]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Pass parameter flush as false in kvm_tdp_mmu_zap_collapsible_sptes()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72 .set = set_nx_huge_pages,
73 .get = param_get_bool,
74 };
75
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 .set = set_nx_huge_pages_recovery_ratio,
78 .get = param_get_uint,
79 };
80
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84 &nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89
90 /*
91 * When setting this variable to true it enables Two-Dimensional-Paging
92 * where the hardware walks 2 page tables:
93 * 1. the guest-virtual to guest-physical
94 * 2. while doing 1. it walks guest-physical to host-physical
95 * If the hardware supports that we don't need to do shadow paging.
96 */
97 bool tdp_enabled = false;
98
99 static int max_huge_page_level __read_mostly;
100 static int tdp_root_level __read_mostly;
101 static int max_tdp_level __read_mostly;
102
103 enum {
104 AUDIT_PRE_PAGE_FAULT,
105 AUDIT_POST_PAGE_FAULT,
106 AUDIT_PRE_PTE_WRITE,
107 AUDIT_POST_PTE_WRITE,
108 AUDIT_PRE_SYNC,
109 AUDIT_POST_SYNC
110 };
111
112 #ifdef MMU_DEBUG
113 bool dbg = 0;
114 module_param(dbg, bool, 0644);
115 #endif
116
117 #define PTE_PREFETCH_NUM 8
118
119 #define PT32_LEVEL_BITS 10
120
121 #define PT32_LEVEL_SHIFT(level) \
122 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123
124 #define PT32_LVL_OFFSET_MASK(level) \
125 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
127
128 #define PT32_INDEX(address, level)\
129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137 * PT32_LEVEL_BITS))) - 1))
138
139 #include <trace/events/kvm.h>
140
141 /* make pte_list_desc fit well in cache lines */
142 #define PTE_LIST_EXT 14
143
144 /*
145 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
146 * at the start; then accessing it will only use one single cacheline for
147 * either full (entries==PTE_LIST_EXT) case or entries<=6.
148 */
149 struct pte_list_desc {
150 struct pte_list_desc *more;
151 /*
152 * Stores number of entries stored in the pte_list_desc. No need to be
153 * u64 but just for easier alignment. When PTE_LIST_EXT, means full.
154 */
155 u64 spte_count;
156 u64 *sptes[PTE_LIST_EXT];
157 };
158
159 struct kvm_shadow_walk_iterator {
160 u64 addr;
161 hpa_t shadow_addr;
162 u64 *sptep;
163 int level;
164 unsigned index;
165 };
166
167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
168 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
169 (_root), (_addr)); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)); \
176 shadow_walk_next(&(_walker)))
177
178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
179 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
180 shadow_walk_okay(&(_walker)) && \
181 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
182 __shadow_walk_next(&(_walker), spte))
183
184 static struct kmem_cache *pte_list_desc_cache;
185 struct kmem_cache *mmu_page_header_cache;
186 static struct percpu_counter kvm_total_used_mmu_pages;
187
188 static void mmu_spte_set(u64 *sptep, u64 spte);
189 static union kvm_mmu_page_role
190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191
192 struct kvm_mmu_role_regs {
193 const unsigned long cr0;
194 const unsigned long cr4;
195 const u64 efer;
196 };
197
198 #define CREATE_TRACE_POINTS
199 #include "mmutrace.h"
200
201 /*
202 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
203 * reading from the role_regs. Once the mmu_role is constructed, it becomes
204 * the single source of truth for the MMU's state.
205 */
206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 { \
209 return !!(regs->reg & flag); \
210 }
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
221
222 /*
223 * The MMU itself (with a valid role) is the single source of truth for the
224 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
225 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
226 * and the vCPU may be incorrect/irrelevant.
227 */
228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
230 { \
231 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \
232 }
233 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg);
234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
235 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
236 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae);
237 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
238 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
239 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
240 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
242
243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
244 {
245 struct kvm_mmu_role_regs regs = {
246 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
247 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
248 .efer = vcpu->arch.efer,
249 };
250
251 return regs;
252 }
253
254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
255 {
256 if (!____is_cr0_pg(regs))
257 return 0;
258 else if (____is_efer_lma(regs))
259 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
260 PT64_ROOT_4LEVEL;
261 else if (____is_cr4_pae(regs))
262 return PT32E_ROOT_LEVEL;
263 else
264 return PT32_ROOT_LEVEL;
265 }
266
267 static inline bool kvm_available_flush_tlb_with_range(void)
268 {
269 return kvm_x86_ops.tlb_remote_flush_with_range;
270 }
271
272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
273 struct kvm_tlb_range *range)
274 {
275 int ret = -ENOTSUPP;
276
277 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279
280 if (ret)
281 kvm_flush_remote_tlbs(kvm);
282 }
283
284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285 u64 start_gfn, u64 pages)
286 {
287 struct kvm_tlb_range range;
288
289 range.start_gfn = start_gfn;
290 range.pages = pages;
291
292 kvm_flush_remote_tlbs_with_range(kvm, &range);
293 }
294
295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
296 unsigned int access)
297 {
298 u64 spte = make_mmio_spte(vcpu, gfn, access);
299
300 trace_mark_mmio_spte(sptep, gfn, spte);
301 mmu_spte_set(sptep, spte);
302 }
303
304 static gfn_t get_mmio_spte_gfn(u64 spte)
305 {
306 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307
308 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309 & shadow_nonpresent_or_rsvd_mask;
310
311 return gpa >> PAGE_SHIFT;
312 }
313
314 static unsigned get_mmio_spte_access(u64 spte)
315 {
316 return spte & shadow_mmio_access_mask;
317 }
318
319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320 {
321 u64 kvm_gen, spte_gen, gen;
322
323 gen = kvm_vcpu_memslots(vcpu)->generation;
324 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
325 return false;
326
327 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328 spte_gen = get_mmio_spte_generation(spte);
329
330 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
331 return likely(kvm_gen == spte_gen);
332 }
333
334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
335 struct x86_exception *exception)
336 {
337 return gpa;
338 }
339
340 static int is_cpuid_PSE36(void)
341 {
342 return 1;
343 }
344
345 static gfn_t pse36_gfn_delta(u32 gpte)
346 {
347 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
348
349 return (gpte & PT32_DIR_PSE36_MASK) << shift;
350 }
351
352 #ifdef CONFIG_X86_64
353 static void __set_spte(u64 *sptep, u64 spte)
354 {
355 WRITE_ONCE(*sptep, spte);
356 }
357
358 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359 {
360 WRITE_ONCE(*sptep, spte);
361 }
362
363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365 return xchg(sptep, spte);
366 }
367
368 static u64 __get_spte_lockless(u64 *sptep)
369 {
370 return READ_ONCE(*sptep);
371 }
372 #else
373 union split_spte {
374 struct {
375 u32 spte_low;
376 u32 spte_high;
377 };
378 u64 spte;
379 };
380
381 static void count_spte_clear(u64 *sptep, u64 spte)
382 {
383 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
384
385 if (is_shadow_present_pte(spte))
386 return;
387
388 /* Ensure the spte is completely set before we increase the count */
389 smp_wmb();
390 sp->clear_spte_count++;
391 }
392
393 static void __set_spte(u64 *sptep, u64 spte)
394 {
395 union split_spte *ssptep, sspte;
396
397 ssptep = (union split_spte *)sptep;
398 sspte = (union split_spte)spte;
399
400 ssptep->spte_high = sspte.spte_high;
401
402 /*
403 * If we map the spte from nonpresent to present, We should store
404 * the high bits firstly, then set present bit, so cpu can not
405 * fetch this spte while we are setting the spte.
406 */
407 smp_wmb();
408
409 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 }
411
412 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
413 {
414 union split_spte *ssptep, sspte;
415
416 ssptep = (union split_spte *)sptep;
417 sspte = (union split_spte)spte;
418
419 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420
421 /*
422 * If we map the spte from present to nonpresent, we should clear
423 * present bit firstly to avoid vcpu fetch the old high bits.
424 */
425 smp_wmb();
426
427 ssptep->spte_high = sspte.spte_high;
428 count_spte_clear(sptep, spte);
429 }
430
431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
432 {
433 union split_spte *ssptep, sspte, orig;
434
435 ssptep = (union split_spte *)sptep;
436 sspte = (union split_spte)spte;
437
438 /* xchg acts as a barrier before the setting of the high bits */
439 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440 orig.spte_high = ssptep->spte_high;
441 ssptep->spte_high = sspte.spte_high;
442 count_spte_clear(sptep, spte);
443
444 return orig.spte;
445 }
446
447 /*
448 * The idea using the light way get the spte on x86_32 guest is from
449 * gup_get_pte (mm/gup.c).
450 *
451 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
452 * coalesces them and we are running out of the MMU lock. Therefore
453 * we need to protect against in-progress updates of the spte.
454 *
455 * Reading the spte while an update is in progress may get the old value
456 * for the high part of the spte. The race is fine for a present->non-present
457 * change (because the high part of the spte is ignored for non-present spte),
458 * but for a present->present change we must reread the spte.
459 *
460 * All such changes are done in two steps (present->non-present and
461 * non-present->present), hence it is enough to count the number of
462 * present->non-present updates: if it changed while reading the spte,
463 * we might have hit the race. This is done using clear_spte_count.
464 */
465 static u64 __get_spte_lockless(u64 *sptep)
466 {
467 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
468 union split_spte spte, *orig = (union split_spte *)sptep;
469 int count;
470
471 retry:
472 count = sp->clear_spte_count;
473 smp_rmb();
474
475 spte.spte_low = orig->spte_low;
476 smp_rmb();
477
478 spte.spte_high = orig->spte_high;
479 smp_rmb();
480
481 if (unlikely(spte.spte_low != orig->spte_low ||
482 count != sp->clear_spte_count))
483 goto retry;
484
485 return spte.spte;
486 }
487 #endif
488
489 static bool spte_has_volatile_bits(u64 spte)
490 {
491 if (!is_shadow_present_pte(spte))
492 return false;
493
494 /*
495 * Always atomically update spte if it can be updated
496 * out of mmu-lock, it can ensure dirty bit is not lost,
497 * also, it can help us to get a stable is_writable_pte()
498 * to ensure tlb flush is not missed.
499 */
500 if (spte_can_locklessly_be_made_writable(spte) ||
501 is_access_track_spte(spte))
502 return true;
503
504 if (spte_ad_enabled(spte)) {
505 if ((spte & shadow_accessed_mask) == 0 ||
506 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
507 return true;
508 }
509
510 return false;
511 }
512
513 /* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523 }
524
525 /*
526 * Update the SPTE (excluding the PFN), but do not track changes in its
527 * accessed/dirty status.
528 */
529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530 {
531 u64 old_spte = *sptep;
532
533 WARN_ON(!is_shadow_present_pte(new_spte));
534
535 if (!is_shadow_present_pte(old_spte)) {
536 mmu_spte_set(sptep, new_spte);
537 return old_spte;
538 }
539
540 if (!spte_has_volatile_bits(old_spte))
541 __update_clear_spte_fast(sptep, new_spte);
542 else
543 old_spte = __update_clear_spte_slow(sptep, new_spte);
544
545 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
546
547 return old_spte;
548 }
549
550 /* Rules for using mmu_spte_update:
551 * Update the state bits, it means the mapped pfn is not changed.
552 *
553 * Whenever we overwrite a writable spte with a read-only one we
554 * should flush remote TLBs. Otherwise rmap_write_protect
555 * will find a read-only spte, even though the writable spte
556 * might be cached on a CPU's TLB, the return value indicates this
557 * case.
558 *
559 * Returns true if the TLB needs to be flushed
560 */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563 bool flush = false;
564 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
565
566 if (!is_shadow_present_pte(old_spte))
567 return false;
568
569 /*
570 * For the spte updated out of mmu-lock is safe, since
571 * we always atomically update it, see the comments in
572 * spte_has_volatile_bits().
573 */
574 if (spte_can_locklessly_be_made_writable(old_spte) &&
575 !is_writable_pte(new_spte))
576 flush = true;
577
578 /*
579 * Flush TLB when accessed/dirty states are changed in the page tables,
580 * to guarantee consistency between TLB and page tables.
581 */
582
583 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
584 flush = true;
585 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586 }
587
588 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
589 flush = true;
590 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591 }
592
593 return flush;
594 }
595
596 /*
597 * Rules for using mmu_spte_clear_track_bits:
598 * It sets the sptep from present to nonpresent, and track the
599 * state bits, it is used to clear the last level sptep.
600 * Returns the old PTE.
601 */
602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603 {
604 kvm_pfn_t pfn;
605 u64 old_spte = *sptep;
606 int level = sptep_to_sp(sptep)->role.level;
607
608 if (!spte_has_volatile_bits(old_spte))
609 __update_clear_spte_fast(sptep, 0ull);
610 else
611 old_spte = __update_clear_spte_slow(sptep, 0ull);
612
613 if (!is_shadow_present_pte(old_spte))
614 return old_spte;
615
616 kvm_update_page_stats(kvm, level, -1);
617
618 pfn = spte_to_pfn(old_spte);
619
620 /*
621 * KVM does not hold the refcount of the page used by
622 * kvm mmu, before reclaiming the page, we should
623 * unmap it from mmu first.
624 */
625 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626
627 if (is_accessed_spte(old_spte))
628 kvm_set_pfn_accessed(pfn);
629
630 if (is_dirty_spte(old_spte))
631 kvm_set_pfn_dirty(pfn);
632
633 return old_spte;
634 }
635
636 /*
637 * Rules for using mmu_spte_clear_no_track:
638 * Directly clear spte without caring the state bits of sptep,
639 * it is used to set the upper level spte.
640 */
641 static void mmu_spte_clear_no_track(u64 *sptep)
642 {
643 __update_clear_spte_fast(sptep, 0ull);
644 }
645
646 static u64 mmu_spte_get_lockless(u64 *sptep)
647 {
648 return __get_spte_lockless(sptep);
649 }
650
651 /* Restore an acc-track PTE back to a regular PTE */
652 static u64 restore_acc_track_spte(u64 spte)
653 {
654 u64 new_spte = spte;
655 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
656 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657
658 WARN_ON_ONCE(spte_ad_enabled(spte));
659 WARN_ON_ONCE(!is_access_track_spte(spte));
660
661 new_spte &= ~shadow_acc_track_mask;
662 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
663 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664 new_spte |= saved_bits;
665
666 return new_spte;
667 }
668
669 /* Returns the Accessed status of the PTE and resets it at the same time. */
670 static bool mmu_spte_age(u64 *sptep)
671 {
672 u64 spte = mmu_spte_get_lockless(sptep);
673
674 if (!is_accessed_spte(spte))
675 return false;
676
677 if (spte_ad_enabled(spte)) {
678 clear_bit((ffs(shadow_accessed_mask) - 1),
679 (unsigned long *)sptep);
680 } else {
681 /*
682 * Capture the dirty status of the page, so that it doesn't get
683 * lost when the SPTE is marked for access tracking.
684 */
685 if (is_writable_pte(spte))
686 kvm_set_pfn_dirty(spte_to_pfn(spte));
687
688 spte = mark_spte_for_access_track(spte);
689 mmu_spte_update_no_track(sptep, spte);
690 }
691
692 return true;
693 }
694
695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
696 {
697 if (is_tdp_mmu(vcpu->arch.mmu)) {
698 kvm_tdp_mmu_walk_lockless_begin();
699 } else {
700 /*
701 * Prevent page table teardown by making any free-er wait during
702 * kvm_flush_remote_tlbs() IPI to all active vcpus.
703 */
704 local_irq_disable();
705
706 /*
707 * Make sure a following spte read is not reordered ahead of the write
708 * to vcpu->mode.
709 */
710 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
711 }
712 }
713
714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
715 {
716 if (is_tdp_mmu(vcpu->arch.mmu)) {
717 kvm_tdp_mmu_walk_lockless_end();
718 } else {
719 /*
720 * Make sure the write to vcpu->mode is not reordered in front of
721 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
722 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
723 */
724 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
725 local_irq_enable();
726 }
727 }
728
729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730 {
731 int r;
732
733 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736 if (r)
737 return r;
738 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
739 PT64_ROOT_MAX_LEVEL);
740 if (r)
741 return r;
742 if (maybe_indirect) {
743 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
744 PT64_ROOT_MAX_LEVEL);
745 if (r)
746 return r;
747 }
748 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
749 PT64_ROOT_MAX_LEVEL);
750 }
751
752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
753 {
754 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
755 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
756 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
757 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 }
759
760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761 {
762 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 }
764
765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766 {
767 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 }
769
770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
771 {
772 if (!sp->role.direct)
773 return sp->gfns[index];
774
775 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
776 }
777
778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
779 {
780 if (!sp->role.direct) {
781 sp->gfns[index] = gfn;
782 return;
783 }
784
785 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
786 pr_err_ratelimited("gfn mismatch under direct page %llx "
787 "(expected %llx, got %llx)\n",
788 sp->gfn,
789 kvm_mmu_page_get_gfn(sp, index), gfn);
790 }
791
792 /*
793 * Return the pointer to the large page information for a given gfn,
794 * handling slots that are not large page aligned.
795 */
796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797 const struct kvm_memory_slot *slot, int level)
798 {
799 unsigned long idx;
800
801 idx = gfn_to_index(gfn, slot->base_gfn, level);
802 return &slot->arch.lpage_info[level - 2][idx];
803 }
804
805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806 gfn_t gfn, int count)
807 {
808 struct kvm_lpage_info *linfo;
809 int i;
810
811 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812 linfo = lpage_info_slot(gfn, slot, i);
813 linfo->disallow_lpage += count;
814 WARN_ON(linfo->disallow_lpage < 0);
815 }
816 }
817
818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 {
820 update_gfn_disallow_lpage_count(slot, gfn, 1);
821 }
822
823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 {
825 update_gfn_disallow_lpage_count(slot, gfn, -1);
826 }
827
828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
829 {
830 struct kvm_memslots *slots;
831 struct kvm_memory_slot *slot;
832 gfn_t gfn;
833
834 kvm->arch.indirect_shadow_pages++;
835 gfn = sp->gfn;
836 slots = kvm_memslots_for_spte_role(kvm, sp->role);
837 slot = __gfn_to_memslot(slots, gfn);
838
839 /* the non-leaf shadow pages are keeping readonly. */
840 if (sp->role.level > PG_LEVEL_4K)
841 return kvm_slot_page_track_add_page(kvm, slot, gfn,
842 KVM_PAGE_TRACK_WRITE);
843
844 kvm_mmu_gfn_disallow_lpage(slot, gfn);
845 }
846
847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
848 {
849 if (sp->lpage_disallowed)
850 return;
851
852 ++kvm->stat.nx_lpage_splits;
853 list_add_tail(&sp->lpage_disallowed_link,
854 &kvm->arch.lpage_disallowed_mmu_pages);
855 sp->lpage_disallowed = true;
856 }
857
858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
859 {
860 struct kvm_memslots *slots;
861 struct kvm_memory_slot *slot;
862 gfn_t gfn;
863
864 kvm->arch.indirect_shadow_pages--;
865 gfn = sp->gfn;
866 slots = kvm_memslots_for_spte_role(kvm, sp->role);
867 slot = __gfn_to_memslot(slots, gfn);
868 if (sp->role.level > PG_LEVEL_4K)
869 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
870 KVM_PAGE_TRACK_WRITE);
871
872 kvm_mmu_gfn_allow_lpage(slot, gfn);
873 }
874
875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877 --kvm->stat.nx_lpage_splits;
878 sp->lpage_disallowed = false;
879 list_del(&sp->lpage_disallowed_link);
880 }
881
882 static struct kvm_memory_slot *
883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
884 bool no_dirty_log)
885 {
886 struct kvm_memory_slot *slot;
887
888 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
890 return NULL;
891 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892 return NULL;
893
894 return slot;
895 }
896
897 /*
898 * About rmap_head encoding:
899 *
900 * If the bit zero of rmap_head->val is clear, then it points to the only spte
901 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902 * pte_list_desc containing more mappings.
903 */
904
905 /*
906 * Returns the number of pointers in the rmap chain, not counting the new one.
907 */
908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909 struct kvm_rmap_head *rmap_head)
910 {
911 struct pte_list_desc *desc;
912 int count = 0;
913
914 if (!rmap_head->val) {
915 rmap_printk("%p %llx 0->1\n", spte, *spte);
916 rmap_head->val = (unsigned long)spte;
917 } else if (!(rmap_head->val & 1)) {
918 rmap_printk("%p %llx 1->many\n", spte, *spte);
919 desc = mmu_alloc_pte_list_desc(vcpu);
920 desc->sptes[0] = (u64 *)rmap_head->val;
921 desc->sptes[1] = spte;
922 desc->spte_count = 2;
923 rmap_head->val = (unsigned long)desc | 1;
924 ++count;
925 } else {
926 rmap_printk("%p %llx many->many\n", spte, *spte);
927 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928 while (desc->spte_count == PTE_LIST_EXT) {
929 count += PTE_LIST_EXT;
930 if (!desc->more) {
931 desc->more = mmu_alloc_pte_list_desc(vcpu);
932 desc = desc->more;
933 desc->spte_count = 0;
934 break;
935 }
936 desc = desc->more;
937 }
938 count += desc->spte_count;
939 desc->sptes[desc->spte_count++] = spte;
940 }
941 return count;
942 }
943
944 static void
945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
946 struct pte_list_desc *desc, int i,
947 struct pte_list_desc *prev_desc)
948 {
949 int j = desc->spte_count - 1;
950
951 desc->sptes[i] = desc->sptes[j];
952 desc->sptes[j] = NULL;
953 desc->spte_count--;
954 if (desc->spte_count)
955 return;
956 if (!prev_desc && !desc->more)
957 rmap_head->val = 0;
958 else
959 if (prev_desc)
960 prev_desc->more = desc->more;
961 else
962 rmap_head->val = (unsigned long)desc->more | 1;
963 mmu_free_pte_list_desc(desc);
964 }
965
966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967 {
968 struct pte_list_desc *desc;
969 struct pte_list_desc *prev_desc;
970 int i;
971
972 if (!rmap_head->val) {
973 pr_err("%s: %p 0->BUG\n", __func__, spte);
974 BUG();
975 } else if (!(rmap_head->val & 1)) {
976 rmap_printk("%p 1->0\n", spte);
977 if ((u64 *)rmap_head->val != spte) {
978 pr_err("%s: %p 1->BUG\n", __func__, spte);
979 BUG();
980 }
981 rmap_head->val = 0;
982 } else {
983 rmap_printk("%p many->many\n", spte);
984 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985 prev_desc = NULL;
986 while (desc) {
987 for (i = 0; i < desc->spte_count; ++i) {
988 if (desc->sptes[i] == spte) {
989 pte_list_desc_remove_entry(rmap_head,
990 desc, i, prev_desc);
991 return;
992 }
993 }
994 prev_desc = desc;
995 desc = desc->more;
996 }
997 pr_err("%s: %p many->many\n", __func__, spte);
998 BUG();
999 }
1000 }
1001
1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1003 u64 *sptep)
1004 {
1005 mmu_spte_clear_track_bits(kvm, sptep);
1006 __pte_list_remove(sptep, rmap_head);
1007 }
1008
1009 /* Return true if rmap existed, false otherwise */
1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1011 {
1012 struct pte_list_desc *desc, *next;
1013 int i;
1014
1015 if (!rmap_head->val)
1016 return false;
1017
1018 if (!(rmap_head->val & 1)) {
1019 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1020 goto out;
1021 }
1022
1023 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
1025 for (; desc; desc = next) {
1026 for (i = 0; i < desc->spte_count; i++)
1027 mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1028 next = desc->more;
1029 mmu_free_pte_list_desc(desc);
1030 }
1031 out:
1032 /* rmap_head is meaningless now, remember to reset it */
1033 rmap_head->val = 0;
1034 return true;
1035 }
1036
1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1038 {
1039 struct pte_list_desc *desc;
1040 unsigned int count = 0;
1041
1042 if (!rmap_head->val)
1043 return 0;
1044 else if (!(rmap_head->val & 1))
1045 return 1;
1046
1047 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1048
1049 while (desc) {
1050 count += desc->spte_count;
1051 desc = desc->more;
1052 }
1053
1054 return count;
1055 }
1056
1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1058 const struct kvm_memory_slot *slot)
1059 {
1060 unsigned long idx;
1061
1062 idx = gfn_to_index(gfn, slot->base_gfn, level);
1063 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 }
1065
1066 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1067 {
1068 struct kvm_mmu_memory_cache *mc;
1069
1070 mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071 return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 }
1073
1074 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1075 {
1076 struct kvm_memory_slot *slot;
1077 struct kvm_mmu_page *sp;
1078 struct kvm_rmap_head *rmap_head;
1079
1080 sp = sptep_to_sp(spte);
1081 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1082 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1083 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1084 return pte_list_add(vcpu, spte, rmap_head);
1085 }
1086
1087
1088 static void rmap_remove(struct kvm *kvm, u64 *spte)
1089 {
1090 struct kvm_memslots *slots;
1091 struct kvm_memory_slot *slot;
1092 struct kvm_mmu_page *sp;
1093 gfn_t gfn;
1094 struct kvm_rmap_head *rmap_head;
1095
1096 sp = sptep_to_sp(spte);
1097 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1098
1099 /*
1100 * Unlike rmap_add and rmap_recycle, rmap_remove does not run in the
1101 * context of a vCPU so have to determine which memslots to use based
1102 * on context information in sp->role.
1103 */
1104 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1105
1106 slot = __gfn_to_memslot(slots, gfn);
1107 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1108
1109 __pte_list_remove(spte, rmap_head);
1110 }
1111
1112 /*
1113 * Used by the following functions to iterate through the sptes linked by a
1114 * rmap. All fields are private and not assumed to be used outside.
1115 */
1116 struct rmap_iterator {
1117 /* private fields */
1118 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1119 int pos; /* index of the sptep */
1120 };
1121
1122 /*
1123 * Iteration must be started by this function. This should also be used after
1124 * removing/dropping sptes from the rmap link because in such cases the
1125 * information in the iterator may not be valid.
1126 *
1127 * Returns sptep if found, NULL otherwise.
1128 */
1129 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1130 struct rmap_iterator *iter)
1131 {
1132 u64 *sptep;
1133
1134 if (!rmap_head->val)
1135 return NULL;
1136
1137 if (!(rmap_head->val & 1)) {
1138 iter->desc = NULL;
1139 sptep = (u64 *)rmap_head->val;
1140 goto out;
1141 }
1142
1143 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1144 iter->pos = 0;
1145 sptep = iter->desc->sptes[iter->pos];
1146 out:
1147 BUG_ON(!is_shadow_present_pte(*sptep));
1148 return sptep;
1149 }
1150
1151 /*
1152 * Must be used with a valid iterator: e.g. after rmap_get_first().
1153 *
1154 * Returns sptep if found, NULL otherwise.
1155 */
1156 static u64 *rmap_get_next(struct rmap_iterator *iter)
1157 {
1158 u64 *sptep;
1159
1160 if (iter->desc) {
1161 if (iter->pos < PTE_LIST_EXT - 1) {
1162 ++iter->pos;
1163 sptep = iter->desc->sptes[iter->pos];
1164 if (sptep)
1165 goto out;
1166 }
1167
1168 iter->desc = iter->desc->more;
1169
1170 if (iter->desc) {
1171 iter->pos = 0;
1172 /* desc->sptes[0] cannot be NULL */
1173 sptep = iter->desc->sptes[iter->pos];
1174 goto out;
1175 }
1176 }
1177
1178 return NULL;
1179 out:
1180 BUG_ON(!is_shadow_present_pte(*sptep));
1181 return sptep;
1182 }
1183
1184 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1185 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1186 _spte_; _spte_ = rmap_get_next(_iter_))
1187
1188 static void drop_spte(struct kvm *kvm, u64 *sptep)
1189 {
1190 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1191
1192 if (is_shadow_present_pte(old_spte))
1193 rmap_remove(kvm, sptep);
1194 }
1195
1196
1197 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1198 {
1199 if (is_large_pte(*sptep)) {
1200 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1201 drop_spte(kvm, sptep);
1202 return true;
1203 }
1204
1205 return false;
1206 }
1207
1208 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1209 {
1210 if (__drop_large_spte(vcpu->kvm, sptep)) {
1211 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1212
1213 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1214 KVM_PAGES_PER_HPAGE(sp->role.level));
1215 }
1216 }
1217
1218 /*
1219 * Write-protect on the specified @sptep, @pt_protect indicates whether
1220 * spte write-protection is caused by protecting shadow page table.
1221 *
1222 * Note: write protection is difference between dirty logging and spte
1223 * protection:
1224 * - for dirty logging, the spte can be set to writable at anytime if
1225 * its dirty bitmap is properly set.
1226 * - for spte protection, the spte can be writable only after unsync-ing
1227 * shadow page.
1228 *
1229 * Return true if tlb need be flushed.
1230 */
1231 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1232 {
1233 u64 spte = *sptep;
1234
1235 if (!is_writable_pte(spte) &&
1236 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1237 return false;
1238
1239 rmap_printk("spte %p %llx\n", sptep, *sptep);
1240
1241 if (pt_protect)
1242 spte &= ~shadow_mmu_writable_mask;
1243 spte = spte & ~PT_WRITABLE_MASK;
1244
1245 return mmu_spte_update(sptep, spte);
1246 }
1247
1248 static bool __rmap_write_protect(struct kvm *kvm,
1249 struct kvm_rmap_head *rmap_head,
1250 bool pt_protect)
1251 {
1252 u64 *sptep;
1253 struct rmap_iterator iter;
1254 bool flush = false;
1255
1256 for_each_rmap_spte(rmap_head, &iter, sptep)
1257 flush |= spte_write_protect(sptep, pt_protect);
1258
1259 return flush;
1260 }
1261
1262 static bool spte_clear_dirty(u64 *sptep)
1263 {
1264 u64 spte = *sptep;
1265
1266 rmap_printk("spte %p %llx\n", sptep, *sptep);
1267
1268 MMU_WARN_ON(!spte_ad_enabled(spte));
1269 spte &= ~shadow_dirty_mask;
1270 return mmu_spte_update(sptep, spte);
1271 }
1272
1273 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1274 {
1275 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1276 (unsigned long *)sptep);
1277 if (was_writable && !spte_ad_enabled(*sptep))
1278 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1279
1280 return was_writable;
1281 }
1282
1283 /*
1284 * Gets the GFN ready for another round of dirty logging by clearing the
1285 * - D bit on ad-enabled SPTEs, and
1286 * - W bit on ad-disabled SPTEs.
1287 * Returns true iff any D or W bits were cleared.
1288 */
1289 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1290 const struct kvm_memory_slot *slot)
1291 {
1292 u64 *sptep;
1293 struct rmap_iterator iter;
1294 bool flush = false;
1295
1296 for_each_rmap_spte(rmap_head, &iter, sptep)
1297 if (spte_ad_need_write_protect(*sptep))
1298 flush |= spte_wrprot_for_clear_dirty(sptep);
1299 else
1300 flush |= spte_clear_dirty(sptep);
1301
1302 return flush;
1303 }
1304
1305 /**
1306 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1307 * @kvm: kvm instance
1308 * @slot: slot to protect
1309 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1310 * @mask: indicates which pages we should protect
1311 *
1312 * Used when we do not need to care about huge page mappings.
1313 */
1314 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1315 struct kvm_memory_slot *slot,
1316 gfn_t gfn_offset, unsigned long mask)
1317 {
1318 struct kvm_rmap_head *rmap_head;
1319
1320 if (is_tdp_mmu_enabled(kvm))
1321 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1322 slot->base_gfn + gfn_offset, mask, true);
1323
1324 if (!kvm_memslots_have_rmaps(kvm))
1325 return;
1326
1327 while (mask) {
1328 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1329 PG_LEVEL_4K, slot);
1330 __rmap_write_protect(kvm, rmap_head, false);
1331
1332 /* clear the first set bit */
1333 mask &= mask - 1;
1334 }
1335 }
1336
1337 /**
1338 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1339 * protect the page if the D-bit isn't supported.
1340 * @kvm: kvm instance
1341 * @slot: slot to clear D-bit
1342 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1343 * @mask: indicates which pages we should clear D-bit
1344 *
1345 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1346 */
1347 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1348 struct kvm_memory_slot *slot,
1349 gfn_t gfn_offset, unsigned long mask)
1350 {
1351 struct kvm_rmap_head *rmap_head;
1352
1353 if (is_tdp_mmu_enabled(kvm))
1354 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1355 slot->base_gfn + gfn_offset, mask, false);
1356
1357 if (!kvm_memslots_have_rmaps(kvm))
1358 return;
1359
1360 while (mask) {
1361 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1362 PG_LEVEL_4K, slot);
1363 __rmap_clear_dirty(kvm, rmap_head, slot);
1364
1365 /* clear the first set bit */
1366 mask &= mask - 1;
1367 }
1368 }
1369
1370 /**
1371 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1372 * PT level pages.
1373 *
1374 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1375 * enable dirty logging for them.
1376 *
1377 * We need to care about huge page mappings: e.g. during dirty logging we may
1378 * have such mappings.
1379 */
1380 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1381 struct kvm_memory_slot *slot,
1382 gfn_t gfn_offset, unsigned long mask)
1383 {
1384 /*
1385 * Huge pages are NOT write protected when we start dirty logging in
1386 * initially-all-set mode; must write protect them here so that they
1387 * are split to 4K on the first write.
1388 *
1389 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1390 * of memslot has no such restriction, so the range can cross two large
1391 * pages.
1392 */
1393 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1394 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1395 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1396
1397 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1398
1399 /* Cross two large pages? */
1400 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1401 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1402 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1403 PG_LEVEL_2M);
1404 }
1405
1406 /* Now handle 4K PTEs. */
1407 if (kvm_x86_ops.cpu_dirty_log_size)
1408 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1409 else
1410 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1411 }
1412
1413 int kvm_cpu_dirty_log_size(void)
1414 {
1415 return kvm_x86_ops.cpu_dirty_log_size;
1416 }
1417
1418 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1419 struct kvm_memory_slot *slot, u64 gfn,
1420 int min_level)
1421 {
1422 struct kvm_rmap_head *rmap_head;
1423 int i;
1424 bool write_protected = false;
1425
1426 if (kvm_memslots_have_rmaps(kvm)) {
1427 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1428 rmap_head = gfn_to_rmap(gfn, i, slot);
1429 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1430 }
1431 }
1432
1433 if (is_tdp_mmu_enabled(kvm))
1434 write_protected |=
1435 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1436
1437 return write_protected;
1438 }
1439
1440 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1441 {
1442 struct kvm_memory_slot *slot;
1443
1444 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1445 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1446 }
1447
1448 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1449 const struct kvm_memory_slot *slot)
1450 {
1451 return pte_list_destroy(kvm, rmap_head);
1452 }
1453
1454 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1455 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1456 pte_t unused)
1457 {
1458 return kvm_zap_rmapp(kvm, rmap_head, slot);
1459 }
1460
1461 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1462 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1463 pte_t pte)
1464 {
1465 u64 *sptep;
1466 struct rmap_iterator iter;
1467 int need_flush = 0;
1468 u64 new_spte;
1469 kvm_pfn_t new_pfn;
1470
1471 WARN_ON(pte_huge(pte));
1472 new_pfn = pte_pfn(pte);
1473
1474 restart:
1475 for_each_rmap_spte(rmap_head, &iter, sptep) {
1476 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1477 sptep, *sptep, gfn, level);
1478
1479 need_flush = 1;
1480
1481 if (pte_write(pte)) {
1482 pte_list_remove(kvm, rmap_head, sptep);
1483 goto restart;
1484 } else {
1485 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1486 *sptep, new_pfn);
1487
1488 mmu_spte_clear_track_bits(kvm, sptep);
1489 mmu_spte_set(sptep, new_spte);
1490 }
1491 }
1492
1493 if (need_flush && kvm_available_flush_tlb_with_range()) {
1494 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1495 return 0;
1496 }
1497
1498 return need_flush;
1499 }
1500
1501 struct slot_rmap_walk_iterator {
1502 /* input fields. */
1503 const struct kvm_memory_slot *slot;
1504 gfn_t start_gfn;
1505 gfn_t end_gfn;
1506 int start_level;
1507 int end_level;
1508
1509 /* output fields. */
1510 gfn_t gfn;
1511 struct kvm_rmap_head *rmap;
1512 int level;
1513
1514 /* private field. */
1515 struct kvm_rmap_head *end_rmap;
1516 };
1517
1518 static void
1519 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1520 {
1521 iterator->level = level;
1522 iterator->gfn = iterator->start_gfn;
1523 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1524 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1525 }
1526
1527 static void
1528 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1529 const struct kvm_memory_slot *slot, int start_level,
1530 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1531 {
1532 iterator->slot = slot;
1533 iterator->start_level = start_level;
1534 iterator->end_level = end_level;
1535 iterator->start_gfn = start_gfn;
1536 iterator->end_gfn = end_gfn;
1537
1538 rmap_walk_init_level(iterator, iterator->start_level);
1539 }
1540
1541 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1542 {
1543 return !!iterator->rmap;
1544 }
1545
1546 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1547 {
1548 if (++iterator->rmap <= iterator->end_rmap) {
1549 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1550 return;
1551 }
1552
1553 if (++iterator->level > iterator->end_level) {
1554 iterator->rmap = NULL;
1555 return;
1556 }
1557
1558 rmap_walk_init_level(iterator, iterator->level);
1559 }
1560
1561 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1562 _start_gfn, _end_gfn, _iter_) \
1563 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1564 _end_level_, _start_gfn, _end_gfn); \
1565 slot_rmap_walk_okay(_iter_); \
1566 slot_rmap_walk_next(_iter_))
1567
1568 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1569 struct kvm_memory_slot *slot, gfn_t gfn,
1570 int level, pte_t pte);
1571
1572 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1573 struct kvm_gfn_range *range,
1574 rmap_handler_t handler)
1575 {
1576 struct slot_rmap_walk_iterator iterator;
1577 bool ret = false;
1578
1579 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1580 range->start, range->end - 1, &iterator)
1581 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1582 iterator.level, range->pte);
1583
1584 return ret;
1585 }
1586
1587 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1588 {
1589 bool flush = false;
1590
1591 if (kvm_memslots_have_rmaps(kvm))
1592 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1593
1594 if (is_tdp_mmu_enabled(kvm))
1595 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1596
1597 return flush;
1598 }
1599
1600 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1601 {
1602 bool flush = false;
1603
1604 if (kvm_memslots_have_rmaps(kvm))
1605 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1606
1607 if (is_tdp_mmu_enabled(kvm))
1608 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1609
1610 return flush;
1611 }
1612
1613 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1615 pte_t unused)
1616 {
1617 u64 *sptep;
1618 struct rmap_iterator iter;
1619 int young = 0;
1620
1621 for_each_rmap_spte(rmap_head, &iter, sptep)
1622 young |= mmu_spte_age(sptep);
1623
1624 return young;
1625 }
1626
1627 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628 struct kvm_memory_slot *slot, gfn_t gfn,
1629 int level, pte_t unused)
1630 {
1631 u64 *sptep;
1632 struct rmap_iterator iter;
1633
1634 for_each_rmap_spte(rmap_head, &iter, sptep)
1635 if (is_accessed_spte(*sptep))
1636 return 1;
1637 return 0;
1638 }
1639
1640 #define RMAP_RECYCLE_THRESHOLD 1000
1641
1642 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1643 {
1644 struct kvm_memory_slot *slot;
1645 struct kvm_rmap_head *rmap_head;
1646 struct kvm_mmu_page *sp;
1647
1648 sp = sptep_to_sp(spte);
1649 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1650 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1651
1652 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1653 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1654 KVM_PAGES_PER_HPAGE(sp->role.level));
1655 }
1656
1657 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1658 {
1659 bool young = false;
1660
1661 if (kvm_memslots_have_rmaps(kvm))
1662 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1663
1664 if (is_tdp_mmu_enabled(kvm))
1665 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1666
1667 return young;
1668 }
1669
1670 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1671 {
1672 bool young = false;
1673
1674 if (kvm_memslots_have_rmaps(kvm))
1675 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1676
1677 if (is_tdp_mmu_enabled(kvm))
1678 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1679
1680 return young;
1681 }
1682
1683 #ifdef MMU_DEBUG
1684 static int is_empty_shadow_page(u64 *spt)
1685 {
1686 u64 *pos;
1687 u64 *end;
1688
1689 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1690 if (is_shadow_present_pte(*pos)) {
1691 printk(KERN_ERR "%s: %p %llx\n", __func__,
1692 pos, *pos);
1693 return 0;
1694 }
1695 return 1;
1696 }
1697 #endif
1698
1699 /*
1700 * This value is the sum of all of the kvm instances's
1701 * kvm->arch.n_used_mmu_pages values. We need a global,
1702 * aggregate version in order to make the slab shrinker
1703 * faster
1704 */
1705 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1706 {
1707 kvm->arch.n_used_mmu_pages += nr;
1708 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1709 }
1710
1711 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1712 {
1713 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1714 hlist_del(&sp->hash_link);
1715 list_del(&sp->link);
1716 free_page((unsigned long)sp->spt);
1717 if (!sp->role.direct)
1718 free_page((unsigned long)sp->gfns);
1719 kmem_cache_free(mmu_page_header_cache, sp);
1720 }
1721
1722 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1723 {
1724 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1725 }
1726
1727 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1728 struct kvm_mmu_page *sp, u64 *parent_pte)
1729 {
1730 if (!parent_pte)
1731 return;
1732
1733 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1734 }
1735
1736 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1737 u64 *parent_pte)
1738 {
1739 __pte_list_remove(parent_pte, &sp->parent_ptes);
1740 }
1741
1742 static void drop_parent_pte(struct kvm_mmu_page *sp,
1743 u64 *parent_pte)
1744 {
1745 mmu_page_remove_parent_pte(sp, parent_pte);
1746 mmu_spte_clear_no_track(parent_pte);
1747 }
1748
1749 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1750 {
1751 struct kvm_mmu_page *sp;
1752
1753 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1754 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1755 if (!direct)
1756 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1757 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1758
1759 /*
1760 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1761 * depends on valid pages being added to the head of the list. See
1762 * comments in kvm_zap_obsolete_pages().
1763 */
1764 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1765 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1766 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1767 return sp;
1768 }
1769
1770 static void mark_unsync(u64 *spte);
1771 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1772 {
1773 u64 *sptep;
1774 struct rmap_iterator iter;
1775
1776 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1777 mark_unsync(sptep);
1778 }
1779 }
1780
1781 static void mark_unsync(u64 *spte)
1782 {
1783 struct kvm_mmu_page *sp;
1784 unsigned int index;
1785
1786 sp = sptep_to_sp(spte);
1787 index = spte - sp->spt;
1788 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1789 return;
1790 if (sp->unsync_children++)
1791 return;
1792 kvm_mmu_mark_parents_unsync(sp);
1793 }
1794
1795 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1796 struct kvm_mmu_page *sp)
1797 {
1798 return 0;
1799 }
1800
1801 #define KVM_PAGE_ARRAY_NR 16
1802
1803 struct kvm_mmu_pages {
1804 struct mmu_page_and_offset {
1805 struct kvm_mmu_page *sp;
1806 unsigned int idx;
1807 } page[KVM_PAGE_ARRAY_NR];
1808 unsigned int nr;
1809 };
1810
1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812 int idx)
1813 {
1814 int i;
1815
1816 if (sp->unsync)
1817 for (i=0; i < pvec->nr; i++)
1818 if (pvec->page[i].sp == sp)
1819 return 0;
1820
1821 pvec->page[pvec->nr].sp = sp;
1822 pvec->page[pvec->nr].idx = idx;
1823 pvec->nr++;
1824 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825 }
1826
1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828 {
1829 --sp->unsync_children;
1830 WARN_ON((int)sp->unsync_children < 0);
1831 __clear_bit(idx, sp->unsync_child_bitmap);
1832 }
1833
1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835 struct kvm_mmu_pages *pvec)
1836 {
1837 int i, ret, nr_unsync_leaf = 0;
1838
1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840 struct kvm_mmu_page *child;
1841 u64 ent = sp->spt[i];
1842
1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844 clear_unsync_child_bit(sp, i);
1845 continue;
1846 }
1847
1848 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1849
1850 if (child->unsync_children) {
1851 if (mmu_pages_add(pvec, child, i))
1852 return -ENOSPC;
1853
1854 ret = __mmu_unsync_walk(child, pvec);
1855 if (!ret) {
1856 clear_unsync_child_bit(sp, i);
1857 continue;
1858 } else if (ret > 0) {
1859 nr_unsync_leaf += ret;
1860 } else
1861 return ret;
1862 } else if (child->unsync) {
1863 nr_unsync_leaf++;
1864 if (mmu_pages_add(pvec, child, i))
1865 return -ENOSPC;
1866 } else
1867 clear_unsync_child_bit(sp, i);
1868 }
1869
1870 return nr_unsync_leaf;
1871 }
1872
1873 #define INVALID_INDEX (-1)
1874
1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876 struct kvm_mmu_pages *pvec)
1877 {
1878 pvec->nr = 0;
1879 if (!sp->unsync_children)
1880 return 0;
1881
1882 mmu_pages_add(pvec, sp, INVALID_INDEX);
1883 return __mmu_unsync_walk(sp, pvec);
1884 }
1885
1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888 WARN_ON(!sp->unsync);
1889 trace_kvm_mmu_sync_page(sp);
1890 sp->unsync = 0;
1891 --kvm->stat.mmu_unsync;
1892 }
1893
1894 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895 struct list_head *invalid_list);
1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897 struct list_head *invalid_list);
1898
1899 #define for_each_valid_sp(_kvm, _sp, _list) \
1900 hlist_for_each_entry(_sp, _list, hash_link) \
1901 if (is_obsolete_sp((_kvm), (_sp))) { \
1902 } else
1903
1904 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1905 for_each_valid_sp(_kvm, _sp, \
1906 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1907 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1908
1909 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1910 struct list_head *invalid_list)
1911 {
1912 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1913 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1914 return false;
1915 }
1916
1917 return true;
1918 }
1919
1920 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1921 struct list_head *invalid_list,
1922 bool remote_flush)
1923 {
1924 if (!remote_flush && list_empty(invalid_list))
1925 return false;
1926
1927 if (!list_empty(invalid_list))
1928 kvm_mmu_commit_zap_page(kvm, invalid_list);
1929 else
1930 kvm_flush_remote_tlbs(kvm);
1931 return true;
1932 }
1933
1934 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1935 struct list_head *invalid_list,
1936 bool remote_flush, bool local_flush)
1937 {
1938 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1939 return;
1940
1941 if (local_flush)
1942 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1943 }
1944
1945 #ifdef CONFIG_KVM_MMU_AUDIT
1946 #include "mmu_audit.c"
1947 #else
1948 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1949 static void mmu_audit_disable(void) { }
1950 #endif
1951
1952 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1953 {
1954 return sp->role.invalid ||
1955 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1956 }
1957
1958 struct mmu_page_path {
1959 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1960 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1961 };
1962
1963 #define for_each_sp(pvec, sp, parents, i) \
1964 for (i = mmu_pages_first(&pvec, &parents); \
1965 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1966 i = mmu_pages_next(&pvec, &parents, i))
1967
1968 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1969 struct mmu_page_path *parents,
1970 int i)
1971 {
1972 int n;
1973
1974 for (n = i+1; n < pvec->nr; n++) {
1975 struct kvm_mmu_page *sp = pvec->page[n].sp;
1976 unsigned idx = pvec->page[n].idx;
1977 int level = sp->role.level;
1978
1979 parents->idx[level-1] = idx;
1980 if (level == PG_LEVEL_4K)
1981 break;
1982
1983 parents->parent[level-2] = sp;
1984 }
1985
1986 return n;
1987 }
1988
1989 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1990 struct mmu_page_path *parents)
1991 {
1992 struct kvm_mmu_page *sp;
1993 int level;
1994
1995 if (pvec->nr == 0)
1996 return 0;
1997
1998 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1999
2000 sp = pvec->page[0].sp;
2001 level = sp->role.level;
2002 WARN_ON(level == PG_LEVEL_4K);
2003
2004 parents->parent[level-2] = sp;
2005
2006 /* Also set up a sentinel. Further entries in pvec are all
2007 * children of sp, so this element is never overwritten.
2008 */
2009 parents->parent[level-1] = NULL;
2010 return mmu_pages_next(pvec, parents, 0);
2011 }
2012
2013 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2014 {
2015 struct kvm_mmu_page *sp;
2016 unsigned int level = 0;
2017
2018 do {
2019 unsigned int idx = parents->idx[level];
2020 sp = parents->parent[level];
2021 if (!sp)
2022 return;
2023
2024 WARN_ON(idx == INVALID_INDEX);
2025 clear_unsync_child_bit(sp, idx);
2026 level++;
2027 } while (!sp->unsync_children);
2028 }
2029
2030 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2031 struct kvm_mmu_page *parent, bool can_yield)
2032 {
2033 int i;
2034 struct kvm_mmu_page *sp;
2035 struct mmu_page_path parents;
2036 struct kvm_mmu_pages pages;
2037 LIST_HEAD(invalid_list);
2038 bool flush = false;
2039
2040 while (mmu_unsync_walk(parent, &pages)) {
2041 bool protected = false;
2042
2043 for_each_sp(pages, sp, parents, i)
2044 protected |= rmap_write_protect(vcpu, sp->gfn);
2045
2046 if (protected) {
2047 kvm_flush_remote_tlbs(vcpu->kvm);
2048 flush = false;
2049 }
2050
2051 for_each_sp(pages, sp, parents, i) {
2052 kvm_unlink_unsync_page(vcpu->kvm, sp);
2053 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2054 mmu_pages_clear_parents(&parents);
2055 }
2056 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2057 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2058 if (!can_yield) {
2059 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2060 return -EINTR;
2061 }
2062
2063 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2064 flush = false;
2065 }
2066 }
2067
2068 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2069 return 0;
2070 }
2071
2072 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2073 {
2074 atomic_set(&sp->write_flooding_count, 0);
2075 }
2076
2077 static void clear_sp_write_flooding_count(u64 *spte)
2078 {
2079 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2080 }
2081
2082 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2083 gfn_t gfn,
2084 gva_t gaddr,
2085 unsigned level,
2086 int direct,
2087 unsigned int access)
2088 {
2089 bool direct_mmu = vcpu->arch.mmu->direct_map;
2090 union kvm_mmu_page_role role;
2091 struct hlist_head *sp_list;
2092 unsigned quadrant;
2093 struct kvm_mmu_page *sp;
2094 int collisions = 0;
2095 LIST_HEAD(invalid_list);
2096
2097 role = vcpu->arch.mmu->mmu_role.base;
2098 role.level = level;
2099 role.direct = direct;
2100 if (role.direct)
2101 role.gpte_is_8_bytes = true;
2102 role.access = access;
2103 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2104 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2105 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2106 role.quadrant = quadrant;
2107 }
2108
2109 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2110 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2111 if (sp->gfn != gfn) {
2112 collisions++;
2113 continue;
2114 }
2115
2116 if (sp->role.word != role.word) {
2117 /*
2118 * If the guest is creating an upper-level page, zap
2119 * unsync pages for the same gfn. While it's possible
2120 * the guest is using recursive page tables, in all
2121 * likelihood the guest has stopped using the unsync
2122 * page and is installing a completely unrelated page.
2123 * Unsync pages must not be left as is, because the new
2124 * upper-level page will be write-protected.
2125 */
2126 if (level > PG_LEVEL_4K && sp->unsync)
2127 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2128 &invalid_list);
2129 continue;
2130 }
2131
2132 if (direct_mmu)
2133 goto trace_get_page;
2134
2135 if (sp->unsync) {
2136 /*
2137 * The page is good, but is stale. kvm_sync_page does
2138 * get the latest guest state, but (unlike mmu_unsync_children)
2139 * it doesn't write-protect the page or mark it synchronized!
2140 * This way the validity of the mapping is ensured, but the
2141 * overhead of write protection is not incurred until the
2142 * guest invalidates the TLB mapping. This allows multiple
2143 * SPs for a single gfn to be unsync.
2144 *
2145 * If the sync fails, the page is zapped. If so, break
2146 * in order to rebuild it.
2147 */
2148 if (!kvm_sync_page(vcpu, sp, &invalid_list))
2149 break;
2150
2151 WARN_ON(!list_empty(&invalid_list));
2152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2153 }
2154
2155 __clear_sp_write_flooding_count(sp);
2156
2157 trace_get_page:
2158 trace_kvm_mmu_get_page(sp, false);
2159 goto out;
2160 }
2161
2162 ++vcpu->kvm->stat.mmu_cache_miss;
2163
2164 sp = kvm_mmu_alloc_page(vcpu, direct);
2165
2166 sp->gfn = gfn;
2167 sp->role = role;
2168 hlist_add_head(&sp->hash_link, sp_list);
2169 if (!direct) {
2170 account_shadowed(vcpu->kvm, sp);
2171 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2172 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2173 }
2174 trace_kvm_mmu_get_page(sp, true);
2175 out:
2176 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2177
2178 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2179 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2180 return sp;
2181 }
2182
2183 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2184 struct kvm_vcpu *vcpu, hpa_t root,
2185 u64 addr)
2186 {
2187 iterator->addr = addr;
2188 iterator->shadow_addr = root;
2189 iterator->level = vcpu->arch.mmu->shadow_root_level;
2190
2191 if (iterator->level == PT64_ROOT_4LEVEL &&
2192 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2193 !vcpu->arch.mmu->direct_map)
2194 --iterator->level;
2195
2196 if (iterator->level == PT32E_ROOT_LEVEL) {
2197 /*
2198 * prev_root is currently only used for 64-bit hosts. So only
2199 * the active root_hpa is valid here.
2200 */
2201 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2202
2203 iterator->shadow_addr
2204 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2205 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2206 --iterator->level;
2207 if (!iterator->shadow_addr)
2208 iterator->level = 0;
2209 }
2210 }
2211
2212 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2213 struct kvm_vcpu *vcpu, u64 addr)
2214 {
2215 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2216 addr);
2217 }
2218
2219 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2220 {
2221 if (iterator->level < PG_LEVEL_4K)
2222 return false;
2223
2224 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2225 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2226 return true;
2227 }
2228
2229 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2230 u64 spte)
2231 {
2232 if (is_last_spte(spte, iterator->level)) {
2233 iterator->level = 0;
2234 return;
2235 }
2236
2237 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2238 --iterator->level;
2239 }
2240
2241 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2242 {
2243 __shadow_walk_next(iterator, *iterator->sptep);
2244 }
2245
2246 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2247 struct kvm_mmu_page *sp)
2248 {
2249 u64 spte;
2250
2251 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2252
2253 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2254
2255 mmu_spte_set(sptep, spte);
2256
2257 mmu_page_add_parent_pte(vcpu, sp, sptep);
2258
2259 if (sp->unsync_children || sp->unsync)
2260 mark_unsync(sptep);
2261 }
2262
2263 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2264 unsigned direct_access)
2265 {
2266 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2267 struct kvm_mmu_page *child;
2268
2269 /*
2270 * For the direct sp, if the guest pte's dirty bit
2271 * changed form clean to dirty, it will corrupt the
2272 * sp's access: allow writable in the read-only sp,
2273 * so we should update the spte at this point to get
2274 * a new sp with the correct access.
2275 */
2276 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2277 if (child->role.access == direct_access)
2278 return;
2279
2280 drop_parent_pte(child, sptep);
2281 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2282 }
2283 }
2284
2285 /* Returns the number of zapped non-leaf child shadow pages. */
2286 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2287 u64 *spte, struct list_head *invalid_list)
2288 {
2289 u64 pte;
2290 struct kvm_mmu_page *child;
2291
2292 pte = *spte;
2293 if (is_shadow_present_pte(pte)) {
2294 if (is_last_spte(pte, sp->role.level)) {
2295 drop_spte(kvm, spte);
2296 } else {
2297 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2298 drop_parent_pte(child, spte);
2299
2300 /*
2301 * Recursively zap nested TDP SPs, parentless SPs are
2302 * unlikely to be used again in the near future. This
2303 * avoids retaining a large number of stale nested SPs.
2304 */
2305 if (tdp_enabled && invalid_list &&
2306 child->role.guest_mode && !child->parent_ptes.val)
2307 return kvm_mmu_prepare_zap_page(kvm, child,
2308 invalid_list);
2309 }
2310 } else if (is_mmio_spte(pte)) {
2311 mmu_spte_clear_no_track(spte);
2312 }
2313 return 0;
2314 }
2315
2316 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2317 struct kvm_mmu_page *sp,
2318 struct list_head *invalid_list)
2319 {
2320 int zapped = 0;
2321 unsigned i;
2322
2323 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2324 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2325
2326 return zapped;
2327 }
2328
2329 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2330 {
2331 u64 *sptep;
2332 struct rmap_iterator iter;
2333
2334 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2335 drop_parent_pte(sp, sptep);
2336 }
2337
2338 static int mmu_zap_unsync_children(struct kvm *kvm,
2339 struct kvm_mmu_page *parent,
2340 struct list_head *invalid_list)
2341 {
2342 int i, zapped = 0;
2343 struct mmu_page_path parents;
2344 struct kvm_mmu_pages pages;
2345
2346 if (parent->role.level == PG_LEVEL_4K)
2347 return 0;
2348
2349 while (mmu_unsync_walk(parent, &pages)) {
2350 struct kvm_mmu_page *sp;
2351
2352 for_each_sp(pages, sp, parents, i) {
2353 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2354 mmu_pages_clear_parents(&parents);
2355 zapped++;
2356 }
2357 }
2358
2359 return zapped;
2360 }
2361
2362 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2363 struct kvm_mmu_page *sp,
2364 struct list_head *invalid_list,
2365 int *nr_zapped)
2366 {
2367 bool list_unstable;
2368
2369 trace_kvm_mmu_prepare_zap_page(sp);
2370 ++kvm->stat.mmu_shadow_zapped;
2371 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2372 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2373 kvm_mmu_unlink_parents(kvm, sp);
2374
2375 /* Zapping children means active_mmu_pages has become unstable. */
2376 list_unstable = *nr_zapped;
2377
2378 if (!sp->role.invalid && !sp->role.direct)
2379 unaccount_shadowed(kvm, sp);
2380
2381 if (sp->unsync)
2382 kvm_unlink_unsync_page(kvm, sp);
2383 if (!sp->root_count) {
2384 /* Count self */
2385 (*nr_zapped)++;
2386
2387 /*
2388 * Already invalid pages (previously active roots) are not on
2389 * the active page list. See list_del() in the "else" case of
2390 * !sp->root_count.
2391 */
2392 if (sp->role.invalid)
2393 list_add(&sp->link, invalid_list);
2394 else
2395 list_move(&sp->link, invalid_list);
2396 kvm_mod_used_mmu_pages(kvm, -1);
2397 } else {
2398 /*
2399 * Remove the active root from the active page list, the root
2400 * will be explicitly freed when the root_count hits zero.
2401 */
2402 list_del(&sp->link);
2403
2404 /*
2405 * Obsolete pages cannot be used on any vCPUs, see the comment
2406 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2407 * treats invalid shadow pages as being obsolete.
2408 */
2409 if (!is_obsolete_sp(kvm, sp))
2410 kvm_reload_remote_mmus(kvm);
2411 }
2412
2413 if (sp->lpage_disallowed)
2414 unaccount_huge_nx_page(kvm, sp);
2415
2416 sp->role.invalid = 1;
2417 return list_unstable;
2418 }
2419
2420 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2421 struct list_head *invalid_list)
2422 {
2423 int nr_zapped;
2424
2425 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2426 return nr_zapped;
2427 }
2428
2429 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2430 struct list_head *invalid_list)
2431 {
2432 struct kvm_mmu_page *sp, *nsp;
2433
2434 if (list_empty(invalid_list))
2435 return;
2436
2437 /*
2438 * We need to make sure everyone sees our modifications to
2439 * the page tables and see changes to vcpu->mode here. The barrier
2440 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2441 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2442 *
2443 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2444 * guest mode and/or lockless shadow page table walks.
2445 */
2446 kvm_flush_remote_tlbs(kvm);
2447
2448 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2449 WARN_ON(!sp->role.invalid || sp->root_count);
2450 kvm_mmu_free_page(sp);
2451 }
2452 }
2453
2454 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2455 unsigned long nr_to_zap)
2456 {
2457 unsigned long total_zapped = 0;
2458 struct kvm_mmu_page *sp, *tmp;
2459 LIST_HEAD(invalid_list);
2460 bool unstable;
2461 int nr_zapped;
2462
2463 if (list_empty(&kvm->arch.active_mmu_pages))
2464 return 0;
2465
2466 restart:
2467 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2468 /*
2469 * Don't zap active root pages, the page itself can't be freed
2470 * and zapping it will just force vCPUs to realloc and reload.
2471 */
2472 if (sp->root_count)
2473 continue;
2474
2475 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2476 &nr_zapped);
2477 total_zapped += nr_zapped;
2478 if (total_zapped >= nr_to_zap)
2479 break;
2480
2481 if (unstable)
2482 goto restart;
2483 }
2484
2485 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2486
2487 kvm->stat.mmu_recycled += total_zapped;
2488 return total_zapped;
2489 }
2490
2491 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2492 {
2493 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2494 return kvm->arch.n_max_mmu_pages -
2495 kvm->arch.n_used_mmu_pages;
2496
2497 return 0;
2498 }
2499
2500 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2501 {
2502 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2503
2504 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2505 return 0;
2506
2507 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2508
2509 /*
2510 * Note, this check is intentionally soft, it only guarantees that one
2511 * page is available, while the caller may end up allocating as many as
2512 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2513 * exceeding the (arbitrary by default) limit will not harm the host,
2514 * being too aggressive may unnecessarily kill the guest, and getting an
2515 * exact count is far more trouble than it's worth, especially in the
2516 * page fault paths.
2517 */
2518 if (!kvm_mmu_available_pages(vcpu->kvm))
2519 return -ENOSPC;
2520 return 0;
2521 }
2522
2523 /*
2524 * Changing the number of mmu pages allocated to the vm
2525 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2526 */
2527 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2528 {
2529 write_lock(&kvm->mmu_lock);
2530
2531 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2532 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2533 goal_nr_mmu_pages);
2534
2535 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2536 }
2537
2538 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2539
2540 write_unlock(&kvm->mmu_lock);
2541 }
2542
2543 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2544 {
2545 struct kvm_mmu_page *sp;
2546 LIST_HEAD(invalid_list);
2547 int r;
2548
2549 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2550 r = 0;
2551 write_lock(&kvm->mmu_lock);
2552 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2553 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2554 sp->role.word);
2555 r = 1;
2556 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2557 }
2558 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2559 write_unlock(&kvm->mmu_lock);
2560
2561 return r;
2562 }
2563
2564 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2565 {
2566 gpa_t gpa;
2567 int r;
2568
2569 if (vcpu->arch.mmu->direct_map)
2570 return 0;
2571
2572 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2573
2574 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2575
2576 return r;
2577 }
2578
2579 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2580 {
2581 trace_kvm_mmu_unsync_page(sp);
2582 ++vcpu->kvm->stat.mmu_unsync;
2583 sp->unsync = 1;
2584
2585 kvm_mmu_mark_parents_unsync(sp);
2586 }
2587
2588 /*
2589 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2590 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2591 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2592 * be write-protected.
2593 */
2594 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2595 {
2596 struct kvm_mmu_page *sp;
2597 bool locked = false;
2598
2599 /*
2600 * Force write-protection if the page is being tracked. Note, the page
2601 * track machinery is used to write-protect upper-level shadow pages,
2602 * i.e. this guards the role.level == 4K assertion below!
2603 */
2604 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2605 return -EPERM;
2606
2607 /*
2608 * The page is not write-tracked, mark existing shadow pages unsync
2609 * unless KVM is synchronizing an unsync SP (can_unsync = false). In
2610 * that case, KVM must complete emulation of the guest TLB flush before
2611 * allowing shadow pages to become unsync (writable by the guest).
2612 */
2613 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2614 if (!can_unsync)
2615 return -EPERM;
2616
2617 if (sp->unsync)
2618 continue;
2619
2620 /*
2621 * TDP MMU page faults require an additional spinlock as they
2622 * run with mmu_lock held for read, not write, and the unsync
2623 * logic is not thread safe. Take the spinklock regardless of
2624 * the MMU type to avoid extra conditionals/parameters, there's
2625 * no meaningful penalty if mmu_lock is held for write.
2626 */
2627 if (!locked) {
2628 locked = true;
2629 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2630
2631 /*
2632 * Recheck after taking the spinlock, a different vCPU
2633 * may have since marked the page unsync. A false
2634 * positive on the unprotected check above is not
2635 * possible as clearing sp->unsync _must_ hold mmu_lock
2636 * for write, i.e. unsync cannot transition from 0->1
2637 * while this CPU holds mmu_lock for read (or write).
2638 */
2639 if (READ_ONCE(sp->unsync))
2640 continue;
2641 }
2642
2643 WARN_ON(sp->role.level != PG_LEVEL_4K);
2644 kvm_unsync_page(vcpu, sp);
2645 }
2646 if (locked)
2647 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2648
2649 /*
2650 * We need to ensure that the marking of unsync pages is visible
2651 * before the SPTE is updated to allow writes because
2652 * kvm_mmu_sync_roots() checks the unsync flags without holding
2653 * the MMU lock and so can race with this. If the SPTE was updated
2654 * before the page had been marked as unsync-ed, something like the
2655 * following could happen:
2656 *
2657 * CPU 1 CPU 2
2658 * ---------------------------------------------------------------------
2659 * 1.2 Host updates SPTE
2660 * to be writable
2661 * 2.1 Guest writes a GPTE for GVA X.
2662 * (GPTE being in the guest page table shadowed
2663 * by the SP from CPU 1.)
2664 * This reads SPTE during the page table walk.
2665 * Since SPTE.W is read as 1, there is no
2666 * fault.
2667 *
2668 * 2.2 Guest issues TLB flush.
2669 * That causes a VM Exit.
2670 *
2671 * 2.3 Walking of unsync pages sees sp->unsync is
2672 * false and skips the page.
2673 *
2674 * 2.4 Guest accesses GVA X.
2675 * Since the mapping in the SP was not updated,
2676 * so the old mapping for GVA X incorrectly
2677 * gets used.
2678 * 1.1 Host marks SP
2679 * as unsync
2680 * (sp->unsync = true)
2681 *
2682 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2683 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2684 * pairs with this write barrier.
2685 */
2686 smp_wmb();
2687
2688 return 0;
2689 }
2690
2691 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2692 unsigned int pte_access, int level,
2693 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2694 bool can_unsync, bool host_writable)
2695 {
2696 u64 spte;
2697 struct kvm_mmu_page *sp;
2698 int ret;
2699
2700 sp = sptep_to_sp(sptep);
2701
2702 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2703 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2704
2705 if (spte & PT_WRITABLE_MASK)
2706 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2707
2708 if (*sptep == spte)
2709 ret |= SET_SPTE_SPURIOUS;
2710 else if (mmu_spte_update(sptep, spte))
2711 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2712 return ret;
2713 }
2714
2715 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2716 unsigned int pte_access, bool write_fault, int level,
2717 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2718 bool host_writable)
2719 {
2720 int was_rmapped = 0;
2721 int rmap_count;
2722 int set_spte_ret;
2723 int ret = RET_PF_FIXED;
2724 bool flush = false;
2725
2726 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2727 *sptep, write_fault, gfn);
2728
2729 if (unlikely(is_noslot_pfn(pfn))) {
2730 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2731 return RET_PF_EMULATE;
2732 }
2733
2734 if (is_shadow_present_pte(*sptep)) {
2735 /*
2736 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2737 * the parent of the now unreachable PTE.
2738 */
2739 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2740 struct kvm_mmu_page *child;
2741 u64 pte = *sptep;
2742
2743 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2744 drop_parent_pte(child, sptep);
2745 flush = true;
2746 } else if (pfn != spte_to_pfn(*sptep)) {
2747 pgprintk("hfn old %llx new %llx\n",
2748 spte_to_pfn(*sptep), pfn);
2749 drop_spte(vcpu->kvm, sptep);
2750 flush = true;
2751 } else
2752 was_rmapped = 1;
2753 }
2754
2755 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2756 speculative, true, host_writable);
2757 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2758 if (write_fault)
2759 ret = RET_PF_EMULATE;
2760 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2761 }
2762
2763 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2764 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2765 KVM_PAGES_PER_HPAGE(level));
2766
2767 /*
2768 * The fault is fully spurious if and only if the new SPTE and old SPTE
2769 * are identical, and emulation is not required.
2770 */
2771 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2772 WARN_ON_ONCE(!was_rmapped);
2773 return RET_PF_SPURIOUS;
2774 }
2775
2776 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2777 trace_kvm_mmu_set_spte(level, gfn, sptep);
2778
2779 if (!was_rmapped) {
2780 kvm_update_page_stats(vcpu->kvm, level, 1);
2781 rmap_count = rmap_add(vcpu, sptep, gfn);
2782 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2783 rmap_recycle(vcpu, sptep, gfn);
2784 }
2785
2786 return ret;
2787 }
2788
2789 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2790 bool no_dirty_log)
2791 {
2792 struct kvm_memory_slot *slot;
2793
2794 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2795 if (!slot)
2796 return KVM_PFN_ERR_FAULT;
2797
2798 return gfn_to_pfn_memslot_atomic(slot, gfn);
2799 }
2800
2801 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2802 struct kvm_mmu_page *sp,
2803 u64 *start, u64 *end)
2804 {
2805 struct page *pages[PTE_PREFETCH_NUM];
2806 struct kvm_memory_slot *slot;
2807 unsigned int access = sp->role.access;
2808 int i, ret;
2809 gfn_t gfn;
2810
2811 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2812 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2813 if (!slot)
2814 return -1;
2815
2816 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2817 if (ret <= 0)
2818 return -1;
2819
2820 for (i = 0; i < ret; i++, gfn++, start++) {
2821 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2822 page_to_pfn(pages[i]), true, true);
2823 put_page(pages[i]);
2824 }
2825
2826 return 0;
2827 }
2828
2829 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2830 struct kvm_mmu_page *sp, u64 *sptep)
2831 {
2832 u64 *spte, *start = NULL;
2833 int i;
2834
2835 WARN_ON(!sp->role.direct);
2836
2837 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2838 spte = sp->spt + i;
2839
2840 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2841 if (is_shadow_present_pte(*spte) || spte == sptep) {
2842 if (!start)
2843 continue;
2844 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2845 break;
2846 start = NULL;
2847 } else if (!start)
2848 start = spte;
2849 }
2850 }
2851
2852 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2853 {
2854 struct kvm_mmu_page *sp;
2855
2856 sp = sptep_to_sp(sptep);
2857
2858 /*
2859 * Without accessed bits, there's no way to distinguish between
2860 * actually accessed translations and prefetched, so disable pte
2861 * prefetch if accessed bits aren't available.
2862 */
2863 if (sp_ad_disabled(sp))
2864 return;
2865
2866 if (sp->role.level > PG_LEVEL_4K)
2867 return;
2868
2869 /*
2870 * If addresses are being invalidated, skip prefetching to avoid
2871 * accidentally prefetching those addresses.
2872 */
2873 if (unlikely(vcpu->kvm->mmu_notifier_count))
2874 return;
2875
2876 __direct_pte_prefetch(vcpu, sp, sptep);
2877 }
2878
2879 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2880 const struct kvm_memory_slot *slot)
2881 {
2882 unsigned long hva;
2883 pte_t *pte;
2884 int level;
2885
2886 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2887 return PG_LEVEL_4K;
2888
2889 /*
2890 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2891 * is not solely for performance, it's also necessary to avoid the
2892 * "writable" check in __gfn_to_hva_many(), which will always fail on
2893 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2894 * page fault steps have already verified the guest isn't writing a
2895 * read-only memslot.
2896 */
2897 hva = __gfn_to_hva_memslot(slot, gfn);
2898
2899 pte = lookup_address_in_mm(kvm->mm, hva, &level);
2900 if (unlikely(!pte))
2901 return PG_LEVEL_4K;
2902
2903 return level;
2904 }
2905
2906 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2907 const struct kvm_memory_slot *slot, gfn_t gfn,
2908 kvm_pfn_t pfn, int max_level)
2909 {
2910 struct kvm_lpage_info *linfo;
2911 int host_level;
2912
2913 max_level = min(max_level, max_huge_page_level);
2914 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2915 linfo = lpage_info_slot(gfn, slot, max_level);
2916 if (!linfo->disallow_lpage)
2917 break;
2918 }
2919
2920 if (max_level == PG_LEVEL_4K)
2921 return PG_LEVEL_4K;
2922
2923 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2924 return min(host_level, max_level);
2925 }
2926
2927 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2928 int max_level, kvm_pfn_t *pfnp,
2929 bool huge_page_disallowed, int *req_level)
2930 {
2931 struct kvm_memory_slot *slot;
2932 kvm_pfn_t pfn = *pfnp;
2933 kvm_pfn_t mask;
2934 int level;
2935
2936 *req_level = PG_LEVEL_4K;
2937
2938 if (unlikely(max_level == PG_LEVEL_4K))
2939 return PG_LEVEL_4K;
2940
2941 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2942 return PG_LEVEL_4K;
2943
2944 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2945 if (!slot)
2946 return PG_LEVEL_4K;
2947
2948 /*
2949 * Enforce the iTLB multihit workaround after capturing the requested
2950 * level, which will be used to do precise, accurate accounting.
2951 */
2952 *req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2953 if (level == PG_LEVEL_4K || huge_page_disallowed)
2954 return PG_LEVEL_4K;
2955
2956 /*
2957 * mmu_notifier_retry() was successful and mmu_lock is held, so
2958 * the pmd can't be split from under us.
2959 */
2960 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2961 VM_BUG_ON((gfn & mask) != (pfn & mask));
2962 *pfnp = pfn & ~mask;
2963
2964 return level;
2965 }
2966
2967 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2968 kvm_pfn_t *pfnp, int *goal_levelp)
2969 {
2970 int level = *goal_levelp;
2971
2972 if (cur_level == level && level > PG_LEVEL_4K &&
2973 is_shadow_present_pte(spte) &&
2974 !is_large_pte(spte)) {
2975 /*
2976 * A small SPTE exists for this pfn, but FNAME(fetch)
2977 * and __direct_map would like to create a large PTE
2978 * instead: just force them to go down another level,
2979 * patching back for them into pfn the next 9 bits of
2980 * the address.
2981 */
2982 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2983 KVM_PAGES_PER_HPAGE(level - 1);
2984 *pfnp |= gfn & page_mask;
2985 (*goal_levelp)--;
2986 }
2987 }
2988
2989 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2990 int map_writable, int max_level, kvm_pfn_t pfn,
2991 bool prefault, bool is_tdp)
2992 {
2993 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2994 bool write = error_code & PFERR_WRITE_MASK;
2995 bool exec = error_code & PFERR_FETCH_MASK;
2996 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2997 struct kvm_shadow_walk_iterator it;
2998 struct kvm_mmu_page *sp;
2999 int level, req_level, ret;
3000 gfn_t gfn = gpa >> PAGE_SHIFT;
3001 gfn_t base_gfn = gfn;
3002
3003 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
3004 huge_page_disallowed, &req_level);
3005
3006 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3007 for_each_shadow_entry(vcpu, gpa, it) {
3008 /*
3009 * We cannot overwrite existing page tables with an NX
3010 * large page, as the leaf could be executable.
3011 */
3012 if (nx_huge_page_workaround_enabled)
3013 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
3014 &pfn, &level);
3015
3016 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3017 if (it.level == level)
3018 break;
3019
3020 drop_large_spte(vcpu, it.sptep);
3021 if (is_shadow_present_pte(*it.sptep))
3022 continue;
3023
3024 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3025 it.level - 1, true, ACC_ALL);
3026
3027 link_shadow_page(vcpu, it.sptep, sp);
3028 if (is_tdp && huge_page_disallowed &&
3029 req_level >= it.level)
3030 account_huge_nx_page(vcpu->kvm, sp);
3031 }
3032
3033 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3034 write, level, base_gfn, pfn, prefault,
3035 map_writable);
3036 if (ret == RET_PF_SPURIOUS)
3037 return ret;
3038
3039 direct_pte_prefetch(vcpu, it.sptep);
3040 ++vcpu->stat.pf_fixed;
3041 return ret;
3042 }
3043
3044 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3045 {
3046 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3047 }
3048
3049 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3050 {
3051 /*
3052 * Do not cache the mmio info caused by writing the readonly gfn
3053 * into the spte otherwise read access on readonly gfn also can
3054 * caused mmio page fault and treat it as mmio access.
3055 */
3056 if (pfn == KVM_PFN_ERR_RO_FAULT)
3057 return RET_PF_EMULATE;
3058
3059 if (pfn == KVM_PFN_ERR_HWPOISON) {
3060 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3061 return RET_PF_RETRY;
3062 }
3063
3064 return -EFAULT;
3065 }
3066
3067 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3068 kvm_pfn_t pfn, unsigned int access,
3069 int *ret_val)
3070 {
3071 /* The pfn is invalid, report the error! */
3072 if (unlikely(is_error_pfn(pfn))) {
3073 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3074 return true;
3075 }
3076
3077 if (unlikely(is_noslot_pfn(pfn))) {
3078 vcpu_cache_mmio_info(vcpu, gva, gfn,
3079 access & shadow_mmio_access_mask);
3080 /*
3081 * If MMIO caching is disabled, emulate immediately without
3082 * touching the shadow page tables as attempting to install an
3083 * MMIO SPTE will just be an expensive nop.
3084 */
3085 if (unlikely(!shadow_mmio_value)) {
3086 *ret_val = RET_PF_EMULATE;
3087 return true;
3088 }
3089 }
3090
3091 return false;
3092 }
3093
3094 static bool page_fault_can_be_fast(u32 error_code)
3095 {
3096 /*
3097 * Do not fix the mmio spte with invalid generation number which
3098 * need to be updated by slow page fault path.
3099 */
3100 if (unlikely(error_code & PFERR_RSVD_MASK))
3101 return false;
3102
3103 /* See if the page fault is due to an NX violation */
3104 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106 return false;
3107
3108 /*
3109 * #PF can be fast if:
3110 * 1. The shadow page table entry is not present, which could mean that
3111 * the fault is potentially caused by access tracking (if enabled).
3112 * 2. The shadow page table entry is present and the fault
3113 * is caused by write-protect, that means we just need change the W
3114 * bit of the spte which can be done out of mmu-lock.
3115 *
3116 * However, if access tracking is disabled we know that a non-present
3117 * page must be a genuine page fault where we have to create a new SPTE.
3118 * So, if access tracking is disabled, we return true only for write
3119 * accesses to a present page.
3120 */
3121
3122 return shadow_acc_track_mask != 0 ||
3123 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3125 }
3126
3127 /*
3128 * Returns true if the SPTE was fixed successfully. Otherwise,
3129 * someone else modified the SPTE from its original value.
3130 */
3131 static bool
3132 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3133 u64 *sptep, u64 old_spte, u64 new_spte)
3134 {
3135 gfn_t gfn;
3136
3137 WARN_ON(!sp->role.direct);
3138
3139 /*
3140 * Theoretically we could also set dirty bit (and flush TLB) here in
3141 * order to eliminate unnecessary PML logging. See comments in
3142 * set_spte. But fast_page_fault is very unlikely to happen with PML
3143 * enabled, so we do not do this. This might result in the same GPA
3144 * to be logged in PML buffer again when the write really happens, and
3145 * eventually to be called by mark_page_dirty twice. But it's also no
3146 * harm. This also avoids the TLB flush needed after setting dirty bit
3147 * so non-PML cases won't be impacted.
3148 *
3149 * Compare with set_spte where instead shadow_dirty_mask is set.
3150 */
3151 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3152 return false;
3153
3154 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3155 /*
3156 * The gfn of direct spte is stable since it is
3157 * calculated by sp->gfn.
3158 */
3159 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161 }
3162
3163 return true;
3164 }
3165
3166 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167 {
3168 if (fault_err_code & PFERR_FETCH_MASK)
3169 return is_executable_pte(spte);
3170
3171 if (fault_err_code & PFERR_WRITE_MASK)
3172 return is_writable_pte(spte);
3173
3174 /* Fault was on Read access */
3175 return spte & PT_PRESENT_MASK;
3176 }
3177
3178 /*
3179 * Returns the last level spte pointer of the shadow page walk for the given
3180 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3181 * walk could be performed, returns NULL and *spte does not contain valid data.
3182 *
3183 * Contract:
3184 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3185 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3186 */
3187 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3188 {
3189 struct kvm_shadow_walk_iterator iterator;
3190 u64 old_spte;
3191 u64 *sptep = NULL;
3192
3193 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3194 sptep = iterator.sptep;
3195 *spte = old_spte;
3196
3197 if (!is_shadow_present_pte(old_spte))
3198 break;
3199 }
3200
3201 return sptep;
3202 }
3203
3204 /*
3205 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3206 */
3207 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3208 {
3209 struct kvm_mmu_page *sp;
3210 int ret = RET_PF_INVALID;
3211 u64 spte = 0ull;
3212 u64 *sptep = NULL;
3213 uint retry_count = 0;
3214
3215 if (!page_fault_can_be_fast(error_code))
3216 return ret;
3217
3218 walk_shadow_page_lockless_begin(vcpu);
3219
3220 do {
3221 u64 new_spte;
3222
3223 if (is_tdp_mmu(vcpu->arch.mmu))
3224 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
3225 else
3226 sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3227
3228 if (!is_shadow_present_pte(spte))
3229 break;
3230
3231 sp = sptep_to_sp(sptep);
3232 if (!is_last_spte(spte, sp->role.level))
3233 break;
3234
3235 /*
3236 * Check whether the memory access that caused the fault would
3237 * still cause it if it were to be performed right now. If not,
3238 * then this is a spurious fault caused by TLB lazily flushed,
3239 * or some other CPU has already fixed the PTE after the
3240 * current CPU took the fault.
3241 *
3242 * Need not check the access of upper level table entries since
3243 * they are always ACC_ALL.
3244 */
3245 if (is_access_allowed(error_code, spte)) {
3246 ret = RET_PF_SPURIOUS;
3247 break;
3248 }
3249
3250 new_spte = spte;
3251
3252 if (is_access_track_spte(spte))
3253 new_spte = restore_acc_track_spte(new_spte);
3254
3255 /*
3256 * Currently, to simplify the code, write-protection can
3257 * be removed in the fast path only if the SPTE was
3258 * write-protected for dirty-logging or access tracking.
3259 */
3260 if ((error_code & PFERR_WRITE_MASK) &&
3261 spte_can_locklessly_be_made_writable(spte)) {
3262 new_spte |= PT_WRITABLE_MASK;
3263
3264 /*
3265 * Do not fix write-permission on the large spte. Since
3266 * we only dirty the first page into the dirty-bitmap in
3267 * fast_pf_fix_direct_spte(), other pages are missed
3268 * if its slot has dirty logging enabled.
3269 *
3270 * Instead, we let the slow page fault path create a
3271 * normal spte to fix the access.
3272 *
3273 * See the comments in kvm_arch_commit_memory_region().
3274 */
3275 if (sp->role.level > PG_LEVEL_4K)
3276 break;
3277 }
3278
3279 /* Verify that the fault can be handled in the fast path */
3280 if (new_spte == spte ||
3281 !is_access_allowed(error_code, new_spte))
3282 break;
3283
3284 /*
3285 * Currently, fast page fault only works for direct mapping
3286 * since the gfn is not stable for indirect shadow page. See
3287 * Documentation/virt/kvm/locking.rst to get more detail.
3288 */
3289 if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3290 ret = RET_PF_FIXED;
3291 break;
3292 }
3293
3294 if (++retry_count > 4) {
3295 printk_once(KERN_WARNING
3296 "kvm: Fast #PF retrying more than 4 times.\n");
3297 break;
3298 }
3299
3300 } while (true);
3301
3302 trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3303 walk_shadow_page_lockless_end(vcpu);
3304
3305 return ret;
3306 }
3307
3308 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3309 struct list_head *invalid_list)
3310 {
3311 struct kvm_mmu_page *sp;
3312
3313 if (!VALID_PAGE(*root_hpa))
3314 return;
3315
3316 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3317
3318 if (is_tdp_mmu_page(sp))
3319 kvm_tdp_mmu_put_root(kvm, sp, false);
3320 else if (!--sp->root_count && sp->role.invalid)
3321 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3322
3323 *root_hpa = INVALID_PAGE;
3324 }
3325
3326 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3327 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3328 ulong roots_to_free)
3329 {
3330 struct kvm *kvm = vcpu->kvm;
3331 int i;
3332 LIST_HEAD(invalid_list);
3333 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3334
3335 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3336
3337 /* Before acquiring the MMU lock, see if we need to do any real work. */
3338 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3339 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3340 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3341 VALID_PAGE(mmu->prev_roots[i].hpa))
3342 break;
3343
3344 if (i == KVM_MMU_NUM_PREV_ROOTS)
3345 return;
3346 }
3347
3348 write_lock(&kvm->mmu_lock);
3349
3350 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3351 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3352 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3353 &invalid_list);
3354
3355 if (free_active_root) {
3356 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3357 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3358 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3359 } else if (mmu->pae_root) {
3360 for (i = 0; i < 4; ++i) {
3361 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3362 continue;
3363
3364 mmu_free_root_page(kvm, &mmu->pae_root[i],
3365 &invalid_list);
3366 mmu->pae_root[i] = INVALID_PAE_ROOT;
3367 }
3368 }
3369 mmu->root_hpa = INVALID_PAGE;
3370 mmu->root_pgd = 0;
3371 }
3372
3373 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3374 write_unlock(&kvm->mmu_lock);
3375 }
3376 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3377
3378 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3379 {
3380 unsigned long roots_to_free = 0;
3381 hpa_t root_hpa;
3382 int i;
3383
3384 /*
3385 * This should not be called while L2 is active, L2 can't invalidate
3386 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3387 */
3388 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3389
3390 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3391 root_hpa = mmu->prev_roots[i].hpa;
3392 if (!VALID_PAGE(root_hpa))
3393 continue;
3394
3395 if (!to_shadow_page(root_hpa) ||
3396 to_shadow_page(root_hpa)->role.guest_mode)
3397 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3398 }
3399
3400 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3401 }
3402 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3403
3404
3405 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3406 {
3407 int ret = 0;
3408
3409 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3410 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3411 ret = 1;
3412 }
3413
3414 return ret;
3415 }
3416
3417 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3418 u8 level, bool direct)
3419 {
3420 struct kvm_mmu_page *sp;
3421
3422 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3423 ++sp->root_count;
3424
3425 return __pa(sp->spt);
3426 }
3427
3428 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3429 {
3430 struct kvm_mmu *mmu = vcpu->arch.mmu;
3431 u8 shadow_root_level = mmu->shadow_root_level;
3432 hpa_t root;
3433 unsigned i;
3434 int r;
3435
3436 write_lock(&vcpu->kvm->mmu_lock);
3437 r = make_mmu_pages_available(vcpu);
3438 if (r < 0)
3439 goto out_unlock;
3440
3441 if (is_tdp_mmu_enabled(vcpu->kvm)) {
3442 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3443 mmu->root_hpa = root;
3444 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3445 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3446 mmu->root_hpa = root;
3447 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3448 if (WARN_ON_ONCE(!mmu->pae_root)) {
3449 r = -EIO;
3450 goto out_unlock;
3451 }
3452
3453 for (i = 0; i < 4; ++i) {
3454 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3455
3456 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3457 i << 30, PT32_ROOT_LEVEL, true);
3458 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3459 shadow_me_mask;
3460 }
3461 mmu->root_hpa = __pa(mmu->pae_root);
3462 } else {
3463 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3464 r = -EIO;
3465 goto out_unlock;
3466 }
3467
3468 /* root_pgd is ignored for direct MMUs. */
3469 mmu->root_pgd = 0;
3470 out_unlock:
3471 write_unlock(&vcpu->kvm->mmu_lock);
3472 return r;
3473 }
3474
3475 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3476 {
3477 struct kvm_mmu *mmu = vcpu->arch.mmu;
3478 u64 pdptrs[4], pm_mask;
3479 gfn_t root_gfn, root_pgd;
3480 hpa_t root;
3481 unsigned i;
3482 int r;
3483
3484 root_pgd = mmu->get_guest_pgd(vcpu);
3485 root_gfn = root_pgd >> PAGE_SHIFT;
3486
3487 if (mmu_check_root(vcpu, root_gfn))
3488 return 1;
3489
3490 /*
3491 * On SVM, reading PDPTRs might access guest memory, which might fault
3492 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3493 */
3494 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3495 for (i = 0; i < 4; ++i) {
3496 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3497 if (!(pdptrs[i] & PT_PRESENT_MASK))
3498 continue;
3499
3500 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3501 return 1;
3502 }
3503 }
3504
3505 r = alloc_all_memslots_rmaps(vcpu->kvm);
3506 if (r)
3507 return r;
3508
3509 write_lock(&vcpu->kvm->mmu_lock);
3510 r = make_mmu_pages_available(vcpu);
3511 if (r < 0)
3512 goto out_unlock;
3513
3514 /*
3515 * Do we shadow a long mode page table? If so we need to
3516 * write-protect the guests page table root.
3517 */
3518 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3519 root = mmu_alloc_root(vcpu, root_gfn, 0,
3520 mmu->shadow_root_level, false);
3521 mmu->root_hpa = root;
3522 goto set_root_pgd;
3523 }
3524
3525 if (WARN_ON_ONCE(!mmu->pae_root)) {
3526 r = -EIO;
3527 goto out_unlock;
3528 }
3529
3530 /*
3531 * We shadow a 32 bit page table. This may be a legacy 2-level
3532 * or a PAE 3-level page table. In either case we need to be aware that
3533 * the shadow page table may be a PAE or a long mode page table.
3534 */
3535 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3536 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3537 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3538
3539 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3540 r = -EIO;
3541 goto out_unlock;
3542 }
3543 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3544
3545 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3546 if (WARN_ON_ONCE(!mmu->pml5_root)) {
3547 r = -EIO;
3548 goto out_unlock;
3549 }
3550 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3551 }
3552 }
3553
3554 for (i = 0; i < 4; ++i) {
3555 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3556
3557 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3558 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3559 mmu->pae_root[i] = INVALID_PAE_ROOT;
3560 continue;
3561 }
3562 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3563 }
3564
3565 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3566 PT32_ROOT_LEVEL, false);
3567 mmu->pae_root[i] = root | pm_mask;
3568 }
3569
3570 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3571 mmu->root_hpa = __pa(mmu->pml5_root);
3572 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3573 mmu->root_hpa = __pa(mmu->pml4_root);
3574 else
3575 mmu->root_hpa = __pa(mmu->pae_root);
3576
3577 set_root_pgd:
3578 mmu->root_pgd = root_pgd;
3579 out_unlock:
3580 write_unlock(&vcpu->kvm->mmu_lock);
3581
3582 return 0;
3583 }
3584
3585 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3586 {
3587 struct kvm_mmu *mmu = vcpu->arch.mmu;
3588 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3589 u64 *pml5_root = NULL;
3590 u64 *pml4_root = NULL;
3591 u64 *pae_root;
3592
3593 /*
3594 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3595 * tables are allocated and initialized at root creation as there is no
3596 * equivalent level in the guest's NPT to shadow. Allocate the tables
3597 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3598 */
3599 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3600 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3601 return 0;
3602
3603 /*
3604 * NPT, the only paging mode that uses this horror, uses a fixed number
3605 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3606 * all MMus are 5-level. Thus, this can safely require that pml5_root
3607 * is allocated if the other roots are valid and pml5 is needed, as any
3608 * prior MMU would also have required pml5.
3609 */
3610 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3611 return 0;
3612
3613 /*
3614 * The special roots should always be allocated in concert. Yell and
3615 * bail if KVM ends up in a state where only one of the roots is valid.
3616 */
3617 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3618 (need_pml5 && mmu->pml5_root)))
3619 return -EIO;
3620
3621 /*
3622 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3623 * doesn't need to be decrypted.
3624 */
3625 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3626 if (!pae_root)
3627 return -ENOMEM;
3628
3629 #ifdef CONFIG_X86_64
3630 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3631 if (!pml4_root)
3632 goto err_pml4;
3633
3634 if (need_pml5) {
3635 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3636 if (!pml5_root)
3637 goto err_pml5;
3638 }
3639 #endif
3640
3641 mmu->pae_root = pae_root;
3642 mmu->pml4_root = pml4_root;
3643 mmu->pml5_root = pml5_root;
3644
3645 return 0;
3646
3647 #ifdef CONFIG_X86_64
3648 err_pml5:
3649 free_page((unsigned long)pml4_root);
3650 err_pml4:
3651 free_page((unsigned long)pae_root);
3652 return -ENOMEM;
3653 #endif
3654 }
3655
3656 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3657 {
3658 int i;
3659 struct kvm_mmu_page *sp;
3660
3661 if (vcpu->arch.mmu->direct_map)
3662 return;
3663
3664 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3665 return;
3666
3667 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3668
3669 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3670 hpa_t root = vcpu->arch.mmu->root_hpa;
3671 sp = to_shadow_page(root);
3672
3673 /*
3674 * Even if another CPU was marking the SP as unsync-ed
3675 * simultaneously, any guest page table changes are not
3676 * guaranteed to be visible anyway until this VCPU issues a TLB
3677 * flush strictly after those changes are made. We only need to
3678 * ensure that the other CPU sets these flags before any actual
3679 * changes to the page tables are made. The comments in
3680 * mmu_try_to_unsync_pages() describe what could go wrong if
3681 * this requirement isn't satisfied.
3682 */
3683 if (!smp_load_acquire(&sp->unsync) &&
3684 !smp_load_acquire(&sp->unsync_children))
3685 return;
3686
3687 write_lock(&vcpu->kvm->mmu_lock);
3688 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3689
3690 mmu_sync_children(vcpu, sp, true);
3691
3692 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3693 write_unlock(&vcpu->kvm->mmu_lock);
3694 return;
3695 }
3696
3697 write_lock(&vcpu->kvm->mmu_lock);
3698 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3699
3700 for (i = 0; i < 4; ++i) {
3701 hpa_t root = vcpu->arch.mmu->pae_root[i];
3702
3703 if (IS_VALID_PAE_ROOT(root)) {
3704 root &= PT64_BASE_ADDR_MASK;
3705 sp = to_shadow_page(root);
3706 mmu_sync_children(vcpu, sp, true);
3707 }
3708 }
3709
3710 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3711 write_unlock(&vcpu->kvm->mmu_lock);
3712 }
3713
3714 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3715 u32 access, struct x86_exception *exception)
3716 {
3717 if (exception)
3718 exception->error_code = 0;
3719 return vaddr;
3720 }
3721
3722 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3723 u32 access,
3724 struct x86_exception *exception)
3725 {
3726 if (exception)
3727 exception->error_code = 0;
3728 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3729 }
3730
3731 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3732 {
3733 /*
3734 * A nested guest cannot use the MMIO cache if it is using nested
3735 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3736 */
3737 if (mmu_is_nested(vcpu))
3738 return false;
3739
3740 if (direct)
3741 return vcpu_match_mmio_gpa(vcpu, addr);
3742
3743 return vcpu_match_mmio_gva(vcpu, addr);
3744 }
3745
3746 /*
3747 * Return the level of the lowest level SPTE added to sptes.
3748 * That SPTE may be non-present.
3749 *
3750 * Must be called between walk_shadow_page_lockless_{begin,end}.
3751 */
3752 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3753 {
3754 struct kvm_shadow_walk_iterator iterator;
3755 int leaf = -1;
3756 u64 spte;
3757
3758 for (shadow_walk_init(&iterator, vcpu, addr),
3759 *root_level = iterator.level;
3760 shadow_walk_okay(&iterator);
3761 __shadow_walk_next(&iterator, spte)) {
3762 leaf = iterator.level;
3763 spte = mmu_spte_get_lockless(iterator.sptep);
3764
3765 sptes[leaf] = spte;
3766
3767 if (!is_shadow_present_pte(spte))
3768 break;
3769 }
3770
3771 return leaf;
3772 }
3773
3774 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3775 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3776 {
3777 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3778 struct rsvd_bits_validate *rsvd_check;
3779 int root, leaf, level;
3780 bool reserved = false;
3781
3782 walk_shadow_page_lockless_begin(vcpu);
3783
3784 if (is_tdp_mmu(vcpu->arch.mmu))
3785 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3786 else
3787 leaf = get_walk(vcpu, addr, sptes, &root);
3788
3789 walk_shadow_page_lockless_end(vcpu);
3790
3791 if (unlikely(leaf < 0)) {
3792 *sptep = 0ull;
3793 return reserved;
3794 }
3795
3796 *sptep = sptes[leaf];
3797
3798 /*
3799 * Skip reserved bits checks on the terminal leaf if it's not a valid
3800 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3801 * design, always have reserved bits set. The purpose of the checks is
3802 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3803 */
3804 if (!is_shadow_present_pte(sptes[leaf]))
3805 leaf++;
3806
3807 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3808
3809 for (level = root; level >= leaf; level--)
3810 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3811
3812 if (reserved) {
3813 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3814 __func__, addr);
3815 for (level = root; level >= leaf; level--)
3816 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3817 sptes[level], level,
3818 get_rsvd_bits(rsvd_check, sptes[level], level));
3819 }
3820
3821 return reserved;
3822 }
3823
3824 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3825 {
3826 u64 spte;
3827 bool reserved;
3828
3829 if (mmio_info_in_cache(vcpu, addr, direct))
3830 return RET_PF_EMULATE;
3831
3832 reserved = get_mmio_spte(vcpu, addr, &spte);
3833 if (WARN_ON(reserved))
3834 return -EINVAL;
3835
3836 if (is_mmio_spte(spte)) {
3837 gfn_t gfn = get_mmio_spte_gfn(spte);
3838 unsigned int access = get_mmio_spte_access(spte);
3839
3840 if (!check_mmio_spte(vcpu, spte))
3841 return RET_PF_INVALID;
3842
3843 if (direct)
3844 addr = 0;
3845
3846 trace_handle_mmio_page_fault(addr, gfn, access);
3847 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3848 return RET_PF_EMULATE;
3849 }
3850
3851 /*
3852 * If the page table is zapped by other cpus, let CPU fault again on
3853 * the address.
3854 */
3855 return RET_PF_RETRY;
3856 }
3857
3858 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3859 u32 error_code, gfn_t gfn)
3860 {
3861 if (unlikely(error_code & PFERR_RSVD_MASK))
3862 return false;
3863
3864 if (!(error_code & PFERR_PRESENT_MASK) ||
3865 !(error_code & PFERR_WRITE_MASK))
3866 return false;
3867
3868 /*
3869 * guest is writing the page which is write tracked which can
3870 * not be fixed by page fault handler.
3871 */
3872 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3873 return true;
3874
3875 return false;
3876 }
3877
3878 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3879 {
3880 struct kvm_shadow_walk_iterator iterator;
3881 u64 spte;
3882
3883 walk_shadow_page_lockless_begin(vcpu);
3884 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3885 clear_sp_write_flooding_count(iterator.sptep);
3886 if (!is_shadow_present_pte(spte))
3887 break;
3888 }
3889 walk_shadow_page_lockless_end(vcpu);
3890 }
3891
3892 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3893 gfn_t gfn)
3894 {
3895 struct kvm_arch_async_pf arch;
3896
3897 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3898 arch.gfn = gfn;
3899 arch.direct_map = vcpu->arch.mmu->direct_map;
3900 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3901
3902 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3903 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3904 }
3905
3906 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3907 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3908 bool write, bool *writable, int *r)
3909 {
3910 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3911 bool async;
3912
3913 /*
3914 * Retry the page fault if the gfn hit a memslot that is being deleted
3915 * or moved. This ensures any existing SPTEs for the old memslot will
3916 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3917 */
3918 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3919 goto out_retry;
3920
3921 if (!kvm_is_visible_memslot(slot)) {
3922 /* Don't expose private memslots to L2. */
3923 if (is_guest_mode(vcpu)) {
3924 *pfn = KVM_PFN_NOSLOT;
3925 *writable = false;
3926 return false;
3927 }
3928 /*
3929 * If the APIC access page exists but is disabled, go directly
3930 * to emulation without caching the MMIO access or creating a
3931 * MMIO SPTE. That way the cache doesn't need to be purged
3932 * when the AVIC is re-enabled.
3933 */
3934 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3935 !kvm_apicv_activated(vcpu->kvm)) {
3936 *r = RET_PF_EMULATE;
3937 return true;
3938 }
3939 }
3940
3941 async = false;
3942 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3943 write, writable, hva);
3944 if (!async)
3945 return false; /* *pfn has correct page already */
3946
3947 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3948 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3949 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3950 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3951 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3952 goto out_retry;
3953 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3954 goto out_retry;
3955 }
3956
3957 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3958 write, writable, hva);
3959
3960 out_retry:
3961 *r = RET_PF_RETRY;
3962 return true;
3963 }
3964
3965 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3966 bool prefault, int max_level, bool is_tdp)
3967 {
3968 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3969 bool write = error_code & PFERR_WRITE_MASK;
3970 bool map_writable;
3971
3972 gfn_t gfn = gpa >> PAGE_SHIFT;
3973 unsigned long mmu_seq;
3974 kvm_pfn_t pfn;
3975 hva_t hva;
3976 int r;
3977
3978 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3979 return RET_PF_EMULATE;
3980
3981 r = fast_page_fault(vcpu, gpa, error_code);
3982 if (r != RET_PF_INVALID)
3983 return r;
3984
3985 r = mmu_topup_memory_caches(vcpu, false);
3986 if (r)
3987 return r;
3988
3989 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3990 smp_rmb();
3991
3992 if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
3993 write, &map_writable, &r))
3994 return r;
3995
3996 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3997 return r;
3998
3999 r = RET_PF_RETRY;
4000
4001 if (is_tdp_mmu_fault)
4002 read_lock(&vcpu->kvm->mmu_lock);
4003 else
4004 write_lock(&vcpu->kvm->mmu_lock);
4005
4006 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
4007 goto out_unlock;
4008 r = make_mmu_pages_available(vcpu);
4009 if (r)
4010 goto out_unlock;
4011
4012 if (is_tdp_mmu_fault)
4013 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
4014 pfn, prefault);
4015 else
4016 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
4017 prefault, is_tdp);
4018
4019 out_unlock:
4020 if (is_tdp_mmu_fault)
4021 read_unlock(&vcpu->kvm->mmu_lock);
4022 else
4023 write_unlock(&vcpu->kvm->mmu_lock);
4024 kvm_release_pfn_clean(pfn);
4025 return r;
4026 }
4027
4028 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4029 u32 error_code, bool prefault)
4030 {
4031 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4032
4033 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4034 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4035 PG_LEVEL_2M, false);
4036 }
4037
4038 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4039 u64 fault_address, char *insn, int insn_len)
4040 {
4041 int r = 1;
4042 u32 flags = vcpu->arch.apf.host_apf_flags;
4043
4044 #ifndef CONFIG_X86_64
4045 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4046 if (WARN_ON_ONCE(fault_address >> 32))
4047 return -EFAULT;
4048 #endif
4049
4050 vcpu->arch.l1tf_flush_l1d = true;
4051 if (!flags) {
4052 trace_kvm_page_fault(fault_address, error_code);
4053
4054 if (kvm_event_needs_reinjection(vcpu))
4055 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4056 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4057 insn_len);
4058 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4059 vcpu->arch.apf.host_apf_flags = 0;
4060 local_irq_disable();
4061 kvm_async_pf_task_wait_schedule(fault_address);
4062 local_irq_enable();
4063 } else {
4064 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4065 }
4066
4067 return r;
4068 }
4069 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4070
4071 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4072 bool prefault)
4073 {
4074 int max_level;
4075
4076 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4077 max_level > PG_LEVEL_4K;
4078 max_level--) {
4079 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4080 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4081
4082 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4083 break;
4084 }
4085
4086 return direct_page_fault(vcpu, gpa, error_code, prefault,
4087 max_level, true);
4088 }
4089
4090 static void nonpaging_init_context(struct kvm_mmu *context)
4091 {
4092 context->page_fault = nonpaging_page_fault;
4093 context->gva_to_gpa = nonpaging_gva_to_gpa;
4094 context->sync_page = nonpaging_sync_page;
4095 context->invlpg = NULL;
4096 context->direct_map = true;
4097 }
4098
4099 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4100 union kvm_mmu_page_role role)
4101 {
4102 return (role.direct || pgd == root->pgd) &&
4103 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4104 role.word == to_shadow_page(root->hpa)->role.word;
4105 }
4106
4107 /*
4108 * Find out if a previously cached root matching the new pgd/role is available.
4109 * The current root is also inserted into the cache.
4110 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4111 * returned.
4112 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4113 * false is returned. This root should now be freed by the caller.
4114 */
4115 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4116 union kvm_mmu_page_role new_role)
4117 {
4118 uint i;
4119 struct kvm_mmu_root_info root;
4120 struct kvm_mmu *mmu = vcpu->arch.mmu;
4121
4122 root.pgd = mmu->root_pgd;
4123 root.hpa = mmu->root_hpa;
4124
4125 if (is_root_usable(&root, new_pgd, new_role))
4126 return true;
4127
4128 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4129 swap(root, mmu->prev_roots[i]);
4130
4131 if (is_root_usable(&root, new_pgd, new_role))
4132 break;
4133 }
4134
4135 mmu->root_hpa = root.hpa;
4136 mmu->root_pgd = root.pgd;
4137
4138 return i < KVM_MMU_NUM_PREV_ROOTS;
4139 }
4140
4141 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4142 union kvm_mmu_page_role new_role)
4143 {
4144 struct kvm_mmu *mmu = vcpu->arch.mmu;
4145
4146 /*
4147 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4148 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4149 * later if necessary.
4150 */
4151 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4152 mmu->root_level >= PT64_ROOT_4LEVEL)
4153 return cached_root_available(vcpu, new_pgd, new_role);
4154
4155 return false;
4156 }
4157
4158 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4159 union kvm_mmu_page_role new_role)
4160 {
4161 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4162 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4163 return;
4164 }
4165
4166 /*
4167 * It's possible that the cached previous root page is obsolete because
4168 * of a change in the MMU generation number. However, changing the
4169 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4170 * free the root set here and allocate a new one.
4171 */
4172 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4173
4174 if (force_flush_and_sync_on_reuse) {
4175 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4176 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4177 }
4178
4179 /*
4180 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4181 * switching to a new CR3, that GVA->GPA mapping may no longer be
4182 * valid. So clear any cached MMIO info even when we don't need to sync
4183 * the shadow page tables.
4184 */
4185 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4186
4187 /*
4188 * If this is a direct root page, it doesn't have a write flooding
4189 * count. Otherwise, clear the write flooding count.
4190 */
4191 if (!new_role.direct)
4192 __clear_sp_write_flooding_count(
4193 to_shadow_page(vcpu->arch.mmu->root_hpa));
4194 }
4195
4196 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4197 {
4198 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4199 }
4200 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4201
4202 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4203 {
4204 return kvm_read_cr3(vcpu);
4205 }
4206
4207 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4208 unsigned int access, int *nr_present)
4209 {
4210 if (unlikely(is_mmio_spte(*sptep))) {
4211 if (gfn != get_mmio_spte_gfn(*sptep)) {
4212 mmu_spte_clear_no_track(sptep);
4213 return true;
4214 }
4215
4216 (*nr_present)++;
4217 mark_mmio_spte(vcpu, sptep, gfn, access);
4218 return true;
4219 }
4220
4221 return false;
4222 }
4223
4224 #define PTTYPE_EPT 18 /* arbitrary */
4225 #define PTTYPE PTTYPE_EPT
4226 #include "paging_tmpl.h"
4227 #undef PTTYPE
4228
4229 #define PTTYPE 64
4230 #include "paging_tmpl.h"
4231 #undef PTTYPE
4232
4233 #define PTTYPE 32
4234 #include "paging_tmpl.h"
4235 #undef PTTYPE
4236
4237 static void
4238 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4239 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4240 bool pse, bool amd)
4241 {
4242 u64 gbpages_bit_rsvd = 0;
4243 u64 nonleaf_bit8_rsvd = 0;
4244 u64 high_bits_rsvd;
4245
4246 rsvd_check->bad_mt_xwr = 0;
4247
4248 if (!gbpages)
4249 gbpages_bit_rsvd = rsvd_bits(7, 7);
4250
4251 if (level == PT32E_ROOT_LEVEL)
4252 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4253 else
4254 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4255
4256 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4257 if (!nx)
4258 high_bits_rsvd |= rsvd_bits(63, 63);
4259
4260 /*
4261 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4262 * leaf entries) on AMD CPUs only.
4263 */
4264 if (amd)
4265 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4266
4267 switch (level) {
4268 case PT32_ROOT_LEVEL:
4269 /* no rsvd bits for 2 level 4K page table entries */
4270 rsvd_check->rsvd_bits_mask[0][1] = 0;
4271 rsvd_check->rsvd_bits_mask[0][0] = 0;
4272 rsvd_check->rsvd_bits_mask[1][0] =
4273 rsvd_check->rsvd_bits_mask[0][0];
4274
4275 if (!pse) {
4276 rsvd_check->rsvd_bits_mask[1][1] = 0;
4277 break;
4278 }
4279
4280 if (is_cpuid_PSE36())
4281 /* 36bits PSE 4MB page */
4282 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4283 else
4284 /* 32 bits PSE 4MB page */
4285 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4286 break;
4287 case PT32E_ROOT_LEVEL:
4288 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4289 high_bits_rsvd |
4290 rsvd_bits(5, 8) |
4291 rsvd_bits(1, 2); /* PDPTE */
4292 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4293 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4294 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4295 rsvd_bits(13, 20); /* large page */
4296 rsvd_check->rsvd_bits_mask[1][0] =
4297 rsvd_check->rsvd_bits_mask[0][0];
4298 break;
4299 case PT64_ROOT_5LEVEL:
4300 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4301 nonleaf_bit8_rsvd |
4302 rsvd_bits(7, 7);
4303 rsvd_check->rsvd_bits_mask[1][4] =
4304 rsvd_check->rsvd_bits_mask[0][4];
4305 fallthrough;
4306 case PT64_ROOT_4LEVEL:
4307 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4308 nonleaf_bit8_rsvd |
4309 rsvd_bits(7, 7);
4310 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4311 gbpages_bit_rsvd;
4312 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4313 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4314 rsvd_check->rsvd_bits_mask[1][3] =
4315 rsvd_check->rsvd_bits_mask[0][3];
4316 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4317 gbpages_bit_rsvd |
4318 rsvd_bits(13, 29);
4319 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4320 rsvd_bits(13, 20); /* large page */
4321 rsvd_check->rsvd_bits_mask[1][0] =
4322 rsvd_check->rsvd_bits_mask[0][0];
4323 break;
4324 }
4325 }
4326
4327 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4328 {
4329 /*
4330 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4331 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
4332 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4333 * walk for performance and complexity reasons. Not to mention KVM
4334 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4335 * KVM once a TDP translation is installed. Mimic hardware behavior so
4336 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4337 */
4338 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4339 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4340 }
4341
4342 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4343 struct kvm_mmu *context)
4344 {
4345 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4346 vcpu->arch.reserved_gpa_bits,
4347 context->root_level, is_efer_nx(context),
4348 guest_can_use_gbpages(vcpu),
4349 is_cr4_pse(context),
4350 guest_cpuid_is_amd_or_hygon(vcpu));
4351 }
4352
4353 static void
4354 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4355 u64 pa_bits_rsvd, bool execonly)
4356 {
4357 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4358 u64 bad_mt_xwr;
4359
4360 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4361 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4362 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4363 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4364 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4365
4366 /* large page */
4367 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4368 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4369 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4370 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4371 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4372
4373 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4374 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4375 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4376 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4377 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4378 if (!execonly) {
4379 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4380 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4381 }
4382 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4383 }
4384
4385 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4386 struct kvm_mmu *context, bool execonly)
4387 {
4388 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4389 vcpu->arch.reserved_gpa_bits, execonly);
4390 }
4391
4392 static inline u64 reserved_hpa_bits(void)
4393 {
4394 return rsvd_bits(shadow_phys_bits, 63);
4395 }
4396
4397 /*
4398 * the page table on host is the shadow page table for the page
4399 * table in guest or amd nested guest, its mmu features completely
4400 * follow the features in guest.
4401 */
4402 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4403 struct kvm_mmu *context)
4404 {
4405 /*
4406 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4407 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4408 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4409 * The iTLB multi-hit workaround can be toggled at any time, so assume
4410 * NX can be used by any non-nested shadow MMU to avoid having to reset
4411 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled.
4412 */
4413 bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4414
4415 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4416 bool is_amd = true;
4417 /* KVM doesn't use 2-level page tables for the shadow MMU. */
4418 bool is_pse = false;
4419 struct rsvd_bits_validate *shadow_zero_check;
4420 int i;
4421
4422 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4423
4424 shadow_zero_check = &context->shadow_zero_check;
4425 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4426 context->shadow_root_level, uses_nx,
4427 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4428
4429 if (!shadow_me_mask)
4430 return;
4431
4432 for (i = context->shadow_root_level; --i >= 0;) {
4433 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4434 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4435 }
4436
4437 }
4438
4439 static inline bool boot_cpu_is_amd(void)
4440 {
4441 WARN_ON_ONCE(!tdp_enabled);
4442 return shadow_x_mask == 0;
4443 }
4444
4445 /*
4446 * the direct page table on host, use as much mmu features as
4447 * possible, however, kvm currently does not do execution-protection.
4448 */
4449 static void
4450 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4451 struct kvm_mmu *context)
4452 {
4453 struct rsvd_bits_validate *shadow_zero_check;
4454 int i;
4455
4456 shadow_zero_check = &context->shadow_zero_check;
4457
4458 if (boot_cpu_is_amd())
4459 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4460 context->shadow_root_level, false,
4461 boot_cpu_has(X86_FEATURE_GBPAGES),
4462 false, true);
4463 else
4464 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4465 reserved_hpa_bits(), false);
4466
4467 if (!shadow_me_mask)
4468 return;
4469
4470 for (i = context->shadow_root_level; --i >= 0;) {
4471 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4472 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4473 }
4474 }
4475
4476 /*
4477 * as the comments in reset_shadow_zero_bits_mask() except it
4478 * is the shadow page table for intel nested guest.
4479 */
4480 static void
4481 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4482 struct kvm_mmu *context, bool execonly)
4483 {
4484 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4485 reserved_hpa_bits(), execonly);
4486 }
4487
4488 #define BYTE_MASK(access) \
4489 ((1 & (access) ? 2 : 0) | \
4490 (2 & (access) ? 4 : 0) | \
4491 (3 & (access) ? 8 : 0) | \
4492 (4 & (access) ? 16 : 0) | \
4493 (5 & (access) ? 32 : 0) | \
4494 (6 & (access) ? 64 : 0) | \
4495 (7 & (access) ? 128 : 0))
4496
4497
4498 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4499 {
4500 unsigned byte;
4501
4502 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4503 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4504 const u8 u = BYTE_MASK(ACC_USER_MASK);
4505
4506 bool cr4_smep = is_cr4_smep(mmu);
4507 bool cr4_smap = is_cr4_smap(mmu);
4508 bool cr0_wp = is_cr0_wp(mmu);
4509 bool efer_nx = is_efer_nx(mmu);
4510
4511 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4512 unsigned pfec = byte << 1;
4513
4514 /*
4515 * Each "*f" variable has a 1 bit for each UWX value
4516 * that causes a fault with the given PFEC.
4517 */
4518
4519 /* Faults from writes to non-writable pages */
4520 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4521 /* Faults from user mode accesses to supervisor pages */
4522 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4523 /* Faults from fetches of non-executable pages*/
4524 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4525 /* Faults from kernel mode fetches of user pages */
4526 u8 smepf = 0;
4527 /* Faults from kernel mode accesses of user pages */
4528 u8 smapf = 0;
4529
4530 if (!ept) {
4531 /* Faults from kernel mode accesses to user pages */
4532 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4533
4534 /* Not really needed: !nx will cause pte.nx to fault */
4535 if (!efer_nx)
4536 ff = 0;
4537
4538 /* Allow supervisor writes if !cr0.wp */
4539 if (!cr0_wp)
4540 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4541
4542 /* Disallow supervisor fetches of user code if cr4.smep */
4543 if (cr4_smep)
4544 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4545
4546 /*
4547 * SMAP:kernel-mode data accesses from user-mode
4548 * mappings should fault. A fault is considered
4549 * as a SMAP violation if all of the following
4550 * conditions are true:
4551 * - X86_CR4_SMAP is set in CR4
4552 * - A user page is accessed
4553 * - The access is not a fetch
4554 * - Page fault in kernel mode
4555 * - if CPL = 3 or X86_EFLAGS_AC is clear
4556 *
4557 * Here, we cover the first three conditions.
4558 * The fourth is computed dynamically in permission_fault();
4559 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4560 * *not* subject to SMAP restrictions.
4561 */
4562 if (cr4_smap)
4563 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4564 }
4565
4566 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4567 }
4568 }
4569
4570 /*
4571 * PKU is an additional mechanism by which the paging controls access to
4572 * user-mode addresses based on the value in the PKRU register. Protection
4573 * key violations are reported through a bit in the page fault error code.
4574 * Unlike other bits of the error code, the PK bit is not known at the
4575 * call site of e.g. gva_to_gpa; it must be computed directly in
4576 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4577 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4578 *
4579 * In particular the following conditions come from the error code, the
4580 * page tables and the machine state:
4581 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4582 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4583 * - PK is always zero if U=0 in the page tables
4584 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4585 *
4586 * The PKRU bitmask caches the result of these four conditions. The error
4587 * code (minus the P bit) and the page table's U bit form an index into the
4588 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4589 * with the two bits of the PKRU register corresponding to the protection key.
4590 * For the first three conditions above the bits will be 00, thus masking
4591 * away both AD and WD. For all reads or if the last condition holds, WD
4592 * only will be masked away.
4593 */
4594 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4595 {
4596 unsigned bit;
4597 bool wp;
4598
4599 mmu->pkru_mask = 0;
4600
4601 if (!is_cr4_pke(mmu))
4602 return;
4603
4604 wp = is_cr0_wp(mmu);
4605
4606 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4607 unsigned pfec, pkey_bits;
4608 bool check_pkey, check_write, ff, uf, wf, pte_user;
4609
4610 pfec = bit << 1;
4611 ff = pfec & PFERR_FETCH_MASK;
4612 uf = pfec & PFERR_USER_MASK;
4613 wf = pfec & PFERR_WRITE_MASK;
4614
4615 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4616 pte_user = pfec & PFERR_RSVD_MASK;
4617
4618 /*
4619 * Only need to check the access which is not an
4620 * instruction fetch and is to a user page.
4621 */
4622 check_pkey = (!ff && pte_user);
4623 /*
4624 * write access is controlled by PKRU if it is a
4625 * user access or CR0.WP = 1.
4626 */
4627 check_write = check_pkey && wf && (uf || wp);
4628
4629 /* PKRU.AD stops both read and write access. */
4630 pkey_bits = !!check_pkey;
4631 /* PKRU.WD stops write access. */
4632 pkey_bits |= (!!check_write) << 1;
4633
4634 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4635 }
4636 }
4637
4638 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4639 struct kvm_mmu *mmu)
4640 {
4641 if (!is_cr0_pg(mmu))
4642 return;
4643
4644 reset_rsvds_bits_mask(vcpu, mmu);
4645 update_permission_bitmask(mmu, false);
4646 update_pkru_bitmask(mmu);
4647 }
4648
4649 static void paging64_init_context(struct kvm_mmu *context)
4650 {
4651 context->page_fault = paging64_page_fault;
4652 context->gva_to_gpa = paging64_gva_to_gpa;
4653 context->sync_page = paging64_sync_page;
4654 context->invlpg = paging64_invlpg;
4655 context->direct_map = false;
4656 }
4657
4658 static void paging32_init_context(struct kvm_mmu *context)
4659 {
4660 context->page_fault = paging32_page_fault;
4661 context->gva_to_gpa = paging32_gva_to_gpa;
4662 context->sync_page = paging32_sync_page;
4663 context->invlpg = paging32_invlpg;
4664 context->direct_map = false;
4665 }
4666
4667 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4668 struct kvm_mmu_role_regs *regs)
4669 {
4670 union kvm_mmu_extended_role ext = {0};
4671
4672 if (____is_cr0_pg(regs)) {
4673 ext.cr0_pg = 1;
4674 ext.cr4_pae = ____is_cr4_pae(regs);
4675 ext.cr4_smep = ____is_cr4_smep(regs);
4676 ext.cr4_smap = ____is_cr4_smap(regs);
4677 ext.cr4_pse = ____is_cr4_pse(regs);
4678
4679 /* PKEY and LA57 are active iff long mode is active. */
4680 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4681 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4682 ext.efer_lma = ____is_efer_lma(regs);
4683 }
4684
4685 ext.valid = 1;
4686
4687 return ext;
4688 }
4689
4690 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4691 struct kvm_mmu_role_regs *regs,
4692 bool base_only)
4693 {
4694 union kvm_mmu_role role = {0};
4695
4696 role.base.access = ACC_ALL;
4697 if (____is_cr0_pg(regs)) {
4698 role.base.efer_nx = ____is_efer_nx(regs);
4699 role.base.cr0_wp = ____is_cr0_wp(regs);
4700 }
4701 role.base.smm = is_smm(vcpu);
4702 role.base.guest_mode = is_guest_mode(vcpu);
4703
4704 if (base_only)
4705 return role;
4706
4707 role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4708
4709 return role;
4710 }
4711
4712 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4713 {
4714 /* tdp_root_level is architecture forced level, use it if nonzero */
4715 if (tdp_root_level)
4716 return tdp_root_level;
4717
4718 /* Use 5-level TDP if and only if it's useful/necessary. */
4719 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4720 return 4;
4721
4722 return max_tdp_level;
4723 }
4724
4725 static union kvm_mmu_role
4726 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4727 struct kvm_mmu_role_regs *regs, bool base_only)
4728 {
4729 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4730
4731 role.base.ad_disabled = (shadow_accessed_mask == 0);
4732 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4733 role.base.direct = true;
4734 role.base.gpte_is_8_bytes = true;
4735
4736 return role;
4737 }
4738
4739 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4740 {
4741 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4742 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4743 union kvm_mmu_role new_role =
4744 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4745
4746 if (new_role.as_u64 == context->mmu_role.as_u64)
4747 return;
4748
4749 context->mmu_role.as_u64 = new_role.as_u64;
4750 context->page_fault = kvm_tdp_page_fault;
4751 context->sync_page = nonpaging_sync_page;
4752 context->invlpg = NULL;
4753 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4754 context->direct_map = true;
4755 context->get_guest_pgd = get_cr3;
4756 context->get_pdptr = kvm_pdptr_read;
4757 context->inject_page_fault = kvm_inject_page_fault;
4758 context->root_level = role_regs_to_root_level(&regs);
4759
4760 if (!is_cr0_pg(context))
4761 context->gva_to_gpa = nonpaging_gva_to_gpa;
4762 else if (is_cr4_pae(context))
4763 context->gva_to_gpa = paging64_gva_to_gpa;
4764 else
4765 context->gva_to_gpa = paging32_gva_to_gpa;
4766
4767 reset_guest_paging_metadata(vcpu, context);
4768 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4769 }
4770
4771 static union kvm_mmu_role
4772 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4773 struct kvm_mmu_role_regs *regs, bool base_only)
4774 {
4775 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4776
4777 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4778 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4779 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4780
4781 return role;
4782 }
4783
4784 static union kvm_mmu_role
4785 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4786 struct kvm_mmu_role_regs *regs, bool base_only)
4787 {
4788 union kvm_mmu_role role =
4789 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4790
4791 role.base.direct = !____is_cr0_pg(regs);
4792
4793 if (!____is_efer_lma(regs))
4794 role.base.level = PT32E_ROOT_LEVEL;
4795 else if (____is_cr4_la57(regs))
4796 role.base.level = PT64_ROOT_5LEVEL;
4797 else
4798 role.base.level = PT64_ROOT_4LEVEL;
4799
4800 return role;
4801 }
4802
4803 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4804 struct kvm_mmu_role_regs *regs,
4805 union kvm_mmu_role new_role)
4806 {
4807 if (new_role.as_u64 == context->mmu_role.as_u64)
4808 return;
4809
4810 context->mmu_role.as_u64 = new_role.as_u64;
4811
4812 if (!is_cr0_pg(context))
4813 nonpaging_init_context(context);
4814 else if (is_cr4_pae(context))
4815 paging64_init_context(context);
4816 else
4817 paging32_init_context(context);
4818 context->root_level = role_regs_to_root_level(regs);
4819
4820 reset_guest_paging_metadata(vcpu, context);
4821 context->shadow_root_level = new_role.base.level;
4822
4823 reset_shadow_zero_bits_mask(vcpu, context);
4824 }
4825
4826 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4827 struct kvm_mmu_role_regs *regs)
4828 {
4829 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4830 union kvm_mmu_role new_role =
4831 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4832
4833 shadow_mmu_init_context(vcpu, context, regs, new_role);
4834 }
4835
4836 static union kvm_mmu_role
4837 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4838 struct kvm_mmu_role_regs *regs)
4839 {
4840 union kvm_mmu_role role =
4841 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4842
4843 role.base.direct = false;
4844 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4845
4846 return role;
4847 }
4848
4849 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4850 unsigned long cr4, u64 efer, gpa_t nested_cr3)
4851 {
4852 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4853 struct kvm_mmu_role_regs regs = {
4854 .cr0 = cr0,
4855 .cr4 = cr4 & ~X86_CR4_PKE,
4856 .efer = efer,
4857 };
4858 union kvm_mmu_role new_role;
4859
4860 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4861
4862 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4863
4864 shadow_mmu_init_context(vcpu, context, &regs, new_role);
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4867
4868 static union kvm_mmu_role
4869 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4870 bool execonly, u8 level)
4871 {
4872 union kvm_mmu_role role = {0};
4873
4874 /* SMM flag is inherited from root_mmu */
4875 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4876
4877 role.base.level = level;
4878 role.base.gpte_is_8_bytes = true;
4879 role.base.direct = false;
4880 role.base.ad_disabled = !accessed_dirty;
4881 role.base.guest_mode = true;
4882 role.base.access = ACC_ALL;
4883
4884 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4885 role.ext.word = 0;
4886 role.ext.execonly = execonly;
4887 role.ext.valid = 1;
4888
4889 return role;
4890 }
4891
4892 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4893 bool accessed_dirty, gpa_t new_eptp)
4894 {
4895 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4896 u8 level = vmx_eptp_page_walk_level(new_eptp);
4897 union kvm_mmu_role new_role =
4898 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4899 execonly, level);
4900
4901 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4902
4903 if (new_role.as_u64 == context->mmu_role.as_u64)
4904 return;
4905
4906 context->mmu_role.as_u64 = new_role.as_u64;
4907
4908 context->shadow_root_level = level;
4909
4910 context->ept_ad = accessed_dirty;
4911 context->page_fault = ept_page_fault;
4912 context->gva_to_gpa = ept_gva_to_gpa;
4913 context->sync_page = ept_sync_page;
4914 context->invlpg = ept_invlpg;
4915 context->root_level = level;
4916 context->direct_map = false;
4917
4918 update_permission_bitmask(context, true);
4919 context->pkru_mask = 0;
4920 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4921 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4922 }
4923 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4924
4925 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4926 {
4927 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4928 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4929
4930 kvm_init_shadow_mmu(vcpu, &regs);
4931
4932 context->get_guest_pgd = get_cr3;
4933 context->get_pdptr = kvm_pdptr_read;
4934 context->inject_page_fault = kvm_inject_page_fault;
4935 }
4936
4937 static union kvm_mmu_role
4938 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4939 {
4940 union kvm_mmu_role role;
4941
4942 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4943
4944 /*
4945 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4946 * shadow pages of their own and so "direct" has no meaning. Set it
4947 * to "true" to try to detect bogus usage of the nested MMU.
4948 */
4949 role.base.direct = true;
4950 role.base.level = role_regs_to_root_level(regs);
4951 return role;
4952 }
4953
4954 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4955 {
4956 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4957 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4958 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4959
4960 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4961 return;
4962
4963 g_context->mmu_role.as_u64 = new_role.as_u64;
4964 g_context->get_guest_pgd = get_cr3;
4965 g_context->get_pdptr = kvm_pdptr_read;
4966 g_context->inject_page_fault = kvm_inject_page_fault;
4967 g_context->root_level = new_role.base.level;
4968
4969 /*
4970 * L2 page tables are never shadowed, so there is no need to sync
4971 * SPTEs.
4972 */
4973 g_context->invlpg = NULL;
4974
4975 /*
4976 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4977 * L1's nested page tables (e.g. EPT12). The nested translation
4978 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4979 * L2's page tables as the first level of translation and L1's
4980 * nested page tables as the second level of translation. Basically
4981 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4982 */
4983 if (!is_paging(vcpu))
4984 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4985 else if (is_long_mode(vcpu))
4986 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4987 else if (is_pae(vcpu))
4988 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4989 else
4990 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4991
4992 reset_guest_paging_metadata(vcpu, g_context);
4993 }
4994
4995 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4996 {
4997 if (mmu_is_nested(vcpu))
4998 init_kvm_nested_mmu(vcpu);
4999 else if (tdp_enabled)
5000 init_kvm_tdp_mmu(vcpu);
5001 else
5002 init_kvm_softmmu(vcpu);
5003 }
5004 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5005
5006 static union kvm_mmu_page_role
5007 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5008 {
5009 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5010 union kvm_mmu_role role;
5011
5012 if (tdp_enabled)
5013 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5014 else
5015 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5016
5017 return role.base;
5018 }
5019
5020 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5021 {
5022 /*
5023 * Invalidate all MMU roles to force them to reinitialize as CPUID
5024 * information is factored into reserved bit calculations.
5025 */
5026 vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5027 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5028 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5029 kvm_mmu_reset_context(vcpu);
5030
5031 /*
5032 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5033 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5034 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
5035 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise
5036 * sweep the problem under the rug.
5037 *
5038 * KVM's horrific CPUID ABI makes the problem all but impossible to
5039 * solve, as correctly handling multiple vCPU models (with respect to
5040 * paging and physical address properties) in a single VM would require
5041 * tracking all relevant CPUID information in kvm_mmu_page_role. That
5042 * is very undesirable as it would double the memory requirements for
5043 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
5044 * no sane VMM mucks with the core vCPU model on the fly.
5045 */
5046 if (vcpu->arch.last_vmentry_cpu != -1) {
5047 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
5048 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
5049 }
5050 }
5051
5052 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5053 {
5054 kvm_mmu_unload(vcpu);
5055 kvm_init_mmu(vcpu);
5056 }
5057 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5058
5059 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5060 {
5061 int r;
5062
5063 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5064 if (r)
5065 goto out;
5066 r = mmu_alloc_special_roots(vcpu);
5067 if (r)
5068 goto out;
5069 if (vcpu->arch.mmu->direct_map)
5070 r = mmu_alloc_direct_roots(vcpu);
5071 else
5072 r = mmu_alloc_shadow_roots(vcpu);
5073 if (r)
5074 goto out;
5075
5076 kvm_mmu_sync_roots(vcpu);
5077
5078 kvm_mmu_load_pgd(vcpu);
5079 static_call(kvm_x86_tlb_flush_current)(vcpu);
5080 out:
5081 return r;
5082 }
5083
5084 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5085 {
5086 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5087 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5088 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5089 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5090 }
5091
5092 static bool need_remote_flush(u64 old, u64 new)
5093 {
5094 if (!is_shadow_present_pte(old))
5095 return false;
5096 if (!is_shadow_present_pte(new))
5097 return true;
5098 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5099 return true;
5100 old ^= shadow_nx_mask;
5101 new ^= shadow_nx_mask;
5102 return (old & ~new & PT64_PERM_MASK) != 0;
5103 }
5104
5105 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5106 int *bytes)
5107 {
5108 u64 gentry = 0;
5109 int r;
5110
5111 /*
5112 * Assume that the pte write on a page table of the same type
5113 * as the current vcpu paging mode since we update the sptes only
5114 * when they have the same mode.
5115 */
5116 if (is_pae(vcpu) && *bytes == 4) {
5117 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5118 *gpa &= ~(gpa_t)7;
5119 *bytes = 8;
5120 }
5121
5122 if (*bytes == 4 || *bytes == 8) {
5123 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5124 if (r)
5125 gentry = 0;
5126 }
5127
5128 return gentry;
5129 }
5130
5131 /*
5132 * If we're seeing too many writes to a page, it may no longer be a page table,
5133 * or we may be forking, in which case it is better to unmap the page.
5134 */
5135 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5136 {
5137 /*
5138 * Skip write-flooding detected for the sp whose level is 1, because
5139 * it can become unsync, then the guest page is not write-protected.
5140 */
5141 if (sp->role.level == PG_LEVEL_4K)
5142 return false;
5143
5144 atomic_inc(&sp->write_flooding_count);
5145 return atomic_read(&sp->write_flooding_count) >= 3;
5146 }
5147
5148 /*
5149 * Misaligned accesses are too much trouble to fix up; also, they usually
5150 * indicate a page is not used as a page table.
5151 */
5152 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5153 int bytes)
5154 {
5155 unsigned offset, pte_size, misaligned;
5156
5157 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5158 gpa, bytes, sp->role.word);
5159
5160 offset = offset_in_page(gpa);
5161 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5162
5163 /*
5164 * Sometimes, the OS only writes the last one bytes to update status
5165 * bits, for example, in linux, andb instruction is used in clear_bit().
5166 */
5167 if (!(offset & (pte_size - 1)) && bytes == 1)
5168 return false;
5169
5170 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5171 misaligned |= bytes < 4;
5172
5173 return misaligned;
5174 }
5175
5176 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5177 {
5178 unsigned page_offset, quadrant;
5179 u64 *spte;
5180 int level;
5181
5182 page_offset = offset_in_page(gpa);
5183 level = sp->role.level;
5184 *nspte = 1;
5185 if (!sp->role.gpte_is_8_bytes) {
5186 page_offset <<= 1; /* 32->64 */
5187 /*
5188 * A 32-bit pde maps 4MB while the shadow pdes map
5189 * only 2MB. So we need to double the offset again
5190 * and zap two pdes instead of one.
5191 */
5192 if (level == PT32_ROOT_LEVEL) {
5193 page_offset &= ~7; /* kill rounding error */
5194 page_offset <<= 1;
5195 *nspte = 2;
5196 }
5197 quadrant = page_offset >> PAGE_SHIFT;
5198 page_offset &= ~PAGE_MASK;
5199 if (quadrant != sp->role.quadrant)
5200 return NULL;
5201 }
5202
5203 spte = &sp->spt[page_offset / sizeof(*spte)];
5204 return spte;
5205 }
5206
5207 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5208 const u8 *new, int bytes,
5209 struct kvm_page_track_notifier_node *node)
5210 {
5211 gfn_t gfn = gpa >> PAGE_SHIFT;
5212 struct kvm_mmu_page *sp;
5213 LIST_HEAD(invalid_list);
5214 u64 entry, gentry, *spte;
5215 int npte;
5216 bool remote_flush, local_flush;
5217
5218 /*
5219 * If we don't have indirect shadow pages, it means no page is
5220 * write-protected, so we can exit simply.
5221 */
5222 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5223 return;
5224
5225 remote_flush = local_flush = false;
5226
5227 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5228
5229 /*
5230 * No need to care whether allocation memory is successful
5231 * or not since pte prefetch is skipped if it does not have
5232 * enough objects in the cache.
5233 */
5234 mmu_topup_memory_caches(vcpu, true);
5235
5236 write_lock(&vcpu->kvm->mmu_lock);
5237
5238 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5239
5240 ++vcpu->kvm->stat.mmu_pte_write;
5241 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5242
5243 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5244 if (detect_write_misaligned(sp, gpa, bytes) ||
5245 detect_write_flooding(sp)) {
5246 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5247 ++vcpu->kvm->stat.mmu_flooded;
5248 continue;
5249 }
5250
5251 spte = get_written_sptes(sp, gpa, &npte);
5252 if (!spte)
5253 continue;
5254
5255 local_flush = true;
5256 while (npte--) {
5257 entry = *spte;
5258 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5259 if (gentry && sp->role.level != PG_LEVEL_4K)
5260 ++vcpu->kvm->stat.mmu_pde_zapped;
5261 if (need_remote_flush(entry, *spte))
5262 remote_flush = true;
5263 ++spte;
5264 }
5265 }
5266 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5267 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5268 write_unlock(&vcpu->kvm->mmu_lock);
5269 }
5270
5271 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5272 void *insn, int insn_len)
5273 {
5274 int r, emulation_type = EMULTYPE_PF;
5275 bool direct = vcpu->arch.mmu->direct_map;
5276
5277 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5278 return RET_PF_RETRY;
5279
5280 r = RET_PF_INVALID;
5281 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5282 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5283 if (r == RET_PF_EMULATE)
5284 goto emulate;
5285 }
5286
5287 if (r == RET_PF_INVALID) {
5288 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5289 lower_32_bits(error_code), false);
5290 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5291 return -EIO;
5292 }
5293
5294 if (r < 0)
5295 return r;
5296 if (r != RET_PF_EMULATE)
5297 return 1;
5298
5299 /*
5300 * Before emulating the instruction, check if the error code
5301 * was due to a RO violation while translating the guest page.
5302 * This can occur when using nested virtualization with nested
5303 * paging in both guests. If true, we simply unprotect the page
5304 * and resume the guest.
5305 */
5306 if (vcpu->arch.mmu->direct_map &&
5307 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5308 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5309 return 1;
5310 }
5311
5312 /*
5313 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5314 * optimistically try to just unprotect the page and let the processor
5315 * re-execute the instruction that caused the page fault. Do not allow
5316 * retrying MMIO emulation, as it's not only pointless but could also
5317 * cause us to enter an infinite loop because the processor will keep
5318 * faulting on the non-existent MMIO address. Retrying an instruction
5319 * from a nested guest is also pointless and dangerous as we are only
5320 * explicitly shadowing L1's page tables, i.e. unprotecting something
5321 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5322 */
5323 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5324 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5325 emulate:
5326 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5327 insn_len);
5328 }
5329 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5330
5331 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5332 gva_t gva, hpa_t root_hpa)
5333 {
5334 int i;
5335
5336 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5337 if (mmu != &vcpu->arch.guest_mmu) {
5338 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5339 if (is_noncanonical_address(gva, vcpu))
5340 return;
5341
5342 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5343 }
5344
5345 if (!mmu->invlpg)
5346 return;
5347
5348 if (root_hpa == INVALID_PAGE) {
5349 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5350
5351 /*
5352 * INVLPG is required to invalidate any global mappings for the VA,
5353 * irrespective of PCID. Since it would take us roughly similar amount
5354 * of work to determine whether any of the prev_root mappings of the VA
5355 * is marked global, or to just sync it blindly, so we might as well
5356 * just always sync it.
5357 *
5358 * Mappings not reachable via the current cr3 or the prev_roots will be
5359 * synced when switching to that cr3, so nothing needs to be done here
5360 * for them.
5361 */
5362 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5363 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5364 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5365 } else {
5366 mmu->invlpg(vcpu, gva, root_hpa);
5367 }
5368 }
5369
5370 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5371 {
5372 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5373 ++vcpu->stat.invlpg;
5374 }
5375 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5376
5377
5378 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5379 {
5380 struct kvm_mmu *mmu = vcpu->arch.mmu;
5381 bool tlb_flush = false;
5382 uint i;
5383
5384 if (pcid == kvm_get_active_pcid(vcpu)) {
5385 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5386 tlb_flush = true;
5387 }
5388
5389 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5390 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5391 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5392 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5393 tlb_flush = true;
5394 }
5395 }
5396
5397 if (tlb_flush)
5398 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5399
5400 ++vcpu->stat.invlpg;
5401
5402 /*
5403 * Mappings not reachable via the current cr3 or the prev_roots will be
5404 * synced when switching to that cr3, so nothing needs to be done here
5405 * for them.
5406 */
5407 }
5408
5409 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5410 int tdp_max_root_level, int tdp_huge_page_level)
5411 {
5412 tdp_enabled = enable_tdp;
5413 tdp_root_level = tdp_forced_root_level;
5414 max_tdp_level = tdp_max_root_level;
5415
5416 /*
5417 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5418 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5419 * the kernel is not. But, KVM never creates a page size greater than
5420 * what is used by the kernel for any given HVA, i.e. the kernel's
5421 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5422 */
5423 if (tdp_enabled)
5424 max_huge_page_level = tdp_huge_page_level;
5425 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5426 max_huge_page_level = PG_LEVEL_1G;
5427 else
5428 max_huge_page_level = PG_LEVEL_2M;
5429 }
5430 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5431
5432 /* The return value indicates if tlb flush on all vcpus is needed. */
5433 typedef bool (*slot_level_handler) (struct kvm *kvm,
5434 struct kvm_rmap_head *rmap_head,
5435 const struct kvm_memory_slot *slot);
5436
5437 /* The caller should hold mmu-lock before calling this function. */
5438 static __always_inline bool
5439 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5440 slot_level_handler fn, int start_level, int end_level,
5441 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5442 bool flush)
5443 {
5444 struct slot_rmap_walk_iterator iterator;
5445
5446 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5447 end_gfn, &iterator) {
5448 if (iterator.rmap)
5449 flush |= fn(kvm, iterator.rmap, memslot);
5450
5451 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5452 if (flush && flush_on_yield) {
5453 kvm_flush_remote_tlbs_with_address(kvm,
5454 start_gfn,
5455 iterator.gfn - start_gfn + 1);
5456 flush = false;
5457 }
5458 cond_resched_rwlock_write(&kvm->mmu_lock);
5459 }
5460 }
5461
5462 return flush;
5463 }
5464
5465 static __always_inline bool
5466 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5467 slot_level_handler fn, int start_level, int end_level,
5468 bool flush_on_yield)
5469 {
5470 return slot_handle_level_range(kvm, memslot, fn, start_level,
5471 end_level, memslot->base_gfn,
5472 memslot->base_gfn + memslot->npages - 1,
5473 flush_on_yield, false);
5474 }
5475
5476 static __always_inline bool
5477 slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5478 slot_level_handler fn, bool flush_on_yield)
5479 {
5480 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5481 PG_LEVEL_4K, flush_on_yield);
5482 }
5483
5484 static void free_mmu_pages(struct kvm_mmu *mmu)
5485 {
5486 if (!tdp_enabled && mmu->pae_root)
5487 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5488 free_page((unsigned long)mmu->pae_root);
5489 free_page((unsigned long)mmu->pml4_root);
5490 free_page((unsigned long)mmu->pml5_root);
5491 }
5492
5493 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5494 {
5495 struct page *page;
5496 int i;
5497
5498 mmu->root_hpa = INVALID_PAGE;
5499 mmu->root_pgd = 0;
5500 mmu->translate_gpa = translate_gpa;
5501 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5502 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5503
5504 /*
5505 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5506 * while the PDP table is a per-vCPU construct that's allocated at MMU
5507 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5508 * x86_64. Therefore we need to allocate the PDP table in the first
5509 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5510 * generally doesn't use PAE paging and can skip allocating the PDP
5511 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5512 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5513 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5514 */
5515 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5516 return 0;
5517
5518 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5519 if (!page)
5520 return -ENOMEM;
5521
5522 mmu->pae_root = page_address(page);
5523
5524 /*
5525 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5526 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5527 * that KVM's writes and the CPU's reads get along. Note, this is
5528 * only necessary when using shadow paging, as 64-bit NPT can get at
5529 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5530 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5531 */
5532 if (!tdp_enabled)
5533 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5534 else
5535 WARN_ON_ONCE(shadow_me_mask);
5536
5537 for (i = 0; i < 4; ++i)
5538 mmu->pae_root[i] = INVALID_PAE_ROOT;
5539
5540 return 0;
5541 }
5542
5543 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5544 {
5545 int ret;
5546
5547 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5548 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5549
5550 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5551 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5552
5553 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5554
5555 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5556 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5557
5558 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5559
5560 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5561 if (ret)
5562 return ret;
5563
5564 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5565 if (ret)
5566 goto fail_allocate_root;
5567
5568 return ret;
5569 fail_allocate_root:
5570 free_mmu_pages(&vcpu->arch.guest_mmu);
5571 return ret;
5572 }
5573
5574 #define BATCH_ZAP_PAGES 10
5575 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5576 {
5577 struct kvm_mmu_page *sp, *node;
5578 int nr_zapped, batch = 0;
5579
5580 restart:
5581 list_for_each_entry_safe_reverse(sp, node,
5582 &kvm->arch.active_mmu_pages, link) {
5583 /*
5584 * No obsolete valid page exists before a newly created page
5585 * since active_mmu_pages is a FIFO list.
5586 */
5587 if (!is_obsolete_sp(kvm, sp))
5588 break;
5589
5590 /*
5591 * Invalid pages should never land back on the list of active
5592 * pages. Skip the bogus page, otherwise we'll get stuck in an
5593 * infinite loop if the page gets put back on the list (again).
5594 */
5595 if (WARN_ON(sp->role.invalid))
5596 continue;
5597
5598 /*
5599 * No need to flush the TLB since we're only zapping shadow
5600 * pages with an obsolete generation number and all vCPUS have
5601 * loaded a new root, i.e. the shadow pages being zapped cannot
5602 * be in active use by the guest.
5603 */
5604 if (batch >= BATCH_ZAP_PAGES &&
5605 cond_resched_rwlock_write(&kvm->mmu_lock)) {
5606 batch = 0;
5607 goto restart;
5608 }
5609
5610 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5611 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5612 batch += nr_zapped;
5613 goto restart;
5614 }
5615 }
5616
5617 /*
5618 * Trigger a remote TLB flush before freeing the page tables to ensure
5619 * KVM is not in the middle of a lockless shadow page table walk, which
5620 * may reference the pages.
5621 */
5622 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5623 }
5624
5625 /*
5626 * Fast invalidate all shadow pages and use lock-break technique
5627 * to zap obsolete pages.
5628 *
5629 * It's required when memslot is being deleted or VM is being
5630 * destroyed, in these cases, we should ensure that KVM MMU does
5631 * not use any resource of the being-deleted slot or all slots
5632 * after calling the function.
5633 */
5634 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5635 {
5636 lockdep_assert_held(&kvm->slots_lock);
5637
5638 write_lock(&kvm->mmu_lock);
5639 trace_kvm_mmu_zap_all_fast(kvm);
5640
5641 /*
5642 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5643 * held for the entire duration of zapping obsolete pages, it's
5644 * impossible for there to be multiple invalid generations associated
5645 * with *valid* shadow pages at any given time, i.e. there is exactly
5646 * one valid generation and (at most) one invalid generation.
5647 */
5648 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5649
5650 /* In order to ensure all threads see this change when
5651 * handling the MMU reload signal, this must happen in the
5652 * same critical section as kvm_reload_remote_mmus, and
5653 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5654 * could drop the MMU lock and yield.
5655 */
5656 if (is_tdp_mmu_enabled(kvm))
5657 kvm_tdp_mmu_invalidate_all_roots(kvm);
5658
5659 /*
5660 * Notify all vcpus to reload its shadow page table and flush TLB.
5661 * Then all vcpus will switch to new shadow page table with the new
5662 * mmu_valid_gen.
5663 *
5664 * Note: we need to do this under the protection of mmu_lock,
5665 * otherwise, vcpu would purge shadow page but miss tlb flush.
5666 */
5667 kvm_reload_remote_mmus(kvm);
5668
5669 kvm_zap_obsolete_pages(kvm);
5670
5671 write_unlock(&kvm->mmu_lock);
5672
5673 if (is_tdp_mmu_enabled(kvm)) {
5674 read_lock(&kvm->mmu_lock);
5675 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5676 read_unlock(&kvm->mmu_lock);
5677 }
5678 }
5679
5680 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5681 {
5682 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5683 }
5684
5685 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5686 struct kvm_memory_slot *slot,
5687 struct kvm_page_track_notifier_node *node)
5688 {
5689 kvm_mmu_zap_all_fast(kvm);
5690 }
5691
5692 void kvm_mmu_init_vm(struct kvm *kvm)
5693 {
5694 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5695
5696 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5697
5698 if (!kvm_mmu_init_tdp_mmu(kvm))
5699 /*
5700 * No smp_load/store wrappers needed here as we are in
5701 * VM init and there cannot be any memslots / other threads
5702 * accessing this struct kvm yet.
5703 */
5704 kvm->arch.memslots_have_rmaps = true;
5705
5706 node->track_write = kvm_mmu_pte_write;
5707 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5708 kvm_page_track_register_notifier(kvm, node);
5709 }
5710
5711 void kvm_mmu_uninit_vm(struct kvm *kvm)
5712 {
5713 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5714
5715 kvm_page_track_unregister_notifier(kvm, node);
5716
5717 kvm_mmu_uninit_tdp_mmu(kvm);
5718 }
5719
5720 /*
5721 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5722 * (not including it)
5723 */
5724 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5725 {
5726 struct kvm_memslots *slots;
5727 struct kvm_memory_slot *memslot;
5728 int i;
5729 bool flush = false;
5730
5731 write_lock(&kvm->mmu_lock);
5732
5733 kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5734
5735 if (kvm_memslots_have_rmaps(kvm)) {
5736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5737 slots = __kvm_memslots(kvm, i);
5738 kvm_for_each_memslot(memslot, slots) {
5739 gfn_t start, end;
5740
5741 start = max(gfn_start, memslot->base_gfn);
5742 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5743 if (start >= end)
5744 continue;
5745
5746 flush = slot_handle_level_range(kvm,
5747 (const struct kvm_memory_slot *) memslot,
5748 kvm_zap_rmapp, PG_LEVEL_4K,
5749 KVM_MAX_HUGEPAGE_LEVEL, start,
5750 end - 1, true, flush);
5751 }
5752 }
5753 if (flush)
5754 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5755 gfn_end - gfn_start);
5756 }
5757
5758 if (is_tdp_mmu_enabled(kvm)) {
5759 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5760 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5761 gfn_end, flush);
5762 }
5763
5764 if (flush)
5765 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5766 gfn_end - gfn_start);
5767
5768 kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5769
5770 write_unlock(&kvm->mmu_lock);
5771 }
5772
5773 static bool slot_rmap_write_protect(struct kvm *kvm,
5774 struct kvm_rmap_head *rmap_head,
5775 const struct kvm_memory_slot *slot)
5776 {
5777 return __rmap_write_protect(kvm, rmap_head, false);
5778 }
5779
5780 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5781 const struct kvm_memory_slot *memslot,
5782 int start_level)
5783 {
5784 bool flush = false;
5785
5786 if (kvm_memslots_have_rmaps(kvm)) {
5787 write_lock(&kvm->mmu_lock);
5788 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5789 start_level, KVM_MAX_HUGEPAGE_LEVEL,
5790 false);
5791 write_unlock(&kvm->mmu_lock);
5792 }
5793
5794 if (is_tdp_mmu_enabled(kvm)) {
5795 read_lock(&kvm->mmu_lock);
5796 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5797 read_unlock(&kvm->mmu_lock);
5798 }
5799
5800 /*
5801 * We can flush all the TLBs out of the mmu lock without TLB
5802 * corruption since we just change the spte from writable to
5803 * readonly so that we only need to care the case of changing
5804 * spte from present to present (changing the spte from present
5805 * to nonpresent will flush all the TLBs immediately), in other
5806 * words, the only case we care is mmu_spte_update() where we
5807 * have checked Host-writable | MMU-writable instead of
5808 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5809 * anymore.
5810 */
5811 if (flush)
5812 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5813 }
5814
5815 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5816 struct kvm_rmap_head *rmap_head,
5817 const struct kvm_memory_slot *slot)
5818 {
5819 u64 *sptep;
5820 struct rmap_iterator iter;
5821 int need_tlb_flush = 0;
5822 kvm_pfn_t pfn;
5823 struct kvm_mmu_page *sp;
5824
5825 restart:
5826 for_each_rmap_spte(rmap_head, &iter, sptep) {
5827 sp = sptep_to_sp(sptep);
5828 pfn = spte_to_pfn(*sptep);
5829
5830 /*
5831 * We cannot do huge page mapping for indirect shadow pages,
5832 * which are found on the last rmap (level = 1) when not using
5833 * tdp; such shadow pages are synced with the page table in
5834 * the guest, and the guest page table is using 4K page size
5835 * mapping if the indirect sp has level = 1.
5836 */
5837 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5838 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5839 pfn, PG_LEVEL_NUM)) {
5840 pte_list_remove(kvm, rmap_head, sptep);
5841
5842 if (kvm_available_flush_tlb_with_range())
5843 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5844 KVM_PAGES_PER_HPAGE(sp->role.level));
5845 else
5846 need_tlb_flush = 1;
5847
5848 goto restart;
5849 }
5850 }
5851
5852 return need_tlb_flush;
5853 }
5854
5855 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5856 const struct kvm_memory_slot *slot)
5857 {
5858 bool flush;
5859
5860 if (kvm_memslots_have_rmaps(kvm)) {
5861 write_lock(&kvm->mmu_lock);
5862 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5863 if (flush)
5864 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5865 write_unlock(&kvm->mmu_lock);
5866 }
5867
5868 if (is_tdp_mmu_enabled(kvm)) {
5869 read_lock(&kvm->mmu_lock);
5870 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, false);
5871 if (flush)
5872 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5873 read_unlock(&kvm->mmu_lock);
5874 }
5875 }
5876
5877 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5878 const struct kvm_memory_slot *memslot)
5879 {
5880 /*
5881 * All current use cases for flushing the TLBs for a specific memslot
5882 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5883 * The interaction between the various operations on memslot must be
5884 * serialized by slots_locks to ensure the TLB flush from one operation
5885 * is observed by any other operation on the same memslot.
5886 */
5887 lockdep_assert_held(&kvm->slots_lock);
5888 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5889 memslot->npages);
5890 }
5891
5892 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5893 const struct kvm_memory_slot *memslot)
5894 {
5895 bool flush = false;
5896
5897 if (kvm_memslots_have_rmaps(kvm)) {
5898 write_lock(&kvm->mmu_lock);
5899 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5900 false);
5901 write_unlock(&kvm->mmu_lock);
5902 }
5903
5904 if (is_tdp_mmu_enabled(kvm)) {
5905 read_lock(&kvm->mmu_lock);
5906 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5907 read_unlock(&kvm->mmu_lock);
5908 }
5909
5910 /*
5911 * It's also safe to flush TLBs out of mmu lock here as currently this
5912 * function is only used for dirty logging, in which case flushing TLB
5913 * out of mmu lock also guarantees no dirty pages will be lost in
5914 * dirty_bitmap.
5915 */
5916 if (flush)
5917 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5918 }
5919
5920 void kvm_mmu_zap_all(struct kvm *kvm)
5921 {
5922 struct kvm_mmu_page *sp, *node;
5923 LIST_HEAD(invalid_list);
5924 int ign;
5925
5926 write_lock(&kvm->mmu_lock);
5927 restart:
5928 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5929 if (WARN_ON(sp->role.invalid))
5930 continue;
5931 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5932 goto restart;
5933 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5934 goto restart;
5935 }
5936
5937 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5938
5939 if (is_tdp_mmu_enabled(kvm))
5940 kvm_tdp_mmu_zap_all(kvm);
5941
5942 write_unlock(&kvm->mmu_lock);
5943 }
5944
5945 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5946 {
5947 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5948
5949 gen &= MMIO_SPTE_GEN_MASK;
5950
5951 /*
5952 * Generation numbers are incremented in multiples of the number of
5953 * address spaces in order to provide unique generations across all
5954 * address spaces. Strip what is effectively the address space
5955 * modifier prior to checking for a wrap of the MMIO generation so
5956 * that a wrap in any address space is detected.
5957 */
5958 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5959
5960 /*
5961 * The very rare case: if the MMIO generation number has wrapped,
5962 * zap all shadow pages.
5963 */
5964 if (unlikely(gen == 0)) {
5965 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5966 kvm_mmu_zap_all_fast(kvm);
5967 }
5968 }
5969
5970 static unsigned long
5971 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5972 {
5973 struct kvm *kvm;
5974 int nr_to_scan = sc->nr_to_scan;
5975 unsigned long freed = 0;
5976
5977 mutex_lock(&kvm_lock);
5978
5979 list_for_each_entry(kvm, &vm_list, vm_list) {
5980 int idx;
5981 LIST_HEAD(invalid_list);
5982
5983 /*
5984 * Never scan more than sc->nr_to_scan VM instances.
5985 * Will not hit this condition practically since we do not try
5986 * to shrink more than one VM and it is very unlikely to see
5987 * !n_used_mmu_pages so many times.
5988 */
5989 if (!nr_to_scan--)
5990 break;
5991 /*
5992 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5993 * here. We may skip a VM instance errorneosly, but we do not
5994 * want to shrink a VM that only started to populate its MMU
5995 * anyway.
5996 */
5997 if (!kvm->arch.n_used_mmu_pages &&
5998 !kvm_has_zapped_obsolete_pages(kvm))
5999 continue;
6000
6001 idx = srcu_read_lock(&kvm->srcu);
6002 write_lock(&kvm->mmu_lock);
6003
6004 if (kvm_has_zapped_obsolete_pages(kvm)) {
6005 kvm_mmu_commit_zap_page(kvm,
6006 &kvm->arch.zapped_obsolete_pages);
6007 goto unlock;
6008 }
6009
6010 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6011
6012 unlock:
6013 write_unlock(&kvm->mmu_lock);
6014 srcu_read_unlock(&kvm->srcu, idx);
6015
6016 /*
6017 * unfair on small ones
6018 * per-vm shrinkers cry out
6019 * sadness comes quickly
6020 */
6021 list_move_tail(&kvm->vm_list, &vm_list);
6022 break;
6023 }
6024
6025 mutex_unlock(&kvm_lock);
6026 return freed;
6027 }
6028
6029 static unsigned long
6030 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6031 {
6032 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6033 }
6034
6035 static struct shrinker mmu_shrinker = {
6036 .count_objects = mmu_shrink_count,
6037 .scan_objects = mmu_shrink_scan,
6038 .seeks = DEFAULT_SEEKS * 10,
6039 };
6040
6041 static void mmu_destroy_caches(void)
6042 {
6043 kmem_cache_destroy(pte_list_desc_cache);
6044 kmem_cache_destroy(mmu_page_header_cache);
6045 }
6046
6047 static bool get_nx_auto_mode(void)
6048 {
6049 /* Return true when CPU has the bug, and mitigations are ON */
6050 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6051 }
6052
6053 static void __set_nx_huge_pages(bool val)
6054 {
6055 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6056 }
6057
6058 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6059 {
6060 bool old_val = nx_huge_pages;
6061 bool new_val;
6062
6063 /* In "auto" mode deploy workaround only if CPU has the bug. */
6064 if (sysfs_streq(val, "off"))
6065 new_val = 0;
6066 else if (sysfs_streq(val, "force"))
6067 new_val = 1;
6068 else if (sysfs_streq(val, "auto"))
6069 new_val = get_nx_auto_mode();
6070 else if (strtobool(val, &new_val) < 0)
6071 return -EINVAL;
6072
6073 __set_nx_huge_pages(new_val);
6074
6075 if (new_val != old_val) {
6076 struct kvm *kvm;
6077
6078 mutex_lock(&kvm_lock);
6079
6080 list_for_each_entry(kvm, &vm_list, vm_list) {
6081 mutex_lock(&kvm->slots_lock);
6082 kvm_mmu_zap_all_fast(kvm);
6083 mutex_unlock(&kvm->slots_lock);
6084
6085 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6086 }
6087 mutex_unlock(&kvm_lock);
6088 }
6089
6090 return 0;
6091 }
6092
6093 int kvm_mmu_module_init(void)
6094 {
6095 int ret = -ENOMEM;
6096
6097 if (nx_huge_pages == -1)
6098 __set_nx_huge_pages(get_nx_auto_mode());
6099
6100 /*
6101 * MMU roles use union aliasing which is, generally speaking, an
6102 * undefined behavior. However, we supposedly know how compilers behave
6103 * and the current status quo is unlikely to change. Guardians below are
6104 * supposed to let us know if the assumption becomes false.
6105 */
6106 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6107 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6108 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6109
6110 kvm_mmu_reset_all_pte_masks();
6111
6112 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6113 sizeof(struct pte_list_desc),
6114 0, SLAB_ACCOUNT, NULL);
6115 if (!pte_list_desc_cache)
6116 goto out;
6117
6118 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6119 sizeof(struct kvm_mmu_page),
6120 0, SLAB_ACCOUNT, NULL);
6121 if (!mmu_page_header_cache)
6122 goto out;
6123
6124 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6125 goto out;
6126
6127 ret = register_shrinker(&mmu_shrinker);
6128 if (ret)
6129 goto out;
6130
6131 return 0;
6132
6133 out:
6134 mmu_destroy_caches();
6135 return ret;
6136 }
6137
6138 /*
6139 * Calculate mmu pages needed for kvm.
6140 */
6141 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6142 {
6143 unsigned long nr_mmu_pages;
6144 unsigned long nr_pages = 0;
6145 struct kvm_memslots *slots;
6146 struct kvm_memory_slot *memslot;
6147 int i;
6148
6149 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6150 slots = __kvm_memslots(kvm, i);
6151
6152 kvm_for_each_memslot(memslot, slots)
6153 nr_pages += memslot->npages;
6154 }
6155
6156 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6157 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6158
6159 return nr_mmu_pages;
6160 }
6161
6162 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6163 {
6164 kvm_mmu_unload(vcpu);
6165 free_mmu_pages(&vcpu->arch.root_mmu);
6166 free_mmu_pages(&vcpu->arch.guest_mmu);
6167 mmu_free_memory_caches(vcpu);
6168 }
6169
6170 void kvm_mmu_module_exit(void)
6171 {
6172 mmu_destroy_caches();
6173 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6174 unregister_shrinker(&mmu_shrinker);
6175 mmu_audit_disable();
6176 }
6177
6178 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6179 {
6180 unsigned int old_val;
6181 int err;
6182
6183 old_val = nx_huge_pages_recovery_ratio;
6184 err = param_set_uint(val, kp);
6185 if (err)
6186 return err;
6187
6188 if (READ_ONCE(nx_huge_pages) &&
6189 !old_val && nx_huge_pages_recovery_ratio) {
6190 struct kvm *kvm;
6191
6192 mutex_lock(&kvm_lock);
6193
6194 list_for_each_entry(kvm, &vm_list, vm_list)
6195 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6196
6197 mutex_unlock(&kvm_lock);
6198 }
6199
6200 return err;
6201 }
6202
6203 static void kvm_recover_nx_lpages(struct kvm *kvm)
6204 {
6205 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6206 int rcu_idx;
6207 struct kvm_mmu_page *sp;
6208 unsigned int ratio;
6209 LIST_HEAD(invalid_list);
6210 bool flush = false;
6211 ulong to_zap;
6212
6213 rcu_idx = srcu_read_lock(&kvm->srcu);
6214 write_lock(&kvm->mmu_lock);
6215
6216 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6217 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6218 for ( ; to_zap; --to_zap) {
6219 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6220 break;
6221
6222 /*
6223 * We use a separate list instead of just using active_mmu_pages
6224 * because the number of lpage_disallowed pages is expected to
6225 * be relatively small compared to the total.
6226 */
6227 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6228 struct kvm_mmu_page,
6229 lpage_disallowed_link);
6230 WARN_ON_ONCE(!sp->lpage_disallowed);
6231 if (is_tdp_mmu_page(sp)) {
6232 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6233 } else {
6234 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6235 WARN_ON_ONCE(sp->lpage_disallowed);
6236 }
6237
6238 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6239 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6240 cond_resched_rwlock_write(&kvm->mmu_lock);
6241 flush = false;
6242 }
6243 }
6244 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6245
6246 write_unlock(&kvm->mmu_lock);
6247 srcu_read_unlock(&kvm->srcu, rcu_idx);
6248 }
6249
6250 static long get_nx_lpage_recovery_timeout(u64 start_time)
6251 {
6252 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6253 ? start_time + 60 * HZ - get_jiffies_64()
6254 : MAX_SCHEDULE_TIMEOUT;
6255 }
6256
6257 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6258 {
6259 u64 start_time;
6260 long remaining_time;
6261
6262 while (true) {
6263 start_time = get_jiffies_64();
6264 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6265
6266 set_current_state(TASK_INTERRUPTIBLE);
6267 while (!kthread_should_stop() && remaining_time > 0) {
6268 schedule_timeout(remaining_time);
6269 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6270 set_current_state(TASK_INTERRUPTIBLE);
6271 }
6272
6273 set_current_state(TASK_RUNNING);
6274
6275 if (kthread_should_stop())
6276 return 0;
6277
6278 kvm_recover_nx_lpages(kvm);
6279 }
6280 }
6281
6282 int kvm_mmu_post_init_vm(struct kvm *kvm)
6283 {
6284 int err;
6285
6286 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6287 "kvm-nx-lpage-recovery",
6288 &kvm->arch.nx_lpage_recovery_thread);
6289 if (!err)
6290 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6291
6292 return err;
6293 }
6294
6295 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6296 {
6297 if (kvm->arch.nx_lpage_recovery_thread)
6298 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6299 }