560 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
561 return;
562 }
563 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
564 }
565
566 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
567 {
568 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
569 apic_debug("Can't clear EOI MSR value: 0x%llx\n",
570 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
571 return;
572 }
573 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
574 }
575
576 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
577 {
578 int highest_irr;
579 if (kvm_x86_ops->sync_pir_to_irr && apic->vcpu->arch.apicv_active)
580 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
581 else
582 highest_irr = apic_find_highest_irr(apic);
583 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
584 return -1;
585 return highest_irr;
586 }
587
588 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
589 {
590 u32 tpr, isrv, ppr, old_ppr;
591 int isr;
592
593 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
594 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
595 isr = apic_find_highest_isr(apic);
596 isrv = (isr != -1) ? isr : 0;
597
598 if ((tpr & 0xf0) >= (isrv & 0xf0))
599 ppr = tpr & 0xff;
600 else
601 ppr = isrv & 0xf0;
602
603 apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x",
604 apic, ppr, isr, isrv);
605
606 *new_ppr = ppr;
607 if (old_ppr != ppr)
608 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
609
610 return ppr < old_ppr;
611 }
612
613 static void apic_update_ppr(struct kvm_lapic *apic)
614 {
615 u32 ppr;
616
617 if (__apic_update_ppr(apic, &ppr) &&
618 apic_has_interrupt_for_ppr(apic, ppr) != -1)
619 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
620 }
621
622 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
623 {
624 apic_update_ppr(vcpu->arch.apic);
625 }
626 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
627
628 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
629 {
630 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
631 apic_update_ppr(apic);
632 }
633
634 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
635 {
636 return mda == (apic_x2apic_mode(apic) ?
637 X2APIC_BROADCAST : APIC_BROADCAST);
638 }
639
640 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
641 {
642 if (kvm_apic_broadcast(apic, mda))
643 return true;
644
645 if (apic_x2apic_mode(apic))
646 return mda == kvm_x2apic_id(apic);
647
648 /*
649 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
650 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and
651 * this allows unique addressing of VCPUs with APIC ID over 0xff.
652 * The 0xff condition is needed because writeable xAPIC ID.
653 */
654 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
655 return true;
656
657 return mda == kvm_xapic_id(apic);
658 }
659
660 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
661 {
662 u32 logical_id;
663
664 if (kvm_apic_broadcast(apic, mda))
665 return true;
666
667 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
668
669 if (apic_x2apic_mode(apic))
670 return ((logical_id >> 16) == (mda >> 16))
671 && (logical_id & mda & 0xffff) != 0;
672
673 logical_id = GET_APIC_LOGICAL_ID(logical_id);
674
675 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
676 case APIC_DFR_FLAT:
677 return (logical_id & mda) != 0;
678 case APIC_DFR_CLUSTER:
679 return ((logical_id >> 4) == (mda >> 4))
680 && (logical_id & mda & 0xf) != 0;
681 default:
682 apic_debug("Bad DFR vcpu %d: %08x\n",
683 apic->vcpu->vcpu_id, kvm_lapic_get_reg(apic, APIC_DFR));
684 return false;
685 }
686 }
687
688 /* The KVM local APIC implementation has two quirks:
689 *
690 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
691 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
692 * KVM doesn't do that aliasing.
693 *
694 * - in-kernel IOAPIC messages have to be delivered directly to
695 * x2APIC, because the kernel does not support interrupt remapping.
696 * In order to support broadcast without interrupt remapping, x2APIC
697 * rewrites the destination of non-IPI messages from APIC_BROADCAST
698 * to X2APIC_BROADCAST.
699 *
700 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
701 * important when userspace wants to use x2APIC-format MSIs, because
702 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
703 */
704 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
705 struct kvm_lapic *source, struct kvm_lapic *target)
706 {
707 bool ipi = source != NULL;
708
709 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
710 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
711 return X2APIC_BROADCAST;
712
713 return dest_id;
714 }
715
716 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
717 int short_hand, unsigned int dest, int dest_mode)
718 {
719 struct kvm_lapic *target = vcpu->arch.apic;
720 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
721
722 apic_debug("target %p, source %p, dest 0x%x, "
723 "dest_mode 0x%x, short_hand 0x%x\n",
724 target, source, dest, dest_mode, short_hand);
725
726 ASSERT(target);
727 switch (short_hand) {
728 case APIC_DEST_NOSHORT:
729 if (dest_mode == APIC_DEST_PHYSICAL)
730 return kvm_apic_match_physical_addr(target, mda);
731 else
732 return kvm_apic_match_logical_addr(target, mda);
733 case APIC_DEST_SELF:
734 return target == source;
735 case APIC_DEST_ALLINC:
736 return true;
737 case APIC_DEST_ALLBUT:
738 return target != source;
739 default:
740 apic_debug("kvm: apic: Bad dest shorthand value %x\n",
741 short_hand);
742 return false;
743 }
744 }
745 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
746
747 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
748 const unsigned long *bitmap, u32 bitmap_size)
749 {
750 u32 mod;
751 int i, idx = -1;
752
753 mod = vector % dest_vcpus;
754
755 for (i = 0; i <= mod; i++) {
756 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
757 BUG_ON(idx == bitmap_size);
758 }
759
760 return idx;
761 }
762
763 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
764 {
765 if (!kvm->arch.disabled_lapic_found) {
766 kvm->arch.disabled_lapic_found = true;
767 printk(KERN_INFO
768 "Disabled LAPIC found during irq injection\n");
769 }
770 }
771
772 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
773 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
774 {
775 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
776 if ((irq->dest_id == APIC_BROADCAST &&
777 map->mode != KVM_APIC_MODE_X2APIC))
778 return true;
779 if (irq->dest_id == X2APIC_BROADCAST)
780 return true;
781 } else {
782 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
783 if (irq->dest_id == (x2apic_ipi ?
784 X2APIC_BROADCAST : APIC_BROADCAST))
785 return true;
786 }
787
788 return false;
789 }
790
791 /* Return true if the interrupt can be handled by using *bitmap as index mask
792 * for valid destinations in *dst array.
793 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
794 * Note: we may have zero kvm_lapic destinations when we return true, which
795 * means that the interrupt should be dropped. In this case, *bitmap would be
796 * zero and *dst undefined.
797 */
798 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
799 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
800 struct kvm_apic_map *map, struct kvm_lapic ***dst,
801 unsigned long *bitmap)
802 {
803 int i, lowest;
804
805 if (irq->shorthand == APIC_DEST_SELF && src) {
806 *dst = src;
807 *bitmap = 1;
808 return true;
809 } else if (irq->shorthand)
810 return false;
811
812 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
813 return false;
814
815 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
816 if (irq->dest_id > map->max_apic_id) {
817 *bitmap = 0;
818 } else {
819 *dst = &map->phys_map[irq->dest_id];
820 *bitmap = 1;
821 }
822 return true;
823 }
824
825 *bitmap = 0;
826 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
827 (u16 *)bitmap))
828 return false;
829
830 if (!kvm_lowest_prio_delivery(irq))
831 return true;
832
833 if (!kvm_vector_hashing_enabled()) {
834 lowest = -1;
835 for_each_set_bit(i, bitmap, 16) {
836 if (!(*dst)[i])
837 continue;
838 if (lowest < 0)
839 lowest = i;
840 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
841 (*dst)[lowest]->vcpu) < 0)
842 lowest = i;
843 }
844 } else {
845 if (!*bitmap)
846 return true;
847
848 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
849 bitmap, 16);
850
851 if (!(*dst)[lowest]) {
852 kvm_apic_disabled_lapic_found(kvm);
853 *bitmap = 0;
854 return true;
855 }
856 }
857
858 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
859
860 return true;
861 }
862
863 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
864 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
865 {
866 struct kvm_apic_map *map;
867 unsigned long bitmap;
868 struct kvm_lapic **dst = NULL;
869 int i;
870 bool ret;
871
872 *r = -1;
873
874 if (irq->shorthand == APIC_DEST_SELF) {
875 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
876 return true;
877 }
878
879 rcu_read_lock();
880 map = rcu_dereference(kvm->arch.apic_map);
881
882 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
883 if (ret)
884 for_each_set_bit(i, &bitmap, 16) {
885 if (!dst[i])
886 continue;
887 if (*r < 0)
888 *r = 0;
889 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
890 }
891
892 rcu_read_unlock();
893 return ret;
894 }
895
896 /*
897 * This routine tries to handler interrupts in posted mode, here is how
898 * it deals with different cases:
899 * - For single-destination interrupts, handle it in posted mode
900 * - Else if vector hashing is enabled and it is a lowest-priority
901 * interrupt, handle it in posted mode and use the following mechanism
902 * to find the destinaiton vCPU.
903 * 1. For lowest-priority interrupts, store all the possible
904 * destination vCPUs in an array.
905 * 2. Use "guest vector % max number of destination vCPUs" to find
906 * the right destination vCPU in the array for the lowest-priority
907 * interrupt.
908 * - Otherwise, use remapped mode to inject the interrupt.
909 */
910 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
911 struct kvm_vcpu **dest_vcpu)
912 {
913 struct kvm_apic_map *map;
914 unsigned long bitmap;
915 struct kvm_lapic **dst = NULL;
916 bool ret = false;
917
918 if (irq->shorthand)
919 return false;
920
921 rcu_read_lock();
922 map = rcu_dereference(kvm->arch.apic_map);
923
924 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
925 hweight16(bitmap) == 1) {
926 unsigned long i = find_first_bit(&bitmap, 16);
927
928 if (dst[i]) {
929 *dest_vcpu = dst[i]->vcpu;
930 ret = true;
931 }
932 }
933
934 rcu_read_unlock();
935 return ret;
936 }
937
938 /*
939 * Add a pending IRQ into lapic.
940 * Return 1 if successfully added and 0 if discarded.
941 */
942 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
943 int vector, int level, int trig_mode,
944 struct dest_map *dest_map)
945 {
946 int result = 0;
947 struct kvm_vcpu *vcpu = apic->vcpu;
948
949 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
950 trig_mode, vector);
951 switch (delivery_mode) {
952 case APIC_DM_LOWEST:
953 vcpu->arch.apic_arb_prio++;
954 case APIC_DM_FIXED:
955 if (unlikely(trig_mode && !level))
956 break;
957
958 /* FIXME add logic for vcpu on reset */
959 if (unlikely(!apic_enabled(apic)))
960 break;
961
962 result = 1;
963
964 if (dest_map) {
965 __set_bit(vcpu->vcpu_id, dest_map->map);
966 dest_map->vectors[vcpu->vcpu_id] = vector;
967 }
968
969 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
970 if (trig_mode)
971 kvm_lapic_set_vector(vector, apic->regs + APIC_TMR);
972 else
973 apic_clear_vector(vector, apic->regs + APIC_TMR);
974 }
975
976 if (vcpu->arch.apicv_active)
977 kvm_x86_ops->deliver_posted_interrupt(vcpu, vector);
978 else {
979 kvm_lapic_set_irr(vector, apic);
980
981 kvm_make_request(KVM_REQ_EVENT, vcpu);
982 kvm_vcpu_kick(vcpu);
983 }
984 break;
985
986 case APIC_DM_REMRD:
987 result = 1;
988 vcpu->arch.pv.pv_unhalted = 1;
989 kvm_make_request(KVM_REQ_EVENT, vcpu);
990 kvm_vcpu_kick(vcpu);
991 break;
992
993 case APIC_DM_SMI:
994 result = 1;
995 kvm_make_request(KVM_REQ_SMI, vcpu);
996 kvm_vcpu_kick(vcpu);
997 break;
998
999 case APIC_DM_NMI:
1000 result = 1;
1001 kvm_inject_nmi(vcpu);
1002 kvm_vcpu_kick(vcpu);
1003 break;
1004
1005 case APIC_DM_INIT:
1006 if (!trig_mode || level) {
1007 result = 1;
1008 /* assumes that there are only KVM_APIC_INIT/SIPI */
1009 apic->pending_events = (1UL << KVM_APIC_INIT);
1010 /* make sure pending_events is visible before sending
1011 * the request */
1012 smp_wmb();
1013 kvm_make_request(KVM_REQ_EVENT, vcpu);
1014 kvm_vcpu_kick(vcpu);
1015 } else {
1016 apic_debug("Ignoring de-assert INIT to vcpu %d\n",
1017 vcpu->vcpu_id);
1018 }
1019 break;
1020
1021 case APIC_DM_STARTUP:
1022 apic_debug("SIPI to vcpu %d vector 0x%02x\n",
1023 vcpu->vcpu_id, vector);
1024 result = 1;
1025 apic->sipi_vector = vector;
1026 /* make sure sipi_vector is visible for the receiver */
1027 smp_wmb();
1028 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1029 kvm_make_request(KVM_REQ_EVENT, vcpu);
1030 kvm_vcpu_kick(vcpu);
1031 break;
1032
1033 case APIC_DM_EXTINT:
1034 /*
1035 * Should only be called by kvm_apic_local_deliver() with LVT0,
1036 * before NMI watchdog was enabled. Already handled by
1037 * kvm_apic_accept_pic_intr().
1038 */
1039 break;
1040
1041 default:
1042 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1043 delivery_mode);
1044 break;
1045 }
1046 return result;
1047 }
1048
1049 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1050 {
1051 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1052 }
1053
1054 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1055 {
1056 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1057 }
1058
1059 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1060 {
1061 int trigger_mode;
1062
1063 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1064 if (!kvm_ioapic_handles_vector(apic, vector))
1065 return;
1066
1067 /* Request a KVM exit to inform the userspace IOAPIC. */
1068 if (irqchip_split(apic->vcpu->kvm)) {
1069 apic->vcpu->arch.pending_ioapic_eoi = vector;
1070 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1071 return;
1072 }
1073
1074 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1075 trigger_mode = IOAPIC_LEVEL_TRIG;
1076 else
1077 trigger_mode = IOAPIC_EDGE_TRIG;
1078
1079 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1080 }
1081
1082 static int apic_set_eoi(struct kvm_lapic *apic)
1083 {
1084 int vector = apic_find_highest_isr(apic);
1085
1086 trace_kvm_eoi(apic, vector);
1087
1088 /*
1089 * Not every write EOI will has corresponding ISR,
1090 * one example is when Kernel check timer on setup_IO_APIC
1091 */
1092 if (vector == -1)
1093 return vector;
1094
1095 apic_clear_isr(vector, apic);
1096 apic_update_ppr(apic);
1097
1098 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1099 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1100
1101 kvm_ioapic_send_eoi(apic, vector);
1102 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1103 return vector;
1104 }
1105
1106 /*
1107 * this interface assumes a trap-like exit, which has already finished
1108 * desired side effect including vISR and vPPR update.
1109 */
1110 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1111 {
1112 struct kvm_lapic *apic = vcpu->arch.apic;
1113
1114 trace_kvm_eoi(apic, vector);
1115
1116 kvm_ioapic_send_eoi(apic, vector);
1117 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1120
1121 static void apic_send_ipi(struct kvm_lapic *apic)
1122 {
1123 u32 icr_low = kvm_lapic_get_reg(apic, APIC_ICR);
1124 u32 icr_high = kvm_lapic_get_reg(apic, APIC_ICR2);
1125 struct kvm_lapic_irq irq;
1126
1127 irq.vector = icr_low & APIC_VECTOR_MASK;
1128 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1129 irq.dest_mode = icr_low & APIC_DEST_MASK;
1130 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1131 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1132 irq.shorthand = icr_low & APIC_SHORT_MASK;
1133 irq.msi_redir_hint = false;
1134 if (apic_x2apic_mode(apic))
1135 irq.dest_id = icr_high;
1136 else
1137 irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1138
1139 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1140
1141 apic_debug("icr_high 0x%x, icr_low 0x%x, "
1142 "short_hand 0x%x, dest 0x%x, trig_mode 0x%x, level 0x%x, "
1143 "dest_mode 0x%x, delivery_mode 0x%x, vector 0x%x, "
1144 "msi_redir_hint 0x%x\n",
1145 icr_high, icr_low, irq.shorthand, irq.dest_id,
1146 irq.trig_mode, irq.level, irq.dest_mode, irq.delivery_mode,
1147 irq.vector, irq.msi_redir_hint);
1148
1149 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1150 }
1151
1152 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1153 {
1154 ktime_t remaining, now;
1155 s64 ns;
1156 u32 tmcct;
1157
1158 ASSERT(apic != NULL);
1159
1160 /* if initial count is 0, current count should also be 0 */
1161 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1162 apic->lapic_timer.period == 0)
1163 return 0;
1164
1165 now = ktime_get();
1166 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1167 if (ktime_to_ns(remaining) < 0)
1168 remaining = 0;
1169
1170 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1171 tmcct = div64_u64(ns,
1172 (APIC_BUS_CYCLE_NS * apic->divide_count));
1173
1174 return tmcct;
1175 }
1176
1177 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1178 {
1179 struct kvm_vcpu *vcpu = apic->vcpu;
1180 struct kvm_run *run = vcpu->run;
1181
1182 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1183 run->tpr_access.rip = kvm_rip_read(vcpu);
1184 run->tpr_access.is_write = write;
1185 }
1186
1187 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1188 {
1189 if (apic->vcpu->arch.tpr_access_reporting)
1190 __report_tpr_access(apic, write);
1191 }
1192
1193 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1194 {
1195 u32 val = 0;
1196
1197 if (offset >= LAPIC_MMIO_LENGTH)
1198 return 0;
1199
1200 switch (offset) {
1201 case APIC_ARBPRI:
1202 apic_debug("Access APIC ARBPRI register which is for P6\n");
1203 break;
1204
1205 case APIC_TMCCT: /* Timer CCR */
1206 if (apic_lvtt_tscdeadline(apic))
1207 return 0;
1208
1209 val = apic_get_tmcct(apic);
1210 break;
1211 case APIC_PROCPRI:
1212 apic_update_ppr(apic);
1213 val = kvm_lapic_get_reg(apic, offset);
1214 break;
1215 case APIC_TASKPRI:
1216 report_tpr_access(apic, false);
1217 /* fall thru */
1218 default:
1219 val = kvm_lapic_get_reg(apic, offset);
1220 break;
1221 }
1222
1223 return val;
1224 }
1225
1226 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1227 {
1228 return container_of(dev, struct kvm_lapic, dev);
1229 }
1230
1231 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1232 void *data)
1233 {
1234 unsigned char alignment = offset & 0xf;
1235 u32 result;
1236 /* this bitmask has a bit cleared for each reserved register */
1237 static const u64 rmask = 0x43ff01ffffffe70cULL;
1238
1239 if ((alignment + len) > 4) {
1240 apic_debug("KVM_APIC_READ: alignment error %x %d\n",
1241 offset, len);
1242 return 1;
1243 }
1244
1245 if (offset > 0x3f0 || !(rmask & (1ULL << (offset >> 4)))) {
1246 apic_debug("KVM_APIC_READ: read reserved register %x\n",
1247 offset);
1248 return 1;
1249 }
1250
1251 result = __apic_read(apic, offset & ~0xf);
1252
1253 trace_kvm_apic_read(offset, result);
1254
1255 switch (len) {
1256 case 1:
1257 case 2:
1258 case 4:
1259 memcpy(data, (char *)&result + alignment, len);
1260 break;
1261 default:
1262 printk(KERN_ERR "Local APIC read with len = %x, "
1263 "should be 1,2, or 4 instead\n", len);
1264 break;
1265 }
1266 return 0;
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1269
1270 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1271 {
1272 return kvm_apic_hw_enabled(apic) &&
1273 addr >= apic->base_address &&
1274 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1275 }
1276
1277 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1278 gpa_t address, int len, void *data)
1279 {
1280 struct kvm_lapic *apic = to_lapic(this);
1281 u32 offset = address - apic->base_address;
1282
1283 if (!apic_mmio_in_range(apic, address))
1284 return -EOPNOTSUPP;
1285
1286 kvm_lapic_reg_read(apic, offset, len, data);
1287
1288 return 0;
1289 }
1290
1291 static void update_divide_count(struct kvm_lapic *apic)
1292 {
1293 u32 tmp1, tmp2, tdcr;
1294
1295 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1296 tmp1 = tdcr & 0xf;
1297 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1298 apic->divide_count = 0x1 << (tmp2 & 0x7);
1299
1300 apic_debug("timer divide count is 0x%x\n",
1301 apic->divide_count);
1302 }
1303
1304 static void apic_update_lvtt(struct kvm_lapic *apic)
1305 {
1306 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1307 apic->lapic_timer.timer_mode_mask;
1308
1309 if (apic->lapic_timer.timer_mode != timer_mode) {
1310 apic->lapic_timer.timer_mode = timer_mode;
1311 hrtimer_cancel(&apic->lapic_timer.timer);
1312 }
1313 }
1314
1315 static void apic_timer_expired(struct kvm_lapic *apic)
1316 {
1317 struct kvm_vcpu *vcpu = apic->vcpu;
1318 struct swait_queue_head *q = &vcpu->wq;
1319 struct kvm_timer *ktimer = &apic->lapic_timer;
1320
1321 if (atomic_read(&apic->lapic_timer.pending))
1322 return;
1323
1324 atomic_inc(&apic->lapic_timer.pending);
1325 kvm_set_pending_timer(vcpu);
1326
1327 /*
1328 * For x86, the atomic_inc() is serialized, thus
1329 * using swait_active() is safe.
1330 */
1331 if (swait_active(q))
1332 swake_up(q);
1333
1334 if (apic_lvtt_tscdeadline(apic))
1335 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1336 }
1337
1338 /*
1339 * On APICv, this test will cause a busy wait
1340 * during a higher-priority task.
1341 */
1342
1343 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1344 {
1345 struct kvm_lapic *apic = vcpu->arch.apic;
1346 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1347
1348 if (kvm_apic_hw_enabled(apic)) {
1349 int vec = reg & APIC_VECTOR_MASK;
1350 void *bitmap = apic->regs + APIC_ISR;
1351
1352 if (vcpu->arch.apicv_active)
1353 bitmap = apic->regs + APIC_IRR;
1354
1355 if (apic_test_vector(vec, bitmap))
1356 return true;
1357 }
1358 return false;
1359 }
1360
1361 void wait_lapic_expire(struct kvm_vcpu *vcpu)
1362 {
1363 struct kvm_lapic *apic = vcpu->arch.apic;
1364 u64 guest_tsc, tsc_deadline;
1365
1366 if (!lapic_in_kernel(vcpu))
1367 return;
1368
1369 if (apic->lapic_timer.expired_tscdeadline == 0)
1370 return;
1371
1372 if (!lapic_timer_int_injected(vcpu))
1373 return;
1374
1375 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1376 apic->lapic_timer.expired_tscdeadline = 0;
1377 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1378 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1379
1380 /* __delay is delay_tsc whenever the hardware has TSC, thus always. */
1381 if (guest_tsc < tsc_deadline)
1382 __delay(min(tsc_deadline - guest_tsc,
1383 nsec_to_cycles(vcpu, lapic_timer_advance_ns)));
1384 }
1385
1386 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1387 {
1388 u64 guest_tsc, tscdeadline = apic->lapic_timer.tscdeadline;
1389 u64 ns = 0;
1390 ktime_t expire;
1391 struct kvm_vcpu *vcpu = apic->vcpu;
1392 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1393 unsigned long flags;
1394 ktime_t now;
1395
1396 if (unlikely(!tscdeadline || !this_tsc_khz))
1397 return;
1398
1399 local_irq_save(flags);
1400
1401 now = ktime_get();
1402 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1403 if (likely(tscdeadline > guest_tsc)) {
1404 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1405 do_div(ns, this_tsc_khz);
1406 expire = ktime_add_ns(now, ns);
1407 expire = ktime_sub_ns(expire, lapic_timer_advance_ns);
1408 hrtimer_start(&apic->lapic_timer.timer,
1409 expire, HRTIMER_MODE_ABS_PINNED);
1410 } else
1411 apic_timer_expired(apic);
1412
1413 local_irq_restore(flags);
1414 }
1415
1416 static void start_sw_period(struct kvm_lapic *apic)
1417 {
1418 if (!apic->lapic_timer.period)
1419 return;
1420
1421 if (apic_lvtt_oneshot(apic) &&
1422 ktime_after(ktime_get(),
1423 apic->lapic_timer.target_expiration)) {
1424 apic_timer_expired(apic);
1425 return;
1426 }
1427
1428 hrtimer_start(&apic->lapic_timer.timer,
1429 apic->lapic_timer.target_expiration,
1430 HRTIMER_MODE_ABS_PINNED);
1431 }
1432
1433 static bool set_target_expiration(struct kvm_lapic *apic)
1434 {
1435 ktime_t now;
1436 u64 tscl = rdtsc();
1437
1438 now = ktime_get();
1439 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1440 * APIC_BUS_CYCLE_NS * apic->divide_count;
1441
1442 if (!apic->lapic_timer.period)
1443 return false;
1444
1445 /*
1446 * Do not allow the guest to program periodic timers with small
1447 * interval, since the hrtimers are not throttled by the host
1448 * scheduler.
1449 */
1450 if (apic_lvtt_period(apic)) {
1451 s64 min_period = min_timer_period_us * 1000LL;
1452
1453 if (apic->lapic_timer.period < min_period) {
1454 pr_info_ratelimited(
1455 "kvm: vcpu %i: requested %lld ns "
1456 "lapic timer period limited to %lld ns\n",
1457 apic->vcpu->vcpu_id,
1458 apic->lapic_timer.period, min_period);
1459 apic->lapic_timer.period = min_period;
1460 }
1461 }
1462
1463 apic_debug("%s: bus cycle is %" PRId64 "ns, now 0x%016"
1464 PRIx64 ", "
1465 "timer initial count 0x%x, period %lldns, "
1466 "expire @ 0x%016" PRIx64 ".\n", __func__,
1467 APIC_BUS_CYCLE_NS, ktime_to_ns(now),
1468 kvm_lapic_get_reg(apic, APIC_TMICT),
1469 apic->lapic_timer.period,
1470 ktime_to_ns(ktime_add_ns(now,
1471 apic->lapic_timer.period)));
1472
1473 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1474 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
1475 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period);
1476
1477 return true;
1478 }
1479
1480 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1481 {
1482 apic->lapic_timer.tscdeadline +=
1483 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
1484 apic->lapic_timer.target_expiration =
1485 ktime_add_ns(apic->lapic_timer.target_expiration,
1486 apic->lapic_timer.period);
1487 }
1488
1489 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1490 {
1491 if (!lapic_in_kernel(vcpu))
1492 return false;
1493
1494 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1497
1498 static void cancel_hv_timer(struct kvm_lapic *apic)
1499 {
1500 WARN_ON(preemptible());
1501 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1502 kvm_x86_ops->cancel_hv_timer(apic->vcpu);
1503 apic->lapic_timer.hv_timer_in_use = false;
1504 }
1505
1506 static bool start_hv_timer(struct kvm_lapic *apic)
1507 {
1508 struct kvm_timer *ktimer = &apic->lapic_timer;
1509 int r;
1510
1511 WARN_ON(preemptible());
1512 if (!kvm_x86_ops->set_hv_timer)
1513 return false;
1514
1515 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1516 return false;
1517
1518 r = kvm_x86_ops->set_hv_timer(apic->vcpu, ktimer->tscdeadline);
1519 if (r < 0)
1520 return false;
1521
1522 ktimer->hv_timer_in_use = true;
1523 hrtimer_cancel(&ktimer->timer);
1524
1525 /*
1526 * Also recheck ktimer->pending, in case the sw timer triggered in
1527 * the window. For periodic timer, leave the hv timer running for
1528 * simplicity, and the deadline will be recomputed on the next vmexit.
1529 */
1530 if (!apic_lvtt_period(apic) && (r || atomic_read(&ktimer->pending))) {
1531 if (r)
1532 apic_timer_expired(apic);
1533 return false;
1534 }
1535
1536 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, true);
1537 return true;
1538 }
1539
1540 static void start_sw_timer(struct kvm_lapic *apic)
1541 {
1542 struct kvm_timer *ktimer = &apic->lapic_timer;
1543
1544 WARN_ON(preemptible());
1545 if (apic->lapic_timer.hv_timer_in_use)
1546 cancel_hv_timer(apic);
1547 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1548 return;
1549
1550 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1551 start_sw_period(apic);
1552 else if (apic_lvtt_tscdeadline(apic))
1553 start_sw_tscdeadline(apic);
1554 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1555 }
1556
1557 static void restart_apic_timer(struct kvm_lapic *apic)
1558 {
1559 preempt_disable();
1560 if (!start_hv_timer(apic))
1561 start_sw_timer(apic);
1562 preempt_enable();
1563 }
1564
1565 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1566 {
1567 struct kvm_lapic *apic = vcpu->arch.apic;
1568
1569 preempt_disable();
1570 /* If the preempt notifier has already run, it also called apic_timer_expired */
1571 if (!apic->lapic_timer.hv_timer_in_use)
1572 goto out;
1573 WARN_ON(swait_active(&vcpu->wq));
1574 cancel_hv_timer(apic);
1575 apic_timer_expired(apic);
1576
1577 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1578 advance_periodic_target_expiration(apic);
1579 restart_apic_timer(apic);
1580 }
1581 out:
1582 preempt_enable();
1583 }
1584 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1585
1586 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1587 {
1588 restart_apic_timer(vcpu->arch.apic);
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1591
1592 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1593 {
1594 struct kvm_lapic *apic = vcpu->arch.apic;
1595
1596 preempt_disable();
1597 /* Possibly the TSC deadline timer is not enabled yet */
1598 if (apic->lapic_timer.hv_timer_in_use)
1599 start_sw_timer(apic);
1600 preempt_enable();
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1603
1604 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1605 {
1606 struct kvm_lapic *apic = vcpu->arch.apic;
1607
1608 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1609 restart_apic_timer(apic);
1610 }
1611
1612 static void start_apic_timer(struct kvm_lapic *apic)
1613 {
1614 atomic_set(&apic->lapic_timer.pending, 0);
1615
1616 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1617 && !set_target_expiration(apic))
1618 return;
1619
1620 restart_apic_timer(apic);
1621 }
1622
1623 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1624 {
1625 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1626
1627 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1628 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1629 if (lvt0_in_nmi_mode) {
1630 apic_debug("Receive NMI setting on APIC_LVT0 "
1631 "for cpu %d\n", apic->vcpu->vcpu_id);
1632 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1633 } else
1634 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1635 }
1636 }
1637
1638 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1639 {
1640 int ret = 0;
1641
1642 trace_kvm_apic_write(reg, val);
1643
1644 switch (reg) {
1645 case APIC_ID: /* Local APIC ID */
1646 if (!apic_x2apic_mode(apic))
1647 kvm_apic_set_xapic_id(apic, val >> 24);
1648 else
1649 ret = 1;
1650 break;
1651
1652 case APIC_TASKPRI:
1653 report_tpr_access(apic, true);
1654 apic_set_tpr(apic, val & 0xff);
1655 break;
1656
1657 case APIC_EOI:
1658 apic_set_eoi(apic);
1659 break;
1660
1661 case APIC_LDR:
1662 if (!apic_x2apic_mode(apic))
1663 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1664 else
1665 ret = 1;
1666 break;
1667
1668 case APIC_DFR:
1669 if (!apic_x2apic_mode(apic)) {
1670 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
1671 recalculate_apic_map(apic->vcpu->kvm);
1672 } else
1673 ret = 1;
1674 break;
1675
1676 case APIC_SPIV: {
1677 u32 mask = 0x3ff;
1678 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
1679 mask |= APIC_SPIV_DIRECTED_EOI;
1680 apic_set_spiv(apic, val & mask);
1681 if (!(val & APIC_SPIV_APIC_ENABLED)) {
1682 int i;
1683 u32 lvt_val;
1684
1685 for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
1686 lvt_val = kvm_lapic_get_reg(apic,
1687 APIC_LVTT + 0x10 * i);
1688 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
1689 lvt_val | APIC_LVT_MASKED);
1690 }
1691 apic_update_lvtt(apic);
1692 atomic_set(&apic->lapic_timer.pending, 0);
1693
1694 }
1695 break;
1696 }
1697 case APIC_ICR:
1698 /* No delay here, so we always clear the pending bit */
1699 kvm_lapic_set_reg(apic, APIC_ICR, val & ~(1 << 12));
1700 apic_send_ipi(apic);
1701 break;
1702
1703 case APIC_ICR2:
1704 if (!apic_x2apic_mode(apic))
1705 val &= 0xff000000;
1706 kvm_lapic_set_reg(apic, APIC_ICR2, val);
1707 break;
1708
1709 case APIC_LVT0:
1710 apic_manage_nmi_watchdog(apic, val);
1711 case APIC_LVTTHMR:
1712 case APIC_LVTPC:
1713 case APIC_LVT1:
1714 case APIC_LVTERR:
1715 /* TODO: Check vector */
1716 if (!kvm_apic_sw_enabled(apic))
1717 val |= APIC_LVT_MASKED;
1718
1719 val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4];
1720 kvm_lapic_set_reg(apic, reg, val);
1721
1722 break;
1723
1724 case APIC_LVTT:
1725 if (!kvm_apic_sw_enabled(apic))
1726 val |= APIC_LVT_MASKED;
1727 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
1728 kvm_lapic_set_reg(apic, APIC_LVTT, val);
1729 apic_update_lvtt(apic);
1730 break;
1731
1732 case APIC_TMICT:
1733 if (apic_lvtt_tscdeadline(apic))
1734 break;
1735
1736 hrtimer_cancel(&apic->lapic_timer.timer);
1737 kvm_lapic_set_reg(apic, APIC_TMICT, val);
1738 start_apic_timer(apic);
1739 break;
1740
1741 case APIC_TDCR:
1742 if (val & 4)
1743 apic_debug("KVM_WRITE:TDCR %x\n", val);
1744 kvm_lapic_set_reg(apic, APIC_TDCR, val);
1745 update_divide_count(apic);
1746 break;
1747
1748 case APIC_ESR:
1749 if (apic_x2apic_mode(apic) && val != 0) {
1750 apic_debug("KVM_WRITE:ESR not zero %x\n", val);
1751 ret = 1;
1752 }
1753 break;
1754
1755 case APIC_SELF_IPI:
1756 if (apic_x2apic_mode(apic)) {
1757 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff));
1758 } else
1759 ret = 1;
1760 break;
1761 default:
1762 ret = 1;
1763 break;
1764 }
1765 if (ret)
1766 apic_debug("Local APIC Write to read-only register %x\n", reg);
1767 return ret;
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
1770
1771 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1772 gpa_t address, int len, const void *data)
1773 {
1774 struct kvm_lapic *apic = to_lapic(this);
1775 unsigned int offset = address - apic->base_address;
1776 u32 val;
1777
1778 if (!apic_mmio_in_range(apic, address))
1779 return -EOPNOTSUPP;
1780
1781 /*
1782 * APIC register must be aligned on 128-bits boundary.
1783 * 32/64/128 bits registers must be accessed thru 32 bits.
1784 * Refer SDM 8.4.1
1785 */
1786 if (len != 4 || (offset & 0xf)) {
1787 /* Don't shout loud, $infamous_os would cause only noise. */
1788 apic_debug("apic write: bad size=%d %lx\n", len, (long)address);
1789 return 0;
1790 }
1791
1792 val = *(u32*)data;
1793
1794 /* too common printing */
1795 if (offset != APIC_EOI)
1796 apic_debug("%s: offset 0x%x with length 0x%x, and value is "
1797 "0x%x\n", __func__, offset, len, val);
1798
1799 kvm_lapic_reg_write(apic, offset & 0xff0, val);
1800
1801 return 0;
1802 }
1803
1804 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
1805 {
1806 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
1809
1810 /* emulate APIC access in a trap manner */
1811 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
1812 {
1813 u32 val = 0;
1814
1815 /* hw has done the conditional check and inst decode */
1816 offset &= 0xff0;
1817
1818 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
1819
1820 /* TODO: optimize to just emulate side effect w/o one more write */
1821 kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
1824
1825 void kvm_free_lapic(struct kvm_vcpu *vcpu)
1826 {
1827 struct kvm_lapic *apic = vcpu->arch.apic;
1828
1829 if (!vcpu->arch.apic)
1830 return;
1831
1832 hrtimer_cancel(&apic->lapic_timer.timer);
1833
1834 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
1835 static_key_slow_dec_deferred(&apic_hw_disabled);
1836
1837 if (!apic->sw_enabled)
1838 static_key_slow_dec_deferred(&apic_sw_disabled);
1839
1840 if (apic->regs)
1841 free_page((unsigned long)apic->regs);
1842
1843 kfree(apic);
1844 }
1845
1846 /*
1847 *----------------------------------------------------------------------
1848 * LAPIC interface
1849 *----------------------------------------------------------------------
1850 */
1851 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
1852 {
1853 struct kvm_lapic *apic = vcpu->arch.apic;
1854
1855 if (!lapic_in_kernel(vcpu) ||
1856 !apic_lvtt_tscdeadline(apic))
1857 return 0;
1858
1859 return apic->lapic_timer.tscdeadline;
1860 }
1861
1862 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
1863 {
1864 struct kvm_lapic *apic = vcpu->arch.apic;
1865
1866 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) ||
1867 apic_lvtt_period(apic))
1868 return;
1869
1870 hrtimer_cancel(&apic->lapic_timer.timer);
1871 apic->lapic_timer.tscdeadline = data;
1872 start_apic_timer(apic);
1873 }
1874
1875 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
1876 {
1877 struct kvm_lapic *apic = vcpu->arch.apic;
1878
1879 apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
1880 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
1881 }
1882
1883 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
1884 {
1885 u64 tpr;
1886
1887 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
1888
1889 return (tpr & 0xf0) >> 4;
1890 }
1891
1892 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
1893 {
1894 u64 old_value = vcpu->arch.apic_base;
1895 struct kvm_lapic *apic = vcpu->arch.apic;
1896
1897 if (!apic)
1898 value |= MSR_IA32_APICBASE_BSP;
1899
1900 vcpu->arch.apic_base = value;
1901
1902 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
1903 kvm_update_cpuid(vcpu);
1904
1905 if (!apic)
1906 return;
1907
1908 /* update jump label if enable bit changes */
1909 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
1910 if (value & MSR_IA32_APICBASE_ENABLE) {
1911 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
1912 static_key_slow_dec_deferred(&apic_hw_disabled);
1913 } else {
1914 static_key_slow_inc(&apic_hw_disabled.key);
1915 recalculate_apic_map(vcpu->kvm);
1916 }
1917 }
1918
1919 if ((old_value ^ value) & X2APIC_ENABLE) {
1920 if (value & X2APIC_ENABLE) {
1921 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
1922 kvm_x86_ops->set_virtual_x2apic_mode(vcpu, true);
1923 } else
1924 kvm_x86_ops->set_virtual_x2apic_mode(vcpu, false);
1925 }
1926
1927 apic->base_address = apic->vcpu->arch.apic_base &
1928 MSR_IA32_APICBASE_BASE;
1929
1930 if ((value & MSR_IA32_APICBASE_ENABLE) &&
1931 apic->base_address != APIC_DEFAULT_PHYS_BASE)
1932 pr_warn_once("APIC base relocation is unsupported by KVM");
1933
1934 /* with FSB delivery interrupt, we can restart APIC functionality */
1935 apic_debug("apic base msr is 0x%016" PRIx64 ", and base address is "
1936 "0x%lx.\n", apic->vcpu->arch.apic_base, apic->base_address);
1937
1938 }
1939
1940 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
1941 {
1942 struct kvm_lapic *apic;
1943 int i;
1944
1945 apic_debug("%s\n", __func__);
1946
1947 ASSERT(vcpu);
1948 apic = vcpu->arch.apic;
1949 ASSERT(apic != NULL);
1950
1951 /* Stop the timer in case it's a reset to an active apic */
1952 hrtimer_cancel(&apic->lapic_timer.timer);
1953
1954 if (!init_event) {
1955 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
1956 MSR_IA32_APICBASE_ENABLE);
1957 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
1958 }
1959 kvm_apic_set_version(apic->vcpu);
1960
1961 for (i = 0; i < KVM_APIC_LVT_NUM; i++)
1962 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
1963 apic_update_lvtt(apic);
1964 if (kvm_vcpu_is_reset_bsp(vcpu) &&
1965 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
1966 kvm_lapic_set_reg(apic, APIC_LVT0,
1967 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
1968 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
1969
1970 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU);
1971 apic_set_spiv(apic, 0xff);
1972 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
1973 if (!apic_x2apic_mode(apic))
1974 kvm_apic_set_ldr(apic, 0);
1975 kvm_lapic_set_reg(apic, APIC_ESR, 0);
1976 kvm_lapic_set_reg(apic, APIC_ICR, 0);
1977 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
1978 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
1979 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1980 for (i = 0; i < 8; i++) {
1981 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
1982 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
1983 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
1984 }
1985 apic->irr_pending = vcpu->arch.apicv_active;
1986 apic->isr_count = vcpu->arch.apicv_active ? 1 : 0;
1987 apic->highest_isr_cache = -1;
1988 update_divide_count(apic);
1989 atomic_set(&apic->lapic_timer.pending, 0);
1990 if (kvm_vcpu_is_bsp(vcpu))
1991 kvm_lapic_set_base(vcpu,
1992 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
1993 vcpu->arch.pv_eoi.msr_val = 0;
1994 apic_update_ppr(apic);
1995
1996 vcpu->arch.apic_arb_prio = 0;
1997 vcpu->arch.apic_attention = 0;
1998
1999 apic_debug("%s: vcpu=%p, id=0x%x, base_msr="
2000 "0x%016" PRIx64 ", base_address=0x%0lx.\n", __func__,
2001 vcpu, kvm_lapic_get_reg(apic, APIC_ID),
2002 vcpu->arch.apic_base, apic->base_address);
2003 }
2004
2005 /*
2006 *----------------------------------------------------------------------
2007 * timer interface
2008 *----------------------------------------------------------------------
2009 */
2010
2011 static bool lapic_is_periodic(struct kvm_lapic *apic)
2012 {
2013 return apic_lvtt_period(apic);
2014 }
2015
2016 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2017 {
2018 struct kvm_lapic *apic = vcpu->arch.apic;
2019
2020 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2021 return atomic_read(&apic->lapic_timer.pending);
2022
2023 return 0;
2024 }
2025
2026 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2027 {
2028 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2029 int vector, mode, trig_mode;
2030
2031 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2032 vector = reg & APIC_VECTOR_MASK;
2033 mode = reg & APIC_MODE_MASK;
2034 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2035 return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2036 NULL);
2037 }
2038 return 0;
2039 }
2040
2041 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2042 {
2043 struct kvm_lapic *apic = vcpu->arch.apic;
2044
2045 if (apic)
2046 kvm_apic_local_deliver(apic, APIC_LVT0);
2047 }
2048
2049 static const struct kvm_io_device_ops apic_mmio_ops = {
2050 .read = apic_mmio_read,
2051 .write = apic_mmio_write,
2052 };
2053
2054 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2055 {
2056 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2057 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2058
2059 apic_timer_expired(apic);
2060
2061 if (lapic_is_periodic(apic)) {
2062 advance_periodic_target_expiration(apic);
2063 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2064 return HRTIMER_RESTART;
2065 } else
2066 return HRTIMER_NORESTART;
2067 }
2068
2069 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2070 {
2071 struct kvm_lapic *apic;
2072
2073 ASSERT(vcpu != NULL);
2074 apic_debug("apic_init %d\n", vcpu->vcpu_id);
2075
2076 apic = kzalloc(sizeof(*apic), GFP_KERNEL);
2077 if (!apic)
2078 goto nomem;
2079
2080 vcpu->arch.apic = apic;
2081
2082 apic->regs = (void *)get_zeroed_page(GFP_KERNEL);
2083 if (!apic->regs) {
2084 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2085 vcpu->vcpu_id);
2086 goto nomem_free_apic;
2087 }
2088 apic->vcpu = vcpu;
2089
2090 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2091 HRTIMER_MODE_ABS_PINNED);
2092 apic->lapic_timer.timer.function = apic_timer_fn;
2093
2094 /*
2095 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2096 * thinking that APIC satet has changed.
2097 */
2098 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2099 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2100 kvm_lapic_reset(vcpu, false);
2101 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2102
2103 return 0;
2104 nomem_free_apic:
2105 kfree(apic);
2106 nomem:
2107 return -ENOMEM;
2108 }
2109
2110 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2111 {
2112 struct kvm_lapic *apic = vcpu->arch.apic;
2113 u32 ppr;
2114
2115 if (!apic_enabled(apic))
2116 return -1;
2117
2118 __apic_update_ppr(apic, &ppr);
2119 return apic_has_interrupt_for_ppr(apic, ppr);
2120 }
2121
2122 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2123 {
2124 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2125 int r = 0;
2126
2127 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2128 r = 1;
2129 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2130 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2131 r = 1;
2132 return r;
2133 }
2134
2135 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2136 {
2137 struct kvm_lapic *apic = vcpu->arch.apic;
2138
2139 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2140 kvm_apic_local_deliver(apic, APIC_LVTT);
2141 if (apic_lvtt_tscdeadline(apic))
2142 apic->lapic_timer.tscdeadline = 0;
2143 if (apic_lvtt_oneshot(apic)) {
2144 apic->lapic_timer.tscdeadline = 0;
2145 apic->lapic_timer.target_expiration = 0;
2146 }
2147 atomic_set(&apic->lapic_timer.pending, 0);
2148 }
2149 }
2150
2151 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2152 {
2153 int vector = kvm_apic_has_interrupt(vcpu);
2154 struct kvm_lapic *apic = vcpu->arch.apic;
2155 u32 ppr;
2156
2157 if (vector == -1)
2158 return -1;
2159
2160 /*
2161 * We get here even with APIC virtualization enabled, if doing
2162 * nested virtualization and L1 runs with the "acknowledge interrupt
2163 * on exit" mode. Then we cannot inject the interrupt via RVI,
2164 * because the process would deliver it through the IDT.
2165 */
2166
2167 apic_clear_irr(vector, apic);
2168 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2169 /*
2170 * For auto-EOI interrupts, there might be another pending
2171 * interrupt above PPR, so check whether to raise another
2172 * KVM_REQ_EVENT.
2173 */
2174 apic_update_ppr(apic);
2175 } else {
2176 /*
2177 * For normal interrupts, PPR has been raised and there cannot
2178 * be a higher-priority pending interrupt---except if there was
2179 * a concurrent interrupt injection, but that would have
2180 * triggered KVM_REQ_EVENT already.
2181 */
2182 apic_set_isr(vector, apic);
2183 __apic_update_ppr(apic, &ppr);
2184 }
2185
2186 return vector;
2187 }
2188
2189 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2190 struct kvm_lapic_state *s, bool set)
2191 {
2192 if (apic_x2apic_mode(vcpu->arch.apic)) {
2193 u32 *id = (u32 *)(s->regs + APIC_ID);
2194
2195 if (vcpu->kvm->arch.x2apic_format) {
2196 if (*id != vcpu->vcpu_id)
2197 return -EINVAL;
2198 } else {
2199 if (set)
2200 *id >>= 24;
2201 else
2202 *id <<= 24;
2203 }
2204 }
2205
2206 return 0;
2207 }
2208
2209 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2210 {
2211 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2212 return kvm_apic_state_fixup(vcpu, s, false);
2213 }
2214
2215 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2216 {
2217 struct kvm_lapic *apic = vcpu->arch.apic;
2218 int r;
2219
2220
2221 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2222 /* set SPIV separately to get count of SW disabled APICs right */
2223 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2224
2225 r = kvm_apic_state_fixup(vcpu, s, true);
2226 if (r)
2227 return r;
2228 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2229
2230 recalculate_apic_map(vcpu->kvm);
2231 kvm_apic_set_version(vcpu);
2232
2233 apic_update_ppr(apic);
2234 hrtimer_cancel(&apic->lapic_timer.timer);
2235 apic_update_lvtt(apic);
2236 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2237 update_divide_count(apic);
2238 start_apic_timer(apic);
2239 apic->irr_pending = true;
2240 apic->isr_count = vcpu->arch.apicv_active ?
2241 1 : count_vectors(apic->regs + APIC_ISR);
2242 apic->highest_isr_cache = -1;
2243 if (vcpu->arch.apicv_active) {
2244 kvm_x86_ops->apicv_post_state_restore(vcpu);
2245 kvm_x86_ops->hwapic_irr_update(vcpu,
2246 apic_find_highest_irr(apic));
2247 kvm_x86_ops->hwapic_isr_update(vcpu,
2248 apic_find_highest_isr(apic));
2249 }
2250 kvm_make_request(KVM_REQ_EVENT, vcpu);
2251 if (ioapic_in_kernel(vcpu->kvm))
2252 kvm_rtc_eoi_tracking_restore_one(vcpu);
2253
2254 vcpu->arch.apic_arb_prio = 0;
2255
2256 return 0;
2257 }
2258
2259 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2260 {
2261 struct hrtimer *timer;
2262
2263 if (!lapic_in_kernel(vcpu))
2264 return;
2265
2266 timer = &vcpu->arch.apic->lapic_timer.timer;
2267 if (hrtimer_cancel(timer))
2268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
2269 }
2270
2271 /*
2272 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2273 *
2274 * Detect whether guest triggered PV EOI since the
2275 * last entry. If yes, set EOI on guests's behalf.
2276 * Clear PV EOI in guest memory in any case.
2277 */
2278 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2279 struct kvm_lapic *apic)
2280 {
2281 bool pending;
2282 int vector;
2283 /*
2284 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2285 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2286 *
2287 * KVM_APIC_PV_EOI_PENDING is unset:
2288 * -> host disabled PV EOI.
2289 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2290 * -> host enabled PV EOI, guest did not execute EOI yet.
2291 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2292 * -> host enabled PV EOI, guest executed EOI.
2293 */
2294 BUG_ON(!pv_eoi_enabled(vcpu));
2295 pending = pv_eoi_get_pending(vcpu);
2296 /*
2297 * Clear pending bit in any case: it will be set again on vmentry.
2298 * While this might not be ideal from performance point of view,
2299 * this makes sure pv eoi is only enabled when we know it's safe.
2300 */
2301 pv_eoi_clr_pending(vcpu);
2302 if (pending)
2303 return;
2304 vector = apic_set_eoi(apic);
2305 trace_kvm_pv_eoi(apic, vector);
2306 }
2307
2308 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2309 {
2310 u32 data;
2311
2312 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2313 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2314
2315 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2316 return;
2317
2318 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2319 sizeof(u32)))
2320 return;
2321
2322 apic_set_tpr(vcpu->arch.apic, data & 0xff);
2323 }
2324
2325 /*
2326 * apic_sync_pv_eoi_to_guest - called before vmentry
2327 *
2328 * Detect whether it's safe to enable PV EOI and
2329 * if yes do so.
2330 */
2331 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2332 struct kvm_lapic *apic)
2333 {
2334 if (!pv_eoi_enabled(vcpu) ||
2335 /* IRR set or many bits in ISR: could be nested. */
2336 apic->irr_pending ||
2337 /* Cache not set: could be safe but we don't bother. */
2338 apic->highest_isr_cache == -1 ||
2339 /* Need EOI to update ioapic. */
2340 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2341 /*
2342 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2343 * so we need not do anything here.
2344 */
2345 return;
2346 }
2347
2348 pv_eoi_set_pending(apic->vcpu);
2349 }
2350
2351 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2352 {
2353 u32 data, tpr;
2354 int max_irr, max_isr;
2355 struct kvm_lapic *apic = vcpu->arch.apic;
2356
2357 apic_sync_pv_eoi_to_guest(vcpu, apic);
2358
2359 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2360 return;
2361
2362 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2363 max_irr = apic_find_highest_irr(apic);
2364 if (max_irr < 0)
2365 max_irr = 0;
2366 max_isr = apic_find_highest_isr(apic);
2367 if (max_isr < 0)
2368 max_isr = 0;
2369 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2370
2371 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2372 sizeof(u32));
2373 }
2374
2375 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2376 {
2377 if (vapic_addr) {
2378 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2379 &vcpu->arch.apic->vapic_cache,
2380 vapic_addr, sizeof(u32)))
2381 return -EINVAL;
2382 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2383 } else {
2384 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2385 }
2386
2387 vcpu->arch.apic->vapic_addr = vapic_addr;
2388 return 0;
2389 }
2390
2391 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2392 {
2393 struct kvm_lapic *apic = vcpu->arch.apic;
2394 u32 reg = (msr - APIC_BASE_MSR) << 4;
2395
2396 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2397 return 1;
2398
2399 if (reg == APIC_ICR2)
2400 return 1;
2401
2402 /* if this is ICR write vector before command */
2403 if (reg == APIC_ICR)
2404 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2405 return kvm_lapic_reg_write(apic, reg, (u32)data);
2406 }
2407
2408 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2409 {
2410 struct kvm_lapic *apic = vcpu->arch.apic;
2411 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2412
2413 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2414 return 1;
2415
2416 if (reg == APIC_DFR || reg == APIC_ICR2) {
2417 apic_debug("KVM_APIC_READ: read x2apic reserved register %x\n",
2418 reg);
2419 return 1;
2420 }
2421
2422 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2423 return 1;
2424 if (reg == APIC_ICR)
2425 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2426
2427 *data = (((u64)high) << 32) | low;
2428
2429 return 0;
2430 }
2431
2432 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2433 {
2434 struct kvm_lapic *apic = vcpu->arch.apic;
2435
2436 if (!lapic_in_kernel(vcpu))
2437 return 1;
2438
2439 /* if this is ICR write vector before command */
2440 if (reg == APIC_ICR)
2441 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2442 return kvm_lapic_reg_write(apic, reg, (u32)data);
2443 }
2444
2445 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2446 {
2447 struct kvm_lapic *apic = vcpu->arch.apic;
2448 u32 low, high = 0;
2449
2450 if (!lapic_in_kernel(vcpu))
2451 return 1;
2452
2453 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2454 return 1;
2455 if (reg == APIC_ICR)
2456 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2457
2458 *data = (((u64)high) << 32) | low;
2459
2460 return 0;
2461 }
2462
2463 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data)
2464 {
2465 u64 addr = data & ~KVM_MSR_ENABLED;
2466 if (!IS_ALIGNED(addr, 4))
2467 return 1;
2468
2469 vcpu->arch.pv_eoi.msr_val = data;
2470 if (!pv_eoi_enabled(vcpu))
2471 return 0;
2472 return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data,
2473 addr, sizeof(u8));
2474 }
2475
2476 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2477 {
2478 struct kvm_lapic *apic = vcpu->arch.apic;
2479 u8 sipi_vector;
2480 unsigned long pe;
2481
2482 if (!lapic_in_kernel(vcpu) || !apic->pending_events)
2483 return;
2484
2485 /*
2486 * INITs are latched while in SMM. Because an SMM CPU cannot
2487 * be in KVM_MP_STATE_INIT_RECEIVED state, just eat SIPIs
2488 * and delay processing of INIT until the next RSM.
2489 */
2490 if (is_smm(vcpu)) {
2491 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2492 if (test_bit(KVM_APIC_SIPI, &apic->pending_events))
2493 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2494 return;
2495 }
2496
2497 pe = xchg(&apic->pending_events, 0);
2498 if (test_bit(KVM_APIC_INIT, &pe)) {
2499 kvm_lapic_reset(vcpu, true);
2500 kvm_vcpu_reset(vcpu, true);
2501 if (kvm_vcpu_is_bsp(apic->vcpu))
2502 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2503 else
2504 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2505 }
2506 if (test_bit(KVM_APIC_SIPI, &pe) &&
2507 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2508 /* evaluate pending_events before reading the vector */
2509 smp_rmb();
2510 sipi_vector = apic->sipi_vector;
2511 apic_debug("vcpu %d received sipi with vector # %x\n",
2512 vcpu->vcpu_id, sipi_vector);
2513 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2514 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2515 }
2516 }
2517
2518 void kvm_lapic_init(void)
2519 {
2520 /* do not patch jump label more than once per second */
2521 jump_label_rate_limit(&apic_hw_disabled, HZ);
2522 jump_label_rate_limit(&apic_sw_disabled, HZ);
2523 }
2524
2525 void kvm_lapic_exit(void)
2526 {
2527 static_key_deferred_flush(&apic_hw_disabled);
2528 static_key_deferred_flush(&apic_sw_disabled);
2529 }