]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
KVM: MMU: load PDPTRs outside mmu_lock
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 static int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70 .set = set_nx_huge_pages,
71 .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75 .set = set_nx_huge_pages_recovery_ratio,
76 .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89 * When setting this variable to true it enables Two-Dimensional-Paging
90 * where the hardware walks 2 page tables:
91 * 1. the guest-virtual to guest-physical
92 * 2. while doing 1. it walks guest-physical to host-physical
93 * If the hardware supports that we don't need to do shadow paging.
94 */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101 AUDIT_PRE_PAGE_FAULT,
102 AUDIT_POST_PAGE_FAULT,
103 AUDIT_PRE_PTE_WRITE,
104 AUDIT_POST_PTE_WRITE,
105 AUDIT_PRE_SYNC,
106 AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM 8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142 u64 *sptes[PTE_LIST_EXT];
143 struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147 u64 addr;
148 hpa_t shadow_addr;
149 u64 *sptep;
150 int level;
151 unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
155 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
156 (_root), (_addr)); \
157 shadow_walk_okay(&(_walker)); \
158 shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
161 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
162 shadow_walk_okay(&(_walker)); \
163 shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)) && \
168 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
169 __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 #define CREATE_TRACE_POINTS
180 #include "mmutrace.h"
181
182
183 static inline bool kvm_available_flush_tlb_with_range(void)
184 {
185 return kvm_x86_ops.tlb_remote_flush_with_range;
186 }
187
188 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189 struct kvm_tlb_range *range)
190 {
191 int ret = -ENOTSUPP;
192
193 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
194 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
195
196 if (ret)
197 kvm_flush_remote_tlbs(kvm);
198 }
199
200 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
201 u64 start_gfn, u64 pages)
202 {
203 struct kvm_tlb_range range;
204
205 range.start_gfn = start_gfn;
206 range.pages = pages;
207
208 kvm_flush_remote_tlbs_with_range(kvm, &range);
209 }
210
211 bool is_nx_huge_page_enabled(void)
212 {
213 return READ_ONCE(nx_huge_pages);
214 }
215
216 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
217 unsigned int access)
218 {
219 u64 spte = make_mmio_spte(vcpu, gfn, access);
220
221 trace_mark_mmio_spte(sptep, gfn, spte);
222 mmu_spte_set(sptep, spte);
223 }
224
225 static gfn_t get_mmio_spte_gfn(u64 spte)
226 {
227 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
228
229 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
230 & shadow_nonpresent_or_rsvd_mask;
231
232 return gpa >> PAGE_SHIFT;
233 }
234
235 static unsigned get_mmio_spte_access(u64 spte)
236 {
237 return spte & shadow_mmio_access_mask;
238 }
239
240 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
241 {
242 u64 kvm_gen, spte_gen, gen;
243
244 gen = kvm_vcpu_memslots(vcpu)->generation;
245 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
246 return false;
247
248 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
249 spte_gen = get_mmio_spte_generation(spte);
250
251 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
252 return likely(kvm_gen == spte_gen);
253 }
254
255 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
256 struct x86_exception *exception)
257 {
258 /* Check if guest physical address doesn't exceed guest maximum */
259 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
260 exception->error_code |= PFERR_RSVD_MASK;
261 return UNMAPPED_GVA;
262 }
263
264 return gpa;
265 }
266
267 static int is_cpuid_PSE36(void)
268 {
269 return 1;
270 }
271
272 static int is_nx(struct kvm_vcpu *vcpu)
273 {
274 return vcpu->arch.efer & EFER_NX;
275 }
276
277 static gfn_t pse36_gfn_delta(u32 gpte)
278 {
279 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
280
281 return (gpte & PT32_DIR_PSE36_MASK) << shift;
282 }
283
284 #ifdef CONFIG_X86_64
285 static void __set_spte(u64 *sptep, u64 spte)
286 {
287 WRITE_ONCE(*sptep, spte);
288 }
289
290 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
291 {
292 WRITE_ONCE(*sptep, spte);
293 }
294
295 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
296 {
297 return xchg(sptep, spte);
298 }
299
300 static u64 __get_spte_lockless(u64 *sptep)
301 {
302 return READ_ONCE(*sptep);
303 }
304 #else
305 union split_spte {
306 struct {
307 u32 spte_low;
308 u32 spte_high;
309 };
310 u64 spte;
311 };
312
313 static void count_spte_clear(u64 *sptep, u64 spte)
314 {
315 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
316
317 if (is_shadow_present_pte(spte))
318 return;
319
320 /* Ensure the spte is completely set before we increase the count */
321 smp_wmb();
322 sp->clear_spte_count++;
323 }
324
325 static void __set_spte(u64 *sptep, u64 spte)
326 {
327 union split_spte *ssptep, sspte;
328
329 ssptep = (union split_spte *)sptep;
330 sspte = (union split_spte)spte;
331
332 ssptep->spte_high = sspte.spte_high;
333
334 /*
335 * If we map the spte from nonpresent to present, We should store
336 * the high bits firstly, then set present bit, so cpu can not
337 * fetch this spte while we are setting the spte.
338 */
339 smp_wmb();
340
341 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
342 }
343
344 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345 {
346 union split_spte *ssptep, sspte;
347
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
350
351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352
353 /*
354 * If we map the spte from present to nonpresent, we should clear
355 * present bit firstly to avoid vcpu fetch the old high bits.
356 */
357 smp_wmb();
358
359 ssptep->spte_high = sspte.spte_high;
360 count_spte_clear(sptep, spte);
361 }
362
363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365 union split_spte *ssptep, sspte, orig;
366
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
369
370 /* xchg acts as a barrier before the setting of the high bits */
371 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
372 orig.spte_high = ssptep->spte_high;
373 ssptep->spte_high = sspte.spte_high;
374 count_spte_clear(sptep, spte);
375
376 return orig.spte;
377 }
378
379 /*
380 * The idea using the light way get the spte on x86_32 guest is from
381 * gup_get_pte (mm/gup.c).
382 *
383 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
384 * coalesces them and we are running out of the MMU lock. Therefore
385 * we need to protect against in-progress updates of the spte.
386 *
387 * Reading the spte while an update is in progress may get the old value
388 * for the high part of the spte. The race is fine for a present->non-present
389 * change (because the high part of the spte is ignored for non-present spte),
390 * but for a present->present change we must reread the spte.
391 *
392 * All such changes are done in two steps (present->non-present and
393 * non-present->present), hence it is enough to count the number of
394 * present->non-present updates: if it changed while reading the spte,
395 * we might have hit the race. This is done using clear_spte_count.
396 */
397 static u64 __get_spte_lockless(u64 *sptep)
398 {
399 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
400 union split_spte spte, *orig = (union split_spte *)sptep;
401 int count;
402
403 retry:
404 count = sp->clear_spte_count;
405 smp_rmb();
406
407 spte.spte_low = orig->spte_low;
408 smp_rmb();
409
410 spte.spte_high = orig->spte_high;
411 smp_rmb();
412
413 if (unlikely(spte.spte_low != orig->spte_low ||
414 count != sp->clear_spte_count))
415 goto retry;
416
417 return spte.spte;
418 }
419 #endif
420
421 static bool spte_has_volatile_bits(u64 spte)
422 {
423 if (!is_shadow_present_pte(spte))
424 return false;
425
426 /*
427 * Always atomically update spte if it can be updated
428 * out of mmu-lock, it can ensure dirty bit is not lost,
429 * also, it can help us to get a stable is_writable_pte()
430 * to ensure tlb flush is not missed.
431 */
432 if (spte_can_locklessly_be_made_writable(spte) ||
433 is_access_track_spte(spte))
434 return true;
435
436 if (spte_ad_enabled(spte)) {
437 if ((spte & shadow_accessed_mask) == 0 ||
438 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
439 return true;
440 }
441
442 return false;
443 }
444
445 /* Rules for using mmu_spte_set:
446 * Set the sptep from nonpresent to present.
447 * Note: the sptep being assigned *must* be either not present
448 * or in a state where the hardware will not attempt to update
449 * the spte.
450 */
451 static void mmu_spte_set(u64 *sptep, u64 new_spte)
452 {
453 WARN_ON(is_shadow_present_pte(*sptep));
454 __set_spte(sptep, new_spte);
455 }
456
457 /*
458 * Update the SPTE (excluding the PFN), but do not track changes in its
459 * accessed/dirty status.
460 */
461 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
462 {
463 u64 old_spte = *sptep;
464
465 WARN_ON(!is_shadow_present_pte(new_spte));
466
467 if (!is_shadow_present_pte(old_spte)) {
468 mmu_spte_set(sptep, new_spte);
469 return old_spte;
470 }
471
472 if (!spte_has_volatile_bits(old_spte))
473 __update_clear_spte_fast(sptep, new_spte);
474 else
475 old_spte = __update_clear_spte_slow(sptep, new_spte);
476
477 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478
479 return old_spte;
480 }
481
482 /* Rules for using mmu_spte_update:
483 * Update the state bits, it means the mapped pfn is not changed.
484 *
485 * Whenever we overwrite a writable spte with a read-only one we
486 * should flush remote TLBs. Otherwise rmap_write_protect
487 * will find a read-only spte, even though the writable spte
488 * might be cached on a CPU's TLB, the return value indicates this
489 * case.
490 *
491 * Returns true if the TLB needs to be flushed
492 */
493 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494 {
495 bool flush = false;
496 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
497
498 if (!is_shadow_present_pte(old_spte))
499 return false;
500
501 /*
502 * For the spte updated out of mmu-lock is safe, since
503 * we always atomically update it, see the comments in
504 * spte_has_volatile_bits().
505 */
506 if (spte_can_locklessly_be_made_writable(old_spte) &&
507 !is_writable_pte(new_spte))
508 flush = true;
509
510 /*
511 * Flush TLB when accessed/dirty states are changed in the page tables,
512 * to guarantee consistency between TLB and page tables.
513 */
514
515 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
516 flush = true;
517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 }
519
520 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
521 flush = true;
522 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
523 }
524
525 return flush;
526 }
527
528 /*
529 * Rules for using mmu_spte_clear_track_bits:
530 * It sets the sptep from present to nonpresent, and track the
531 * state bits, it is used to clear the last level sptep.
532 * Returns non-zero if the PTE was previously valid.
533 */
534 static int mmu_spte_clear_track_bits(u64 *sptep)
535 {
536 kvm_pfn_t pfn;
537 u64 old_spte = *sptep;
538
539 if (!spte_has_volatile_bits(old_spte))
540 __update_clear_spte_fast(sptep, 0ull);
541 else
542 old_spte = __update_clear_spte_slow(sptep, 0ull);
543
544 if (!is_shadow_present_pte(old_spte))
545 return 0;
546
547 pfn = spte_to_pfn(old_spte);
548
549 /*
550 * KVM does not hold the refcount of the page used by
551 * kvm mmu, before reclaiming the page, we should
552 * unmap it from mmu first.
553 */
554 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
555
556 if (is_accessed_spte(old_spte))
557 kvm_set_pfn_accessed(pfn);
558
559 if (is_dirty_spte(old_spte))
560 kvm_set_pfn_dirty(pfn);
561
562 return 1;
563 }
564
565 /*
566 * Rules for using mmu_spte_clear_no_track:
567 * Directly clear spte without caring the state bits of sptep,
568 * it is used to set the upper level spte.
569 */
570 static void mmu_spte_clear_no_track(u64 *sptep)
571 {
572 __update_clear_spte_fast(sptep, 0ull);
573 }
574
575 static u64 mmu_spte_get_lockless(u64 *sptep)
576 {
577 return __get_spte_lockless(sptep);
578 }
579
580 /* Restore an acc-track PTE back to a regular PTE */
581 static u64 restore_acc_track_spte(u64 spte)
582 {
583 u64 new_spte = spte;
584 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
585 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
586
587 WARN_ON_ONCE(spte_ad_enabled(spte));
588 WARN_ON_ONCE(!is_access_track_spte(spte));
589
590 new_spte &= ~shadow_acc_track_mask;
591 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
592 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
593 new_spte |= saved_bits;
594
595 return new_spte;
596 }
597
598 /* Returns the Accessed status of the PTE and resets it at the same time. */
599 static bool mmu_spte_age(u64 *sptep)
600 {
601 u64 spte = mmu_spte_get_lockless(sptep);
602
603 if (!is_accessed_spte(spte))
604 return false;
605
606 if (spte_ad_enabled(spte)) {
607 clear_bit((ffs(shadow_accessed_mask) - 1),
608 (unsigned long *)sptep);
609 } else {
610 /*
611 * Capture the dirty status of the page, so that it doesn't get
612 * lost when the SPTE is marked for access tracking.
613 */
614 if (is_writable_pte(spte))
615 kvm_set_pfn_dirty(spte_to_pfn(spte));
616
617 spte = mark_spte_for_access_track(spte);
618 mmu_spte_update_no_track(sptep, spte);
619 }
620
621 return true;
622 }
623
624 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
625 {
626 /*
627 * Prevent page table teardown by making any free-er wait during
628 * kvm_flush_remote_tlbs() IPI to all active vcpus.
629 */
630 local_irq_disable();
631
632 /*
633 * Make sure a following spte read is not reordered ahead of the write
634 * to vcpu->mode.
635 */
636 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
637 }
638
639 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
640 {
641 /*
642 * Make sure the write to vcpu->mode is not reordered in front of
643 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
644 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
645 */
646 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
647 local_irq_enable();
648 }
649
650 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
651 {
652 int r;
653
654 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
655 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
656 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
657 if (r)
658 return r;
659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
660 PT64_ROOT_MAX_LEVEL);
661 if (r)
662 return r;
663 if (maybe_indirect) {
664 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
665 PT64_ROOT_MAX_LEVEL);
666 if (r)
667 return r;
668 }
669 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670 PT64_ROOT_MAX_LEVEL);
671 }
672
673 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
674 {
675 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
676 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
677 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
678 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
679 }
680
681 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
682 {
683 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
684 }
685
686 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
687 {
688 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
689 }
690
691 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
692 {
693 if (!sp->role.direct)
694 return sp->gfns[index];
695
696 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
697 }
698
699 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
700 {
701 if (!sp->role.direct) {
702 sp->gfns[index] = gfn;
703 return;
704 }
705
706 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
707 pr_err_ratelimited("gfn mismatch under direct page %llx "
708 "(expected %llx, got %llx)\n",
709 sp->gfn,
710 kvm_mmu_page_get_gfn(sp, index), gfn);
711 }
712
713 /*
714 * Return the pointer to the large page information for a given gfn,
715 * handling slots that are not large page aligned.
716 */
717 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
718 struct kvm_memory_slot *slot,
719 int level)
720 {
721 unsigned long idx;
722
723 idx = gfn_to_index(gfn, slot->base_gfn, level);
724 return &slot->arch.lpage_info[level - 2][idx];
725 }
726
727 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
728 gfn_t gfn, int count)
729 {
730 struct kvm_lpage_info *linfo;
731 int i;
732
733 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
734 linfo = lpage_info_slot(gfn, slot, i);
735 linfo->disallow_lpage += count;
736 WARN_ON(linfo->disallow_lpage < 0);
737 }
738 }
739
740 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
741 {
742 update_gfn_disallow_lpage_count(slot, gfn, 1);
743 }
744
745 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
746 {
747 update_gfn_disallow_lpage_count(slot, gfn, -1);
748 }
749
750 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
751 {
752 struct kvm_memslots *slots;
753 struct kvm_memory_slot *slot;
754 gfn_t gfn;
755
756 kvm->arch.indirect_shadow_pages++;
757 gfn = sp->gfn;
758 slots = kvm_memslots_for_spte_role(kvm, sp->role);
759 slot = __gfn_to_memslot(slots, gfn);
760
761 /* the non-leaf shadow pages are keeping readonly. */
762 if (sp->role.level > PG_LEVEL_4K)
763 return kvm_slot_page_track_add_page(kvm, slot, gfn,
764 KVM_PAGE_TRACK_WRITE);
765
766 kvm_mmu_gfn_disallow_lpage(slot, gfn);
767 }
768
769 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
770 {
771 if (sp->lpage_disallowed)
772 return;
773
774 ++kvm->stat.nx_lpage_splits;
775 list_add_tail(&sp->lpage_disallowed_link,
776 &kvm->arch.lpage_disallowed_mmu_pages);
777 sp->lpage_disallowed = true;
778 }
779
780 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
781 {
782 struct kvm_memslots *slots;
783 struct kvm_memory_slot *slot;
784 gfn_t gfn;
785
786 kvm->arch.indirect_shadow_pages--;
787 gfn = sp->gfn;
788 slots = kvm_memslots_for_spte_role(kvm, sp->role);
789 slot = __gfn_to_memslot(slots, gfn);
790 if (sp->role.level > PG_LEVEL_4K)
791 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
792 KVM_PAGE_TRACK_WRITE);
793
794 kvm_mmu_gfn_allow_lpage(slot, gfn);
795 }
796
797 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
798 {
799 --kvm->stat.nx_lpage_splits;
800 sp->lpage_disallowed = false;
801 list_del(&sp->lpage_disallowed_link);
802 }
803
804 static struct kvm_memory_slot *
805 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
806 bool no_dirty_log)
807 {
808 struct kvm_memory_slot *slot;
809
810 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
811 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
812 return NULL;
813 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
814 return NULL;
815
816 return slot;
817 }
818
819 /*
820 * About rmap_head encoding:
821 *
822 * If the bit zero of rmap_head->val is clear, then it points to the only spte
823 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
824 * pte_list_desc containing more mappings.
825 */
826
827 /*
828 * Returns the number of pointers in the rmap chain, not counting the new one.
829 */
830 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
831 struct kvm_rmap_head *rmap_head)
832 {
833 struct pte_list_desc *desc;
834 int i, count = 0;
835
836 if (!rmap_head->val) {
837 rmap_printk("%p %llx 0->1\n", spte, *spte);
838 rmap_head->val = (unsigned long)spte;
839 } else if (!(rmap_head->val & 1)) {
840 rmap_printk("%p %llx 1->many\n", spte, *spte);
841 desc = mmu_alloc_pte_list_desc(vcpu);
842 desc->sptes[0] = (u64 *)rmap_head->val;
843 desc->sptes[1] = spte;
844 rmap_head->val = (unsigned long)desc | 1;
845 ++count;
846 } else {
847 rmap_printk("%p %llx many->many\n", spte, *spte);
848 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
849 while (desc->sptes[PTE_LIST_EXT-1]) {
850 count += PTE_LIST_EXT;
851
852 if (!desc->more) {
853 desc->more = mmu_alloc_pte_list_desc(vcpu);
854 desc = desc->more;
855 break;
856 }
857 desc = desc->more;
858 }
859 for (i = 0; desc->sptes[i]; ++i)
860 ++count;
861 desc->sptes[i] = spte;
862 }
863 return count;
864 }
865
866 static void
867 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
868 struct pte_list_desc *desc, int i,
869 struct pte_list_desc *prev_desc)
870 {
871 int j;
872
873 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
874 ;
875 desc->sptes[i] = desc->sptes[j];
876 desc->sptes[j] = NULL;
877 if (j != 0)
878 return;
879 if (!prev_desc && !desc->more)
880 rmap_head->val = 0;
881 else
882 if (prev_desc)
883 prev_desc->more = desc->more;
884 else
885 rmap_head->val = (unsigned long)desc->more | 1;
886 mmu_free_pte_list_desc(desc);
887 }
888
889 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
890 {
891 struct pte_list_desc *desc;
892 struct pte_list_desc *prev_desc;
893 int i;
894
895 if (!rmap_head->val) {
896 pr_err("%s: %p 0->BUG\n", __func__, spte);
897 BUG();
898 } else if (!(rmap_head->val & 1)) {
899 rmap_printk("%p 1->0\n", spte);
900 if ((u64 *)rmap_head->val != spte) {
901 pr_err("%s: %p 1->BUG\n", __func__, spte);
902 BUG();
903 }
904 rmap_head->val = 0;
905 } else {
906 rmap_printk("%p many->many\n", spte);
907 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
908 prev_desc = NULL;
909 while (desc) {
910 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
911 if (desc->sptes[i] == spte) {
912 pte_list_desc_remove_entry(rmap_head,
913 desc, i, prev_desc);
914 return;
915 }
916 }
917 prev_desc = desc;
918 desc = desc->more;
919 }
920 pr_err("%s: %p many->many\n", __func__, spte);
921 BUG();
922 }
923 }
924
925 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
926 {
927 mmu_spte_clear_track_bits(sptep);
928 __pte_list_remove(sptep, rmap_head);
929 }
930
931 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
932 struct kvm_memory_slot *slot)
933 {
934 unsigned long idx;
935
936 idx = gfn_to_index(gfn, slot->base_gfn, level);
937 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
938 }
939
940 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
941 struct kvm_mmu_page *sp)
942 {
943 struct kvm_memslots *slots;
944 struct kvm_memory_slot *slot;
945
946 slots = kvm_memslots_for_spte_role(kvm, sp->role);
947 slot = __gfn_to_memslot(slots, gfn);
948 return __gfn_to_rmap(gfn, sp->role.level, slot);
949 }
950
951 static bool rmap_can_add(struct kvm_vcpu *vcpu)
952 {
953 struct kvm_mmu_memory_cache *mc;
954
955 mc = &vcpu->arch.mmu_pte_list_desc_cache;
956 return kvm_mmu_memory_cache_nr_free_objects(mc);
957 }
958
959 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
960 {
961 struct kvm_mmu_page *sp;
962 struct kvm_rmap_head *rmap_head;
963
964 sp = sptep_to_sp(spte);
965 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
966 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
967 return pte_list_add(vcpu, spte, rmap_head);
968 }
969
970 static void rmap_remove(struct kvm *kvm, u64 *spte)
971 {
972 struct kvm_mmu_page *sp;
973 gfn_t gfn;
974 struct kvm_rmap_head *rmap_head;
975
976 sp = sptep_to_sp(spte);
977 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
978 rmap_head = gfn_to_rmap(kvm, gfn, sp);
979 __pte_list_remove(spte, rmap_head);
980 }
981
982 /*
983 * Used by the following functions to iterate through the sptes linked by a
984 * rmap. All fields are private and not assumed to be used outside.
985 */
986 struct rmap_iterator {
987 /* private fields */
988 struct pte_list_desc *desc; /* holds the sptep if not NULL */
989 int pos; /* index of the sptep */
990 };
991
992 /*
993 * Iteration must be started by this function. This should also be used after
994 * removing/dropping sptes from the rmap link because in such cases the
995 * information in the iterator may not be valid.
996 *
997 * Returns sptep if found, NULL otherwise.
998 */
999 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1000 struct rmap_iterator *iter)
1001 {
1002 u64 *sptep;
1003
1004 if (!rmap_head->val)
1005 return NULL;
1006
1007 if (!(rmap_head->val & 1)) {
1008 iter->desc = NULL;
1009 sptep = (u64 *)rmap_head->val;
1010 goto out;
1011 }
1012
1013 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1014 iter->pos = 0;
1015 sptep = iter->desc->sptes[iter->pos];
1016 out:
1017 BUG_ON(!is_shadow_present_pte(*sptep));
1018 return sptep;
1019 }
1020
1021 /*
1022 * Must be used with a valid iterator: e.g. after rmap_get_first().
1023 *
1024 * Returns sptep if found, NULL otherwise.
1025 */
1026 static u64 *rmap_get_next(struct rmap_iterator *iter)
1027 {
1028 u64 *sptep;
1029
1030 if (iter->desc) {
1031 if (iter->pos < PTE_LIST_EXT - 1) {
1032 ++iter->pos;
1033 sptep = iter->desc->sptes[iter->pos];
1034 if (sptep)
1035 goto out;
1036 }
1037
1038 iter->desc = iter->desc->more;
1039
1040 if (iter->desc) {
1041 iter->pos = 0;
1042 /* desc->sptes[0] cannot be NULL */
1043 sptep = iter->desc->sptes[iter->pos];
1044 goto out;
1045 }
1046 }
1047
1048 return NULL;
1049 out:
1050 BUG_ON(!is_shadow_present_pte(*sptep));
1051 return sptep;
1052 }
1053
1054 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1055 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1056 _spte_; _spte_ = rmap_get_next(_iter_))
1057
1058 static void drop_spte(struct kvm *kvm, u64 *sptep)
1059 {
1060 if (mmu_spte_clear_track_bits(sptep))
1061 rmap_remove(kvm, sptep);
1062 }
1063
1064
1065 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1066 {
1067 if (is_large_pte(*sptep)) {
1068 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1069 drop_spte(kvm, sptep);
1070 --kvm->stat.lpages;
1071 return true;
1072 }
1073
1074 return false;
1075 }
1076
1077 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1078 {
1079 if (__drop_large_spte(vcpu->kvm, sptep)) {
1080 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1081
1082 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1083 KVM_PAGES_PER_HPAGE(sp->role.level));
1084 }
1085 }
1086
1087 /*
1088 * Write-protect on the specified @sptep, @pt_protect indicates whether
1089 * spte write-protection is caused by protecting shadow page table.
1090 *
1091 * Note: write protection is difference between dirty logging and spte
1092 * protection:
1093 * - for dirty logging, the spte can be set to writable at anytime if
1094 * its dirty bitmap is properly set.
1095 * - for spte protection, the spte can be writable only after unsync-ing
1096 * shadow page.
1097 *
1098 * Return true if tlb need be flushed.
1099 */
1100 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1101 {
1102 u64 spte = *sptep;
1103
1104 if (!is_writable_pte(spte) &&
1105 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1106 return false;
1107
1108 rmap_printk("spte %p %llx\n", sptep, *sptep);
1109
1110 if (pt_protect)
1111 spte &= ~shadow_mmu_writable_mask;
1112 spte = spte & ~PT_WRITABLE_MASK;
1113
1114 return mmu_spte_update(sptep, spte);
1115 }
1116
1117 static bool __rmap_write_protect(struct kvm *kvm,
1118 struct kvm_rmap_head *rmap_head,
1119 bool pt_protect)
1120 {
1121 u64 *sptep;
1122 struct rmap_iterator iter;
1123 bool flush = false;
1124
1125 for_each_rmap_spte(rmap_head, &iter, sptep)
1126 flush |= spte_write_protect(sptep, pt_protect);
1127
1128 return flush;
1129 }
1130
1131 static bool spte_clear_dirty(u64 *sptep)
1132 {
1133 u64 spte = *sptep;
1134
1135 rmap_printk("spte %p %llx\n", sptep, *sptep);
1136
1137 MMU_WARN_ON(!spte_ad_enabled(spte));
1138 spte &= ~shadow_dirty_mask;
1139 return mmu_spte_update(sptep, spte);
1140 }
1141
1142 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1143 {
1144 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1145 (unsigned long *)sptep);
1146 if (was_writable && !spte_ad_enabled(*sptep))
1147 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1148
1149 return was_writable;
1150 }
1151
1152 /*
1153 * Gets the GFN ready for another round of dirty logging by clearing the
1154 * - D bit on ad-enabled SPTEs, and
1155 * - W bit on ad-disabled SPTEs.
1156 * Returns true iff any D or W bits were cleared.
1157 */
1158 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1159 struct kvm_memory_slot *slot)
1160 {
1161 u64 *sptep;
1162 struct rmap_iterator iter;
1163 bool flush = false;
1164
1165 for_each_rmap_spte(rmap_head, &iter, sptep)
1166 if (spte_ad_need_write_protect(*sptep))
1167 flush |= spte_wrprot_for_clear_dirty(sptep);
1168 else
1169 flush |= spte_clear_dirty(sptep);
1170
1171 return flush;
1172 }
1173
1174 /**
1175 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1176 * @kvm: kvm instance
1177 * @slot: slot to protect
1178 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1179 * @mask: indicates which pages we should protect
1180 *
1181 * Used when we do not need to care about huge page mappings: e.g. during dirty
1182 * logging we do not have any such mappings.
1183 */
1184 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1185 struct kvm_memory_slot *slot,
1186 gfn_t gfn_offset, unsigned long mask)
1187 {
1188 struct kvm_rmap_head *rmap_head;
1189
1190 if (is_tdp_mmu_enabled(kvm))
1191 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1192 slot->base_gfn + gfn_offset, mask, true);
1193 while (mask) {
1194 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1195 PG_LEVEL_4K, slot);
1196 __rmap_write_protect(kvm, rmap_head, false);
1197
1198 /* clear the first set bit */
1199 mask &= mask - 1;
1200 }
1201 }
1202
1203 /**
1204 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1205 * protect the page if the D-bit isn't supported.
1206 * @kvm: kvm instance
1207 * @slot: slot to clear D-bit
1208 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1209 * @mask: indicates which pages we should clear D-bit
1210 *
1211 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1212 */
1213 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1214 struct kvm_memory_slot *slot,
1215 gfn_t gfn_offset, unsigned long mask)
1216 {
1217 struct kvm_rmap_head *rmap_head;
1218
1219 if (is_tdp_mmu_enabled(kvm))
1220 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1221 slot->base_gfn + gfn_offset, mask, false);
1222 while (mask) {
1223 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1224 PG_LEVEL_4K, slot);
1225 __rmap_clear_dirty(kvm, rmap_head, slot);
1226
1227 /* clear the first set bit */
1228 mask &= mask - 1;
1229 }
1230 }
1231
1232 /**
1233 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1234 * PT level pages.
1235 *
1236 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1237 * enable dirty logging for them.
1238 *
1239 * Used when we do not need to care about huge page mappings: e.g. during dirty
1240 * logging we do not have any such mappings.
1241 */
1242 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1243 struct kvm_memory_slot *slot,
1244 gfn_t gfn_offset, unsigned long mask)
1245 {
1246 if (kvm_x86_ops.cpu_dirty_log_size)
1247 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1248 else
1249 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1250 }
1251
1252 int kvm_cpu_dirty_log_size(void)
1253 {
1254 return kvm_x86_ops.cpu_dirty_log_size;
1255 }
1256
1257 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1258 struct kvm_memory_slot *slot, u64 gfn)
1259 {
1260 struct kvm_rmap_head *rmap_head;
1261 int i;
1262 bool write_protected = false;
1263
1264 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1265 rmap_head = __gfn_to_rmap(gfn, i, slot);
1266 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1267 }
1268
1269 if (is_tdp_mmu_enabled(kvm))
1270 write_protected |=
1271 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1272
1273 return write_protected;
1274 }
1275
1276 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1277 {
1278 struct kvm_memory_slot *slot;
1279
1280 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1281 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1282 }
1283
1284 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1285 struct kvm_memory_slot *slot)
1286 {
1287 u64 *sptep;
1288 struct rmap_iterator iter;
1289 bool flush = false;
1290
1291 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1292 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1293
1294 pte_list_remove(rmap_head, sptep);
1295 flush = true;
1296 }
1297
1298 return flush;
1299 }
1300
1301 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1302 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1303 unsigned long data)
1304 {
1305 return kvm_zap_rmapp(kvm, rmap_head, slot);
1306 }
1307
1308 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1309 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1310 unsigned long data)
1311 {
1312 u64 *sptep;
1313 struct rmap_iterator iter;
1314 int need_flush = 0;
1315 u64 new_spte;
1316 pte_t *ptep = (pte_t *)data;
1317 kvm_pfn_t new_pfn;
1318
1319 WARN_ON(pte_huge(*ptep));
1320 new_pfn = pte_pfn(*ptep);
1321
1322 restart:
1323 for_each_rmap_spte(rmap_head, &iter, sptep) {
1324 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1325 sptep, *sptep, gfn, level);
1326
1327 need_flush = 1;
1328
1329 if (pte_write(*ptep)) {
1330 pte_list_remove(rmap_head, sptep);
1331 goto restart;
1332 } else {
1333 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1334 *sptep, new_pfn);
1335
1336 mmu_spte_clear_track_bits(sptep);
1337 mmu_spte_set(sptep, new_spte);
1338 }
1339 }
1340
1341 if (need_flush && kvm_available_flush_tlb_with_range()) {
1342 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1343 return 0;
1344 }
1345
1346 return need_flush;
1347 }
1348
1349 struct slot_rmap_walk_iterator {
1350 /* input fields. */
1351 struct kvm_memory_slot *slot;
1352 gfn_t start_gfn;
1353 gfn_t end_gfn;
1354 int start_level;
1355 int end_level;
1356
1357 /* output fields. */
1358 gfn_t gfn;
1359 struct kvm_rmap_head *rmap;
1360 int level;
1361
1362 /* private field. */
1363 struct kvm_rmap_head *end_rmap;
1364 };
1365
1366 static void
1367 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1368 {
1369 iterator->level = level;
1370 iterator->gfn = iterator->start_gfn;
1371 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1372 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1373 iterator->slot);
1374 }
1375
1376 static void
1377 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1378 struct kvm_memory_slot *slot, int start_level,
1379 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1380 {
1381 iterator->slot = slot;
1382 iterator->start_level = start_level;
1383 iterator->end_level = end_level;
1384 iterator->start_gfn = start_gfn;
1385 iterator->end_gfn = end_gfn;
1386
1387 rmap_walk_init_level(iterator, iterator->start_level);
1388 }
1389
1390 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1391 {
1392 return !!iterator->rmap;
1393 }
1394
1395 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1396 {
1397 if (++iterator->rmap <= iterator->end_rmap) {
1398 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1399 return;
1400 }
1401
1402 if (++iterator->level > iterator->end_level) {
1403 iterator->rmap = NULL;
1404 return;
1405 }
1406
1407 rmap_walk_init_level(iterator, iterator->level);
1408 }
1409
1410 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1411 _start_gfn, _end_gfn, _iter_) \
1412 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1413 _end_level_, _start_gfn, _end_gfn); \
1414 slot_rmap_walk_okay(_iter_); \
1415 slot_rmap_walk_next(_iter_))
1416
1417 typedef int (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1418 struct kvm_memory_slot *slot, gfn_t gfn,
1419 int level, unsigned long data);
1420
1421 static __always_inline int kvm_handle_hva_range(struct kvm *kvm,
1422 unsigned long start,
1423 unsigned long end,
1424 unsigned long data,
1425 rmap_handler_t handler)
1426 {
1427 struct kvm_memslots *slots;
1428 struct kvm_memory_slot *memslot;
1429 struct slot_rmap_walk_iterator iterator;
1430 int ret = 0;
1431 int i;
1432
1433 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1434 slots = __kvm_memslots(kvm, i);
1435 kvm_for_each_memslot(memslot, slots) {
1436 unsigned long hva_start, hva_end;
1437 gfn_t gfn_start, gfn_end;
1438
1439 hva_start = max(start, memslot->userspace_addr);
1440 hva_end = min(end, memslot->userspace_addr +
1441 (memslot->npages << PAGE_SHIFT));
1442 if (hva_start >= hva_end)
1443 continue;
1444 /*
1445 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1446 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1447 */
1448 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1449 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1450
1451 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1452 KVM_MAX_HUGEPAGE_LEVEL,
1453 gfn_start, gfn_end - 1,
1454 &iterator)
1455 ret |= handler(kvm, iterator.rmap, memslot,
1456 iterator.gfn, iterator.level, data);
1457 }
1458 }
1459
1460 return ret;
1461 }
1462
1463 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1464 unsigned long data, rmap_handler_t handler)
1465 {
1466 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1467 }
1468
1469 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1470 unsigned flags)
1471 {
1472 int r;
1473
1474 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1475
1476 if (is_tdp_mmu_enabled(kvm))
1477 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1478
1479 return r;
1480 }
1481
1482 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1483 {
1484 int r;
1485
1486 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1487
1488 if (is_tdp_mmu_enabled(kvm))
1489 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1490
1491 return r;
1492 }
1493
1494 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1495 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1496 unsigned long data)
1497 {
1498 u64 *sptep;
1499 struct rmap_iterator iter;
1500 int young = 0;
1501
1502 for_each_rmap_spte(rmap_head, &iter, sptep)
1503 young |= mmu_spte_age(sptep);
1504
1505 trace_kvm_age_page(gfn, level, slot, young);
1506 return young;
1507 }
1508
1509 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1510 struct kvm_memory_slot *slot, gfn_t gfn,
1511 int level, unsigned long data)
1512 {
1513 u64 *sptep;
1514 struct rmap_iterator iter;
1515
1516 for_each_rmap_spte(rmap_head, &iter, sptep)
1517 if (is_accessed_spte(*sptep))
1518 return 1;
1519 return 0;
1520 }
1521
1522 #define RMAP_RECYCLE_THRESHOLD 1000
1523
1524 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1525 {
1526 struct kvm_rmap_head *rmap_head;
1527 struct kvm_mmu_page *sp;
1528
1529 sp = sptep_to_sp(spte);
1530
1531 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1532
1533 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1534 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1535 KVM_PAGES_PER_HPAGE(sp->role.level));
1536 }
1537
1538 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1539 {
1540 int young = false;
1541
1542 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1543 if (is_tdp_mmu_enabled(kvm))
1544 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1545
1546 return young;
1547 }
1548
1549 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1550 {
1551 int young = false;
1552
1553 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1554 if (is_tdp_mmu_enabled(kvm))
1555 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1556
1557 return young;
1558 }
1559
1560 #ifdef MMU_DEBUG
1561 static int is_empty_shadow_page(u64 *spt)
1562 {
1563 u64 *pos;
1564 u64 *end;
1565
1566 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1567 if (is_shadow_present_pte(*pos)) {
1568 printk(KERN_ERR "%s: %p %llx\n", __func__,
1569 pos, *pos);
1570 return 0;
1571 }
1572 return 1;
1573 }
1574 #endif
1575
1576 /*
1577 * This value is the sum of all of the kvm instances's
1578 * kvm->arch.n_used_mmu_pages values. We need a global,
1579 * aggregate version in order to make the slab shrinker
1580 * faster
1581 */
1582 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1583 {
1584 kvm->arch.n_used_mmu_pages += nr;
1585 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1586 }
1587
1588 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1589 {
1590 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1591 hlist_del(&sp->hash_link);
1592 list_del(&sp->link);
1593 free_page((unsigned long)sp->spt);
1594 if (!sp->role.direct)
1595 free_page((unsigned long)sp->gfns);
1596 kmem_cache_free(mmu_page_header_cache, sp);
1597 }
1598
1599 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1600 {
1601 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1602 }
1603
1604 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1605 struct kvm_mmu_page *sp, u64 *parent_pte)
1606 {
1607 if (!parent_pte)
1608 return;
1609
1610 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1611 }
1612
1613 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1614 u64 *parent_pte)
1615 {
1616 __pte_list_remove(parent_pte, &sp->parent_ptes);
1617 }
1618
1619 static void drop_parent_pte(struct kvm_mmu_page *sp,
1620 u64 *parent_pte)
1621 {
1622 mmu_page_remove_parent_pte(sp, parent_pte);
1623 mmu_spte_clear_no_track(parent_pte);
1624 }
1625
1626 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1627 {
1628 struct kvm_mmu_page *sp;
1629
1630 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1631 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1632 if (!direct)
1633 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1634 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1635
1636 /*
1637 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1638 * depends on valid pages being added to the head of the list. See
1639 * comments in kvm_zap_obsolete_pages().
1640 */
1641 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1642 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1643 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1644 return sp;
1645 }
1646
1647 static void mark_unsync(u64 *spte);
1648 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1649 {
1650 u64 *sptep;
1651 struct rmap_iterator iter;
1652
1653 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1654 mark_unsync(sptep);
1655 }
1656 }
1657
1658 static void mark_unsync(u64 *spte)
1659 {
1660 struct kvm_mmu_page *sp;
1661 unsigned int index;
1662
1663 sp = sptep_to_sp(spte);
1664 index = spte - sp->spt;
1665 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1666 return;
1667 if (sp->unsync_children++)
1668 return;
1669 kvm_mmu_mark_parents_unsync(sp);
1670 }
1671
1672 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1673 struct kvm_mmu_page *sp)
1674 {
1675 return 0;
1676 }
1677
1678 #define KVM_PAGE_ARRAY_NR 16
1679
1680 struct kvm_mmu_pages {
1681 struct mmu_page_and_offset {
1682 struct kvm_mmu_page *sp;
1683 unsigned int idx;
1684 } page[KVM_PAGE_ARRAY_NR];
1685 unsigned int nr;
1686 };
1687
1688 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1689 int idx)
1690 {
1691 int i;
1692
1693 if (sp->unsync)
1694 for (i=0; i < pvec->nr; i++)
1695 if (pvec->page[i].sp == sp)
1696 return 0;
1697
1698 pvec->page[pvec->nr].sp = sp;
1699 pvec->page[pvec->nr].idx = idx;
1700 pvec->nr++;
1701 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1702 }
1703
1704 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1705 {
1706 --sp->unsync_children;
1707 WARN_ON((int)sp->unsync_children < 0);
1708 __clear_bit(idx, sp->unsync_child_bitmap);
1709 }
1710
1711 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1712 struct kvm_mmu_pages *pvec)
1713 {
1714 int i, ret, nr_unsync_leaf = 0;
1715
1716 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1717 struct kvm_mmu_page *child;
1718 u64 ent = sp->spt[i];
1719
1720 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1721 clear_unsync_child_bit(sp, i);
1722 continue;
1723 }
1724
1725 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1726
1727 if (child->unsync_children) {
1728 if (mmu_pages_add(pvec, child, i))
1729 return -ENOSPC;
1730
1731 ret = __mmu_unsync_walk(child, pvec);
1732 if (!ret) {
1733 clear_unsync_child_bit(sp, i);
1734 continue;
1735 } else if (ret > 0) {
1736 nr_unsync_leaf += ret;
1737 } else
1738 return ret;
1739 } else if (child->unsync) {
1740 nr_unsync_leaf++;
1741 if (mmu_pages_add(pvec, child, i))
1742 return -ENOSPC;
1743 } else
1744 clear_unsync_child_bit(sp, i);
1745 }
1746
1747 return nr_unsync_leaf;
1748 }
1749
1750 #define INVALID_INDEX (-1)
1751
1752 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1753 struct kvm_mmu_pages *pvec)
1754 {
1755 pvec->nr = 0;
1756 if (!sp->unsync_children)
1757 return 0;
1758
1759 mmu_pages_add(pvec, sp, INVALID_INDEX);
1760 return __mmu_unsync_walk(sp, pvec);
1761 }
1762
1763 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1764 {
1765 WARN_ON(!sp->unsync);
1766 trace_kvm_mmu_sync_page(sp);
1767 sp->unsync = 0;
1768 --kvm->stat.mmu_unsync;
1769 }
1770
1771 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1772 struct list_head *invalid_list);
1773 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1774 struct list_head *invalid_list);
1775
1776 #define for_each_valid_sp(_kvm, _sp, _list) \
1777 hlist_for_each_entry(_sp, _list, hash_link) \
1778 if (is_obsolete_sp((_kvm), (_sp))) { \
1779 } else
1780
1781 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1782 for_each_valid_sp(_kvm, _sp, \
1783 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1784 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1785
1786 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1787 {
1788 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1789 }
1790
1791 /* @sp->gfn should be write-protected at the call site */
1792 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1793 struct list_head *invalid_list)
1794 {
1795 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1796 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1797 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1798 return false;
1799 }
1800
1801 return true;
1802 }
1803
1804 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1805 struct list_head *invalid_list,
1806 bool remote_flush)
1807 {
1808 if (!remote_flush && list_empty(invalid_list))
1809 return false;
1810
1811 if (!list_empty(invalid_list))
1812 kvm_mmu_commit_zap_page(kvm, invalid_list);
1813 else
1814 kvm_flush_remote_tlbs(kvm);
1815 return true;
1816 }
1817
1818 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1819 struct list_head *invalid_list,
1820 bool remote_flush, bool local_flush)
1821 {
1822 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1823 return;
1824
1825 if (local_flush)
1826 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1827 }
1828
1829 #ifdef CONFIG_KVM_MMU_AUDIT
1830 #include "mmu_audit.c"
1831 #else
1832 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1833 static void mmu_audit_disable(void) { }
1834 #endif
1835
1836 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1837 {
1838 return sp->role.invalid ||
1839 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1840 }
1841
1842 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1843 struct list_head *invalid_list)
1844 {
1845 kvm_unlink_unsync_page(vcpu->kvm, sp);
1846 return __kvm_sync_page(vcpu, sp, invalid_list);
1847 }
1848
1849 /* @gfn should be write-protected at the call site */
1850 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1851 struct list_head *invalid_list)
1852 {
1853 struct kvm_mmu_page *s;
1854 bool ret = false;
1855
1856 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1857 if (!s->unsync)
1858 continue;
1859
1860 WARN_ON(s->role.level != PG_LEVEL_4K);
1861 ret |= kvm_sync_page(vcpu, s, invalid_list);
1862 }
1863
1864 return ret;
1865 }
1866
1867 struct mmu_page_path {
1868 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1869 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1870 };
1871
1872 #define for_each_sp(pvec, sp, parents, i) \
1873 for (i = mmu_pages_first(&pvec, &parents); \
1874 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1875 i = mmu_pages_next(&pvec, &parents, i))
1876
1877 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1878 struct mmu_page_path *parents,
1879 int i)
1880 {
1881 int n;
1882
1883 for (n = i+1; n < pvec->nr; n++) {
1884 struct kvm_mmu_page *sp = pvec->page[n].sp;
1885 unsigned idx = pvec->page[n].idx;
1886 int level = sp->role.level;
1887
1888 parents->idx[level-1] = idx;
1889 if (level == PG_LEVEL_4K)
1890 break;
1891
1892 parents->parent[level-2] = sp;
1893 }
1894
1895 return n;
1896 }
1897
1898 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1899 struct mmu_page_path *parents)
1900 {
1901 struct kvm_mmu_page *sp;
1902 int level;
1903
1904 if (pvec->nr == 0)
1905 return 0;
1906
1907 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1908
1909 sp = pvec->page[0].sp;
1910 level = sp->role.level;
1911 WARN_ON(level == PG_LEVEL_4K);
1912
1913 parents->parent[level-2] = sp;
1914
1915 /* Also set up a sentinel. Further entries in pvec are all
1916 * children of sp, so this element is never overwritten.
1917 */
1918 parents->parent[level-1] = NULL;
1919 return mmu_pages_next(pvec, parents, 0);
1920 }
1921
1922 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1923 {
1924 struct kvm_mmu_page *sp;
1925 unsigned int level = 0;
1926
1927 do {
1928 unsigned int idx = parents->idx[level];
1929 sp = parents->parent[level];
1930 if (!sp)
1931 return;
1932
1933 WARN_ON(idx == INVALID_INDEX);
1934 clear_unsync_child_bit(sp, idx);
1935 level++;
1936 } while (!sp->unsync_children);
1937 }
1938
1939 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1940 struct kvm_mmu_page *parent)
1941 {
1942 int i;
1943 struct kvm_mmu_page *sp;
1944 struct mmu_page_path parents;
1945 struct kvm_mmu_pages pages;
1946 LIST_HEAD(invalid_list);
1947 bool flush = false;
1948
1949 while (mmu_unsync_walk(parent, &pages)) {
1950 bool protected = false;
1951
1952 for_each_sp(pages, sp, parents, i)
1953 protected |= rmap_write_protect(vcpu, sp->gfn);
1954
1955 if (protected) {
1956 kvm_flush_remote_tlbs(vcpu->kvm);
1957 flush = false;
1958 }
1959
1960 for_each_sp(pages, sp, parents, i) {
1961 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1962 mmu_pages_clear_parents(&parents);
1963 }
1964 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1965 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1966 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1967 flush = false;
1968 }
1969 }
1970
1971 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1972 }
1973
1974 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1975 {
1976 atomic_set(&sp->write_flooding_count, 0);
1977 }
1978
1979 static void clear_sp_write_flooding_count(u64 *spte)
1980 {
1981 __clear_sp_write_flooding_count(sptep_to_sp(spte));
1982 }
1983
1984 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1985 gfn_t gfn,
1986 gva_t gaddr,
1987 unsigned level,
1988 int direct,
1989 unsigned int access)
1990 {
1991 bool direct_mmu = vcpu->arch.mmu->direct_map;
1992 union kvm_mmu_page_role role;
1993 struct hlist_head *sp_list;
1994 unsigned quadrant;
1995 struct kvm_mmu_page *sp;
1996 bool need_sync = false;
1997 bool flush = false;
1998 int collisions = 0;
1999 LIST_HEAD(invalid_list);
2000
2001 role = vcpu->arch.mmu->mmu_role.base;
2002 role.level = level;
2003 role.direct = direct;
2004 if (role.direct)
2005 role.gpte_is_8_bytes = true;
2006 role.access = access;
2007 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2008 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2009 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2010 role.quadrant = quadrant;
2011 }
2012
2013 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2014 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2015 if (sp->gfn != gfn) {
2016 collisions++;
2017 continue;
2018 }
2019
2020 if (!need_sync && sp->unsync)
2021 need_sync = true;
2022
2023 if (sp->role.word != role.word)
2024 continue;
2025
2026 if (direct_mmu)
2027 goto trace_get_page;
2028
2029 if (sp->unsync) {
2030 /* The page is good, but __kvm_sync_page might still end
2031 * up zapping it. If so, break in order to rebuild it.
2032 */
2033 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2034 break;
2035
2036 WARN_ON(!list_empty(&invalid_list));
2037 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2038 }
2039
2040 if (sp->unsync_children)
2041 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2042
2043 __clear_sp_write_flooding_count(sp);
2044
2045 trace_get_page:
2046 trace_kvm_mmu_get_page(sp, false);
2047 goto out;
2048 }
2049
2050 ++vcpu->kvm->stat.mmu_cache_miss;
2051
2052 sp = kvm_mmu_alloc_page(vcpu, direct);
2053
2054 sp->gfn = gfn;
2055 sp->role = role;
2056 hlist_add_head(&sp->hash_link, sp_list);
2057 if (!direct) {
2058 /*
2059 * we should do write protection before syncing pages
2060 * otherwise the content of the synced shadow page may
2061 * be inconsistent with guest page table.
2062 */
2063 account_shadowed(vcpu->kvm, sp);
2064 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2065 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2066
2067 if (level > PG_LEVEL_4K && need_sync)
2068 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2069 }
2070 trace_kvm_mmu_get_page(sp, true);
2071
2072 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2073 out:
2074 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2075 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2076 return sp;
2077 }
2078
2079 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2080 struct kvm_vcpu *vcpu, hpa_t root,
2081 u64 addr)
2082 {
2083 iterator->addr = addr;
2084 iterator->shadow_addr = root;
2085 iterator->level = vcpu->arch.mmu->shadow_root_level;
2086
2087 if (iterator->level == PT64_ROOT_4LEVEL &&
2088 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2089 !vcpu->arch.mmu->direct_map)
2090 --iterator->level;
2091
2092 if (iterator->level == PT32E_ROOT_LEVEL) {
2093 /*
2094 * prev_root is currently only used for 64-bit hosts. So only
2095 * the active root_hpa is valid here.
2096 */
2097 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2098
2099 iterator->shadow_addr
2100 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2101 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2102 --iterator->level;
2103 if (!iterator->shadow_addr)
2104 iterator->level = 0;
2105 }
2106 }
2107
2108 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2109 struct kvm_vcpu *vcpu, u64 addr)
2110 {
2111 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2112 addr);
2113 }
2114
2115 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2116 {
2117 if (iterator->level < PG_LEVEL_4K)
2118 return false;
2119
2120 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2121 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2122 return true;
2123 }
2124
2125 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2126 u64 spte)
2127 {
2128 if (is_last_spte(spte, iterator->level)) {
2129 iterator->level = 0;
2130 return;
2131 }
2132
2133 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2134 --iterator->level;
2135 }
2136
2137 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2138 {
2139 __shadow_walk_next(iterator, *iterator->sptep);
2140 }
2141
2142 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2143 struct kvm_mmu_page *sp)
2144 {
2145 u64 spte;
2146
2147 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2148
2149 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2150
2151 mmu_spte_set(sptep, spte);
2152
2153 mmu_page_add_parent_pte(vcpu, sp, sptep);
2154
2155 if (sp->unsync_children || sp->unsync)
2156 mark_unsync(sptep);
2157 }
2158
2159 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2160 unsigned direct_access)
2161 {
2162 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2163 struct kvm_mmu_page *child;
2164
2165 /*
2166 * For the direct sp, if the guest pte's dirty bit
2167 * changed form clean to dirty, it will corrupt the
2168 * sp's access: allow writable in the read-only sp,
2169 * so we should update the spte at this point to get
2170 * a new sp with the correct access.
2171 */
2172 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2173 if (child->role.access == direct_access)
2174 return;
2175
2176 drop_parent_pte(child, sptep);
2177 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2178 }
2179 }
2180
2181 /* Returns the number of zapped non-leaf child shadow pages. */
2182 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2183 u64 *spte, struct list_head *invalid_list)
2184 {
2185 u64 pte;
2186 struct kvm_mmu_page *child;
2187
2188 pte = *spte;
2189 if (is_shadow_present_pte(pte)) {
2190 if (is_last_spte(pte, sp->role.level)) {
2191 drop_spte(kvm, spte);
2192 if (is_large_pte(pte))
2193 --kvm->stat.lpages;
2194 } else {
2195 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2196 drop_parent_pte(child, spte);
2197
2198 /*
2199 * Recursively zap nested TDP SPs, parentless SPs are
2200 * unlikely to be used again in the near future. This
2201 * avoids retaining a large number of stale nested SPs.
2202 */
2203 if (tdp_enabled && invalid_list &&
2204 child->role.guest_mode && !child->parent_ptes.val)
2205 return kvm_mmu_prepare_zap_page(kvm, child,
2206 invalid_list);
2207 }
2208 } else if (is_mmio_spte(pte)) {
2209 mmu_spte_clear_no_track(spte);
2210 }
2211 return 0;
2212 }
2213
2214 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2215 struct kvm_mmu_page *sp,
2216 struct list_head *invalid_list)
2217 {
2218 int zapped = 0;
2219 unsigned i;
2220
2221 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2222 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2223
2224 return zapped;
2225 }
2226
2227 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2228 {
2229 u64 *sptep;
2230 struct rmap_iterator iter;
2231
2232 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2233 drop_parent_pte(sp, sptep);
2234 }
2235
2236 static int mmu_zap_unsync_children(struct kvm *kvm,
2237 struct kvm_mmu_page *parent,
2238 struct list_head *invalid_list)
2239 {
2240 int i, zapped = 0;
2241 struct mmu_page_path parents;
2242 struct kvm_mmu_pages pages;
2243
2244 if (parent->role.level == PG_LEVEL_4K)
2245 return 0;
2246
2247 while (mmu_unsync_walk(parent, &pages)) {
2248 struct kvm_mmu_page *sp;
2249
2250 for_each_sp(pages, sp, parents, i) {
2251 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2252 mmu_pages_clear_parents(&parents);
2253 zapped++;
2254 }
2255 }
2256
2257 return zapped;
2258 }
2259
2260 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2261 struct kvm_mmu_page *sp,
2262 struct list_head *invalid_list,
2263 int *nr_zapped)
2264 {
2265 bool list_unstable;
2266
2267 trace_kvm_mmu_prepare_zap_page(sp);
2268 ++kvm->stat.mmu_shadow_zapped;
2269 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2270 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2271 kvm_mmu_unlink_parents(kvm, sp);
2272
2273 /* Zapping children means active_mmu_pages has become unstable. */
2274 list_unstable = *nr_zapped;
2275
2276 if (!sp->role.invalid && !sp->role.direct)
2277 unaccount_shadowed(kvm, sp);
2278
2279 if (sp->unsync)
2280 kvm_unlink_unsync_page(kvm, sp);
2281 if (!sp->root_count) {
2282 /* Count self */
2283 (*nr_zapped)++;
2284
2285 /*
2286 * Already invalid pages (previously active roots) are not on
2287 * the active page list. See list_del() in the "else" case of
2288 * !sp->root_count.
2289 */
2290 if (sp->role.invalid)
2291 list_add(&sp->link, invalid_list);
2292 else
2293 list_move(&sp->link, invalid_list);
2294 kvm_mod_used_mmu_pages(kvm, -1);
2295 } else {
2296 /*
2297 * Remove the active root from the active page list, the root
2298 * will be explicitly freed when the root_count hits zero.
2299 */
2300 list_del(&sp->link);
2301
2302 /*
2303 * Obsolete pages cannot be used on any vCPUs, see the comment
2304 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2305 * treats invalid shadow pages as being obsolete.
2306 */
2307 if (!is_obsolete_sp(kvm, sp))
2308 kvm_reload_remote_mmus(kvm);
2309 }
2310
2311 if (sp->lpage_disallowed)
2312 unaccount_huge_nx_page(kvm, sp);
2313
2314 sp->role.invalid = 1;
2315 return list_unstable;
2316 }
2317
2318 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2319 struct list_head *invalid_list)
2320 {
2321 int nr_zapped;
2322
2323 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2324 return nr_zapped;
2325 }
2326
2327 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2328 struct list_head *invalid_list)
2329 {
2330 struct kvm_mmu_page *sp, *nsp;
2331
2332 if (list_empty(invalid_list))
2333 return;
2334
2335 /*
2336 * We need to make sure everyone sees our modifications to
2337 * the page tables and see changes to vcpu->mode here. The barrier
2338 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2339 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2340 *
2341 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2342 * guest mode and/or lockless shadow page table walks.
2343 */
2344 kvm_flush_remote_tlbs(kvm);
2345
2346 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2347 WARN_ON(!sp->role.invalid || sp->root_count);
2348 kvm_mmu_free_page(sp);
2349 }
2350 }
2351
2352 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2353 unsigned long nr_to_zap)
2354 {
2355 unsigned long total_zapped = 0;
2356 struct kvm_mmu_page *sp, *tmp;
2357 LIST_HEAD(invalid_list);
2358 bool unstable;
2359 int nr_zapped;
2360
2361 if (list_empty(&kvm->arch.active_mmu_pages))
2362 return 0;
2363
2364 restart:
2365 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2366 /*
2367 * Don't zap active root pages, the page itself can't be freed
2368 * and zapping it will just force vCPUs to realloc and reload.
2369 */
2370 if (sp->root_count)
2371 continue;
2372
2373 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2374 &nr_zapped);
2375 total_zapped += nr_zapped;
2376 if (total_zapped >= nr_to_zap)
2377 break;
2378
2379 if (unstable)
2380 goto restart;
2381 }
2382
2383 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2384
2385 kvm->stat.mmu_recycled += total_zapped;
2386 return total_zapped;
2387 }
2388
2389 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2390 {
2391 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2392 return kvm->arch.n_max_mmu_pages -
2393 kvm->arch.n_used_mmu_pages;
2394
2395 return 0;
2396 }
2397
2398 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2399 {
2400 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2401
2402 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2403 return 0;
2404
2405 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2406
2407 /*
2408 * Note, this check is intentionally soft, it only guarantees that one
2409 * page is available, while the caller may end up allocating as many as
2410 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2411 * exceeding the (arbitrary by default) limit will not harm the host,
2412 * being too agressive may unnecessarily kill the guest, and getting an
2413 * exact count is far more trouble than it's worth, especially in the
2414 * page fault paths.
2415 */
2416 if (!kvm_mmu_available_pages(vcpu->kvm))
2417 return -ENOSPC;
2418 return 0;
2419 }
2420
2421 /*
2422 * Changing the number of mmu pages allocated to the vm
2423 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2424 */
2425 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2426 {
2427 write_lock(&kvm->mmu_lock);
2428
2429 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2430 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2431 goal_nr_mmu_pages);
2432
2433 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2434 }
2435
2436 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2437
2438 write_unlock(&kvm->mmu_lock);
2439 }
2440
2441 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2442 {
2443 struct kvm_mmu_page *sp;
2444 LIST_HEAD(invalid_list);
2445 int r;
2446
2447 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2448 r = 0;
2449 write_lock(&kvm->mmu_lock);
2450 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2451 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2452 sp->role.word);
2453 r = 1;
2454 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2455 }
2456 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2457 write_unlock(&kvm->mmu_lock);
2458
2459 return r;
2460 }
2461
2462 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2463 {
2464 gpa_t gpa;
2465 int r;
2466
2467 if (vcpu->arch.mmu->direct_map)
2468 return 0;
2469
2470 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2471
2472 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2473
2474 return r;
2475 }
2476
2477 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2478 {
2479 trace_kvm_mmu_unsync_page(sp);
2480 ++vcpu->kvm->stat.mmu_unsync;
2481 sp->unsync = 1;
2482
2483 kvm_mmu_mark_parents_unsync(sp);
2484 }
2485
2486 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2487 bool can_unsync)
2488 {
2489 struct kvm_mmu_page *sp;
2490
2491 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2492 return true;
2493
2494 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2495 if (!can_unsync)
2496 return true;
2497
2498 if (sp->unsync)
2499 continue;
2500
2501 WARN_ON(sp->role.level != PG_LEVEL_4K);
2502 kvm_unsync_page(vcpu, sp);
2503 }
2504
2505 /*
2506 * We need to ensure that the marking of unsync pages is visible
2507 * before the SPTE is updated to allow writes because
2508 * kvm_mmu_sync_roots() checks the unsync flags without holding
2509 * the MMU lock and so can race with this. If the SPTE was updated
2510 * before the page had been marked as unsync-ed, something like the
2511 * following could happen:
2512 *
2513 * CPU 1 CPU 2
2514 * ---------------------------------------------------------------------
2515 * 1.2 Host updates SPTE
2516 * to be writable
2517 * 2.1 Guest writes a GPTE for GVA X.
2518 * (GPTE being in the guest page table shadowed
2519 * by the SP from CPU 1.)
2520 * This reads SPTE during the page table walk.
2521 * Since SPTE.W is read as 1, there is no
2522 * fault.
2523 *
2524 * 2.2 Guest issues TLB flush.
2525 * That causes a VM Exit.
2526 *
2527 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2528 * Since it is false, so it just returns.
2529 *
2530 * 2.4 Guest accesses GVA X.
2531 * Since the mapping in the SP was not updated,
2532 * so the old mapping for GVA X incorrectly
2533 * gets used.
2534 * 1.1 Host marks SP
2535 * as unsync
2536 * (sp->unsync = true)
2537 *
2538 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2539 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2540 * pairs with this write barrier.
2541 */
2542 smp_wmb();
2543
2544 return false;
2545 }
2546
2547 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2548 unsigned int pte_access, int level,
2549 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2550 bool can_unsync, bool host_writable)
2551 {
2552 u64 spte;
2553 struct kvm_mmu_page *sp;
2554 int ret;
2555
2556 sp = sptep_to_sp(sptep);
2557
2558 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2559 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2560
2561 if (spte & PT_WRITABLE_MASK)
2562 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2563
2564 if (*sptep == spte)
2565 ret |= SET_SPTE_SPURIOUS;
2566 else if (mmu_spte_update(sptep, spte))
2567 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2568 return ret;
2569 }
2570
2571 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2572 unsigned int pte_access, bool write_fault, int level,
2573 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2574 bool host_writable)
2575 {
2576 int was_rmapped = 0;
2577 int rmap_count;
2578 int set_spte_ret;
2579 int ret = RET_PF_FIXED;
2580 bool flush = false;
2581
2582 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2583 *sptep, write_fault, gfn);
2584
2585 if (unlikely(is_noslot_pfn(pfn))) {
2586 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2587 return RET_PF_EMULATE;
2588 }
2589
2590 if (is_shadow_present_pte(*sptep)) {
2591 /*
2592 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2593 * the parent of the now unreachable PTE.
2594 */
2595 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2596 struct kvm_mmu_page *child;
2597 u64 pte = *sptep;
2598
2599 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2600 drop_parent_pte(child, sptep);
2601 flush = true;
2602 } else if (pfn != spte_to_pfn(*sptep)) {
2603 pgprintk("hfn old %llx new %llx\n",
2604 spte_to_pfn(*sptep), pfn);
2605 drop_spte(vcpu->kvm, sptep);
2606 flush = true;
2607 } else
2608 was_rmapped = 1;
2609 }
2610
2611 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2612 speculative, true, host_writable);
2613 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2614 if (write_fault)
2615 ret = RET_PF_EMULATE;
2616 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2617 }
2618
2619 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2620 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2621 KVM_PAGES_PER_HPAGE(level));
2622
2623 /*
2624 * The fault is fully spurious if and only if the new SPTE and old SPTE
2625 * are identical, and emulation is not required.
2626 */
2627 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2628 WARN_ON_ONCE(!was_rmapped);
2629 return RET_PF_SPURIOUS;
2630 }
2631
2632 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2633 trace_kvm_mmu_set_spte(level, gfn, sptep);
2634 if (!was_rmapped && is_large_pte(*sptep))
2635 ++vcpu->kvm->stat.lpages;
2636
2637 if (is_shadow_present_pte(*sptep)) {
2638 if (!was_rmapped) {
2639 rmap_count = rmap_add(vcpu, sptep, gfn);
2640 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2641 rmap_recycle(vcpu, sptep, gfn);
2642 }
2643 }
2644
2645 return ret;
2646 }
2647
2648 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2649 bool no_dirty_log)
2650 {
2651 struct kvm_memory_slot *slot;
2652
2653 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2654 if (!slot)
2655 return KVM_PFN_ERR_FAULT;
2656
2657 return gfn_to_pfn_memslot_atomic(slot, gfn);
2658 }
2659
2660 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2661 struct kvm_mmu_page *sp,
2662 u64 *start, u64 *end)
2663 {
2664 struct page *pages[PTE_PREFETCH_NUM];
2665 struct kvm_memory_slot *slot;
2666 unsigned int access = sp->role.access;
2667 int i, ret;
2668 gfn_t gfn;
2669
2670 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2671 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2672 if (!slot)
2673 return -1;
2674
2675 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2676 if (ret <= 0)
2677 return -1;
2678
2679 for (i = 0; i < ret; i++, gfn++, start++) {
2680 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2681 page_to_pfn(pages[i]), true, true);
2682 put_page(pages[i]);
2683 }
2684
2685 return 0;
2686 }
2687
2688 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2689 struct kvm_mmu_page *sp, u64 *sptep)
2690 {
2691 u64 *spte, *start = NULL;
2692 int i;
2693
2694 WARN_ON(!sp->role.direct);
2695
2696 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2697 spte = sp->spt + i;
2698
2699 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2700 if (is_shadow_present_pte(*spte) || spte == sptep) {
2701 if (!start)
2702 continue;
2703 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2704 break;
2705 start = NULL;
2706 } else if (!start)
2707 start = spte;
2708 }
2709 }
2710
2711 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2712 {
2713 struct kvm_mmu_page *sp;
2714
2715 sp = sptep_to_sp(sptep);
2716
2717 /*
2718 * Without accessed bits, there's no way to distinguish between
2719 * actually accessed translations and prefetched, so disable pte
2720 * prefetch if accessed bits aren't available.
2721 */
2722 if (sp_ad_disabled(sp))
2723 return;
2724
2725 if (sp->role.level > PG_LEVEL_4K)
2726 return;
2727
2728 /*
2729 * If addresses are being invalidated, skip prefetching to avoid
2730 * accidentally prefetching those addresses.
2731 */
2732 if (unlikely(vcpu->kvm->mmu_notifier_count))
2733 return;
2734
2735 __direct_pte_prefetch(vcpu, sp, sptep);
2736 }
2737
2738 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2739 struct kvm_memory_slot *slot)
2740 {
2741 unsigned long hva;
2742 pte_t *pte;
2743 int level;
2744
2745 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2746 return PG_LEVEL_4K;
2747
2748 /*
2749 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2750 * is not solely for performance, it's also necessary to avoid the
2751 * "writable" check in __gfn_to_hva_many(), which will always fail on
2752 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2753 * page fault steps have already verified the guest isn't writing a
2754 * read-only memslot.
2755 */
2756 hva = __gfn_to_hva_memslot(slot, gfn);
2757
2758 pte = lookup_address_in_mm(kvm->mm, hva, &level);
2759 if (unlikely(!pte))
2760 return PG_LEVEL_4K;
2761
2762 return level;
2763 }
2764
2765 int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2766 gfn_t gfn, kvm_pfn_t pfn, int max_level)
2767 {
2768 struct kvm_lpage_info *linfo;
2769
2770 max_level = min(max_level, max_huge_page_level);
2771 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2772 linfo = lpage_info_slot(gfn, slot, max_level);
2773 if (!linfo->disallow_lpage)
2774 break;
2775 }
2776
2777 if (max_level == PG_LEVEL_4K)
2778 return PG_LEVEL_4K;
2779
2780 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2781 }
2782
2783 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2784 int max_level, kvm_pfn_t *pfnp,
2785 bool huge_page_disallowed, int *req_level)
2786 {
2787 struct kvm_memory_slot *slot;
2788 kvm_pfn_t pfn = *pfnp;
2789 kvm_pfn_t mask;
2790 int level;
2791
2792 *req_level = PG_LEVEL_4K;
2793
2794 if (unlikely(max_level == PG_LEVEL_4K))
2795 return PG_LEVEL_4K;
2796
2797 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2798 return PG_LEVEL_4K;
2799
2800 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2801 if (!slot)
2802 return PG_LEVEL_4K;
2803
2804 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2805 if (level == PG_LEVEL_4K)
2806 return level;
2807
2808 *req_level = level = min(level, max_level);
2809
2810 /*
2811 * Enforce the iTLB multihit workaround after capturing the requested
2812 * level, which will be used to do precise, accurate accounting.
2813 */
2814 if (huge_page_disallowed)
2815 return PG_LEVEL_4K;
2816
2817 /*
2818 * mmu_notifier_retry() was successful and mmu_lock is held, so
2819 * the pmd can't be split from under us.
2820 */
2821 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2822 VM_BUG_ON((gfn & mask) != (pfn & mask));
2823 *pfnp = pfn & ~mask;
2824
2825 return level;
2826 }
2827
2828 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2829 kvm_pfn_t *pfnp, int *goal_levelp)
2830 {
2831 int level = *goal_levelp;
2832
2833 if (cur_level == level && level > PG_LEVEL_4K &&
2834 is_shadow_present_pte(spte) &&
2835 !is_large_pte(spte)) {
2836 /*
2837 * A small SPTE exists for this pfn, but FNAME(fetch)
2838 * and __direct_map would like to create a large PTE
2839 * instead: just force them to go down another level,
2840 * patching back for them into pfn the next 9 bits of
2841 * the address.
2842 */
2843 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2844 KVM_PAGES_PER_HPAGE(level - 1);
2845 *pfnp |= gfn & page_mask;
2846 (*goal_levelp)--;
2847 }
2848 }
2849
2850 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2851 int map_writable, int max_level, kvm_pfn_t pfn,
2852 bool prefault, bool is_tdp)
2853 {
2854 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2855 bool write = error_code & PFERR_WRITE_MASK;
2856 bool exec = error_code & PFERR_FETCH_MASK;
2857 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2858 struct kvm_shadow_walk_iterator it;
2859 struct kvm_mmu_page *sp;
2860 int level, req_level, ret;
2861 gfn_t gfn = gpa >> PAGE_SHIFT;
2862 gfn_t base_gfn = gfn;
2863
2864 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2865 return RET_PF_RETRY;
2866
2867 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2868 huge_page_disallowed, &req_level);
2869
2870 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2871 for_each_shadow_entry(vcpu, gpa, it) {
2872 /*
2873 * We cannot overwrite existing page tables with an NX
2874 * large page, as the leaf could be executable.
2875 */
2876 if (nx_huge_page_workaround_enabled)
2877 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2878 &pfn, &level);
2879
2880 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2881 if (it.level == level)
2882 break;
2883
2884 drop_large_spte(vcpu, it.sptep);
2885 if (!is_shadow_present_pte(*it.sptep)) {
2886 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2887 it.level - 1, true, ACC_ALL);
2888
2889 link_shadow_page(vcpu, it.sptep, sp);
2890 if (is_tdp && huge_page_disallowed &&
2891 req_level >= it.level)
2892 account_huge_nx_page(vcpu->kvm, sp);
2893 }
2894 }
2895
2896 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2897 write, level, base_gfn, pfn, prefault,
2898 map_writable);
2899 if (ret == RET_PF_SPURIOUS)
2900 return ret;
2901
2902 direct_pte_prefetch(vcpu, it.sptep);
2903 ++vcpu->stat.pf_fixed;
2904 return ret;
2905 }
2906
2907 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2908 {
2909 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2910 }
2911
2912 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2913 {
2914 /*
2915 * Do not cache the mmio info caused by writing the readonly gfn
2916 * into the spte otherwise read access on readonly gfn also can
2917 * caused mmio page fault and treat it as mmio access.
2918 */
2919 if (pfn == KVM_PFN_ERR_RO_FAULT)
2920 return RET_PF_EMULATE;
2921
2922 if (pfn == KVM_PFN_ERR_HWPOISON) {
2923 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2924 return RET_PF_RETRY;
2925 }
2926
2927 return -EFAULT;
2928 }
2929
2930 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2931 kvm_pfn_t pfn, unsigned int access,
2932 int *ret_val)
2933 {
2934 /* The pfn is invalid, report the error! */
2935 if (unlikely(is_error_pfn(pfn))) {
2936 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2937 return true;
2938 }
2939
2940 if (unlikely(is_noslot_pfn(pfn))) {
2941 vcpu_cache_mmio_info(vcpu, gva, gfn,
2942 access & shadow_mmio_access_mask);
2943 /*
2944 * If MMIO caching is disabled, emulate immediately without
2945 * touching the shadow page tables as attempting to install an
2946 * MMIO SPTE will just be an expensive nop.
2947 */
2948 if (unlikely(!shadow_mmio_value)) {
2949 *ret_val = RET_PF_EMULATE;
2950 return true;
2951 }
2952 }
2953
2954 return false;
2955 }
2956
2957 static bool page_fault_can_be_fast(u32 error_code)
2958 {
2959 /*
2960 * Do not fix the mmio spte with invalid generation number which
2961 * need to be updated by slow page fault path.
2962 */
2963 if (unlikely(error_code & PFERR_RSVD_MASK))
2964 return false;
2965
2966 /* See if the page fault is due to an NX violation */
2967 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2968 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2969 return false;
2970
2971 /*
2972 * #PF can be fast if:
2973 * 1. The shadow page table entry is not present, which could mean that
2974 * the fault is potentially caused by access tracking (if enabled).
2975 * 2. The shadow page table entry is present and the fault
2976 * is caused by write-protect, that means we just need change the W
2977 * bit of the spte which can be done out of mmu-lock.
2978 *
2979 * However, if access tracking is disabled we know that a non-present
2980 * page must be a genuine page fault where we have to create a new SPTE.
2981 * So, if access tracking is disabled, we return true only for write
2982 * accesses to a present page.
2983 */
2984
2985 return shadow_acc_track_mask != 0 ||
2986 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2987 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2988 }
2989
2990 /*
2991 * Returns true if the SPTE was fixed successfully. Otherwise,
2992 * someone else modified the SPTE from its original value.
2993 */
2994 static bool
2995 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2996 u64 *sptep, u64 old_spte, u64 new_spte)
2997 {
2998 gfn_t gfn;
2999
3000 WARN_ON(!sp->role.direct);
3001
3002 /*
3003 * Theoretically we could also set dirty bit (and flush TLB) here in
3004 * order to eliminate unnecessary PML logging. See comments in
3005 * set_spte. But fast_page_fault is very unlikely to happen with PML
3006 * enabled, so we do not do this. This might result in the same GPA
3007 * to be logged in PML buffer again when the write really happens, and
3008 * eventually to be called by mark_page_dirty twice. But it's also no
3009 * harm. This also avoids the TLB flush needed after setting dirty bit
3010 * so non-PML cases won't be impacted.
3011 *
3012 * Compare with set_spte where instead shadow_dirty_mask is set.
3013 */
3014 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3015 return false;
3016
3017 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3018 /*
3019 * The gfn of direct spte is stable since it is
3020 * calculated by sp->gfn.
3021 */
3022 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3023 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3024 }
3025
3026 return true;
3027 }
3028
3029 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3030 {
3031 if (fault_err_code & PFERR_FETCH_MASK)
3032 return is_executable_pte(spte);
3033
3034 if (fault_err_code & PFERR_WRITE_MASK)
3035 return is_writable_pte(spte);
3036
3037 /* Fault was on Read access */
3038 return spte & PT_PRESENT_MASK;
3039 }
3040
3041 /*
3042 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3043 */
3044 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3045 u32 error_code)
3046 {
3047 struct kvm_shadow_walk_iterator iterator;
3048 struct kvm_mmu_page *sp;
3049 int ret = RET_PF_INVALID;
3050 u64 spte = 0ull;
3051 uint retry_count = 0;
3052
3053 if (!page_fault_can_be_fast(error_code))
3054 return ret;
3055
3056 walk_shadow_page_lockless_begin(vcpu);
3057
3058 do {
3059 u64 new_spte;
3060
3061 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3062 if (!is_shadow_present_pte(spte))
3063 break;
3064
3065 if (!is_shadow_present_pte(spte))
3066 break;
3067
3068 sp = sptep_to_sp(iterator.sptep);
3069 if (!is_last_spte(spte, sp->role.level))
3070 break;
3071
3072 /*
3073 * Check whether the memory access that caused the fault would
3074 * still cause it if it were to be performed right now. If not,
3075 * then this is a spurious fault caused by TLB lazily flushed,
3076 * or some other CPU has already fixed the PTE after the
3077 * current CPU took the fault.
3078 *
3079 * Need not check the access of upper level table entries since
3080 * they are always ACC_ALL.
3081 */
3082 if (is_access_allowed(error_code, spte)) {
3083 ret = RET_PF_SPURIOUS;
3084 break;
3085 }
3086
3087 new_spte = spte;
3088
3089 if (is_access_track_spte(spte))
3090 new_spte = restore_acc_track_spte(new_spte);
3091
3092 /*
3093 * Currently, to simplify the code, write-protection can
3094 * be removed in the fast path only if the SPTE was
3095 * write-protected for dirty-logging or access tracking.
3096 */
3097 if ((error_code & PFERR_WRITE_MASK) &&
3098 spte_can_locklessly_be_made_writable(spte)) {
3099 new_spte |= PT_WRITABLE_MASK;
3100
3101 /*
3102 * Do not fix write-permission on the large spte. Since
3103 * we only dirty the first page into the dirty-bitmap in
3104 * fast_pf_fix_direct_spte(), other pages are missed
3105 * if its slot has dirty logging enabled.
3106 *
3107 * Instead, we let the slow page fault path create a
3108 * normal spte to fix the access.
3109 *
3110 * See the comments in kvm_arch_commit_memory_region().
3111 */
3112 if (sp->role.level > PG_LEVEL_4K)
3113 break;
3114 }
3115
3116 /* Verify that the fault can be handled in the fast path */
3117 if (new_spte == spte ||
3118 !is_access_allowed(error_code, new_spte))
3119 break;
3120
3121 /*
3122 * Currently, fast page fault only works for direct mapping
3123 * since the gfn is not stable for indirect shadow page. See
3124 * Documentation/virt/kvm/locking.rst to get more detail.
3125 */
3126 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3127 new_spte)) {
3128 ret = RET_PF_FIXED;
3129 break;
3130 }
3131
3132 if (++retry_count > 4) {
3133 printk_once(KERN_WARNING
3134 "kvm: Fast #PF retrying more than 4 times.\n");
3135 break;
3136 }
3137
3138 } while (true);
3139
3140 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3141 spte, ret);
3142 walk_shadow_page_lockless_end(vcpu);
3143
3144 return ret;
3145 }
3146
3147 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3148 struct list_head *invalid_list)
3149 {
3150 struct kvm_mmu_page *sp;
3151
3152 if (!VALID_PAGE(*root_hpa))
3153 return;
3154
3155 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3156
3157 if (kvm_mmu_put_root(kvm, sp)) {
3158 if (is_tdp_mmu_page(sp))
3159 kvm_tdp_mmu_free_root(kvm, sp);
3160 else if (sp->role.invalid)
3161 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3162 }
3163
3164 *root_hpa = INVALID_PAGE;
3165 }
3166
3167 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3168 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3169 ulong roots_to_free)
3170 {
3171 struct kvm *kvm = vcpu->kvm;
3172 int i;
3173 LIST_HEAD(invalid_list);
3174 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3175
3176 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3177
3178 /* Before acquiring the MMU lock, see if we need to do any real work. */
3179 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3180 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3181 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3182 VALID_PAGE(mmu->prev_roots[i].hpa))
3183 break;
3184
3185 if (i == KVM_MMU_NUM_PREV_ROOTS)
3186 return;
3187 }
3188
3189 write_lock(&kvm->mmu_lock);
3190
3191 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3192 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3193 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3194 &invalid_list);
3195
3196 if (free_active_root) {
3197 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3198 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3199 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3200 } else if (mmu->pae_root) {
3201 for (i = 0; i < 4; ++i) {
3202 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3203 continue;
3204
3205 mmu_free_root_page(kvm, &mmu->pae_root[i],
3206 &invalid_list);
3207 mmu->pae_root[i] = INVALID_PAE_ROOT;
3208 }
3209 }
3210 mmu->root_hpa = INVALID_PAGE;
3211 mmu->root_pgd = 0;
3212 }
3213
3214 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3215 write_unlock(&kvm->mmu_lock);
3216 }
3217 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3218
3219 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3220 {
3221 int ret = 0;
3222
3223 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3224 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3225 ret = 1;
3226 }
3227
3228 return ret;
3229 }
3230
3231 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3232 u8 level, bool direct)
3233 {
3234 struct kvm_mmu_page *sp;
3235
3236 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3237 ++sp->root_count;
3238
3239 return __pa(sp->spt);
3240 }
3241
3242 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3243 {
3244 struct kvm_mmu *mmu = vcpu->arch.mmu;
3245 u8 shadow_root_level = mmu->shadow_root_level;
3246 hpa_t root;
3247 unsigned i;
3248 int r;
3249
3250 write_lock(&vcpu->kvm->mmu_lock);
3251 r = make_mmu_pages_available(vcpu);
3252 if (r < 0)
3253 goto out_unlock;
3254
3255 if (is_tdp_mmu_enabled(vcpu->kvm)) {
3256 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3257 mmu->root_hpa = root;
3258 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3259 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3260 mmu->root_hpa = root;
3261 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3262 if (WARN_ON_ONCE(!mmu->pae_root)) {
3263 r = -EIO;
3264 goto out_unlock;
3265 }
3266
3267 for (i = 0; i < 4; ++i) {
3268 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3269
3270 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3271 i << 30, PT32_ROOT_LEVEL, true);
3272 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3273 shadow_me_mask;
3274 }
3275 mmu->root_hpa = __pa(mmu->pae_root);
3276 } else {
3277 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3278 r = -EIO;
3279 goto out_unlock;
3280 }
3281
3282 /* root_pgd is ignored for direct MMUs. */
3283 mmu->root_pgd = 0;
3284 out_unlock:
3285 write_unlock(&vcpu->kvm->mmu_lock);
3286 return r;
3287 }
3288
3289 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3290 {
3291 struct kvm_mmu *mmu = vcpu->arch.mmu;
3292 u64 pdptrs[4], pm_mask;
3293 gfn_t root_gfn, root_pgd;
3294 hpa_t root;
3295 unsigned i;
3296 int r;
3297
3298 root_pgd = mmu->get_guest_pgd(vcpu);
3299 root_gfn = root_pgd >> PAGE_SHIFT;
3300
3301 if (mmu_check_root(vcpu, root_gfn))
3302 return 1;
3303
3304 /*
3305 * On SVM, reading PDPTRs might access guest memory, which might fault
3306 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3307 */
3308 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3309 for (i = 0; i < 4; ++i) {
3310 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3311 if (!(pdptrs[i] & PT_PRESENT_MASK))
3312 continue;
3313
3314 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3315 return 1;
3316 }
3317 }
3318
3319 write_lock(&vcpu->kvm->mmu_lock);
3320 r = make_mmu_pages_available(vcpu);
3321 if (r < 0)
3322 goto out_unlock;
3323
3324 /*
3325 * Do we shadow a long mode page table? If so we need to
3326 * write-protect the guests page table root.
3327 */
3328 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3329 root = mmu_alloc_root(vcpu, root_gfn, 0,
3330 mmu->shadow_root_level, false);
3331 mmu->root_hpa = root;
3332 goto set_root_pgd;
3333 }
3334
3335 if (WARN_ON_ONCE(!mmu->pae_root)) {
3336 r = -EIO;
3337 goto out_unlock;
3338 }
3339
3340 /*
3341 * We shadow a 32 bit page table. This may be a legacy 2-level
3342 * or a PAE 3-level page table. In either case we need to be aware that
3343 * the shadow page table may be a PAE or a long mode page table.
3344 */
3345 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3346 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3347 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3348
3349 if (WARN_ON_ONCE(!mmu->lm_root)) {
3350 r = -EIO;
3351 goto out_unlock;
3352 }
3353
3354 mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
3355 }
3356
3357 for (i = 0; i < 4; ++i) {
3358 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3359
3360 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3361 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3362 mmu->pae_root[i] = INVALID_PAE_ROOT;
3363 continue;
3364 }
3365 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3366 }
3367
3368 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3369 PT32_ROOT_LEVEL, false);
3370 mmu->pae_root[i] = root | pm_mask;
3371 }
3372
3373 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3374 mmu->root_hpa = __pa(mmu->lm_root);
3375 else
3376 mmu->root_hpa = __pa(mmu->pae_root);
3377
3378 set_root_pgd:
3379 mmu->root_pgd = root_pgd;
3380 out_unlock:
3381 write_unlock(&vcpu->kvm->mmu_lock);
3382
3383 return 0;
3384 }
3385
3386 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3387 {
3388 struct kvm_mmu *mmu = vcpu->arch.mmu;
3389 u64 *lm_root, *pae_root;
3390
3391 /*
3392 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3393 * tables are allocated and initialized at root creation as there is no
3394 * equivalent level in the guest's NPT to shadow. Allocate the tables
3395 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3396 */
3397 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3398 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3399 return 0;
3400
3401 /*
3402 * This mess only works with 4-level paging and needs to be updated to
3403 * work with 5-level paging.
3404 */
3405 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3406 return -EIO;
3407
3408 if (mmu->pae_root && mmu->lm_root)
3409 return 0;
3410
3411 /*
3412 * The special roots should always be allocated in concert. Yell and
3413 * bail if KVM ends up in a state where only one of the roots is valid.
3414 */
3415 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
3416 return -EIO;
3417
3418 /*
3419 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3420 * doesn't need to be decrypted.
3421 */
3422 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3423 if (!pae_root)
3424 return -ENOMEM;
3425
3426 lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3427 if (!lm_root) {
3428 free_page((unsigned long)pae_root);
3429 return -ENOMEM;
3430 }
3431
3432 mmu->pae_root = pae_root;
3433 mmu->lm_root = lm_root;
3434
3435 return 0;
3436 }
3437
3438 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3439 {
3440 int i;
3441 struct kvm_mmu_page *sp;
3442
3443 if (vcpu->arch.mmu->direct_map)
3444 return;
3445
3446 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3447 return;
3448
3449 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3450
3451 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3452 hpa_t root = vcpu->arch.mmu->root_hpa;
3453 sp = to_shadow_page(root);
3454
3455 /*
3456 * Even if another CPU was marking the SP as unsync-ed
3457 * simultaneously, any guest page table changes are not
3458 * guaranteed to be visible anyway until this VCPU issues a TLB
3459 * flush strictly after those changes are made. We only need to
3460 * ensure that the other CPU sets these flags before any actual
3461 * changes to the page tables are made. The comments in
3462 * mmu_need_write_protect() describe what could go wrong if this
3463 * requirement isn't satisfied.
3464 */
3465 if (!smp_load_acquire(&sp->unsync) &&
3466 !smp_load_acquire(&sp->unsync_children))
3467 return;
3468
3469 write_lock(&vcpu->kvm->mmu_lock);
3470 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3471
3472 mmu_sync_children(vcpu, sp);
3473
3474 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3475 write_unlock(&vcpu->kvm->mmu_lock);
3476 return;
3477 }
3478
3479 write_lock(&vcpu->kvm->mmu_lock);
3480 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3481
3482 for (i = 0; i < 4; ++i) {
3483 hpa_t root = vcpu->arch.mmu->pae_root[i];
3484
3485 if (IS_VALID_PAE_ROOT(root)) {
3486 root &= PT64_BASE_ADDR_MASK;
3487 sp = to_shadow_page(root);
3488 mmu_sync_children(vcpu, sp);
3489 }
3490 }
3491
3492 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3493 write_unlock(&vcpu->kvm->mmu_lock);
3494 }
3495
3496 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3497 u32 access, struct x86_exception *exception)
3498 {
3499 if (exception)
3500 exception->error_code = 0;
3501 return vaddr;
3502 }
3503
3504 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3505 u32 access,
3506 struct x86_exception *exception)
3507 {
3508 if (exception)
3509 exception->error_code = 0;
3510 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3511 }
3512
3513 static bool
3514 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3515 {
3516 int bit7 = (pte >> 7) & 1;
3517
3518 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3519 }
3520
3521 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3522 {
3523 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3524 }
3525
3526 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3527 {
3528 /*
3529 * A nested guest cannot use the MMIO cache if it is using nested
3530 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3531 */
3532 if (mmu_is_nested(vcpu))
3533 return false;
3534
3535 if (direct)
3536 return vcpu_match_mmio_gpa(vcpu, addr);
3537
3538 return vcpu_match_mmio_gva(vcpu, addr);
3539 }
3540
3541 /*
3542 * Return the level of the lowest level SPTE added to sptes.
3543 * That SPTE may be non-present.
3544 */
3545 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3546 {
3547 struct kvm_shadow_walk_iterator iterator;
3548 int leaf = -1;
3549 u64 spte;
3550
3551 walk_shadow_page_lockless_begin(vcpu);
3552
3553 for (shadow_walk_init(&iterator, vcpu, addr),
3554 *root_level = iterator.level;
3555 shadow_walk_okay(&iterator);
3556 __shadow_walk_next(&iterator, spte)) {
3557 leaf = iterator.level;
3558 spte = mmu_spte_get_lockless(iterator.sptep);
3559
3560 sptes[leaf] = spte;
3561
3562 if (!is_shadow_present_pte(spte))
3563 break;
3564 }
3565
3566 walk_shadow_page_lockless_end(vcpu);
3567
3568 return leaf;
3569 }
3570
3571 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3572 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3573 {
3574 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3575 struct rsvd_bits_validate *rsvd_check;
3576 int root, leaf, level;
3577 bool reserved = false;
3578
3579 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3580 *sptep = 0ull;
3581 return reserved;
3582 }
3583
3584 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3585 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3586 else
3587 leaf = get_walk(vcpu, addr, sptes, &root);
3588
3589 if (unlikely(leaf < 0)) {
3590 *sptep = 0ull;
3591 return reserved;
3592 }
3593
3594 *sptep = sptes[leaf];
3595
3596 /*
3597 * Skip reserved bits checks on the terminal leaf if it's not a valid
3598 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3599 * design, always have reserved bits set. The purpose of the checks is
3600 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3601 */
3602 if (!is_shadow_present_pte(sptes[leaf]))
3603 leaf++;
3604
3605 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3606
3607 for (level = root; level >= leaf; level--)
3608 /*
3609 * Use a bitwise-OR instead of a logical-OR to aggregate the
3610 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3611 * adding a Jcc in the loop.
3612 */
3613 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3614 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
3615
3616 if (reserved) {
3617 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3618 __func__, addr);
3619 for (level = root; level >= leaf; level--)
3620 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3621 sptes[level], level,
3622 rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
3623 }
3624
3625 return reserved;
3626 }
3627
3628 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3629 {
3630 u64 spte;
3631 bool reserved;
3632
3633 if (mmio_info_in_cache(vcpu, addr, direct))
3634 return RET_PF_EMULATE;
3635
3636 reserved = get_mmio_spte(vcpu, addr, &spte);
3637 if (WARN_ON(reserved))
3638 return -EINVAL;
3639
3640 if (is_mmio_spte(spte)) {
3641 gfn_t gfn = get_mmio_spte_gfn(spte);
3642 unsigned int access = get_mmio_spte_access(spte);
3643
3644 if (!check_mmio_spte(vcpu, spte))
3645 return RET_PF_INVALID;
3646
3647 if (direct)
3648 addr = 0;
3649
3650 trace_handle_mmio_page_fault(addr, gfn, access);
3651 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3652 return RET_PF_EMULATE;
3653 }
3654
3655 /*
3656 * If the page table is zapped by other cpus, let CPU fault again on
3657 * the address.
3658 */
3659 return RET_PF_RETRY;
3660 }
3661
3662 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3663 u32 error_code, gfn_t gfn)
3664 {
3665 if (unlikely(error_code & PFERR_RSVD_MASK))
3666 return false;
3667
3668 if (!(error_code & PFERR_PRESENT_MASK) ||
3669 !(error_code & PFERR_WRITE_MASK))
3670 return false;
3671
3672 /*
3673 * guest is writing the page which is write tracked which can
3674 * not be fixed by page fault handler.
3675 */
3676 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3677 return true;
3678
3679 return false;
3680 }
3681
3682 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3683 {
3684 struct kvm_shadow_walk_iterator iterator;
3685 u64 spte;
3686
3687 walk_shadow_page_lockless_begin(vcpu);
3688 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3689 clear_sp_write_flooding_count(iterator.sptep);
3690 if (!is_shadow_present_pte(spte))
3691 break;
3692 }
3693 walk_shadow_page_lockless_end(vcpu);
3694 }
3695
3696 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3697 gfn_t gfn)
3698 {
3699 struct kvm_arch_async_pf arch;
3700
3701 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3702 arch.gfn = gfn;
3703 arch.direct_map = vcpu->arch.mmu->direct_map;
3704 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3705
3706 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3707 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3708 }
3709
3710 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3711 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3712 bool write, bool *writable)
3713 {
3714 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3715 bool async;
3716
3717 /*
3718 * Retry the page fault if the gfn hit a memslot that is being deleted
3719 * or moved. This ensures any existing SPTEs for the old memslot will
3720 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3721 */
3722 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3723 return true;
3724
3725 /* Don't expose private memslots to L2. */
3726 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3727 *pfn = KVM_PFN_NOSLOT;
3728 *writable = false;
3729 return false;
3730 }
3731
3732 async = false;
3733 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3734 write, writable, hva);
3735 if (!async)
3736 return false; /* *pfn has correct page already */
3737
3738 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3739 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3740 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3741 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3742 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3743 return true;
3744 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3745 return true;
3746 }
3747
3748 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3749 write, writable, hva);
3750 return false;
3751 }
3752
3753 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3754 bool prefault, int max_level, bool is_tdp)
3755 {
3756 bool write = error_code & PFERR_WRITE_MASK;
3757 bool map_writable;
3758
3759 gfn_t gfn = gpa >> PAGE_SHIFT;
3760 unsigned long mmu_seq;
3761 kvm_pfn_t pfn;
3762 hva_t hva;
3763 int r;
3764
3765 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3766 return RET_PF_EMULATE;
3767
3768 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3769 r = fast_page_fault(vcpu, gpa, error_code);
3770 if (r != RET_PF_INVALID)
3771 return r;
3772 }
3773
3774 r = mmu_topup_memory_caches(vcpu, false);
3775 if (r)
3776 return r;
3777
3778 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3779 smp_rmb();
3780
3781 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3782 write, &map_writable))
3783 return RET_PF_RETRY;
3784
3785 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3786 return r;
3787
3788 r = RET_PF_RETRY;
3789
3790 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3791 read_lock(&vcpu->kvm->mmu_lock);
3792 else
3793 write_lock(&vcpu->kvm->mmu_lock);
3794
3795 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3796 goto out_unlock;
3797 r = make_mmu_pages_available(vcpu);
3798 if (r)
3799 goto out_unlock;
3800
3801 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3802 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3803 pfn, prefault);
3804 else
3805 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3806 prefault, is_tdp);
3807
3808 out_unlock:
3809 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3810 read_unlock(&vcpu->kvm->mmu_lock);
3811 else
3812 write_unlock(&vcpu->kvm->mmu_lock);
3813 kvm_release_pfn_clean(pfn);
3814 return r;
3815 }
3816
3817 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3818 u32 error_code, bool prefault)
3819 {
3820 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3821
3822 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3823 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3824 PG_LEVEL_2M, false);
3825 }
3826
3827 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3828 u64 fault_address, char *insn, int insn_len)
3829 {
3830 int r = 1;
3831 u32 flags = vcpu->arch.apf.host_apf_flags;
3832
3833 #ifndef CONFIG_X86_64
3834 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3835 if (WARN_ON_ONCE(fault_address >> 32))
3836 return -EFAULT;
3837 #endif
3838
3839 vcpu->arch.l1tf_flush_l1d = true;
3840 if (!flags) {
3841 trace_kvm_page_fault(fault_address, error_code);
3842
3843 if (kvm_event_needs_reinjection(vcpu))
3844 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3845 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3846 insn_len);
3847 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3848 vcpu->arch.apf.host_apf_flags = 0;
3849 local_irq_disable();
3850 kvm_async_pf_task_wait_schedule(fault_address);
3851 local_irq_enable();
3852 } else {
3853 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3854 }
3855
3856 return r;
3857 }
3858 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3859
3860 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3861 bool prefault)
3862 {
3863 int max_level;
3864
3865 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3866 max_level > PG_LEVEL_4K;
3867 max_level--) {
3868 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3869 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3870
3871 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3872 break;
3873 }
3874
3875 return direct_page_fault(vcpu, gpa, error_code, prefault,
3876 max_level, true);
3877 }
3878
3879 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3880 struct kvm_mmu *context)
3881 {
3882 context->page_fault = nonpaging_page_fault;
3883 context->gva_to_gpa = nonpaging_gva_to_gpa;
3884 context->sync_page = nonpaging_sync_page;
3885 context->invlpg = NULL;
3886 context->root_level = 0;
3887 context->shadow_root_level = PT32E_ROOT_LEVEL;
3888 context->direct_map = true;
3889 context->nx = false;
3890 }
3891
3892 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3893 union kvm_mmu_page_role role)
3894 {
3895 return (role.direct || pgd == root->pgd) &&
3896 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3897 role.word == to_shadow_page(root->hpa)->role.word;
3898 }
3899
3900 /*
3901 * Find out if a previously cached root matching the new pgd/role is available.
3902 * The current root is also inserted into the cache.
3903 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3904 * returned.
3905 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3906 * false is returned. This root should now be freed by the caller.
3907 */
3908 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3909 union kvm_mmu_page_role new_role)
3910 {
3911 uint i;
3912 struct kvm_mmu_root_info root;
3913 struct kvm_mmu *mmu = vcpu->arch.mmu;
3914
3915 root.pgd = mmu->root_pgd;
3916 root.hpa = mmu->root_hpa;
3917
3918 if (is_root_usable(&root, new_pgd, new_role))
3919 return true;
3920
3921 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3922 swap(root, mmu->prev_roots[i]);
3923
3924 if (is_root_usable(&root, new_pgd, new_role))
3925 break;
3926 }
3927
3928 mmu->root_hpa = root.hpa;
3929 mmu->root_pgd = root.pgd;
3930
3931 return i < KVM_MMU_NUM_PREV_ROOTS;
3932 }
3933
3934 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3935 union kvm_mmu_page_role new_role)
3936 {
3937 struct kvm_mmu *mmu = vcpu->arch.mmu;
3938
3939 /*
3940 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3941 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3942 * later if necessary.
3943 */
3944 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3945 mmu->root_level >= PT64_ROOT_4LEVEL)
3946 return cached_root_available(vcpu, new_pgd, new_role);
3947
3948 return false;
3949 }
3950
3951 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3952 union kvm_mmu_page_role new_role,
3953 bool skip_tlb_flush, bool skip_mmu_sync)
3954 {
3955 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3956 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3957 return;
3958 }
3959
3960 /*
3961 * It's possible that the cached previous root page is obsolete because
3962 * of a change in the MMU generation number. However, changing the
3963 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3964 * free the root set here and allocate a new one.
3965 */
3966 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3967
3968 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3969 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3970 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3971 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3972
3973 /*
3974 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3975 * switching to a new CR3, that GVA->GPA mapping may no longer be
3976 * valid. So clear any cached MMIO info even when we don't need to sync
3977 * the shadow page tables.
3978 */
3979 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3980
3981 /*
3982 * If this is a direct root page, it doesn't have a write flooding
3983 * count. Otherwise, clear the write flooding count.
3984 */
3985 if (!new_role.direct)
3986 __clear_sp_write_flooding_count(
3987 to_shadow_page(vcpu->arch.mmu->root_hpa));
3988 }
3989
3990 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3991 bool skip_mmu_sync)
3992 {
3993 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3994 skip_tlb_flush, skip_mmu_sync);
3995 }
3996 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3997
3998 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3999 {
4000 return kvm_read_cr3(vcpu);
4001 }
4002
4003 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4004 unsigned int access, int *nr_present)
4005 {
4006 if (unlikely(is_mmio_spte(*sptep))) {
4007 if (gfn != get_mmio_spte_gfn(*sptep)) {
4008 mmu_spte_clear_no_track(sptep);
4009 return true;
4010 }
4011
4012 (*nr_present)++;
4013 mark_mmio_spte(vcpu, sptep, gfn, access);
4014 return true;
4015 }
4016
4017 return false;
4018 }
4019
4020 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4021 unsigned level, unsigned gpte)
4022 {
4023 /*
4024 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4025 * If it is clear, there are no large pages at this level, so clear
4026 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4027 */
4028 gpte &= level - mmu->last_nonleaf_level;
4029
4030 /*
4031 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4032 * iff level <= PG_LEVEL_4K, which for our purpose means
4033 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4034 */
4035 gpte |= level - PG_LEVEL_4K - 1;
4036
4037 return gpte & PT_PAGE_SIZE_MASK;
4038 }
4039
4040 #define PTTYPE_EPT 18 /* arbitrary */
4041 #define PTTYPE PTTYPE_EPT
4042 #include "paging_tmpl.h"
4043 #undef PTTYPE
4044
4045 #define PTTYPE 64
4046 #include "paging_tmpl.h"
4047 #undef PTTYPE
4048
4049 #define PTTYPE 32
4050 #include "paging_tmpl.h"
4051 #undef PTTYPE
4052
4053 static void
4054 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4055 struct rsvd_bits_validate *rsvd_check,
4056 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4057 bool pse, bool amd)
4058 {
4059 u64 gbpages_bit_rsvd = 0;
4060 u64 nonleaf_bit8_rsvd = 0;
4061 u64 high_bits_rsvd;
4062
4063 rsvd_check->bad_mt_xwr = 0;
4064
4065 if (!gbpages)
4066 gbpages_bit_rsvd = rsvd_bits(7, 7);
4067
4068 if (level == PT32E_ROOT_LEVEL)
4069 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4070 else
4071 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4072
4073 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4074 if (!nx)
4075 high_bits_rsvd |= rsvd_bits(63, 63);
4076
4077 /*
4078 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4079 * leaf entries) on AMD CPUs only.
4080 */
4081 if (amd)
4082 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4083
4084 switch (level) {
4085 case PT32_ROOT_LEVEL:
4086 /* no rsvd bits for 2 level 4K page table entries */
4087 rsvd_check->rsvd_bits_mask[0][1] = 0;
4088 rsvd_check->rsvd_bits_mask[0][0] = 0;
4089 rsvd_check->rsvd_bits_mask[1][0] =
4090 rsvd_check->rsvd_bits_mask[0][0];
4091
4092 if (!pse) {
4093 rsvd_check->rsvd_bits_mask[1][1] = 0;
4094 break;
4095 }
4096
4097 if (is_cpuid_PSE36())
4098 /* 36bits PSE 4MB page */
4099 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4100 else
4101 /* 32 bits PSE 4MB page */
4102 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4103 break;
4104 case PT32E_ROOT_LEVEL:
4105 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4106 high_bits_rsvd |
4107 rsvd_bits(5, 8) |
4108 rsvd_bits(1, 2); /* PDPTE */
4109 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4110 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4111 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4112 rsvd_bits(13, 20); /* large page */
4113 rsvd_check->rsvd_bits_mask[1][0] =
4114 rsvd_check->rsvd_bits_mask[0][0];
4115 break;
4116 case PT64_ROOT_5LEVEL:
4117 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4118 nonleaf_bit8_rsvd |
4119 rsvd_bits(7, 7);
4120 rsvd_check->rsvd_bits_mask[1][4] =
4121 rsvd_check->rsvd_bits_mask[0][4];
4122 fallthrough;
4123 case PT64_ROOT_4LEVEL:
4124 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4125 nonleaf_bit8_rsvd |
4126 rsvd_bits(7, 7);
4127 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4128 gbpages_bit_rsvd;
4129 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4130 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4131 rsvd_check->rsvd_bits_mask[1][3] =
4132 rsvd_check->rsvd_bits_mask[0][3];
4133 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4134 gbpages_bit_rsvd |
4135 rsvd_bits(13, 29);
4136 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4137 rsvd_bits(13, 20); /* large page */
4138 rsvd_check->rsvd_bits_mask[1][0] =
4139 rsvd_check->rsvd_bits_mask[0][0];
4140 break;
4141 }
4142 }
4143
4144 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4145 struct kvm_mmu *context)
4146 {
4147 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4148 vcpu->arch.reserved_gpa_bits,
4149 context->root_level, context->nx,
4150 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4151 is_pse(vcpu),
4152 guest_cpuid_is_amd_or_hygon(vcpu));
4153 }
4154
4155 static void
4156 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4157 u64 pa_bits_rsvd, bool execonly)
4158 {
4159 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4160 u64 bad_mt_xwr;
4161
4162 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4163 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4164 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4165 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4166 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4167
4168 /* large page */
4169 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4170 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4171 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4172 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4173 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4174
4175 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4176 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4177 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4178 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4179 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4180 if (!execonly) {
4181 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4182 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4183 }
4184 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4185 }
4186
4187 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4188 struct kvm_mmu *context, bool execonly)
4189 {
4190 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4191 vcpu->arch.reserved_gpa_bits, execonly);
4192 }
4193
4194 static inline u64 reserved_hpa_bits(void)
4195 {
4196 return rsvd_bits(shadow_phys_bits, 63);
4197 }
4198
4199 /*
4200 * the page table on host is the shadow page table for the page
4201 * table in guest or amd nested guest, its mmu features completely
4202 * follow the features in guest.
4203 */
4204 void
4205 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4206 {
4207 bool uses_nx = context->nx ||
4208 context->mmu_role.base.smep_andnot_wp;
4209 struct rsvd_bits_validate *shadow_zero_check;
4210 int i;
4211
4212 /*
4213 * Passing "true" to the last argument is okay; it adds a check
4214 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4215 */
4216 shadow_zero_check = &context->shadow_zero_check;
4217 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4218 reserved_hpa_bits(),
4219 context->shadow_root_level, uses_nx,
4220 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4221 is_pse(vcpu), true);
4222
4223 if (!shadow_me_mask)
4224 return;
4225
4226 for (i = context->shadow_root_level; --i >= 0;) {
4227 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4228 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4229 }
4230
4231 }
4232 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4233
4234 static inline bool boot_cpu_is_amd(void)
4235 {
4236 WARN_ON_ONCE(!tdp_enabled);
4237 return shadow_x_mask == 0;
4238 }
4239
4240 /*
4241 * the direct page table on host, use as much mmu features as
4242 * possible, however, kvm currently does not do execution-protection.
4243 */
4244 static void
4245 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4246 struct kvm_mmu *context)
4247 {
4248 struct rsvd_bits_validate *shadow_zero_check;
4249 int i;
4250
4251 shadow_zero_check = &context->shadow_zero_check;
4252
4253 if (boot_cpu_is_amd())
4254 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4255 reserved_hpa_bits(),
4256 context->shadow_root_level, false,
4257 boot_cpu_has(X86_FEATURE_GBPAGES),
4258 true, true);
4259 else
4260 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4261 reserved_hpa_bits(), false);
4262
4263 if (!shadow_me_mask)
4264 return;
4265
4266 for (i = context->shadow_root_level; --i >= 0;) {
4267 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4268 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4269 }
4270 }
4271
4272 /*
4273 * as the comments in reset_shadow_zero_bits_mask() except it
4274 * is the shadow page table for intel nested guest.
4275 */
4276 static void
4277 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4278 struct kvm_mmu *context, bool execonly)
4279 {
4280 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4281 reserved_hpa_bits(), execonly);
4282 }
4283
4284 #define BYTE_MASK(access) \
4285 ((1 & (access) ? 2 : 0) | \
4286 (2 & (access) ? 4 : 0) | \
4287 (3 & (access) ? 8 : 0) | \
4288 (4 & (access) ? 16 : 0) | \
4289 (5 & (access) ? 32 : 0) | \
4290 (6 & (access) ? 64 : 0) | \
4291 (7 & (access) ? 128 : 0))
4292
4293
4294 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4295 struct kvm_mmu *mmu, bool ept)
4296 {
4297 unsigned byte;
4298
4299 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4300 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4301 const u8 u = BYTE_MASK(ACC_USER_MASK);
4302
4303 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4304 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4305 bool cr0_wp = is_write_protection(vcpu);
4306
4307 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4308 unsigned pfec = byte << 1;
4309
4310 /*
4311 * Each "*f" variable has a 1 bit for each UWX value
4312 * that causes a fault with the given PFEC.
4313 */
4314
4315 /* Faults from writes to non-writable pages */
4316 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4317 /* Faults from user mode accesses to supervisor pages */
4318 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4319 /* Faults from fetches of non-executable pages*/
4320 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4321 /* Faults from kernel mode fetches of user pages */
4322 u8 smepf = 0;
4323 /* Faults from kernel mode accesses of user pages */
4324 u8 smapf = 0;
4325
4326 if (!ept) {
4327 /* Faults from kernel mode accesses to user pages */
4328 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4329
4330 /* Not really needed: !nx will cause pte.nx to fault */
4331 if (!mmu->nx)
4332 ff = 0;
4333
4334 /* Allow supervisor writes if !cr0.wp */
4335 if (!cr0_wp)
4336 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4337
4338 /* Disallow supervisor fetches of user code if cr4.smep */
4339 if (cr4_smep)
4340 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4341
4342 /*
4343 * SMAP:kernel-mode data accesses from user-mode
4344 * mappings should fault. A fault is considered
4345 * as a SMAP violation if all of the following
4346 * conditions are true:
4347 * - X86_CR4_SMAP is set in CR4
4348 * - A user page is accessed
4349 * - The access is not a fetch
4350 * - Page fault in kernel mode
4351 * - if CPL = 3 or X86_EFLAGS_AC is clear
4352 *
4353 * Here, we cover the first three conditions.
4354 * The fourth is computed dynamically in permission_fault();
4355 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4356 * *not* subject to SMAP restrictions.
4357 */
4358 if (cr4_smap)
4359 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4360 }
4361
4362 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4363 }
4364 }
4365
4366 /*
4367 * PKU is an additional mechanism by which the paging controls access to
4368 * user-mode addresses based on the value in the PKRU register. Protection
4369 * key violations are reported through a bit in the page fault error code.
4370 * Unlike other bits of the error code, the PK bit is not known at the
4371 * call site of e.g. gva_to_gpa; it must be computed directly in
4372 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4373 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4374 *
4375 * In particular the following conditions come from the error code, the
4376 * page tables and the machine state:
4377 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4378 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4379 * - PK is always zero if U=0 in the page tables
4380 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4381 *
4382 * The PKRU bitmask caches the result of these four conditions. The error
4383 * code (minus the P bit) and the page table's U bit form an index into the
4384 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4385 * with the two bits of the PKRU register corresponding to the protection key.
4386 * For the first three conditions above the bits will be 00, thus masking
4387 * away both AD and WD. For all reads or if the last condition holds, WD
4388 * only will be masked away.
4389 */
4390 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4391 bool ept)
4392 {
4393 unsigned bit;
4394 bool wp;
4395
4396 if (ept) {
4397 mmu->pkru_mask = 0;
4398 return;
4399 }
4400
4401 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4402 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4403 mmu->pkru_mask = 0;
4404 return;
4405 }
4406
4407 wp = is_write_protection(vcpu);
4408
4409 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4410 unsigned pfec, pkey_bits;
4411 bool check_pkey, check_write, ff, uf, wf, pte_user;
4412
4413 pfec = bit << 1;
4414 ff = pfec & PFERR_FETCH_MASK;
4415 uf = pfec & PFERR_USER_MASK;
4416 wf = pfec & PFERR_WRITE_MASK;
4417
4418 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4419 pte_user = pfec & PFERR_RSVD_MASK;
4420
4421 /*
4422 * Only need to check the access which is not an
4423 * instruction fetch and is to a user page.
4424 */
4425 check_pkey = (!ff && pte_user);
4426 /*
4427 * write access is controlled by PKRU if it is a
4428 * user access or CR0.WP = 1.
4429 */
4430 check_write = check_pkey && wf && (uf || wp);
4431
4432 /* PKRU.AD stops both read and write access. */
4433 pkey_bits = !!check_pkey;
4434 /* PKRU.WD stops write access. */
4435 pkey_bits |= (!!check_write) << 1;
4436
4437 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4438 }
4439 }
4440
4441 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4442 {
4443 unsigned root_level = mmu->root_level;
4444
4445 mmu->last_nonleaf_level = root_level;
4446 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4447 mmu->last_nonleaf_level++;
4448 }
4449
4450 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4451 struct kvm_mmu *context,
4452 int level)
4453 {
4454 context->nx = is_nx(vcpu);
4455 context->root_level = level;
4456
4457 reset_rsvds_bits_mask(vcpu, context);
4458 update_permission_bitmask(vcpu, context, false);
4459 update_pkru_bitmask(vcpu, context, false);
4460 update_last_nonleaf_level(vcpu, context);
4461
4462 MMU_WARN_ON(!is_pae(vcpu));
4463 context->page_fault = paging64_page_fault;
4464 context->gva_to_gpa = paging64_gva_to_gpa;
4465 context->sync_page = paging64_sync_page;
4466 context->invlpg = paging64_invlpg;
4467 context->shadow_root_level = level;
4468 context->direct_map = false;
4469 }
4470
4471 static void paging64_init_context(struct kvm_vcpu *vcpu,
4472 struct kvm_mmu *context)
4473 {
4474 int root_level = is_la57_mode(vcpu) ?
4475 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4476
4477 paging64_init_context_common(vcpu, context, root_level);
4478 }
4479
4480 static void paging32_init_context(struct kvm_vcpu *vcpu,
4481 struct kvm_mmu *context)
4482 {
4483 context->nx = false;
4484 context->root_level = PT32_ROOT_LEVEL;
4485
4486 reset_rsvds_bits_mask(vcpu, context);
4487 update_permission_bitmask(vcpu, context, false);
4488 update_pkru_bitmask(vcpu, context, false);
4489 update_last_nonleaf_level(vcpu, context);
4490
4491 context->page_fault = paging32_page_fault;
4492 context->gva_to_gpa = paging32_gva_to_gpa;
4493 context->sync_page = paging32_sync_page;
4494 context->invlpg = paging32_invlpg;
4495 context->shadow_root_level = PT32E_ROOT_LEVEL;
4496 context->direct_map = false;
4497 }
4498
4499 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4500 struct kvm_mmu *context)
4501 {
4502 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4503 }
4504
4505 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4506 {
4507 union kvm_mmu_extended_role ext = {0};
4508
4509 ext.cr0_pg = !!is_paging(vcpu);
4510 ext.cr4_pae = !!is_pae(vcpu);
4511 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4512 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4513 ext.cr4_pse = !!is_pse(vcpu);
4514 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4515 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4516
4517 ext.valid = 1;
4518
4519 return ext;
4520 }
4521
4522 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4523 bool base_only)
4524 {
4525 union kvm_mmu_role role = {0};
4526
4527 role.base.access = ACC_ALL;
4528 role.base.nxe = !!is_nx(vcpu);
4529 role.base.cr0_wp = is_write_protection(vcpu);
4530 role.base.smm = is_smm(vcpu);
4531 role.base.guest_mode = is_guest_mode(vcpu);
4532
4533 if (base_only)
4534 return role;
4535
4536 role.ext = kvm_calc_mmu_role_ext(vcpu);
4537
4538 return role;
4539 }
4540
4541 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4542 {
4543 /* Use 5-level TDP if and only if it's useful/necessary. */
4544 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4545 return 4;
4546
4547 return max_tdp_level;
4548 }
4549
4550 static union kvm_mmu_role
4551 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4552 {
4553 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4554
4555 role.base.ad_disabled = (shadow_accessed_mask == 0);
4556 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4557 role.base.direct = true;
4558 role.base.gpte_is_8_bytes = true;
4559
4560 return role;
4561 }
4562
4563 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4564 {
4565 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4566 union kvm_mmu_role new_role =
4567 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4568
4569 if (new_role.as_u64 == context->mmu_role.as_u64)
4570 return;
4571
4572 context->mmu_role.as_u64 = new_role.as_u64;
4573 context->page_fault = kvm_tdp_page_fault;
4574 context->sync_page = nonpaging_sync_page;
4575 context->invlpg = NULL;
4576 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4577 context->direct_map = true;
4578 context->get_guest_pgd = get_cr3;
4579 context->get_pdptr = kvm_pdptr_read;
4580 context->inject_page_fault = kvm_inject_page_fault;
4581
4582 if (!is_paging(vcpu)) {
4583 context->nx = false;
4584 context->gva_to_gpa = nonpaging_gva_to_gpa;
4585 context->root_level = 0;
4586 } else if (is_long_mode(vcpu)) {
4587 context->nx = is_nx(vcpu);
4588 context->root_level = is_la57_mode(vcpu) ?
4589 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4590 reset_rsvds_bits_mask(vcpu, context);
4591 context->gva_to_gpa = paging64_gva_to_gpa;
4592 } else if (is_pae(vcpu)) {
4593 context->nx = is_nx(vcpu);
4594 context->root_level = PT32E_ROOT_LEVEL;
4595 reset_rsvds_bits_mask(vcpu, context);
4596 context->gva_to_gpa = paging64_gva_to_gpa;
4597 } else {
4598 context->nx = false;
4599 context->root_level = PT32_ROOT_LEVEL;
4600 reset_rsvds_bits_mask(vcpu, context);
4601 context->gva_to_gpa = paging32_gva_to_gpa;
4602 }
4603
4604 update_permission_bitmask(vcpu, context, false);
4605 update_pkru_bitmask(vcpu, context, false);
4606 update_last_nonleaf_level(vcpu, context);
4607 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4608 }
4609
4610 static union kvm_mmu_role
4611 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4612 {
4613 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4614
4615 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4616 !is_write_protection(vcpu);
4617 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4618 !is_write_protection(vcpu);
4619 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4620
4621 return role;
4622 }
4623
4624 static union kvm_mmu_role
4625 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4626 {
4627 union kvm_mmu_role role =
4628 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4629
4630 role.base.direct = !is_paging(vcpu);
4631
4632 if (!is_long_mode(vcpu))
4633 role.base.level = PT32E_ROOT_LEVEL;
4634 else if (is_la57_mode(vcpu))
4635 role.base.level = PT64_ROOT_5LEVEL;
4636 else
4637 role.base.level = PT64_ROOT_4LEVEL;
4638
4639 return role;
4640 }
4641
4642 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4643 u32 cr0, u32 cr4, u32 efer,
4644 union kvm_mmu_role new_role)
4645 {
4646 if (!(cr0 & X86_CR0_PG))
4647 nonpaging_init_context(vcpu, context);
4648 else if (efer & EFER_LMA)
4649 paging64_init_context(vcpu, context);
4650 else if (cr4 & X86_CR4_PAE)
4651 paging32E_init_context(vcpu, context);
4652 else
4653 paging32_init_context(vcpu, context);
4654
4655 context->mmu_role.as_u64 = new_role.as_u64;
4656 reset_shadow_zero_bits_mask(vcpu, context);
4657 }
4658
4659 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4660 {
4661 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4662 union kvm_mmu_role new_role =
4663 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4664
4665 if (new_role.as_u64 != context->mmu_role.as_u64)
4666 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4667 }
4668
4669 static union kvm_mmu_role
4670 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4671 {
4672 union kvm_mmu_role role =
4673 kvm_calc_shadow_root_page_role_common(vcpu, false);
4674
4675 role.base.direct = false;
4676 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4677
4678 return role;
4679 }
4680
4681 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4682 gpa_t nested_cr3)
4683 {
4684 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4685 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4686
4687 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4688
4689 if (new_role.as_u64 != context->mmu_role.as_u64) {
4690 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4691
4692 /*
4693 * Override the level set by the common init helper, nested TDP
4694 * always uses the host's TDP configuration.
4695 */
4696 context->shadow_root_level = new_role.base.level;
4697 }
4698 }
4699 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4700
4701 static union kvm_mmu_role
4702 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4703 bool execonly, u8 level)
4704 {
4705 union kvm_mmu_role role = {0};
4706
4707 /* SMM flag is inherited from root_mmu */
4708 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4709
4710 role.base.level = level;
4711 role.base.gpte_is_8_bytes = true;
4712 role.base.direct = false;
4713 role.base.ad_disabled = !accessed_dirty;
4714 role.base.guest_mode = true;
4715 role.base.access = ACC_ALL;
4716
4717 /*
4718 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4719 * SMAP variation to denote shadow EPT entries.
4720 */
4721 role.base.cr0_wp = true;
4722 role.base.smap_andnot_wp = true;
4723
4724 role.ext = kvm_calc_mmu_role_ext(vcpu);
4725 role.ext.execonly = execonly;
4726
4727 return role;
4728 }
4729
4730 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4731 bool accessed_dirty, gpa_t new_eptp)
4732 {
4733 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4734 u8 level = vmx_eptp_page_walk_level(new_eptp);
4735 union kvm_mmu_role new_role =
4736 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4737 execonly, level);
4738
4739 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4740
4741 if (new_role.as_u64 == context->mmu_role.as_u64)
4742 return;
4743
4744 context->shadow_root_level = level;
4745
4746 context->nx = true;
4747 context->ept_ad = accessed_dirty;
4748 context->page_fault = ept_page_fault;
4749 context->gva_to_gpa = ept_gva_to_gpa;
4750 context->sync_page = ept_sync_page;
4751 context->invlpg = ept_invlpg;
4752 context->root_level = level;
4753 context->direct_map = false;
4754 context->mmu_role.as_u64 = new_role.as_u64;
4755
4756 update_permission_bitmask(vcpu, context, true);
4757 update_pkru_bitmask(vcpu, context, true);
4758 update_last_nonleaf_level(vcpu, context);
4759 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4760 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4761 }
4762 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4763
4764 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4765 {
4766 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4767
4768 kvm_init_shadow_mmu(vcpu,
4769 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4770 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4771 vcpu->arch.efer);
4772
4773 context->get_guest_pgd = get_cr3;
4774 context->get_pdptr = kvm_pdptr_read;
4775 context->inject_page_fault = kvm_inject_page_fault;
4776 }
4777
4778 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4779 {
4780 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4781 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4782
4783 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4784 return;
4785
4786 g_context->mmu_role.as_u64 = new_role.as_u64;
4787 g_context->get_guest_pgd = get_cr3;
4788 g_context->get_pdptr = kvm_pdptr_read;
4789 g_context->inject_page_fault = kvm_inject_page_fault;
4790
4791 /*
4792 * L2 page tables are never shadowed, so there is no need to sync
4793 * SPTEs.
4794 */
4795 g_context->invlpg = NULL;
4796
4797 /*
4798 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4799 * L1's nested page tables (e.g. EPT12). The nested translation
4800 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4801 * L2's page tables as the first level of translation and L1's
4802 * nested page tables as the second level of translation. Basically
4803 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4804 */
4805 if (!is_paging(vcpu)) {
4806 g_context->nx = false;
4807 g_context->root_level = 0;
4808 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4809 } else if (is_long_mode(vcpu)) {
4810 g_context->nx = is_nx(vcpu);
4811 g_context->root_level = is_la57_mode(vcpu) ?
4812 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4813 reset_rsvds_bits_mask(vcpu, g_context);
4814 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4815 } else if (is_pae(vcpu)) {
4816 g_context->nx = is_nx(vcpu);
4817 g_context->root_level = PT32E_ROOT_LEVEL;
4818 reset_rsvds_bits_mask(vcpu, g_context);
4819 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4820 } else {
4821 g_context->nx = false;
4822 g_context->root_level = PT32_ROOT_LEVEL;
4823 reset_rsvds_bits_mask(vcpu, g_context);
4824 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4825 }
4826
4827 update_permission_bitmask(vcpu, g_context, false);
4828 update_pkru_bitmask(vcpu, g_context, false);
4829 update_last_nonleaf_level(vcpu, g_context);
4830 }
4831
4832 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4833 {
4834 if (reset_roots) {
4835 uint i;
4836
4837 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4838
4839 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4840 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4841 }
4842
4843 if (mmu_is_nested(vcpu))
4844 init_kvm_nested_mmu(vcpu);
4845 else if (tdp_enabled)
4846 init_kvm_tdp_mmu(vcpu);
4847 else
4848 init_kvm_softmmu(vcpu);
4849 }
4850 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4851
4852 static union kvm_mmu_page_role
4853 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4854 {
4855 union kvm_mmu_role role;
4856
4857 if (tdp_enabled)
4858 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4859 else
4860 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4861
4862 return role.base;
4863 }
4864
4865 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4866 {
4867 kvm_mmu_unload(vcpu);
4868 kvm_init_mmu(vcpu, true);
4869 }
4870 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4871
4872 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4873 {
4874 int r;
4875
4876 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4877 if (r)
4878 goto out;
4879 r = mmu_alloc_special_roots(vcpu);
4880 if (r)
4881 goto out;
4882 if (vcpu->arch.mmu->direct_map)
4883 r = mmu_alloc_direct_roots(vcpu);
4884 else
4885 r = mmu_alloc_shadow_roots(vcpu);
4886 if (r)
4887 goto out;
4888
4889 kvm_mmu_sync_roots(vcpu);
4890
4891 kvm_mmu_load_pgd(vcpu);
4892 static_call(kvm_x86_tlb_flush_current)(vcpu);
4893 out:
4894 return r;
4895 }
4896
4897 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4898 {
4899 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4900 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4901 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4902 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4903 }
4904
4905 static bool need_remote_flush(u64 old, u64 new)
4906 {
4907 if (!is_shadow_present_pte(old))
4908 return false;
4909 if (!is_shadow_present_pte(new))
4910 return true;
4911 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4912 return true;
4913 old ^= shadow_nx_mask;
4914 new ^= shadow_nx_mask;
4915 return (old & ~new & PT64_PERM_MASK) != 0;
4916 }
4917
4918 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4919 int *bytes)
4920 {
4921 u64 gentry = 0;
4922 int r;
4923
4924 /*
4925 * Assume that the pte write on a page table of the same type
4926 * as the current vcpu paging mode since we update the sptes only
4927 * when they have the same mode.
4928 */
4929 if (is_pae(vcpu) && *bytes == 4) {
4930 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4931 *gpa &= ~(gpa_t)7;
4932 *bytes = 8;
4933 }
4934
4935 if (*bytes == 4 || *bytes == 8) {
4936 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4937 if (r)
4938 gentry = 0;
4939 }
4940
4941 return gentry;
4942 }
4943
4944 /*
4945 * If we're seeing too many writes to a page, it may no longer be a page table,
4946 * or we may be forking, in which case it is better to unmap the page.
4947 */
4948 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4949 {
4950 /*
4951 * Skip write-flooding detected for the sp whose level is 1, because
4952 * it can become unsync, then the guest page is not write-protected.
4953 */
4954 if (sp->role.level == PG_LEVEL_4K)
4955 return false;
4956
4957 atomic_inc(&sp->write_flooding_count);
4958 return atomic_read(&sp->write_flooding_count) >= 3;
4959 }
4960
4961 /*
4962 * Misaligned accesses are too much trouble to fix up; also, they usually
4963 * indicate a page is not used as a page table.
4964 */
4965 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4966 int bytes)
4967 {
4968 unsigned offset, pte_size, misaligned;
4969
4970 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4971 gpa, bytes, sp->role.word);
4972
4973 offset = offset_in_page(gpa);
4974 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4975
4976 /*
4977 * Sometimes, the OS only writes the last one bytes to update status
4978 * bits, for example, in linux, andb instruction is used in clear_bit().
4979 */
4980 if (!(offset & (pte_size - 1)) && bytes == 1)
4981 return false;
4982
4983 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4984 misaligned |= bytes < 4;
4985
4986 return misaligned;
4987 }
4988
4989 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4990 {
4991 unsigned page_offset, quadrant;
4992 u64 *spte;
4993 int level;
4994
4995 page_offset = offset_in_page(gpa);
4996 level = sp->role.level;
4997 *nspte = 1;
4998 if (!sp->role.gpte_is_8_bytes) {
4999 page_offset <<= 1; /* 32->64 */
5000 /*
5001 * A 32-bit pde maps 4MB while the shadow pdes map
5002 * only 2MB. So we need to double the offset again
5003 * and zap two pdes instead of one.
5004 */
5005 if (level == PT32_ROOT_LEVEL) {
5006 page_offset &= ~7; /* kill rounding error */
5007 page_offset <<= 1;
5008 *nspte = 2;
5009 }
5010 quadrant = page_offset >> PAGE_SHIFT;
5011 page_offset &= ~PAGE_MASK;
5012 if (quadrant != sp->role.quadrant)
5013 return NULL;
5014 }
5015
5016 spte = &sp->spt[page_offset / sizeof(*spte)];
5017 return spte;
5018 }
5019
5020 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5021 const u8 *new, int bytes,
5022 struct kvm_page_track_notifier_node *node)
5023 {
5024 gfn_t gfn = gpa >> PAGE_SHIFT;
5025 struct kvm_mmu_page *sp;
5026 LIST_HEAD(invalid_list);
5027 u64 entry, gentry, *spte;
5028 int npte;
5029 bool remote_flush, local_flush;
5030
5031 /*
5032 * If we don't have indirect shadow pages, it means no page is
5033 * write-protected, so we can exit simply.
5034 */
5035 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5036 return;
5037
5038 remote_flush = local_flush = false;
5039
5040 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5041
5042 /*
5043 * No need to care whether allocation memory is successful
5044 * or not since pte prefetch is skiped if it does not have
5045 * enough objects in the cache.
5046 */
5047 mmu_topup_memory_caches(vcpu, true);
5048
5049 write_lock(&vcpu->kvm->mmu_lock);
5050
5051 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5052
5053 ++vcpu->kvm->stat.mmu_pte_write;
5054 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5055
5056 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5057 if (detect_write_misaligned(sp, gpa, bytes) ||
5058 detect_write_flooding(sp)) {
5059 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5060 ++vcpu->kvm->stat.mmu_flooded;
5061 continue;
5062 }
5063
5064 spte = get_written_sptes(sp, gpa, &npte);
5065 if (!spte)
5066 continue;
5067
5068 local_flush = true;
5069 while (npte--) {
5070 entry = *spte;
5071 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5072 if (gentry && sp->role.level != PG_LEVEL_4K)
5073 ++vcpu->kvm->stat.mmu_pde_zapped;
5074 if (need_remote_flush(entry, *spte))
5075 remote_flush = true;
5076 ++spte;
5077 }
5078 }
5079 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5080 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5081 write_unlock(&vcpu->kvm->mmu_lock);
5082 }
5083
5084 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5085 void *insn, int insn_len)
5086 {
5087 int r, emulation_type = EMULTYPE_PF;
5088 bool direct = vcpu->arch.mmu->direct_map;
5089
5090 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5091 return RET_PF_RETRY;
5092
5093 r = RET_PF_INVALID;
5094 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5095 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5096 if (r == RET_PF_EMULATE)
5097 goto emulate;
5098 }
5099
5100 if (r == RET_PF_INVALID) {
5101 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5102 lower_32_bits(error_code), false);
5103 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5104 return -EIO;
5105 }
5106
5107 if (r < 0)
5108 return r;
5109 if (r != RET_PF_EMULATE)
5110 return 1;
5111
5112 /*
5113 * Before emulating the instruction, check if the error code
5114 * was due to a RO violation while translating the guest page.
5115 * This can occur when using nested virtualization with nested
5116 * paging in both guests. If true, we simply unprotect the page
5117 * and resume the guest.
5118 */
5119 if (vcpu->arch.mmu->direct_map &&
5120 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5121 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5122 return 1;
5123 }
5124
5125 /*
5126 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5127 * optimistically try to just unprotect the page and let the processor
5128 * re-execute the instruction that caused the page fault. Do not allow
5129 * retrying MMIO emulation, as it's not only pointless but could also
5130 * cause us to enter an infinite loop because the processor will keep
5131 * faulting on the non-existent MMIO address. Retrying an instruction
5132 * from a nested guest is also pointless and dangerous as we are only
5133 * explicitly shadowing L1's page tables, i.e. unprotecting something
5134 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5135 */
5136 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5137 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5138 emulate:
5139 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5140 insn_len);
5141 }
5142 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5143
5144 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5145 gva_t gva, hpa_t root_hpa)
5146 {
5147 int i;
5148
5149 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5150 if (mmu != &vcpu->arch.guest_mmu) {
5151 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5152 if (is_noncanonical_address(gva, vcpu))
5153 return;
5154
5155 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5156 }
5157
5158 if (!mmu->invlpg)
5159 return;
5160
5161 if (root_hpa == INVALID_PAGE) {
5162 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5163
5164 /*
5165 * INVLPG is required to invalidate any global mappings for the VA,
5166 * irrespective of PCID. Since it would take us roughly similar amount
5167 * of work to determine whether any of the prev_root mappings of the VA
5168 * is marked global, or to just sync it blindly, so we might as well
5169 * just always sync it.
5170 *
5171 * Mappings not reachable via the current cr3 or the prev_roots will be
5172 * synced when switching to that cr3, so nothing needs to be done here
5173 * for them.
5174 */
5175 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5176 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5177 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5178 } else {
5179 mmu->invlpg(vcpu, gva, root_hpa);
5180 }
5181 }
5182
5183 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5184 {
5185 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5186 ++vcpu->stat.invlpg;
5187 }
5188 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5189
5190
5191 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5192 {
5193 struct kvm_mmu *mmu = vcpu->arch.mmu;
5194 bool tlb_flush = false;
5195 uint i;
5196
5197 if (pcid == kvm_get_active_pcid(vcpu)) {
5198 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5199 tlb_flush = true;
5200 }
5201
5202 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5203 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5204 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5205 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5206 tlb_flush = true;
5207 }
5208 }
5209
5210 if (tlb_flush)
5211 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5212
5213 ++vcpu->stat.invlpg;
5214
5215 /*
5216 * Mappings not reachable via the current cr3 or the prev_roots will be
5217 * synced when switching to that cr3, so nothing needs to be done here
5218 * for them.
5219 */
5220 }
5221
5222 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5223 int tdp_huge_page_level)
5224 {
5225 tdp_enabled = enable_tdp;
5226 max_tdp_level = tdp_max_root_level;
5227
5228 /*
5229 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5230 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5231 * the kernel is not. But, KVM never creates a page size greater than
5232 * what is used by the kernel for any given HVA, i.e. the kernel's
5233 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5234 */
5235 if (tdp_enabled)
5236 max_huge_page_level = tdp_huge_page_level;
5237 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5238 max_huge_page_level = PG_LEVEL_1G;
5239 else
5240 max_huge_page_level = PG_LEVEL_2M;
5241 }
5242 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5243
5244 /* The return value indicates if tlb flush on all vcpus is needed. */
5245 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5246 struct kvm_memory_slot *slot);
5247
5248 /* The caller should hold mmu-lock before calling this function. */
5249 static __always_inline bool
5250 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5251 slot_level_handler fn, int start_level, int end_level,
5252 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5253 {
5254 struct slot_rmap_walk_iterator iterator;
5255 bool flush = false;
5256
5257 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5258 end_gfn, &iterator) {
5259 if (iterator.rmap)
5260 flush |= fn(kvm, iterator.rmap, memslot);
5261
5262 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5263 if (flush && lock_flush_tlb) {
5264 kvm_flush_remote_tlbs_with_address(kvm,
5265 start_gfn,
5266 iterator.gfn - start_gfn + 1);
5267 flush = false;
5268 }
5269 cond_resched_rwlock_write(&kvm->mmu_lock);
5270 }
5271 }
5272
5273 if (flush && lock_flush_tlb) {
5274 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5275 end_gfn - start_gfn + 1);
5276 flush = false;
5277 }
5278
5279 return flush;
5280 }
5281
5282 static __always_inline bool
5283 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5284 slot_level_handler fn, int start_level, int end_level,
5285 bool lock_flush_tlb)
5286 {
5287 return slot_handle_level_range(kvm, memslot, fn, start_level,
5288 end_level, memslot->base_gfn,
5289 memslot->base_gfn + memslot->npages - 1,
5290 lock_flush_tlb);
5291 }
5292
5293 static __always_inline bool
5294 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5295 slot_level_handler fn, bool lock_flush_tlb)
5296 {
5297 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5298 PG_LEVEL_4K, lock_flush_tlb);
5299 }
5300
5301 static void free_mmu_pages(struct kvm_mmu *mmu)
5302 {
5303 if (!tdp_enabled && mmu->pae_root)
5304 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5305 free_page((unsigned long)mmu->pae_root);
5306 free_page((unsigned long)mmu->lm_root);
5307 }
5308
5309 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5310 {
5311 struct page *page;
5312 int i;
5313
5314 mmu->root_hpa = INVALID_PAGE;
5315 mmu->root_pgd = 0;
5316 mmu->translate_gpa = translate_gpa;
5317 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5318 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5319
5320 /*
5321 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5322 * while the PDP table is a per-vCPU construct that's allocated at MMU
5323 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5324 * x86_64. Therefore we need to allocate the PDP table in the first
5325 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5326 * generally doesn't use PAE paging and can skip allocating the PDP
5327 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5328 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5329 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5330 */
5331 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5332 return 0;
5333
5334 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5335 if (!page)
5336 return -ENOMEM;
5337
5338 mmu->pae_root = page_address(page);
5339
5340 /*
5341 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5342 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5343 * that KVM's writes and the CPU's reads get along. Note, this is
5344 * only necessary when using shadow paging, as 64-bit NPT can get at
5345 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5346 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5347 */
5348 if (!tdp_enabled)
5349 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5350 else
5351 WARN_ON_ONCE(shadow_me_mask);
5352
5353 for (i = 0; i < 4; ++i)
5354 mmu->pae_root[i] = INVALID_PAE_ROOT;
5355
5356 return 0;
5357 }
5358
5359 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5360 {
5361 int ret;
5362
5363 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5364 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5365
5366 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5367 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5368
5369 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5370
5371 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5372 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5373
5374 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5375
5376 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5377 if (ret)
5378 return ret;
5379
5380 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5381 if (ret)
5382 goto fail_allocate_root;
5383
5384 return ret;
5385 fail_allocate_root:
5386 free_mmu_pages(&vcpu->arch.guest_mmu);
5387 return ret;
5388 }
5389
5390 #define BATCH_ZAP_PAGES 10
5391 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5392 {
5393 struct kvm_mmu_page *sp, *node;
5394 int nr_zapped, batch = 0;
5395
5396 restart:
5397 list_for_each_entry_safe_reverse(sp, node,
5398 &kvm->arch.active_mmu_pages, link) {
5399 /*
5400 * No obsolete valid page exists before a newly created page
5401 * since active_mmu_pages is a FIFO list.
5402 */
5403 if (!is_obsolete_sp(kvm, sp))
5404 break;
5405
5406 /*
5407 * Invalid pages should never land back on the list of active
5408 * pages. Skip the bogus page, otherwise we'll get stuck in an
5409 * infinite loop if the page gets put back on the list (again).
5410 */
5411 if (WARN_ON(sp->role.invalid))
5412 continue;
5413
5414 /*
5415 * No need to flush the TLB since we're only zapping shadow
5416 * pages with an obsolete generation number and all vCPUS have
5417 * loaded a new root, i.e. the shadow pages being zapped cannot
5418 * be in active use by the guest.
5419 */
5420 if (batch >= BATCH_ZAP_PAGES &&
5421 cond_resched_rwlock_write(&kvm->mmu_lock)) {
5422 batch = 0;
5423 goto restart;
5424 }
5425
5426 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5427 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5428 batch += nr_zapped;
5429 goto restart;
5430 }
5431 }
5432
5433 /*
5434 * Trigger a remote TLB flush before freeing the page tables to ensure
5435 * KVM is not in the middle of a lockless shadow page table walk, which
5436 * may reference the pages.
5437 */
5438 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5439 }
5440
5441 /*
5442 * Fast invalidate all shadow pages and use lock-break technique
5443 * to zap obsolete pages.
5444 *
5445 * It's required when memslot is being deleted or VM is being
5446 * destroyed, in these cases, we should ensure that KVM MMU does
5447 * not use any resource of the being-deleted slot or all slots
5448 * after calling the function.
5449 */
5450 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5451 {
5452 lockdep_assert_held(&kvm->slots_lock);
5453
5454 write_lock(&kvm->mmu_lock);
5455 trace_kvm_mmu_zap_all_fast(kvm);
5456
5457 /*
5458 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5459 * held for the entire duration of zapping obsolete pages, it's
5460 * impossible for there to be multiple invalid generations associated
5461 * with *valid* shadow pages at any given time, i.e. there is exactly
5462 * one valid generation and (at most) one invalid generation.
5463 */
5464 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5465
5466 /*
5467 * Notify all vcpus to reload its shadow page table and flush TLB.
5468 * Then all vcpus will switch to new shadow page table with the new
5469 * mmu_valid_gen.
5470 *
5471 * Note: we need to do this under the protection of mmu_lock,
5472 * otherwise, vcpu would purge shadow page but miss tlb flush.
5473 */
5474 kvm_reload_remote_mmus(kvm);
5475
5476 kvm_zap_obsolete_pages(kvm);
5477
5478 if (is_tdp_mmu_enabled(kvm))
5479 kvm_tdp_mmu_zap_all(kvm);
5480
5481 write_unlock(&kvm->mmu_lock);
5482 }
5483
5484 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5485 {
5486 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5487 }
5488
5489 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5490 struct kvm_memory_slot *slot,
5491 struct kvm_page_track_notifier_node *node)
5492 {
5493 kvm_mmu_zap_all_fast(kvm);
5494 }
5495
5496 void kvm_mmu_init_vm(struct kvm *kvm)
5497 {
5498 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5499
5500 kvm_mmu_init_tdp_mmu(kvm);
5501
5502 node->track_write = kvm_mmu_pte_write;
5503 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5504 kvm_page_track_register_notifier(kvm, node);
5505 }
5506
5507 void kvm_mmu_uninit_vm(struct kvm *kvm)
5508 {
5509 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5510
5511 kvm_page_track_unregister_notifier(kvm, node);
5512
5513 kvm_mmu_uninit_tdp_mmu(kvm);
5514 }
5515
5516 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5517 {
5518 struct kvm_memslots *slots;
5519 struct kvm_memory_slot *memslot;
5520 int i;
5521 bool flush;
5522
5523 write_lock(&kvm->mmu_lock);
5524 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5525 slots = __kvm_memslots(kvm, i);
5526 kvm_for_each_memslot(memslot, slots) {
5527 gfn_t start, end;
5528
5529 start = max(gfn_start, memslot->base_gfn);
5530 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5531 if (start >= end)
5532 continue;
5533
5534 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5535 PG_LEVEL_4K,
5536 KVM_MAX_HUGEPAGE_LEVEL,
5537 start, end - 1, true);
5538 }
5539 }
5540
5541 if (is_tdp_mmu_enabled(kvm)) {
5542 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5543 if (flush)
5544 kvm_flush_remote_tlbs(kvm);
5545 }
5546
5547 write_unlock(&kvm->mmu_lock);
5548 }
5549
5550 static bool slot_rmap_write_protect(struct kvm *kvm,
5551 struct kvm_rmap_head *rmap_head,
5552 struct kvm_memory_slot *slot)
5553 {
5554 return __rmap_write_protect(kvm, rmap_head, false);
5555 }
5556
5557 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5558 struct kvm_memory_slot *memslot,
5559 int start_level)
5560 {
5561 bool flush;
5562
5563 write_lock(&kvm->mmu_lock);
5564 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5565 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5566 if (is_tdp_mmu_enabled(kvm))
5567 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5568 write_unlock(&kvm->mmu_lock);
5569
5570 /*
5571 * We can flush all the TLBs out of the mmu lock without TLB
5572 * corruption since we just change the spte from writable to
5573 * readonly so that we only need to care the case of changing
5574 * spte from present to present (changing the spte from present
5575 * to nonpresent will flush all the TLBs immediately), in other
5576 * words, the only case we care is mmu_spte_update() where we
5577 * have checked Host-writable | MMU-writable instead of
5578 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5579 * anymore.
5580 */
5581 if (flush)
5582 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5583 }
5584
5585 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5586 struct kvm_rmap_head *rmap_head,
5587 struct kvm_memory_slot *slot)
5588 {
5589 u64 *sptep;
5590 struct rmap_iterator iter;
5591 int need_tlb_flush = 0;
5592 kvm_pfn_t pfn;
5593 struct kvm_mmu_page *sp;
5594
5595 restart:
5596 for_each_rmap_spte(rmap_head, &iter, sptep) {
5597 sp = sptep_to_sp(sptep);
5598 pfn = spte_to_pfn(*sptep);
5599
5600 /*
5601 * We cannot do huge page mapping for indirect shadow pages,
5602 * which are found on the last rmap (level = 1) when not using
5603 * tdp; such shadow pages are synced with the page table in
5604 * the guest, and the guest page table is using 4K page size
5605 * mapping if the indirect sp has level = 1.
5606 */
5607 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5608 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5609 pfn, PG_LEVEL_NUM)) {
5610 pte_list_remove(rmap_head, sptep);
5611
5612 if (kvm_available_flush_tlb_with_range())
5613 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5614 KVM_PAGES_PER_HPAGE(sp->role.level));
5615 else
5616 need_tlb_flush = 1;
5617
5618 goto restart;
5619 }
5620 }
5621
5622 return need_tlb_flush;
5623 }
5624
5625 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5626 const struct kvm_memory_slot *memslot)
5627 {
5628 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5629 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5630
5631 write_lock(&kvm->mmu_lock);
5632 slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5633
5634 if (is_tdp_mmu_enabled(kvm))
5635 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5636 write_unlock(&kvm->mmu_lock);
5637 }
5638
5639 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5640 struct kvm_memory_slot *memslot)
5641 {
5642 /*
5643 * All current use cases for flushing the TLBs for a specific memslot
5644 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5645 * The interaction between the various operations on memslot must be
5646 * serialized by slots_locks to ensure the TLB flush from one operation
5647 * is observed by any other operation on the same memslot.
5648 */
5649 lockdep_assert_held(&kvm->slots_lock);
5650 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5651 memslot->npages);
5652 }
5653
5654 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5655 struct kvm_memory_slot *memslot)
5656 {
5657 bool flush;
5658
5659 write_lock(&kvm->mmu_lock);
5660 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5661 if (is_tdp_mmu_enabled(kvm))
5662 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5663 write_unlock(&kvm->mmu_lock);
5664
5665 /*
5666 * It's also safe to flush TLBs out of mmu lock here as currently this
5667 * function is only used for dirty logging, in which case flushing TLB
5668 * out of mmu lock also guarantees no dirty pages will be lost in
5669 * dirty_bitmap.
5670 */
5671 if (flush)
5672 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5673 }
5674
5675 void kvm_mmu_zap_all(struct kvm *kvm)
5676 {
5677 struct kvm_mmu_page *sp, *node;
5678 LIST_HEAD(invalid_list);
5679 int ign;
5680
5681 write_lock(&kvm->mmu_lock);
5682 restart:
5683 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5684 if (WARN_ON(sp->role.invalid))
5685 continue;
5686 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5687 goto restart;
5688 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5689 goto restart;
5690 }
5691
5692 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5693
5694 if (is_tdp_mmu_enabled(kvm))
5695 kvm_tdp_mmu_zap_all(kvm);
5696
5697 write_unlock(&kvm->mmu_lock);
5698 }
5699
5700 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5701 {
5702 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5703
5704 gen &= MMIO_SPTE_GEN_MASK;
5705
5706 /*
5707 * Generation numbers are incremented in multiples of the number of
5708 * address spaces in order to provide unique generations across all
5709 * address spaces. Strip what is effectively the address space
5710 * modifier prior to checking for a wrap of the MMIO generation so
5711 * that a wrap in any address space is detected.
5712 */
5713 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5714
5715 /*
5716 * The very rare case: if the MMIO generation number has wrapped,
5717 * zap all shadow pages.
5718 */
5719 if (unlikely(gen == 0)) {
5720 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5721 kvm_mmu_zap_all_fast(kvm);
5722 }
5723 }
5724
5725 static unsigned long
5726 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5727 {
5728 struct kvm *kvm;
5729 int nr_to_scan = sc->nr_to_scan;
5730 unsigned long freed = 0;
5731
5732 mutex_lock(&kvm_lock);
5733
5734 list_for_each_entry(kvm, &vm_list, vm_list) {
5735 int idx;
5736 LIST_HEAD(invalid_list);
5737
5738 /*
5739 * Never scan more than sc->nr_to_scan VM instances.
5740 * Will not hit this condition practically since we do not try
5741 * to shrink more than one VM and it is very unlikely to see
5742 * !n_used_mmu_pages so many times.
5743 */
5744 if (!nr_to_scan--)
5745 break;
5746 /*
5747 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5748 * here. We may skip a VM instance errorneosly, but we do not
5749 * want to shrink a VM that only started to populate its MMU
5750 * anyway.
5751 */
5752 if (!kvm->arch.n_used_mmu_pages &&
5753 !kvm_has_zapped_obsolete_pages(kvm))
5754 continue;
5755
5756 idx = srcu_read_lock(&kvm->srcu);
5757 write_lock(&kvm->mmu_lock);
5758
5759 if (kvm_has_zapped_obsolete_pages(kvm)) {
5760 kvm_mmu_commit_zap_page(kvm,
5761 &kvm->arch.zapped_obsolete_pages);
5762 goto unlock;
5763 }
5764
5765 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5766
5767 unlock:
5768 write_unlock(&kvm->mmu_lock);
5769 srcu_read_unlock(&kvm->srcu, idx);
5770
5771 /*
5772 * unfair on small ones
5773 * per-vm shrinkers cry out
5774 * sadness comes quickly
5775 */
5776 list_move_tail(&kvm->vm_list, &vm_list);
5777 break;
5778 }
5779
5780 mutex_unlock(&kvm_lock);
5781 return freed;
5782 }
5783
5784 static unsigned long
5785 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5786 {
5787 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5788 }
5789
5790 static struct shrinker mmu_shrinker = {
5791 .count_objects = mmu_shrink_count,
5792 .scan_objects = mmu_shrink_scan,
5793 .seeks = DEFAULT_SEEKS * 10,
5794 };
5795
5796 static void mmu_destroy_caches(void)
5797 {
5798 kmem_cache_destroy(pte_list_desc_cache);
5799 kmem_cache_destroy(mmu_page_header_cache);
5800 }
5801
5802 static bool get_nx_auto_mode(void)
5803 {
5804 /* Return true when CPU has the bug, and mitigations are ON */
5805 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5806 }
5807
5808 static void __set_nx_huge_pages(bool val)
5809 {
5810 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5811 }
5812
5813 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5814 {
5815 bool old_val = nx_huge_pages;
5816 bool new_val;
5817
5818 /* In "auto" mode deploy workaround only if CPU has the bug. */
5819 if (sysfs_streq(val, "off"))
5820 new_val = 0;
5821 else if (sysfs_streq(val, "force"))
5822 new_val = 1;
5823 else if (sysfs_streq(val, "auto"))
5824 new_val = get_nx_auto_mode();
5825 else if (strtobool(val, &new_val) < 0)
5826 return -EINVAL;
5827
5828 __set_nx_huge_pages(new_val);
5829
5830 if (new_val != old_val) {
5831 struct kvm *kvm;
5832
5833 mutex_lock(&kvm_lock);
5834
5835 list_for_each_entry(kvm, &vm_list, vm_list) {
5836 mutex_lock(&kvm->slots_lock);
5837 kvm_mmu_zap_all_fast(kvm);
5838 mutex_unlock(&kvm->slots_lock);
5839
5840 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5841 }
5842 mutex_unlock(&kvm_lock);
5843 }
5844
5845 return 0;
5846 }
5847
5848 int kvm_mmu_module_init(void)
5849 {
5850 int ret = -ENOMEM;
5851
5852 if (nx_huge_pages == -1)
5853 __set_nx_huge_pages(get_nx_auto_mode());
5854
5855 /*
5856 * MMU roles use union aliasing which is, generally speaking, an
5857 * undefined behavior. However, we supposedly know how compilers behave
5858 * and the current status quo is unlikely to change. Guardians below are
5859 * supposed to let us know if the assumption becomes false.
5860 */
5861 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5862 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5863 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5864
5865 kvm_mmu_reset_all_pte_masks();
5866
5867 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5868 sizeof(struct pte_list_desc),
5869 0, SLAB_ACCOUNT, NULL);
5870 if (!pte_list_desc_cache)
5871 goto out;
5872
5873 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5874 sizeof(struct kvm_mmu_page),
5875 0, SLAB_ACCOUNT, NULL);
5876 if (!mmu_page_header_cache)
5877 goto out;
5878
5879 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5880 goto out;
5881
5882 ret = register_shrinker(&mmu_shrinker);
5883 if (ret)
5884 goto out;
5885
5886 return 0;
5887
5888 out:
5889 mmu_destroy_caches();
5890 return ret;
5891 }
5892
5893 /*
5894 * Calculate mmu pages needed for kvm.
5895 */
5896 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5897 {
5898 unsigned long nr_mmu_pages;
5899 unsigned long nr_pages = 0;
5900 struct kvm_memslots *slots;
5901 struct kvm_memory_slot *memslot;
5902 int i;
5903
5904 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5905 slots = __kvm_memslots(kvm, i);
5906
5907 kvm_for_each_memslot(memslot, slots)
5908 nr_pages += memslot->npages;
5909 }
5910
5911 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5912 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5913
5914 return nr_mmu_pages;
5915 }
5916
5917 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5918 {
5919 kvm_mmu_unload(vcpu);
5920 free_mmu_pages(&vcpu->arch.root_mmu);
5921 free_mmu_pages(&vcpu->arch.guest_mmu);
5922 mmu_free_memory_caches(vcpu);
5923 }
5924
5925 void kvm_mmu_module_exit(void)
5926 {
5927 mmu_destroy_caches();
5928 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5929 unregister_shrinker(&mmu_shrinker);
5930 mmu_audit_disable();
5931 }
5932
5933 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5934 {
5935 unsigned int old_val;
5936 int err;
5937
5938 old_val = nx_huge_pages_recovery_ratio;
5939 err = param_set_uint(val, kp);
5940 if (err)
5941 return err;
5942
5943 if (READ_ONCE(nx_huge_pages) &&
5944 !old_val && nx_huge_pages_recovery_ratio) {
5945 struct kvm *kvm;
5946
5947 mutex_lock(&kvm_lock);
5948
5949 list_for_each_entry(kvm, &vm_list, vm_list)
5950 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5951
5952 mutex_unlock(&kvm_lock);
5953 }
5954
5955 return err;
5956 }
5957
5958 static void kvm_recover_nx_lpages(struct kvm *kvm)
5959 {
5960 int rcu_idx;
5961 struct kvm_mmu_page *sp;
5962 unsigned int ratio;
5963 LIST_HEAD(invalid_list);
5964 bool flush = false;
5965 ulong to_zap;
5966
5967 rcu_idx = srcu_read_lock(&kvm->srcu);
5968 write_lock(&kvm->mmu_lock);
5969
5970 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5971 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5972 for ( ; to_zap; --to_zap) {
5973 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5974 break;
5975
5976 /*
5977 * We use a separate list instead of just using active_mmu_pages
5978 * because the number of lpage_disallowed pages is expected to
5979 * be relatively small compared to the total.
5980 */
5981 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5982 struct kvm_mmu_page,
5983 lpage_disallowed_link);
5984 WARN_ON_ONCE(!sp->lpage_disallowed);
5985 if (is_tdp_mmu_page(sp)) {
5986 flush = kvm_tdp_mmu_zap_sp(kvm, sp);
5987 } else {
5988 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5989 WARN_ON_ONCE(sp->lpage_disallowed);
5990 }
5991
5992 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5993 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5994 cond_resched_rwlock_write(&kvm->mmu_lock);
5995 flush = false;
5996 }
5997 }
5998 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5999
6000 write_unlock(&kvm->mmu_lock);
6001 srcu_read_unlock(&kvm->srcu, rcu_idx);
6002 }
6003
6004 static long get_nx_lpage_recovery_timeout(u64 start_time)
6005 {
6006 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6007 ? start_time + 60 * HZ - get_jiffies_64()
6008 : MAX_SCHEDULE_TIMEOUT;
6009 }
6010
6011 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6012 {
6013 u64 start_time;
6014 long remaining_time;
6015
6016 while (true) {
6017 start_time = get_jiffies_64();
6018 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6019
6020 set_current_state(TASK_INTERRUPTIBLE);
6021 while (!kthread_should_stop() && remaining_time > 0) {
6022 schedule_timeout(remaining_time);
6023 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6024 set_current_state(TASK_INTERRUPTIBLE);
6025 }
6026
6027 set_current_state(TASK_RUNNING);
6028
6029 if (kthread_should_stop())
6030 return 0;
6031
6032 kvm_recover_nx_lpages(kvm);
6033 }
6034 }
6035
6036 int kvm_mmu_post_init_vm(struct kvm *kvm)
6037 {
6038 int err;
6039
6040 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6041 "kvm-nx-lpage-recovery",
6042 &kvm->arch.nx_lpage_recovery_thread);
6043 if (!err)
6044 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6045
6046 return err;
6047 }
6048
6049 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6050 {
6051 if (kvm->arch.nx_lpage_recovery_thread)
6052 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6053 }