]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/lapic.c
KVM: x86: Prevent set vCPU into INIT/SIPI_RECEIVED state when INIT are latched
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / lapic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "trace.h"
40 #include "x86.h"
41 #include "cpuid.h"
42 #include "hyperv.h"
43
44 #ifndef CONFIG_X86_64
45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
46 #else
47 #define mod_64(x, y) ((x) % (y))
48 #endif
49
50 #define PRId64 "d"
51 #define PRIx64 "llx"
52 #define PRIu64 "u"
53 #define PRIo64 "o"
54
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
57 #define LAPIC_MMIO_LENGTH (1 << 12)
58 /* followed define is not in apicdef.h */
59 #define APIC_SHORT_MASK 0xc0000
60 #define APIC_DEST_NOSHORT 0x0
61 #define APIC_DEST_MASK 0x800
62 #define MAX_APIC_VECTOR 256
63 #define APIC_VECTORS_PER_REG 32
64
65 #define APIC_BROADCAST 0xFF
66 #define X2APIC_BROADCAST 0xFFFFFFFFul
67
68 static bool lapic_timer_advance_dynamic __read_mostly;
69 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
70 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
71 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
72 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
73 /* step-by-step approximation to mitigate fluctuation */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
75
76 static inline int apic_test_vector(int vec, void *bitmap)
77 {
78 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
79 }
80
81 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
82 {
83 struct kvm_lapic *apic = vcpu->arch.apic;
84
85 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
86 apic_test_vector(vector, apic->regs + APIC_IRR);
87 }
88
89 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
90 {
91 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
92 }
93
94 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
95 {
96 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
97 }
98
99 struct static_key_deferred apic_hw_disabled __read_mostly;
100 struct static_key_deferred apic_sw_disabled __read_mostly;
101
102 static inline int apic_enabled(struct kvm_lapic *apic)
103 {
104 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
105 }
106
107 #define LVT_MASK \
108 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
109
110 #define LINT_MASK \
111 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
112 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
113
114 static inline u8 kvm_xapic_id(struct kvm_lapic *apic)
115 {
116 return kvm_lapic_get_reg(apic, APIC_ID) >> 24;
117 }
118
119 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
120 {
121 return apic->vcpu->vcpu_id;
122 }
123
124 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
125 {
126 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
127 }
128 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt);
129
130 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
131 {
132 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
133 }
134
135 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
136 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
137 switch (map->mode) {
138 case KVM_APIC_MODE_X2APIC: {
139 u32 offset = (dest_id >> 16) * 16;
140 u32 max_apic_id = map->max_apic_id;
141
142 if (offset <= max_apic_id) {
143 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
144
145 offset = array_index_nospec(offset, map->max_apic_id + 1);
146 *cluster = &map->phys_map[offset];
147 *mask = dest_id & (0xffff >> (16 - cluster_size));
148 } else {
149 *mask = 0;
150 }
151
152 return true;
153 }
154 case KVM_APIC_MODE_XAPIC_FLAT:
155 *cluster = map->xapic_flat_map;
156 *mask = dest_id & 0xff;
157 return true;
158 case KVM_APIC_MODE_XAPIC_CLUSTER:
159 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
160 *mask = dest_id & 0xf;
161 return true;
162 default:
163 /* Not optimized. */
164 return false;
165 }
166 }
167
168 static void kvm_apic_map_free(struct rcu_head *rcu)
169 {
170 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
171
172 kvfree(map);
173 }
174
175 static void recalculate_apic_map(struct kvm *kvm)
176 {
177 struct kvm_apic_map *new, *old = NULL;
178 struct kvm_vcpu *vcpu;
179 int i;
180 u32 max_id = 255; /* enough space for any xAPIC ID */
181
182 mutex_lock(&kvm->arch.apic_map_lock);
183
184 kvm_for_each_vcpu(i, vcpu, kvm)
185 if (kvm_apic_present(vcpu))
186 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
187
188 new = kvzalloc(sizeof(struct kvm_apic_map) +
189 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
190 GFP_KERNEL_ACCOUNT);
191
192 if (!new)
193 goto out;
194
195 new->max_apic_id = max_id;
196
197 kvm_for_each_vcpu(i, vcpu, kvm) {
198 struct kvm_lapic *apic = vcpu->arch.apic;
199 struct kvm_lapic **cluster;
200 u16 mask;
201 u32 ldr;
202 u8 xapic_id;
203 u32 x2apic_id;
204
205 if (!kvm_apic_present(vcpu))
206 continue;
207
208 xapic_id = kvm_xapic_id(apic);
209 x2apic_id = kvm_x2apic_id(apic);
210
211 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
212 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
213 x2apic_id <= new->max_apic_id)
214 new->phys_map[x2apic_id] = apic;
215 /*
216 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
217 * prevent them from masking VCPUs with APIC ID <= 0xff.
218 */
219 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
220 new->phys_map[xapic_id] = apic;
221
222 if (!kvm_apic_sw_enabled(apic))
223 continue;
224
225 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
226
227 if (apic_x2apic_mode(apic)) {
228 new->mode |= KVM_APIC_MODE_X2APIC;
229 } else if (ldr) {
230 ldr = GET_APIC_LOGICAL_ID(ldr);
231 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
232 new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
233 else
234 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
235 }
236
237 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
238 continue;
239
240 if (mask)
241 cluster[ffs(mask) - 1] = apic;
242 }
243 out:
244 old = rcu_dereference_protected(kvm->arch.apic_map,
245 lockdep_is_held(&kvm->arch.apic_map_lock));
246 rcu_assign_pointer(kvm->arch.apic_map, new);
247 mutex_unlock(&kvm->arch.apic_map_lock);
248
249 if (old)
250 call_rcu(&old->rcu, kvm_apic_map_free);
251
252 kvm_make_scan_ioapic_request(kvm);
253 }
254
255 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
256 {
257 bool enabled = val & APIC_SPIV_APIC_ENABLED;
258
259 kvm_lapic_set_reg(apic, APIC_SPIV, val);
260
261 if (enabled != apic->sw_enabled) {
262 apic->sw_enabled = enabled;
263 if (enabled)
264 static_key_slow_dec_deferred(&apic_sw_disabled);
265 else
266 static_key_slow_inc(&apic_sw_disabled.key);
267
268 recalculate_apic_map(apic->vcpu->kvm);
269 }
270 }
271
272 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
273 {
274 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
275 recalculate_apic_map(apic->vcpu->kvm);
276 }
277
278 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
279 {
280 kvm_lapic_set_reg(apic, APIC_LDR, id);
281 recalculate_apic_map(apic->vcpu->kvm);
282 }
283
284 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
285 {
286 return ((id >> 4) << 16) | (1 << (id & 0xf));
287 }
288
289 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
290 {
291 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
292
293 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
294
295 kvm_lapic_set_reg(apic, APIC_ID, id);
296 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
297 recalculate_apic_map(apic->vcpu->kvm);
298 }
299
300 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
301 {
302 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
303 }
304
305 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type)
306 {
307 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
308 }
309
310 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
311 {
312 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
313 }
314
315 static inline int apic_lvtt_period(struct kvm_lapic *apic)
316 {
317 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
318 }
319
320 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
321 {
322 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
323 }
324
325 static inline int apic_lvt_nmi_mode(u32 lvt_val)
326 {
327 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
328 }
329
330 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
331 {
332 struct kvm_lapic *apic = vcpu->arch.apic;
333 struct kvm_cpuid_entry2 *feat;
334 u32 v = APIC_VERSION;
335
336 if (!lapic_in_kernel(vcpu))
337 return;
338
339 /*
340 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
341 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
342 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
343 * version first and level-triggered interrupts never get EOIed in
344 * IOAPIC.
345 */
346 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0);
347 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) &&
348 !ioapic_in_kernel(vcpu->kvm))
349 v |= APIC_LVR_DIRECTED_EOI;
350 kvm_lapic_set_reg(apic, APIC_LVR, v);
351 }
352
353 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
354 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */
355 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */
356 LVT_MASK | APIC_MODE_MASK, /* LVTPC */
357 LINT_MASK, LINT_MASK, /* LVT0-1 */
358 LVT_MASK /* LVTERR */
359 };
360
361 static int find_highest_vector(void *bitmap)
362 {
363 int vec;
364 u32 *reg;
365
366 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
367 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
368 reg = bitmap + REG_POS(vec);
369 if (*reg)
370 return __fls(*reg) + vec;
371 }
372
373 return -1;
374 }
375
376 static u8 count_vectors(void *bitmap)
377 {
378 int vec;
379 u32 *reg;
380 u8 count = 0;
381
382 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
383 reg = bitmap + REG_POS(vec);
384 count += hweight32(*reg);
385 }
386
387 return count;
388 }
389
390 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
391 {
392 u32 i, vec;
393 u32 pir_val, irr_val, prev_irr_val;
394 int max_updated_irr;
395
396 max_updated_irr = -1;
397 *max_irr = -1;
398
399 for (i = vec = 0; i <= 7; i++, vec += 32) {
400 pir_val = READ_ONCE(pir[i]);
401 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
402 if (pir_val) {
403 prev_irr_val = irr_val;
404 irr_val |= xchg(&pir[i], 0);
405 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
406 if (prev_irr_val != irr_val) {
407 max_updated_irr =
408 __fls(irr_val ^ prev_irr_val) + vec;
409 }
410 }
411 if (irr_val)
412 *max_irr = __fls(irr_val) + vec;
413 }
414
415 return ((max_updated_irr != -1) &&
416 (max_updated_irr == *max_irr));
417 }
418 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
419
420 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
421 {
422 struct kvm_lapic *apic = vcpu->arch.apic;
423
424 return __kvm_apic_update_irr(pir, apic->regs, max_irr);
425 }
426 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
427
428 static inline int apic_search_irr(struct kvm_lapic *apic)
429 {
430 return find_highest_vector(apic->regs + APIC_IRR);
431 }
432
433 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
434 {
435 int result;
436
437 /*
438 * Note that irr_pending is just a hint. It will be always
439 * true with virtual interrupt delivery enabled.
440 */
441 if (!apic->irr_pending)
442 return -1;
443
444 result = apic_search_irr(apic);
445 ASSERT(result == -1 || result >= 16);
446
447 return result;
448 }
449
450 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
451 {
452 struct kvm_vcpu *vcpu;
453
454 vcpu = apic->vcpu;
455
456 if (unlikely(vcpu->arch.apicv_active)) {
457 /* need to update RVI */
458 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
459 kvm_x86_ops->hwapic_irr_update(vcpu,
460 apic_find_highest_irr(apic));
461 } else {
462 apic->irr_pending = false;
463 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
464 if (apic_search_irr(apic) != -1)
465 apic->irr_pending = true;
466 }
467 }
468
469 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
470 {
471 struct kvm_vcpu *vcpu;
472
473 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
474 return;
475
476 vcpu = apic->vcpu;
477
478 /*
479 * With APIC virtualization enabled, all caching is disabled
480 * because the processor can modify ISR under the hood. Instead
481 * just set SVI.
482 */
483 if (unlikely(vcpu->arch.apicv_active))
484 kvm_x86_ops->hwapic_isr_update(vcpu, vec);
485 else {
486 ++apic->isr_count;
487 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
488 /*
489 * ISR (in service register) bit is set when injecting an interrupt.
490 * The highest vector is injected. Thus the latest bit set matches
491 * the highest bit in ISR.
492 */
493 apic->highest_isr_cache = vec;
494 }
495 }
496
497 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
498 {
499 int result;
500
501 /*
502 * Note that isr_count is always 1, and highest_isr_cache
503 * is always -1, with APIC virtualization enabled.
504 */
505 if (!apic->isr_count)
506 return -1;
507 if (likely(apic->highest_isr_cache != -1))
508 return apic->highest_isr_cache;
509
510 result = find_highest_vector(apic->regs + APIC_ISR);
511 ASSERT(result == -1 || result >= 16);
512
513 return result;
514 }
515
516 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
517 {
518 struct kvm_vcpu *vcpu;
519 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
520 return;
521
522 vcpu = apic->vcpu;
523
524 /*
525 * We do get here for APIC virtualization enabled if the guest
526 * uses the Hyper-V APIC enlightenment. In this case we may need
527 * to trigger a new interrupt delivery by writing the SVI field;
528 * on the other hand isr_count and highest_isr_cache are unused
529 * and must be left alone.
530 */
531 if (unlikely(vcpu->arch.apicv_active))
532 kvm_x86_ops->hwapic_isr_update(vcpu,
533 apic_find_highest_isr(apic));
534 else {
535 --apic->isr_count;
536 BUG_ON(apic->isr_count < 0);
537 apic->highest_isr_cache = -1;
538 }
539 }
540
541 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
542 {
543 /* This may race with setting of irr in __apic_accept_irq() and
544 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
545 * will cause vmexit immediately and the value will be recalculated
546 * on the next vmentry.
547 */
548 return apic_find_highest_irr(vcpu->arch.apic);
549 }
550 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
551
552 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
553 int vector, int level, int trig_mode,
554 struct dest_map *dest_map);
555
556 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
557 struct dest_map *dest_map)
558 {
559 struct kvm_lapic *apic = vcpu->arch.apic;
560
561 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
562 irq->level, irq->trig_mode, dest_map);
563 }
564
565 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
566 unsigned long ipi_bitmap_high, u32 min,
567 unsigned long icr, int op_64_bit)
568 {
569 int i;
570 struct kvm_apic_map *map;
571 struct kvm_vcpu *vcpu;
572 struct kvm_lapic_irq irq = {0};
573 int cluster_size = op_64_bit ? 64 : 32;
574 int count = 0;
575
576 irq.vector = icr & APIC_VECTOR_MASK;
577 irq.delivery_mode = icr & APIC_MODE_MASK;
578 irq.level = (icr & APIC_INT_ASSERT) != 0;
579 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
580
581 if (icr & APIC_DEST_MASK)
582 return -KVM_EINVAL;
583 if (icr & APIC_SHORT_MASK)
584 return -KVM_EINVAL;
585
586 rcu_read_lock();
587 map = rcu_dereference(kvm->arch.apic_map);
588
589 if (unlikely(!map)) {
590 count = -EOPNOTSUPP;
591 goto out;
592 }
593
594 if (min > map->max_apic_id)
595 goto out;
596 /* Bits above cluster_size are masked in the caller. */
597 for_each_set_bit(i, &ipi_bitmap_low,
598 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
599 if (map->phys_map[min + i]) {
600 vcpu = map->phys_map[min + i]->vcpu;
601 count += kvm_apic_set_irq(vcpu, &irq, NULL);
602 }
603 }
604
605 min += cluster_size;
606
607 if (min > map->max_apic_id)
608 goto out;
609
610 for_each_set_bit(i, &ipi_bitmap_high,
611 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
612 if (map->phys_map[min + i]) {
613 vcpu = map->phys_map[min + i]->vcpu;
614 count += kvm_apic_set_irq(vcpu, &irq, NULL);
615 }
616 }
617
618 out:
619 rcu_read_unlock();
620 return count;
621 }
622
623 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
624 {
625
626 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
627 sizeof(val));
628 }
629
630 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
631 {
632
633 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
634 sizeof(*val));
635 }
636
637 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
638 {
639 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
640 }
641
642 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
643 {
644 u8 val;
645 if (pv_eoi_get_user(vcpu, &val) < 0)
646 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
647 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
648 return val & 0x1;
649 }
650
651 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
652 {
653 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
654 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
655 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
656 return;
657 }
658 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
659 }
660
661 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
662 {
663 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
664 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
665 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
666 return;
667 }
668 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
669 }
670
671 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
672 {
673 int highest_irr;
674 if (apic->vcpu->arch.apicv_active)
675 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
676 else
677 highest_irr = apic_find_highest_irr(apic);
678 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
679 return -1;
680 return highest_irr;
681 }
682
683 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
684 {
685 u32 tpr, isrv, ppr, old_ppr;
686 int isr;
687
688 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
689 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
690 isr = apic_find_highest_isr(apic);
691 isrv = (isr != -1) ? isr : 0;
692
693 if ((tpr & 0xf0) >= (isrv & 0xf0))
694 ppr = tpr & 0xff;
695 else
696 ppr = isrv & 0xf0;
697
698 *new_ppr = ppr;
699 if (old_ppr != ppr)
700 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
701
702 return ppr < old_ppr;
703 }
704
705 static void apic_update_ppr(struct kvm_lapic *apic)
706 {
707 u32 ppr;
708
709 if (__apic_update_ppr(apic, &ppr) &&
710 apic_has_interrupt_for_ppr(apic, ppr) != -1)
711 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
712 }
713
714 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
715 {
716 apic_update_ppr(vcpu->arch.apic);
717 }
718 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
719
720 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
721 {
722 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
723 apic_update_ppr(apic);
724 }
725
726 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
727 {
728 return mda == (apic_x2apic_mode(apic) ?
729 X2APIC_BROADCAST : APIC_BROADCAST);
730 }
731
732 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
733 {
734 if (kvm_apic_broadcast(apic, mda))
735 return true;
736
737 if (apic_x2apic_mode(apic))
738 return mda == kvm_x2apic_id(apic);
739
740 /*
741 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
742 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and
743 * this allows unique addressing of VCPUs with APIC ID over 0xff.
744 * The 0xff condition is needed because writeable xAPIC ID.
745 */
746 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
747 return true;
748
749 return mda == kvm_xapic_id(apic);
750 }
751
752 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
753 {
754 u32 logical_id;
755
756 if (kvm_apic_broadcast(apic, mda))
757 return true;
758
759 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
760
761 if (apic_x2apic_mode(apic))
762 return ((logical_id >> 16) == (mda >> 16))
763 && (logical_id & mda & 0xffff) != 0;
764
765 logical_id = GET_APIC_LOGICAL_ID(logical_id);
766
767 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
768 case APIC_DFR_FLAT:
769 return (logical_id & mda) != 0;
770 case APIC_DFR_CLUSTER:
771 return ((logical_id >> 4) == (mda >> 4))
772 && (logical_id & mda & 0xf) != 0;
773 default:
774 return false;
775 }
776 }
777
778 /* The KVM local APIC implementation has two quirks:
779 *
780 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
781 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
782 * KVM doesn't do that aliasing.
783 *
784 * - in-kernel IOAPIC messages have to be delivered directly to
785 * x2APIC, because the kernel does not support interrupt remapping.
786 * In order to support broadcast without interrupt remapping, x2APIC
787 * rewrites the destination of non-IPI messages from APIC_BROADCAST
788 * to X2APIC_BROADCAST.
789 *
790 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
791 * important when userspace wants to use x2APIC-format MSIs, because
792 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
793 */
794 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
795 struct kvm_lapic *source, struct kvm_lapic *target)
796 {
797 bool ipi = source != NULL;
798
799 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
800 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
801 return X2APIC_BROADCAST;
802
803 return dest_id;
804 }
805
806 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
807 int short_hand, unsigned int dest, int dest_mode)
808 {
809 struct kvm_lapic *target = vcpu->arch.apic;
810 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
811
812 ASSERT(target);
813 switch (short_hand) {
814 case APIC_DEST_NOSHORT:
815 if (dest_mode == APIC_DEST_PHYSICAL)
816 return kvm_apic_match_physical_addr(target, mda);
817 else
818 return kvm_apic_match_logical_addr(target, mda);
819 case APIC_DEST_SELF:
820 return target == source;
821 case APIC_DEST_ALLINC:
822 return true;
823 case APIC_DEST_ALLBUT:
824 return target != source;
825 default:
826 return false;
827 }
828 }
829 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
830
831 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
832 const unsigned long *bitmap, u32 bitmap_size)
833 {
834 u32 mod;
835 int i, idx = -1;
836
837 mod = vector % dest_vcpus;
838
839 for (i = 0; i <= mod; i++) {
840 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
841 BUG_ON(idx == bitmap_size);
842 }
843
844 return idx;
845 }
846
847 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
848 {
849 if (!kvm->arch.disabled_lapic_found) {
850 kvm->arch.disabled_lapic_found = true;
851 printk(KERN_INFO
852 "Disabled LAPIC found during irq injection\n");
853 }
854 }
855
856 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
857 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
858 {
859 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
860 if ((irq->dest_id == APIC_BROADCAST &&
861 map->mode != KVM_APIC_MODE_X2APIC))
862 return true;
863 if (irq->dest_id == X2APIC_BROADCAST)
864 return true;
865 } else {
866 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
867 if (irq->dest_id == (x2apic_ipi ?
868 X2APIC_BROADCAST : APIC_BROADCAST))
869 return true;
870 }
871
872 return false;
873 }
874
875 /* Return true if the interrupt can be handled by using *bitmap as index mask
876 * for valid destinations in *dst array.
877 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
878 * Note: we may have zero kvm_lapic destinations when we return true, which
879 * means that the interrupt should be dropped. In this case, *bitmap would be
880 * zero and *dst undefined.
881 */
882 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
883 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
884 struct kvm_apic_map *map, struct kvm_lapic ***dst,
885 unsigned long *bitmap)
886 {
887 int i, lowest;
888
889 if (irq->shorthand == APIC_DEST_SELF && src) {
890 *dst = src;
891 *bitmap = 1;
892 return true;
893 } else if (irq->shorthand)
894 return false;
895
896 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
897 return false;
898
899 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
900 if (irq->dest_id > map->max_apic_id) {
901 *bitmap = 0;
902 } else {
903 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
904 *dst = &map->phys_map[dest_id];
905 *bitmap = 1;
906 }
907 return true;
908 }
909
910 *bitmap = 0;
911 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
912 (u16 *)bitmap))
913 return false;
914
915 if (!kvm_lowest_prio_delivery(irq))
916 return true;
917
918 if (!kvm_vector_hashing_enabled()) {
919 lowest = -1;
920 for_each_set_bit(i, bitmap, 16) {
921 if (!(*dst)[i])
922 continue;
923 if (lowest < 0)
924 lowest = i;
925 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
926 (*dst)[lowest]->vcpu) < 0)
927 lowest = i;
928 }
929 } else {
930 if (!*bitmap)
931 return true;
932
933 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
934 bitmap, 16);
935
936 if (!(*dst)[lowest]) {
937 kvm_apic_disabled_lapic_found(kvm);
938 *bitmap = 0;
939 return true;
940 }
941 }
942
943 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
944
945 return true;
946 }
947
948 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
949 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
950 {
951 struct kvm_apic_map *map;
952 unsigned long bitmap;
953 struct kvm_lapic **dst = NULL;
954 int i;
955 bool ret;
956
957 *r = -1;
958
959 if (irq->shorthand == APIC_DEST_SELF) {
960 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
961 return true;
962 }
963
964 rcu_read_lock();
965 map = rcu_dereference(kvm->arch.apic_map);
966
967 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
968 if (ret) {
969 *r = 0;
970 for_each_set_bit(i, &bitmap, 16) {
971 if (!dst[i])
972 continue;
973 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
974 }
975 }
976
977 rcu_read_unlock();
978 return ret;
979 }
980
981 /*
982 * This routine tries to handler interrupts in posted mode, here is how
983 * it deals with different cases:
984 * - For single-destination interrupts, handle it in posted mode
985 * - Else if vector hashing is enabled and it is a lowest-priority
986 * interrupt, handle it in posted mode and use the following mechanism
987 * to find the destinaiton vCPU.
988 * 1. For lowest-priority interrupts, store all the possible
989 * destination vCPUs in an array.
990 * 2. Use "guest vector % max number of destination vCPUs" to find
991 * the right destination vCPU in the array for the lowest-priority
992 * interrupt.
993 * - Otherwise, use remapped mode to inject the interrupt.
994 */
995 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
996 struct kvm_vcpu **dest_vcpu)
997 {
998 struct kvm_apic_map *map;
999 unsigned long bitmap;
1000 struct kvm_lapic **dst = NULL;
1001 bool ret = false;
1002
1003 if (irq->shorthand)
1004 return false;
1005
1006 rcu_read_lock();
1007 map = rcu_dereference(kvm->arch.apic_map);
1008
1009 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1010 hweight16(bitmap) == 1) {
1011 unsigned long i = find_first_bit(&bitmap, 16);
1012
1013 if (dst[i]) {
1014 *dest_vcpu = dst[i]->vcpu;
1015 ret = true;
1016 }
1017 }
1018
1019 rcu_read_unlock();
1020 return ret;
1021 }
1022
1023 /*
1024 * Add a pending IRQ into lapic.
1025 * Return 1 if successfully added and 0 if discarded.
1026 */
1027 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1028 int vector, int level, int trig_mode,
1029 struct dest_map *dest_map)
1030 {
1031 int result = 0;
1032 struct kvm_vcpu *vcpu = apic->vcpu;
1033
1034 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1035 trig_mode, vector);
1036 switch (delivery_mode) {
1037 case APIC_DM_LOWEST:
1038 vcpu->arch.apic_arb_prio++;
1039 /* fall through */
1040 case APIC_DM_FIXED:
1041 if (unlikely(trig_mode && !level))
1042 break;
1043
1044 /* FIXME add logic for vcpu on reset */
1045 if (unlikely(!apic_enabled(apic)))
1046 break;
1047
1048 result = 1;
1049
1050 if (dest_map) {
1051 __set_bit(vcpu->vcpu_id, dest_map->map);
1052 dest_map->vectors[vcpu->vcpu_id] = vector;
1053 }
1054
1055 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1056 if (trig_mode)
1057 kvm_lapic_set_vector(vector,
1058 apic->regs + APIC_TMR);
1059 else
1060 kvm_lapic_clear_vector(vector,
1061 apic->regs + APIC_TMR);
1062 }
1063
1064 if (vcpu->arch.apicv_active)
1065 kvm_x86_ops->deliver_posted_interrupt(vcpu, vector);
1066 else {
1067 kvm_lapic_set_irr(vector, apic);
1068
1069 kvm_make_request(KVM_REQ_EVENT, vcpu);
1070 kvm_vcpu_kick(vcpu);
1071 }
1072 break;
1073
1074 case APIC_DM_REMRD:
1075 result = 1;
1076 vcpu->arch.pv.pv_unhalted = 1;
1077 kvm_make_request(KVM_REQ_EVENT, vcpu);
1078 kvm_vcpu_kick(vcpu);
1079 break;
1080
1081 case APIC_DM_SMI:
1082 result = 1;
1083 kvm_make_request(KVM_REQ_SMI, vcpu);
1084 kvm_vcpu_kick(vcpu);
1085 break;
1086
1087 case APIC_DM_NMI:
1088 result = 1;
1089 kvm_inject_nmi(vcpu);
1090 kvm_vcpu_kick(vcpu);
1091 break;
1092
1093 case APIC_DM_INIT:
1094 if (!trig_mode || level) {
1095 result = 1;
1096 /* assumes that there are only KVM_APIC_INIT/SIPI */
1097 apic->pending_events = (1UL << KVM_APIC_INIT);
1098 /* make sure pending_events is visible before sending
1099 * the request */
1100 smp_wmb();
1101 kvm_make_request(KVM_REQ_EVENT, vcpu);
1102 kvm_vcpu_kick(vcpu);
1103 }
1104 break;
1105
1106 case APIC_DM_STARTUP:
1107 result = 1;
1108 apic->sipi_vector = vector;
1109 /* make sure sipi_vector is visible for the receiver */
1110 smp_wmb();
1111 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1112 kvm_make_request(KVM_REQ_EVENT, vcpu);
1113 kvm_vcpu_kick(vcpu);
1114 break;
1115
1116 case APIC_DM_EXTINT:
1117 /*
1118 * Should only be called by kvm_apic_local_deliver() with LVT0,
1119 * before NMI watchdog was enabled. Already handled by
1120 * kvm_apic_accept_pic_intr().
1121 */
1122 break;
1123
1124 default:
1125 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1126 delivery_mode);
1127 break;
1128 }
1129 return result;
1130 }
1131
1132 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1133 {
1134 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1135 }
1136
1137 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1138 {
1139 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1140 }
1141
1142 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1143 {
1144 int trigger_mode;
1145
1146 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1147 if (!kvm_ioapic_handles_vector(apic, vector))
1148 return;
1149
1150 /* Request a KVM exit to inform the userspace IOAPIC. */
1151 if (irqchip_split(apic->vcpu->kvm)) {
1152 apic->vcpu->arch.pending_ioapic_eoi = vector;
1153 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1154 return;
1155 }
1156
1157 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1158 trigger_mode = IOAPIC_LEVEL_TRIG;
1159 else
1160 trigger_mode = IOAPIC_EDGE_TRIG;
1161
1162 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1163 }
1164
1165 static int apic_set_eoi(struct kvm_lapic *apic)
1166 {
1167 int vector = apic_find_highest_isr(apic);
1168
1169 trace_kvm_eoi(apic, vector);
1170
1171 /*
1172 * Not every write EOI will has corresponding ISR,
1173 * one example is when Kernel check timer on setup_IO_APIC
1174 */
1175 if (vector == -1)
1176 return vector;
1177
1178 apic_clear_isr(vector, apic);
1179 apic_update_ppr(apic);
1180
1181 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1182 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1183
1184 kvm_ioapic_send_eoi(apic, vector);
1185 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1186 return vector;
1187 }
1188
1189 /*
1190 * this interface assumes a trap-like exit, which has already finished
1191 * desired side effect including vISR and vPPR update.
1192 */
1193 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1194 {
1195 struct kvm_lapic *apic = vcpu->arch.apic;
1196
1197 trace_kvm_eoi(apic, vector);
1198
1199 kvm_ioapic_send_eoi(apic, vector);
1200 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1203
1204 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1205 {
1206 struct kvm_lapic_irq irq;
1207
1208 irq.vector = icr_low & APIC_VECTOR_MASK;
1209 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1210 irq.dest_mode = icr_low & APIC_DEST_MASK;
1211 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1212 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1213 irq.shorthand = icr_low & APIC_SHORT_MASK;
1214 irq.msi_redir_hint = false;
1215 if (apic_x2apic_mode(apic))
1216 irq.dest_id = icr_high;
1217 else
1218 irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1219
1220 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1221
1222 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1223 }
1224
1225 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1226 {
1227 ktime_t remaining, now;
1228 s64 ns;
1229 u32 tmcct;
1230
1231 ASSERT(apic != NULL);
1232
1233 /* if initial count is 0, current count should also be 0 */
1234 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1235 apic->lapic_timer.period == 0)
1236 return 0;
1237
1238 now = ktime_get();
1239 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1240 if (ktime_to_ns(remaining) < 0)
1241 remaining = 0;
1242
1243 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1244 tmcct = div64_u64(ns,
1245 (APIC_BUS_CYCLE_NS * apic->divide_count));
1246
1247 return tmcct;
1248 }
1249
1250 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1251 {
1252 struct kvm_vcpu *vcpu = apic->vcpu;
1253 struct kvm_run *run = vcpu->run;
1254
1255 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1256 run->tpr_access.rip = kvm_rip_read(vcpu);
1257 run->tpr_access.is_write = write;
1258 }
1259
1260 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1261 {
1262 if (apic->vcpu->arch.tpr_access_reporting)
1263 __report_tpr_access(apic, write);
1264 }
1265
1266 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1267 {
1268 u32 val = 0;
1269
1270 if (offset >= LAPIC_MMIO_LENGTH)
1271 return 0;
1272
1273 switch (offset) {
1274 case APIC_ARBPRI:
1275 break;
1276
1277 case APIC_TMCCT: /* Timer CCR */
1278 if (apic_lvtt_tscdeadline(apic))
1279 return 0;
1280
1281 val = apic_get_tmcct(apic);
1282 break;
1283 case APIC_PROCPRI:
1284 apic_update_ppr(apic);
1285 val = kvm_lapic_get_reg(apic, offset);
1286 break;
1287 case APIC_TASKPRI:
1288 report_tpr_access(apic, false);
1289 /* fall thru */
1290 default:
1291 val = kvm_lapic_get_reg(apic, offset);
1292 break;
1293 }
1294
1295 return val;
1296 }
1297
1298 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1299 {
1300 return container_of(dev, struct kvm_lapic, dev);
1301 }
1302
1303 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1304 #define APIC_REGS_MASK(first, count) \
1305 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1306
1307 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1308 void *data)
1309 {
1310 unsigned char alignment = offset & 0xf;
1311 u32 result;
1312 /* this bitmask has a bit cleared for each reserved register */
1313 u64 valid_reg_mask =
1314 APIC_REG_MASK(APIC_ID) |
1315 APIC_REG_MASK(APIC_LVR) |
1316 APIC_REG_MASK(APIC_TASKPRI) |
1317 APIC_REG_MASK(APIC_PROCPRI) |
1318 APIC_REG_MASK(APIC_LDR) |
1319 APIC_REG_MASK(APIC_DFR) |
1320 APIC_REG_MASK(APIC_SPIV) |
1321 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1322 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1323 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1324 APIC_REG_MASK(APIC_ESR) |
1325 APIC_REG_MASK(APIC_ICR) |
1326 APIC_REG_MASK(APIC_ICR2) |
1327 APIC_REG_MASK(APIC_LVTT) |
1328 APIC_REG_MASK(APIC_LVTTHMR) |
1329 APIC_REG_MASK(APIC_LVTPC) |
1330 APIC_REG_MASK(APIC_LVT0) |
1331 APIC_REG_MASK(APIC_LVT1) |
1332 APIC_REG_MASK(APIC_LVTERR) |
1333 APIC_REG_MASK(APIC_TMICT) |
1334 APIC_REG_MASK(APIC_TMCCT) |
1335 APIC_REG_MASK(APIC_TDCR);
1336
1337 /* ARBPRI is not valid on x2APIC */
1338 if (!apic_x2apic_mode(apic))
1339 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1340
1341 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1342 return 1;
1343
1344 result = __apic_read(apic, offset & ~0xf);
1345
1346 trace_kvm_apic_read(offset, result);
1347
1348 switch (len) {
1349 case 1:
1350 case 2:
1351 case 4:
1352 memcpy(data, (char *)&result + alignment, len);
1353 break;
1354 default:
1355 printk(KERN_ERR "Local APIC read with len = %x, "
1356 "should be 1,2, or 4 instead\n", len);
1357 break;
1358 }
1359 return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1362
1363 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1364 {
1365 return addr >= apic->base_address &&
1366 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1367 }
1368
1369 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1370 gpa_t address, int len, void *data)
1371 {
1372 struct kvm_lapic *apic = to_lapic(this);
1373 u32 offset = address - apic->base_address;
1374
1375 if (!apic_mmio_in_range(apic, address))
1376 return -EOPNOTSUPP;
1377
1378 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1379 if (!kvm_check_has_quirk(vcpu->kvm,
1380 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1381 return -EOPNOTSUPP;
1382
1383 memset(data, 0xff, len);
1384 return 0;
1385 }
1386
1387 kvm_lapic_reg_read(apic, offset, len, data);
1388
1389 return 0;
1390 }
1391
1392 static void update_divide_count(struct kvm_lapic *apic)
1393 {
1394 u32 tmp1, tmp2, tdcr;
1395
1396 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1397 tmp1 = tdcr & 0xf;
1398 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1399 apic->divide_count = 0x1 << (tmp2 & 0x7);
1400 }
1401
1402 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1403 {
1404 /*
1405 * Do not allow the guest to program periodic timers with small
1406 * interval, since the hrtimers are not throttled by the host
1407 * scheduler.
1408 */
1409 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1410 s64 min_period = min_timer_period_us * 1000LL;
1411
1412 if (apic->lapic_timer.period < min_period) {
1413 pr_info_ratelimited(
1414 "kvm: vcpu %i: requested %lld ns "
1415 "lapic timer period limited to %lld ns\n",
1416 apic->vcpu->vcpu_id,
1417 apic->lapic_timer.period, min_period);
1418 apic->lapic_timer.period = min_period;
1419 }
1420 }
1421 }
1422
1423 static void apic_update_lvtt(struct kvm_lapic *apic)
1424 {
1425 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1426 apic->lapic_timer.timer_mode_mask;
1427
1428 if (apic->lapic_timer.timer_mode != timer_mode) {
1429 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1430 APIC_LVT_TIMER_TSCDEADLINE)) {
1431 hrtimer_cancel(&apic->lapic_timer.timer);
1432 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1433 apic->lapic_timer.period = 0;
1434 apic->lapic_timer.tscdeadline = 0;
1435 }
1436 apic->lapic_timer.timer_mode = timer_mode;
1437 limit_periodic_timer_frequency(apic);
1438 }
1439 }
1440
1441 /*
1442 * On APICv, this test will cause a busy wait
1443 * during a higher-priority task.
1444 */
1445
1446 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1447 {
1448 struct kvm_lapic *apic = vcpu->arch.apic;
1449 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1450
1451 if (kvm_apic_hw_enabled(apic)) {
1452 int vec = reg & APIC_VECTOR_MASK;
1453 void *bitmap = apic->regs + APIC_ISR;
1454
1455 if (vcpu->arch.apicv_active)
1456 bitmap = apic->regs + APIC_IRR;
1457
1458 if (apic_test_vector(vec, bitmap))
1459 return true;
1460 }
1461 return false;
1462 }
1463
1464 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1465 {
1466 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1467
1468 /*
1469 * If the guest TSC is running at a different ratio than the host, then
1470 * convert the delay to nanoseconds to achieve an accurate delay. Note
1471 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1472 * always for VMX enabled hardware.
1473 */
1474 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1475 __delay(min(guest_cycles,
1476 nsec_to_cycles(vcpu, timer_advance_ns)));
1477 } else {
1478 u64 delay_ns = guest_cycles * 1000000ULL;
1479 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1480 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1481 }
1482 }
1483
1484 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1485 s64 advance_expire_delta)
1486 {
1487 struct kvm_lapic *apic = vcpu->arch.apic;
1488 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1489 u64 ns;
1490
1491 /* Do not adjust for tiny fluctuations or large random spikes. */
1492 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1493 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1494 return;
1495
1496 /* too early */
1497 if (advance_expire_delta < 0) {
1498 ns = -advance_expire_delta * 1000000ULL;
1499 do_div(ns, vcpu->arch.virtual_tsc_khz);
1500 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1501 } else {
1502 /* too late */
1503 ns = advance_expire_delta * 1000000ULL;
1504 do_div(ns, vcpu->arch.virtual_tsc_khz);
1505 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1506 }
1507
1508 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1509 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1510 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1511 }
1512
1513 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1514 {
1515 struct kvm_lapic *apic = vcpu->arch.apic;
1516 u64 guest_tsc, tsc_deadline;
1517
1518 if (apic->lapic_timer.expired_tscdeadline == 0)
1519 return;
1520
1521 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1522 apic->lapic_timer.expired_tscdeadline = 0;
1523 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1524 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1525
1526 if (guest_tsc < tsc_deadline)
1527 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1528
1529 if (lapic_timer_advance_dynamic)
1530 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1531 }
1532
1533 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1534 {
1535 if (lapic_timer_int_injected(vcpu))
1536 __kvm_wait_lapic_expire(vcpu);
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1539
1540 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1541 {
1542 struct kvm_timer *ktimer = &apic->lapic_timer;
1543
1544 kvm_apic_local_deliver(apic, APIC_LVTT);
1545 if (apic_lvtt_tscdeadline(apic))
1546 ktimer->tscdeadline = 0;
1547 if (apic_lvtt_oneshot(apic)) {
1548 ktimer->tscdeadline = 0;
1549 ktimer->target_expiration = 0;
1550 }
1551 }
1552
1553 static void apic_timer_expired(struct kvm_lapic *apic)
1554 {
1555 struct kvm_vcpu *vcpu = apic->vcpu;
1556 struct kvm_timer *ktimer = &apic->lapic_timer;
1557
1558 if (atomic_read(&apic->lapic_timer.pending))
1559 return;
1560
1561 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1562 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1563
1564 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1565 if (apic->lapic_timer.timer_advance_ns)
1566 __kvm_wait_lapic_expire(vcpu);
1567 kvm_apic_inject_pending_timer_irqs(apic);
1568 return;
1569 }
1570
1571 atomic_inc(&apic->lapic_timer.pending);
1572 kvm_set_pending_timer(vcpu);
1573 }
1574
1575 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1576 {
1577 struct kvm_timer *ktimer = &apic->lapic_timer;
1578 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1579 u64 ns = 0;
1580 ktime_t expire;
1581 struct kvm_vcpu *vcpu = apic->vcpu;
1582 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1583 unsigned long flags;
1584 ktime_t now;
1585
1586 if (unlikely(!tscdeadline || !this_tsc_khz))
1587 return;
1588
1589 local_irq_save(flags);
1590
1591 now = ktime_get();
1592 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1593
1594 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1595 do_div(ns, this_tsc_khz);
1596
1597 if (likely(tscdeadline > guest_tsc) &&
1598 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1599 expire = ktime_add_ns(now, ns);
1600 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1601 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1602 } else
1603 apic_timer_expired(apic);
1604
1605 local_irq_restore(flags);
1606 }
1607
1608 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1609 {
1610 ktime_t now, remaining;
1611 u64 ns_remaining_old, ns_remaining_new;
1612
1613 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1614 * APIC_BUS_CYCLE_NS * apic->divide_count;
1615 limit_periodic_timer_frequency(apic);
1616
1617 now = ktime_get();
1618 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1619 if (ktime_to_ns(remaining) < 0)
1620 remaining = 0;
1621
1622 ns_remaining_old = ktime_to_ns(remaining);
1623 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1624 apic->divide_count, old_divisor);
1625
1626 apic->lapic_timer.tscdeadline +=
1627 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1628 nsec_to_cycles(apic->vcpu, ns_remaining_old);
1629 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1630 }
1631
1632 static bool set_target_expiration(struct kvm_lapic *apic)
1633 {
1634 ktime_t now;
1635 u64 tscl = rdtsc();
1636
1637 now = ktime_get();
1638 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1639 * APIC_BUS_CYCLE_NS * apic->divide_count;
1640
1641 if (!apic->lapic_timer.period) {
1642 apic->lapic_timer.tscdeadline = 0;
1643 return false;
1644 }
1645
1646 limit_periodic_timer_frequency(apic);
1647
1648 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1649 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
1650 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period);
1651
1652 return true;
1653 }
1654
1655 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1656 {
1657 ktime_t now = ktime_get();
1658 u64 tscl = rdtsc();
1659 ktime_t delta;
1660
1661 /*
1662 * Synchronize both deadlines to the same time source or
1663 * differences in the periods (caused by differences in the
1664 * underlying clocks or numerical approximation errors) will
1665 * cause the two to drift apart over time as the errors
1666 * accumulate.
1667 */
1668 apic->lapic_timer.target_expiration =
1669 ktime_add_ns(apic->lapic_timer.target_expiration,
1670 apic->lapic_timer.period);
1671 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1672 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1673 nsec_to_cycles(apic->vcpu, delta);
1674 }
1675
1676 static void start_sw_period(struct kvm_lapic *apic)
1677 {
1678 if (!apic->lapic_timer.period)
1679 return;
1680
1681 if (ktime_after(ktime_get(),
1682 apic->lapic_timer.target_expiration)) {
1683 apic_timer_expired(apic);
1684
1685 if (apic_lvtt_oneshot(apic))
1686 return;
1687
1688 advance_periodic_target_expiration(apic);
1689 }
1690
1691 hrtimer_start(&apic->lapic_timer.timer,
1692 apic->lapic_timer.target_expiration,
1693 HRTIMER_MODE_ABS);
1694 }
1695
1696 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1697 {
1698 if (!lapic_in_kernel(vcpu))
1699 return false;
1700
1701 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1704
1705 static void cancel_hv_timer(struct kvm_lapic *apic)
1706 {
1707 WARN_ON(preemptible());
1708 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1709 kvm_x86_ops->cancel_hv_timer(apic->vcpu);
1710 apic->lapic_timer.hv_timer_in_use = false;
1711 }
1712
1713 static bool start_hv_timer(struct kvm_lapic *apic)
1714 {
1715 struct kvm_timer *ktimer = &apic->lapic_timer;
1716 struct kvm_vcpu *vcpu = apic->vcpu;
1717 bool expired;
1718
1719 WARN_ON(preemptible());
1720 if (!kvm_x86_ops->set_hv_timer)
1721 return false;
1722
1723 if (!ktimer->tscdeadline)
1724 return false;
1725
1726 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired))
1727 return false;
1728
1729 ktimer->hv_timer_in_use = true;
1730 hrtimer_cancel(&ktimer->timer);
1731
1732 /*
1733 * To simplify handling the periodic timer, leave the hv timer running
1734 * even if the deadline timer has expired, i.e. rely on the resulting
1735 * VM-Exit to recompute the periodic timer's target expiration.
1736 */
1737 if (!apic_lvtt_period(apic)) {
1738 /*
1739 * Cancel the hv timer if the sw timer fired while the hv timer
1740 * was being programmed, or if the hv timer itself expired.
1741 */
1742 if (atomic_read(&ktimer->pending)) {
1743 cancel_hv_timer(apic);
1744 } else if (expired) {
1745 apic_timer_expired(apic);
1746 cancel_hv_timer(apic);
1747 }
1748 }
1749
1750 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1751
1752 return true;
1753 }
1754
1755 static void start_sw_timer(struct kvm_lapic *apic)
1756 {
1757 struct kvm_timer *ktimer = &apic->lapic_timer;
1758
1759 WARN_ON(preemptible());
1760 if (apic->lapic_timer.hv_timer_in_use)
1761 cancel_hv_timer(apic);
1762 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1763 return;
1764
1765 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1766 start_sw_period(apic);
1767 else if (apic_lvtt_tscdeadline(apic))
1768 start_sw_tscdeadline(apic);
1769 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1770 }
1771
1772 static void restart_apic_timer(struct kvm_lapic *apic)
1773 {
1774 preempt_disable();
1775
1776 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1777 goto out;
1778
1779 if (!start_hv_timer(apic))
1780 start_sw_timer(apic);
1781 out:
1782 preempt_enable();
1783 }
1784
1785 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1786 {
1787 struct kvm_lapic *apic = vcpu->arch.apic;
1788
1789 preempt_disable();
1790 /* If the preempt notifier has already run, it also called apic_timer_expired */
1791 if (!apic->lapic_timer.hv_timer_in_use)
1792 goto out;
1793 WARN_ON(swait_active(&vcpu->wq));
1794 cancel_hv_timer(apic);
1795 apic_timer_expired(apic);
1796
1797 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1798 advance_periodic_target_expiration(apic);
1799 restart_apic_timer(apic);
1800 }
1801 out:
1802 preempt_enable();
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1805
1806 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1807 {
1808 restart_apic_timer(vcpu->arch.apic);
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1811
1812 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1813 {
1814 struct kvm_lapic *apic = vcpu->arch.apic;
1815
1816 preempt_disable();
1817 /* Possibly the TSC deadline timer is not enabled yet */
1818 if (apic->lapic_timer.hv_timer_in_use)
1819 start_sw_timer(apic);
1820 preempt_enable();
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1823
1824 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1825 {
1826 struct kvm_lapic *apic = vcpu->arch.apic;
1827
1828 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1829 restart_apic_timer(apic);
1830 }
1831
1832 static void start_apic_timer(struct kvm_lapic *apic)
1833 {
1834 atomic_set(&apic->lapic_timer.pending, 0);
1835
1836 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1837 && !set_target_expiration(apic))
1838 return;
1839
1840 restart_apic_timer(apic);
1841 }
1842
1843 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1844 {
1845 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1846
1847 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1848 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1849 if (lvt0_in_nmi_mode) {
1850 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1851 } else
1852 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1853 }
1854 }
1855
1856 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1857 {
1858 int ret = 0;
1859
1860 trace_kvm_apic_write(reg, val);
1861
1862 switch (reg) {
1863 case APIC_ID: /* Local APIC ID */
1864 if (!apic_x2apic_mode(apic))
1865 kvm_apic_set_xapic_id(apic, val >> 24);
1866 else
1867 ret = 1;
1868 break;
1869
1870 case APIC_TASKPRI:
1871 report_tpr_access(apic, true);
1872 apic_set_tpr(apic, val & 0xff);
1873 break;
1874
1875 case APIC_EOI:
1876 apic_set_eoi(apic);
1877 break;
1878
1879 case APIC_LDR:
1880 if (!apic_x2apic_mode(apic))
1881 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1882 else
1883 ret = 1;
1884 break;
1885
1886 case APIC_DFR:
1887 if (!apic_x2apic_mode(apic)) {
1888 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
1889 recalculate_apic_map(apic->vcpu->kvm);
1890 } else
1891 ret = 1;
1892 break;
1893
1894 case APIC_SPIV: {
1895 u32 mask = 0x3ff;
1896 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
1897 mask |= APIC_SPIV_DIRECTED_EOI;
1898 apic_set_spiv(apic, val & mask);
1899 if (!(val & APIC_SPIV_APIC_ENABLED)) {
1900 int i;
1901 u32 lvt_val;
1902
1903 for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
1904 lvt_val = kvm_lapic_get_reg(apic,
1905 APIC_LVTT + 0x10 * i);
1906 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
1907 lvt_val | APIC_LVT_MASKED);
1908 }
1909 apic_update_lvtt(apic);
1910 atomic_set(&apic->lapic_timer.pending, 0);
1911
1912 }
1913 break;
1914 }
1915 case APIC_ICR:
1916 /* No delay here, so we always clear the pending bit */
1917 val &= ~(1 << 12);
1918 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
1919 kvm_lapic_set_reg(apic, APIC_ICR, val);
1920 break;
1921
1922 case APIC_ICR2:
1923 if (!apic_x2apic_mode(apic))
1924 val &= 0xff000000;
1925 kvm_lapic_set_reg(apic, APIC_ICR2, val);
1926 break;
1927
1928 case APIC_LVT0:
1929 apic_manage_nmi_watchdog(apic, val);
1930 /* fall through */
1931 case APIC_LVTTHMR:
1932 case APIC_LVTPC:
1933 case APIC_LVT1:
1934 case APIC_LVTERR:
1935 /* TODO: Check vector */
1936 if (!kvm_apic_sw_enabled(apic))
1937 val |= APIC_LVT_MASKED;
1938
1939 val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4];
1940 kvm_lapic_set_reg(apic, reg, val);
1941
1942 break;
1943
1944 case APIC_LVTT:
1945 if (!kvm_apic_sw_enabled(apic))
1946 val |= APIC_LVT_MASKED;
1947 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
1948 kvm_lapic_set_reg(apic, APIC_LVTT, val);
1949 apic_update_lvtt(apic);
1950 break;
1951
1952 case APIC_TMICT:
1953 if (apic_lvtt_tscdeadline(apic))
1954 break;
1955
1956 hrtimer_cancel(&apic->lapic_timer.timer);
1957 kvm_lapic_set_reg(apic, APIC_TMICT, val);
1958 start_apic_timer(apic);
1959 break;
1960
1961 case APIC_TDCR: {
1962 uint32_t old_divisor = apic->divide_count;
1963
1964 kvm_lapic_set_reg(apic, APIC_TDCR, val);
1965 update_divide_count(apic);
1966 if (apic->divide_count != old_divisor &&
1967 apic->lapic_timer.period) {
1968 hrtimer_cancel(&apic->lapic_timer.timer);
1969 update_target_expiration(apic, old_divisor);
1970 restart_apic_timer(apic);
1971 }
1972 break;
1973 }
1974 case APIC_ESR:
1975 if (apic_x2apic_mode(apic) && val != 0)
1976 ret = 1;
1977 break;
1978
1979 case APIC_SELF_IPI:
1980 if (apic_x2apic_mode(apic)) {
1981 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff));
1982 } else
1983 ret = 1;
1984 break;
1985 default:
1986 ret = 1;
1987 break;
1988 }
1989
1990 return ret;
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
1993
1994 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1995 gpa_t address, int len, const void *data)
1996 {
1997 struct kvm_lapic *apic = to_lapic(this);
1998 unsigned int offset = address - apic->base_address;
1999 u32 val;
2000
2001 if (!apic_mmio_in_range(apic, address))
2002 return -EOPNOTSUPP;
2003
2004 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2005 if (!kvm_check_has_quirk(vcpu->kvm,
2006 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2007 return -EOPNOTSUPP;
2008
2009 return 0;
2010 }
2011
2012 /*
2013 * APIC register must be aligned on 128-bits boundary.
2014 * 32/64/128 bits registers must be accessed thru 32 bits.
2015 * Refer SDM 8.4.1
2016 */
2017 if (len != 4 || (offset & 0xf))
2018 return 0;
2019
2020 val = *(u32*)data;
2021
2022 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2023
2024 return 0;
2025 }
2026
2027 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2028 {
2029 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2032
2033 /* emulate APIC access in a trap manner */
2034 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2035 {
2036 u32 val = 0;
2037
2038 /* hw has done the conditional check and inst decode */
2039 offset &= 0xff0;
2040
2041 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2042
2043 /* TODO: optimize to just emulate side effect w/o one more write */
2044 kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2047
2048 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2049 {
2050 struct kvm_lapic *apic = vcpu->arch.apic;
2051
2052 if (!vcpu->arch.apic)
2053 return;
2054
2055 hrtimer_cancel(&apic->lapic_timer.timer);
2056
2057 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2058 static_key_slow_dec_deferred(&apic_hw_disabled);
2059
2060 if (!apic->sw_enabled)
2061 static_key_slow_dec_deferred(&apic_sw_disabled);
2062
2063 if (apic->regs)
2064 free_page((unsigned long)apic->regs);
2065
2066 kfree(apic);
2067 }
2068
2069 /*
2070 *----------------------------------------------------------------------
2071 * LAPIC interface
2072 *----------------------------------------------------------------------
2073 */
2074 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2075 {
2076 struct kvm_lapic *apic = vcpu->arch.apic;
2077
2078 if (!lapic_in_kernel(vcpu) ||
2079 !apic_lvtt_tscdeadline(apic))
2080 return 0;
2081
2082 return apic->lapic_timer.tscdeadline;
2083 }
2084
2085 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2086 {
2087 struct kvm_lapic *apic = vcpu->arch.apic;
2088
2089 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) ||
2090 apic_lvtt_period(apic))
2091 return;
2092
2093 hrtimer_cancel(&apic->lapic_timer.timer);
2094 apic->lapic_timer.tscdeadline = data;
2095 start_apic_timer(apic);
2096 }
2097
2098 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2099 {
2100 struct kvm_lapic *apic = vcpu->arch.apic;
2101
2102 apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2103 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2104 }
2105
2106 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2107 {
2108 u64 tpr;
2109
2110 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2111
2112 return (tpr & 0xf0) >> 4;
2113 }
2114
2115 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2116 {
2117 u64 old_value = vcpu->arch.apic_base;
2118 struct kvm_lapic *apic = vcpu->arch.apic;
2119
2120 if (!apic)
2121 value |= MSR_IA32_APICBASE_BSP;
2122
2123 vcpu->arch.apic_base = value;
2124
2125 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2126 kvm_update_cpuid(vcpu);
2127
2128 if (!apic)
2129 return;
2130
2131 /* update jump label if enable bit changes */
2132 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2133 if (value & MSR_IA32_APICBASE_ENABLE) {
2134 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2135 static_key_slow_dec_deferred(&apic_hw_disabled);
2136 } else {
2137 static_key_slow_inc(&apic_hw_disabled.key);
2138 recalculate_apic_map(vcpu->kvm);
2139 }
2140 }
2141
2142 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2143 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2144
2145 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2146 kvm_x86_ops->set_virtual_apic_mode(vcpu);
2147
2148 apic->base_address = apic->vcpu->arch.apic_base &
2149 MSR_IA32_APICBASE_BASE;
2150
2151 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2152 apic->base_address != APIC_DEFAULT_PHYS_BASE)
2153 pr_warn_once("APIC base relocation is unsupported by KVM");
2154 }
2155
2156 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2157 {
2158 struct kvm_lapic *apic = vcpu->arch.apic;
2159 int i;
2160
2161 if (!apic)
2162 return;
2163
2164 /* Stop the timer in case it's a reset to an active apic */
2165 hrtimer_cancel(&apic->lapic_timer.timer);
2166
2167 if (!init_event) {
2168 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2169 MSR_IA32_APICBASE_ENABLE);
2170 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2171 }
2172 kvm_apic_set_version(apic->vcpu);
2173
2174 for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2175 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2176 apic_update_lvtt(apic);
2177 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2178 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2179 kvm_lapic_set_reg(apic, APIC_LVT0,
2180 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2181 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2182
2183 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU);
2184 apic_set_spiv(apic, 0xff);
2185 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2186 if (!apic_x2apic_mode(apic))
2187 kvm_apic_set_ldr(apic, 0);
2188 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2189 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2190 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2191 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2192 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2193 for (i = 0; i < 8; i++) {
2194 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2195 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2196 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2197 }
2198 apic->irr_pending = vcpu->arch.apicv_active;
2199 apic->isr_count = vcpu->arch.apicv_active ? 1 : 0;
2200 apic->highest_isr_cache = -1;
2201 update_divide_count(apic);
2202 atomic_set(&apic->lapic_timer.pending, 0);
2203 if (kvm_vcpu_is_bsp(vcpu))
2204 kvm_lapic_set_base(vcpu,
2205 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2206 vcpu->arch.pv_eoi.msr_val = 0;
2207 apic_update_ppr(apic);
2208 if (vcpu->arch.apicv_active) {
2209 kvm_x86_ops->apicv_post_state_restore(vcpu);
2210 kvm_x86_ops->hwapic_irr_update(vcpu, -1);
2211 kvm_x86_ops->hwapic_isr_update(vcpu, -1);
2212 }
2213
2214 vcpu->arch.apic_arb_prio = 0;
2215 vcpu->arch.apic_attention = 0;
2216 }
2217
2218 /*
2219 *----------------------------------------------------------------------
2220 * timer interface
2221 *----------------------------------------------------------------------
2222 */
2223
2224 static bool lapic_is_periodic(struct kvm_lapic *apic)
2225 {
2226 return apic_lvtt_period(apic);
2227 }
2228
2229 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2230 {
2231 struct kvm_lapic *apic = vcpu->arch.apic;
2232
2233 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2234 return atomic_read(&apic->lapic_timer.pending);
2235
2236 return 0;
2237 }
2238
2239 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2240 {
2241 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2242 int vector, mode, trig_mode;
2243
2244 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2245 vector = reg & APIC_VECTOR_MASK;
2246 mode = reg & APIC_MODE_MASK;
2247 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2248 return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2249 NULL);
2250 }
2251 return 0;
2252 }
2253
2254 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2255 {
2256 struct kvm_lapic *apic = vcpu->arch.apic;
2257
2258 if (apic)
2259 kvm_apic_local_deliver(apic, APIC_LVT0);
2260 }
2261
2262 static const struct kvm_io_device_ops apic_mmio_ops = {
2263 .read = apic_mmio_read,
2264 .write = apic_mmio_write,
2265 };
2266
2267 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2268 {
2269 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2270 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2271
2272 apic_timer_expired(apic);
2273
2274 if (lapic_is_periodic(apic)) {
2275 advance_periodic_target_expiration(apic);
2276 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2277 return HRTIMER_RESTART;
2278 } else
2279 return HRTIMER_NORESTART;
2280 }
2281
2282 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2283 {
2284 struct kvm_lapic *apic;
2285
2286 ASSERT(vcpu != NULL);
2287
2288 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2289 if (!apic)
2290 goto nomem;
2291
2292 vcpu->arch.apic = apic;
2293
2294 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2295 if (!apic->regs) {
2296 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2297 vcpu->vcpu_id);
2298 goto nomem_free_apic;
2299 }
2300 apic->vcpu = vcpu;
2301
2302 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2303 HRTIMER_MODE_ABS_HARD);
2304 apic->lapic_timer.timer.function = apic_timer_fn;
2305 if (timer_advance_ns == -1) {
2306 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2307 lapic_timer_advance_dynamic = true;
2308 } else {
2309 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2310 lapic_timer_advance_dynamic = false;
2311 }
2312
2313 /*
2314 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2315 * thinking that APIC state has changed.
2316 */
2317 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2318 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2319 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2320
2321 return 0;
2322 nomem_free_apic:
2323 kfree(apic);
2324 vcpu->arch.apic = NULL;
2325 nomem:
2326 return -ENOMEM;
2327 }
2328
2329 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2330 {
2331 struct kvm_lapic *apic = vcpu->arch.apic;
2332 u32 ppr;
2333
2334 if (!kvm_apic_hw_enabled(apic))
2335 return -1;
2336
2337 __apic_update_ppr(apic, &ppr);
2338 return apic_has_interrupt_for_ppr(apic, ppr);
2339 }
2340
2341 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2342 {
2343 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2344 int r = 0;
2345
2346 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2347 r = 1;
2348 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2349 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2350 r = 1;
2351 return r;
2352 }
2353
2354 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2355 {
2356 struct kvm_lapic *apic = vcpu->arch.apic;
2357
2358 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2359 kvm_apic_inject_pending_timer_irqs(apic);
2360 atomic_set(&apic->lapic_timer.pending, 0);
2361 }
2362 }
2363
2364 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2365 {
2366 int vector = kvm_apic_has_interrupt(vcpu);
2367 struct kvm_lapic *apic = vcpu->arch.apic;
2368 u32 ppr;
2369
2370 if (vector == -1)
2371 return -1;
2372
2373 /*
2374 * We get here even with APIC virtualization enabled, if doing
2375 * nested virtualization and L1 runs with the "acknowledge interrupt
2376 * on exit" mode. Then we cannot inject the interrupt via RVI,
2377 * because the process would deliver it through the IDT.
2378 */
2379
2380 apic_clear_irr(vector, apic);
2381 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2382 /*
2383 * For auto-EOI interrupts, there might be another pending
2384 * interrupt above PPR, so check whether to raise another
2385 * KVM_REQ_EVENT.
2386 */
2387 apic_update_ppr(apic);
2388 } else {
2389 /*
2390 * For normal interrupts, PPR has been raised and there cannot
2391 * be a higher-priority pending interrupt---except if there was
2392 * a concurrent interrupt injection, but that would have
2393 * triggered KVM_REQ_EVENT already.
2394 */
2395 apic_set_isr(vector, apic);
2396 __apic_update_ppr(apic, &ppr);
2397 }
2398
2399 return vector;
2400 }
2401
2402 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2403 struct kvm_lapic_state *s, bool set)
2404 {
2405 if (apic_x2apic_mode(vcpu->arch.apic)) {
2406 u32 *id = (u32 *)(s->regs + APIC_ID);
2407 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2408
2409 if (vcpu->kvm->arch.x2apic_format) {
2410 if (*id != vcpu->vcpu_id)
2411 return -EINVAL;
2412 } else {
2413 if (set)
2414 *id >>= 24;
2415 else
2416 *id <<= 24;
2417 }
2418
2419 /* In x2APIC mode, the LDR is fixed and based on the id */
2420 if (set)
2421 *ldr = kvm_apic_calc_x2apic_ldr(*id);
2422 }
2423
2424 return 0;
2425 }
2426
2427 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2428 {
2429 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2430 return kvm_apic_state_fixup(vcpu, s, false);
2431 }
2432
2433 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2434 {
2435 struct kvm_lapic *apic = vcpu->arch.apic;
2436 int r;
2437
2438
2439 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2440 /* set SPIV separately to get count of SW disabled APICs right */
2441 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2442
2443 r = kvm_apic_state_fixup(vcpu, s, true);
2444 if (r)
2445 return r;
2446 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2447
2448 recalculate_apic_map(vcpu->kvm);
2449 kvm_apic_set_version(vcpu);
2450
2451 apic_update_ppr(apic);
2452 hrtimer_cancel(&apic->lapic_timer.timer);
2453 apic_update_lvtt(apic);
2454 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2455 update_divide_count(apic);
2456 start_apic_timer(apic);
2457 apic->irr_pending = true;
2458 apic->isr_count = vcpu->arch.apicv_active ?
2459 1 : count_vectors(apic->regs + APIC_ISR);
2460 apic->highest_isr_cache = -1;
2461 if (vcpu->arch.apicv_active) {
2462 kvm_x86_ops->apicv_post_state_restore(vcpu);
2463 kvm_x86_ops->hwapic_irr_update(vcpu,
2464 apic_find_highest_irr(apic));
2465 kvm_x86_ops->hwapic_isr_update(vcpu,
2466 apic_find_highest_isr(apic));
2467 }
2468 kvm_make_request(KVM_REQ_EVENT, vcpu);
2469 if (ioapic_in_kernel(vcpu->kvm))
2470 kvm_rtc_eoi_tracking_restore_one(vcpu);
2471
2472 vcpu->arch.apic_arb_prio = 0;
2473
2474 return 0;
2475 }
2476
2477 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2478 {
2479 struct hrtimer *timer;
2480
2481 if (!lapic_in_kernel(vcpu) ||
2482 kvm_can_post_timer_interrupt(vcpu))
2483 return;
2484
2485 timer = &vcpu->arch.apic->lapic_timer.timer;
2486 if (hrtimer_cancel(timer))
2487 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2488 }
2489
2490 /*
2491 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2492 *
2493 * Detect whether guest triggered PV EOI since the
2494 * last entry. If yes, set EOI on guests's behalf.
2495 * Clear PV EOI in guest memory in any case.
2496 */
2497 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2498 struct kvm_lapic *apic)
2499 {
2500 bool pending;
2501 int vector;
2502 /*
2503 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2504 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2505 *
2506 * KVM_APIC_PV_EOI_PENDING is unset:
2507 * -> host disabled PV EOI.
2508 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2509 * -> host enabled PV EOI, guest did not execute EOI yet.
2510 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2511 * -> host enabled PV EOI, guest executed EOI.
2512 */
2513 BUG_ON(!pv_eoi_enabled(vcpu));
2514 pending = pv_eoi_get_pending(vcpu);
2515 /*
2516 * Clear pending bit in any case: it will be set again on vmentry.
2517 * While this might not be ideal from performance point of view,
2518 * this makes sure pv eoi is only enabled when we know it's safe.
2519 */
2520 pv_eoi_clr_pending(vcpu);
2521 if (pending)
2522 return;
2523 vector = apic_set_eoi(apic);
2524 trace_kvm_pv_eoi(apic, vector);
2525 }
2526
2527 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2528 {
2529 u32 data;
2530
2531 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2532 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2533
2534 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2535 return;
2536
2537 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2538 sizeof(u32)))
2539 return;
2540
2541 apic_set_tpr(vcpu->arch.apic, data & 0xff);
2542 }
2543
2544 /*
2545 * apic_sync_pv_eoi_to_guest - called before vmentry
2546 *
2547 * Detect whether it's safe to enable PV EOI and
2548 * if yes do so.
2549 */
2550 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2551 struct kvm_lapic *apic)
2552 {
2553 if (!pv_eoi_enabled(vcpu) ||
2554 /* IRR set or many bits in ISR: could be nested. */
2555 apic->irr_pending ||
2556 /* Cache not set: could be safe but we don't bother. */
2557 apic->highest_isr_cache == -1 ||
2558 /* Need EOI to update ioapic. */
2559 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2560 /*
2561 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2562 * so we need not do anything here.
2563 */
2564 return;
2565 }
2566
2567 pv_eoi_set_pending(apic->vcpu);
2568 }
2569
2570 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2571 {
2572 u32 data, tpr;
2573 int max_irr, max_isr;
2574 struct kvm_lapic *apic = vcpu->arch.apic;
2575
2576 apic_sync_pv_eoi_to_guest(vcpu, apic);
2577
2578 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2579 return;
2580
2581 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2582 max_irr = apic_find_highest_irr(apic);
2583 if (max_irr < 0)
2584 max_irr = 0;
2585 max_isr = apic_find_highest_isr(apic);
2586 if (max_isr < 0)
2587 max_isr = 0;
2588 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2589
2590 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2591 sizeof(u32));
2592 }
2593
2594 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2595 {
2596 if (vapic_addr) {
2597 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2598 &vcpu->arch.apic->vapic_cache,
2599 vapic_addr, sizeof(u32)))
2600 return -EINVAL;
2601 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2602 } else {
2603 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2604 }
2605
2606 vcpu->arch.apic->vapic_addr = vapic_addr;
2607 return 0;
2608 }
2609
2610 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2611 {
2612 struct kvm_lapic *apic = vcpu->arch.apic;
2613 u32 reg = (msr - APIC_BASE_MSR) << 4;
2614
2615 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2616 return 1;
2617
2618 if (reg == APIC_ICR2)
2619 return 1;
2620
2621 /* if this is ICR write vector before command */
2622 if (reg == APIC_ICR)
2623 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2624 return kvm_lapic_reg_write(apic, reg, (u32)data);
2625 }
2626
2627 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2628 {
2629 struct kvm_lapic *apic = vcpu->arch.apic;
2630 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2631
2632 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2633 return 1;
2634
2635 if (reg == APIC_DFR || reg == APIC_ICR2)
2636 return 1;
2637
2638 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2639 return 1;
2640 if (reg == APIC_ICR)
2641 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2642
2643 *data = (((u64)high) << 32) | low;
2644
2645 return 0;
2646 }
2647
2648 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2649 {
2650 struct kvm_lapic *apic = vcpu->arch.apic;
2651
2652 if (!lapic_in_kernel(vcpu))
2653 return 1;
2654
2655 /* if this is ICR write vector before command */
2656 if (reg == APIC_ICR)
2657 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2658 return kvm_lapic_reg_write(apic, reg, (u32)data);
2659 }
2660
2661 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2662 {
2663 struct kvm_lapic *apic = vcpu->arch.apic;
2664 u32 low, high = 0;
2665
2666 if (!lapic_in_kernel(vcpu))
2667 return 1;
2668
2669 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2670 return 1;
2671 if (reg == APIC_ICR)
2672 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2673
2674 *data = (((u64)high) << 32) | low;
2675
2676 return 0;
2677 }
2678
2679 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2680 {
2681 u64 addr = data & ~KVM_MSR_ENABLED;
2682 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2683 unsigned long new_len;
2684
2685 if (!IS_ALIGNED(addr, 4))
2686 return 1;
2687
2688 vcpu->arch.pv_eoi.msr_val = data;
2689 if (!pv_eoi_enabled(vcpu))
2690 return 0;
2691
2692 if (addr == ghc->gpa && len <= ghc->len)
2693 new_len = ghc->len;
2694 else
2695 new_len = len;
2696
2697 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2698 }
2699
2700 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2701 {
2702 struct kvm_lapic *apic = vcpu->arch.apic;
2703 u8 sipi_vector;
2704 unsigned long pe;
2705
2706 if (!lapic_in_kernel(vcpu) || !apic->pending_events)
2707 return;
2708
2709 /*
2710 * INITs are latched while CPU is in specific states
2711 * (SMM, VMX non-root mode, SVM with GIF=0).
2712 * Because a CPU cannot be in these states immediately
2713 * after it has processed an INIT signal (and thus in
2714 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2715 * and leave the INIT pending.
2716 */
2717 if (kvm_vcpu_latch_init(vcpu)) {
2718 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2719 if (test_bit(KVM_APIC_SIPI, &apic->pending_events))
2720 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2721 return;
2722 }
2723
2724 pe = xchg(&apic->pending_events, 0);
2725 if (test_bit(KVM_APIC_INIT, &pe)) {
2726 kvm_vcpu_reset(vcpu, true);
2727 if (kvm_vcpu_is_bsp(apic->vcpu))
2728 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2729 else
2730 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2731 }
2732 if (test_bit(KVM_APIC_SIPI, &pe) &&
2733 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2734 /* evaluate pending_events before reading the vector */
2735 smp_rmb();
2736 sipi_vector = apic->sipi_vector;
2737 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2738 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2739 }
2740 }
2741
2742 void kvm_lapic_init(void)
2743 {
2744 /* do not patch jump label more than once per second */
2745 jump_label_rate_limit(&apic_hw_disabled, HZ);
2746 jump_label_rate_limit(&apic_sw_disabled, HZ);
2747 }
2748
2749 void kvm_lapic_exit(void)
2750 {
2751 static_key_deferred_flush(&apic_hw_disabled);
2752 static_key_deferred_flush(&apic_sw_disabled);
2753 }