]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/lapic.c
Merge tag 'asoc-v5.7' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / lapic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "trace.h"
40 #include "x86.h"
41 #include "cpuid.h"
42 #include "hyperv.h"
43
44 #ifndef CONFIG_X86_64
45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
46 #else
47 #define mod_64(x, y) ((x) % (y))
48 #endif
49
50 #define PRId64 "d"
51 #define PRIx64 "llx"
52 #define PRIu64 "u"
53 #define PRIo64 "o"
54
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
57 #define LAPIC_MMIO_LENGTH (1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR 256
60 #define APIC_VECTORS_PER_REG 32
61
62 #define APIC_BROADCAST 0xFF
63 #define X2APIC_BROADCAST 0xFFFFFFFFul
64
65 static bool lapic_timer_advance_dynamic __read_mostly;
66 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
67 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
68 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
69 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
70 /* step-by-step approximation to mitigate fluctuation */
71 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
72
73 static inline int apic_test_vector(int vec, void *bitmap)
74 {
75 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
76 }
77
78 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
79 {
80 struct kvm_lapic *apic = vcpu->arch.apic;
81
82 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
83 apic_test_vector(vector, apic->regs + APIC_IRR);
84 }
85
86 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
87 {
88 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
89 }
90
91 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
92 {
93 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
94 }
95
96 struct static_key_deferred apic_hw_disabled __read_mostly;
97 struct static_key_deferred apic_sw_disabled __read_mostly;
98
99 static inline int apic_enabled(struct kvm_lapic *apic)
100 {
101 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
102 }
103
104 #define LVT_MASK \
105 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
106
107 #define LINT_MASK \
108 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
109 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
110
111 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
112 {
113 return apic->vcpu->vcpu_id;
114 }
115
116 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
117 {
118 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
119 }
120 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt);
121
122 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
123 {
124 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
125 }
126
127 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
128 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
129 switch (map->mode) {
130 case KVM_APIC_MODE_X2APIC: {
131 u32 offset = (dest_id >> 16) * 16;
132 u32 max_apic_id = map->max_apic_id;
133
134 if (offset <= max_apic_id) {
135 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
136
137 offset = array_index_nospec(offset, map->max_apic_id + 1);
138 *cluster = &map->phys_map[offset];
139 *mask = dest_id & (0xffff >> (16 - cluster_size));
140 } else {
141 *mask = 0;
142 }
143
144 return true;
145 }
146 case KVM_APIC_MODE_XAPIC_FLAT:
147 *cluster = map->xapic_flat_map;
148 *mask = dest_id & 0xff;
149 return true;
150 case KVM_APIC_MODE_XAPIC_CLUSTER:
151 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
152 *mask = dest_id & 0xf;
153 return true;
154 default:
155 /* Not optimized. */
156 return false;
157 }
158 }
159
160 static void kvm_apic_map_free(struct rcu_head *rcu)
161 {
162 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
163
164 kvfree(map);
165 }
166
167 static void recalculate_apic_map(struct kvm *kvm)
168 {
169 struct kvm_apic_map *new, *old = NULL;
170 struct kvm_vcpu *vcpu;
171 int i;
172 u32 max_id = 255; /* enough space for any xAPIC ID */
173
174 mutex_lock(&kvm->arch.apic_map_lock);
175
176 kvm_for_each_vcpu(i, vcpu, kvm)
177 if (kvm_apic_present(vcpu))
178 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
179
180 new = kvzalloc(sizeof(struct kvm_apic_map) +
181 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
182 GFP_KERNEL_ACCOUNT);
183
184 if (!new)
185 goto out;
186
187 new->max_apic_id = max_id;
188
189 kvm_for_each_vcpu(i, vcpu, kvm) {
190 struct kvm_lapic *apic = vcpu->arch.apic;
191 struct kvm_lapic **cluster;
192 u16 mask;
193 u32 ldr;
194 u8 xapic_id;
195 u32 x2apic_id;
196
197 if (!kvm_apic_present(vcpu))
198 continue;
199
200 xapic_id = kvm_xapic_id(apic);
201 x2apic_id = kvm_x2apic_id(apic);
202
203 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
204 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
205 x2apic_id <= new->max_apic_id)
206 new->phys_map[x2apic_id] = apic;
207 /*
208 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
209 * prevent them from masking VCPUs with APIC ID <= 0xff.
210 */
211 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
212 new->phys_map[xapic_id] = apic;
213
214 if (!kvm_apic_sw_enabled(apic))
215 continue;
216
217 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
218
219 if (apic_x2apic_mode(apic)) {
220 new->mode |= KVM_APIC_MODE_X2APIC;
221 } else if (ldr) {
222 ldr = GET_APIC_LOGICAL_ID(ldr);
223 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
224 new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
225 else
226 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
227 }
228
229 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
230 continue;
231
232 if (mask)
233 cluster[ffs(mask) - 1] = apic;
234 }
235 out:
236 old = rcu_dereference_protected(kvm->arch.apic_map,
237 lockdep_is_held(&kvm->arch.apic_map_lock));
238 rcu_assign_pointer(kvm->arch.apic_map, new);
239 mutex_unlock(&kvm->arch.apic_map_lock);
240
241 if (old)
242 call_rcu(&old->rcu, kvm_apic_map_free);
243
244 kvm_make_scan_ioapic_request(kvm);
245 }
246
247 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
248 {
249 bool enabled = val & APIC_SPIV_APIC_ENABLED;
250
251 kvm_lapic_set_reg(apic, APIC_SPIV, val);
252
253 if (enabled != apic->sw_enabled) {
254 apic->sw_enabled = enabled;
255 if (enabled)
256 static_key_slow_dec_deferred(&apic_sw_disabled);
257 else
258 static_key_slow_inc(&apic_sw_disabled.key);
259
260 recalculate_apic_map(apic->vcpu->kvm);
261 }
262 }
263
264 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
265 {
266 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
267 recalculate_apic_map(apic->vcpu->kvm);
268 }
269
270 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
271 {
272 kvm_lapic_set_reg(apic, APIC_LDR, id);
273 recalculate_apic_map(apic->vcpu->kvm);
274 }
275
276 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
277 {
278 return ((id >> 4) << 16) | (1 << (id & 0xf));
279 }
280
281 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
282 {
283 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
284
285 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
286
287 kvm_lapic_set_reg(apic, APIC_ID, id);
288 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
289 recalculate_apic_map(apic->vcpu->kvm);
290 }
291
292 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
293 {
294 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
295 }
296
297 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type)
298 {
299 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
300 }
301
302 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
303 {
304 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
305 }
306
307 static inline int apic_lvtt_period(struct kvm_lapic *apic)
308 {
309 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
310 }
311
312 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
313 {
314 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
315 }
316
317 static inline int apic_lvt_nmi_mode(u32 lvt_val)
318 {
319 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
320 }
321
322 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
323 {
324 struct kvm_lapic *apic = vcpu->arch.apic;
325 struct kvm_cpuid_entry2 *feat;
326 u32 v = APIC_VERSION;
327
328 if (!lapic_in_kernel(vcpu))
329 return;
330
331 /*
332 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
333 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
334 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
335 * version first and level-triggered interrupts never get EOIed in
336 * IOAPIC.
337 */
338 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0);
339 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) &&
340 !ioapic_in_kernel(vcpu->kvm))
341 v |= APIC_LVR_DIRECTED_EOI;
342 kvm_lapic_set_reg(apic, APIC_LVR, v);
343 }
344
345 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
346 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */
347 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */
348 LVT_MASK | APIC_MODE_MASK, /* LVTPC */
349 LINT_MASK, LINT_MASK, /* LVT0-1 */
350 LVT_MASK /* LVTERR */
351 };
352
353 static int find_highest_vector(void *bitmap)
354 {
355 int vec;
356 u32 *reg;
357
358 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
359 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
360 reg = bitmap + REG_POS(vec);
361 if (*reg)
362 return __fls(*reg) + vec;
363 }
364
365 return -1;
366 }
367
368 static u8 count_vectors(void *bitmap)
369 {
370 int vec;
371 u32 *reg;
372 u8 count = 0;
373
374 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
375 reg = bitmap + REG_POS(vec);
376 count += hweight32(*reg);
377 }
378
379 return count;
380 }
381
382 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
383 {
384 u32 i, vec;
385 u32 pir_val, irr_val, prev_irr_val;
386 int max_updated_irr;
387
388 max_updated_irr = -1;
389 *max_irr = -1;
390
391 for (i = vec = 0; i <= 7; i++, vec += 32) {
392 pir_val = READ_ONCE(pir[i]);
393 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
394 if (pir_val) {
395 prev_irr_val = irr_val;
396 irr_val |= xchg(&pir[i], 0);
397 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
398 if (prev_irr_val != irr_val) {
399 max_updated_irr =
400 __fls(irr_val ^ prev_irr_val) + vec;
401 }
402 }
403 if (irr_val)
404 *max_irr = __fls(irr_val) + vec;
405 }
406
407 return ((max_updated_irr != -1) &&
408 (max_updated_irr == *max_irr));
409 }
410 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
411
412 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
413 {
414 struct kvm_lapic *apic = vcpu->arch.apic;
415
416 return __kvm_apic_update_irr(pir, apic->regs, max_irr);
417 }
418 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
419
420 static inline int apic_search_irr(struct kvm_lapic *apic)
421 {
422 return find_highest_vector(apic->regs + APIC_IRR);
423 }
424
425 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
426 {
427 int result;
428
429 /*
430 * Note that irr_pending is just a hint. It will be always
431 * true with virtual interrupt delivery enabled.
432 */
433 if (!apic->irr_pending)
434 return -1;
435
436 result = apic_search_irr(apic);
437 ASSERT(result == -1 || result >= 16);
438
439 return result;
440 }
441
442 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
443 {
444 struct kvm_vcpu *vcpu;
445
446 vcpu = apic->vcpu;
447
448 if (unlikely(vcpu->arch.apicv_active)) {
449 /* need to update RVI */
450 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
451 kvm_x86_ops->hwapic_irr_update(vcpu,
452 apic_find_highest_irr(apic));
453 } else {
454 apic->irr_pending = false;
455 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
456 if (apic_search_irr(apic) != -1)
457 apic->irr_pending = true;
458 }
459 }
460
461 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
462 {
463 struct kvm_vcpu *vcpu;
464
465 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
466 return;
467
468 vcpu = apic->vcpu;
469
470 /*
471 * With APIC virtualization enabled, all caching is disabled
472 * because the processor can modify ISR under the hood. Instead
473 * just set SVI.
474 */
475 if (unlikely(vcpu->arch.apicv_active))
476 kvm_x86_ops->hwapic_isr_update(vcpu, vec);
477 else {
478 ++apic->isr_count;
479 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
480 /*
481 * ISR (in service register) bit is set when injecting an interrupt.
482 * The highest vector is injected. Thus the latest bit set matches
483 * the highest bit in ISR.
484 */
485 apic->highest_isr_cache = vec;
486 }
487 }
488
489 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
490 {
491 int result;
492
493 /*
494 * Note that isr_count is always 1, and highest_isr_cache
495 * is always -1, with APIC virtualization enabled.
496 */
497 if (!apic->isr_count)
498 return -1;
499 if (likely(apic->highest_isr_cache != -1))
500 return apic->highest_isr_cache;
501
502 result = find_highest_vector(apic->regs + APIC_ISR);
503 ASSERT(result == -1 || result >= 16);
504
505 return result;
506 }
507
508 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
509 {
510 struct kvm_vcpu *vcpu;
511 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
512 return;
513
514 vcpu = apic->vcpu;
515
516 /*
517 * We do get here for APIC virtualization enabled if the guest
518 * uses the Hyper-V APIC enlightenment. In this case we may need
519 * to trigger a new interrupt delivery by writing the SVI field;
520 * on the other hand isr_count and highest_isr_cache are unused
521 * and must be left alone.
522 */
523 if (unlikely(vcpu->arch.apicv_active))
524 kvm_x86_ops->hwapic_isr_update(vcpu,
525 apic_find_highest_isr(apic));
526 else {
527 --apic->isr_count;
528 BUG_ON(apic->isr_count < 0);
529 apic->highest_isr_cache = -1;
530 }
531 }
532
533 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
534 {
535 /* This may race with setting of irr in __apic_accept_irq() and
536 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
537 * will cause vmexit immediately and the value will be recalculated
538 * on the next vmentry.
539 */
540 return apic_find_highest_irr(vcpu->arch.apic);
541 }
542 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
543
544 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
545 int vector, int level, int trig_mode,
546 struct dest_map *dest_map);
547
548 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
549 struct dest_map *dest_map)
550 {
551 struct kvm_lapic *apic = vcpu->arch.apic;
552
553 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
554 irq->level, irq->trig_mode, dest_map);
555 }
556
557 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
558 struct kvm_lapic_irq *irq, u32 min)
559 {
560 int i, count = 0;
561 struct kvm_vcpu *vcpu;
562
563 if (min > map->max_apic_id)
564 return 0;
565
566 for_each_set_bit(i, ipi_bitmap,
567 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
568 if (map->phys_map[min + i]) {
569 vcpu = map->phys_map[min + i]->vcpu;
570 count += kvm_apic_set_irq(vcpu, irq, NULL);
571 }
572 }
573
574 return count;
575 }
576
577 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
578 unsigned long ipi_bitmap_high, u32 min,
579 unsigned long icr, int op_64_bit)
580 {
581 struct kvm_apic_map *map;
582 struct kvm_lapic_irq irq = {0};
583 int cluster_size = op_64_bit ? 64 : 32;
584 int count;
585
586 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
587 return -KVM_EINVAL;
588
589 irq.vector = icr & APIC_VECTOR_MASK;
590 irq.delivery_mode = icr & APIC_MODE_MASK;
591 irq.level = (icr & APIC_INT_ASSERT) != 0;
592 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
593
594 rcu_read_lock();
595 map = rcu_dereference(kvm->arch.apic_map);
596
597 count = -EOPNOTSUPP;
598 if (likely(map)) {
599 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
600 min += cluster_size;
601 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
602 }
603
604 rcu_read_unlock();
605 return count;
606 }
607
608 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
609 {
610
611 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
612 sizeof(val));
613 }
614
615 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
616 {
617
618 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
619 sizeof(*val));
620 }
621
622 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
623 {
624 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
625 }
626
627 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
628 {
629 u8 val;
630 if (pv_eoi_get_user(vcpu, &val) < 0) {
631 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
632 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
633 return false;
634 }
635 return val & 0x1;
636 }
637
638 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
639 {
640 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
641 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
642 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
643 return;
644 }
645 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
646 }
647
648 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
649 {
650 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
651 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
652 (unsigned long long)vcpu->arch.pv_eoi.msr_val);
653 return;
654 }
655 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
656 }
657
658 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
659 {
660 int highest_irr;
661 if (apic->vcpu->arch.apicv_active)
662 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
663 else
664 highest_irr = apic_find_highest_irr(apic);
665 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
666 return -1;
667 return highest_irr;
668 }
669
670 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
671 {
672 u32 tpr, isrv, ppr, old_ppr;
673 int isr;
674
675 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
676 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
677 isr = apic_find_highest_isr(apic);
678 isrv = (isr != -1) ? isr : 0;
679
680 if ((tpr & 0xf0) >= (isrv & 0xf0))
681 ppr = tpr & 0xff;
682 else
683 ppr = isrv & 0xf0;
684
685 *new_ppr = ppr;
686 if (old_ppr != ppr)
687 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
688
689 return ppr < old_ppr;
690 }
691
692 static void apic_update_ppr(struct kvm_lapic *apic)
693 {
694 u32 ppr;
695
696 if (__apic_update_ppr(apic, &ppr) &&
697 apic_has_interrupt_for_ppr(apic, ppr) != -1)
698 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
699 }
700
701 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
702 {
703 apic_update_ppr(vcpu->arch.apic);
704 }
705 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
706
707 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
708 {
709 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
710 apic_update_ppr(apic);
711 }
712
713 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
714 {
715 return mda == (apic_x2apic_mode(apic) ?
716 X2APIC_BROADCAST : APIC_BROADCAST);
717 }
718
719 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
720 {
721 if (kvm_apic_broadcast(apic, mda))
722 return true;
723
724 if (apic_x2apic_mode(apic))
725 return mda == kvm_x2apic_id(apic);
726
727 /*
728 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
729 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and
730 * this allows unique addressing of VCPUs with APIC ID over 0xff.
731 * The 0xff condition is needed because writeable xAPIC ID.
732 */
733 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
734 return true;
735
736 return mda == kvm_xapic_id(apic);
737 }
738
739 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
740 {
741 u32 logical_id;
742
743 if (kvm_apic_broadcast(apic, mda))
744 return true;
745
746 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
747
748 if (apic_x2apic_mode(apic))
749 return ((logical_id >> 16) == (mda >> 16))
750 && (logical_id & mda & 0xffff) != 0;
751
752 logical_id = GET_APIC_LOGICAL_ID(logical_id);
753
754 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
755 case APIC_DFR_FLAT:
756 return (logical_id & mda) != 0;
757 case APIC_DFR_CLUSTER:
758 return ((logical_id >> 4) == (mda >> 4))
759 && (logical_id & mda & 0xf) != 0;
760 default:
761 return false;
762 }
763 }
764
765 /* The KVM local APIC implementation has two quirks:
766 *
767 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
768 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
769 * KVM doesn't do that aliasing.
770 *
771 * - in-kernel IOAPIC messages have to be delivered directly to
772 * x2APIC, because the kernel does not support interrupt remapping.
773 * In order to support broadcast without interrupt remapping, x2APIC
774 * rewrites the destination of non-IPI messages from APIC_BROADCAST
775 * to X2APIC_BROADCAST.
776 *
777 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
778 * important when userspace wants to use x2APIC-format MSIs, because
779 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
780 */
781 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
782 struct kvm_lapic *source, struct kvm_lapic *target)
783 {
784 bool ipi = source != NULL;
785
786 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
787 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
788 return X2APIC_BROADCAST;
789
790 return dest_id;
791 }
792
793 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
794 int shorthand, unsigned int dest, int dest_mode)
795 {
796 struct kvm_lapic *target = vcpu->arch.apic;
797 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
798
799 ASSERT(target);
800 switch (shorthand) {
801 case APIC_DEST_NOSHORT:
802 if (dest_mode == APIC_DEST_PHYSICAL)
803 return kvm_apic_match_physical_addr(target, mda);
804 else
805 return kvm_apic_match_logical_addr(target, mda);
806 case APIC_DEST_SELF:
807 return target == source;
808 case APIC_DEST_ALLINC:
809 return true;
810 case APIC_DEST_ALLBUT:
811 return target != source;
812 default:
813 return false;
814 }
815 }
816 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
817
818 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
819 const unsigned long *bitmap, u32 bitmap_size)
820 {
821 u32 mod;
822 int i, idx = -1;
823
824 mod = vector % dest_vcpus;
825
826 for (i = 0; i <= mod; i++) {
827 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
828 BUG_ON(idx == bitmap_size);
829 }
830
831 return idx;
832 }
833
834 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
835 {
836 if (!kvm->arch.disabled_lapic_found) {
837 kvm->arch.disabled_lapic_found = true;
838 printk(KERN_INFO
839 "Disabled LAPIC found during irq injection\n");
840 }
841 }
842
843 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
844 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
845 {
846 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
847 if ((irq->dest_id == APIC_BROADCAST &&
848 map->mode != KVM_APIC_MODE_X2APIC))
849 return true;
850 if (irq->dest_id == X2APIC_BROADCAST)
851 return true;
852 } else {
853 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
854 if (irq->dest_id == (x2apic_ipi ?
855 X2APIC_BROADCAST : APIC_BROADCAST))
856 return true;
857 }
858
859 return false;
860 }
861
862 /* Return true if the interrupt can be handled by using *bitmap as index mask
863 * for valid destinations in *dst array.
864 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
865 * Note: we may have zero kvm_lapic destinations when we return true, which
866 * means that the interrupt should be dropped. In this case, *bitmap would be
867 * zero and *dst undefined.
868 */
869 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
870 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
871 struct kvm_apic_map *map, struct kvm_lapic ***dst,
872 unsigned long *bitmap)
873 {
874 int i, lowest;
875
876 if (irq->shorthand == APIC_DEST_SELF && src) {
877 *dst = src;
878 *bitmap = 1;
879 return true;
880 } else if (irq->shorthand)
881 return false;
882
883 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
884 return false;
885
886 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
887 if (irq->dest_id > map->max_apic_id) {
888 *bitmap = 0;
889 } else {
890 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
891 *dst = &map->phys_map[dest_id];
892 *bitmap = 1;
893 }
894 return true;
895 }
896
897 *bitmap = 0;
898 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
899 (u16 *)bitmap))
900 return false;
901
902 if (!kvm_lowest_prio_delivery(irq))
903 return true;
904
905 if (!kvm_vector_hashing_enabled()) {
906 lowest = -1;
907 for_each_set_bit(i, bitmap, 16) {
908 if (!(*dst)[i])
909 continue;
910 if (lowest < 0)
911 lowest = i;
912 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
913 (*dst)[lowest]->vcpu) < 0)
914 lowest = i;
915 }
916 } else {
917 if (!*bitmap)
918 return true;
919
920 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
921 bitmap, 16);
922
923 if (!(*dst)[lowest]) {
924 kvm_apic_disabled_lapic_found(kvm);
925 *bitmap = 0;
926 return true;
927 }
928 }
929
930 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
931
932 return true;
933 }
934
935 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
936 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
937 {
938 struct kvm_apic_map *map;
939 unsigned long bitmap;
940 struct kvm_lapic **dst = NULL;
941 int i;
942 bool ret;
943
944 *r = -1;
945
946 if (irq->shorthand == APIC_DEST_SELF) {
947 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
948 return true;
949 }
950
951 rcu_read_lock();
952 map = rcu_dereference(kvm->arch.apic_map);
953
954 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
955 if (ret) {
956 *r = 0;
957 for_each_set_bit(i, &bitmap, 16) {
958 if (!dst[i])
959 continue;
960 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
961 }
962 }
963
964 rcu_read_unlock();
965 return ret;
966 }
967
968 /*
969 * This routine tries to handle interrupts in posted mode, here is how
970 * it deals with different cases:
971 * - For single-destination interrupts, handle it in posted mode
972 * - Else if vector hashing is enabled and it is a lowest-priority
973 * interrupt, handle it in posted mode and use the following mechanism
974 * to find the destination vCPU.
975 * 1. For lowest-priority interrupts, store all the possible
976 * destination vCPUs in an array.
977 * 2. Use "guest vector % max number of destination vCPUs" to find
978 * the right destination vCPU in the array for the lowest-priority
979 * interrupt.
980 * - Otherwise, use remapped mode to inject the interrupt.
981 */
982 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
983 struct kvm_vcpu **dest_vcpu)
984 {
985 struct kvm_apic_map *map;
986 unsigned long bitmap;
987 struct kvm_lapic **dst = NULL;
988 bool ret = false;
989
990 if (irq->shorthand)
991 return false;
992
993 rcu_read_lock();
994 map = rcu_dereference(kvm->arch.apic_map);
995
996 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
997 hweight16(bitmap) == 1) {
998 unsigned long i = find_first_bit(&bitmap, 16);
999
1000 if (dst[i]) {
1001 *dest_vcpu = dst[i]->vcpu;
1002 ret = true;
1003 }
1004 }
1005
1006 rcu_read_unlock();
1007 return ret;
1008 }
1009
1010 /*
1011 * Add a pending IRQ into lapic.
1012 * Return 1 if successfully added and 0 if discarded.
1013 */
1014 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1015 int vector, int level, int trig_mode,
1016 struct dest_map *dest_map)
1017 {
1018 int result = 0;
1019 struct kvm_vcpu *vcpu = apic->vcpu;
1020
1021 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1022 trig_mode, vector);
1023 switch (delivery_mode) {
1024 case APIC_DM_LOWEST:
1025 vcpu->arch.apic_arb_prio++;
1026 /* fall through */
1027 case APIC_DM_FIXED:
1028 if (unlikely(trig_mode && !level))
1029 break;
1030
1031 /* FIXME add logic for vcpu on reset */
1032 if (unlikely(!apic_enabled(apic)))
1033 break;
1034
1035 result = 1;
1036
1037 if (dest_map) {
1038 __set_bit(vcpu->vcpu_id, dest_map->map);
1039 dest_map->vectors[vcpu->vcpu_id] = vector;
1040 }
1041
1042 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1043 if (trig_mode)
1044 kvm_lapic_set_vector(vector,
1045 apic->regs + APIC_TMR);
1046 else
1047 kvm_lapic_clear_vector(vector,
1048 apic->regs + APIC_TMR);
1049 }
1050
1051 if (kvm_x86_ops->deliver_posted_interrupt(vcpu, vector)) {
1052 kvm_lapic_set_irr(vector, apic);
1053 kvm_make_request(KVM_REQ_EVENT, vcpu);
1054 kvm_vcpu_kick(vcpu);
1055 }
1056 break;
1057
1058 case APIC_DM_REMRD:
1059 result = 1;
1060 vcpu->arch.pv.pv_unhalted = 1;
1061 kvm_make_request(KVM_REQ_EVENT, vcpu);
1062 kvm_vcpu_kick(vcpu);
1063 break;
1064
1065 case APIC_DM_SMI:
1066 result = 1;
1067 kvm_make_request(KVM_REQ_SMI, vcpu);
1068 kvm_vcpu_kick(vcpu);
1069 break;
1070
1071 case APIC_DM_NMI:
1072 result = 1;
1073 kvm_inject_nmi(vcpu);
1074 kvm_vcpu_kick(vcpu);
1075 break;
1076
1077 case APIC_DM_INIT:
1078 if (!trig_mode || level) {
1079 result = 1;
1080 /* assumes that there are only KVM_APIC_INIT/SIPI */
1081 apic->pending_events = (1UL << KVM_APIC_INIT);
1082 kvm_make_request(KVM_REQ_EVENT, vcpu);
1083 kvm_vcpu_kick(vcpu);
1084 }
1085 break;
1086
1087 case APIC_DM_STARTUP:
1088 result = 1;
1089 apic->sipi_vector = vector;
1090 /* make sure sipi_vector is visible for the receiver */
1091 smp_wmb();
1092 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1093 kvm_make_request(KVM_REQ_EVENT, vcpu);
1094 kvm_vcpu_kick(vcpu);
1095 break;
1096
1097 case APIC_DM_EXTINT:
1098 /*
1099 * Should only be called by kvm_apic_local_deliver() with LVT0,
1100 * before NMI watchdog was enabled. Already handled by
1101 * kvm_apic_accept_pic_intr().
1102 */
1103 break;
1104
1105 default:
1106 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1107 delivery_mode);
1108 break;
1109 }
1110 return result;
1111 }
1112
1113 /*
1114 * This routine identifies the destination vcpus mask meant to receive the
1115 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1116 * out the destination vcpus array and set the bitmap or it traverses to
1117 * each available vcpu to identify the same.
1118 */
1119 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1120 unsigned long *vcpu_bitmap)
1121 {
1122 struct kvm_lapic **dest_vcpu = NULL;
1123 struct kvm_lapic *src = NULL;
1124 struct kvm_apic_map *map;
1125 struct kvm_vcpu *vcpu;
1126 unsigned long bitmap;
1127 int i, vcpu_idx;
1128 bool ret;
1129
1130 rcu_read_lock();
1131 map = rcu_dereference(kvm->arch.apic_map);
1132
1133 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1134 &bitmap);
1135 if (ret) {
1136 for_each_set_bit(i, &bitmap, 16) {
1137 if (!dest_vcpu[i])
1138 continue;
1139 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1140 __set_bit(vcpu_idx, vcpu_bitmap);
1141 }
1142 } else {
1143 kvm_for_each_vcpu(i, vcpu, kvm) {
1144 if (!kvm_apic_present(vcpu))
1145 continue;
1146 if (!kvm_apic_match_dest(vcpu, NULL,
1147 irq->shorthand,
1148 irq->dest_id,
1149 irq->dest_mode))
1150 continue;
1151 __set_bit(i, vcpu_bitmap);
1152 }
1153 }
1154 rcu_read_unlock();
1155 }
1156
1157 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1158 {
1159 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1160 }
1161
1162 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1163 {
1164 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1165 }
1166
1167 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1168 {
1169 int trigger_mode;
1170
1171 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1172 if (!kvm_ioapic_handles_vector(apic, vector))
1173 return;
1174
1175 /* Request a KVM exit to inform the userspace IOAPIC. */
1176 if (irqchip_split(apic->vcpu->kvm)) {
1177 apic->vcpu->arch.pending_ioapic_eoi = vector;
1178 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1179 return;
1180 }
1181
1182 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1183 trigger_mode = IOAPIC_LEVEL_TRIG;
1184 else
1185 trigger_mode = IOAPIC_EDGE_TRIG;
1186
1187 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1188 }
1189
1190 static int apic_set_eoi(struct kvm_lapic *apic)
1191 {
1192 int vector = apic_find_highest_isr(apic);
1193
1194 trace_kvm_eoi(apic, vector);
1195
1196 /*
1197 * Not every write EOI will has corresponding ISR,
1198 * one example is when Kernel check timer on setup_IO_APIC
1199 */
1200 if (vector == -1)
1201 return vector;
1202
1203 apic_clear_isr(vector, apic);
1204 apic_update_ppr(apic);
1205
1206 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1207 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1208
1209 kvm_ioapic_send_eoi(apic, vector);
1210 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1211 return vector;
1212 }
1213
1214 /*
1215 * this interface assumes a trap-like exit, which has already finished
1216 * desired side effect including vISR and vPPR update.
1217 */
1218 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1219 {
1220 struct kvm_lapic *apic = vcpu->arch.apic;
1221
1222 trace_kvm_eoi(apic, vector);
1223
1224 kvm_ioapic_send_eoi(apic, vector);
1225 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1228
1229 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1230 {
1231 struct kvm_lapic_irq irq;
1232
1233 irq.vector = icr_low & APIC_VECTOR_MASK;
1234 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1235 irq.dest_mode = icr_low & APIC_DEST_MASK;
1236 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1237 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1238 irq.shorthand = icr_low & APIC_SHORT_MASK;
1239 irq.msi_redir_hint = false;
1240 if (apic_x2apic_mode(apic))
1241 irq.dest_id = icr_high;
1242 else
1243 irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1244
1245 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1246
1247 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1248 }
1249
1250 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1251 {
1252 ktime_t remaining, now;
1253 s64 ns;
1254 u32 tmcct;
1255
1256 ASSERT(apic != NULL);
1257
1258 /* if initial count is 0, current count should also be 0 */
1259 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1260 apic->lapic_timer.period == 0)
1261 return 0;
1262
1263 now = ktime_get();
1264 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1265 if (ktime_to_ns(remaining) < 0)
1266 remaining = 0;
1267
1268 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1269 tmcct = div64_u64(ns,
1270 (APIC_BUS_CYCLE_NS * apic->divide_count));
1271
1272 return tmcct;
1273 }
1274
1275 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1276 {
1277 struct kvm_vcpu *vcpu = apic->vcpu;
1278 struct kvm_run *run = vcpu->run;
1279
1280 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1281 run->tpr_access.rip = kvm_rip_read(vcpu);
1282 run->tpr_access.is_write = write;
1283 }
1284
1285 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1286 {
1287 if (apic->vcpu->arch.tpr_access_reporting)
1288 __report_tpr_access(apic, write);
1289 }
1290
1291 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1292 {
1293 u32 val = 0;
1294
1295 if (offset >= LAPIC_MMIO_LENGTH)
1296 return 0;
1297
1298 switch (offset) {
1299 case APIC_ARBPRI:
1300 break;
1301
1302 case APIC_TMCCT: /* Timer CCR */
1303 if (apic_lvtt_tscdeadline(apic))
1304 return 0;
1305
1306 val = apic_get_tmcct(apic);
1307 break;
1308 case APIC_PROCPRI:
1309 apic_update_ppr(apic);
1310 val = kvm_lapic_get_reg(apic, offset);
1311 break;
1312 case APIC_TASKPRI:
1313 report_tpr_access(apic, false);
1314 /* fall thru */
1315 default:
1316 val = kvm_lapic_get_reg(apic, offset);
1317 break;
1318 }
1319
1320 return val;
1321 }
1322
1323 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1324 {
1325 return container_of(dev, struct kvm_lapic, dev);
1326 }
1327
1328 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1329 #define APIC_REGS_MASK(first, count) \
1330 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1331
1332 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1333 void *data)
1334 {
1335 unsigned char alignment = offset & 0xf;
1336 u32 result;
1337 /* this bitmask has a bit cleared for each reserved register */
1338 u64 valid_reg_mask =
1339 APIC_REG_MASK(APIC_ID) |
1340 APIC_REG_MASK(APIC_LVR) |
1341 APIC_REG_MASK(APIC_TASKPRI) |
1342 APIC_REG_MASK(APIC_PROCPRI) |
1343 APIC_REG_MASK(APIC_LDR) |
1344 APIC_REG_MASK(APIC_DFR) |
1345 APIC_REG_MASK(APIC_SPIV) |
1346 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1347 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1348 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1349 APIC_REG_MASK(APIC_ESR) |
1350 APIC_REG_MASK(APIC_ICR) |
1351 APIC_REG_MASK(APIC_ICR2) |
1352 APIC_REG_MASK(APIC_LVTT) |
1353 APIC_REG_MASK(APIC_LVTTHMR) |
1354 APIC_REG_MASK(APIC_LVTPC) |
1355 APIC_REG_MASK(APIC_LVT0) |
1356 APIC_REG_MASK(APIC_LVT1) |
1357 APIC_REG_MASK(APIC_LVTERR) |
1358 APIC_REG_MASK(APIC_TMICT) |
1359 APIC_REG_MASK(APIC_TMCCT) |
1360 APIC_REG_MASK(APIC_TDCR);
1361
1362 /* ARBPRI is not valid on x2APIC */
1363 if (!apic_x2apic_mode(apic))
1364 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1365
1366 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1367 return 1;
1368
1369 result = __apic_read(apic, offset & ~0xf);
1370
1371 trace_kvm_apic_read(offset, result);
1372
1373 switch (len) {
1374 case 1:
1375 case 2:
1376 case 4:
1377 memcpy(data, (char *)&result + alignment, len);
1378 break;
1379 default:
1380 printk(KERN_ERR "Local APIC read with len = %x, "
1381 "should be 1,2, or 4 instead\n", len);
1382 break;
1383 }
1384 return 0;
1385 }
1386 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1387
1388 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1389 {
1390 return addr >= apic->base_address &&
1391 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1392 }
1393
1394 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1395 gpa_t address, int len, void *data)
1396 {
1397 struct kvm_lapic *apic = to_lapic(this);
1398 u32 offset = address - apic->base_address;
1399
1400 if (!apic_mmio_in_range(apic, address))
1401 return -EOPNOTSUPP;
1402
1403 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1404 if (!kvm_check_has_quirk(vcpu->kvm,
1405 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1406 return -EOPNOTSUPP;
1407
1408 memset(data, 0xff, len);
1409 return 0;
1410 }
1411
1412 kvm_lapic_reg_read(apic, offset, len, data);
1413
1414 return 0;
1415 }
1416
1417 static void update_divide_count(struct kvm_lapic *apic)
1418 {
1419 u32 tmp1, tmp2, tdcr;
1420
1421 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1422 tmp1 = tdcr & 0xf;
1423 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1424 apic->divide_count = 0x1 << (tmp2 & 0x7);
1425 }
1426
1427 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1428 {
1429 /*
1430 * Do not allow the guest to program periodic timers with small
1431 * interval, since the hrtimers are not throttled by the host
1432 * scheduler.
1433 */
1434 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1435 s64 min_period = min_timer_period_us * 1000LL;
1436
1437 if (apic->lapic_timer.period < min_period) {
1438 pr_info_ratelimited(
1439 "kvm: vcpu %i: requested %lld ns "
1440 "lapic timer period limited to %lld ns\n",
1441 apic->vcpu->vcpu_id,
1442 apic->lapic_timer.period, min_period);
1443 apic->lapic_timer.period = min_period;
1444 }
1445 }
1446 }
1447
1448 static void apic_update_lvtt(struct kvm_lapic *apic)
1449 {
1450 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1451 apic->lapic_timer.timer_mode_mask;
1452
1453 if (apic->lapic_timer.timer_mode != timer_mode) {
1454 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1455 APIC_LVT_TIMER_TSCDEADLINE)) {
1456 hrtimer_cancel(&apic->lapic_timer.timer);
1457 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1458 apic->lapic_timer.period = 0;
1459 apic->lapic_timer.tscdeadline = 0;
1460 }
1461 apic->lapic_timer.timer_mode = timer_mode;
1462 limit_periodic_timer_frequency(apic);
1463 }
1464 }
1465
1466 /*
1467 * On APICv, this test will cause a busy wait
1468 * during a higher-priority task.
1469 */
1470
1471 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1472 {
1473 struct kvm_lapic *apic = vcpu->arch.apic;
1474 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1475
1476 if (kvm_apic_hw_enabled(apic)) {
1477 int vec = reg & APIC_VECTOR_MASK;
1478 void *bitmap = apic->regs + APIC_ISR;
1479
1480 if (vcpu->arch.apicv_active)
1481 bitmap = apic->regs + APIC_IRR;
1482
1483 if (apic_test_vector(vec, bitmap))
1484 return true;
1485 }
1486 return false;
1487 }
1488
1489 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1490 {
1491 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1492
1493 /*
1494 * If the guest TSC is running at a different ratio than the host, then
1495 * convert the delay to nanoseconds to achieve an accurate delay. Note
1496 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1497 * always for VMX enabled hardware.
1498 */
1499 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1500 __delay(min(guest_cycles,
1501 nsec_to_cycles(vcpu, timer_advance_ns)));
1502 } else {
1503 u64 delay_ns = guest_cycles * 1000000ULL;
1504 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1505 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1506 }
1507 }
1508
1509 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1510 s64 advance_expire_delta)
1511 {
1512 struct kvm_lapic *apic = vcpu->arch.apic;
1513 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1514 u64 ns;
1515
1516 /* Do not adjust for tiny fluctuations or large random spikes. */
1517 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1518 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1519 return;
1520
1521 /* too early */
1522 if (advance_expire_delta < 0) {
1523 ns = -advance_expire_delta * 1000000ULL;
1524 do_div(ns, vcpu->arch.virtual_tsc_khz);
1525 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1526 } else {
1527 /* too late */
1528 ns = advance_expire_delta * 1000000ULL;
1529 do_div(ns, vcpu->arch.virtual_tsc_khz);
1530 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1531 }
1532
1533 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1534 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1535 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1536 }
1537
1538 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1539 {
1540 struct kvm_lapic *apic = vcpu->arch.apic;
1541 u64 guest_tsc, tsc_deadline;
1542
1543 if (apic->lapic_timer.expired_tscdeadline == 0)
1544 return;
1545
1546 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1547 apic->lapic_timer.expired_tscdeadline = 0;
1548 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1549 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1550
1551 if (guest_tsc < tsc_deadline)
1552 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1553
1554 if (lapic_timer_advance_dynamic)
1555 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1556 }
1557
1558 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1559 {
1560 if (lapic_timer_int_injected(vcpu))
1561 __kvm_wait_lapic_expire(vcpu);
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1564
1565 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1566 {
1567 struct kvm_timer *ktimer = &apic->lapic_timer;
1568
1569 kvm_apic_local_deliver(apic, APIC_LVTT);
1570 if (apic_lvtt_tscdeadline(apic)) {
1571 ktimer->tscdeadline = 0;
1572 } else if (apic_lvtt_oneshot(apic)) {
1573 ktimer->tscdeadline = 0;
1574 ktimer->target_expiration = 0;
1575 }
1576 }
1577
1578 static void apic_timer_expired(struct kvm_lapic *apic)
1579 {
1580 struct kvm_vcpu *vcpu = apic->vcpu;
1581 struct kvm_timer *ktimer = &apic->lapic_timer;
1582
1583 if (atomic_read(&apic->lapic_timer.pending))
1584 return;
1585
1586 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1587 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1588
1589 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1590 if (apic->lapic_timer.timer_advance_ns)
1591 __kvm_wait_lapic_expire(vcpu);
1592 kvm_apic_inject_pending_timer_irqs(apic);
1593 return;
1594 }
1595
1596 atomic_inc(&apic->lapic_timer.pending);
1597 kvm_set_pending_timer(vcpu);
1598 }
1599
1600 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1601 {
1602 struct kvm_timer *ktimer = &apic->lapic_timer;
1603 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1604 u64 ns = 0;
1605 ktime_t expire;
1606 struct kvm_vcpu *vcpu = apic->vcpu;
1607 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1608 unsigned long flags;
1609 ktime_t now;
1610
1611 if (unlikely(!tscdeadline || !this_tsc_khz))
1612 return;
1613
1614 local_irq_save(flags);
1615
1616 now = ktime_get();
1617 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1618
1619 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1620 do_div(ns, this_tsc_khz);
1621
1622 if (likely(tscdeadline > guest_tsc) &&
1623 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1624 expire = ktime_add_ns(now, ns);
1625 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1626 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1627 } else
1628 apic_timer_expired(apic);
1629
1630 local_irq_restore(flags);
1631 }
1632
1633 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1634 {
1635 ktime_t now, remaining;
1636 u64 ns_remaining_old, ns_remaining_new;
1637
1638 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1639 * APIC_BUS_CYCLE_NS * apic->divide_count;
1640 limit_periodic_timer_frequency(apic);
1641
1642 now = ktime_get();
1643 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1644 if (ktime_to_ns(remaining) < 0)
1645 remaining = 0;
1646
1647 ns_remaining_old = ktime_to_ns(remaining);
1648 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1649 apic->divide_count, old_divisor);
1650
1651 apic->lapic_timer.tscdeadline +=
1652 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1653 nsec_to_cycles(apic->vcpu, ns_remaining_old);
1654 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1655 }
1656
1657 static bool set_target_expiration(struct kvm_lapic *apic)
1658 {
1659 ktime_t now;
1660 u64 tscl = rdtsc();
1661
1662 now = ktime_get();
1663 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1664 * APIC_BUS_CYCLE_NS * apic->divide_count;
1665
1666 if (!apic->lapic_timer.period) {
1667 apic->lapic_timer.tscdeadline = 0;
1668 return false;
1669 }
1670
1671 limit_periodic_timer_frequency(apic);
1672
1673 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1674 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
1675 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period);
1676
1677 return true;
1678 }
1679
1680 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1681 {
1682 ktime_t now = ktime_get();
1683 u64 tscl = rdtsc();
1684 ktime_t delta;
1685
1686 /*
1687 * Synchronize both deadlines to the same time source or
1688 * differences in the periods (caused by differences in the
1689 * underlying clocks or numerical approximation errors) will
1690 * cause the two to drift apart over time as the errors
1691 * accumulate.
1692 */
1693 apic->lapic_timer.target_expiration =
1694 ktime_add_ns(apic->lapic_timer.target_expiration,
1695 apic->lapic_timer.period);
1696 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1697 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1698 nsec_to_cycles(apic->vcpu, delta);
1699 }
1700
1701 static void start_sw_period(struct kvm_lapic *apic)
1702 {
1703 if (!apic->lapic_timer.period)
1704 return;
1705
1706 if (ktime_after(ktime_get(),
1707 apic->lapic_timer.target_expiration)) {
1708 apic_timer_expired(apic);
1709
1710 if (apic_lvtt_oneshot(apic))
1711 return;
1712
1713 advance_periodic_target_expiration(apic);
1714 }
1715
1716 hrtimer_start(&apic->lapic_timer.timer,
1717 apic->lapic_timer.target_expiration,
1718 HRTIMER_MODE_ABS);
1719 }
1720
1721 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1722 {
1723 if (!lapic_in_kernel(vcpu))
1724 return false;
1725
1726 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1729
1730 static void cancel_hv_timer(struct kvm_lapic *apic)
1731 {
1732 WARN_ON(preemptible());
1733 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1734 kvm_x86_ops->cancel_hv_timer(apic->vcpu);
1735 apic->lapic_timer.hv_timer_in_use = false;
1736 }
1737
1738 static bool start_hv_timer(struct kvm_lapic *apic)
1739 {
1740 struct kvm_timer *ktimer = &apic->lapic_timer;
1741 struct kvm_vcpu *vcpu = apic->vcpu;
1742 bool expired;
1743
1744 WARN_ON(preemptible());
1745 if (!kvm_x86_ops->set_hv_timer)
1746 return false;
1747
1748 if (!ktimer->tscdeadline)
1749 return false;
1750
1751 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired))
1752 return false;
1753
1754 ktimer->hv_timer_in_use = true;
1755 hrtimer_cancel(&ktimer->timer);
1756
1757 /*
1758 * To simplify handling the periodic timer, leave the hv timer running
1759 * even if the deadline timer has expired, i.e. rely on the resulting
1760 * VM-Exit to recompute the periodic timer's target expiration.
1761 */
1762 if (!apic_lvtt_period(apic)) {
1763 /*
1764 * Cancel the hv timer if the sw timer fired while the hv timer
1765 * was being programmed, or if the hv timer itself expired.
1766 */
1767 if (atomic_read(&ktimer->pending)) {
1768 cancel_hv_timer(apic);
1769 } else if (expired) {
1770 apic_timer_expired(apic);
1771 cancel_hv_timer(apic);
1772 }
1773 }
1774
1775 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1776
1777 return true;
1778 }
1779
1780 static void start_sw_timer(struct kvm_lapic *apic)
1781 {
1782 struct kvm_timer *ktimer = &apic->lapic_timer;
1783
1784 WARN_ON(preemptible());
1785 if (apic->lapic_timer.hv_timer_in_use)
1786 cancel_hv_timer(apic);
1787 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1788 return;
1789
1790 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1791 start_sw_period(apic);
1792 else if (apic_lvtt_tscdeadline(apic))
1793 start_sw_tscdeadline(apic);
1794 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1795 }
1796
1797 static void restart_apic_timer(struct kvm_lapic *apic)
1798 {
1799 preempt_disable();
1800
1801 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1802 goto out;
1803
1804 if (!start_hv_timer(apic))
1805 start_sw_timer(apic);
1806 out:
1807 preempt_enable();
1808 }
1809
1810 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1811 {
1812 struct kvm_lapic *apic = vcpu->arch.apic;
1813
1814 preempt_disable();
1815 /* If the preempt notifier has already run, it also called apic_timer_expired */
1816 if (!apic->lapic_timer.hv_timer_in_use)
1817 goto out;
1818 WARN_ON(swait_active(&vcpu->wq));
1819 cancel_hv_timer(apic);
1820 apic_timer_expired(apic);
1821
1822 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1823 advance_periodic_target_expiration(apic);
1824 restart_apic_timer(apic);
1825 }
1826 out:
1827 preempt_enable();
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1830
1831 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1832 {
1833 restart_apic_timer(vcpu->arch.apic);
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1836
1837 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1838 {
1839 struct kvm_lapic *apic = vcpu->arch.apic;
1840
1841 preempt_disable();
1842 /* Possibly the TSC deadline timer is not enabled yet */
1843 if (apic->lapic_timer.hv_timer_in_use)
1844 start_sw_timer(apic);
1845 preempt_enable();
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1848
1849 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1850 {
1851 struct kvm_lapic *apic = vcpu->arch.apic;
1852
1853 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1854 restart_apic_timer(apic);
1855 }
1856
1857 static void start_apic_timer(struct kvm_lapic *apic)
1858 {
1859 atomic_set(&apic->lapic_timer.pending, 0);
1860
1861 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1862 && !set_target_expiration(apic))
1863 return;
1864
1865 restart_apic_timer(apic);
1866 }
1867
1868 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1869 {
1870 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1871
1872 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1873 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1874 if (lvt0_in_nmi_mode) {
1875 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1876 } else
1877 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1878 }
1879 }
1880
1881 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1882 {
1883 int ret = 0;
1884
1885 trace_kvm_apic_write(reg, val);
1886
1887 switch (reg) {
1888 case APIC_ID: /* Local APIC ID */
1889 if (!apic_x2apic_mode(apic))
1890 kvm_apic_set_xapic_id(apic, val >> 24);
1891 else
1892 ret = 1;
1893 break;
1894
1895 case APIC_TASKPRI:
1896 report_tpr_access(apic, true);
1897 apic_set_tpr(apic, val & 0xff);
1898 break;
1899
1900 case APIC_EOI:
1901 apic_set_eoi(apic);
1902 break;
1903
1904 case APIC_LDR:
1905 if (!apic_x2apic_mode(apic))
1906 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1907 else
1908 ret = 1;
1909 break;
1910
1911 case APIC_DFR:
1912 if (!apic_x2apic_mode(apic)) {
1913 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
1914 recalculate_apic_map(apic->vcpu->kvm);
1915 } else
1916 ret = 1;
1917 break;
1918
1919 case APIC_SPIV: {
1920 u32 mask = 0x3ff;
1921 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
1922 mask |= APIC_SPIV_DIRECTED_EOI;
1923 apic_set_spiv(apic, val & mask);
1924 if (!(val & APIC_SPIV_APIC_ENABLED)) {
1925 int i;
1926 u32 lvt_val;
1927
1928 for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
1929 lvt_val = kvm_lapic_get_reg(apic,
1930 APIC_LVTT + 0x10 * i);
1931 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
1932 lvt_val | APIC_LVT_MASKED);
1933 }
1934 apic_update_lvtt(apic);
1935 atomic_set(&apic->lapic_timer.pending, 0);
1936
1937 }
1938 break;
1939 }
1940 case APIC_ICR:
1941 /* No delay here, so we always clear the pending bit */
1942 val &= ~(1 << 12);
1943 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
1944 kvm_lapic_set_reg(apic, APIC_ICR, val);
1945 break;
1946
1947 case APIC_ICR2:
1948 if (!apic_x2apic_mode(apic))
1949 val &= 0xff000000;
1950 kvm_lapic_set_reg(apic, APIC_ICR2, val);
1951 break;
1952
1953 case APIC_LVT0:
1954 apic_manage_nmi_watchdog(apic, val);
1955 /* fall through */
1956 case APIC_LVTTHMR:
1957 case APIC_LVTPC:
1958 case APIC_LVT1:
1959 case APIC_LVTERR: {
1960 /* TODO: Check vector */
1961 size_t size;
1962 u32 index;
1963
1964 if (!kvm_apic_sw_enabled(apic))
1965 val |= APIC_LVT_MASKED;
1966 size = ARRAY_SIZE(apic_lvt_mask);
1967 index = array_index_nospec(
1968 (reg - APIC_LVTT) >> 4, size);
1969 val &= apic_lvt_mask[index];
1970 kvm_lapic_set_reg(apic, reg, val);
1971 break;
1972 }
1973
1974 case APIC_LVTT:
1975 if (!kvm_apic_sw_enabled(apic))
1976 val |= APIC_LVT_MASKED;
1977 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
1978 kvm_lapic_set_reg(apic, APIC_LVTT, val);
1979 apic_update_lvtt(apic);
1980 break;
1981
1982 case APIC_TMICT:
1983 if (apic_lvtt_tscdeadline(apic))
1984 break;
1985
1986 hrtimer_cancel(&apic->lapic_timer.timer);
1987 kvm_lapic_set_reg(apic, APIC_TMICT, val);
1988 start_apic_timer(apic);
1989 break;
1990
1991 case APIC_TDCR: {
1992 uint32_t old_divisor = apic->divide_count;
1993
1994 kvm_lapic_set_reg(apic, APIC_TDCR, val);
1995 update_divide_count(apic);
1996 if (apic->divide_count != old_divisor &&
1997 apic->lapic_timer.period) {
1998 hrtimer_cancel(&apic->lapic_timer.timer);
1999 update_target_expiration(apic, old_divisor);
2000 restart_apic_timer(apic);
2001 }
2002 break;
2003 }
2004 case APIC_ESR:
2005 if (apic_x2apic_mode(apic) && val != 0)
2006 ret = 1;
2007 break;
2008
2009 case APIC_SELF_IPI:
2010 if (apic_x2apic_mode(apic)) {
2011 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff));
2012 } else
2013 ret = 1;
2014 break;
2015 default:
2016 ret = 1;
2017 break;
2018 }
2019
2020 return ret;
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
2023
2024 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2025 gpa_t address, int len, const void *data)
2026 {
2027 struct kvm_lapic *apic = to_lapic(this);
2028 unsigned int offset = address - apic->base_address;
2029 u32 val;
2030
2031 if (!apic_mmio_in_range(apic, address))
2032 return -EOPNOTSUPP;
2033
2034 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2035 if (!kvm_check_has_quirk(vcpu->kvm,
2036 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2037 return -EOPNOTSUPP;
2038
2039 return 0;
2040 }
2041
2042 /*
2043 * APIC register must be aligned on 128-bits boundary.
2044 * 32/64/128 bits registers must be accessed thru 32 bits.
2045 * Refer SDM 8.4.1
2046 */
2047 if (len != 4 || (offset & 0xf))
2048 return 0;
2049
2050 val = *(u32*)data;
2051
2052 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2053
2054 return 0;
2055 }
2056
2057 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2058 {
2059 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2062
2063 /* emulate APIC access in a trap manner */
2064 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2065 {
2066 u32 val = 0;
2067
2068 /* hw has done the conditional check and inst decode */
2069 offset &= 0xff0;
2070
2071 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2072
2073 /* TODO: optimize to just emulate side effect w/o one more write */
2074 kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2077
2078 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2079 {
2080 struct kvm_lapic *apic = vcpu->arch.apic;
2081
2082 if (!vcpu->arch.apic)
2083 return;
2084
2085 hrtimer_cancel(&apic->lapic_timer.timer);
2086
2087 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2088 static_key_slow_dec_deferred(&apic_hw_disabled);
2089
2090 if (!apic->sw_enabled)
2091 static_key_slow_dec_deferred(&apic_sw_disabled);
2092
2093 if (apic->regs)
2094 free_page((unsigned long)apic->regs);
2095
2096 kfree(apic);
2097 }
2098
2099 /*
2100 *----------------------------------------------------------------------
2101 * LAPIC interface
2102 *----------------------------------------------------------------------
2103 */
2104 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2105 {
2106 struct kvm_lapic *apic = vcpu->arch.apic;
2107
2108 if (!lapic_in_kernel(vcpu) ||
2109 !apic_lvtt_tscdeadline(apic))
2110 return 0;
2111
2112 return apic->lapic_timer.tscdeadline;
2113 }
2114
2115 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2116 {
2117 struct kvm_lapic *apic = vcpu->arch.apic;
2118
2119 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) ||
2120 apic_lvtt_period(apic))
2121 return;
2122
2123 hrtimer_cancel(&apic->lapic_timer.timer);
2124 apic->lapic_timer.tscdeadline = data;
2125 start_apic_timer(apic);
2126 }
2127
2128 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2129 {
2130 struct kvm_lapic *apic = vcpu->arch.apic;
2131
2132 apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2133 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2134 }
2135
2136 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2137 {
2138 u64 tpr;
2139
2140 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2141
2142 return (tpr & 0xf0) >> 4;
2143 }
2144
2145 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2146 {
2147 u64 old_value = vcpu->arch.apic_base;
2148 struct kvm_lapic *apic = vcpu->arch.apic;
2149
2150 if (!apic)
2151 value |= MSR_IA32_APICBASE_BSP;
2152
2153 vcpu->arch.apic_base = value;
2154
2155 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2156 kvm_update_cpuid(vcpu);
2157
2158 if (!apic)
2159 return;
2160
2161 /* update jump label if enable bit changes */
2162 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2163 if (value & MSR_IA32_APICBASE_ENABLE) {
2164 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2165 static_key_slow_dec_deferred(&apic_hw_disabled);
2166 } else {
2167 static_key_slow_inc(&apic_hw_disabled.key);
2168 recalculate_apic_map(vcpu->kvm);
2169 }
2170 }
2171
2172 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2173 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2174
2175 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2176 kvm_x86_ops->set_virtual_apic_mode(vcpu);
2177
2178 apic->base_address = apic->vcpu->arch.apic_base &
2179 MSR_IA32_APICBASE_BASE;
2180
2181 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2182 apic->base_address != APIC_DEFAULT_PHYS_BASE)
2183 pr_warn_once("APIC base relocation is unsupported by KVM");
2184 }
2185
2186 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2187 {
2188 struct kvm_lapic *apic = vcpu->arch.apic;
2189
2190 if (vcpu->arch.apicv_active) {
2191 /* irr_pending is always true when apicv is activated. */
2192 apic->irr_pending = true;
2193 apic->isr_count = 1;
2194 } else {
2195 apic->irr_pending = (apic_search_irr(apic) != -1);
2196 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2197 }
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv);
2200
2201 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2202 {
2203 struct kvm_lapic *apic = vcpu->arch.apic;
2204 int i;
2205
2206 if (!apic)
2207 return;
2208
2209 /* Stop the timer in case it's a reset to an active apic */
2210 hrtimer_cancel(&apic->lapic_timer.timer);
2211
2212 if (!init_event) {
2213 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2214 MSR_IA32_APICBASE_ENABLE);
2215 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2216 }
2217 kvm_apic_set_version(apic->vcpu);
2218
2219 for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2220 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2221 apic_update_lvtt(apic);
2222 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2223 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2224 kvm_lapic_set_reg(apic, APIC_LVT0,
2225 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2226 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2227
2228 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU);
2229 apic_set_spiv(apic, 0xff);
2230 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2231 if (!apic_x2apic_mode(apic))
2232 kvm_apic_set_ldr(apic, 0);
2233 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2234 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2235 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2236 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2237 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2238 for (i = 0; i < 8; i++) {
2239 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2240 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2241 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2242 }
2243 kvm_apic_update_apicv(vcpu);
2244 apic->highest_isr_cache = -1;
2245 update_divide_count(apic);
2246 atomic_set(&apic->lapic_timer.pending, 0);
2247 if (kvm_vcpu_is_bsp(vcpu))
2248 kvm_lapic_set_base(vcpu,
2249 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2250 vcpu->arch.pv_eoi.msr_val = 0;
2251 apic_update_ppr(apic);
2252 if (vcpu->arch.apicv_active) {
2253 kvm_x86_ops->apicv_post_state_restore(vcpu);
2254 kvm_x86_ops->hwapic_irr_update(vcpu, -1);
2255 kvm_x86_ops->hwapic_isr_update(vcpu, -1);
2256 }
2257
2258 vcpu->arch.apic_arb_prio = 0;
2259 vcpu->arch.apic_attention = 0;
2260 }
2261
2262 /*
2263 *----------------------------------------------------------------------
2264 * timer interface
2265 *----------------------------------------------------------------------
2266 */
2267
2268 static bool lapic_is_periodic(struct kvm_lapic *apic)
2269 {
2270 return apic_lvtt_period(apic);
2271 }
2272
2273 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2274 {
2275 struct kvm_lapic *apic = vcpu->arch.apic;
2276
2277 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2278 return atomic_read(&apic->lapic_timer.pending);
2279
2280 return 0;
2281 }
2282
2283 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2284 {
2285 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2286 int vector, mode, trig_mode;
2287
2288 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2289 vector = reg & APIC_VECTOR_MASK;
2290 mode = reg & APIC_MODE_MASK;
2291 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2292 return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2293 NULL);
2294 }
2295 return 0;
2296 }
2297
2298 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2299 {
2300 struct kvm_lapic *apic = vcpu->arch.apic;
2301
2302 if (apic)
2303 kvm_apic_local_deliver(apic, APIC_LVT0);
2304 }
2305
2306 static const struct kvm_io_device_ops apic_mmio_ops = {
2307 .read = apic_mmio_read,
2308 .write = apic_mmio_write,
2309 };
2310
2311 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2312 {
2313 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2314 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2315
2316 apic_timer_expired(apic);
2317
2318 if (lapic_is_periodic(apic)) {
2319 advance_periodic_target_expiration(apic);
2320 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2321 return HRTIMER_RESTART;
2322 } else
2323 return HRTIMER_NORESTART;
2324 }
2325
2326 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2327 {
2328 struct kvm_lapic *apic;
2329
2330 ASSERT(vcpu != NULL);
2331
2332 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2333 if (!apic)
2334 goto nomem;
2335
2336 vcpu->arch.apic = apic;
2337
2338 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2339 if (!apic->regs) {
2340 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2341 vcpu->vcpu_id);
2342 goto nomem_free_apic;
2343 }
2344 apic->vcpu = vcpu;
2345
2346 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2347 HRTIMER_MODE_ABS_HARD);
2348 apic->lapic_timer.timer.function = apic_timer_fn;
2349 if (timer_advance_ns == -1) {
2350 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2351 lapic_timer_advance_dynamic = true;
2352 } else {
2353 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2354 lapic_timer_advance_dynamic = false;
2355 }
2356
2357 /*
2358 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2359 * thinking that APIC state has changed.
2360 */
2361 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2362 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2363 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2364
2365 return 0;
2366 nomem_free_apic:
2367 kfree(apic);
2368 vcpu->arch.apic = NULL;
2369 nomem:
2370 return -ENOMEM;
2371 }
2372
2373 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2374 {
2375 struct kvm_lapic *apic = vcpu->arch.apic;
2376 u32 ppr;
2377
2378 if (!kvm_apic_hw_enabled(apic))
2379 return -1;
2380
2381 __apic_update_ppr(apic, &ppr);
2382 return apic_has_interrupt_for_ppr(apic, ppr);
2383 }
2384
2385 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2386 {
2387 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2388
2389 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2390 return 1;
2391 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2392 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2393 return 1;
2394 return 0;
2395 }
2396
2397 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2398 {
2399 struct kvm_lapic *apic = vcpu->arch.apic;
2400
2401 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2402 kvm_apic_inject_pending_timer_irqs(apic);
2403 atomic_set(&apic->lapic_timer.pending, 0);
2404 }
2405 }
2406
2407 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2408 {
2409 int vector = kvm_apic_has_interrupt(vcpu);
2410 struct kvm_lapic *apic = vcpu->arch.apic;
2411 u32 ppr;
2412
2413 if (vector == -1)
2414 return -1;
2415
2416 /*
2417 * We get here even with APIC virtualization enabled, if doing
2418 * nested virtualization and L1 runs with the "acknowledge interrupt
2419 * on exit" mode. Then we cannot inject the interrupt via RVI,
2420 * because the process would deliver it through the IDT.
2421 */
2422
2423 apic_clear_irr(vector, apic);
2424 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2425 /*
2426 * For auto-EOI interrupts, there might be another pending
2427 * interrupt above PPR, so check whether to raise another
2428 * KVM_REQ_EVENT.
2429 */
2430 apic_update_ppr(apic);
2431 } else {
2432 /*
2433 * For normal interrupts, PPR has been raised and there cannot
2434 * be a higher-priority pending interrupt---except if there was
2435 * a concurrent interrupt injection, but that would have
2436 * triggered KVM_REQ_EVENT already.
2437 */
2438 apic_set_isr(vector, apic);
2439 __apic_update_ppr(apic, &ppr);
2440 }
2441
2442 return vector;
2443 }
2444
2445 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2446 struct kvm_lapic_state *s, bool set)
2447 {
2448 if (apic_x2apic_mode(vcpu->arch.apic)) {
2449 u32 *id = (u32 *)(s->regs + APIC_ID);
2450 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2451
2452 if (vcpu->kvm->arch.x2apic_format) {
2453 if (*id != vcpu->vcpu_id)
2454 return -EINVAL;
2455 } else {
2456 if (set)
2457 *id >>= 24;
2458 else
2459 *id <<= 24;
2460 }
2461
2462 /* In x2APIC mode, the LDR is fixed and based on the id */
2463 if (set)
2464 *ldr = kvm_apic_calc_x2apic_ldr(*id);
2465 }
2466
2467 return 0;
2468 }
2469
2470 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2471 {
2472 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2473 return kvm_apic_state_fixup(vcpu, s, false);
2474 }
2475
2476 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2477 {
2478 struct kvm_lapic *apic = vcpu->arch.apic;
2479 int r;
2480
2481
2482 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2483 /* set SPIV separately to get count of SW disabled APICs right */
2484 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2485
2486 r = kvm_apic_state_fixup(vcpu, s, true);
2487 if (r)
2488 return r;
2489 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2490
2491 recalculate_apic_map(vcpu->kvm);
2492 kvm_apic_set_version(vcpu);
2493
2494 apic_update_ppr(apic);
2495 hrtimer_cancel(&apic->lapic_timer.timer);
2496 apic_update_lvtt(apic);
2497 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2498 update_divide_count(apic);
2499 start_apic_timer(apic);
2500 kvm_apic_update_apicv(vcpu);
2501 apic->highest_isr_cache = -1;
2502 if (vcpu->arch.apicv_active) {
2503 kvm_x86_ops->apicv_post_state_restore(vcpu);
2504 kvm_x86_ops->hwapic_irr_update(vcpu,
2505 apic_find_highest_irr(apic));
2506 kvm_x86_ops->hwapic_isr_update(vcpu,
2507 apic_find_highest_isr(apic));
2508 }
2509 kvm_make_request(KVM_REQ_EVENT, vcpu);
2510 if (ioapic_in_kernel(vcpu->kvm))
2511 kvm_rtc_eoi_tracking_restore_one(vcpu);
2512
2513 vcpu->arch.apic_arb_prio = 0;
2514
2515 return 0;
2516 }
2517
2518 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2519 {
2520 struct hrtimer *timer;
2521
2522 if (!lapic_in_kernel(vcpu) ||
2523 kvm_can_post_timer_interrupt(vcpu))
2524 return;
2525
2526 timer = &vcpu->arch.apic->lapic_timer.timer;
2527 if (hrtimer_cancel(timer))
2528 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2529 }
2530
2531 /*
2532 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2533 *
2534 * Detect whether guest triggered PV EOI since the
2535 * last entry. If yes, set EOI on guests's behalf.
2536 * Clear PV EOI in guest memory in any case.
2537 */
2538 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2539 struct kvm_lapic *apic)
2540 {
2541 bool pending;
2542 int vector;
2543 /*
2544 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2545 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2546 *
2547 * KVM_APIC_PV_EOI_PENDING is unset:
2548 * -> host disabled PV EOI.
2549 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2550 * -> host enabled PV EOI, guest did not execute EOI yet.
2551 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2552 * -> host enabled PV EOI, guest executed EOI.
2553 */
2554 BUG_ON(!pv_eoi_enabled(vcpu));
2555 pending = pv_eoi_get_pending(vcpu);
2556 /*
2557 * Clear pending bit in any case: it will be set again on vmentry.
2558 * While this might not be ideal from performance point of view,
2559 * this makes sure pv eoi is only enabled when we know it's safe.
2560 */
2561 pv_eoi_clr_pending(vcpu);
2562 if (pending)
2563 return;
2564 vector = apic_set_eoi(apic);
2565 trace_kvm_pv_eoi(apic, vector);
2566 }
2567
2568 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2569 {
2570 u32 data;
2571
2572 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2573 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2574
2575 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2576 return;
2577
2578 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2579 sizeof(u32)))
2580 return;
2581
2582 apic_set_tpr(vcpu->arch.apic, data & 0xff);
2583 }
2584
2585 /*
2586 * apic_sync_pv_eoi_to_guest - called before vmentry
2587 *
2588 * Detect whether it's safe to enable PV EOI and
2589 * if yes do so.
2590 */
2591 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2592 struct kvm_lapic *apic)
2593 {
2594 if (!pv_eoi_enabled(vcpu) ||
2595 /* IRR set or many bits in ISR: could be nested. */
2596 apic->irr_pending ||
2597 /* Cache not set: could be safe but we don't bother. */
2598 apic->highest_isr_cache == -1 ||
2599 /* Need EOI to update ioapic. */
2600 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2601 /*
2602 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2603 * so we need not do anything here.
2604 */
2605 return;
2606 }
2607
2608 pv_eoi_set_pending(apic->vcpu);
2609 }
2610
2611 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2612 {
2613 u32 data, tpr;
2614 int max_irr, max_isr;
2615 struct kvm_lapic *apic = vcpu->arch.apic;
2616
2617 apic_sync_pv_eoi_to_guest(vcpu, apic);
2618
2619 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2620 return;
2621
2622 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2623 max_irr = apic_find_highest_irr(apic);
2624 if (max_irr < 0)
2625 max_irr = 0;
2626 max_isr = apic_find_highest_isr(apic);
2627 if (max_isr < 0)
2628 max_isr = 0;
2629 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2630
2631 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2632 sizeof(u32));
2633 }
2634
2635 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2636 {
2637 if (vapic_addr) {
2638 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2639 &vcpu->arch.apic->vapic_cache,
2640 vapic_addr, sizeof(u32)))
2641 return -EINVAL;
2642 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2643 } else {
2644 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2645 }
2646
2647 vcpu->arch.apic->vapic_addr = vapic_addr;
2648 return 0;
2649 }
2650
2651 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2652 {
2653 struct kvm_lapic *apic = vcpu->arch.apic;
2654 u32 reg = (msr - APIC_BASE_MSR) << 4;
2655
2656 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2657 return 1;
2658
2659 if (reg == APIC_ICR2)
2660 return 1;
2661
2662 /* if this is ICR write vector before command */
2663 if (reg == APIC_ICR)
2664 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2665 return kvm_lapic_reg_write(apic, reg, (u32)data);
2666 }
2667
2668 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2669 {
2670 struct kvm_lapic *apic = vcpu->arch.apic;
2671 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2672
2673 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2674 return 1;
2675
2676 if (reg == APIC_DFR || reg == APIC_ICR2)
2677 return 1;
2678
2679 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2680 return 1;
2681 if (reg == APIC_ICR)
2682 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2683
2684 *data = (((u64)high) << 32) | low;
2685
2686 return 0;
2687 }
2688
2689 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2690 {
2691 struct kvm_lapic *apic = vcpu->arch.apic;
2692
2693 if (!lapic_in_kernel(vcpu))
2694 return 1;
2695
2696 /* if this is ICR write vector before command */
2697 if (reg == APIC_ICR)
2698 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2699 return kvm_lapic_reg_write(apic, reg, (u32)data);
2700 }
2701
2702 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2703 {
2704 struct kvm_lapic *apic = vcpu->arch.apic;
2705 u32 low, high = 0;
2706
2707 if (!lapic_in_kernel(vcpu))
2708 return 1;
2709
2710 if (kvm_lapic_reg_read(apic, reg, 4, &low))
2711 return 1;
2712 if (reg == APIC_ICR)
2713 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2714
2715 *data = (((u64)high) << 32) | low;
2716
2717 return 0;
2718 }
2719
2720 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2721 {
2722 u64 addr = data & ~KVM_MSR_ENABLED;
2723 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2724 unsigned long new_len;
2725
2726 if (!IS_ALIGNED(addr, 4))
2727 return 1;
2728
2729 vcpu->arch.pv_eoi.msr_val = data;
2730 if (!pv_eoi_enabled(vcpu))
2731 return 0;
2732
2733 if (addr == ghc->gpa && len <= ghc->len)
2734 new_len = ghc->len;
2735 else
2736 new_len = len;
2737
2738 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2739 }
2740
2741 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2742 {
2743 struct kvm_lapic *apic = vcpu->arch.apic;
2744 u8 sipi_vector;
2745 unsigned long pe;
2746
2747 if (!lapic_in_kernel(vcpu) || !apic->pending_events)
2748 return;
2749
2750 /*
2751 * INITs are latched while CPU is in specific states
2752 * (SMM, VMX non-root mode, SVM with GIF=0).
2753 * Because a CPU cannot be in these states immediately
2754 * after it has processed an INIT signal (and thus in
2755 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2756 * and leave the INIT pending.
2757 */
2758 if (kvm_vcpu_latch_init(vcpu)) {
2759 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2760 if (test_bit(KVM_APIC_SIPI, &apic->pending_events))
2761 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2762 return;
2763 }
2764
2765 pe = xchg(&apic->pending_events, 0);
2766 if (test_bit(KVM_APIC_INIT, &pe)) {
2767 kvm_vcpu_reset(vcpu, true);
2768 if (kvm_vcpu_is_bsp(apic->vcpu))
2769 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2770 else
2771 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2772 }
2773 if (test_bit(KVM_APIC_SIPI, &pe) &&
2774 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2775 /* evaluate pending_events before reading the vector */
2776 smp_rmb();
2777 sipi_vector = apic->sipi_vector;
2778 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2779 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2780 }
2781 }
2782
2783 void kvm_lapic_init(void)
2784 {
2785 /* do not patch jump label more than once per second */
2786 jump_label_rate_limit(&apic_hw_disabled, HZ);
2787 jump_label_rate_limit(&apic_sw_disabled, HZ);
2788 }
2789
2790 void kvm_lapic_exit(void)
2791 {
2792 static_key_deferred_flush(&apic_hw_disabled);
2793 static_key_deferred_flush(&apic_sw_disabled);
2794 }