]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM 8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 /*
141 * Return values of handle_mmio_page_fault, mmu.page_fault, and fast_page_fault().
142 *
143 * RET_PF_RETRY: let CPU fault again on the address.
144 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
145 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
146 * RET_PF_FIXED: The faulting entry has been fixed.
147 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
148 */
149 enum {
150 RET_PF_RETRY = 0,
151 RET_PF_EMULATE,
152 RET_PF_INVALID,
153 RET_PF_FIXED,
154 RET_PF_SPURIOUS,
155 };
156
157 struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
160 };
161
162 struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
165 u64 *sptep;
166 int level;
167 unsigned index;
168 };
169
170 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
171 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
172 (_root), (_addr)); \
173 shadow_walk_okay(&(_walker)); \
174 shadow_walk_next(&(_walker)))
175
176 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
177 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
178 shadow_walk_okay(&(_walker)); \
179 shadow_walk_next(&(_walker)))
180
181 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
182 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
183 shadow_walk_okay(&(_walker)) && \
184 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
185 __shadow_walk_next(&(_walker), spte))
186
187 static struct kmem_cache *pte_list_desc_cache;
188 struct kmem_cache *mmu_page_header_cache;
189 static struct percpu_counter kvm_total_used_mmu_pages;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static union kvm_mmu_page_role
193 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
194
195 #define CREATE_TRACE_POINTS
196 #include "mmutrace.h"
197
198
199 static inline bool kvm_available_flush_tlb_with_range(void)
200 {
201 return kvm_x86_ops.tlb_remote_flush_with_range;
202 }
203
204 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
205 struct kvm_tlb_range *range)
206 {
207 int ret = -ENOTSUPP;
208
209 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
210 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
211
212 if (ret)
213 kvm_flush_remote_tlbs(kvm);
214 }
215
216 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
217 u64 start_gfn, u64 pages)
218 {
219 struct kvm_tlb_range range;
220
221 range.start_gfn = start_gfn;
222 range.pages = pages;
223
224 kvm_flush_remote_tlbs_with_range(kvm, &range);
225 }
226
227 bool is_nx_huge_page_enabled(void)
228 {
229 return READ_ONCE(nx_huge_pages);
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233 unsigned int access)
234 {
235 u64 mask = make_mmio_spte(vcpu, gfn, access);
236 unsigned int gen = get_mmio_spte_generation(mask);
237
238 access = mask & ACC_ALL;
239
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
242 }
243
244 static gfn_t get_mmio_spte_gfn(u64 spte)
245 {
246 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
247
248 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
249 & shadow_nonpresent_or_rsvd_mask;
250
251 return gpa >> PAGE_SHIFT;
252 }
253
254 static unsigned get_mmio_spte_access(u64 spte)
255 {
256 return spte & shadow_mmio_access_mask;
257 }
258
259 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
260 kvm_pfn_t pfn, unsigned int access)
261 {
262 if (unlikely(is_noslot_pfn(pfn))) {
263 mark_mmio_spte(vcpu, sptep, gfn, access);
264 return true;
265 }
266
267 return false;
268 }
269
270 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
271 {
272 u64 kvm_gen, spte_gen, gen;
273
274 gen = kvm_vcpu_memslots(vcpu)->generation;
275 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
276 return false;
277
278 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
279 spte_gen = get_mmio_spte_generation(spte);
280
281 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
282 return likely(kvm_gen == spte_gen);
283 }
284
285 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
286 struct x86_exception *exception)
287 {
288 /* Check if guest physical address doesn't exceed guest maximum */
289 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
290 exception->error_code |= PFERR_RSVD_MASK;
291 return UNMAPPED_GVA;
292 }
293
294 return gpa;
295 }
296
297 static int is_cpuid_PSE36(void)
298 {
299 return 1;
300 }
301
302 static int is_nx(struct kvm_vcpu *vcpu)
303 {
304 return vcpu->arch.efer & EFER_NX;
305 }
306
307 static gfn_t pse36_gfn_delta(u32 gpte)
308 {
309 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
310
311 return (gpte & PT32_DIR_PSE36_MASK) << shift;
312 }
313
314 #ifdef CONFIG_X86_64
315 static void __set_spte(u64 *sptep, u64 spte)
316 {
317 WRITE_ONCE(*sptep, spte);
318 }
319
320 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
321 {
322 WRITE_ONCE(*sptep, spte);
323 }
324
325 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
326 {
327 return xchg(sptep, spte);
328 }
329
330 static u64 __get_spte_lockless(u64 *sptep)
331 {
332 return READ_ONCE(*sptep);
333 }
334 #else
335 union split_spte {
336 struct {
337 u32 spte_low;
338 u32 spte_high;
339 };
340 u64 spte;
341 };
342
343 static void count_spte_clear(u64 *sptep, u64 spte)
344 {
345 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
346
347 if (is_shadow_present_pte(spte))
348 return;
349
350 /* Ensure the spte is completely set before we increase the count */
351 smp_wmb();
352 sp->clear_spte_count++;
353 }
354
355 static void __set_spte(u64 *sptep, u64 spte)
356 {
357 union split_spte *ssptep, sspte;
358
359 ssptep = (union split_spte *)sptep;
360 sspte = (union split_spte)spte;
361
362 ssptep->spte_high = sspte.spte_high;
363
364 /*
365 * If we map the spte from nonpresent to present, We should store
366 * the high bits firstly, then set present bit, so cpu can not
367 * fetch this spte while we are setting the spte.
368 */
369 smp_wmb();
370
371 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
372 }
373
374 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
375 {
376 union split_spte *ssptep, sspte;
377
378 ssptep = (union split_spte *)sptep;
379 sspte = (union split_spte)spte;
380
381 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
382
383 /*
384 * If we map the spte from present to nonpresent, we should clear
385 * present bit firstly to avoid vcpu fetch the old high bits.
386 */
387 smp_wmb();
388
389 ssptep->spte_high = sspte.spte_high;
390 count_spte_clear(sptep, spte);
391 }
392
393 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
394 {
395 union split_spte *ssptep, sspte, orig;
396
397 ssptep = (union split_spte *)sptep;
398 sspte = (union split_spte)spte;
399
400 /* xchg acts as a barrier before the setting of the high bits */
401 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
402 orig.spte_high = ssptep->spte_high;
403 ssptep->spte_high = sspte.spte_high;
404 count_spte_clear(sptep, spte);
405
406 return orig.spte;
407 }
408
409 /*
410 * The idea using the light way get the spte on x86_32 guest is from
411 * gup_get_pte (mm/gup.c).
412 *
413 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
414 * coalesces them and we are running out of the MMU lock. Therefore
415 * we need to protect against in-progress updates of the spte.
416 *
417 * Reading the spte while an update is in progress may get the old value
418 * for the high part of the spte. The race is fine for a present->non-present
419 * change (because the high part of the spte is ignored for non-present spte),
420 * but for a present->present change we must reread the spte.
421 *
422 * All such changes are done in two steps (present->non-present and
423 * non-present->present), hence it is enough to count the number of
424 * present->non-present updates: if it changed while reading the spte,
425 * we might have hit the race. This is done using clear_spte_count.
426 */
427 static u64 __get_spte_lockless(u64 *sptep)
428 {
429 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
430 union split_spte spte, *orig = (union split_spte *)sptep;
431 int count;
432
433 retry:
434 count = sp->clear_spte_count;
435 smp_rmb();
436
437 spte.spte_low = orig->spte_low;
438 smp_rmb();
439
440 spte.spte_high = orig->spte_high;
441 smp_rmb();
442
443 if (unlikely(spte.spte_low != orig->spte_low ||
444 count != sp->clear_spte_count))
445 goto retry;
446
447 return spte.spte;
448 }
449 #endif
450
451 static bool spte_has_volatile_bits(u64 spte)
452 {
453 if (!is_shadow_present_pte(spte))
454 return false;
455
456 /*
457 * Always atomically update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_can_locklessly_be_made_writable(spte) ||
463 is_access_track_spte(spte))
464 return true;
465
466 if (spte_ad_enabled(spte)) {
467 if ((spte & shadow_accessed_mask) == 0 ||
468 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
469 return true;
470 }
471
472 return false;
473 }
474
475 /* Rules for using mmu_spte_set:
476 * Set the sptep from nonpresent to present.
477 * Note: the sptep being assigned *must* be either not present
478 * or in a state where the hardware will not attempt to update
479 * the spte.
480 */
481 static void mmu_spte_set(u64 *sptep, u64 new_spte)
482 {
483 WARN_ON(is_shadow_present_pte(*sptep));
484 __set_spte(sptep, new_spte);
485 }
486
487 /*
488 * Update the SPTE (excluding the PFN), but do not track changes in its
489 * accessed/dirty status.
490 */
491 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
492 {
493 u64 old_spte = *sptep;
494
495 WARN_ON(!is_shadow_present_pte(new_spte));
496
497 if (!is_shadow_present_pte(old_spte)) {
498 mmu_spte_set(sptep, new_spte);
499 return old_spte;
500 }
501
502 if (!spte_has_volatile_bits(old_spte))
503 __update_clear_spte_fast(sptep, new_spte);
504 else
505 old_spte = __update_clear_spte_slow(sptep, new_spte);
506
507 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
508
509 return old_spte;
510 }
511
512 /* Rules for using mmu_spte_update:
513 * Update the state bits, it means the mapped pfn is not changed.
514 *
515 * Whenever we overwrite a writable spte with a read-only one we
516 * should flush remote TLBs. Otherwise rmap_write_protect
517 * will find a read-only spte, even though the writable spte
518 * might be cached on a CPU's TLB, the return value indicates this
519 * case.
520 *
521 * Returns true if the TLB needs to be flushed
522 */
523 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
524 {
525 bool flush = false;
526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
527
528 if (!is_shadow_present_pte(old_spte))
529 return false;
530
531 /*
532 * For the spte updated out of mmu-lock is safe, since
533 * we always atomically update it, see the comments in
534 * spte_has_volatile_bits().
535 */
536 if (spte_can_locklessly_be_made_writable(old_spte) &&
537 !is_writable_pte(new_spte))
538 flush = true;
539
540 /*
541 * Flush TLB when accessed/dirty states are changed in the page tables,
542 * to guarantee consistency between TLB and page tables.
543 */
544
545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
546 flush = true;
547 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
548 }
549
550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
551 flush = true;
552 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
553 }
554
555 return flush;
556 }
557
558 /*
559 * Rules for using mmu_spte_clear_track_bits:
560 * It sets the sptep from present to nonpresent, and track the
561 * state bits, it is used to clear the last level sptep.
562 * Returns non-zero if the PTE was previously valid.
563 */
564 static int mmu_spte_clear_track_bits(u64 *sptep)
565 {
566 kvm_pfn_t pfn;
567 u64 old_spte = *sptep;
568
569 if (!spte_has_volatile_bits(old_spte))
570 __update_clear_spte_fast(sptep, 0ull);
571 else
572 old_spte = __update_clear_spte_slow(sptep, 0ull);
573
574 if (!is_shadow_present_pte(old_spte))
575 return 0;
576
577 pfn = spte_to_pfn(old_spte);
578
579 /*
580 * KVM does not hold the refcount of the page used by
581 * kvm mmu, before reclaiming the page, we should
582 * unmap it from mmu first.
583 */
584 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
585
586 if (is_accessed_spte(old_spte))
587 kvm_set_pfn_accessed(pfn);
588
589 if (is_dirty_spte(old_spte))
590 kvm_set_pfn_dirty(pfn);
591
592 return 1;
593 }
594
595 /*
596 * Rules for using mmu_spte_clear_no_track:
597 * Directly clear spte without caring the state bits of sptep,
598 * it is used to set the upper level spte.
599 */
600 static void mmu_spte_clear_no_track(u64 *sptep)
601 {
602 __update_clear_spte_fast(sptep, 0ull);
603 }
604
605 static u64 mmu_spte_get_lockless(u64 *sptep)
606 {
607 return __get_spte_lockless(sptep);
608 }
609
610 /* Restore an acc-track PTE back to a regular PTE */
611 static u64 restore_acc_track_spte(u64 spte)
612 {
613 u64 new_spte = spte;
614 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
615 & shadow_acc_track_saved_bits_mask;
616
617 WARN_ON_ONCE(spte_ad_enabled(spte));
618 WARN_ON_ONCE(!is_access_track_spte(spte));
619
620 new_spte &= ~shadow_acc_track_mask;
621 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
622 shadow_acc_track_saved_bits_shift);
623 new_spte |= saved_bits;
624
625 return new_spte;
626 }
627
628 /* Returns the Accessed status of the PTE and resets it at the same time. */
629 static bool mmu_spte_age(u64 *sptep)
630 {
631 u64 spte = mmu_spte_get_lockless(sptep);
632
633 if (!is_accessed_spte(spte))
634 return false;
635
636 if (spte_ad_enabled(spte)) {
637 clear_bit((ffs(shadow_accessed_mask) - 1),
638 (unsigned long *)sptep);
639 } else {
640 /*
641 * Capture the dirty status of the page, so that it doesn't get
642 * lost when the SPTE is marked for access tracking.
643 */
644 if (is_writable_pte(spte))
645 kvm_set_pfn_dirty(spte_to_pfn(spte));
646
647 spte = mark_spte_for_access_track(spte);
648 mmu_spte_update_no_track(sptep, spte);
649 }
650
651 return true;
652 }
653
654 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
655 {
656 /*
657 * Prevent page table teardown by making any free-er wait during
658 * kvm_flush_remote_tlbs() IPI to all active vcpus.
659 */
660 local_irq_disable();
661
662 /*
663 * Make sure a following spte read is not reordered ahead of the write
664 * to vcpu->mode.
665 */
666 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
667 }
668
669 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
670 {
671 /*
672 * Make sure the write to vcpu->mode is not reordered in front of
673 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
674 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
675 */
676 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
677 local_irq_enable();
678 }
679
680 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
681 {
682 int r;
683
684 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
685 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
687 if (r)
688 return r;
689 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
690 PT64_ROOT_MAX_LEVEL);
691 if (r)
692 return r;
693 if (maybe_indirect) {
694 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
695 PT64_ROOT_MAX_LEVEL);
696 if (r)
697 return r;
698 }
699 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
700 PT64_ROOT_MAX_LEVEL);
701 }
702
703 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
704 {
705 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
706 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
707 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
708 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
709 }
710
711 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
712 {
713 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714 }
715
716 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
717 {
718 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
719 }
720
721 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
722 {
723 if (!sp->role.direct)
724 return sp->gfns[index];
725
726 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
727 }
728
729 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
730 {
731 if (!sp->role.direct) {
732 sp->gfns[index] = gfn;
733 return;
734 }
735
736 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
737 pr_err_ratelimited("gfn mismatch under direct page %llx "
738 "(expected %llx, got %llx)\n",
739 sp->gfn,
740 kvm_mmu_page_get_gfn(sp, index), gfn);
741 }
742
743 /*
744 * Return the pointer to the large page information for a given gfn,
745 * handling slots that are not large page aligned.
746 */
747 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
748 struct kvm_memory_slot *slot,
749 int level)
750 {
751 unsigned long idx;
752
753 idx = gfn_to_index(gfn, slot->base_gfn, level);
754 return &slot->arch.lpage_info[level - 2][idx];
755 }
756
757 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
758 gfn_t gfn, int count)
759 {
760 struct kvm_lpage_info *linfo;
761 int i;
762
763 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
764 linfo = lpage_info_slot(gfn, slot, i);
765 linfo->disallow_lpage += count;
766 WARN_ON(linfo->disallow_lpage < 0);
767 }
768 }
769
770 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
771 {
772 update_gfn_disallow_lpage_count(slot, gfn, 1);
773 }
774
775 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
776 {
777 update_gfn_disallow_lpage_count(slot, gfn, -1);
778 }
779
780 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
781 {
782 struct kvm_memslots *slots;
783 struct kvm_memory_slot *slot;
784 gfn_t gfn;
785
786 kvm->arch.indirect_shadow_pages++;
787 gfn = sp->gfn;
788 slots = kvm_memslots_for_spte_role(kvm, sp->role);
789 slot = __gfn_to_memslot(slots, gfn);
790
791 /* the non-leaf shadow pages are keeping readonly. */
792 if (sp->role.level > PG_LEVEL_4K)
793 return kvm_slot_page_track_add_page(kvm, slot, gfn,
794 KVM_PAGE_TRACK_WRITE);
795
796 kvm_mmu_gfn_disallow_lpage(slot, gfn);
797 }
798
799 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
800 {
801 if (sp->lpage_disallowed)
802 return;
803
804 ++kvm->stat.nx_lpage_splits;
805 list_add_tail(&sp->lpage_disallowed_link,
806 &kvm->arch.lpage_disallowed_mmu_pages);
807 sp->lpage_disallowed = true;
808 }
809
810 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
811 {
812 struct kvm_memslots *slots;
813 struct kvm_memory_slot *slot;
814 gfn_t gfn;
815
816 kvm->arch.indirect_shadow_pages--;
817 gfn = sp->gfn;
818 slots = kvm_memslots_for_spte_role(kvm, sp->role);
819 slot = __gfn_to_memslot(slots, gfn);
820 if (sp->role.level > PG_LEVEL_4K)
821 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
822 KVM_PAGE_TRACK_WRITE);
823
824 kvm_mmu_gfn_allow_lpage(slot, gfn);
825 }
826
827 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
828 {
829 --kvm->stat.nx_lpage_splits;
830 sp->lpage_disallowed = false;
831 list_del(&sp->lpage_disallowed_link);
832 }
833
834 static struct kvm_memory_slot *
835 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
836 bool no_dirty_log)
837 {
838 struct kvm_memory_slot *slot;
839
840 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
841 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
842 return NULL;
843 if (no_dirty_log && slot->dirty_bitmap)
844 return NULL;
845
846 return slot;
847 }
848
849 /*
850 * About rmap_head encoding:
851 *
852 * If the bit zero of rmap_head->val is clear, then it points to the only spte
853 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
854 * pte_list_desc containing more mappings.
855 */
856
857 /*
858 * Returns the number of pointers in the rmap chain, not counting the new one.
859 */
860 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
861 struct kvm_rmap_head *rmap_head)
862 {
863 struct pte_list_desc *desc;
864 int i, count = 0;
865
866 if (!rmap_head->val) {
867 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
868 rmap_head->val = (unsigned long)spte;
869 } else if (!(rmap_head->val & 1)) {
870 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
871 desc = mmu_alloc_pte_list_desc(vcpu);
872 desc->sptes[0] = (u64 *)rmap_head->val;
873 desc->sptes[1] = spte;
874 rmap_head->val = (unsigned long)desc | 1;
875 ++count;
876 } else {
877 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
878 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
879 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
880 desc = desc->more;
881 count += PTE_LIST_EXT;
882 }
883 if (desc->sptes[PTE_LIST_EXT-1]) {
884 desc->more = mmu_alloc_pte_list_desc(vcpu);
885 desc = desc->more;
886 }
887 for (i = 0; desc->sptes[i]; ++i)
888 ++count;
889 desc->sptes[i] = spte;
890 }
891 return count;
892 }
893
894 static void
895 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
896 struct pte_list_desc *desc, int i,
897 struct pte_list_desc *prev_desc)
898 {
899 int j;
900
901 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
902 ;
903 desc->sptes[i] = desc->sptes[j];
904 desc->sptes[j] = NULL;
905 if (j != 0)
906 return;
907 if (!prev_desc && !desc->more)
908 rmap_head->val = 0;
909 else
910 if (prev_desc)
911 prev_desc->more = desc->more;
912 else
913 rmap_head->val = (unsigned long)desc->more | 1;
914 mmu_free_pte_list_desc(desc);
915 }
916
917 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
918 {
919 struct pte_list_desc *desc;
920 struct pte_list_desc *prev_desc;
921 int i;
922
923 if (!rmap_head->val) {
924 pr_err("%s: %p 0->BUG\n", __func__, spte);
925 BUG();
926 } else if (!(rmap_head->val & 1)) {
927 rmap_printk("%s: %p 1->0\n", __func__, spte);
928 if ((u64 *)rmap_head->val != spte) {
929 pr_err("%s: %p 1->BUG\n", __func__, spte);
930 BUG();
931 }
932 rmap_head->val = 0;
933 } else {
934 rmap_printk("%s: %p many->many\n", __func__, spte);
935 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
936 prev_desc = NULL;
937 while (desc) {
938 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
939 if (desc->sptes[i] == spte) {
940 pte_list_desc_remove_entry(rmap_head,
941 desc, i, prev_desc);
942 return;
943 }
944 }
945 prev_desc = desc;
946 desc = desc->more;
947 }
948 pr_err("%s: %p many->many\n", __func__, spte);
949 BUG();
950 }
951 }
952
953 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
954 {
955 mmu_spte_clear_track_bits(sptep);
956 __pte_list_remove(sptep, rmap_head);
957 }
958
959 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
960 struct kvm_memory_slot *slot)
961 {
962 unsigned long idx;
963
964 idx = gfn_to_index(gfn, slot->base_gfn, level);
965 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
966 }
967
968 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
969 struct kvm_mmu_page *sp)
970 {
971 struct kvm_memslots *slots;
972 struct kvm_memory_slot *slot;
973
974 slots = kvm_memslots_for_spte_role(kvm, sp->role);
975 slot = __gfn_to_memslot(slots, gfn);
976 return __gfn_to_rmap(gfn, sp->role.level, slot);
977 }
978
979 static bool rmap_can_add(struct kvm_vcpu *vcpu)
980 {
981 struct kvm_mmu_memory_cache *mc;
982
983 mc = &vcpu->arch.mmu_pte_list_desc_cache;
984 return kvm_mmu_memory_cache_nr_free_objects(mc);
985 }
986
987 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
988 {
989 struct kvm_mmu_page *sp;
990 struct kvm_rmap_head *rmap_head;
991
992 sp = sptep_to_sp(spte);
993 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
994 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
995 return pte_list_add(vcpu, spte, rmap_head);
996 }
997
998 static void rmap_remove(struct kvm *kvm, u64 *spte)
999 {
1000 struct kvm_mmu_page *sp;
1001 gfn_t gfn;
1002 struct kvm_rmap_head *rmap_head;
1003
1004 sp = sptep_to_sp(spte);
1005 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1006 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1007 __pte_list_remove(spte, rmap_head);
1008 }
1009
1010 /*
1011 * Used by the following functions to iterate through the sptes linked by a
1012 * rmap. All fields are private and not assumed to be used outside.
1013 */
1014 struct rmap_iterator {
1015 /* private fields */
1016 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1017 int pos; /* index of the sptep */
1018 };
1019
1020 /*
1021 * Iteration must be started by this function. This should also be used after
1022 * removing/dropping sptes from the rmap link because in such cases the
1023 * information in the iterator may not be valid.
1024 *
1025 * Returns sptep if found, NULL otherwise.
1026 */
1027 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1028 struct rmap_iterator *iter)
1029 {
1030 u64 *sptep;
1031
1032 if (!rmap_head->val)
1033 return NULL;
1034
1035 if (!(rmap_head->val & 1)) {
1036 iter->desc = NULL;
1037 sptep = (u64 *)rmap_head->val;
1038 goto out;
1039 }
1040
1041 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1042 iter->pos = 0;
1043 sptep = iter->desc->sptes[iter->pos];
1044 out:
1045 BUG_ON(!is_shadow_present_pte(*sptep));
1046 return sptep;
1047 }
1048
1049 /*
1050 * Must be used with a valid iterator: e.g. after rmap_get_first().
1051 *
1052 * Returns sptep if found, NULL otherwise.
1053 */
1054 static u64 *rmap_get_next(struct rmap_iterator *iter)
1055 {
1056 u64 *sptep;
1057
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 ++iter->pos;
1061 sptep = iter->desc->sptes[iter->pos];
1062 if (sptep)
1063 goto out;
1064 }
1065
1066 iter->desc = iter->desc->more;
1067
1068 if (iter->desc) {
1069 iter->pos = 0;
1070 /* desc->sptes[0] cannot be NULL */
1071 sptep = iter->desc->sptes[iter->pos];
1072 goto out;
1073 }
1074 }
1075
1076 return NULL;
1077 out:
1078 BUG_ON(!is_shadow_present_pte(*sptep));
1079 return sptep;
1080 }
1081
1082 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1083 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1084 _spte_; _spte_ = rmap_get_next(_iter_))
1085
1086 static void drop_spte(struct kvm *kvm, u64 *sptep)
1087 {
1088 if (mmu_spte_clear_track_bits(sptep))
1089 rmap_remove(kvm, sptep);
1090 }
1091
1092
1093 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1094 {
1095 if (is_large_pte(*sptep)) {
1096 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1097 drop_spte(kvm, sptep);
1098 --kvm->stat.lpages;
1099 return true;
1100 }
1101
1102 return false;
1103 }
1104
1105 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1106 {
1107 if (__drop_large_spte(vcpu->kvm, sptep)) {
1108 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1109
1110 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1111 KVM_PAGES_PER_HPAGE(sp->role.level));
1112 }
1113 }
1114
1115 /*
1116 * Write-protect on the specified @sptep, @pt_protect indicates whether
1117 * spte write-protection is caused by protecting shadow page table.
1118 *
1119 * Note: write protection is difference between dirty logging and spte
1120 * protection:
1121 * - for dirty logging, the spte can be set to writable at anytime if
1122 * its dirty bitmap is properly set.
1123 * - for spte protection, the spte can be writable only after unsync-ing
1124 * shadow page.
1125 *
1126 * Return true if tlb need be flushed.
1127 */
1128 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1129 {
1130 u64 spte = *sptep;
1131
1132 if (!is_writable_pte(spte) &&
1133 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1134 return false;
1135
1136 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1137
1138 if (pt_protect)
1139 spte &= ~SPTE_MMU_WRITEABLE;
1140 spte = spte & ~PT_WRITABLE_MASK;
1141
1142 return mmu_spte_update(sptep, spte);
1143 }
1144
1145 static bool __rmap_write_protect(struct kvm *kvm,
1146 struct kvm_rmap_head *rmap_head,
1147 bool pt_protect)
1148 {
1149 u64 *sptep;
1150 struct rmap_iterator iter;
1151 bool flush = false;
1152
1153 for_each_rmap_spte(rmap_head, &iter, sptep)
1154 flush |= spte_write_protect(sptep, pt_protect);
1155
1156 return flush;
1157 }
1158
1159 static bool spte_clear_dirty(u64 *sptep)
1160 {
1161 u64 spte = *sptep;
1162
1163 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1164
1165 MMU_WARN_ON(!spte_ad_enabled(spte));
1166 spte &= ~shadow_dirty_mask;
1167 return mmu_spte_update(sptep, spte);
1168 }
1169
1170 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1171 {
1172 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1173 (unsigned long *)sptep);
1174 if (was_writable && !spte_ad_enabled(*sptep))
1175 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1176
1177 return was_writable;
1178 }
1179
1180 /*
1181 * Gets the GFN ready for another round of dirty logging by clearing the
1182 * - D bit on ad-enabled SPTEs, and
1183 * - W bit on ad-disabled SPTEs.
1184 * Returns true iff any D or W bits were cleared.
1185 */
1186 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1187 {
1188 u64 *sptep;
1189 struct rmap_iterator iter;
1190 bool flush = false;
1191
1192 for_each_rmap_spte(rmap_head, &iter, sptep)
1193 if (spte_ad_need_write_protect(*sptep))
1194 flush |= spte_wrprot_for_clear_dirty(sptep);
1195 else
1196 flush |= spte_clear_dirty(sptep);
1197
1198 return flush;
1199 }
1200
1201 static bool spte_set_dirty(u64 *sptep)
1202 {
1203 u64 spte = *sptep;
1204
1205 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1206
1207 /*
1208 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1209 * do not bother adding back write access to pages marked
1210 * SPTE_AD_WRPROT_ONLY_MASK.
1211 */
1212 spte |= shadow_dirty_mask;
1213
1214 return mmu_spte_update(sptep, spte);
1215 }
1216
1217 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1218 {
1219 u64 *sptep;
1220 struct rmap_iterator iter;
1221 bool flush = false;
1222
1223 for_each_rmap_spte(rmap_head, &iter, sptep)
1224 if (spte_ad_enabled(*sptep))
1225 flush |= spte_set_dirty(sptep);
1226
1227 return flush;
1228 }
1229
1230 /**
1231 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1232 * @kvm: kvm instance
1233 * @slot: slot to protect
1234 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1235 * @mask: indicates which pages we should protect
1236 *
1237 * Used when we do not need to care about huge page mappings: e.g. during dirty
1238 * logging we do not have any such mappings.
1239 */
1240 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1241 struct kvm_memory_slot *slot,
1242 gfn_t gfn_offset, unsigned long mask)
1243 {
1244 struct kvm_rmap_head *rmap_head;
1245
1246 while (mask) {
1247 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1248 PG_LEVEL_4K, slot);
1249 __rmap_write_protect(kvm, rmap_head, false);
1250
1251 /* clear the first set bit */
1252 mask &= mask - 1;
1253 }
1254 }
1255
1256 /**
1257 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1258 * protect the page if the D-bit isn't supported.
1259 * @kvm: kvm instance
1260 * @slot: slot to clear D-bit
1261 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1262 * @mask: indicates which pages we should clear D-bit
1263 *
1264 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1265 */
1266 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1267 struct kvm_memory_slot *slot,
1268 gfn_t gfn_offset, unsigned long mask)
1269 {
1270 struct kvm_rmap_head *rmap_head;
1271
1272 while (mask) {
1273 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1274 PG_LEVEL_4K, slot);
1275 __rmap_clear_dirty(kvm, rmap_head);
1276
1277 /* clear the first set bit */
1278 mask &= mask - 1;
1279 }
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1282
1283 /**
1284 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1285 * PT level pages.
1286 *
1287 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1288 * enable dirty logging for them.
1289 *
1290 * Used when we do not need to care about huge page mappings: e.g. during dirty
1291 * logging we do not have any such mappings.
1292 */
1293 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1294 struct kvm_memory_slot *slot,
1295 gfn_t gfn_offset, unsigned long mask)
1296 {
1297 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1298 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1299 mask);
1300 else
1301 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1302 }
1303
1304 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1305 struct kvm_memory_slot *slot, u64 gfn)
1306 {
1307 struct kvm_rmap_head *rmap_head;
1308 int i;
1309 bool write_protected = false;
1310
1311 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1312 rmap_head = __gfn_to_rmap(gfn, i, slot);
1313 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1314 }
1315
1316 return write_protected;
1317 }
1318
1319 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1320 {
1321 struct kvm_memory_slot *slot;
1322
1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1325 }
1326
1327 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1328 {
1329 u64 *sptep;
1330 struct rmap_iterator iter;
1331 bool flush = false;
1332
1333 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1334 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1335
1336 pte_list_remove(rmap_head, sptep);
1337 flush = true;
1338 }
1339
1340 return flush;
1341 }
1342
1343 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1344 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1345 unsigned long data)
1346 {
1347 return kvm_zap_rmapp(kvm, rmap_head);
1348 }
1349
1350 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1351 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1352 unsigned long data)
1353 {
1354 u64 *sptep;
1355 struct rmap_iterator iter;
1356 int need_flush = 0;
1357 u64 new_spte;
1358 pte_t *ptep = (pte_t *)data;
1359 kvm_pfn_t new_pfn;
1360
1361 WARN_ON(pte_huge(*ptep));
1362 new_pfn = pte_pfn(*ptep);
1363
1364 restart:
1365 for_each_rmap_spte(rmap_head, &iter, sptep) {
1366 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1367 sptep, *sptep, gfn, level);
1368
1369 need_flush = 1;
1370
1371 if (pte_write(*ptep)) {
1372 pte_list_remove(rmap_head, sptep);
1373 goto restart;
1374 } else {
1375 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1376 *sptep, new_pfn);
1377
1378 mmu_spte_clear_track_bits(sptep);
1379 mmu_spte_set(sptep, new_spte);
1380 }
1381 }
1382
1383 if (need_flush && kvm_available_flush_tlb_with_range()) {
1384 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1385 return 0;
1386 }
1387
1388 return need_flush;
1389 }
1390
1391 struct slot_rmap_walk_iterator {
1392 /* input fields. */
1393 struct kvm_memory_slot *slot;
1394 gfn_t start_gfn;
1395 gfn_t end_gfn;
1396 int start_level;
1397 int end_level;
1398
1399 /* output fields. */
1400 gfn_t gfn;
1401 struct kvm_rmap_head *rmap;
1402 int level;
1403
1404 /* private field. */
1405 struct kvm_rmap_head *end_rmap;
1406 };
1407
1408 static void
1409 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1410 {
1411 iterator->level = level;
1412 iterator->gfn = iterator->start_gfn;
1413 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1414 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1415 iterator->slot);
1416 }
1417
1418 static void
1419 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1420 struct kvm_memory_slot *slot, int start_level,
1421 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1422 {
1423 iterator->slot = slot;
1424 iterator->start_level = start_level;
1425 iterator->end_level = end_level;
1426 iterator->start_gfn = start_gfn;
1427 iterator->end_gfn = end_gfn;
1428
1429 rmap_walk_init_level(iterator, iterator->start_level);
1430 }
1431
1432 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1433 {
1434 return !!iterator->rmap;
1435 }
1436
1437 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1438 {
1439 if (++iterator->rmap <= iterator->end_rmap) {
1440 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1441 return;
1442 }
1443
1444 if (++iterator->level > iterator->end_level) {
1445 iterator->rmap = NULL;
1446 return;
1447 }
1448
1449 rmap_walk_init_level(iterator, iterator->level);
1450 }
1451
1452 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1453 _start_gfn, _end_gfn, _iter_) \
1454 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1455 _end_level_, _start_gfn, _end_gfn); \
1456 slot_rmap_walk_okay(_iter_); \
1457 slot_rmap_walk_next(_iter_))
1458
1459 static int kvm_handle_hva_range(struct kvm *kvm,
1460 unsigned long start,
1461 unsigned long end,
1462 unsigned long data,
1463 int (*handler)(struct kvm *kvm,
1464 struct kvm_rmap_head *rmap_head,
1465 struct kvm_memory_slot *slot,
1466 gfn_t gfn,
1467 int level,
1468 unsigned long data))
1469 {
1470 struct kvm_memslots *slots;
1471 struct kvm_memory_slot *memslot;
1472 struct slot_rmap_walk_iterator iterator;
1473 int ret = 0;
1474 int i;
1475
1476 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1477 slots = __kvm_memslots(kvm, i);
1478 kvm_for_each_memslot(memslot, slots) {
1479 unsigned long hva_start, hva_end;
1480 gfn_t gfn_start, gfn_end;
1481
1482 hva_start = max(start, memslot->userspace_addr);
1483 hva_end = min(end, memslot->userspace_addr +
1484 (memslot->npages << PAGE_SHIFT));
1485 if (hva_start >= hva_end)
1486 continue;
1487 /*
1488 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1489 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1490 */
1491 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1492 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1493
1494 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1495 KVM_MAX_HUGEPAGE_LEVEL,
1496 gfn_start, gfn_end - 1,
1497 &iterator)
1498 ret |= handler(kvm, iterator.rmap, memslot,
1499 iterator.gfn, iterator.level, data);
1500 }
1501 }
1502
1503 return ret;
1504 }
1505
1506 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1507 unsigned long data,
1508 int (*handler)(struct kvm *kvm,
1509 struct kvm_rmap_head *rmap_head,
1510 struct kvm_memory_slot *slot,
1511 gfn_t gfn, int level,
1512 unsigned long data))
1513 {
1514 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1515 }
1516
1517 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1518 unsigned flags)
1519 {
1520 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1521 }
1522
1523 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1524 {
1525 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1526 }
1527
1528 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1529 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1530 unsigned long data)
1531 {
1532 u64 *sptep;
1533 struct rmap_iterator iter;
1534 int young = 0;
1535
1536 for_each_rmap_spte(rmap_head, &iter, sptep)
1537 young |= mmu_spte_age(sptep);
1538
1539 trace_kvm_age_page(gfn, level, slot, young);
1540 return young;
1541 }
1542
1543 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1544 struct kvm_memory_slot *slot, gfn_t gfn,
1545 int level, unsigned long data)
1546 {
1547 u64 *sptep;
1548 struct rmap_iterator iter;
1549
1550 for_each_rmap_spte(rmap_head, &iter, sptep)
1551 if (is_accessed_spte(*sptep))
1552 return 1;
1553 return 0;
1554 }
1555
1556 #define RMAP_RECYCLE_THRESHOLD 1000
1557
1558 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1559 {
1560 struct kvm_rmap_head *rmap_head;
1561 struct kvm_mmu_page *sp;
1562
1563 sp = sptep_to_sp(spte);
1564
1565 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1566
1567 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1568 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1569 KVM_PAGES_PER_HPAGE(sp->role.level));
1570 }
1571
1572 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1573 {
1574 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1575 }
1576
1577 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1578 {
1579 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1580 }
1581
1582 #ifdef MMU_DEBUG
1583 static int is_empty_shadow_page(u64 *spt)
1584 {
1585 u64 *pos;
1586 u64 *end;
1587
1588 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1589 if (is_shadow_present_pte(*pos)) {
1590 printk(KERN_ERR "%s: %p %llx\n", __func__,
1591 pos, *pos);
1592 return 0;
1593 }
1594 return 1;
1595 }
1596 #endif
1597
1598 /*
1599 * This value is the sum of all of the kvm instances's
1600 * kvm->arch.n_used_mmu_pages values. We need a global,
1601 * aggregate version in order to make the slab shrinker
1602 * faster
1603 */
1604 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1605 {
1606 kvm->arch.n_used_mmu_pages += nr;
1607 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1608 }
1609
1610 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1611 {
1612 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1613 hlist_del(&sp->hash_link);
1614 list_del(&sp->link);
1615 free_page((unsigned long)sp->spt);
1616 if (!sp->role.direct)
1617 free_page((unsigned long)sp->gfns);
1618 kmem_cache_free(mmu_page_header_cache, sp);
1619 }
1620
1621 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1622 {
1623 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1624 }
1625
1626 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1627 struct kvm_mmu_page *sp, u64 *parent_pte)
1628 {
1629 if (!parent_pte)
1630 return;
1631
1632 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1633 }
1634
1635 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1636 u64 *parent_pte)
1637 {
1638 __pte_list_remove(parent_pte, &sp->parent_ptes);
1639 }
1640
1641 static void drop_parent_pte(struct kvm_mmu_page *sp,
1642 u64 *parent_pte)
1643 {
1644 mmu_page_remove_parent_pte(sp, parent_pte);
1645 mmu_spte_clear_no_track(parent_pte);
1646 }
1647
1648 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1649 {
1650 struct kvm_mmu_page *sp;
1651
1652 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1653 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1654 if (!direct)
1655 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1656 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1657
1658 /*
1659 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1660 * depends on valid pages being added to the head of the list. See
1661 * comments in kvm_zap_obsolete_pages().
1662 */
1663 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1664 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1665 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1666 return sp;
1667 }
1668
1669 static void mark_unsync(u64 *spte);
1670 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1671 {
1672 u64 *sptep;
1673 struct rmap_iterator iter;
1674
1675 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1676 mark_unsync(sptep);
1677 }
1678 }
1679
1680 static void mark_unsync(u64 *spte)
1681 {
1682 struct kvm_mmu_page *sp;
1683 unsigned int index;
1684
1685 sp = sptep_to_sp(spte);
1686 index = spte - sp->spt;
1687 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1688 return;
1689 if (sp->unsync_children++)
1690 return;
1691 kvm_mmu_mark_parents_unsync(sp);
1692 }
1693
1694 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1696 {
1697 return 0;
1698 }
1699
1700 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1701 struct kvm_mmu_page *sp, u64 *spte,
1702 const void *pte)
1703 {
1704 WARN_ON(1);
1705 }
1706
1707 #define KVM_PAGE_ARRAY_NR 16
1708
1709 struct kvm_mmu_pages {
1710 struct mmu_page_and_offset {
1711 struct kvm_mmu_page *sp;
1712 unsigned int idx;
1713 } page[KVM_PAGE_ARRAY_NR];
1714 unsigned int nr;
1715 };
1716
1717 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1718 int idx)
1719 {
1720 int i;
1721
1722 if (sp->unsync)
1723 for (i=0; i < pvec->nr; i++)
1724 if (pvec->page[i].sp == sp)
1725 return 0;
1726
1727 pvec->page[pvec->nr].sp = sp;
1728 pvec->page[pvec->nr].idx = idx;
1729 pvec->nr++;
1730 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1731 }
1732
1733 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1734 {
1735 --sp->unsync_children;
1736 WARN_ON((int)sp->unsync_children < 0);
1737 __clear_bit(idx, sp->unsync_child_bitmap);
1738 }
1739
1740 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1741 struct kvm_mmu_pages *pvec)
1742 {
1743 int i, ret, nr_unsync_leaf = 0;
1744
1745 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1746 struct kvm_mmu_page *child;
1747 u64 ent = sp->spt[i];
1748
1749 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1750 clear_unsync_child_bit(sp, i);
1751 continue;
1752 }
1753
1754 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1755
1756 if (child->unsync_children) {
1757 if (mmu_pages_add(pvec, child, i))
1758 return -ENOSPC;
1759
1760 ret = __mmu_unsync_walk(child, pvec);
1761 if (!ret) {
1762 clear_unsync_child_bit(sp, i);
1763 continue;
1764 } else if (ret > 0) {
1765 nr_unsync_leaf += ret;
1766 } else
1767 return ret;
1768 } else if (child->unsync) {
1769 nr_unsync_leaf++;
1770 if (mmu_pages_add(pvec, child, i))
1771 return -ENOSPC;
1772 } else
1773 clear_unsync_child_bit(sp, i);
1774 }
1775
1776 return nr_unsync_leaf;
1777 }
1778
1779 #define INVALID_INDEX (-1)
1780
1781 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1782 struct kvm_mmu_pages *pvec)
1783 {
1784 pvec->nr = 0;
1785 if (!sp->unsync_children)
1786 return 0;
1787
1788 mmu_pages_add(pvec, sp, INVALID_INDEX);
1789 return __mmu_unsync_walk(sp, pvec);
1790 }
1791
1792 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1793 {
1794 WARN_ON(!sp->unsync);
1795 trace_kvm_mmu_sync_page(sp);
1796 sp->unsync = 0;
1797 --kvm->stat.mmu_unsync;
1798 }
1799
1800 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1801 struct list_head *invalid_list);
1802 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1803 struct list_head *invalid_list);
1804
1805 #define for_each_valid_sp(_kvm, _sp, _list) \
1806 hlist_for_each_entry(_sp, _list, hash_link) \
1807 if (is_obsolete_sp((_kvm), (_sp))) { \
1808 } else
1809
1810 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1811 for_each_valid_sp(_kvm, _sp, \
1812 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1813 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1814
1815 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1816 {
1817 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1818 }
1819
1820 /* @sp->gfn should be write-protected at the call site */
1821 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1822 struct list_head *invalid_list)
1823 {
1824 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1825 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1826 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1827 return false;
1828 }
1829
1830 return true;
1831 }
1832
1833 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1834 struct list_head *invalid_list,
1835 bool remote_flush)
1836 {
1837 if (!remote_flush && list_empty(invalid_list))
1838 return false;
1839
1840 if (!list_empty(invalid_list))
1841 kvm_mmu_commit_zap_page(kvm, invalid_list);
1842 else
1843 kvm_flush_remote_tlbs(kvm);
1844 return true;
1845 }
1846
1847 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1848 struct list_head *invalid_list,
1849 bool remote_flush, bool local_flush)
1850 {
1851 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1852 return;
1853
1854 if (local_flush)
1855 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1856 }
1857
1858 #ifdef CONFIG_KVM_MMU_AUDIT
1859 #include "mmu_audit.c"
1860 #else
1861 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1862 static void mmu_audit_disable(void) { }
1863 #endif
1864
1865 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1866 {
1867 return sp->role.invalid ||
1868 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1869 }
1870
1871 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1872 struct list_head *invalid_list)
1873 {
1874 kvm_unlink_unsync_page(vcpu->kvm, sp);
1875 return __kvm_sync_page(vcpu, sp, invalid_list);
1876 }
1877
1878 /* @gfn should be write-protected at the call site */
1879 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1880 struct list_head *invalid_list)
1881 {
1882 struct kvm_mmu_page *s;
1883 bool ret = false;
1884
1885 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1886 if (!s->unsync)
1887 continue;
1888
1889 WARN_ON(s->role.level != PG_LEVEL_4K);
1890 ret |= kvm_sync_page(vcpu, s, invalid_list);
1891 }
1892
1893 return ret;
1894 }
1895
1896 struct mmu_page_path {
1897 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1898 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1899 };
1900
1901 #define for_each_sp(pvec, sp, parents, i) \
1902 for (i = mmu_pages_first(&pvec, &parents); \
1903 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1904 i = mmu_pages_next(&pvec, &parents, i))
1905
1906 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1907 struct mmu_page_path *parents,
1908 int i)
1909 {
1910 int n;
1911
1912 for (n = i+1; n < pvec->nr; n++) {
1913 struct kvm_mmu_page *sp = pvec->page[n].sp;
1914 unsigned idx = pvec->page[n].idx;
1915 int level = sp->role.level;
1916
1917 parents->idx[level-1] = idx;
1918 if (level == PG_LEVEL_4K)
1919 break;
1920
1921 parents->parent[level-2] = sp;
1922 }
1923
1924 return n;
1925 }
1926
1927 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1928 struct mmu_page_path *parents)
1929 {
1930 struct kvm_mmu_page *sp;
1931 int level;
1932
1933 if (pvec->nr == 0)
1934 return 0;
1935
1936 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1937
1938 sp = pvec->page[0].sp;
1939 level = sp->role.level;
1940 WARN_ON(level == PG_LEVEL_4K);
1941
1942 parents->parent[level-2] = sp;
1943
1944 /* Also set up a sentinel. Further entries in pvec are all
1945 * children of sp, so this element is never overwritten.
1946 */
1947 parents->parent[level-1] = NULL;
1948 return mmu_pages_next(pvec, parents, 0);
1949 }
1950
1951 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1952 {
1953 struct kvm_mmu_page *sp;
1954 unsigned int level = 0;
1955
1956 do {
1957 unsigned int idx = parents->idx[level];
1958 sp = parents->parent[level];
1959 if (!sp)
1960 return;
1961
1962 WARN_ON(idx == INVALID_INDEX);
1963 clear_unsync_child_bit(sp, idx);
1964 level++;
1965 } while (!sp->unsync_children);
1966 }
1967
1968 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1969 struct kvm_mmu_page *parent)
1970 {
1971 int i;
1972 struct kvm_mmu_page *sp;
1973 struct mmu_page_path parents;
1974 struct kvm_mmu_pages pages;
1975 LIST_HEAD(invalid_list);
1976 bool flush = false;
1977
1978 while (mmu_unsync_walk(parent, &pages)) {
1979 bool protected = false;
1980
1981 for_each_sp(pages, sp, parents, i)
1982 protected |= rmap_write_protect(vcpu, sp->gfn);
1983
1984 if (protected) {
1985 kvm_flush_remote_tlbs(vcpu->kvm);
1986 flush = false;
1987 }
1988
1989 for_each_sp(pages, sp, parents, i) {
1990 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1991 mmu_pages_clear_parents(&parents);
1992 }
1993 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
1994 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1995 cond_resched_lock(&vcpu->kvm->mmu_lock);
1996 flush = false;
1997 }
1998 }
1999
2000 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2001 }
2002
2003 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2004 {
2005 atomic_set(&sp->write_flooding_count, 0);
2006 }
2007
2008 static void clear_sp_write_flooding_count(u64 *spte)
2009 {
2010 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2011 }
2012
2013 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2014 gfn_t gfn,
2015 gva_t gaddr,
2016 unsigned level,
2017 int direct,
2018 unsigned int access)
2019 {
2020 bool direct_mmu = vcpu->arch.mmu->direct_map;
2021 union kvm_mmu_page_role role;
2022 struct hlist_head *sp_list;
2023 unsigned quadrant;
2024 struct kvm_mmu_page *sp;
2025 bool need_sync = false;
2026 bool flush = false;
2027 int collisions = 0;
2028 LIST_HEAD(invalid_list);
2029
2030 role = vcpu->arch.mmu->mmu_role.base;
2031 role.level = level;
2032 role.direct = direct;
2033 if (role.direct)
2034 role.gpte_is_8_bytes = true;
2035 role.access = access;
2036 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2037 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2038 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2039 role.quadrant = quadrant;
2040 }
2041
2042 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2043 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2044 if (sp->gfn != gfn) {
2045 collisions++;
2046 continue;
2047 }
2048
2049 if (!need_sync && sp->unsync)
2050 need_sync = true;
2051
2052 if (sp->role.word != role.word)
2053 continue;
2054
2055 if (direct_mmu)
2056 goto trace_get_page;
2057
2058 if (sp->unsync) {
2059 /* The page is good, but __kvm_sync_page might still end
2060 * up zapping it. If so, break in order to rebuild it.
2061 */
2062 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2063 break;
2064
2065 WARN_ON(!list_empty(&invalid_list));
2066 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2067 }
2068
2069 if (sp->unsync_children)
2070 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2071
2072 __clear_sp_write_flooding_count(sp);
2073
2074 trace_get_page:
2075 trace_kvm_mmu_get_page(sp, false);
2076 goto out;
2077 }
2078
2079 ++vcpu->kvm->stat.mmu_cache_miss;
2080
2081 sp = kvm_mmu_alloc_page(vcpu, direct);
2082
2083 sp->gfn = gfn;
2084 sp->role = role;
2085 hlist_add_head(&sp->hash_link, sp_list);
2086 if (!direct) {
2087 /*
2088 * we should do write protection before syncing pages
2089 * otherwise the content of the synced shadow page may
2090 * be inconsistent with guest page table.
2091 */
2092 account_shadowed(vcpu->kvm, sp);
2093 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2094 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2095
2096 if (level > PG_LEVEL_4K && need_sync)
2097 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2098 }
2099 trace_kvm_mmu_get_page(sp, true);
2100
2101 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2102 out:
2103 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2104 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2105 return sp;
2106 }
2107
2108 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2109 struct kvm_vcpu *vcpu, hpa_t root,
2110 u64 addr)
2111 {
2112 iterator->addr = addr;
2113 iterator->shadow_addr = root;
2114 iterator->level = vcpu->arch.mmu->shadow_root_level;
2115
2116 if (iterator->level == PT64_ROOT_4LEVEL &&
2117 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2118 !vcpu->arch.mmu->direct_map)
2119 --iterator->level;
2120
2121 if (iterator->level == PT32E_ROOT_LEVEL) {
2122 /*
2123 * prev_root is currently only used for 64-bit hosts. So only
2124 * the active root_hpa is valid here.
2125 */
2126 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2127
2128 iterator->shadow_addr
2129 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2130 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2131 --iterator->level;
2132 if (!iterator->shadow_addr)
2133 iterator->level = 0;
2134 }
2135 }
2136
2137 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2138 struct kvm_vcpu *vcpu, u64 addr)
2139 {
2140 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2141 addr);
2142 }
2143
2144 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2145 {
2146 if (iterator->level < PG_LEVEL_4K)
2147 return false;
2148
2149 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2150 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2151 return true;
2152 }
2153
2154 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2155 u64 spte)
2156 {
2157 if (is_last_spte(spte, iterator->level)) {
2158 iterator->level = 0;
2159 return;
2160 }
2161
2162 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2163 --iterator->level;
2164 }
2165
2166 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2167 {
2168 __shadow_walk_next(iterator, *iterator->sptep);
2169 }
2170
2171 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2172 struct kvm_mmu_page *sp)
2173 {
2174 u64 spte;
2175
2176 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2177
2178 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2179
2180 mmu_spte_set(sptep, spte);
2181
2182 mmu_page_add_parent_pte(vcpu, sp, sptep);
2183
2184 if (sp->unsync_children || sp->unsync)
2185 mark_unsync(sptep);
2186 }
2187
2188 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2189 unsigned direct_access)
2190 {
2191 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2192 struct kvm_mmu_page *child;
2193
2194 /*
2195 * For the direct sp, if the guest pte's dirty bit
2196 * changed form clean to dirty, it will corrupt the
2197 * sp's access: allow writable in the read-only sp,
2198 * so we should update the spte at this point to get
2199 * a new sp with the correct access.
2200 */
2201 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2202 if (child->role.access == direct_access)
2203 return;
2204
2205 drop_parent_pte(child, sptep);
2206 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2207 }
2208 }
2209
2210 /* Returns the number of zapped non-leaf child shadow pages. */
2211 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2212 u64 *spte, struct list_head *invalid_list)
2213 {
2214 u64 pte;
2215 struct kvm_mmu_page *child;
2216
2217 pte = *spte;
2218 if (is_shadow_present_pte(pte)) {
2219 if (is_last_spte(pte, sp->role.level)) {
2220 drop_spte(kvm, spte);
2221 if (is_large_pte(pte))
2222 --kvm->stat.lpages;
2223 } else {
2224 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2225 drop_parent_pte(child, spte);
2226
2227 /*
2228 * Recursively zap nested TDP SPs, parentless SPs are
2229 * unlikely to be used again in the near future. This
2230 * avoids retaining a large number of stale nested SPs.
2231 */
2232 if (tdp_enabled && invalid_list &&
2233 child->role.guest_mode && !child->parent_ptes.val)
2234 return kvm_mmu_prepare_zap_page(kvm, child,
2235 invalid_list);
2236 }
2237 } else if (is_mmio_spte(pte)) {
2238 mmu_spte_clear_no_track(spte);
2239 }
2240 return 0;
2241 }
2242
2243 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2244 struct kvm_mmu_page *sp,
2245 struct list_head *invalid_list)
2246 {
2247 int zapped = 0;
2248 unsigned i;
2249
2250 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2251 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2252
2253 return zapped;
2254 }
2255
2256 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2257 {
2258 u64 *sptep;
2259 struct rmap_iterator iter;
2260
2261 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2262 drop_parent_pte(sp, sptep);
2263 }
2264
2265 static int mmu_zap_unsync_children(struct kvm *kvm,
2266 struct kvm_mmu_page *parent,
2267 struct list_head *invalid_list)
2268 {
2269 int i, zapped = 0;
2270 struct mmu_page_path parents;
2271 struct kvm_mmu_pages pages;
2272
2273 if (parent->role.level == PG_LEVEL_4K)
2274 return 0;
2275
2276 while (mmu_unsync_walk(parent, &pages)) {
2277 struct kvm_mmu_page *sp;
2278
2279 for_each_sp(pages, sp, parents, i) {
2280 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2281 mmu_pages_clear_parents(&parents);
2282 zapped++;
2283 }
2284 }
2285
2286 return zapped;
2287 }
2288
2289 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2290 struct kvm_mmu_page *sp,
2291 struct list_head *invalid_list,
2292 int *nr_zapped)
2293 {
2294 bool list_unstable;
2295
2296 trace_kvm_mmu_prepare_zap_page(sp);
2297 ++kvm->stat.mmu_shadow_zapped;
2298 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2299 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2300 kvm_mmu_unlink_parents(kvm, sp);
2301
2302 /* Zapping children means active_mmu_pages has become unstable. */
2303 list_unstable = *nr_zapped;
2304
2305 if (!sp->role.invalid && !sp->role.direct)
2306 unaccount_shadowed(kvm, sp);
2307
2308 if (sp->unsync)
2309 kvm_unlink_unsync_page(kvm, sp);
2310 if (!sp->root_count) {
2311 /* Count self */
2312 (*nr_zapped)++;
2313
2314 /*
2315 * Already invalid pages (previously active roots) are not on
2316 * the active page list. See list_del() in the "else" case of
2317 * !sp->root_count.
2318 */
2319 if (sp->role.invalid)
2320 list_add(&sp->link, invalid_list);
2321 else
2322 list_move(&sp->link, invalid_list);
2323 kvm_mod_used_mmu_pages(kvm, -1);
2324 } else {
2325 /*
2326 * Remove the active root from the active page list, the root
2327 * will be explicitly freed when the root_count hits zero.
2328 */
2329 list_del(&sp->link);
2330
2331 /*
2332 * Obsolete pages cannot be used on any vCPUs, see the comment
2333 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2334 * treats invalid shadow pages as being obsolete.
2335 */
2336 if (!is_obsolete_sp(kvm, sp))
2337 kvm_reload_remote_mmus(kvm);
2338 }
2339
2340 if (sp->lpage_disallowed)
2341 unaccount_huge_nx_page(kvm, sp);
2342
2343 sp->role.invalid = 1;
2344 return list_unstable;
2345 }
2346
2347 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2348 struct list_head *invalid_list)
2349 {
2350 int nr_zapped;
2351
2352 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2353 return nr_zapped;
2354 }
2355
2356 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2357 struct list_head *invalid_list)
2358 {
2359 struct kvm_mmu_page *sp, *nsp;
2360
2361 if (list_empty(invalid_list))
2362 return;
2363
2364 /*
2365 * We need to make sure everyone sees our modifications to
2366 * the page tables and see changes to vcpu->mode here. The barrier
2367 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2368 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2369 *
2370 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2371 * guest mode and/or lockless shadow page table walks.
2372 */
2373 kvm_flush_remote_tlbs(kvm);
2374
2375 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2376 WARN_ON(!sp->role.invalid || sp->root_count);
2377 kvm_mmu_free_page(sp);
2378 }
2379 }
2380
2381 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2382 unsigned long nr_to_zap)
2383 {
2384 unsigned long total_zapped = 0;
2385 struct kvm_mmu_page *sp, *tmp;
2386 LIST_HEAD(invalid_list);
2387 bool unstable;
2388 int nr_zapped;
2389
2390 if (list_empty(&kvm->arch.active_mmu_pages))
2391 return 0;
2392
2393 restart:
2394 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2395 /*
2396 * Don't zap active root pages, the page itself can't be freed
2397 * and zapping it will just force vCPUs to realloc and reload.
2398 */
2399 if (sp->root_count)
2400 continue;
2401
2402 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2403 &nr_zapped);
2404 total_zapped += nr_zapped;
2405 if (total_zapped >= nr_to_zap)
2406 break;
2407
2408 if (unstable)
2409 goto restart;
2410 }
2411
2412 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2413
2414 kvm->stat.mmu_recycled += total_zapped;
2415 return total_zapped;
2416 }
2417
2418 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2419 {
2420 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2421 return kvm->arch.n_max_mmu_pages -
2422 kvm->arch.n_used_mmu_pages;
2423
2424 return 0;
2425 }
2426
2427 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2428 {
2429 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2430
2431 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2432 return 0;
2433
2434 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2435
2436 if (!kvm_mmu_available_pages(vcpu->kvm))
2437 return -ENOSPC;
2438 return 0;
2439 }
2440
2441 /*
2442 * Changing the number of mmu pages allocated to the vm
2443 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2444 */
2445 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2446 {
2447 spin_lock(&kvm->mmu_lock);
2448
2449 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2450 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2451 goal_nr_mmu_pages);
2452
2453 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2454 }
2455
2456 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2457
2458 spin_unlock(&kvm->mmu_lock);
2459 }
2460
2461 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2462 {
2463 struct kvm_mmu_page *sp;
2464 LIST_HEAD(invalid_list);
2465 int r;
2466
2467 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2468 r = 0;
2469 spin_lock(&kvm->mmu_lock);
2470 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2471 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2472 sp->role.word);
2473 r = 1;
2474 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2475 }
2476 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2477 spin_unlock(&kvm->mmu_lock);
2478
2479 return r;
2480 }
2481 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2482
2483 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2484 {
2485 trace_kvm_mmu_unsync_page(sp);
2486 ++vcpu->kvm->stat.mmu_unsync;
2487 sp->unsync = 1;
2488
2489 kvm_mmu_mark_parents_unsync(sp);
2490 }
2491
2492 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2493 bool can_unsync)
2494 {
2495 struct kvm_mmu_page *sp;
2496
2497 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2498 return true;
2499
2500 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2501 if (!can_unsync)
2502 return true;
2503
2504 if (sp->unsync)
2505 continue;
2506
2507 WARN_ON(sp->role.level != PG_LEVEL_4K);
2508 kvm_unsync_page(vcpu, sp);
2509 }
2510
2511 /*
2512 * We need to ensure that the marking of unsync pages is visible
2513 * before the SPTE is updated to allow writes because
2514 * kvm_mmu_sync_roots() checks the unsync flags without holding
2515 * the MMU lock and so can race with this. If the SPTE was updated
2516 * before the page had been marked as unsync-ed, something like the
2517 * following could happen:
2518 *
2519 * CPU 1 CPU 2
2520 * ---------------------------------------------------------------------
2521 * 1.2 Host updates SPTE
2522 * to be writable
2523 * 2.1 Guest writes a GPTE for GVA X.
2524 * (GPTE being in the guest page table shadowed
2525 * by the SP from CPU 1.)
2526 * This reads SPTE during the page table walk.
2527 * Since SPTE.W is read as 1, there is no
2528 * fault.
2529 *
2530 * 2.2 Guest issues TLB flush.
2531 * That causes a VM Exit.
2532 *
2533 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2534 * Since it is false, so it just returns.
2535 *
2536 * 2.4 Guest accesses GVA X.
2537 * Since the mapping in the SP was not updated,
2538 * so the old mapping for GVA X incorrectly
2539 * gets used.
2540 * 1.1 Host marks SP
2541 * as unsync
2542 * (sp->unsync = true)
2543 *
2544 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2545 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2546 * pairs with this write barrier.
2547 */
2548 smp_wmb();
2549
2550 return false;
2551 }
2552
2553 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2554 unsigned int pte_access, int level,
2555 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2556 bool can_unsync, bool host_writable)
2557 {
2558 u64 spte;
2559 struct kvm_mmu_page *sp;
2560 int ret;
2561
2562 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2563 return 0;
2564
2565 sp = sptep_to_sp(sptep);
2566
2567 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2568 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2569
2570 if (spte & PT_WRITABLE_MASK)
2571 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2572
2573 if (*sptep == spte)
2574 ret |= SET_SPTE_SPURIOUS;
2575 else if (mmu_spte_update(sptep, spte))
2576 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2577 return ret;
2578 }
2579
2580 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2581 unsigned int pte_access, bool write_fault, int level,
2582 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2583 bool host_writable)
2584 {
2585 int was_rmapped = 0;
2586 int rmap_count;
2587 int set_spte_ret;
2588 int ret = RET_PF_FIXED;
2589 bool flush = false;
2590
2591 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2592 *sptep, write_fault, gfn);
2593
2594 if (is_shadow_present_pte(*sptep)) {
2595 /*
2596 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2597 * the parent of the now unreachable PTE.
2598 */
2599 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2600 struct kvm_mmu_page *child;
2601 u64 pte = *sptep;
2602
2603 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2604 drop_parent_pte(child, sptep);
2605 flush = true;
2606 } else if (pfn != spte_to_pfn(*sptep)) {
2607 pgprintk("hfn old %llx new %llx\n",
2608 spte_to_pfn(*sptep), pfn);
2609 drop_spte(vcpu->kvm, sptep);
2610 flush = true;
2611 } else
2612 was_rmapped = 1;
2613 }
2614
2615 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2616 speculative, true, host_writable);
2617 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2618 if (write_fault)
2619 ret = RET_PF_EMULATE;
2620 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2621 }
2622
2623 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2624 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2625 KVM_PAGES_PER_HPAGE(level));
2626
2627 if (unlikely(is_mmio_spte(*sptep)))
2628 ret = RET_PF_EMULATE;
2629
2630 /*
2631 * The fault is fully spurious if and only if the new SPTE and old SPTE
2632 * are identical, and emulation is not required.
2633 */
2634 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2635 WARN_ON_ONCE(!was_rmapped);
2636 return RET_PF_SPURIOUS;
2637 }
2638
2639 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2640 trace_kvm_mmu_set_spte(level, gfn, sptep);
2641 if (!was_rmapped && is_large_pte(*sptep))
2642 ++vcpu->kvm->stat.lpages;
2643
2644 if (is_shadow_present_pte(*sptep)) {
2645 if (!was_rmapped) {
2646 rmap_count = rmap_add(vcpu, sptep, gfn);
2647 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648 rmap_recycle(vcpu, sptep, gfn);
2649 }
2650 }
2651
2652 return ret;
2653 }
2654
2655 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2656 bool no_dirty_log)
2657 {
2658 struct kvm_memory_slot *slot;
2659
2660 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2661 if (!slot)
2662 return KVM_PFN_ERR_FAULT;
2663
2664 return gfn_to_pfn_memslot_atomic(slot, gfn);
2665 }
2666
2667 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2668 struct kvm_mmu_page *sp,
2669 u64 *start, u64 *end)
2670 {
2671 struct page *pages[PTE_PREFETCH_NUM];
2672 struct kvm_memory_slot *slot;
2673 unsigned int access = sp->role.access;
2674 int i, ret;
2675 gfn_t gfn;
2676
2677 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2678 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2679 if (!slot)
2680 return -1;
2681
2682 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2683 if (ret <= 0)
2684 return -1;
2685
2686 for (i = 0; i < ret; i++, gfn++, start++) {
2687 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2688 page_to_pfn(pages[i]), true, true);
2689 put_page(pages[i]);
2690 }
2691
2692 return 0;
2693 }
2694
2695 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2696 struct kvm_mmu_page *sp, u64 *sptep)
2697 {
2698 u64 *spte, *start = NULL;
2699 int i;
2700
2701 WARN_ON(!sp->role.direct);
2702
2703 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2704 spte = sp->spt + i;
2705
2706 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2707 if (is_shadow_present_pte(*spte) || spte == sptep) {
2708 if (!start)
2709 continue;
2710 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2711 break;
2712 start = NULL;
2713 } else if (!start)
2714 start = spte;
2715 }
2716 }
2717
2718 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2719 {
2720 struct kvm_mmu_page *sp;
2721
2722 sp = sptep_to_sp(sptep);
2723
2724 /*
2725 * Without accessed bits, there's no way to distinguish between
2726 * actually accessed translations and prefetched, so disable pte
2727 * prefetch if accessed bits aren't available.
2728 */
2729 if (sp_ad_disabled(sp))
2730 return;
2731
2732 if (sp->role.level > PG_LEVEL_4K)
2733 return;
2734
2735 __direct_pte_prefetch(vcpu, sp, sptep);
2736 }
2737
2738 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2739 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2740 {
2741 unsigned long hva;
2742 pte_t *pte;
2743 int level;
2744
2745 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2746 return PG_LEVEL_4K;
2747
2748 /*
2749 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2750 * is not solely for performance, it's also necessary to avoid the
2751 * "writable" check in __gfn_to_hva_many(), which will always fail on
2752 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2753 * page fault steps have already verified the guest isn't writing a
2754 * read-only memslot.
2755 */
2756 hva = __gfn_to_hva_memslot(slot, gfn);
2757
2758 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2759 if (unlikely(!pte))
2760 return PG_LEVEL_4K;
2761
2762 return level;
2763 }
2764
2765 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2766 int max_level, kvm_pfn_t *pfnp,
2767 bool huge_page_disallowed, int *req_level)
2768 {
2769 struct kvm_memory_slot *slot;
2770 struct kvm_lpage_info *linfo;
2771 kvm_pfn_t pfn = *pfnp;
2772 kvm_pfn_t mask;
2773 int level;
2774
2775 *req_level = PG_LEVEL_4K;
2776
2777 if (unlikely(max_level == PG_LEVEL_4K))
2778 return PG_LEVEL_4K;
2779
2780 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2781 return PG_LEVEL_4K;
2782
2783 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2784 if (!slot)
2785 return PG_LEVEL_4K;
2786
2787 max_level = min(max_level, max_huge_page_level);
2788 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2789 linfo = lpage_info_slot(gfn, slot, max_level);
2790 if (!linfo->disallow_lpage)
2791 break;
2792 }
2793
2794 if (max_level == PG_LEVEL_4K)
2795 return PG_LEVEL_4K;
2796
2797 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2798 if (level == PG_LEVEL_4K)
2799 return level;
2800
2801 *req_level = level = min(level, max_level);
2802
2803 /*
2804 * Enforce the iTLB multihit workaround after capturing the requested
2805 * level, which will be used to do precise, accurate accounting.
2806 */
2807 if (huge_page_disallowed)
2808 return PG_LEVEL_4K;
2809
2810 /*
2811 * mmu_notifier_retry() was successful and mmu_lock is held, so
2812 * the pmd can't be split from under us.
2813 */
2814 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2815 VM_BUG_ON((gfn & mask) != (pfn & mask));
2816 *pfnp = pfn & ~mask;
2817
2818 return level;
2819 }
2820
2821 static void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2822 kvm_pfn_t *pfnp, int *levelp)
2823 {
2824 int level = *levelp;
2825
2826 if (cur_level == level && level > PG_LEVEL_4K &&
2827 is_shadow_present_pte(spte) &&
2828 !is_large_pte(spte)) {
2829 /*
2830 * A small SPTE exists for this pfn, but FNAME(fetch)
2831 * and __direct_map would like to create a large PTE
2832 * instead: just force them to go down another level,
2833 * patching back for them into pfn the next 9 bits of
2834 * the address.
2835 */
2836 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2837 KVM_PAGES_PER_HPAGE(level - 1);
2838 *pfnp |= gfn & page_mask;
2839 (*levelp)--;
2840 }
2841 }
2842
2843 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2844 int map_writable, int max_level, kvm_pfn_t pfn,
2845 bool prefault, bool is_tdp)
2846 {
2847 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2848 bool write = error_code & PFERR_WRITE_MASK;
2849 bool exec = error_code & PFERR_FETCH_MASK;
2850 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2851 struct kvm_shadow_walk_iterator it;
2852 struct kvm_mmu_page *sp;
2853 int level, req_level, ret;
2854 gfn_t gfn = gpa >> PAGE_SHIFT;
2855 gfn_t base_gfn = gfn;
2856
2857 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2858 return RET_PF_RETRY;
2859
2860 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2861 huge_page_disallowed, &req_level);
2862
2863 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2864 for_each_shadow_entry(vcpu, gpa, it) {
2865 /*
2866 * We cannot overwrite existing page tables with an NX
2867 * large page, as the leaf could be executable.
2868 */
2869 if (nx_huge_page_workaround_enabled)
2870 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2871 &pfn, &level);
2872
2873 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2874 if (it.level == level)
2875 break;
2876
2877 drop_large_spte(vcpu, it.sptep);
2878 if (!is_shadow_present_pte(*it.sptep)) {
2879 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2880 it.level - 1, true, ACC_ALL);
2881
2882 link_shadow_page(vcpu, it.sptep, sp);
2883 if (is_tdp && huge_page_disallowed &&
2884 req_level >= it.level)
2885 account_huge_nx_page(vcpu->kvm, sp);
2886 }
2887 }
2888
2889 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2890 write, level, base_gfn, pfn, prefault,
2891 map_writable);
2892 if (ret == RET_PF_SPURIOUS)
2893 return ret;
2894
2895 direct_pte_prefetch(vcpu, it.sptep);
2896 ++vcpu->stat.pf_fixed;
2897 return ret;
2898 }
2899
2900 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2901 {
2902 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2903 }
2904
2905 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2906 {
2907 /*
2908 * Do not cache the mmio info caused by writing the readonly gfn
2909 * into the spte otherwise read access on readonly gfn also can
2910 * caused mmio page fault and treat it as mmio access.
2911 */
2912 if (pfn == KVM_PFN_ERR_RO_FAULT)
2913 return RET_PF_EMULATE;
2914
2915 if (pfn == KVM_PFN_ERR_HWPOISON) {
2916 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2917 return RET_PF_RETRY;
2918 }
2919
2920 return -EFAULT;
2921 }
2922
2923 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2924 kvm_pfn_t pfn, unsigned int access,
2925 int *ret_val)
2926 {
2927 /* The pfn is invalid, report the error! */
2928 if (unlikely(is_error_pfn(pfn))) {
2929 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2930 return true;
2931 }
2932
2933 if (unlikely(is_noslot_pfn(pfn)))
2934 vcpu_cache_mmio_info(vcpu, gva, gfn,
2935 access & shadow_mmio_access_mask);
2936
2937 return false;
2938 }
2939
2940 static bool page_fault_can_be_fast(u32 error_code)
2941 {
2942 /*
2943 * Do not fix the mmio spte with invalid generation number which
2944 * need to be updated by slow page fault path.
2945 */
2946 if (unlikely(error_code & PFERR_RSVD_MASK))
2947 return false;
2948
2949 /* See if the page fault is due to an NX violation */
2950 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2951 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2952 return false;
2953
2954 /*
2955 * #PF can be fast if:
2956 * 1. The shadow page table entry is not present, which could mean that
2957 * the fault is potentially caused by access tracking (if enabled).
2958 * 2. The shadow page table entry is present and the fault
2959 * is caused by write-protect, that means we just need change the W
2960 * bit of the spte which can be done out of mmu-lock.
2961 *
2962 * However, if access tracking is disabled we know that a non-present
2963 * page must be a genuine page fault where we have to create a new SPTE.
2964 * So, if access tracking is disabled, we return true only for write
2965 * accesses to a present page.
2966 */
2967
2968 return shadow_acc_track_mask != 0 ||
2969 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2970 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2971 }
2972
2973 /*
2974 * Returns true if the SPTE was fixed successfully. Otherwise,
2975 * someone else modified the SPTE from its original value.
2976 */
2977 static bool
2978 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2979 u64 *sptep, u64 old_spte, u64 new_spte)
2980 {
2981 gfn_t gfn;
2982
2983 WARN_ON(!sp->role.direct);
2984
2985 /*
2986 * Theoretically we could also set dirty bit (and flush TLB) here in
2987 * order to eliminate unnecessary PML logging. See comments in
2988 * set_spte. But fast_page_fault is very unlikely to happen with PML
2989 * enabled, so we do not do this. This might result in the same GPA
2990 * to be logged in PML buffer again when the write really happens, and
2991 * eventually to be called by mark_page_dirty twice. But it's also no
2992 * harm. This also avoids the TLB flush needed after setting dirty bit
2993 * so non-PML cases won't be impacted.
2994 *
2995 * Compare with set_spte where instead shadow_dirty_mask is set.
2996 */
2997 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
2998 return false;
2999
3000 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3001 /*
3002 * The gfn of direct spte is stable since it is
3003 * calculated by sp->gfn.
3004 */
3005 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3006 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3007 }
3008
3009 return true;
3010 }
3011
3012 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3013 {
3014 if (fault_err_code & PFERR_FETCH_MASK)
3015 return is_executable_pte(spte);
3016
3017 if (fault_err_code & PFERR_WRITE_MASK)
3018 return is_writable_pte(spte);
3019
3020 /* Fault was on Read access */
3021 return spte & PT_PRESENT_MASK;
3022 }
3023
3024 /*
3025 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3026 */
3027 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3028 u32 error_code)
3029 {
3030 struct kvm_shadow_walk_iterator iterator;
3031 struct kvm_mmu_page *sp;
3032 int ret = RET_PF_INVALID;
3033 u64 spte = 0ull;
3034 uint retry_count = 0;
3035
3036 if (!page_fault_can_be_fast(error_code))
3037 return ret;
3038
3039 walk_shadow_page_lockless_begin(vcpu);
3040
3041 do {
3042 u64 new_spte;
3043
3044 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3045 if (!is_shadow_present_pte(spte))
3046 break;
3047
3048 sp = sptep_to_sp(iterator.sptep);
3049 if (!is_last_spte(spte, sp->role.level))
3050 break;
3051
3052 /*
3053 * Check whether the memory access that caused the fault would
3054 * still cause it if it were to be performed right now. If not,
3055 * then this is a spurious fault caused by TLB lazily flushed,
3056 * or some other CPU has already fixed the PTE after the
3057 * current CPU took the fault.
3058 *
3059 * Need not check the access of upper level table entries since
3060 * they are always ACC_ALL.
3061 */
3062 if (is_access_allowed(error_code, spte)) {
3063 ret = RET_PF_SPURIOUS;
3064 break;
3065 }
3066
3067 new_spte = spte;
3068
3069 if (is_access_track_spte(spte))
3070 new_spte = restore_acc_track_spte(new_spte);
3071
3072 /*
3073 * Currently, to simplify the code, write-protection can
3074 * be removed in the fast path only if the SPTE was
3075 * write-protected for dirty-logging or access tracking.
3076 */
3077 if ((error_code & PFERR_WRITE_MASK) &&
3078 spte_can_locklessly_be_made_writable(spte)) {
3079 new_spte |= PT_WRITABLE_MASK;
3080
3081 /*
3082 * Do not fix write-permission on the large spte. Since
3083 * we only dirty the first page into the dirty-bitmap in
3084 * fast_pf_fix_direct_spte(), other pages are missed
3085 * if its slot has dirty logging enabled.
3086 *
3087 * Instead, we let the slow page fault path create a
3088 * normal spte to fix the access.
3089 *
3090 * See the comments in kvm_arch_commit_memory_region().
3091 */
3092 if (sp->role.level > PG_LEVEL_4K)
3093 break;
3094 }
3095
3096 /* Verify that the fault can be handled in the fast path */
3097 if (new_spte == spte ||
3098 !is_access_allowed(error_code, new_spte))
3099 break;
3100
3101 /*
3102 * Currently, fast page fault only works for direct mapping
3103 * since the gfn is not stable for indirect shadow page. See
3104 * Documentation/virt/kvm/locking.rst to get more detail.
3105 */
3106 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3107 new_spte)) {
3108 ret = RET_PF_FIXED;
3109 break;
3110 }
3111
3112 if (++retry_count > 4) {
3113 printk_once(KERN_WARNING
3114 "kvm: Fast #PF retrying more than 4 times.\n");
3115 break;
3116 }
3117
3118 } while (true);
3119
3120 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3121 spte, ret);
3122 walk_shadow_page_lockless_end(vcpu);
3123
3124 return ret;
3125 }
3126
3127 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3128 struct list_head *invalid_list)
3129 {
3130 struct kvm_mmu_page *sp;
3131
3132 if (!VALID_PAGE(*root_hpa))
3133 return;
3134
3135 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3136
3137 if (kvm_mmu_put_root(kvm, sp)) {
3138 if (sp->tdp_mmu_page)
3139 kvm_tdp_mmu_free_root(kvm, sp);
3140 else if (sp->role.invalid)
3141 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3142 }
3143
3144 *root_hpa = INVALID_PAGE;
3145 }
3146
3147 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3148 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3149 ulong roots_to_free)
3150 {
3151 struct kvm *kvm = vcpu->kvm;
3152 int i;
3153 LIST_HEAD(invalid_list);
3154 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3155
3156 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3157
3158 /* Before acquiring the MMU lock, see if we need to do any real work. */
3159 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3160 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3161 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3162 VALID_PAGE(mmu->prev_roots[i].hpa))
3163 break;
3164
3165 if (i == KVM_MMU_NUM_PREV_ROOTS)
3166 return;
3167 }
3168
3169 spin_lock(&kvm->mmu_lock);
3170
3171 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3172 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3173 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3174 &invalid_list);
3175
3176 if (free_active_root) {
3177 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3178 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3179 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3180 } else {
3181 for (i = 0; i < 4; ++i)
3182 if (mmu->pae_root[i] != 0)
3183 mmu_free_root_page(kvm,
3184 &mmu->pae_root[i],
3185 &invalid_list);
3186 mmu->root_hpa = INVALID_PAGE;
3187 }
3188 mmu->root_pgd = 0;
3189 }
3190
3191 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3192 spin_unlock(&kvm->mmu_lock);
3193 }
3194 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3195
3196 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3197 {
3198 int ret = 0;
3199
3200 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3201 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3202 ret = 1;
3203 }
3204
3205 return ret;
3206 }
3207
3208 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3209 u8 level, bool direct)
3210 {
3211 struct kvm_mmu_page *sp;
3212
3213 spin_lock(&vcpu->kvm->mmu_lock);
3214
3215 if (make_mmu_pages_available(vcpu)) {
3216 spin_unlock(&vcpu->kvm->mmu_lock);
3217 return INVALID_PAGE;
3218 }
3219 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3220 ++sp->root_count;
3221
3222 spin_unlock(&vcpu->kvm->mmu_lock);
3223 return __pa(sp->spt);
3224 }
3225
3226 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3227 {
3228 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3229 hpa_t root;
3230 unsigned i;
3231
3232 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3233 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3234
3235 if (!VALID_PAGE(root))
3236 return -ENOSPC;
3237 vcpu->arch.mmu->root_hpa = root;
3238 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3239 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3240 true);
3241
3242 if (!VALID_PAGE(root))
3243 return -ENOSPC;
3244 vcpu->arch.mmu->root_hpa = root;
3245 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3246 for (i = 0; i < 4; ++i) {
3247 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3248
3249 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3250 i << 30, PT32_ROOT_LEVEL, true);
3251 if (!VALID_PAGE(root))
3252 return -ENOSPC;
3253 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3254 }
3255 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3256 } else
3257 BUG();
3258
3259 /* root_pgd is ignored for direct MMUs. */
3260 vcpu->arch.mmu->root_pgd = 0;
3261
3262 return 0;
3263 }
3264
3265 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3266 {
3267 u64 pdptr, pm_mask;
3268 gfn_t root_gfn, root_pgd;
3269 hpa_t root;
3270 int i;
3271
3272 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3273 root_gfn = root_pgd >> PAGE_SHIFT;
3274
3275 if (mmu_check_root(vcpu, root_gfn))
3276 return 1;
3277
3278 /*
3279 * Do we shadow a long mode page table? If so we need to
3280 * write-protect the guests page table root.
3281 */
3282 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3283 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3284
3285 root = mmu_alloc_root(vcpu, root_gfn, 0,
3286 vcpu->arch.mmu->shadow_root_level, false);
3287 if (!VALID_PAGE(root))
3288 return -ENOSPC;
3289 vcpu->arch.mmu->root_hpa = root;
3290 goto set_root_pgd;
3291 }
3292
3293 /*
3294 * We shadow a 32 bit page table. This may be a legacy 2-level
3295 * or a PAE 3-level page table. In either case we need to be aware that
3296 * the shadow page table may be a PAE or a long mode page table.
3297 */
3298 pm_mask = PT_PRESENT_MASK;
3299 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3300 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3301
3302 for (i = 0; i < 4; ++i) {
3303 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3304 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3305 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3306 if (!(pdptr & PT_PRESENT_MASK)) {
3307 vcpu->arch.mmu->pae_root[i] = 0;
3308 continue;
3309 }
3310 root_gfn = pdptr >> PAGE_SHIFT;
3311 if (mmu_check_root(vcpu, root_gfn))
3312 return 1;
3313 }
3314
3315 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3316 PT32_ROOT_LEVEL, false);
3317 if (!VALID_PAGE(root))
3318 return -ENOSPC;
3319 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3320 }
3321 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3322
3323 /*
3324 * If we shadow a 32 bit page table with a long mode page
3325 * table we enter this path.
3326 */
3327 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3328 if (vcpu->arch.mmu->lm_root == NULL) {
3329 /*
3330 * The additional page necessary for this is only
3331 * allocated on demand.
3332 */
3333
3334 u64 *lm_root;
3335
3336 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3337 if (lm_root == NULL)
3338 return 1;
3339
3340 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3341
3342 vcpu->arch.mmu->lm_root = lm_root;
3343 }
3344
3345 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3346 }
3347
3348 set_root_pgd:
3349 vcpu->arch.mmu->root_pgd = root_pgd;
3350
3351 return 0;
3352 }
3353
3354 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3355 {
3356 if (vcpu->arch.mmu->direct_map)
3357 return mmu_alloc_direct_roots(vcpu);
3358 else
3359 return mmu_alloc_shadow_roots(vcpu);
3360 }
3361
3362 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3363 {
3364 int i;
3365 struct kvm_mmu_page *sp;
3366
3367 if (vcpu->arch.mmu->direct_map)
3368 return;
3369
3370 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3371 return;
3372
3373 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3374
3375 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3376 hpa_t root = vcpu->arch.mmu->root_hpa;
3377 sp = to_shadow_page(root);
3378
3379 /*
3380 * Even if another CPU was marking the SP as unsync-ed
3381 * simultaneously, any guest page table changes are not
3382 * guaranteed to be visible anyway until this VCPU issues a TLB
3383 * flush strictly after those changes are made. We only need to
3384 * ensure that the other CPU sets these flags before any actual
3385 * changes to the page tables are made. The comments in
3386 * mmu_need_write_protect() describe what could go wrong if this
3387 * requirement isn't satisfied.
3388 */
3389 if (!smp_load_acquire(&sp->unsync) &&
3390 !smp_load_acquire(&sp->unsync_children))
3391 return;
3392
3393 spin_lock(&vcpu->kvm->mmu_lock);
3394 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3395
3396 mmu_sync_children(vcpu, sp);
3397
3398 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3399 spin_unlock(&vcpu->kvm->mmu_lock);
3400 return;
3401 }
3402
3403 spin_lock(&vcpu->kvm->mmu_lock);
3404 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3405
3406 for (i = 0; i < 4; ++i) {
3407 hpa_t root = vcpu->arch.mmu->pae_root[i];
3408
3409 if (root && VALID_PAGE(root)) {
3410 root &= PT64_BASE_ADDR_MASK;
3411 sp = to_shadow_page(root);
3412 mmu_sync_children(vcpu, sp);
3413 }
3414 }
3415
3416 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3417 spin_unlock(&vcpu->kvm->mmu_lock);
3418 }
3419 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3420
3421 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3422 u32 access, struct x86_exception *exception)
3423 {
3424 if (exception)
3425 exception->error_code = 0;
3426 return vaddr;
3427 }
3428
3429 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3430 u32 access,
3431 struct x86_exception *exception)
3432 {
3433 if (exception)
3434 exception->error_code = 0;
3435 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3436 }
3437
3438 static bool
3439 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3440 {
3441 int bit7 = (pte >> 7) & 1;
3442
3443 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3444 }
3445
3446 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3447 {
3448 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3449 }
3450
3451 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3452 {
3453 /*
3454 * A nested guest cannot use the MMIO cache if it is using nested
3455 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3456 */
3457 if (mmu_is_nested(vcpu))
3458 return false;
3459
3460 if (direct)
3461 return vcpu_match_mmio_gpa(vcpu, addr);
3462
3463 return vcpu_match_mmio_gva(vcpu, addr);
3464 }
3465
3466 /* return true if reserved bit is detected on spte. */
3467 static bool
3468 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3469 {
3470 struct kvm_shadow_walk_iterator iterator;
3471 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3472 struct rsvd_bits_validate *rsvd_check;
3473 int root, leaf;
3474 bool reserved = false;
3475
3476 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3477
3478 walk_shadow_page_lockless_begin(vcpu);
3479
3480 for (shadow_walk_init(&iterator, vcpu, addr),
3481 leaf = root = iterator.level;
3482 shadow_walk_okay(&iterator);
3483 __shadow_walk_next(&iterator, spte)) {
3484 spte = mmu_spte_get_lockless(iterator.sptep);
3485
3486 sptes[leaf - 1] = spte;
3487 leaf--;
3488
3489 if (!is_shadow_present_pte(spte))
3490 break;
3491
3492 /*
3493 * Use a bitwise-OR instead of a logical-OR to aggregate the
3494 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3495 * adding a Jcc in the loop.
3496 */
3497 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3498 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3499 }
3500
3501 walk_shadow_page_lockless_end(vcpu);
3502
3503 if (reserved) {
3504 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3505 __func__, addr);
3506 while (root > leaf) {
3507 pr_err("------ spte 0x%llx level %d.\n",
3508 sptes[root - 1], root);
3509 root--;
3510 }
3511 }
3512
3513 *sptep = spte;
3514 return reserved;
3515 }
3516
3517 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3518 {
3519 u64 spte;
3520 bool reserved;
3521
3522 if (mmio_info_in_cache(vcpu, addr, direct))
3523 return RET_PF_EMULATE;
3524
3525 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3526 if (WARN_ON(reserved))
3527 return -EINVAL;
3528
3529 if (is_mmio_spte(spte)) {
3530 gfn_t gfn = get_mmio_spte_gfn(spte);
3531 unsigned int access = get_mmio_spte_access(spte);
3532
3533 if (!check_mmio_spte(vcpu, spte))
3534 return RET_PF_INVALID;
3535
3536 if (direct)
3537 addr = 0;
3538
3539 trace_handle_mmio_page_fault(addr, gfn, access);
3540 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3541 return RET_PF_EMULATE;
3542 }
3543
3544 /*
3545 * If the page table is zapped by other cpus, let CPU fault again on
3546 * the address.
3547 */
3548 return RET_PF_RETRY;
3549 }
3550
3551 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3552 u32 error_code, gfn_t gfn)
3553 {
3554 if (unlikely(error_code & PFERR_RSVD_MASK))
3555 return false;
3556
3557 if (!(error_code & PFERR_PRESENT_MASK) ||
3558 !(error_code & PFERR_WRITE_MASK))
3559 return false;
3560
3561 /*
3562 * guest is writing the page which is write tracked which can
3563 * not be fixed by page fault handler.
3564 */
3565 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3566 return true;
3567
3568 return false;
3569 }
3570
3571 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3572 {
3573 struct kvm_shadow_walk_iterator iterator;
3574 u64 spte;
3575
3576 walk_shadow_page_lockless_begin(vcpu);
3577 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3578 clear_sp_write_flooding_count(iterator.sptep);
3579 if (!is_shadow_present_pte(spte))
3580 break;
3581 }
3582 walk_shadow_page_lockless_end(vcpu);
3583 }
3584
3585 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3586 gfn_t gfn)
3587 {
3588 struct kvm_arch_async_pf arch;
3589
3590 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3591 arch.gfn = gfn;
3592 arch.direct_map = vcpu->arch.mmu->direct_map;
3593 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3594
3595 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3596 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3597 }
3598
3599 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3600 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3601 bool *writable)
3602 {
3603 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3604 bool async;
3605
3606 /* Don't expose private memslots to L2. */
3607 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3608 *pfn = KVM_PFN_NOSLOT;
3609 *writable = false;
3610 return false;
3611 }
3612
3613 async = false;
3614 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3615 if (!async)
3616 return false; /* *pfn has correct page already */
3617
3618 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3619 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3620 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3621 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3622 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3623 return true;
3624 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3625 return true;
3626 }
3627
3628 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3629 return false;
3630 }
3631
3632 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3633 bool prefault, int max_level, bool is_tdp)
3634 {
3635 bool write = error_code & PFERR_WRITE_MASK;
3636 bool map_writable;
3637
3638 gfn_t gfn = gpa >> PAGE_SHIFT;
3639 unsigned long mmu_seq;
3640 kvm_pfn_t pfn;
3641 int r;
3642
3643 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3644 return RET_PF_EMULATE;
3645
3646 r = fast_page_fault(vcpu, gpa, error_code);
3647 if (r != RET_PF_INVALID)
3648 return r;
3649
3650 r = mmu_topup_memory_caches(vcpu, false);
3651 if (r)
3652 return r;
3653
3654 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3655 smp_rmb();
3656
3657 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3658 return RET_PF_RETRY;
3659
3660 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3661 return r;
3662
3663 r = RET_PF_RETRY;
3664 spin_lock(&vcpu->kvm->mmu_lock);
3665 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3666 goto out_unlock;
3667 r = make_mmu_pages_available(vcpu);
3668 if (r)
3669 goto out_unlock;
3670 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3671 prefault, is_tdp);
3672
3673 out_unlock:
3674 spin_unlock(&vcpu->kvm->mmu_lock);
3675 kvm_release_pfn_clean(pfn);
3676 return r;
3677 }
3678
3679 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3680 u32 error_code, bool prefault)
3681 {
3682 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3683
3684 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3685 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3686 PG_LEVEL_2M, false);
3687 }
3688
3689 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3690 u64 fault_address, char *insn, int insn_len)
3691 {
3692 int r = 1;
3693 u32 flags = vcpu->arch.apf.host_apf_flags;
3694
3695 #ifndef CONFIG_X86_64
3696 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3697 if (WARN_ON_ONCE(fault_address >> 32))
3698 return -EFAULT;
3699 #endif
3700
3701 vcpu->arch.l1tf_flush_l1d = true;
3702 if (!flags) {
3703 trace_kvm_page_fault(fault_address, error_code);
3704
3705 if (kvm_event_needs_reinjection(vcpu))
3706 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3707 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3708 insn_len);
3709 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3710 vcpu->arch.apf.host_apf_flags = 0;
3711 local_irq_disable();
3712 kvm_async_pf_task_wait_schedule(fault_address);
3713 local_irq_enable();
3714 } else {
3715 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3716 }
3717
3718 return r;
3719 }
3720 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3721
3722 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3723 bool prefault)
3724 {
3725 int max_level;
3726
3727 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3728 max_level > PG_LEVEL_4K;
3729 max_level--) {
3730 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3731 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3732
3733 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3734 break;
3735 }
3736
3737 return direct_page_fault(vcpu, gpa, error_code, prefault,
3738 max_level, true);
3739 }
3740
3741 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3742 struct kvm_mmu *context)
3743 {
3744 context->page_fault = nonpaging_page_fault;
3745 context->gva_to_gpa = nonpaging_gva_to_gpa;
3746 context->sync_page = nonpaging_sync_page;
3747 context->invlpg = NULL;
3748 context->update_pte = nonpaging_update_pte;
3749 context->root_level = 0;
3750 context->shadow_root_level = PT32E_ROOT_LEVEL;
3751 context->direct_map = true;
3752 context->nx = false;
3753 }
3754
3755 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3756 union kvm_mmu_page_role role)
3757 {
3758 return (role.direct || pgd == root->pgd) &&
3759 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3760 role.word == to_shadow_page(root->hpa)->role.word;
3761 }
3762
3763 /*
3764 * Find out if a previously cached root matching the new pgd/role is available.
3765 * The current root is also inserted into the cache.
3766 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3767 * returned.
3768 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3769 * false is returned. This root should now be freed by the caller.
3770 */
3771 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3772 union kvm_mmu_page_role new_role)
3773 {
3774 uint i;
3775 struct kvm_mmu_root_info root;
3776 struct kvm_mmu *mmu = vcpu->arch.mmu;
3777
3778 root.pgd = mmu->root_pgd;
3779 root.hpa = mmu->root_hpa;
3780
3781 if (is_root_usable(&root, new_pgd, new_role))
3782 return true;
3783
3784 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3785 swap(root, mmu->prev_roots[i]);
3786
3787 if (is_root_usable(&root, new_pgd, new_role))
3788 break;
3789 }
3790
3791 mmu->root_hpa = root.hpa;
3792 mmu->root_pgd = root.pgd;
3793
3794 return i < KVM_MMU_NUM_PREV_ROOTS;
3795 }
3796
3797 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3798 union kvm_mmu_page_role new_role)
3799 {
3800 struct kvm_mmu *mmu = vcpu->arch.mmu;
3801
3802 /*
3803 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3804 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3805 * later if necessary.
3806 */
3807 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3808 mmu->root_level >= PT64_ROOT_4LEVEL)
3809 return cached_root_available(vcpu, new_pgd, new_role);
3810
3811 return false;
3812 }
3813
3814 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3815 union kvm_mmu_page_role new_role,
3816 bool skip_tlb_flush, bool skip_mmu_sync)
3817 {
3818 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3819 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3820 return;
3821 }
3822
3823 /*
3824 * It's possible that the cached previous root page is obsolete because
3825 * of a change in the MMU generation number. However, changing the
3826 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3827 * free the root set here and allocate a new one.
3828 */
3829 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3830
3831 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3832 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3833 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3834 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3835
3836 /*
3837 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3838 * switching to a new CR3, that GVA->GPA mapping may no longer be
3839 * valid. So clear any cached MMIO info even when we don't need to sync
3840 * the shadow page tables.
3841 */
3842 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3843
3844 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
3845 }
3846
3847 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3848 bool skip_mmu_sync)
3849 {
3850 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3851 skip_tlb_flush, skip_mmu_sync);
3852 }
3853 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3854
3855 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3856 {
3857 return kvm_read_cr3(vcpu);
3858 }
3859
3860 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3861 unsigned int access, int *nr_present)
3862 {
3863 if (unlikely(is_mmio_spte(*sptep))) {
3864 if (gfn != get_mmio_spte_gfn(*sptep)) {
3865 mmu_spte_clear_no_track(sptep);
3866 return true;
3867 }
3868
3869 (*nr_present)++;
3870 mark_mmio_spte(vcpu, sptep, gfn, access);
3871 return true;
3872 }
3873
3874 return false;
3875 }
3876
3877 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3878 unsigned level, unsigned gpte)
3879 {
3880 /*
3881 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3882 * If it is clear, there are no large pages at this level, so clear
3883 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3884 */
3885 gpte &= level - mmu->last_nonleaf_level;
3886
3887 /*
3888 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3889 * iff level <= PG_LEVEL_4K, which for our purpose means
3890 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3891 */
3892 gpte |= level - PG_LEVEL_4K - 1;
3893
3894 return gpte & PT_PAGE_SIZE_MASK;
3895 }
3896
3897 #define PTTYPE_EPT 18 /* arbitrary */
3898 #define PTTYPE PTTYPE_EPT
3899 #include "paging_tmpl.h"
3900 #undef PTTYPE
3901
3902 #define PTTYPE 64
3903 #include "paging_tmpl.h"
3904 #undef PTTYPE
3905
3906 #define PTTYPE 32
3907 #include "paging_tmpl.h"
3908 #undef PTTYPE
3909
3910 static void
3911 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3912 struct rsvd_bits_validate *rsvd_check,
3913 int maxphyaddr, int level, bool nx, bool gbpages,
3914 bool pse, bool amd)
3915 {
3916 u64 exb_bit_rsvd = 0;
3917 u64 gbpages_bit_rsvd = 0;
3918 u64 nonleaf_bit8_rsvd = 0;
3919
3920 rsvd_check->bad_mt_xwr = 0;
3921
3922 if (!nx)
3923 exb_bit_rsvd = rsvd_bits(63, 63);
3924 if (!gbpages)
3925 gbpages_bit_rsvd = rsvd_bits(7, 7);
3926
3927 /*
3928 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3929 * leaf entries) on AMD CPUs only.
3930 */
3931 if (amd)
3932 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3933
3934 switch (level) {
3935 case PT32_ROOT_LEVEL:
3936 /* no rsvd bits for 2 level 4K page table entries */
3937 rsvd_check->rsvd_bits_mask[0][1] = 0;
3938 rsvd_check->rsvd_bits_mask[0][0] = 0;
3939 rsvd_check->rsvd_bits_mask[1][0] =
3940 rsvd_check->rsvd_bits_mask[0][0];
3941
3942 if (!pse) {
3943 rsvd_check->rsvd_bits_mask[1][1] = 0;
3944 break;
3945 }
3946
3947 if (is_cpuid_PSE36())
3948 /* 36bits PSE 4MB page */
3949 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3950 else
3951 /* 32 bits PSE 4MB page */
3952 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3953 break;
3954 case PT32E_ROOT_LEVEL:
3955 rsvd_check->rsvd_bits_mask[0][2] =
3956 rsvd_bits(maxphyaddr, 63) |
3957 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3958 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3959 rsvd_bits(maxphyaddr, 62); /* PDE */
3960 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3961 rsvd_bits(maxphyaddr, 62); /* PTE */
3962 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3963 rsvd_bits(maxphyaddr, 62) |
3964 rsvd_bits(13, 20); /* large page */
3965 rsvd_check->rsvd_bits_mask[1][0] =
3966 rsvd_check->rsvd_bits_mask[0][0];
3967 break;
3968 case PT64_ROOT_5LEVEL:
3969 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
3970 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3971 rsvd_bits(maxphyaddr, 51);
3972 rsvd_check->rsvd_bits_mask[1][4] =
3973 rsvd_check->rsvd_bits_mask[0][4];
3974 fallthrough;
3975 case PT64_ROOT_4LEVEL:
3976 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3977 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3978 rsvd_bits(maxphyaddr, 51);
3979 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3980 gbpages_bit_rsvd |
3981 rsvd_bits(maxphyaddr, 51);
3982 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3983 rsvd_bits(maxphyaddr, 51);
3984 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3985 rsvd_bits(maxphyaddr, 51);
3986 rsvd_check->rsvd_bits_mask[1][3] =
3987 rsvd_check->rsvd_bits_mask[0][3];
3988 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3989 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3990 rsvd_bits(13, 29);
3991 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3992 rsvd_bits(maxphyaddr, 51) |
3993 rsvd_bits(13, 20); /* large page */
3994 rsvd_check->rsvd_bits_mask[1][0] =
3995 rsvd_check->rsvd_bits_mask[0][0];
3996 break;
3997 }
3998 }
3999
4000 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4001 struct kvm_mmu *context)
4002 {
4003 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4004 cpuid_maxphyaddr(vcpu), context->root_level,
4005 context->nx,
4006 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4007 is_pse(vcpu),
4008 guest_cpuid_is_amd_or_hygon(vcpu));
4009 }
4010
4011 static void
4012 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4013 int maxphyaddr, bool execonly)
4014 {
4015 u64 bad_mt_xwr;
4016
4017 rsvd_check->rsvd_bits_mask[0][4] =
4018 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4019 rsvd_check->rsvd_bits_mask[0][3] =
4020 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4021 rsvd_check->rsvd_bits_mask[0][2] =
4022 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4023 rsvd_check->rsvd_bits_mask[0][1] =
4024 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4025 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4026
4027 /* large page */
4028 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4029 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4030 rsvd_check->rsvd_bits_mask[1][2] =
4031 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4032 rsvd_check->rsvd_bits_mask[1][1] =
4033 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4034 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4035
4036 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4037 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4038 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4039 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4040 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4041 if (!execonly) {
4042 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4043 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4044 }
4045 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4046 }
4047
4048 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4049 struct kvm_mmu *context, bool execonly)
4050 {
4051 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4052 cpuid_maxphyaddr(vcpu), execonly);
4053 }
4054
4055 /*
4056 * the page table on host is the shadow page table for the page
4057 * table in guest or amd nested guest, its mmu features completely
4058 * follow the features in guest.
4059 */
4060 void
4061 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4062 {
4063 bool uses_nx = context->nx ||
4064 context->mmu_role.base.smep_andnot_wp;
4065 struct rsvd_bits_validate *shadow_zero_check;
4066 int i;
4067
4068 /*
4069 * Passing "true" to the last argument is okay; it adds a check
4070 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4071 */
4072 shadow_zero_check = &context->shadow_zero_check;
4073 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4074 shadow_phys_bits,
4075 context->shadow_root_level, uses_nx,
4076 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4077 is_pse(vcpu), true);
4078
4079 if (!shadow_me_mask)
4080 return;
4081
4082 for (i = context->shadow_root_level; --i >= 0;) {
4083 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4084 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4085 }
4086
4087 }
4088 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4089
4090 static inline bool boot_cpu_is_amd(void)
4091 {
4092 WARN_ON_ONCE(!tdp_enabled);
4093 return shadow_x_mask == 0;
4094 }
4095
4096 /*
4097 * the direct page table on host, use as much mmu features as
4098 * possible, however, kvm currently does not do execution-protection.
4099 */
4100 static void
4101 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4102 struct kvm_mmu *context)
4103 {
4104 struct rsvd_bits_validate *shadow_zero_check;
4105 int i;
4106
4107 shadow_zero_check = &context->shadow_zero_check;
4108
4109 if (boot_cpu_is_amd())
4110 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4111 shadow_phys_bits,
4112 context->shadow_root_level, false,
4113 boot_cpu_has(X86_FEATURE_GBPAGES),
4114 true, true);
4115 else
4116 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4117 shadow_phys_bits,
4118 false);
4119
4120 if (!shadow_me_mask)
4121 return;
4122
4123 for (i = context->shadow_root_level; --i >= 0;) {
4124 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4125 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4126 }
4127 }
4128
4129 /*
4130 * as the comments in reset_shadow_zero_bits_mask() except it
4131 * is the shadow page table for intel nested guest.
4132 */
4133 static void
4134 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4135 struct kvm_mmu *context, bool execonly)
4136 {
4137 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4138 shadow_phys_bits, execonly);
4139 }
4140
4141 #define BYTE_MASK(access) \
4142 ((1 & (access) ? 2 : 0) | \
4143 (2 & (access) ? 4 : 0) | \
4144 (3 & (access) ? 8 : 0) | \
4145 (4 & (access) ? 16 : 0) | \
4146 (5 & (access) ? 32 : 0) | \
4147 (6 & (access) ? 64 : 0) | \
4148 (7 & (access) ? 128 : 0))
4149
4150
4151 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4152 struct kvm_mmu *mmu, bool ept)
4153 {
4154 unsigned byte;
4155
4156 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4157 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4158 const u8 u = BYTE_MASK(ACC_USER_MASK);
4159
4160 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4161 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4162 bool cr0_wp = is_write_protection(vcpu);
4163
4164 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4165 unsigned pfec = byte << 1;
4166
4167 /*
4168 * Each "*f" variable has a 1 bit for each UWX value
4169 * that causes a fault with the given PFEC.
4170 */
4171
4172 /* Faults from writes to non-writable pages */
4173 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4174 /* Faults from user mode accesses to supervisor pages */
4175 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4176 /* Faults from fetches of non-executable pages*/
4177 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4178 /* Faults from kernel mode fetches of user pages */
4179 u8 smepf = 0;
4180 /* Faults from kernel mode accesses of user pages */
4181 u8 smapf = 0;
4182
4183 if (!ept) {
4184 /* Faults from kernel mode accesses to user pages */
4185 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4186
4187 /* Not really needed: !nx will cause pte.nx to fault */
4188 if (!mmu->nx)
4189 ff = 0;
4190
4191 /* Allow supervisor writes if !cr0.wp */
4192 if (!cr0_wp)
4193 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4194
4195 /* Disallow supervisor fetches of user code if cr4.smep */
4196 if (cr4_smep)
4197 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4198
4199 /*
4200 * SMAP:kernel-mode data accesses from user-mode
4201 * mappings should fault. A fault is considered
4202 * as a SMAP violation if all of the following
4203 * conditions are true:
4204 * - X86_CR4_SMAP is set in CR4
4205 * - A user page is accessed
4206 * - The access is not a fetch
4207 * - Page fault in kernel mode
4208 * - if CPL = 3 or X86_EFLAGS_AC is clear
4209 *
4210 * Here, we cover the first three conditions.
4211 * The fourth is computed dynamically in permission_fault();
4212 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4213 * *not* subject to SMAP restrictions.
4214 */
4215 if (cr4_smap)
4216 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4217 }
4218
4219 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4220 }
4221 }
4222
4223 /*
4224 * PKU is an additional mechanism by which the paging controls access to
4225 * user-mode addresses based on the value in the PKRU register. Protection
4226 * key violations are reported through a bit in the page fault error code.
4227 * Unlike other bits of the error code, the PK bit is not known at the
4228 * call site of e.g. gva_to_gpa; it must be computed directly in
4229 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4230 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4231 *
4232 * In particular the following conditions come from the error code, the
4233 * page tables and the machine state:
4234 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4235 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4236 * - PK is always zero if U=0 in the page tables
4237 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4238 *
4239 * The PKRU bitmask caches the result of these four conditions. The error
4240 * code (minus the P bit) and the page table's U bit form an index into the
4241 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4242 * with the two bits of the PKRU register corresponding to the protection key.
4243 * For the first three conditions above the bits will be 00, thus masking
4244 * away both AD and WD. For all reads or if the last condition holds, WD
4245 * only will be masked away.
4246 */
4247 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4248 bool ept)
4249 {
4250 unsigned bit;
4251 bool wp;
4252
4253 if (ept) {
4254 mmu->pkru_mask = 0;
4255 return;
4256 }
4257
4258 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4259 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4260 mmu->pkru_mask = 0;
4261 return;
4262 }
4263
4264 wp = is_write_protection(vcpu);
4265
4266 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4267 unsigned pfec, pkey_bits;
4268 bool check_pkey, check_write, ff, uf, wf, pte_user;
4269
4270 pfec = bit << 1;
4271 ff = pfec & PFERR_FETCH_MASK;
4272 uf = pfec & PFERR_USER_MASK;
4273 wf = pfec & PFERR_WRITE_MASK;
4274
4275 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4276 pte_user = pfec & PFERR_RSVD_MASK;
4277
4278 /*
4279 * Only need to check the access which is not an
4280 * instruction fetch and is to a user page.
4281 */
4282 check_pkey = (!ff && pte_user);
4283 /*
4284 * write access is controlled by PKRU if it is a
4285 * user access or CR0.WP = 1.
4286 */
4287 check_write = check_pkey && wf && (uf || wp);
4288
4289 /* PKRU.AD stops both read and write access. */
4290 pkey_bits = !!check_pkey;
4291 /* PKRU.WD stops write access. */
4292 pkey_bits |= (!!check_write) << 1;
4293
4294 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4295 }
4296 }
4297
4298 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4299 {
4300 unsigned root_level = mmu->root_level;
4301
4302 mmu->last_nonleaf_level = root_level;
4303 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4304 mmu->last_nonleaf_level++;
4305 }
4306
4307 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4308 struct kvm_mmu *context,
4309 int level)
4310 {
4311 context->nx = is_nx(vcpu);
4312 context->root_level = level;
4313
4314 reset_rsvds_bits_mask(vcpu, context);
4315 update_permission_bitmask(vcpu, context, false);
4316 update_pkru_bitmask(vcpu, context, false);
4317 update_last_nonleaf_level(vcpu, context);
4318
4319 MMU_WARN_ON(!is_pae(vcpu));
4320 context->page_fault = paging64_page_fault;
4321 context->gva_to_gpa = paging64_gva_to_gpa;
4322 context->sync_page = paging64_sync_page;
4323 context->invlpg = paging64_invlpg;
4324 context->update_pte = paging64_update_pte;
4325 context->shadow_root_level = level;
4326 context->direct_map = false;
4327 }
4328
4329 static void paging64_init_context(struct kvm_vcpu *vcpu,
4330 struct kvm_mmu *context)
4331 {
4332 int root_level = is_la57_mode(vcpu) ?
4333 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4334
4335 paging64_init_context_common(vcpu, context, root_level);
4336 }
4337
4338 static void paging32_init_context(struct kvm_vcpu *vcpu,
4339 struct kvm_mmu *context)
4340 {
4341 context->nx = false;
4342 context->root_level = PT32_ROOT_LEVEL;
4343
4344 reset_rsvds_bits_mask(vcpu, context);
4345 update_permission_bitmask(vcpu, context, false);
4346 update_pkru_bitmask(vcpu, context, false);
4347 update_last_nonleaf_level(vcpu, context);
4348
4349 context->page_fault = paging32_page_fault;
4350 context->gva_to_gpa = paging32_gva_to_gpa;
4351 context->sync_page = paging32_sync_page;
4352 context->invlpg = paging32_invlpg;
4353 context->update_pte = paging32_update_pte;
4354 context->shadow_root_level = PT32E_ROOT_LEVEL;
4355 context->direct_map = false;
4356 }
4357
4358 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4359 struct kvm_mmu *context)
4360 {
4361 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4362 }
4363
4364 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4365 {
4366 union kvm_mmu_extended_role ext = {0};
4367
4368 ext.cr0_pg = !!is_paging(vcpu);
4369 ext.cr4_pae = !!is_pae(vcpu);
4370 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4371 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4372 ext.cr4_pse = !!is_pse(vcpu);
4373 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4374 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4375
4376 ext.valid = 1;
4377
4378 return ext;
4379 }
4380
4381 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4382 bool base_only)
4383 {
4384 union kvm_mmu_role role = {0};
4385
4386 role.base.access = ACC_ALL;
4387 role.base.nxe = !!is_nx(vcpu);
4388 role.base.cr0_wp = is_write_protection(vcpu);
4389 role.base.smm = is_smm(vcpu);
4390 role.base.guest_mode = is_guest_mode(vcpu);
4391
4392 if (base_only)
4393 return role;
4394
4395 role.ext = kvm_calc_mmu_role_ext(vcpu);
4396
4397 return role;
4398 }
4399
4400 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4401 {
4402 /* Use 5-level TDP if and only if it's useful/necessary. */
4403 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4404 return 4;
4405
4406 return max_tdp_level;
4407 }
4408
4409 static union kvm_mmu_role
4410 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4411 {
4412 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4413
4414 role.base.ad_disabled = (shadow_accessed_mask == 0);
4415 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4416 role.base.direct = true;
4417 role.base.gpte_is_8_bytes = true;
4418
4419 return role;
4420 }
4421
4422 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4423 {
4424 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4425 union kvm_mmu_role new_role =
4426 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4427
4428 if (new_role.as_u64 == context->mmu_role.as_u64)
4429 return;
4430
4431 context->mmu_role.as_u64 = new_role.as_u64;
4432 context->page_fault = kvm_tdp_page_fault;
4433 context->sync_page = nonpaging_sync_page;
4434 context->invlpg = NULL;
4435 context->update_pte = nonpaging_update_pte;
4436 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4437 context->direct_map = true;
4438 context->get_guest_pgd = get_cr3;
4439 context->get_pdptr = kvm_pdptr_read;
4440 context->inject_page_fault = kvm_inject_page_fault;
4441
4442 if (!is_paging(vcpu)) {
4443 context->nx = false;
4444 context->gva_to_gpa = nonpaging_gva_to_gpa;
4445 context->root_level = 0;
4446 } else if (is_long_mode(vcpu)) {
4447 context->nx = is_nx(vcpu);
4448 context->root_level = is_la57_mode(vcpu) ?
4449 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4450 reset_rsvds_bits_mask(vcpu, context);
4451 context->gva_to_gpa = paging64_gva_to_gpa;
4452 } else if (is_pae(vcpu)) {
4453 context->nx = is_nx(vcpu);
4454 context->root_level = PT32E_ROOT_LEVEL;
4455 reset_rsvds_bits_mask(vcpu, context);
4456 context->gva_to_gpa = paging64_gva_to_gpa;
4457 } else {
4458 context->nx = false;
4459 context->root_level = PT32_ROOT_LEVEL;
4460 reset_rsvds_bits_mask(vcpu, context);
4461 context->gva_to_gpa = paging32_gva_to_gpa;
4462 }
4463
4464 update_permission_bitmask(vcpu, context, false);
4465 update_pkru_bitmask(vcpu, context, false);
4466 update_last_nonleaf_level(vcpu, context);
4467 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4468 }
4469
4470 static union kvm_mmu_role
4471 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4472 {
4473 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4474
4475 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4476 !is_write_protection(vcpu);
4477 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4478 !is_write_protection(vcpu);
4479 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4480
4481 return role;
4482 }
4483
4484 static union kvm_mmu_role
4485 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4486 {
4487 union kvm_mmu_role role =
4488 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4489
4490 role.base.direct = !is_paging(vcpu);
4491
4492 if (!is_long_mode(vcpu))
4493 role.base.level = PT32E_ROOT_LEVEL;
4494 else if (is_la57_mode(vcpu))
4495 role.base.level = PT64_ROOT_5LEVEL;
4496 else
4497 role.base.level = PT64_ROOT_4LEVEL;
4498
4499 return role;
4500 }
4501
4502 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4503 u32 cr0, u32 cr4, u32 efer,
4504 union kvm_mmu_role new_role)
4505 {
4506 if (!(cr0 & X86_CR0_PG))
4507 nonpaging_init_context(vcpu, context);
4508 else if (efer & EFER_LMA)
4509 paging64_init_context(vcpu, context);
4510 else if (cr4 & X86_CR4_PAE)
4511 paging32E_init_context(vcpu, context);
4512 else
4513 paging32_init_context(vcpu, context);
4514
4515 context->mmu_role.as_u64 = new_role.as_u64;
4516 reset_shadow_zero_bits_mask(vcpu, context);
4517 }
4518
4519 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4520 {
4521 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4522 union kvm_mmu_role new_role =
4523 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4524
4525 if (new_role.as_u64 != context->mmu_role.as_u64)
4526 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4527 }
4528
4529 static union kvm_mmu_role
4530 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4531 {
4532 union kvm_mmu_role role =
4533 kvm_calc_shadow_root_page_role_common(vcpu, false);
4534
4535 role.base.direct = false;
4536 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4537
4538 return role;
4539 }
4540
4541 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4542 gpa_t nested_cr3)
4543 {
4544 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4545 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4546
4547 context->shadow_root_level = new_role.base.level;
4548
4549 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4550
4551 if (new_role.as_u64 != context->mmu_role.as_u64)
4552 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4553 }
4554 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4555
4556 static union kvm_mmu_role
4557 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4558 bool execonly, u8 level)
4559 {
4560 union kvm_mmu_role role = {0};
4561
4562 /* SMM flag is inherited from root_mmu */
4563 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4564
4565 role.base.level = level;
4566 role.base.gpte_is_8_bytes = true;
4567 role.base.direct = false;
4568 role.base.ad_disabled = !accessed_dirty;
4569 role.base.guest_mode = true;
4570 role.base.access = ACC_ALL;
4571
4572 /*
4573 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4574 * SMAP variation to denote shadow EPT entries.
4575 */
4576 role.base.cr0_wp = true;
4577 role.base.smap_andnot_wp = true;
4578
4579 role.ext = kvm_calc_mmu_role_ext(vcpu);
4580 role.ext.execonly = execonly;
4581
4582 return role;
4583 }
4584
4585 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4586 bool accessed_dirty, gpa_t new_eptp)
4587 {
4588 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4589 u8 level = vmx_eptp_page_walk_level(new_eptp);
4590 union kvm_mmu_role new_role =
4591 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4592 execonly, level);
4593
4594 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4595
4596 if (new_role.as_u64 == context->mmu_role.as_u64)
4597 return;
4598
4599 context->shadow_root_level = level;
4600
4601 context->nx = true;
4602 context->ept_ad = accessed_dirty;
4603 context->page_fault = ept_page_fault;
4604 context->gva_to_gpa = ept_gva_to_gpa;
4605 context->sync_page = ept_sync_page;
4606 context->invlpg = ept_invlpg;
4607 context->update_pte = ept_update_pte;
4608 context->root_level = level;
4609 context->direct_map = false;
4610 context->mmu_role.as_u64 = new_role.as_u64;
4611
4612 update_permission_bitmask(vcpu, context, true);
4613 update_pkru_bitmask(vcpu, context, true);
4614 update_last_nonleaf_level(vcpu, context);
4615 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4616 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4617 }
4618 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4619
4620 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4621 {
4622 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4623
4624 kvm_init_shadow_mmu(vcpu,
4625 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4626 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4627 vcpu->arch.efer);
4628
4629 context->get_guest_pgd = get_cr3;
4630 context->get_pdptr = kvm_pdptr_read;
4631 context->inject_page_fault = kvm_inject_page_fault;
4632 }
4633
4634 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4635 {
4636 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4637 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4638
4639 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4640 return;
4641
4642 g_context->mmu_role.as_u64 = new_role.as_u64;
4643 g_context->get_guest_pgd = get_cr3;
4644 g_context->get_pdptr = kvm_pdptr_read;
4645 g_context->inject_page_fault = kvm_inject_page_fault;
4646
4647 /*
4648 * L2 page tables are never shadowed, so there is no need to sync
4649 * SPTEs.
4650 */
4651 g_context->invlpg = NULL;
4652
4653 /*
4654 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4655 * L1's nested page tables (e.g. EPT12). The nested translation
4656 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4657 * L2's page tables as the first level of translation and L1's
4658 * nested page tables as the second level of translation. Basically
4659 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4660 */
4661 if (!is_paging(vcpu)) {
4662 g_context->nx = false;
4663 g_context->root_level = 0;
4664 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4665 } else if (is_long_mode(vcpu)) {
4666 g_context->nx = is_nx(vcpu);
4667 g_context->root_level = is_la57_mode(vcpu) ?
4668 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4669 reset_rsvds_bits_mask(vcpu, g_context);
4670 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4671 } else if (is_pae(vcpu)) {
4672 g_context->nx = is_nx(vcpu);
4673 g_context->root_level = PT32E_ROOT_LEVEL;
4674 reset_rsvds_bits_mask(vcpu, g_context);
4675 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4676 } else {
4677 g_context->nx = false;
4678 g_context->root_level = PT32_ROOT_LEVEL;
4679 reset_rsvds_bits_mask(vcpu, g_context);
4680 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4681 }
4682
4683 update_permission_bitmask(vcpu, g_context, false);
4684 update_pkru_bitmask(vcpu, g_context, false);
4685 update_last_nonleaf_level(vcpu, g_context);
4686 }
4687
4688 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4689 {
4690 if (reset_roots) {
4691 uint i;
4692
4693 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4694
4695 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4696 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4697 }
4698
4699 if (mmu_is_nested(vcpu))
4700 init_kvm_nested_mmu(vcpu);
4701 else if (tdp_enabled)
4702 init_kvm_tdp_mmu(vcpu);
4703 else
4704 init_kvm_softmmu(vcpu);
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4707
4708 static union kvm_mmu_page_role
4709 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4710 {
4711 union kvm_mmu_role role;
4712
4713 if (tdp_enabled)
4714 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4715 else
4716 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4717
4718 return role.base;
4719 }
4720
4721 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4722 {
4723 kvm_mmu_unload(vcpu);
4724 kvm_init_mmu(vcpu, true);
4725 }
4726 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4727
4728 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4729 {
4730 int r;
4731
4732 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4733 if (r)
4734 goto out;
4735 r = mmu_alloc_roots(vcpu);
4736 kvm_mmu_sync_roots(vcpu);
4737 if (r)
4738 goto out;
4739 kvm_mmu_load_pgd(vcpu);
4740 kvm_x86_ops.tlb_flush_current(vcpu);
4741 out:
4742 return r;
4743 }
4744 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4745
4746 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4747 {
4748 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4749 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4750 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4751 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4752 }
4753 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4754
4755 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4756 struct kvm_mmu_page *sp, u64 *spte,
4757 const void *new)
4758 {
4759 if (sp->role.level != PG_LEVEL_4K) {
4760 ++vcpu->kvm->stat.mmu_pde_zapped;
4761 return;
4762 }
4763
4764 ++vcpu->kvm->stat.mmu_pte_updated;
4765 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4766 }
4767
4768 static bool need_remote_flush(u64 old, u64 new)
4769 {
4770 if (!is_shadow_present_pte(old))
4771 return false;
4772 if (!is_shadow_present_pte(new))
4773 return true;
4774 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4775 return true;
4776 old ^= shadow_nx_mask;
4777 new ^= shadow_nx_mask;
4778 return (old & ~new & PT64_PERM_MASK) != 0;
4779 }
4780
4781 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4782 int *bytes)
4783 {
4784 u64 gentry = 0;
4785 int r;
4786
4787 /*
4788 * Assume that the pte write on a page table of the same type
4789 * as the current vcpu paging mode since we update the sptes only
4790 * when they have the same mode.
4791 */
4792 if (is_pae(vcpu) && *bytes == 4) {
4793 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4794 *gpa &= ~(gpa_t)7;
4795 *bytes = 8;
4796 }
4797
4798 if (*bytes == 4 || *bytes == 8) {
4799 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4800 if (r)
4801 gentry = 0;
4802 }
4803
4804 return gentry;
4805 }
4806
4807 /*
4808 * If we're seeing too many writes to a page, it may no longer be a page table,
4809 * or we may be forking, in which case it is better to unmap the page.
4810 */
4811 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4812 {
4813 /*
4814 * Skip write-flooding detected for the sp whose level is 1, because
4815 * it can become unsync, then the guest page is not write-protected.
4816 */
4817 if (sp->role.level == PG_LEVEL_4K)
4818 return false;
4819
4820 atomic_inc(&sp->write_flooding_count);
4821 return atomic_read(&sp->write_flooding_count) >= 3;
4822 }
4823
4824 /*
4825 * Misaligned accesses are too much trouble to fix up; also, they usually
4826 * indicate a page is not used as a page table.
4827 */
4828 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4829 int bytes)
4830 {
4831 unsigned offset, pte_size, misaligned;
4832
4833 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4834 gpa, bytes, sp->role.word);
4835
4836 offset = offset_in_page(gpa);
4837 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4838
4839 /*
4840 * Sometimes, the OS only writes the last one bytes to update status
4841 * bits, for example, in linux, andb instruction is used in clear_bit().
4842 */
4843 if (!(offset & (pte_size - 1)) && bytes == 1)
4844 return false;
4845
4846 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4847 misaligned |= bytes < 4;
4848
4849 return misaligned;
4850 }
4851
4852 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4853 {
4854 unsigned page_offset, quadrant;
4855 u64 *spte;
4856 int level;
4857
4858 page_offset = offset_in_page(gpa);
4859 level = sp->role.level;
4860 *nspte = 1;
4861 if (!sp->role.gpte_is_8_bytes) {
4862 page_offset <<= 1; /* 32->64 */
4863 /*
4864 * A 32-bit pde maps 4MB while the shadow pdes map
4865 * only 2MB. So we need to double the offset again
4866 * and zap two pdes instead of one.
4867 */
4868 if (level == PT32_ROOT_LEVEL) {
4869 page_offset &= ~7; /* kill rounding error */
4870 page_offset <<= 1;
4871 *nspte = 2;
4872 }
4873 quadrant = page_offset >> PAGE_SHIFT;
4874 page_offset &= ~PAGE_MASK;
4875 if (quadrant != sp->role.quadrant)
4876 return NULL;
4877 }
4878
4879 spte = &sp->spt[page_offset / sizeof(*spte)];
4880 return spte;
4881 }
4882
4883 /*
4884 * Ignore various flags when determining if a SPTE can be immediately
4885 * overwritten for the current MMU.
4886 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4887 * match the current MMU role, as MMU's level tracks the root level.
4888 * - access: updated based on the new guest PTE
4889 * - quadrant: handled by get_written_sptes()
4890 * - invalid: always false (loop only walks valid shadow pages)
4891 */
4892 static const union kvm_mmu_page_role role_ign = {
4893 .level = 0xf,
4894 .access = 0x7,
4895 .quadrant = 0x3,
4896 .invalid = 0x1,
4897 };
4898
4899 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4900 const u8 *new, int bytes,
4901 struct kvm_page_track_notifier_node *node)
4902 {
4903 gfn_t gfn = gpa >> PAGE_SHIFT;
4904 struct kvm_mmu_page *sp;
4905 LIST_HEAD(invalid_list);
4906 u64 entry, gentry, *spte;
4907 int npte;
4908 bool remote_flush, local_flush;
4909
4910 /*
4911 * If we don't have indirect shadow pages, it means no page is
4912 * write-protected, so we can exit simply.
4913 */
4914 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4915 return;
4916
4917 remote_flush = local_flush = false;
4918
4919 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4920
4921 /*
4922 * No need to care whether allocation memory is successful
4923 * or not since pte prefetch is skiped if it does not have
4924 * enough objects in the cache.
4925 */
4926 mmu_topup_memory_caches(vcpu, true);
4927
4928 spin_lock(&vcpu->kvm->mmu_lock);
4929
4930 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4931
4932 ++vcpu->kvm->stat.mmu_pte_write;
4933 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4934
4935 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4936 if (detect_write_misaligned(sp, gpa, bytes) ||
4937 detect_write_flooding(sp)) {
4938 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4939 ++vcpu->kvm->stat.mmu_flooded;
4940 continue;
4941 }
4942
4943 spte = get_written_sptes(sp, gpa, &npte);
4944 if (!spte)
4945 continue;
4946
4947 local_flush = true;
4948 while (npte--) {
4949 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
4950
4951 entry = *spte;
4952 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
4953 if (gentry &&
4954 !((sp->role.word ^ base_role) & ~role_ign.word) &&
4955 rmap_can_add(vcpu))
4956 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4957 if (need_remote_flush(entry, *spte))
4958 remote_flush = true;
4959 ++spte;
4960 }
4961 }
4962 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4963 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4964 spin_unlock(&vcpu->kvm->mmu_lock);
4965 }
4966
4967 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4968 {
4969 gpa_t gpa;
4970 int r;
4971
4972 if (vcpu->arch.mmu->direct_map)
4973 return 0;
4974
4975 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4976
4977 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4978
4979 return r;
4980 }
4981 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4982
4983 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
4984 void *insn, int insn_len)
4985 {
4986 int r, emulation_type = EMULTYPE_PF;
4987 bool direct = vcpu->arch.mmu->direct_map;
4988
4989 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
4990 return RET_PF_RETRY;
4991
4992 r = RET_PF_INVALID;
4993 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4994 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
4995 if (r == RET_PF_EMULATE)
4996 goto emulate;
4997 }
4998
4999 if (r == RET_PF_INVALID) {
5000 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5001 lower_32_bits(error_code), false);
5002 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5003 return -EIO;
5004 }
5005
5006 if (r < 0)
5007 return r;
5008 if (r != RET_PF_EMULATE)
5009 return 1;
5010
5011 /*
5012 * Before emulating the instruction, check if the error code
5013 * was due to a RO violation while translating the guest page.
5014 * This can occur when using nested virtualization with nested
5015 * paging in both guests. If true, we simply unprotect the page
5016 * and resume the guest.
5017 */
5018 if (vcpu->arch.mmu->direct_map &&
5019 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5020 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5021 return 1;
5022 }
5023
5024 /*
5025 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5026 * optimistically try to just unprotect the page and let the processor
5027 * re-execute the instruction that caused the page fault. Do not allow
5028 * retrying MMIO emulation, as it's not only pointless but could also
5029 * cause us to enter an infinite loop because the processor will keep
5030 * faulting on the non-existent MMIO address. Retrying an instruction
5031 * from a nested guest is also pointless and dangerous as we are only
5032 * explicitly shadowing L1's page tables, i.e. unprotecting something
5033 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5034 */
5035 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5036 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5037 emulate:
5038 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5039 insn_len);
5040 }
5041 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5042
5043 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5044 gva_t gva, hpa_t root_hpa)
5045 {
5046 int i;
5047
5048 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5049 if (mmu != &vcpu->arch.guest_mmu) {
5050 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5051 if (is_noncanonical_address(gva, vcpu))
5052 return;
5053
5054 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5055 }
5056
5057 if (!mmu->invlpg)
5058 return;
5059
5060 if (root_hpa == INVALID_PAGE) {
5061 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5062
5063 /*
5064 * INVLPG is required to invalidate any global mappings for the VA,
5065 * irrespective of PCID. Since it would take us roughly similar amount
5066 * of work to determine whether any of the prev_root mappings of the VA
5067 * is marked global, or to just sync it blindly, so we might as well
5068 * just always sync it.
5069 *
5070 * Mappings not reachable via the current cr3 or the prev_roots will be
5071 * synced when switching to that cr3, so nothing needs to be done here
5072 * for them.
5073 */
5074 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5075 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5076 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5077 } else {
5078 mmu->invlpg(vcpu, gva, root_hpa);
5079 }
5080 }
5081 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5082
5083 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5084 {
5085 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5086 ++vcpu->stat.invlpg;
5087 }
5088 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5089
5090
5091 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5092 {
5093 struct kvm_mmu *mmu = vcpu->arch.mmu;
5094 bool tlb_flush = false;
5095 uint i;
5096
5097 if (pcid == kvm_get_active_pcid(vcpu)) {
5098 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5099 tlb_flush = true;
5100 }
5101
5102 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5103 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5104 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5105 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5106 tlb_flush = true;
5107 }
5108 }
5109
5110 if (tlb_flush)
5111 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5112
5113 ++vcpu->stat.invlpg;
5114
5115 /*
5116 * Mappings not reachable via the current cr3 or the prev_roots will be
5117 * synced when switching to that cr3, so nothing needs to be done here
5118 * for them.
5119 */
5120 }
5121 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5122
5123 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5124 int tdp_huge_page_level)
5125 {
5126 tdp_enabled = enable_tdp;
5127 max_tdp_level = tdp_max_root_level;
5128
5129 /*
5130 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5131 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5132 * the kernel is not. But, KVM never creates a page size greater than
5133 * what is used by the kernel for any given HVA, i.e. the kernel's
5134 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5135 */
5136 if (tdp_enabled)
5137 max_huge_page_level = tdp_huge_page_level;
5138 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5139 max_huge_page_level = PG_LEVEL_1G;
5140 else
5141 max_huge_page_level = PG_LEVEL_2M;
5142 }
5143 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5144
5145 /* The return value indicates if tlb flush on all vcpus is needed. */
5146 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5147
5148 /* The caller should hold mmu-lock before calling this function. */
5149 static __always_inline bool
5150 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5151 slot_level_handler fn, int start_level, int end_level,
5152 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5153 {
5154 struct slot_rmap_walk_iterator iterator;
5155 bool flush = false;
5156
5157 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5158 end_gfn, &iterator) {
5159 if (iterator.rmap)
5160 flush |= fn(kvm, iterator.rmap);
5161
5162 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5163 if (flush && lock_flush_tlb) {
5164 kvm_flush_remote_tlbs_with_address(kvm,
5165 start_gfn,
5166 iterator.gfn - start_gfn + 1);
5167 flush = false;
5168 }
5169 cond_resched_lock(&kvm->mmu_lock);
5170 }
5171 }
5172
5173 if (flush && lock_flush_tlb) {
5174 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5175 end_gfn - start_gfn + 1);
5176 flush = false;
5177 }
5178
5179 return flush;
5180 }
5181
5182 static __always_inline bool
5183 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5184 slot_level_handler fn, int start_level, int end_level,
5185 bool lock_flush_tlb)
5186 {
5187 return slot_handle_level_range(kvm, memslot, fn, start_level,
5188 end_level, memslot->base_gfn,
5189 memslot->base_gfn + memslot->npages - 1,
5190 lock_flush_tlb);
5191 }
5192
5193 static __always_inline bool
5194 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5195 slot_level_handler fn, bool lock_flush_tlb)
5196 {
5197 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5198 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5199 }
5200
5201 static __always_inline bool
5202 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5203 slot_level_handler fn, bool lock_flush_tlb)
5204 {
5205 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5206 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5207 }
5208
5209 static __always_inline bool
5210 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5211 slot_level_handler fn, bool lock_flush_tlb)
5212 {
5213 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5214 PG_LEVEL_4K, lock_flush_tlb);
5215 }
5216
5217 static void free_mmu_pages(struct kvm_mmu *mmu)
5218 {
5219 free_page((unsigned long)mmu->pae_root);
5220 free_page((unsigned long)mmu->lm_root);
5221 }
5222
5223 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5224 {
5225 struct page *page;
5226 int i;
5227
5228 mmu->root_hpa = INVALID_PAGE;
5229 mmu->root_pgd = 0;
5230 mmu->translate_gpa = translate_gpa;
5231 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5232 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5233
5234 /*
5235 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5236 * while the PDP table is a per-vCPU construct that's allocated at MMU
5237 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5238 * x86_64. Therefore we need to allocate the PDP table in the first
5239 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5240 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5241 * skip allocating the PDP table.
5242 */
5243 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5244 return 0;
5245
5246 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5247 if (!page)
5248 return -ENOMEM;
5249
5250 mmu->pae_root = page_address(page);
5251 for (i = 0; i < 4; ++i)
5252 mmu->pae_root[i] = INVALID_PAGE;
5253
5254 return 0;
5255 }
5256
5257 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5258 {
5259 int ret;
5260
5261 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5262 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5263
5264 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5265 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5266
5267 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5268
5269 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5270 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5271
5272 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5273
5274 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5275 if (ret)
5276 return ret;
5277
5278 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5279 if (ret)
5280 goto fail_allocate_root;
5281
5282 return ret;
5283 fail_allocate_root:
5284 free_mmu_pages(&vcpu->arch.guest_mmu);
5285 return ret;
5286 }
5287
5288 #define BATCH_ZAP_PAGES 10
5289 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5290 {
5291 struct kvm_mmu_page *sp, *node;
5292 int nr_zapped, batch = 0;
5293
5294 restart:
5295 list_for_each_entry_safe_reverse(sp, node,
5296 &kvm->arch.active_mmu_pages, link) {
5297 /*
5298 * No obsolete valid page exists before a newly created page
5299 * since active_mmu_pages is a FIFO list.
5300 */
5301 if (!is_obsolete_sp(kvm, sp))
5302 break;
5303
5304 /*
5305 * Invalid pages should never land back on the list of active
5306 * pages. Skip the bogus page, otherwise we'll get stuck in an
5307 * infinite loop if the page gets put back on the list (again).
5308 */
5309 if (WARN_ON(sp->role.invalid))
5310 continue;
5311
5312 /*
5313 * No need to flush the TLB since we're only zapping shadow
5314 * pages with an obsolete generation number and all vCPUS have
5315 * loaded a new root, i.e. the shadow pages being zapped cannot
5316 * be in active use by the guest.
5317 */
5318 if (batch >= BATCH_ZAP_PAGES &&
5319 cond_resched_lock(&kvm->mmu_lock)) {
5320 batch = 0;
5321 goto restart;
5322 }
5323
5324 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5325 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5326 batch += nr_zapped;
5327 goto restart;
5328 }
5329 }
5330
5331 /*
5332 * Trigger a remote TLB flush before freeing the page tables to ensure
5333 * KVM is not in the middle of a lockless shadow page table walk, which
5334 * may reference the pages.
5335 */
5336 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5337 }
5338
5339 /*
5340 * Fast invalidate all shadow pages and use lock-break technique
5341 * to zap obsolete pages.
5342 *
5343 * It's required when memslot is being deleted or VM is being
5344 * destroyed, in these cases, we should ensure that KVM MMU does
5345 * not use any resource of the being-deleted slot or all slots
5346 * after calling the function.
5347 */
5348 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5349 {
5350 lockdep_assert_held(&kvm->slots_lock);
5351
5352 spin_lock(&kvm->mmu_lock);
5353 trace_kvm_mmu_zap_all_fast(kvm);
5354
5355 /*
5356 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5357 * held for the entire duration of zapping obsolete pages, it's
5358 * impossible for there to be multiple invalid generations associated
5359 * with *valid* shadow pages at any given time, i.e. there is exactly
5360 * one valid generation and (at most) one invalid generation.
5361 */
5362 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5363
5364 /*
5365 * Notify all vcpus to reload its shadow page table and flush TLB.
5366 * Then all vcpus will switch to new shadow page table with the new
5367 * mmu_valid_gen.
5368 *
5369 * Note: we need to do this under the protection of mmu_lock,
5370 * otherwise, vcpu would purge shadow page but miss tlb flush.
5371 */
5372 kvm_reload_remote_mmus(kvm);
5373
5374 kvm_zap_obsolete_pages(kvm);
5375
5376 if (kvm->arch.tdp_mmu_enabled)
5377 kvm_tdp_mmu_zap_all(kvm);
5378
5379 spin_unlock(&kvm->mmu_lock);
5380 }
5381
5382 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5383 {
5384 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5385 }
5386
5387 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5388 struct kvm_memory_slot *slot,
5389 struct kvm_page_track_notifier_node *node)
5390 {
5391 kvm_mmu_zap_all_fast(kvm);
5392 }
5393
5394 void kvm_mmu_init_vm(struct kvm *kvm)
5395 {
5396 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5397
5398 kvm_mmu_init_tdp_mmu(kvm);
5399
5400 node->track_write = kvm_mmu_pte_write;
5401 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5402 kvm_page_track_register_notifier(kvm, node);
5403 }
5404
5405 void kvm_mmu_uninit_vm(struct kvm *kvm)
5406 {
5407 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5408
5409 kvm_page_track_unregister_notifier(kvm, node);
5410
5411 kvm_mmu_uninit_tdp_mmu(kvm);
5412 }
5413
5414 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5415 {
5416 struct kvm_memslots *slots;
5417 struct kvm_memory_slot *memslot;
5418 int i;
5419 bool flush;
5420
5421 spin_lock(&kvm->mmu_lock);
5422 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5423 slots = __kvm_memslots(kvm, i);
5424 kvm_for_each_memslot(memslot, slots) {
5425 gfn_t start, end;
5426
5427 start = max(gfn_start, memslot->base_gfn);
5428 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5429 if (start >= end)
5430 continue;
5431
5432 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5433 PG_LEVEL_4K,
5434 KVM_MAX_HUGEPAGE_LEVEL,
5435 start, end - 1, true);
5436 }
5437 }
5438
5439 if (kvm->arch.tdp_mmu_enabled) {
5440 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5441 if (flush)
5442 kvm_flush_remote_tlbs(kvm);
5443 }
5444
5445 spin_unlock(&kvm->mmu_lock);
5446 }
5447
5448 static bool slot_rmap_write_protect(struct kvm *kvm,
5449 struct kvm_rmap_head *rmap_head)
5450 {
5451 return __rmap_write_protect(kvm, rmap_head, false);
5452 }
5453
5454 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5455 struct kvm_memory_slot *memslot,
5456 int start_level)
5457 {
5458 bool flush;
5459
5460 spin_lock(&kvm->mmu_lock);
5461 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5462 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5463 spin_unlock(&kvm->mmu_lock);
5464
5465 /*
5466 * We can flush all the TLBs out of the mmu lock without TLB
5467 * corruption since we just change the spte from writable to
5468 * readonly so that we only need to care the case of changing
5469 * spte from present to present (changing the spte from present
5470 * to nonpresent will flush all the TLBs immediately), in other
5471 * words, the only case we care is mmu_spte_update() where we
5472 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5473 * instead of PT_WRITABLE_MASK, that means it does not depend
5474 * on PT_WRITABLE_MASK anymore.
5475 */
5476 if (flush)
5477 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5478 }
5479
5480 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5481 struct kvm_rmap_head *rmap_head)
5482 {
5483 u64 *sptep;
5484 struct rmap_iterator iter;
5485 int need_tlb_flush = 0;
5486 kvm_pfn_t pfn;
5487 struct kvm_mmu_page *sp;
5488
5489 restart:
5490 for_each_rmap_spte(rmap_head, &iter, sptep) {
5491 sp = sptep_to_sp(sptep);
5492 pfn = spte_to_pfn(*sptep);
5493
5494 /*
5495 * We cannot do huge page mapping for indirect shadow pages,
5496 * which are found on the last rmap (level = 1) when not using
5497 * tdp; such shadow pages are synced with the page table in
5498 * the guest, and the guest page table is using 4K page size
5499 * mapping if the indirect sp has level = 1.
5500 */
5501 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5502 (kvm_is_zone_device_pfn(pfn) ||
5503 PageCompound(pfn_to_page(pfn)))) {
5504 pte_list_remove(rmap_head, sptep);
5505
5506 if (kvm_available_flush_tlb_with_range())
5507 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5508 KVM_PAGES_PER_HPAGE(sp->role.level));
5509 else
5510 need_tlb_flush = 1;
5511
5512 goto restart;
5513 }
5514 }
5515
5516 return need_tlb_flush;
5517 }
5518
5519 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5520 const struct kvm_memory_slot *memslot)
5521 {
5522 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5523 spin_lock(&kvm->mmu_lock);
5524 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5525 kvm_mmu_zap_collapsible_spte, true);
5526 spin_unlock(&kvm->mmu_lock);
5527 }
5528
5529 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5530 struct kvm_memory_slot *memslot)
5531 {
5532 /*
5533 * All current use cases for flushing the TLBs for a specific memslot
5534 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5535 * The interaction between the various operations on memslot must be
5536 * serialized by slots_locks to ensure the TLB flush from one operation
5537 * is observed by any other operation on the same memslot.
5538 */
5539 lockdep_assert_held(&kvm->slots_lock);
5540 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5541 memslot->npages);
5542 }
5543
5544 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5545 struct kvm_memory_slot *memslot)
5546 {
5547 bool flush;
5548
5549 spin_lock(&kvm->mmu_lock);
5550 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5551 spin_unlock(&kvm->mmu_lock);
5552
5553 /*
5554 * It's also safe to flush TLBs out of mmu lock here as currently this
5555 * function is only used for dirty logging, in which case flushing TLB
5556 * out of mmu lock also guarantees no dirty pages will be lost in
5557 * dirty_bitmap.
5558 */
5559 if (flush)
5560 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5561 }
5562 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5563
5564 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5565 struct kvm_memory_slot *memslot)
5566 {
5567 bool flush;
5568
5569 spin_lock(&kvm->mmu_lock);
5570 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5571 false);
5572 spin_unlock(&kvm->mmu_lock);
5573
5574 if (flush)
5575 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5576 }
5577 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5578
5579 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5580 struct kvm_memory_slot *memslot)
5581 {
5582 bool flush;
5583
5584 spin_lock(&kvm->mmu_lock);
5585 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5586 spin_unlock(&kvm->mmu_lock);
5587
5588 if (flush)
5589 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5590 }
5591 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5592
5593 void kvm_mmu_zap_all(struct kvm *kvm)
5594 {
5595 struct kvm_mmu_page *sp, *node;
5596 LIST_HEAD(invalid_list);
5597 int ign;
5598
5599 spin_lock(&kvm->mmu_lock);
5600 restart:
5601 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5602 if (WARN_ON(sp->role.invalid))
5603 continue;
5604 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5605 goto restart;
5606 if (cond_resched_lock(&kvm->mmu_lock))
5607 goto restart;
5608 }
5609
5610 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5611
5612 if (kvm->arch.tdp_mmu_enabled)
5613 kvm_tdp_mmu_zap_all(kvm);
5614
5615 spin_unlock(&kvm->mmu_lock);
5616 }
5617
5618 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5619 {
5620 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5621
5622 gen &= MMIO_SPTE_GEN_MASK;
5623
5624 /*
5625 * Generation numbers are incremented in multiples of the number of
5626 * address spaces in order to provide unique generations across all
5627 * address spaces. Strip what is effectively the address space
5628 * modifier prior to checking for a wrap of the MMIO generation so
5629 * that a wrap in any address space is detected.
5630 */
5631 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5632
5633 /*
5634 * The very rare case: if the MMIO generation number has wrapped,
5635 * zap all shadow pages.
5636 */
5637 if (unlikely(gen == 0)) {
5638 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5639 kvm_mmu_zap_all_fast(kvm);
5640 }
5641 }
5642
5643 static unsigned long
5644 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5645 {
5646 struct kvm *kvm;
5647 int nr_to_scan = sc->nr_to_scan;
5648 unsigned long freed = 0;
5649
5650 mutex_lock(&kvm_lock);
5651
5652 list_for_each_entry(kvm, &vm_list, vm_list) {
5653 int idx;
5654 LIST_HEAD(invalid_list);
5655
5656 /*
5657 * Never scan more than sc->nr_to_scan VM instances.
5658 * Will not hit this condition practically since we do not try
5659 * to shrink more than one VM and it is very unlikely to see
5660 * !n_used_mmu_pages so many times.
5661 */
5662 if (!nr_to_scan--)
5663 break;
5664 /*
5665 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5666 * here. We may skip a VM instance errorneosly, but we do not
5667 * want to shrink a VM that only started to populate its MMU
5668 * anyway.
5669 */
5670 if (!kvm->arch.n_used_mmu_pages &&
5671 !kvm_has_zapped_obsolete_pages(kvm))
5672 continue;
5673
5674 idx = srcu_read_lock(&kvm->srcu);
5675 spin_lock(&kvm->mmu_lock);
5676
5677 if (kvm_has_zapped_obsolete_pages(kvm)) {
5678 kvm_mmu_commit_zap_page(kvm,
5679 &kvm->arch.zapped_obsolete_pages);
5680 goto unlock;
5681 }
5682
5683 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5684
5685 unlock:
5686 spin_unlock(&kvm->mmu_lock);
5687 srcu_read_unlock(&kvm->srcu, idx);
5688
5689 /*
5690 * unfair on small ones
5691 * per-vm shrinkers cry out
5692 * sadness comes quickly
5693 */
5694 list_move_tail(&kvm->vm_list, &vm_list);
5695 break;
5696 }
5697
5698 mutex_unlock(&kvm_lock);
5699 return freed;
5700 }
5701
5702 static unsigned long
5703 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5704 {
5705 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5706 }
5707
5708 static struct shrinker mmu_shrinker = {
5709 .count_objects = mmu_shrink_count,
5710 .scan_objects = mmu_shrink_scan,
5711 .seeks = DEFAULT_SEEKS * 10,
5712 };
5713
5714 static void mmu_destroy_caches(void)
5715 {
5716 kmem_cache_destroy(pte_list_desc_cache);
5717 kmem_cache_destroy(mmu_page_header_cache);
5718 }
5719
5720 static void kvm_set_mmio_spte_mask(void)
5721 {
5722 u64 mask;
5723
5724 /*
5725 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5726 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5727 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5728 * 52-bit physical addresses then there are no reserved PA bits in the
5729 * PTEs and so the reserved PA approach must be disabled.
5730 */
5731 if (shadow_phys_bits < 52)
5732 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5733 else
5734 mask = 0;
5735
5736 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5737 }
5738
5739 static bool get_nx_auto_mode(void)
5740 {
5741 /* Return true when CPU has the bug, and mitigations are ON */
5742 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5743 }
5744
5745 static void __set_nx_huge_pages(bool val)
5746 {
5747 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5748 }
5749
5750 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5751 {
5752 bool old_val = nx_huge_pages;
5753 bool new_val;
5754
5755 /* In "auto" mode deploy workaround only if CPU has the bug. */
5756 if (sysfs_streq(val, "off"))
5757 new_val = 0;
5758 else if (sysfs_streq(val, "force"))
5759 new_val = 1;
5760 else if (sysfs_streq(val, "auto"))
5761 new_val = get_nx_auto_mode();
5762 else if (strtobool(val, &new_val) < 0)
5763 return -EINVAL;
5764
5765 __set_nx_huge_pages(new_val);
5766
5767 if (new_val != old_val) {
5768 struct kvm *kvm;
5769
5770 mutex_lock(&kvm_lock);
5771
5772 list_for_each_entry(kvm, &vm_list, vm_list) {
5773 mutex_lock(&kvm->slots_lock);
5774 kvm_mmu_zap_all_fast(kvm);
5775 mutex_unlock(&kvm->slots_lock);
5776
5777 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5778 }
5779 mutex_unlock(&kvm_lock);
5780 }
5781
5782 return 0;
5783 }
5784
5785 int kvm_mmu_module_init(void)
5786 {
5787 int ret = -ENOMEM;
5788
5789 if (nx_huge_pages == -1)
5790 __set_nx_huge_pages(get_nx_auto_mode());
5791
5792 /*
5793 * MMU roles use union aliasing which is, generally speaking, an
5794 * undefined behavior. However, we supposedly know how compilers behave
5795 * and the current status quo is unlikely to change. Guardians below are
5796 * supposed to let us know if the assumption becomes false.
5797 */
5798 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5799 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5800 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5801
5802 kvm_mmu_reset_all_pte_masks();
5803
5804 kvm_set_mmio_spte_mask();
5805
5806 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5807 sizeof(struct pte_list_desc),
5808 0, SLAB_ACCOUNT, NULL);
5809 if (!pte_list_desc_cache)
5810 goto out;
5811
5812 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5813 sizeof(struct kvm_mmu_page),
5814 0, SLAB_ACCOUNT, NULL);
5815 if (!mmu_page_header_cache)
5816 goto out;
5817
5818 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5819 goto out;
5820
5821 ret = register_shrinker(&mmu_shrinker);
5822 if (ret)
5823 goto out;
5824
5825 return 0;
5826
5827 out:
5828 mmu_destroy_caches();
5829 return ret;
5830 }
5831
5832 /*
5833 * Calculate mmu pages needed for kvm.
5834 */
5835 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5836 {
5837 unsigned long nr_mmu_pages;
5838 unsigned long nr_pages = 0;
5839 struct kvm_memslots *slots;
5840 struct kvm_memory_slot *memslot;
5841 int i;
5842
5843 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5844 slots = __kvm_memslots(kvm, i);
5845
5846 kvm_for_each_memslot(memslot, slots)
5847 nr_pages += memslot->npages;
5848 }
5849
5850 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5851 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5852
5853 return nr_mmu_pages;
5854 }
5855
5856 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5857 {
5858 kvm_mmu_unload(vcpu);
5859 free_mmu_pages(&vcpu->arch.root_mmu);
5860 free_mmu_pages(&vcpu->arch.guest_mmu);
5861 mmu_free_memory_caches(vcpu);
5862 }
5863
5864 void kvm_mmu_module_exit(void)
5865 {
5866 mmu_destroy_caches();
5867 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5868 unregister_shrinker(&mmu_shrinker);
5869 mmu_audit_disable();
5870 }
5871
5872 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5873 {
5874 unsigned int old_val;
5875 int err;
5876
5877 old_val = nx_huge_pages_recovery_ratio;
5878 err = param_set_uint(val, kp);
5879 if (err)
5880 return err;
5881
5882 if (READ_ONCE(nx_huge_pages) &&
5883 !old_val && nx_huge_pages_recovery_ratio) {
5884 struct kvm *kvm;
5885
5886 mutex_lock(&kvm_lock);
5887
5888 list_for_each_entry(kvm, &vm_list, vm_list)
5889 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5890
5891 mutex_unlock(&kvm_lock);
5892 }
5893
5894 return err;
5895 }
5896
5897 static void kvm_recover_nx_lpages(struct kvm *kvm)
5898 {
5899 int rcu_idx;
5900 struct kvm_mmu_page *sp;
5901 unsigned int ratio;
5902 LIST_HEAD(invalid_list);
5903 ulong to_zap;
5904
5905 rcu_idx = srcu_read_lock(&kvm->srcu);
5906 spin_lock(&kvm->mmu_lock);
5907
5908 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5909 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5910 for ( ; to_zap; --to_zap) {
5911 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5912 break;
5913
5914 /*
5915 * We use a separate list instead of just using active_mmu_pages
5916 * because the number of lpage_disallowed pages is expected to
5917 * be relatively small compared to the total.
5918 */
5919 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5920 struct kvm_mmu_page,
5921 lpage_disallowed_link);
5922 WARN_ON_ONCE(!sp->lpage_disallowed);
5923 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5924 WARN_ON_ONCE(sp->lpage_disallowed);
5925
5926 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5927 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5928 cond_resched_lock(&kvm->mmu_lock);
5929 }
5930 }
5931 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5932
5933 spin_unlock(&kvm->mmu_lock);
5934 srcu_read_unlock(&kvm->srcu, rcu_idx);
5935 }
5936
5937 static long get_nx_lpage_recovery_timeout(u64 start_time)
5938 {
5939 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5940 ? start_time + 60 * HZ - get_jiffies_64()
5941 : MAX_SCHEDULE_TIMEOUT;
5942 }
5943
5944 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5945 {
5946 u64 start_time;
5947 long remaining_time;
5948
5949 while (true) {
5950 start_time = get_jiffies_64();
5951 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5952
5953 set_current_state(TASK_INTERRUPTIBLE);
5954 while (!kthread_should_stop() && remaining_time > 0) {
5955 schedule_timeout(remaining_time);
5956 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5957 set_current_state(TASK_INTERRUPTIBLE);
5958 }
5959
5960 set_current_state(TASK_RUNNING);
5961
5962 if (kthread_should_stop())
5963 return 0;
5964
5965 kvm_recover_nx_lpages(kvm);
5966 }
5967 }
5968
5969 int kvm_mmu_post_init_vm(struct kvm *kvm)
5970 {
5971 int err;
5972
5973 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5974 "kvm-nx-lpage-recovery",
5975 &kvm->arch.nx_lpage_recovery_thread);
5976 if (!err)
5977 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5978
5979 return err;
5980 }
5981
5982 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5983 {
5984 if (kvm->arch.nx_lpage_recovery_thread)
5985 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5986 }