]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
Merge tag 'f2fs-for-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70 .set = set_nx_huge_pages,
71 .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75 .set = set_nx_huge_pages_recovery_ratio,
76 .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89 * When setting this variable to true it enables Two-Dimensional-Paging
90 * where the hardware walks 2 page tables:
91 * 1. the guest-virtual to guest-physical
92 * 2. while doing 1. it walks guest-physical to host-physical
93 * If the hardware supports that we don't need to do shadow paging.
94 */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101 AUDIT_PRE_PAGE_FAULT,
102 AUDIT_POST_PAGE_FAULT,
103 AUDIT_PRE_PTE_WRITE,
104 AUDIT_POST_PTE_WRITE,
105 AUDIT_PRE_SYNC,
106 AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM 8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142 u64 *sptes[PTE_LIST_EXT];
143 struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147 u64 addr;
148 hpa_t shadow_addr;
149 u64 *sptep;
150 int level;
151 unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
155 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
156 (_root), (_addr)); \
157 shadow_walk_okay(&(_walker)); \
158 shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
161 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
162 shadow_walk_okay(&(_walker)); \
163 shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)) && \
168 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
169 __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 struct kvm_mmu_role_regs {
180 const unsigned long cr0;
181 const unsigned long cr4;
182 const u64 efer;
183 };
184
185 #define CREATE_TRACE_POINTS
186 #include "mmutrace.h"
187
188 /*
189 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
190 * reading from the role_regs. Once the mmu_role is constructed, it becomes
191 * the single source of truth for the MMU's state.
192 */
193 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
194 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
195 { \
196 return !!(regs->reg & flag); \
197 }
198 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
199 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
208
209 /*
210 * The MMU itself (with a valid role) is the single source of truth for the
211 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
212 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
213 * and the vCPU may be incorrect/irrelevant.
214 */
215 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
216 static inline bool is_##reg##_##name(struct kvm_mmu *mmu) \
217 { \
218 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \
219 }
220 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg);
221 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
222 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
223 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae);
224 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
225 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
226 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
227 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
228 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
229
230 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
231 {
232 struct kvm_mmu_role_regs regs = {
233 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
234 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
235 .efer = vcpu->arch.efer,
236 };
237
238 return regs;
239 }
240
241 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
242 {
243 if (!____is_cr0_pg(regs))
244 return 0;
245 else if (____is_efer_lma(regs))
246 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
247 PT64_ROOT_4LEVEL;
248 else if (____is_cr4_pae(regs))
249 return PT32E_ROOT_LEVEL;
250 else
251 return PT32_ROOT_LEVEL;
252 }
253
254 static inline bool kvm_available_flush_tlb_with_range(void)
255 {
256 return kvm_x86_ops.tlb_remote_flush_with_range;
257 }
258
259 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
260 struct kvm_tlb_range *range)
261 {
262 int ret = -ENOTSUPP;
263
264 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
265 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
266
267 if (ret)
268 kvm_flush_remote_tlbs(kvm);
269 }
270
271 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
272 u64 start_gfn, u64 pages)
273 {
274 struct kvm_tlb_range range;
275
276 range.start_gfn = start_gfn;
277 range.pages = pages;
278
279 kvm_flush_remote_tlbs_with_range(kvm, &range);
280 }
281
282 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
283 unsigned int access)
284 {
285 u64 spte = make_mmio_spte(vcpu, gfn, access);
286
287 trace_mark_mmio_spte(sptep, gfn, spte);
288 mmu_spte_set(sptep, spte);
289 }
290
291 static gfn_t get_mmio_spte_gfn(u64 spte)
292 {
293 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
294
295 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
296 & shadow_nonpresent_or_rsvd_mask;
297
298 return gpa >> PAGE_SHIFT;
299 }
300
301 static unsigned get_mmio_spte_access(u64 spte)
302 {
303 return spte & shadow_mmio_access_mask;
304 }
305
306 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
307 {
308 u64 kvm_gen, spte_gen, gen;
309
310 gen = kvm_vcpu_memslots(vcpu)->generation;
311 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
312 return false;
313
314 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
315 spte_gen = get_mmio_spte_generation(spte);
316
317 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
318 return likely(kvm_gen == spte_gen);
319 }
320
321 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
322 struct x86_exception *exception)
323 {
324 /* Check if guest physical address doesn't exceed guest maximum */
325 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
326 exception->error_code |= PFERR_RSVD_MASK;
327 return UNMAPPED_GVA;
328 }
329
330 return gpa;
331 }
332
333 static int is_cpuid_PSE36(void)
334 {
335 return 1;
336 }
337
338 static gfn_t pse36_gfn_delta(u32 gpte)
339 {
340 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
341
342 return (gpte & PT32_DIR_PSE36_MASK) << shift;
343 }
344
345 #ifdef CONFIG_X86_64
346 static void __set_spte(u64 *sptep, u64 spte)
347 {
348 WRITE_ONCE(*sptep, spte);
349 }
350
351 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
352 {
353 WRITE_ONCE(*sptep, spte);
354 }
355
356 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
357 {
358 return xchg(sptep, spte);
359 }
360
361 static u64 __get_spte_lockless(u64 *sptep)
362 {
363 return READ_ONCE(*sptep);
364 }
365 #else
366 union split_spte {
367 struct {
368 u32 spte_low;
369 u32 spte_high;
370 };
371 u64 spte;
372 };
373
374 static void count_spte_clear(u64 *sptep, u64 spte)
375 {
376 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
377
378 if (is_shadow_present_pte(spte))
379 return;
380
381 /* Ensure the spte is completely set before we increase the count */
382 smp_wmb();
383 sp->clear_spte_count++;
384 }
385
386 static void __set_spte(u64 *sptep, u64 spte)
387 {
388 union split_spte *ssptep, sspte;
389
390 ssptep = (union split_spte *)sptep;
391 sspte = (union split_spte)spte;
392
393 ssptep->spte_high = sspte.spte_high;
394
395 /*
396 * If we map the spte from nonpresent to present, We should store
397 * the high bits firstly, then set present bit, so cpu can not
398 * fetch this spte while we are setting the spte.
399 */
400 smp_wmb();
401
402 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
403 }
404
405 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
406 {
407 union split_spte *ssptep, sspte;
408
409 ssptep = (union split_spte *)sptep;
410 sspte = (union split_spte)spte;
411
412 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
413
414 /*
415 * If we map the spte from present to nonpresent, we should clear
416 * present bit firstly to avoid vcpu fetch the old high bits.
417 */
418 smp_wmb();
419
420 ssptep->spte_high = sspte.spte_high;
421 count_spte_clear(sptep, spte);
422 }
423
424 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
425 {
426 union split_spte *ssptep, sspte, orig;
427
428 ssptep = (union split_spte *)sptep;
429 sspte = (union split_spte)spte;
430
431 /* xchg acts as a barrier before the setting of the high bits */
432 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
433 orig.spte_high = ssptep->spte_high;
434 ssptep->spte_high = sspte.spte_high;
435 count_spte_clear(sptep, spte);
436
437 return orig.spte;
438 }
439
440 /*
441 * The idea using the light way get the spte on x86_32 guest is from
442 * gup_get_pte (mm/gup.c).
443 *
444 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
445 * coalesces them and we are running out of the MMU lock. Therefore
446 * we need to protect against in-progress updates of the spte.
447 *
448 * Reading the spte while an update is in progress may get the old value
449 * for the high part of the spte. The race is fine for a present->non-present
450 * change (because the high part of the spte is ignored for non-present spte),
451 * but for a present->present change we must reread the spte.
452 *
453 * All such changes are done in two steps (present->non-present and
454 * non-present->present), hence it is enough to count the number of
455 * present->non-present updates: if it changed while reading the spte,
456 * we might have hit the race. This is done using clear_spte_count.
457 */
458 static u64 __get_spte_lockless(u64 *sptep)
459 {
460 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
461 union split_spte spte, *orig = (union split_spte *)sptep;
462 int count;
463
464 retry:
465 count = sp->clear_spte_count;
466 smp_rmb();
467
468 spte.spte_low = orig->spte_low;
469 smp_rmb();
470
471 spte.spte_high = orig->spte_high;
472 smp_rmb();
473
474 if (unlikely(spte.spte_low != orig->spte_low ||
475 count != sp->clear_spte_count))
476 goto retry;
477
478 return spte.spte;
479 }
480 #endif
481
482 static bool spte_has_volatile_bits(u64 spte)
483 {
484 if (!is_shadow_present_pte(spte))
485 return false;
486
487 /*
488 * Always atomically update spte if it can be updated
489 * out of mmu-lock, it can ensure dirty bit is not lost,
490 * also, it can help us to get a stable is_writable_pte()
491 * to ensure tlb flush is not missed.
492 */
493 if (spte_can_locklessly_be_made_writable(spte) ||
494 is_access_track_spte(spte))
495 return true;
496
497 if (spte_ad_enabled(spte)) {
498 if ((spte & shadow_accessed_mask) == 0 ||
499 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
500 return true;
501 }
502
503 return false;
504 }
505
506 /* Rules for using mmu_spte_set:
507 * Set the sptep from nonpresent to present.
508 * Note: the sptep being assigned *must* be either not present
509 * or in a state where the hardware will not attempt to update
510 * the spte.
511 */
512 static void mmu_spte_set(u64 *sptep, u64 new_spte)
513 {
514 WARN_ON(is_shadow_present_pte(*sptep));
515 __set_spte(sptep, new_spte);
516 }
517
518 /*
519 * Update the SPTE (excluding the PFN), but do not track changes in its
520 * accessed/dirty status.
521 */
522 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
523 {
524 u64 old_spte = *sptep;
525
526 WARN_ON(!is_shadow_present_pte(new_spte));
527
528 if (!is_shadow_present_pte(old_spte)) {
529 mmu_spte_set(sptep, new_spte);
530 return old_spte;
531 }
532
533 if (!spte_has_volatile_bits(old_spte))
534 __update_clear_spte_fast(sptep, new_spte);
535 else
536 old_spte = __update_clear_spte_slow(sptep, new_spte);
537
538 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
539
540 return old_spte;
541 }
542
543 /* Rules for using mmu_spte_update:
544 * Update the state bits, it means the mapped pfn is not changed.
545 *
546 * Whenever we overwrite a writable spte with a read-only one we
547 * should flush remote TLBs. Otherwise rmap_write_protect
548 * will find a read-only spte, even though the writable spte
549 * might be cached on a CPU's TLB, the return value indicates this
550 * case.
551 *
552 * Returns true if the TLB needs to be flushed
553 */
554 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
555 {
556 bool flush = false;
557 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
558
559 if (!is_shadow_present_pte(old_spte))
560 return false;
561
562 /*
563 * For the spte updated out of mmu-lock is safe, since
564 * we always atomically update it, see the comments in
565 * spte_has_volatile_bits().
566 */
567 if (spte_can_locklessly_be_made_writable(old_spte) &&
568 !is_writable_pte(new_spte))
569 flush = true;
570
571 /*
572 * Flush TLB when accessed/dirty states are changed in the page tables,
573 * to guarantee consistency between TLB and page tables.
574 */
575
576 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
577 flush = true;
578 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
579 }
580
581 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
582 flush = true;
583 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584 }
585
586 return flush;
587 }
588
589 /*
590 * Rules for using mmu_spte_clear_track_bits:
591 * It sets the sptep from present to nonpresent, and track the
592 * state bits, it is used to clear the last level sptep.
593 * Returns non-zero if the PTE was previously valid.
594 */
595 static int mmu_spte_clear_track_bits(u64 *sptep)
596 {
597 kvm_pfn_t pfn;
598 u64 old_spte = *sptep;
599
600 if (!spte_has_volatile_bits(old_spte))
601 __update_clear_spte_fast(sptep, 0ull);
602 else
603 old_spte = __update_clear_spte_slow(sptep, 0ull);
604
605 if (!is_shadow_present_pte(old_spte))
606 return 0;
607
608 pfn = spte_to_pfn(old_spte);
609
610 /*
611 * KVM does not hold the refcount of the page used by
612 * kvm mmu, before reclaiming the page, we should
613 * unmap it from mmu first.
614 */
615 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
616
617 if (is_accessed_spte(old_spte))
618 kvm_set_pfn_accessed(pfn);
619
620 if (is_dirty_spte(old_spte))
621 kvm_set_pfn_dirty(pfn);
622
623 return 1;
624 }
625
626 /*
627 * Rules for using mmu_spte_clear_no_track:
628 * Directly clear spte without caring the state bits of sptep,
629 * it is used to set the upper level spte.
630 */
631 static void mmu_spte_clear_no_track(u64 *sptep)
632 {
633 __update_clear_spte_fast(sptep, 0ull);
634 }
635
636 static u64 mmu_spte_get_lockless(u64 *sptep)
637 {
638 return __get_spte_lockless(sptep);
639 }
640
641 /* Restore an acc-track PTE back to a regular PTE */
642 static u64 restore_acc_track_spte(u64 spte)
643 {
644 u64 new_spte = spte;
645 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
646 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
647
648 WARN_ON_ONCE(spte_ad_enabled(spte));
649 WARN_ON_ONCE(!is_access_track_spte(spte));
650
651 new_spte &= ~shadow_acc_track_mask;
652 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
653 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
654 new_spte |= saved_bits;
655
656 return new_spte;
657 }
658
659 /* Returns the Accessed status of the PTE and resets it at the same time. */
660 static bool mmu_spte_age(u64 *sptep)
661 {
662 u64 spte = mmu_spte_get_lockless(sptep);
663
664 if (!is_accessed_spte(spte))
665 return false;
666
667 if (spte_ad_enabled(spte)) {
668 clear_bit((ffs(shadow_accessed_mask) - 1),
669 (unsigned long *)sptep);
670 } else {
671 /*
672 * Capture the dirty status of the page, so that it doesn't get
673 * lost when the SPTE is marked for access tracking.
674 */
675 if (is_writable_pte(spte))
676 kvm_set_pfn_dirty(spte_to_pfn(spte));
677
678 spte = mark_spte_for_access_track(spte);
679 mmu_spte_update_no_track(sptep, spte);
680 }
681
682 return true;
683 }
684
685 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
686 {
687 /*
688 * Prevent page table teardown by making any free-er wait during
689 * kvm_flush_remote_tlbs() IPI to all active vcpus.
690 */
691 local_irq_disable();
692
693 /*
694 * Make sure a following spte read is not reordered ahead of the write
695 * to vcpu->mode.
696 */
697 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
698 }
699
700 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
701 {
702 /*
703 * Make sure the write to vcpu->mode is not reordered in front of
704 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
705 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
706 */
707 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
708 local_irq_enable();
709 }
710
711 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
712 {
713 int r;
714
715 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
716 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
717 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
718 if (r)
719 return r;
720 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
721 PT64_ROOT_MAX_LEVEL);
722 if (r)
723 return r;
724 if (maybe_indirect) {
725 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
726 PT64_ROOT_MAX_LEVEL);
727 if (r)
728 return r;
729 }
730 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
731 PT64_ROOT_MAX_LEVEL);
732 }
733
734 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
735 {
736 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
737 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
738 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
739 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
740 }
741
742 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
743 {
744 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
745 }
746
747 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
748 {
749 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
750 }
751
752 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
753 {
754 if (!sp->role.direct)
755 return sp->gfns[index];
756
757 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
758 }
759
760 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
761 {
762 if (!sp->role.direct) {
763 sp->gfns[index] = gfn;
764 return;
765 }
766
767 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
768 pr_err_ratelimited("gfn mismatch under direct page %llx "
769 "(expected %llx, got %llx)\n",
770 sp->gfn,
771 kvm_mmu_page_get_gfn(sp, index), gfn);
772 }
773
774 /*
775 * Return the pointer to the large page information for a given gfn,
776 * handling slots that are not large page aligned.
777 */
778 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
779 const struct kvm_memory_slot *slot, int level)
780 {
781 unsigned long idx;
782
783 idx = gfn_to_index(gfn, slot->base_gfn, level);
784 return &slot->arch.lpage_info[level - 2][idx];
785 }
786
787 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788 gfn_t gfn, int count)
789 {
790 struct kvm_lpage_info *linfo;
791 int i;
792
793 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
794 linfo = lpage_info_slot(gfn, slot, i);
795 linfo->disallow_lpage += count;
796 WARN_ON(linfo->disallow_lpage < 0);
797 }
798 }
799
800 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801 {
802 update_gfn_disallow_lpage_count(slot, gfn, 1);
803 }
804
805 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806 {
807 update_gfn_disallow_lpage_count(slot, gfn, -1);
808 }
809
810 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
811 {
812 struct kvm_memslots *slots;
813 struct kvm_memory_slot *slot;
814 gfn_t gfn;
815
816 kvm->arch.indirect_shadow_pages++;
817 gfn = sp->gfn;
818 slots = kvm_memslots_for_spte_role(kvm, sp->role);
819 slot = __gfn_to_memslot(slots, gfn);
820
821 /* the non-leaf shadow pages are keeping readonly. */
822 if (sp->role.level > PG_LEVEL_4K)
823 return kvm_slot_page_track_add_page(kvm, slot, gfn,
824 KVM_PAGE_TRACK_WRITE);
825
826 kvm_mmu_gfn_disallow_lpage(slot, gfn);
827 }
828
829 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
830 {
831 if (sp->lpage_disallowed)
832 return;
833
834 ++kvm->stat.nx_lpage_splits;
835 list_add_tail(&sp->lpage_disallowed_link,
836 &kvm->arch.lpage_disallowed_mmu_pages);
837 sp->lpage_disallowed = true;
838 }
839
840 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
841 {
842 struct kvm_memslots *slots;
843 struct kvm_memory_slot *slot;
844 gfn_t gfn;
845
846 kvm->arch.indirect_shadow_pages--;
847 gfn = sp->gfn;
848 slots = kvm_memslots_for_spte_role(kvm, sp->role);
849 slot = __gfn_to_memslot(slots, gfn);
850 if (sp->role.level > PG_LEVEL_4K)
851 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
852 KVM_PAGE_TRACK_WRITE);
853
854 kvm_mmu_gfn_allow_lpage(slot, gfn);
855 }
856
857 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
858 {
859 --kvm->stat.nx_lpage_splits;
860 sp->lpage_disallowed = false;
861 list_del(&sp->lpage_disallowed_link);
862 }
863
864 static struct kvm_memory_slot *
865 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
866 bool no_dirty_log)
867 {
868 struct kvm_memory_slot *slot;
869
870 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
871 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
872 return NULL;
873 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
874 return NULL;
875
876 return slot;
877 }
878
879 /*
880 * About rmap_head encoding:
881 *
882 * If the bit zero of rmap_head->val is clear, then it points to the only spte
883 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
884 * pte_list_desc containing more mappings.
885 */
886
887 /*
888 * Returns the number of pointers in the rmap chain, not counting the new one.
889 */
890 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
891 struct kvm_rmap_head *rmap_head)
892 {
893 struct pte_list_desc *desc;
894 int i, count = 0;
895
896 if (!rmap_head->val) {
897 rmap_printk("%p %llx 0->1\n", spte, *spte);
898 rmap_head->val = (unsigned long)spte;
899 } else if (!(rmap_head->val & 1)) {
900 rmap_printk("%p %llx 1->many\n", spte, *spte);
901 desc = mmu_alloc_pte_list_desc(vcpu);
902 desc->sptes[0] = (u64 *)rmap_head->val;
903 desc->sptes[1] = spte;
904 rmap_head->val = (unsigned long)desc | 1;
905 ++count;
906 } else {
907 rmap_printk("%p %llx many->many\n", spte, *spte);
908 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
909 while (desc->sptes[PTE_LIST_EXT-1]) {
910 count += PTE_LIST_EXT;
911
912 if (!desc->more) {
913 desc->more = mmu_alloc_pte_list_desc(vcpu);
914 desc = desc->more;
915 break;
916 }
917 desc = desc->more;
918 }
919 for (i = 0; desc->sptes[i]; ++i)
920 ++count;
921 desc->sptes[i] = spte;
922 }
923 return count;
924 }
925
926 static void
927 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
928 struct pte_list_desc *desc, int i,
929 struct pte_list_desc *prev_desc)
930 {
931 int j;
932
933 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
934 ;
935 desc->sptes[i] = desc->sptes[j];
936 desc->sptes[j] = NULL;
937 if (j != 0)
938 return;
939 if (!prev_desc && !desc->more)
940 rmap_head->val = 0;
941 else
942 if (prev_desc)
943 prev_desc->more = desc->more;
944 else
945 rmap_head->val = (unsigned long)desc->more | 1;
946 mmu_free_pte_list_desc(desc);
947 }
948
949 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
950 {
951 struct pte_list_desc *desc;
952 struct pte_list_desc *prev_desc;
953 int i;
954
955 if (!rmap_head->val) {
956 pr_err("%s: %p 0->BUG\n", __func__, spte);
957 BUG();
958 } else if (!(rmap_head->val & 1)) {
959 rmap_printk("%p 1->0\n", spte);
960 if ((u64 *)rmap_head->val != spte) {
961 pr_err("%s: %p 1->BUG\n", __func__, spte);
962 BUG();
963 }
964 rmap_head->val = 0;
965 } else {
966 rmap_printk("%p many->many\n", spte);
967 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968 prev_desc = NULL;
969 while (desc) {
970 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
971 if (desc->sptes[i] == spte) {
972 pte_list_desc_remove_entry(rmap_head,
973 desc, i, prev_desc);
974 return;
975 }
976 }
977 prev_desc = desc;
978 desc = desc->more;
979 }
980 pr_err("%s: %p many->many\n", __func__, spte);
981 BUG();
982 }
983 }
984
985 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
986 {
987 mmu_spte_clear_track_bits(sptep);
988 __pte_list_remove(sptep, rmap_head);
989 }
990
991 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
992 struct kvm_memory_slot *slot)
993 {
994 unsigned long idx;
995
996 idx = gfn_to_index(gfn, slot->base_gfn, level);
997 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
998 }
999
1000 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1001 struct kvm_mmu_page *sp)
1002 {
1003 struct kvm_memslots *slots;
1004 struct kvm_memory_slot *slot;
1005
1006 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1007 slot = __gfn_to_memslot(slots, gfn);
1008 return __gfn_to_rmap(gfn, sp->role.level, slot);
1009 }
1010
1011 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1012 {
1013 struct kvm_mmu_memory_cache *mc;
1014
1015 mc = &vcpu->arch.mmu_pte_list_desc_cache;
1016 return kvm_mmu_memory_cache_nr_free_objects(mc);
1017 }
1018
1019 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1020 {
1021 struct kvm_mmu_page *sp;
1022 struct kvm_rmap_head *rmap_head;
1023
1024 sp = sptep_to_sp(spte);
1025 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1026 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1027 return pte_list_add(vcpu, spte, rmap_head);
1028 }
1029
1030 static void rmap_remove(struct kvm *kvm, u64 *spte)
1031 {
1032 struct kvm_mmu_page *sp;
1033 gfn_t gfn;
1034 struct kvm_rmap_head *rmap_head;
1035
1036 sp = sptep_to_sp(spte);
1037 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1038 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1039 __pte_list_remove(spte, rmap_head);
1040 }
1041
1042 /*
1043 * Used by the following functions to iterate through the sptes linked by a
1044 * rmap. All fields are private and not assumed to be used outside.
1045 */
1046 struct rmap_iterator {
1047 /* private fields */
1048 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1049 int pos; /* index of the sptep */
1050 };
1051
1052 /*
1053 * Iteration must be started by this function. This should also be used after
1054 * removing/dropping sptes from the rmap link because in such cases the
1055 * information in the iterator may not be valid.
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1060 struct rmap_iterator *iter)
1061 {
1062 u64 *sptep;
1063
1064 if (!rmap_head->val)
1065 return NULL;
1066
1067 if (!(rmap_head->val & 1)) {
1068 iter->desc = NULL;
1069 sptep = (u64 *)rmap_head->val;
1070 goto out;
1071 }
1072
1073 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1074 iter->pos = 0;
1075 sptep = iter->desc->sptes[iter->pos];
1076 out:
1077 BUG_ON(!is_shadow_present_pte(*sptep));
1078 return sptep;
1079 }
1080
1081 /*
1082 * Must be used with a valid iterator: e.g. after rmap_get_first().
1083 *
1084 * Returns sptep if found, NULL otherwise.
1085 */
1086 static u64 *rmap_get_next(struct rmap_iterator *iter)
1087 {
1088 u64 *sptep;
1089
1090 if (iter->desc) {
1091 if (iter->pos < PTE_LIST_EXT - 1) {
1092 ++iter->pos;
1093 sptep = iter->desc->sptes[iter->pos];
1094 if (sptep)
1095 goto out;
1096 }
1097
1098 iter->desc = iter->desc->more;
1099
1100 if (iter->desc) {
1101 iter->pos = 0;
1102 /* desc->sptes[0] cannot be NULL */
1103 sptep = iter->desc->sptes[iter->pos];
1104 goto out;
1105 }
1106 }
1107
1108 return NULL;
1109 out:
1110 BUG_ON(!is_shadow_present_pte(*sptep));
1111 return sptep;
1112 }
1113
1114 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1115 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1116 _spte_; _spte_ = rmap_get_next(_iter_))
1117
1118 static void drop_spte(struct kvm *kvm, u64 *sptep)
1119 {
1120 if (mmu_spte_clear_track_bits(sptep))
1121 rmap_remove(kvm, sptep);
1122 }
1123
1124
1125 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1126 {
1127 if (is_large_pte(*sptep)) {
1128 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1129 drop_spte(kvm, sptep);
1130 --kvm->stat.lpages;
1131 return true;
1132 }
1133
1134 return false;
1135 }
1136
1137 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1138 {
1139 if (__drop_large_spte(vcpu->kvm, sptep)) {
1140 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1141
1142 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1143 KVM_PAGES_PER_HPAGE(sp->role.level));
1144 }
1145 }
1146
1147 /*
1148 * Write-protect on the specified @sptep, @pt_protect indicates whether
1149 * spte write-protection is caused by protecting shadow page table.
1150 *
1151 * Note: write protection is difference between dirty logging and spte
1152 * protection:
1153 * - for dirty logging, the spte can be set to writable at anytime if
1154 * its dirty bitmap is properly set.
1155 * - for spte protection, the spte can be writable only after unsync-ing
1156 * shadow page.
1157 *
1158 * Return true if tlb need be flushed.
1159 */
1160 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1161 {
1162 u64 spte = *sptep;
1163
1164 if (!is_writable_pte(spte) &&
1165 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1166 return false;
1167
1168 rmap_printk("spte %p %llx\n", sptep, *sptep);
1169
1170 if (pt_protect)
1171 spte &= ~shadow_mmu_writable_mask;
1172 spte = spte & ~PT_WRITABLE_MASK;
1173
1174 return mmu_spte_update(sptep, spte);
1175 }
1176
1177 static bool __rmap_write_protect(struct kvm *kvm,
1178 struct kvm_rmap_head *rmap_head,
1179 bool pt_protect)
1180 {
1181 u64 *sptep;
1182 struct rmap_iterator iter;
1183 bool flush = false;
1184
1185 for_each_rmap_spte(rmap_head, &iter, sptep)
1186 flush |= spte_write_protect(sptep, pt_protect);
1187
1188 return flush;
1189 }
1190
1191 static bool spte_clear_dirty(u64 *sptep)
1192 {
1193 u64 spte = *sptep;
1194
1195 rmap_printk("spte %p %llx\n", sptep, *sptep);
1196
1197 MMU_WARN_ON(!spte_ad_enabled(spte));
1198 spte &= ~shadow_dirty_mask;
1199 return mmu_spte_update(sptep, spte);
1200 }
1201
1202 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1203 {
1204 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1205 (unsigned long *)sptep);
1206 if (was_writable && !spte_ad_enabled(*sptep))
1207 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1208
1209 return was_writable;
1210 }
1211
1212 /*
1213 * Gets the GFN ready for another round of dirty logging by clearing the
1214 * - D bit on ad-enabled SPTEs, and
1215 * - W bit on ad-disabled SPTEs.
1216 * Returns true iff any D or W bits were cleared.
1217 */
1218 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1219 struct kvm_memory_slot *slot)
1220 {
1221 u64 *sptep;
1222 struct rmap_iterator iter;
1223 bool flush = false;
1224
1225 for_each_rmap_spte(rmap_head, &iter, sptep)
1226 if (spte_ad_need_write_protect(*sptep))
1227 flush |= spte_wrprot_for_clear_dirty(sptep);
1228 else
1229 flush |= spte_clear_dirty(sptep);
1230
1231 return flush;
1232 }
1233
1234 /**
1235 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1236 * @kvm: kvm instance
1237 * @slot: slot to protect
1238 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1239 * @mask: indicates which pages we should protect
1240 *
1241 * Used when we do not need to care about huge page mappings.
1242 */
1243 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1244 struct kvm_memory_slot *slot,
1245 gfn_t gfn_offset, unsigned long mask)
1246 {
1247 struct kvm_rmap_head *rmap_head;
1248
1249 if (is_tdp_mmu_enabled(kvm))
1250 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1251 slot->base_gfn + gfn_offset, mask, true);
1252
1253 if (!kvm_memslots_have_rmaps(kvm))
1254 return;
1255
1256 while (mask) {
1257 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258 PG_LEVEL_4K, slot);
1259 __rmap_write_protect(kvm, rmap_head, false);
1260
1261 /* clear the first set bit */
1262 mask &= mask - 1;
1263 }
1264 }
1265
1266 /**
1267 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1268 * protect the page if the D-bit isn't supported.
1269 * @kvm: kvm instance
1270 * @slot: slot to clear D-bit
1271 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1272 * @mask: indicates which pages we should clear D-bit
1273 *
1274 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1275 */
1276 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1277 struct kvm_memory_slot *slot,
1278 gfn_t gfn_offset, unsigned long mask)
1279 {
1280 struct kvm_rmap_head *rmap_head;
1281
1282 if (is_tdp_mmu_enabled(kvm))
1283 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1284 slot->base_gfn + gfn_offset, mask, false);
1285
1286 if (!kvm_memslots_have_rmaps(kvm))
1287 return;
1288
1289 while (mask) {
1290 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1291 PG_LEVEL_4K, slot);
1292 __rmap_clear_dirty(kvm, rmap_head, slot);
1293
1294 /* clear the first set bit */
1295 mask &= mask - 1;
1296 }
1297 }
1298
1299 /**
1300 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1301 * PT level pages.
1302 *
1303 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1304 * enable dirty logging for them.
1305 *
1306 * We need to care about huge page mappings: e.g. during dirty logging we may
1307 * have such mappings.
1308 */
1309 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1310 struct kvm_memory_slot *slot,
1311 gfn_t gfn_offset, unsigned long mask)
1312 {
1313 /*
1314 * Huge pages are NOT write protected when we start dirty logging in
1315 * initially-all-set mode; must write protect them here so that they
1316 * are split to 4K on the first write.
1317 *
1318 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1319 * of memslot has no such restriction, so the range can cross two large
1320 * pages.
1321 */
1322 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1323 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1324 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1325
1326 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1327
1328 /* Cross two large pages? */
1329 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1330 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1331 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1332 PG_LEVEL_2M);
1333 }
1334
1335 /* Now handle 4K PTEs. */
1336 if (kvm_x86_ops.cpu_dirty_log_size)
1337 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1338 else
1339 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 }
1341
1342 int kvm_cpu_dirty_log_size(void)
1343 {
1344 return kvm_x86_ops.cpu_dirty_log_size;
1345 }
1346
1347 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1348 struct kvm_memory_slot *slot, u64 gfn,
1349 int min_level)
1350 {
1351 struct kvm_rmap_head *rmap_head;
1352 int i;
1353 bool write_protected = false;
1354
1355 if (kvm_memslots_have_rmaps(kvm)) {
1356 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1357 rmap_head = __gfn_to_rmap(gfn, i, slot);
1358 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1359 }
1360 }
1361
1362 if (is_tdp_mmu_enabled(kvm))
1363 write_protected |=
1364 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1365
1366 return write_protected;
1367 }
1368
1369 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1370 {
1371 struct kvm_memory_slot *slot;
1372
1373 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1374 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1375 }
1376
1377 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1378 struct kvm_memory_slot *slot)
1379 {
1380 u64 *sptep;
1381 struct rmap_iterator iter;
1382 bool flush = false;
1383
1384 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1385 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1386
1387 pte_list_remove(rmap_head, sptep);
1388 flush = true;
1389 }
1390
1391 return flush;
1392 }
1393
1394 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1395 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1396 pte_t unused)
1397 {
1398 return kvm_zap_rmapp(kvm, rmap_head, slot);
1399 }
1400
1401 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1402 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1403 pte_t pte)
1404 {
1405 u64 *sptep;
1406 struct rmap_iterator iter;
1407 int need_flush = 0;
1408 u64 new_spte;
1409 kvm_pfn_t new_pfn;
1410
1411 WARN_ON(pte_huge(pte));
1412 new_pfn = pte_pfn(pte);
1413
1414 restart:
1415 for_each_rmap_spte(rmap_head, &iter, sptep) {
1416 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1417 sptep, *sptep, gfn, level);
1418
1419 need_flush = 1;
1420
1421 if (pte_write(pte)) {
1422 pte_list_remove(rmap_head, sptep);
1423 goto restart;
1424 } else {
1425 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1426 *sptep, new_pfn);
1427
1428 mmu_spte_clear_track_bits(sptep);
1429 mmu_spte_set(sptep, new_spte);
1430 }
1431 }
1432
1433 if (need_flush && kvm_available_flush_tlb_with_range()) {
1434 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1435 return 0;
1436 }
1437
1438 return need_flush;
1439 }
1440
1441 struct slot_rmap_walk_iterator {
1442 /* input fields. */
1443 struct kvm_memory_slot *slot;
1444 gfn_t start_gfn;
1445 gfn_t end_gfn;
1446 int start_level;
1447 int end_level;
1448
1449 /* output fields. */
1450 gfn_t gfn;
1451 struct kvm_rmap_head *rmap;
1452 int level;
1453
1454 /* private field. */
1455 struct kvm_rmap_head *end_rmap;
1456 };
1457
1458 static void
1459 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1460 {
1461 iterator->level = level;
1462 iterator->gfn = iterator->start_gfn;
1463 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1464 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1465 iterator->slot);
1466 }
1467
1468 static void
1469 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1470 struct kvm_memory_slot *slot, int start_level,
1471 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1472 {
1473 iterator->slot = slot;
1474 iterator->start_level = start_level;
1475 iterator->end_level = end_level;
1476 iterator->start_gfn = start_gfn;
1477 iterator->end_gfn = end_gfn;
1478
1479 rmap_walk_init_level(iterator, iterator->start_level);
1480 }
1481
1482 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1483 {
1484 return !!iterator->rmap;
1485 }
1486
1487 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1488 {
1489 if (++iterator->rmap <= iterator->end_rmap) {
1490 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1491 return;
1492 }
1493
1494 if (++iterator->level > iterator->end_level) {
1495 iterator->rmap = NULL;
1496 return;
1497 }
1498
1499 rmap_walk_init_level(iterator, iterator->level);
1500 }
1501
1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1503 _start_gfn, _end_gfn, _iter_) \
1504 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1505 _end_level_, _start_gfn, _end_gfn); \
1506 slot_rmap_walk_okay(_iter_); \
1507 slot_rmap_walk_next(_iter_))
1508
1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1510 struct kvm_memory_slot *slot, gfn_t gfn,
1511 int level, pte_t pte);
1512
1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1514 struct kvm_gfn_range *range,
1515 rmap_handler_t handler)
1516 {
1517 struct slot_rmap_walk_iterator iterator;
1518 bool ret = false;
1519
1520 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1521 range->start, range->end - 1, &iterator)
1522 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1523 iterator.level, range->pte);
1524
1525 return ret;
1526 }
1527
1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1529 {
1530 bool flush = false;
1531
1532 if (kvm_memslots_have_rmaps(kvm))
1533 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1534
1535 if (is_tdp_mmu_enabled(kvm))
1536 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1537
1538 return flush;
1539 }
1540
1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1542 {
1543 bool flush = false;
1544
1545 if (kvm_memslots_have_rmaps(kvm))
1546 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1547
1548 if (is_tdp_mmu_enabled(kvm))
1549 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1550
1551 return flush;
1552 }
1553
1554 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1556 pte_t unused)
1557 {
1558 u64 *sptep;
1559 struct rmap_iterator iter;
1560 int young = 0;
1561
1562 for_each_rmap_spte(rmap_head, &iter, sptep)
1563 young |= mmu_spte_age(sptep);
1564
1565 return young;
1566 }
1567
1568 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1569 struct kvm_memory_slot *slot, gfn_t gfn,
1570 int level, pte_t unused)
1571 {
1572 u64 *sptep;
1573 struct rmap_iterator iter;
1574
1575 for_each_rmap_spte(rmap_head, &iter, sptep)
1576 if (is_accessed_spte(*sptep))
1577 return 1;
1578 return 0;
1579 }
1580
1581 #define RMAP_RECYCLE_THRESHOLD 1000
1582
1583 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1584 {
1585 struct kvm_rmap_head *rmap_head;
1586 struct kvm_mmu_page *sp;
1587
1588 sp = sptep_to_sp(spte);
1589
1590 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1591
1592 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1593 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1594 KVM_PAGES_PER_HPAGE(sp->role.level));
1595 }
1596
1597 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1598 {
1599 bool young = false;
1600
1601 if (kvm_memslots_have_rmaps(kvm))
1602 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1603
1604 if (is_tdp_mmu_enabled(kvm))
1605 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1606
1607 return young;
1608 }
1609
1610 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1611 {
1612 bool young = false;
1613
1614 if (kvm_memslots_have_rmaps(kvm))
1615 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1616
1617 if (is_tdp_mmu_enabled(kvm))
1618 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1619
1620 return young;
1621 }
1622
1623 #ifdef MMU_DEBUG
1624 static int is_empty_shadow_page(u64 *spt)
1625 {
1626 u64 *pos;
1627 u64 *end;
1628
1629 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1630 if (is_shadow_present_pte(*pos)) {
1631 printk(KERN_ERR "%s: %p %llx\n", __func__,
1632 pos, *pos);
1633 return 0;
1634 }
1635 return 1;
1636 }
1637 #endif
1638
1639 /*
1640 * This value is the sum of all of the kvm instances's
1641 * kvm->arch.n_used_mmu_pages values. We need a global,
1642 * aggregate version in order to make the slab shrinker
1643 * faster
1644 */
1645 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1646 {
1647 kvm->arch.n_used_mmu_pages += nr;
1648 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1649 }
1650
1651 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1652 {
1653 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1654 hlist_del(&sp->hash_link);
1655 list_del(&sp->link);
1656 free_page((unsigned long)sp->spt);
1657 if (!sp->role.direct)
1658 free_page((unsigned long)sp->gfns);
1659 kmem_cache_free(mmu_page_header_cache, sp);
1660 }
1661
1662 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1663 {
1664 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1665 }
1666
1667 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1668 struct kvm_mmu_page *sp, u64 *parent_pte)
1669 {
1670 if (!parent_pte)
1671 return;
1672
1673 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1674 }
1675
1676 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1677 u64 *parent_pte)
1678 {
1679 __pte_list_remove(parent_pte, &sp->parent_ptes);
1680 }
1681
1682 static void drop_parent_pte(struct kvm_mmu_page *sp,
1683 u64 *parent_pte)
1684 {
1685 mmu_page_remove_parent_pte(sp, parent_pte);
1686 mmu_spte_clear_no_track(parent_pte);
1687 }
1688
1689 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1690 {
1691 struct kvm_mmu_page *sp;
1692
1693 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1694 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1695 if (!direct)
1696 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1697 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1698
1699 /*
1700 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1701 * depends on valid pages being added to the head of the list. See
1702 * comments in kvm_zap_obsolete_pages().
1703 */
1704 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1705 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1706 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1707 return sp;
1708 }
1709
1710 static void mark_unsync(u64 *spte);
1711 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1712 {
1713 u64 *sptep;
1714 struct rmap_iterator iter;
1715
1716 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1717 mark_unsync(sptep);
1718 }
1719 }
1720
1721 static void mark_unsync(u64 *spte)
1722 {
1723 struct kvm_mmu_page *sp;
1724 unsigned int index;
1725
1726 sp = sptep_to_sp(spte);
1727 index = spte - sp->spt;
1728 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1729 return;
1730 if (sp->unsync_children++)
1731 return;
1732 kvm_mmu_mark_parents_unsync(sp);
1733 }
1734
1735 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1736 struct kvm_mmu_page *sp)
1737 {
1738 return 0;
1739 }
1740
1741 #define KVM_PAGE_ARRAY_NR 16
1742
1743 struct kvm_mmu_pages {
1744 struct mmu_page_and_offset {
1745 struct kvm_mmu_page *sp;
1746 unsigned int idx;
1747 } page[KVM_PAGE_ARRAY_NR];
1748 unsigned int nr;
1749 };
1750
1751 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1752 int idx)
1753 {
1754 int i;
1755
1756 if (sp->unsync)
1757 for (i=0; i < pvec->nr; i++)
1758 if (pvec->page[i].sp == sp)
1759 return 0;
1760
1761 pvec->page[pvec->nr].sp = sp;
1762 pvec->page[pvec->nr].idx = idx;
1763 pvec->nr++;
1764 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1765 }
1766
1767 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1768 {
1769 --sp->unsync_children;
1770 WARN_ON((int)sp->unsync_children < 0);
1771 __clear_bit(idx, sp->unsync_child_bitmap);
1772 }
1773
1774 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1775 struct kvm_mmu_pages *pvec)
1776 {
1777 int i, ret, nr_unsync_leaf = 0;
1778
1779 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1780 struct kvm_mmu_page *child;
1781 u64 ent = sp->spt[i];
1782
1783 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1784 clear_unsync_child_bit(sp, i);
1785 continue;
1786 }
1787
1788 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1789
1790 if (child->unsync_children) {
1791 if (mmu_pages_add(pvec, child, i))
1792 return -ENOSPC;
1793
1794 ret = __mmu_unsync_walk(child, pvec);
1795 if (!ret) {
1796 clear_unsync_child_bit(sp, i);
1797 continue;
1798 } else if (ret > 0) {
1799 nr_unsync_leaf += ret;
1800 } else
1801 return ret;
1802 } else if (child->unsync) {
1803 nr_unsync_leaf++;
1804 if (mmu_pages_add(pvec, child, i))
1805 return -ENOSPC;
1806 } else
1807 clear_unsync_child_bit(sp, i);
1808 }
1809
1810 return nr_unsync_leaf;
1811 }
1812
1813 #define INVALID_INDEX (-1)
1814
1815 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1816 struct kvm_mmu_pages *pvec)
1817 {
1818 pvec->nr = 0;
1819 if (!sp->unsync_children)
1820 return 0;
1821
1822 mmu_pages_add(pvec, sp, INVALID_INDEX);
1823 return __mmu_unsync_walk(sp, pvec);
1824 }
1825
1826 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1827 {
1828 WARN_ON(!sp->unsync);
1829 trace_kvm_mmu_sync_page(sp);
1830 sp->unsync = 0;
1831 --kvm->stat.mmu_unsync;
1832 }
1833
1834 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1835 struct list_head *invalid_list);
1836 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1837 struct list_head *invalid_list);
1838
1839 #define for_each_valid_sp(_kvm, _sp, _list) \
1840 hlist_for_each_entry(_sp, _list, hash_link) \
1841 if (is_obsolete_sp((_kvm), (_sp))) { \
1842 } else
1843
1844 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1845 for_each_valid_sp(_kvm, _sp, \
1846 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1847 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1848
1849 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1850 struct list_head *invalid_list)
1851 {
1852 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1853 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1854 return false;
1855 }
1856
1857 return true;
1858 }
1859
1860 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1861 struct list_head *invalid_list,
1862 bool remote_flush)
1863 {
1864 if (!remote_flush && list_empty(invalid_list))
1865 return false;
1866
1867 if (!list_empty(invalid_list))
1868 kvm_mmu_commit_zap_page(kvm, invalid_list);
1869 else
1870 kvm_flush_remote_tlbs(kvm);
1871 return true;
1872 }
1873
1874 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1875 struct list_head *invalid_list,
1876 bool remote_flush, bool local_flush)
1877 {
1878 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1879 return;
1880
1881 if (local_flush)
1882 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1883 }
1884
1885 #ifdef CONFIG_KVM_MMU_AUDIT
1886 #include "mmu_audit.c"
1887 #else
1888 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1889 static void mmu_audit_disable(void) { }
1890 #endif
1891
1892 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1893 {
1894 return sp->role.invalid ||
1895 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1896 }
1897
1898 struct mmu_page_path {
1899 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1900 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1901 };
1902
1903 #define for_each_sp(pvec, sp, parents, i) \
1904 for (i = mmu_pages_first(&pvec, &parents); \
1905 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1906 i = mmu_pages_next(&pvec, &parents, i))
1907
1908 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1909 struct mmu_page_path *parents,
1910 int i)
1911 {
1912 int n;
1913
1914 for (n = i+1; n < pvec->nr; n++) {
1915 struct kvm_mmu_page *sp = pvec->page[n].sp;
1916 unsigned idx = pvec->page[n].idx;
1917 int level = sp->role.level;
1918
1919 parents->idx[level-1] = idx;
1920 if (level == PG_LEVEL_4K)
1921 break;
1922
1923 parents->parent[level-2] = sp;
1924 }
1925
1926 return n;
1927 }
1928
1929 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1930 struct mmu_page_path *parents)
1931 {
1932 struct kvm_mmu_page *sp;
1933 int level;
1934
1935 if (pvec->nr == 0)
1936 return 0;
1937
1938 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1939
1940 sp = pvec->page[0].sp;
1941 level = sp->role.level;
1942 WARN_ON(level == PG_LEVEL_4K);
1943
1944 parents->parent[level-2] = sp;
1945
1946 /* Also set up a sentinel. Further entries in pvec are all
1947 * children of sp, so this element is never overwritten.
1948 */
1949 parents->parent[level-1] = NULL;
1950 return mmu_pages_next(pvec, parents, 0);
1951 }
1952
1953 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1954 {
1955 struct kvm_mmu_page *sp;
1956 unsigned int level = 0;
1957
1958 do {
1959 unsigned int idx = parents->idx[level];
1960 sp = parents->parent[level];
1961 if (!sp)
1962 return;
1963
1964 WARN_ON(idx == INVALID_INDEX);
1965 clear_unsync_child_bit(sp, idx);
1966 level++;
1967 } while (!sp->unsync_children);
1968 }
1969
1970 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1971 struct kvm_mmu_page *parent)
1972 {
1973 int i;
1974 struct kvm_mmu_page *sp;
1975 struct mmu_page_path parents;
1976 struct kvm_mmu_pages pages;
1977 LIST_HEAD(invalid_list);
1978 bool flush = false;
1979
1980 while (mmu_unsync_walk(parent, &pages)) {
1981 bool protected = false;
1982
1983 for_each_sp(pages, sp, parents, i)
1984 protected |= rmap_write_protect(vcpu, sp->gfn);
1985
1986 if (protected) {
1987 kvm_flush_remote_tlbs(vcpu->kvm);
1988 flush = false;
1989 }
1990
1991 for_each_sp(pages, sp, parents, i) {
1992 kvm_unlink_unsync_page(vcpu->kvm, sp);
1993 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1994 mmu_pages_clear_parents(&parents);
1995 }
1996 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1997 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1998 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1999 flush = false;
2000 }
2001 }
2002
2003 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2004 }
2005
2006 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2007 {
2008 atomic_set(&sp->write_flooding_count, 0);
2009 }
2010
2011 static void clear_sp_write_flooding_count(u64 *spte)
2012 {
2013 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2014 }
2015
2016 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2017 gfn_t gfn,
2018 gva_t gaddr,
2019 unsigned level,
2020 int direct,
2021 unsigned int access)
2022 {
2023 bool direct_mmu = vcpu->arch.mmu->direct_map;
2024 union kvm_mmu_page_role role;
2025 struct hlist_head *sp_list;
2026 unsigned quadrant;
2027 struct kvm_mmu_page *sp;
2028 int collisions = 0;
2029 LIST_HEAD(invalid_list);
2030
2031 role = vcpu->arch.mmu->mmu_role.base;
2032 role.level = level;
2033 role.direct = direct;
2034 if (role.direct)
2035 role.gpte_is_8_bytes = true;
2036 role.access = access;
2037 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2038 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2039 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2040 role.quadrant = quadrant;
2041 }
2042
2043 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2044 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2045 if (sp->gfn != gfn) {
2046 collisions++;
2047 continue;
2048 }
2049
2050 if (sp->role.word != role.word) {
2051 /*
2052 * If the guest is creating an upper-level page, zap
2053 * unsync pages for the same gfn. While it's possible
2054 * the guest is using recursive page tables, in all
2055 * likelihood the guest has stopped using the unsync
2056 * page and is installing a completely unrelated page.
2057 * Unsync pages must not be left as is, because the new
2058 * upper-level page will be write-protected.
2059 */
2060 if (level > PG_LEVEL_4K && sp->unsync)
2061 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2062 &invalid_list);
2063 continue;
2064 }
2065
2066 if (direct_mmu)
2067 goto trace_get_page;
2068
2069 if (sp->unsync) {
2070 /*
2071 * The page is good, but is stale. kvm_sync_page does
2072 * get the latest guest state, but (unlike mmu_unsync_children)
2073 * it doesn't write-protect the page or mark it synchronized!
2074 * This way the validity of the mapping is ensured, but the
2075 * overhead of write protection is not incurred until the
2076 * guest invalidates the TLB mapping. This allows multiple
2077 * SPs for a single gfn to be unsync.
2078 *
2079 * If the sync fails, the page is zapped. If so, break
2080 * in order to rebuild it.
2081 */
2082 if (!kvm_sync_page(vcpu, sp, &invalid_list))
2083 break;
2084
2085 WARN_ON(!list_empty(&invalid_list));
2086 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2087 }
2088
2089 if (sp->unsync_children)
2090 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2091
2092 __clear_sp_write_flooding_count(sp);
2093
2094 trace_get_page:
2095 trace_kvm_mmu_get_page(sp, false);
2096 goto out;
2097 }
2098
2099 ++vcpu->kvm->stat.mmu_cache_miss;
2100
2101 sp = kvm_mmu_alloc_page(vcpu, direct);
2102
2103 sp->gfn = gfn;
2104 sp->role = role;
2105 hlist_add_head(&sp->hash_link, sp_list);
2106 if (!direct) {
2107 account_shadowed(vcpu->kvm, sp);
2108 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2109 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2110 }
2111 trace_kvm_mmu_get_page(sp, true);
2112 out:
2113 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2114
2115 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2116 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2117 return sp;
2118 }
2119
2120 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2121 struct kvm_vcpu *vcpu, hpa_t root,
2122 u64 addr)
2123 {
2124 iterator->addr = addr;
2125 iterator->shadow_addr = root;
2126 iterator->level = vcpu->arch.mmu->shadow_root_level;
2127
2128 if (iterator->level == PT64_ROOT_4LEVEL &&
2129 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2130 !vcpu->arch.mmu->direct_map)
2131 --iterator->level;
2132
2133 if (iterator->level == PT32E_ROOT_LEVEL) {
2134 /*
2135 * prev_root is currently only used for 64-bit hosts. So only
2136 * the active root_hpa is valid here.
2137 */
2138 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2139
2140 iterator->shadow_addr
2141 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2142 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2143 --iterator->level;
2144 if (!iterator->shadow_addr)
2145 iterator->level = 0;
2146 }
2147 }
2148
2149 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2150 struct kvm_vcpu *vcpu, u64 addr)
2151 {
2152 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2153 addr);
2154 }
2155
2156 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2157 {
2158 if (iterator->level < PG_LEVEL_4K)
2159 return false;
2160
2161 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2162 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2163 return true;
2164 }
2165
2166 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2167 u64 spte)
2168 {
2169 if (is_last_spte(spte, iterator->level)) {
2170 iterator->level = 0;
2171 return;
2172 }
2173
2174 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2175 --iterator->level;
2176 }
2177
2178 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2179 {
2180 __shadow_walk_next(iterator, *iterator->sptep);
2181 }
2182
2183 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2184 struct kvm_mmu_page *sp)
2185 {
2186 u64 spte;
2187
2188 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2189
2190 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2191
2192 mmu_spte_set(sptep, spte);
2193
2194 mmu_page_add_parent_pte(vcpu, sp, sptep);
2195
2196 if (sp->unsync_children || sp->unsync)
2197 mark_unsync(sptep);
2198 }
2199
2200 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2201 unsigned direct_access)
2202 {
2203 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2204 struct kvm_mmu_page *child;
2205
2206 /*
2207 * For the direct sp, if the guest pte's dirty bit
2208 * changed form clean to dirty, it will corrupt the
2209 * sp's access: allow writable in the read-only sp,
2210 * so we should update the spte at this point to get
2211 * a new sp with the correct access.
2212 */
2213 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2214 if (child->role.access == direct_access)
2215 return;
2216
2217 drop_parent_pte(child, sptep);
2218 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2219 }
2220 }
2221
2222 /* Returns the number of zapped non-leaf child shadow pages. */
2223 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2224 u64 *spte, struct list_head *invalid_list)
2225 {
2226 u64 pte;
2227 struct kvm_mmu_page *child;
2228
2229 pte = *spte;
2230 if (is_shadow_present_pte(pte)) {
2231 if (is_last_spte(pte, sp->role.level)) {
2232 drop_spte(kvm, spte);
2233 if (is_large_pte(pte))
2234 --kvm->stat.lpages;
2235 } else {
2236 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2237 drop_parent_pte(child, spte);
2238
2239 /*
2240 * Recursively zap nested TDP SPs, parentless SPs are
2241 * unlikely to be used again in the near future. This
2242 * avoids retaining a large number of stale nested SPs.
2243 */
2244 if (tdp_enabled && invalid_list &&
2245 child->role.guest_mode && !child->parent_ptes.val)
2246 return kvm_mmu_prepare_zap_page(kvm, child,
2247 invalid_list);
2248 }
2249 } else if (is_mmio_spte(pte)) {
2250 mmu_spte_clear_no_track(spte);
2251 }
2252 return 0;
2253 }
2254
2255 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2256 struct kvm_mmu_page *sp,
2257 struct list_head *invalid_list)
2258 {
2259 int zapped = 0;
2260 unsigned i;
2261
2262 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2263 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2264
2265 return zapped;
2266 }
2267
2268 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2269 {
2270 u64 *sptep;
2271 struct rmap_iterator iter;
2272
2273 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2274 drop_parent_pte(sp, sptep);
2275 }
2276
2277 static int mmu_zap_unsync_children(struct kvm *kvm,
2278 struct kvm_mmu_page *parent,
2279 struct list_head *invalid_list)
2280 {
2281 int i, zapped = 0;
2282 struct mmu_page_path parents;
2283 struct kvm_mmu_pages pages;
2284
2285 if (parent->role.level == PG_LEVEL_4K)
2286 return 0;
2287
2288 while (mmu_unsync_walk(parent, &pages)) {
2289 struct kvm_mmu_page *sp;
2290
2291 for_each_sp(pages, sp, parents, i) {
2292 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2293 mmu_pages_clear_parents(&parents);
2294 zapped++;
2295 }
2296 }
2297
2298 return zapped;
2299 }
2300
2301 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2302 struct kvm_mmu_page *sp,
2303 struct list_head *invalid_list,
2304 int *nr_zapped)
2305 {
2306 bool list_unstable;
2307
2308 trace_kvm_mmu_prepare_zap_page(sp);
2309 ++kvm->stat.mmu_shadow_zapped;
2310 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2311 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2312 kvm_mmu_unlink_parents(kvm, sp);
2313
2314 /* Zapping children means active_mmu_pages has become unstable. */
2315 list_unstable = *nr_zapped;
2316
2317 if (!sp->role.invalid && !sp->role.direct)
2318 unaccount_shadowed(kvm, sp);
2319
2320 if (sp->unsync)
2321 kvm_unlink_unsync_page(kvm, sp);
2322 if (!sp->root_count) {
2323 /* Count self */
2324 (*nr_zapped)++;
2325
2326 /*
2327 * Already invalid pages (previously active roots) are not on
2328 * the active page list. See list_del() in the "else" case of
2329 * !sp->root_count.
2330 */
2331 if (sp->role.invalid)
2332 list_add(&sp->link, invalid_list);
2333 else
2334 list_move(&sp->link, invalid_list);
2335 kvm_mod_used_mmu_pages(kvm, -1);
2336 } else {
2337 /*
2338 * Remove the active root from the active page list, the root
2339 * will be explicitly freed when the root_count hits zero.
2340 */
2341 list_del(&sp->link);
2342
2343 /*
2344 * Obsolete pages cannot be used on any vCPUs, see the comment
2345 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2346 * treats invalid shadow pages as being obsolete.
2347 */
2348 if (!is_obsolete_sp(kvm, sp))
2349 kvm_reload_remote_mmus(kvm);
2350 }
2351
2352 if (sp->lpage_disallowed)
2353 unaccount_huge_nx_page(kvm, sp);
2354
2355 sp->role.invalid = 1;
2356 return list_unstable;
2357 }
2358
2359 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2360 struct list_head *invalid_list)
2361 {
2362 int nr_zapped;
2363
2364 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2365 return nr_zapped;
2366 }
2367
2368 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2369 struct list_head *invalid_list)
2370 {
2371 struct kvm_mmu_page *sp, *nsp;
2372
2373 if (list_empty(invalid_list))
2374 return;
2375
2376 /*
2377 * We need to make sure everyone sees our modifications to
2378 * the page tables and see changes to vcpu->mode here. The barrier
2379 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2380 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2381 *
2382 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2383 * guest mode and/or lockless shadow page table walks.
2384 */
2385 kvm_flush_remote_tlbs(kvm);
2386
2387 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2388 WARN_ON(!sp->role.invalid || sp->root_count);
2389 kvm_mmu_free_page(sp);
2390 }
2391 }
2392
2393 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2394 unsigned long nr_to_zap)
2395 {
2396 unsigned long total_zapped = 0;
2397 struct kvm_mmu_page *sp, *tmp;
2398 LIST_HEAD(invalid_list);
2399 bool unstable;
2400 int nr_zapped;
2401
2402 if (list_empty(&kvm->arch.active_mmu_pages))
2403 return 0;
2404
2405 restart:
2406 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2407 /*
2408 * Don't zap active root pages, the page itself can't be freed
2409 * and zapping it will just force vCPUs to realloc and reload.
2410 */
2411 if (sp->root_count)
2412 continue;
2413
2414 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2415 &nr_zapped);
2416 total_zapped += nr_zapped;
2417 if (total_zapped >= nr_to_zap)
2418 break;
2419
2420 if (unstable)
2421 goto restart;
2422 }
2423
2424 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425
2426 kvm->stat.mmu_recycled += total_zapped;
2427 return total_zapped;
2428 }
2429
2430 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2431 {
2432 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2433 return kvm->arch.n_max_mmu_pages -
2434 kvm->arch.n_used_mmu_pages;
2435
2436 return 0;
2437 }
2438
2439 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2440 {
2441 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2442
2443 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2444 return 0;
2445
2446 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2447
2448 /*
2449 * Note, this check is intentionally soft, it only guarantees that one
2450 * page is available, while the caller may end up allocating as many as
2451 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2452 * exceeding the (arbitrary by default) limit will not harm the host,
2453 * being too aggressive may unnecessarily kill the guest, and getting an
2454 * exact count is far more trouble than it's worth, especially in the
2455 * page fault paths.
2456 */
2457 if (!kvm_mmu_available_pages(vcpu->kvm))
2458 return -ENOSPC;
2459 return 0;
2460 }
2461
2462 /*
2463 * Changing the number of mmu pages allocated to the vm
2464 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2465 */
2466 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2467 {
2468 write_lock(&kvm->mmu_lock);
2469
2470 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2471 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2472 goal_nr_mmu_pages);
2473
2474 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2475 }
2476
2477 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2478
2479 write_unlock(&kvm->mmu_lock);
2480 }
2481
2482 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2483 {
2484 struct kvm_mmu_page *sp;
2485 LIST_HEAD(invalid_list);
2486 int r;
2487
2488 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2489 r = 0;
2490 write_lock(&kvm->mmu_lock);
2491 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2492 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2493 sp->role.word);
2494 r = 1;
2495 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2496 }
2497 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2498 write_unlock(&kvm->mmu_lock);
2499
2500 return r;
2501 }
2502
2503 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2504 {
2505 gpa_t gpa;
2506 int r;
2507
2508 if (vcpu->arch.mmu->direct_map)
2509 return 0;
2510
2511 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2512
2513 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2514
2515 return r;
2516 }
2517
2518 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2519 {
2520 trace_kvm_mmu_unsync_page(sp);
2521 ++vcpu->kvm->stat.mmu_unsync;
2522 sp->unsync = 1;
2523
2524 kvm_mmu_mark_parents_unsync(sp);
2525 }
2526
2527 /*
2528 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2529 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2530 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2531 * be write-protected.
2532 */
2533 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2534 {
2535 struct kvm_mmu_page *sp;
2536
2537 /*
2538 * Force write-protection if the page is being tracked. Note, the page
2539 * track machinery is used to write-protect upper-level shadow pages,
2540 * i.e. this guards the role.level == 4K assertion below!
2541 */
2542 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2543 return -EPERM;
2544
2545 /*
2546 * The page is not write-tracked, mark existing shadow pages unsync
2547 * unless KVM is synchronizing an unsync SP (can_unsync = false). In
2548 * that case, KVM must complete emulation of the guest TLB flush before
2549 * allowing shadow pages to become unsync (writable by the guest).
2550 */
2551 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2552 if (!can_unsync)
2553 return -EPERM;
2554
2555 if (sp->unsync)
2556 continue;
2557
2558 WARN_ON(sp->role.level != PG_LEVEL_4K);
2559 kvm_unsync_page(vcpu, sp);
2560 }
2561
2562 /*
2563 * We need to ensure that the marking of unsync pages is visible
2564 * before the SPTE is updated to allow writes because
2565 * kvm_mmu_sync_roots() checks the unsync flags without holding
2566 * the MMU lock and so can race with this. If the SPTE was updated
2567 * before the page had been marked as unsync-ed, something like the
2568 * following could happen:
2569 *
2570 * CPU 1 CPU 2
2571 * ---------------------------------------------------------------------
2572 * 1.2 Host updates SPTE
2573 * to be writable
2574 * 2.1 Guest writes a GPTE for GVA X.
2575 * (GPTE being in the guest page table shadowed
2576 * by the SP from CPU 1.)
2577 * This reads SPTE during the page table walk.
2578 * Since SPTE.W is read as 1, there is no
2579 * fault.
2580 *
2581 * 2.2 Guest issues TLB flush.
2582 * That causes a VM Exit.
2583 *
2584 * 2.3 Walking of unsync pages sees sp->unsync is
2585 * false and skips the page.
2586 *
2587 * 2.4 Guest accesses GVA X.
2588 * Since the mapping in the SP was not updated,
2589 * so the old mapping for GVA X incorrectly
2590 * gets used.
2591 * 1.1 Host marks SP
2592 * as unsync
2593 * (sp->unsync = true)
2594 *
2595 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2596 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2597 * pairs with this write barrier.
2598 */
2599 smp_wmb();
2600
2601 return 0;
2602 }
2603
2604 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2605 unsigned int pte_access, int level,
2606 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2607 bool can_unsync, bool host_writable)
2608 {
2609 u64 spte;
2610 struct kvm_mmu_page *sp;
2611 int ret;
2612
2613 sp = sptep_to_sp(sptep);
2614
2615 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2616 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2617
2618 if (spte & PT_WRITABLE_MASK)
2619 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2620
2621 if (*sptep == spte)
2622 ret |= SET_SPTE_SPURIOUS;
2623 else if (mmu_spte_update(sptep, spte))
2624 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2625 return ret;
2626 }
2627
2628 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2629 unsigned int pte_access, bool write_fault, int level,
2630 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2631 bool host_writable)
2632 {
2633 int was_rmapped = 0;
2634 int rmap_count;
2635 int set_spte_ret;
2636 int ret = RET_PF_FIXED;
2637 bool flush = false;
2638
2639 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2640 *sptep, write_fault, gfn);
2641
2642 if (unlikely(is_noslot_pfn(pfn))) {
2643 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2644 return RET_PF_EMULATE;
2645 }
2646
2647 if (is_shadow_present_pte(*sptep)) {
2648 /*
2649 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2650 * the parent of the now unreachable PTE.
2651 */
2652 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2653 struct kvm_mmu_page *child;
2654 u64 pte = *sptep;
2655
2656 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2657 drop_parent_pte(child, sptep);
2658 flush = true;
2659 } else if (pfn != spte_to_pfn(*sptep)) {
2660 pgprintk("hfn old %llx new %llx\n",
2661 spte_to_pfn(*sptep), pfn);
2662 drop_spte(vcpu->kvm, sptep);
2663 flush = true;
2664 } else
2665 was_rmapped = 1;
2666 }
2667
2668 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2669 speculative, true, host_writable);
2670 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2671 if (write_fault)
2672 ret = RET_PF_EMULATE;
2673 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2674 }
2675
2676 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2677 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2678 KVM_PAGES_PER_HPAGE(level));
2679
2680 /*
2681 * The fault is fully spurious if and only if the new SPTE and old SPTE
2682 * are identical, and emulation is not required.
2683 */
2684 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2685 WARN_ON_ONCE(!was_rmapped);
2686 return RET_PF_SPURIOUS;
2687 }
2688
2689 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2690 trace_kvm_mmu_set_spte(level, gfn, sptep);
2691 if (!was_rmapped && is_large_pte(*sptep))
2692 ++vcpu->kvm->stat.lpages;
2693
2694 if (is_shadow_present_pte(*sptep)) {
2695 if (!was_rmapped) {
2696 rmap_count = rmap_add(vcpu, sptep, gfn);
2697 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2698 rmap_recycle(vcpu, sptep, gfn);
2699 }
2700 }
2701
2702 return ret;
2703 }
2704
2705 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2706 bool no_dirty_log)
2707 {
2708 struct kvm_memory_slot *slot;
2709
2710 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2711 if (!slot)
2712 return KVM_PFN_ERR_FAULT;
2713
2714 return gfn_to_pfn_memslot_atomic(slot, gfn);
2715 }
2716
2717 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2718 struct kvm_mmu_page *sp,
2719 u64 *start, u64 *end)
2720 {
2721 struct page *pages[PTE_PREFETCH_NUM];
2722 struct kvm_memory_slot *slot;
2723 unsigned int access = sp->role.access;
2724 int i, ret;
2725 gfn_t gfn;
2726
2727 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2728 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2729 if (!slot)
2730 return -1;
2731
2732 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2733 if (ret <= 0)
2734 return -1;
2735
2736 for (i = 0; i < ret; i++, gfn++, start++) {
2737 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2738 page_to_pfn(pages[i]), true, true);
2739 put_page(pages[i]);
2740 }
2741
2742 return 0;
2743 }
2744
2745 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2746 struct kvm_mmu_page *sp, u64 *sptep)
2747 {
2748 u64 *spte, *start = NULL;
2749 int i;
2750
2751 WARN_ON(!sp->role.direct);
2752
2753 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2754 spte = sp->spt + i;
2755
2756 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2757 if (is_shadow_present_pte(*spte) || spte == sptep) {
2758 if (!start)
2759 continue;
2760 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2761 break;
2762 start = NULL;
2763 } else if (!start)
2764 start = spte;
2765 }
2766 }
2767
2768 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2769 {
2770 struct kvm_mmu_page *sp;
2771
2772 sp = sptep_to_sp(sptep);
2773
2774 /*
2775 * Without accessed bits, there's no way to distinguish between
2776 * actually accessed translations and prefetched, so disable pte
2777 * prefetch if accessed bits aren't available.
2778 */
2779 if (sp_ad_disabled(sp))
2780 return;
2781
2782 if (sp->role.level > PG_LEVEL_4K)
2783 return;
2784
2785 /*
2786 * If addresses are being invalidated, skip prefetching to avoid
2787 * accidentally prefetching those addresses.
2788 */
2789 if (unlikely(vcpu->kvm->mmu_notifier_count))
2790 return;
2791
2792 __direct_pte_prefetch(vcpu, sp, sptep);
2793 }
2794
2795 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2796 const struct kvm_memory_slot *slot)
2797 {
2798 unsigned long hva;
2799 pte_t *pte;
2800 int level;
2801
2802 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2803 return PG_LEVEL_4K;
2804
2805 /*
2806 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2807 * is not solely for performance, it's also necessary to avoid the
2808 * "writable" check in __gfn_to_hva_many(), which will always fail on
2809 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2810 * page fault steps have already verified the guest isn't writing a
2811 * read-only memslot.
2812 */
2813 hva = __gfn_to_hva_memslot(slot, gfn);
2814
2815 pte = lookup_address_in_mm(kvm->mm, hva, &level);
2816 if (unlikely(!pte))
2817 return PG_LEVEL_4K;
2818
2819 return level;
2820 }
2821
2822 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2823 const struct kvm_memory_slot *slot, gfn_t gfn,
2824 kvm_pfn_t pfn, int max_level)
2825 {
2826 struct kvm_lpage_info *linfo;
2827
2828 max_level = min(max_level, max_huge_page_level);
2829 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2830 linfo = lpage_info_slot(gfn, slot, max_level);
2831 if (!linfo->disallow_lpage)
2832 break;
2833 }
2834
2835 if (max_level == PG_LEVEL_4K)
2836 return PG_LEVEL_4K;
2837
2838 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2839 }
2840
2841 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2842 int max_level, kvm_pfn_t *pfnp,
2843 bool huge_page_disallowed, int *req_level)
2844 {
2845 struct kvm_memory_slot *slot;
2846 kvm_pfn_t pfn = *pfnp;
2847 kvm_pfn_t mask;
2848 int level;
2849
2850 *req_level = PG_LEVEL_4K;
2851
2852 if (unlikely(max_level == PG_LEVEL_4K))
2853 return PG_LEVEL_4K;
2854
2855 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2856 return PG_LEVEL_4K;
2857
2858 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2859 if (!slot)
2860 return PG_LEVEL_4K;
2861
2862 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2863 if (level == PG_LEVEL_4K)
2864 return level;
2865
2866 *req_level = level = min(level, max_level);
2867
2868 /*
2869 * Enforce the iTLB multihit workaround after capturing the requested
2870 * level, which will be used to do precise, accurate accounting.
2871 */
2872 if (huge_page_disallowed)
2873 return PG_LEVEL_4K;
2874
2875 /*
2876 * mmu_notifier_retry() was successful and mmu_lock is held, so
2877 * the pmd can't be split from under us.
2878 */
2879 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2880 VM_BUG_ON((gfn & mask) != (pfn & mask));
2881 *pfnp = pfn & ~mask;
2882
2883 return level;
2884 }
2885
2886 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2887 kvm_pfn_t *pfnp, int *goal_levelp)
2888 {
2889 int level = *goal_levelp;
2890
2891 if (cur_level == level && level > PG_LEVEL_4K &&
2892 is_shadow_present_pte(spte) &&
2893 !is_large_pte(spte)) {
2894 /*
2895 * A small SPTE exists for this pfn, but FNAME(fetch)
2896 * and __direct_map would like to create a large PTE
2897 * instead: just force them to go down another level,
2898 * patching back for them into pfn the next 9 bits of
2899 * the address.
2900 */
2901 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2902 KVM_PAGES_PER_HPAGE(level - 1);
2903 *pfnp |= gfn & page_mask;
2904 (*goal_levelp)--;
2905 }
2906 }
2907
2908 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2909 int map_writable, int max_level, kvm_pfn_t pfn,
2910 bool prefault, bool is_tdp)
2911 {
2912 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2913 bool write = error_code & PFERR_WRITE_MASK;
2914 bool exec = error_code & PFERR_FETCH_MASK;
2915 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2916 struct kvm_shadow_walk_iterator it;
2917 struct kvm_mmu_page *sp;
2918 int level, req_level, ret;
2919 gfn_t gfn = gpa >> PAGE_SHIFT;
2920 gfn_t base_gfn = gfn;
2921
2922 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2923 huge_page_disallowed, &req_level);
2924
2925 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2926 for_each_shadow_entry(vcpu, gpa, it) {
2927 /*
2928 * We cannot overwrite existing page tables with an NX
2929 * large page, as the leaf could be executable.
2930 */
2931 if (nx_huge_page_workaround_enabled)
2932 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2933 &pfn, &level);
2934
2935 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2936 if (it.level == level)
2937 break;
2938
2939 drop_large_spte(vcpu, it.sptep);
2940 if (!is_shadow_present_pte(*it.sptep)) {
2941 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2942 it.level - 1, true, ACC_ALL);
2943
2944 link_shadow_page(vcpu, it.sptep, sp);
2945 if (is_tdp && huge_page_disallowed &&
2946 req_level >= it.level)
2947 account_huge_nx_page(vcpu->kvm, sp);
2948 }
2949 }
2950
2951 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2952 write, level, base_gfn, pfn, prefault,
2953 map_writable);
2954 if (ret == RET_PF_SPURIOUS)
2955 return ret;
2956
2957 direct_pte_prefetch(vcpu, it.sptep);
2958 ++vcpu->stat.pf_fixed;
2959 return ret;
2960 }
2961
2962 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2963 {
2964 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2965 }
2966
2967 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2968 {
2969 /*
2970 * Do not cache the mmio info caused by writing the readonly gfn
2971 * into the spte otherwise read access on readonly gfn also can
2972 * caused mmio page fault and treat it as mmio access.
2973 */
2974 if (pfn == KVM_PFN_ERR_RO_FAULT)
2975 return RET_PF_EMULATE;
2976
2977 if (pfn == KVM_PFN_ERR_HWPOISON) {
2978 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2979 return RET_PF_RETRY;
2980 }
2981
2982 return -EFAULT;
2983 }
2984
2985 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2986 kvm_pfn_t pfn, unsigned int access,
2987 int *ret_val)
2988 {
2989 /* The pfn is invalid, report the error! */
2990 if (unlikely(is_error_pfn(pfn))) {
2991 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2992 return true;
2993 }
2994
2995 if (unlikely(is_noslot_pfn(pfn))) {
2996 vcpu_cache_mmio_info(vcpu, gva, gfn,
2997 access & shadow_mmio_access_mask);
2998 /*
2999 * If MMIO caching is disabled, emulate immediately without
3000 * touching the shadow page tables as attempting to install an
3001 * MMIO SPTE will just be an expensive nop.
3002 */
3003 if (unlikely(!shadow_mmio_value)) {
3004 *ret_val = RET_PF_EMULATE;
3005 return true;
3006 }
3007 }
3008
3009 return false;
3010 }
3011
3012 static bool page_fault_can_be_fast(u32 error_code)
3013 {
3014 /*
3015 * Do not fix the mmio spte with invalid generation number which
3016 * need to be updated by slow page fault path.
3017 */
3018 if (unlikely(error_code & PFERR_RSVD_MASK))
3019 return false;
3020
3021 /* See if the page fault is due to an NX violation */
3022 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3023 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3024 return false;
3025
3026 /*
3027 * #PF can be fast if:
3028 * 1. The shadow page table entry is not present, which could mean that
3029 * the fault is potentially caused by access tracking (if enabled).
3030 * 2. The shadow page table entry is present and the fault
3031 * is caused by write-protect, that means we just need change the W
3032 * bit of the spte which can be done out of mmu-lock.
3033 *
3034 * However, if access tracking is disabled we know that a non-present
3035 * page must be a genuine page fault where we have to create a new SPTE.
3036 * So, if access tracking is disabled, we return true only for write
3037 * accesses to a present page.
3038 */
3039
3040 return shadow_acc_track_mask != 0 ||
3041 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3042 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3043 }
3044
3045 /*
3046 * Returns true if the SPTE was fixed successfully. Otherwise,
3047 * someone else modified the SPTE from its original value.
3048 */
3049 static bool
3050 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3051 u64 *sptep, u64 old_spte, u64 new_spte)
3052 {
3053 gfn_t gfn;
3054
3055 WARN_ON(!sp->role.direct);
3056
3057 /*
3058 * Theoretically we could also set dirty bit (and flush TLB) here in
3059 * order to eliminate unnecessary PML logging. See comments in
3060 * set_spte. But fast_page_fault is very unlikely to happen with PML
3061 * enabled, so we do not do this. This might result in the same GPA
3062 * to be logged in PML buffer again when the write really happens, and
3063 * eventually to be called by mark_page_dirty twice. But it's also no
3064 * harm. This also avoids the TLB flush needed after setting dirty bit
3065 * so non-PML cases won't be impacted.
3066 *
3067 * Compare with set_spte where instead shadow_dirty_mask is set.
3068 */
3069 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3070 return false;
3071
3072 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3073 /*
3074 * The gfn of direct spte is stable since it is
3075 * calculated by sp->gfn.
3076 */
3077 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3078 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3079 }
3080
3081 return true;
3082 }
3083
3084 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3085 {
3086 if (fault_err_code & PFERR_FETCH_MASK)
3087 return is_executable_pte(spte);
3088
3089 if (fault_err_code & PFERR_WRITE_MASK)
3090 return is_writable_pte(spte);
3091
3092 /* Fault was on Read access */
3093 return spte & PT_PRESENT_MASK;
3094 }
3095
3096 /*
3097 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3098 */
3099 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3100 u32 error_code)
3101 {
3102 struct kvm_shadow_walk_iterator iterator;
3103 struct kvm_mmu_page *sp;
3104 int ret = RET_PF_INVALID;
3105 u64 spte = 0ull;
3106 uint retry_count = 0;
3107
3108 if (!page_fault_can_be_fast(error_code))
3109 return ret;
3110
3111 walk_shadow_page_lockless_begin(vcpu);
3112
3113 do {
3114 u64 new_spte;
3115
3116 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3117 if (!is_shadow_present_pte(spte))
3118 break;
3119
3120 if (!is_shadow_present_pte(spte))
3121 break;
3122
3123 sp = sptep_to_sp(iterator.sptep);
3124 if (!is_last_spte(spte, sp->role.level))
3125 break;
3126
3127 /*
3128 * Check whether the memory access that caused the fault would
3129 * still cause it if it were to be performed right now. If not,
3130 * then this is a spurious fault caused by TLB lazily flushed,
3131 * or some other CPU has already fixed the PTE after the
3132 * current CPU took the fault.
3133 *
3134 * Need not check the access of upper level table entries since
3135 * they are always ACC_ALL.
3136 */
3137 if (is_access_allowed(error_code, spte)) {
3138 ret = RET_PF_SPURIOUS;
3139 break;
3140 }
3141
3142 new_spte = spte;
3143
3144 if (is_access_track_spte(spte))
3145 new_spte = restore_acc_track_spte(new_spte);
3146
3147 /*
3148 * Currently, to simplify the code, write-protection can
3149 * be removed in the fast path only if the SPTE was
3150 * write-protected for dirty-logging or access tracking.
3151 */
3152 if ((error_code & PFERR_WRITE_MASK) &&
3153 spte_can_locklessly_be_made_writable(spte)) {
3154 new_spte |= PT_WRITABLE_MASK;
3155
3156 /*
3157 * Do not fix write-permission on the large spte. Since
3158 * we only dirty the first page into the dirty-bitmap in
3159 * fast_pf_fix_direct_spte(), other pages are missed
3160 * if its slot has dirty logging enabled.
3161 *
3162 * Instead, we let the slow page fault path create a
3163 * normal spte to fix the access.
3164 *
3165 * See the comments in kvm_arch_commit_memory_region().
3166 */
3167 if (sp->role.level > PG_LEVEL_4K)
3168 break;
3169 }
3170
3171 /* Verify that the fault can be handled in the fast path */
3172 if (new_spte == spte ||
3173 !is_access_allowed(error_code, new_spte))
3174 break;
3175
3176 /*
3177 * Currently, fast page fault only works for direct mapping
3178 * since the gfn is not stable for indirect shadow page. See
3179 * Documentation/virt/kvm/locking.rst to get more detail.
3180 */
3181 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3182 new_spte)) {
3183 ret = RET_PF_FIXED;
3184 break;
3185 }
3186
3187 if (++retry_count > 4) {
3188 printk_once(KERN_WARNING
3189 "kvm: Fast #PF retrying more than 4 times.\n");
3190 break;
3191 }
3192
3193 } while (true);
3194
3195 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3196 spte, ret);
3197 walk_shadow_page_lockless_end(vcpu);
3198
3199 return ret;
3200 }
3201
3202 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3203 struct list_head *invalid_list)
3204 {
3205 struct kvm_mmu_page *sp;
3206
3207 if (!VALID_PAGE(*root_hpa))
3208 return;
3209
3210 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3211
3212 if (is_tdp_mmu_page(sp))
3213 kvm_tdp_mmu_put_root(kvm, sp, false);
3214 else if (!--sp->root_count && sp->role.invalid)
3215 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3216
3217 *root_hpa = INVALID_PAGE;
3218 }
3219
3220 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3221 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3222 ulong roots_to_free)
3223 {
3224 struct kvm *kvm = vcpu->kvm;
3225 int i;
3226 LIST_HEAD(invalid_list);
3227 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3228
3229 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3230
3231 /* Before acquiring the MMU lock, see if we need to do any real work. */
3232 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3233 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3234 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3235 VALID_PAGE(mmu->prev_roots[i].hpa))
3236 break;
3237
3238 if (i == KVM_MMU_NUM_PREV_ROOTS)
3239 return;
3240 }
3241
3242 write_lock(&kvm->mmu_lock);
3243
3244 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3245 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3246 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3247 &invalid_list);
3248
3249 if (free_active_root) {
3250 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3251 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3252 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3253 } else if (mmu->pae_root) {
3254 for (i = 0; i < 4; ++i) {
3255 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3256 continue;
3257
3258 mmu_free_root_page(kvm, &mmu->pae_root[i],
3259 &invalid_list);
3260 mmu->pae_root[i] = INVALID_PAE_ROOT;
3261 }
3262 }
3263 mmu->root_hpa = INVALID_PAGE;
3264 mmu->root_pgd = 0;
3265 }
3266
3267 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3268 write_unlock(&kvm->mmu_lock);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3271
3272 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3273 {
3274 unsigned long roots_to_free = 0;
3275 hpa_t root_hpa;
3276 int i;
3277
3278 /*
3279 * This should not be called while L2 is active, L2 can't invalidate
3280 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3281 */
3282 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3283
3284 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3285 root_hpa = mmu->prev_roots[i].hpa;
3286 if (!VALID_PAGE(root_hpa))
3287 continue;
3288
3289 if (!to_shadow_page(root_hpa) ||
3290 to_shadow_page(root_hpa)->role.guest_mode)
3291 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3292 }
3293
3294 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3295 }
3296 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3297
3298
3299 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3300 {
3301 int ret = 0;
3302
3303 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3304 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3305 ret = 1;
3306 }
3307
3308 return ret;
3309 }
3310
3311 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3312 u8 level, bool direct)
3313 {
3314 struct kvm_mmu_page *sp;
3315
3316 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3317 ++sp->root_count;
3318
3319 return __pa(sp->spt);
3320 }
3321
3322 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3323 {
3324 struct kvm_mmu *mmu = vcpu->arch.mmu;
3325 u8 shadow_root_level = mmu->shadow_root_level;
3326 hpa_t root;
3327 unsigned i;
3328 int r;
3329
3330 write_lock(&vcpu->kvm->mmu_lock);
3331 r = make_mmu_pages_available(vcpu);
3332 if (r < 0)
3333 goto out_unlock;
3334
3335 if (is_tdp_mmu_enabled(vcpu->kvm)) {
3336 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3337 mmu->root_hpa = root;
3338 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3339 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3340 mmu->root_hpa = root;
3341 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3342 if (WARN_ON_ONCE(!mmu->pae_root)) {
3343 r = -EIO;
3344 goto out_unlock;
3345 }
3346
3347 for (i = 0; i < 4; ++i) {
3348 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3349
3350 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3351 i << 30, PT32_ROOT_LEVEL, true);
3352 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3353 shadow_me_mask;
3354 }
3355 mmu->root_hpa = __pa(mmu->pae_root);
3356 } else {
3357 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3358 r = -EIO;
3359 goto out_unlock;
3360 }
3361
3362 /* root_pgd is ignored for direct MMUs. */
3363 mmu->root_pgd = 0;
3364 out_unlock:
3365 write_unlock(&vcpu->kvm->mmu_lock);
3366 return r;
3367 }
3368
3369 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3370 {
3371 struct kvm_mmu *mmu = vcpu->arch.mmu;
3372 u64 pdptrs[4], pm_mask;
3373 gfn_t root_gfn, root_pgd;
3374 hpa_t root;
3375 unsigned i;
3376 int r;
3377
3378 root_pgd = mmu->get_guest_pgd(vcpu);
3379 root_gfn = root_pgd >> PAGE_SHIFT;
3380
3381 if (mmu_check_root(vcpu, root_gfn))
3382 return 1;
3383
3384 /*
3385 * On SVM, reading PDPTRs might access guest memory, which might fault
3386 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3387 */
3388 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3389 for (i = 0; i < 4; ++i) {
3390 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3391 if (!(pdptrs[i] & PT_PRESENT_MASK))
3392 continue;
3393
3394 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3395 return 1;
3396 }
3397 }
3398
3399 r = alloc_all_memslots_rmaps(vcpu->kvm);
3400 if (r)
3401 return r;
3402
3403 write_lock(&vcpu->kvm->mmu_lock);
3404 r = make_mmu_pages_available(vcpu);
3405 if (r < 0)
3406 goto out_unlock;
3407
3408 /*
3409 * Do we shadow a long mode page table? If so we need to
3410 * write-protect the guests page table root.
3411 */
3412 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3413 root = mmu_alloc_root(vcpu, root_gfn, 0,
3414 mmu->shadow_root_level, false);
3415 mmu->root_hpa = root;
3416 goto set_root_pgd;
3417 }
3418
3419 if (WARN_ON_ONCE(!mmu->pae_root)) {
3420 r = -EIO;
3421 goto out_unlock;
3422 }
3423
3424 /*
3425 * We shadow a 32 bit page table. This may be a legacy 2-level
3426 * or a PAE 3-level page table. In either case we need to be aware that
3427 * the shadow page table may be a PAE or a long mode page table.
3428 */
3429 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3430 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3431 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3432
3433 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3434 r = -EIO;
3435 goto out_unlock;
3436 }
3437
3438 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3439 }
3440
3441 for (i = 0; i < 4; ++i) {
3442 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3443
3444 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3445 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3446 mmu->pae_root[i] = INVALID_PAE_ROOT;
3447 continue;
3448 }
3449 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3450 }
3451
3452 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3453 PT32_ROOT_LEVEL, false);
3454 mmu->pae_root[i] = root | pm_mask;
3455 }
3456
3457 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3458 mmu->root_hpa = __pa(mmu->pml4_root);
3459 else
3460 mmu->root_hpa = __pa(mmu->pae_root);
3461
3462 set_root_pgd:
3463 mmu->root_pgd = root_pgd;
3464 out_unlock:
3465 write_unlock(&vcpu->kvm->mmu_lock);
3466
3467 return 0;
3468 }
3469
3470 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3471 {
3472 struct kvm_mmu *mmu = vcpu->arch.mmu;
3473 u64 *pml4_root, *pae_root;
3474
3475 /*
3476 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3477 * tables are allocated and initialized at root creation as there is no
3478 * equivalent level in the guest's NPT to shadow. Allocate the tables
3479 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3480 */
3481 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3482 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3483 return 0;
3484
3485 /*
3486 * This mess only works with 4-level paging and needs to be updated to
3487 * work with 5-level paging.
3488 */
3489 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3490 return -EIO;
3491
3492 if (mmu->pae_root && mmu->pml4_root)
3493 return 0;
3494
3495 /*
3496 * The special roots should always be allocated in concert. Yell and
3497 * bail if KVM ends up in a state where only one of the roots is valid.
3498 */
3499 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3500 return -EIO;
3501
3502 /*
3503 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3504 * doesn't need to be decrypted.
3505 */
3506 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3507 if (!pae_root)
3508 return -ENOMEM;
3509
3510 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3511 if (!pml4_root) {
3512 free_page((unsigned long)pae_root);
3513 return -ENOMEM;
3514 }
3515
3516 mmu->pae_root = pae_root;
3517 mmu->pml4_root = pml4_root;
3518
3519 return 0;
3520 }
3521
3522 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3523 {
3524 int i;
3525 struct kvm_mmu_page *sp;
3526
3527 if (vcpu->arch.mmu->direct_map)
3528 return;
3529
3530 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3531 return;
3532
3533 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3534
3535 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3536 hpa_t root = vcpu->arch.mmu->root_hpa;
3537 sp = to_shadow_page(root);
3538
3539 /*
3540 * Even if another CPU was marking the SP as unsync-ed
3541 * simultaneously, any guest page table changes are not
3542 * guaranteed to be visible anyway until this VCPU issues a TLB
3543 * flush strictly after those changes are made. We only need to
3544 * ensure that the other CPU sets these flags before any actual
3545 * changes to the page tables are made. The comments in
3546 * mmu_try_to_unsync_pages() describe what could go wrong if
3547 * this requirement isn't satisfied.
3548 */
3549 if (!smp_load_acquire(&sp->unsync) &&
3550 !smp_load_acquire(&sp->unsync_children))
3551 return;
3552
3553 write_lock(&vcpu->kvm->mmu_lock);
3554 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3555
3556 mmu_sync_children(vcpu, sp);
3557
3558 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3559 write_unlock(&vcpu->kvm->mmu_lock);
3560 return;
3561 }
3562
3563 write_lock(&vcpu->kvm->mmu_lock);
3564 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3565
3566 for (i = 0; i < 4; ++i) {
3567 hpa_t root = vcpu->arch.mmu->pae_root[i];
3568
3569 if (IS_VALID_PAE_ROOT(root)) {
3570 root &= PT64_BASE_ADDR_MASK;
3571 sp = to_shadow_page(root);
3572 mmu_sync_children(vcpu, sp);
3573 }
3574 }
3575
3576 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3577 write_unlock(&vcpu->kvm->mmu_lock);
3578 }
3579
3580 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3581 u32 access, struct x86_exception *exception)
3582 {
3583 if (exception)
3584 exception->error_code = 0;
3585 return vaddr;
3586 }
3587
3588 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3589 u32 access,
3590 struct x86_exception *exception)
3591 {
3592 if (exception)
3593 exception->error_code = 0;
3594 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3595 }
3596
3597 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3598 {
3599 /*
3600 * A nested guest cannot use the MMIO cache if it is using nested
3601 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3602 */
3603 if (mmu_is_nested(vcpu))
3604 return false;
3605
3606 if (direct)
3607 return vcpu_match_mmio_gpa(vcpu, addr);
3608
3609 return vcpu_match_mmio_gva(vcpu, addr);
3610 }
3611
3612 /*
3613 * Return the level of the lowest level SPTE added to sptes.
3614 * That SPTE may be non-present.
3615 */
3616 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3617 {
3618 struct kvm_shadow_walk_iterator iterator;
3619 int leaf = -1;
3620 u64 spte;
3621
3622 walk_shadow_page_lockless_begin(vcpu);
3623
3624 for (shadow_walk_init(&iterator, vcpu, addr),
3625 *root_level = iterator.level;
3626 shadow_walk_okay(&iterator);
3627 __shadow_walk_next(&iterator, spte)) {
3628 leaf = iterator.level;
3629 spte = mmu_spte_get_lockless(iterator.sptep);
3630
3631 sptes[leaf] = spte;
3632
3633 if (!is_shadow_present_pte(spte))
3634 break;
3635 }
3636
3637 walk_shadow_page_lockless_end(vcpu);
3638
3639 return leaf;
3640 }
3641
3642 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3643 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3644 {
3645 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3646 struct rsvd_bits_validate *rsvd_check;
3647 int root, leaf, level;
3648 bool reserved = false;
3649
3650 if (is_tdp_mmu(vcpu->arch.mmu))
3651 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3652 else
3653 leaf = get_walk(vcpu, addr, sptes, &root);
3654
3655 if (unlikely(leaf < 0)) {
3656 *sptep = 0ull;
3657 return reserved;
3658 }
3659
3660 *sptep = sptes[leaf];
3661
3662 /*
3663 * Skip reserved bits checks on the terminal leaf if it's not a valid
3664 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3665 * design, always have reserved bits set. The purpose of the checks is
3666 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3667 */
3668 if (!is_shadow_present_pte(sptes[leaf]))
3669 leaf++;
3670
3671 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3672
3673 for (level = root; level >= leaf; level--)
3674 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3675
3676 if (reserved) {
3677 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3678 __func__, addr);
3679 for (level = root; level >= leaf; level--)
3680 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3681 sptes[level], level,
3682 get_rsvd_bits(rsvd_check, sptes[level], level));
3683 }
3684
3685 return reserved;
3686 }
3687
3688 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3689 {
3690 u64 spte;
3691 bool reserved;
3692
3693 if (mmio_info_in_cache(vcpu, addr, direct))
3694 return RET_PF_EMULATE;
3695
3696 reserved = get_mmio_spte(vcpu, addr, &spte);
3697 if (WARN_ON(reserved))
3698 return -EINVAL;
3699
3700 if (is_mmio_spte(spte)) {
3701 gfn_t gfn = get_mmio_spte_gfn(spte);
3702 unsigned int access = get_mmio_spte_access(spte);
3703
3704 if (!check_mmio_spte(vcpu, spte))
3705 return RET_PF_INVALID;
3706
3707 if (direct)
3708 addr = 0;
3709
3710 trace_handle_mmio_page_fault(addr, gfn, access);
3711 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3712 return RET_PF_EMULATE;
3713 }
3714
3715 /*
3716 * If the page table is zapped by other cpus, let CPU fault again on
3717 * the address.
3718 */
3719 return RET_PF_RETRY;
3720 }
3721
3722 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3723 u32 error_code, gfn_t gfn)
3724 {
3725 if (unlikely(error_code & PFERR_RSVD_MASK))
3726 return false;
3727
3728 if (!(error_code & PFERR_PRESENT_MASK) ||
3729 !(error_code & PFERR_WRITE_MASK))
3730 return false;
3731
3732 /*
3733 * guest is writing the page which is write tracked which can
3734 * not be fixed by page fault handler.
3735 */
3736 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3737 return true;
3738
3739 return false;
3740 }
3741
3742 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3743 {
3744 struct kvm_shadow_walk_iterator iterator;
3745 u64 spte;
3746
3747 walk_shadow_page_lockless_begin(vcpu);
3748 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3749 clear_sp_write_flooding_count(iterator.sptep);
3750 if (!is_shadow_present_pte(spte))
3751 break;
3752 }
3753 walk_shadow_page_lockless_end(vcpu);
3754 }
3755
3756 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3757 gfn_t gfn)
3758 {
3759 struct kvm_arch_async_pf arch;
3760
3761 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3762 arch.gfn = gfn;
3763 arch.direct_map = vcpu->arch.mmu->direct_map;
3764 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3765
3766 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3767 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3768 }
3769
3770 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3771 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3772 bool write, bool *writable)
3773 {
3774 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3775 bool async;
3776
3777 /*
3778 * Retry the page fault if the gfn hit a memslot that is being deleted
3779 * or moved. This ensures any existing SPTEs for the old memslot will
3780 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3781 */
3782 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3783 return true;
3784
3785 /* Don't expose private memslots to L2. */
3786 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3787 *pfn = KVM_PFN_NOSLOT;
3788 *writable = false;
3789 return false;
3790 }
3791
3792 async = false;
3793 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3794 write, writable, hva);
3795 if (!async)
3796 return false; /* *pfn has correct page already */
3797
3798 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3799 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3800 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3801 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3802 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3803 return true;
3804 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3805 return true;
3806 }
3807
3808 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3809 write, writable, hva);
3810 return false;
3811 }
3812
3813 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3814 bool prefault, int max_level, bool is_tdp)
3815 {
3816 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3817 bool write = error_code & PFERR_WRITE_MASK;
3818 bool map_writable;
3819
3820 gfn_t gfn = gpa >> PAGE_SHIFT;
3821 unsigned long mmu_seq;
3822 kvm_pfn_t pfn;
3823 hva_t hva;
3824 int r;
3825
3826 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3827 return RET_PF_EMULATE;
3828
3829 if (!is_tdp_mmu_fault) {
3830 r = fast_page_fault(vcpu, gpa, error_code);
3831 if (r != RET_PF_INVALID)
3832 return r;
3833 }
3834
3835 r = mmu_topup_memory_caches(vcpu, false);
3836 if (r)
3837 return r;
3838
3839 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3840 smp_rmb();
3841
3842 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3843 write, &map_writable))
3844 return RET_PF_RETRY;
3845
3846 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3847 return r;
3848
3849 r = RET_PF_RETRY;
3850
3851 if (is_tdp_mmu_fault)
3852 read_lock(&vcpu->kvm->mmu_lock);
3853 else
3854 write_lock(&vcpu->kvm->mmu_lock);
3855
3856 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3857 goto out_unlock;
3858 r = make_mmu_pages_available(vcpu);
3859 if (r)
3860 goto out_unlock;
3861
3862 if (is_tdp_mmu_fault)
3863 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3864 pfn, prefault);
3865 else
3866 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3867 prefault, is_tdp);
3868
3869 out_unlock:
3870 if (is_tdp_mmu_fault)
3871 read_unlock(&vcpu->kvm->mmu_lock);
3872 else
3873 write_unlock(&vcpu->kvm->mmu_lock);
3874 kvm_release_pfn_clean(pfn);
3875 return r;
3876 }
3877
3878 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3879 u32 error_code, bool prefault)
3880 {
3881 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3882
3883 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3884 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3885 PG_LEVEL_2M, false);
3886 }
3887
3888 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3889 u64 fault_address, char *insn, int insn_len)
3890 {
3891 int r = 1;
3892 u32 flags = vcpu->arch.apf.host_apf_flags;
3893
3894 #ifndef CONFIG_X86_64
3895 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3896 if (WARN_ON_ONCE(fault_address >> 32))
3897 return -EFAULT;
3898 #endif
3899
3900 vcpu->arch.l1tf_flush_l1d = true;
3901 if (!flags) {
3902 trace_kvm_page_fault(fault_address, error_code);
3903
3904 if (kvm_event_needs_reinjection(vcpu))
3905 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3906 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3907 insn_len);
3908 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3909 vcpu->arch.apf.host_apf_flags = 0;
3910 local_irq_disable();
3911 kvm_async_pf_task_wait_schedule(fault_address);
3912 local_irq_enable();
3913 } else {
3914 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3915 }
3916
3917 return r;
3918 }
3919 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3920
3921 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3922 bool prefault)
3923 {
3924 int max_level;
3925
3926 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3927 max_level > PG_LEVEL_4K;
3928 max_level--) {
3929 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3930 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3931
3932 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3933 break;
3934 }
3935
3936 return direct_page_fault(vcpu, gpa, error_code, prefault,
3937 max_level, true);
3938 }
3939
3940 static void nonpaging_init_context(struct kvm_mmu *context)
3941 {
3942 context->page_fault = nonpaging_page_fault;
3943 context->gva_to_gpa = nonpaging_gva_to_gpa;
3944 context->sync_page = nonpaging_sync_page;
3945 context->invlpg = NULL;
3946 context->direct_map = true;
3947 }
3948
3949 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3950 union kvm_mmu_page_role role)
3951 {
3952 return (role.direct || pgd == root->pgd) &&
3953 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3954 role.word == to_shadow_page(root->hpa)->role.word;
3955 }
3956
3957 /*
3958 * Find out if a previously cached root matching the new pgd/role is available.
3959 * The current root is also inserted into the cache.
3960 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3961 * returned.
3962 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3963 * false is returned. This root should now be freed by the caller.
3964 */
3965 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3966 union kvm_mmu_page_role new_role)
3967 {
3968 uint i;
3969 struct kvm_mmu_root_info root;
3970 struct kvm_mmu *mmu = vcpu->arch.mmu;
3971
3972 root.pgd = mmu->root_pgd;
3973 root.hpa = mmu->root_hpa;
3974
3975 if (is_root_usable(&root, new_pgd, new_role))
3976 return true;
3977
3978 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3979 swap(root, mmu->prev_roots[i]);
3980
3981 if (is_root_usable(&root, new_pgd, new_role))
3982 break;
3983 }
3984
3985 mmu->root_hpa = root.hpa;
3986 mmu->root_pgd = root.pgd;
3987
3988 return i < KVM_MMU_NUM_PREV_ROOTS;
3989 }
3990
3991 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3992 union kvm_mmu_page_role new_role)
3993 {
3994 struct kvm_mmu *mmu = vcpu->arch.mmu;
3995
3996 /*
3997 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3998 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3999 * later if necessary.
4000 */
4001 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4002 mmu->root_level >= PT64_ROOT_4LEVEL)
4003 return cached_root_available(vcpu, new_pgd, new_role);
4004
4005 return false;
4006 }
4007
4008 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4009 union kvm_mmu_page_role new_role)
4010 {
4011 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4012 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4013 return;
4014 }
4015
4016 /*
4017 * It's possible that the cached previous root page is obsolete because
4018 * of a change in the MMU generation number. However, changing the
4019 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4020 * free the root set here and allocate a new one.
4021 */
4022 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4023
4024 if (force_flush_and_sync_on_reuse) {
4025 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4026 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4027 }
4028
4029 /*
4030 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4031 * switching to a new CR3, that GVA->GPA mapping may no longer be
4032 * valid. So clear any cached MMIO info even when we don't need to sync
4033 * the shadow page tables.
4034 */
4035 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4036
4037 /*
4038 * If this is a direct root page, it doesn't have a write flooding
4039 * count. Otherwise, clear the write flooding count.
4040 */
4041 if (!new_role.direct)
4042 __clear_sp_write_flooding_count(
4043 to_shadow_page(vcpu->arch.mmu->root_hpa));
4044 }
4045
4046 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4047 {
4048 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4049 }
4050 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4051
4052 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4053 {
4054 return kvm_read_cr3(vcpu);
4055 }
4056
4057 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4058 unsigned int access, int *nr_present)
4059 {
4060 if (unlikely(is_mmio_spte(*sptep))) {
4061 if (gfn != get_mmio_spte_gfn(*sptep)) {
4062 mmu_spte_clear_no_track(sptep);
4063 return true;
4064 }
4065
4066 (*nr_present)++;
4067 mark_mmio_spte(vcpu, sptep, gfn, access);
4068 return true;
4069 }
4070
4071 return false;
4072 }
4073
4074 #define PTTYPE_EPT 18 /* arbitrary */
4075 #define PTTYPE PTTYPE_EPT
4076 #include "paging_tmpl.h"
4077 #undef PTTYPE
4078
4079 #define PTTYPE 64
4080 #include "paging_tmpl.h"
4081 #undef PTTYPE
4082
4083 #define PTTYPE 32
4084 #include "paging_tmpl.h"
4085 #undef PTTYPE
4086
4087 static void
4088 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4089 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4090 bool pse, bool amd)
4091 {
4092 u64 gbpages_bit_rsvd = 0;
4093 u64 nonleaf_bit8_rsvd = 0;
4094 u64 high_bits_rsvd;
4095
4096 rsvd_check->bad_mt_xwr = 0;
4097
4098 if (!gbpages)
4099 gbpages_bit_rsvd = rsvd_bits(7, 7);
4100
4101 if (level == PT32E_ROOT_LEVEL)
4102 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4103 else
4104 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4105
4106 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4107 if (!nx)
4108 high_bits_rsvd |= rsvd_bits(63, 63);
4109
4110 /*
4111 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4112 * leaf entries) on AMD CPUs only.
4113 */
4114 if (amd)
4115 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4116
4117 switch (level) {
4118 case PT32_ROOT_LEVEL:
4119 /* no rsvd bits for 2 level 4K page table entries */
4120 rsvd_check->rsvd_bits_mask[0][1] = 0;
4121 rsvd_check->rsvd_bits_mask[0][0] = 0;
4122 rsvd_check->rsvd_bits_mask[1][0] =
4123 rsvd_check->rsvd_bits_mask[0][0];
4124
4125 if (!pse) {
4126 rsvd_check->rsvd_bits_mask[1][1] = 0;
4127 break;
4128 }
4129
4130 if (is_cpuid_PSE36())
4131 /* 36bits PSE 4MB page */
4132 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4133 else
4134 /* 32 bits PSE 4MB page */
4135 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4136 break;
4137 case PT32E_ROOT_LEVEL:
4138 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4139 high_bits_rsvd |
4140 rsvd_bits(5, 8) |
4141 rsvd_bits(1, 2); /* PDPTE */
4142 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4143 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4144 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4145 rsvd_bits(13, 20); /* large page */
4146 rsvd_check->rsvd_bits_mask[1][0] =
4147 rsvd_check->rsvd_bits_mask[0][0];
4148 break;
4149 case PT64_ROOT_5LEVEL:
4150 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4151 nonleaf_bit8_rsvd |
4152 rsvd_bits(7, 7);
4153 rsvd_check->rsvd_bits_mask[1][4] =
4154 rsvd_check->rsvd_bits_mask[0][4];
4155 fallthrough;
4156 case PT64_ROOT_4LEVEL:
4157 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4158 nonleaf_bit8_rsvd |
4159 rsvd_bits(7, 7);
4160 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4161 gbpages_bit_rsvd;
4162 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4163 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4164 rsvd_check->rsvd_bits_mask[1][3] =
4165 rsvd_check->rsvd_bits_mask[0][3];
4166 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4167 gbpages_bit_rsvd |
4168 rsvd_bits(13, 29);
4169 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4170 rsvd_bits(13, 20); /* large page */
4171 rsvd_check->rsvd_bits_mask[1][0] =
4172 rsvd_check->rsvd_bits_mask[0][0];
4173 break;
4174 }
4175 }
4176
4177 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4178 {
4179 /*
4180 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4181 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
4182 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4183 * walk for performance and complexity reasons. Not to mention KVM
4184 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4185 * KVM once a TDP translation is installed. Mimic hardware behavior so
4186 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4187 */
4188 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4189 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4190 }
4191
4192 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4193 struct kvm_mmu *context)
4194 {
4195 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4196 vcpu->arch.reserved_gpa_bits,
4197 context->root_level, is_efer_nx(context),
4198 guest_can_use_gbpages(vcpu),
4199 is_cr4_pse(context),
4200 guest_cpuid_is_amd_or_hygon(vcpu));
4201 }
4202
4203 static void
4204 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4205 u64 pa_bits_rsvd, bool execonly)
4206 {
4207 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4208 u64 bad_mt_xwr;
4209
4210 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4211 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4212 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4213 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4214 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4215
4216 /* large page */
4217 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4218 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4219 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4220 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4221 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4222
4223 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4224 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4225 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4226 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4227 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4228 if (!execonly) {
4229 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4230 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4231 }
4232 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4233 }
4234
4235 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4236 struct kvm_mmu *context, bool execonly)
4237 {
4238 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4239 vcpu->arch.reserved_gpa_bits, execonly);
4240 }
4241
4242 static inline u64 reserved_hpa_bits(void)
4243 {
4244 return rsvd_bits(shadow_phys_bits, 63);
4245 }
4246
4247 /*
4248 * the page table on host is the shadow page table for the page
4249 * table in guest or amd nested guest, its mmu features completely
4250 * follow the features in guest.
4251 */
4252 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4253 struct kvm_mmu *context)
4254 {
4255 /*
4256 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4257 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4258 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4259 * The iTLB multi-hit workaround can be toggled at any time, so assume
4260 * NX can be used by any non-nested shadow MMU to avoid having to reset
4261 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled.
4262 */
4263 bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4264
4265 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4266 bool is_amd = true;
4267 /* KVM doesn't use 2-level page tables for the shadow MMU. */
4268 bool is_pse = false;
4269 struct rsvd_bits_validate *shadow_zero_check;
4270 int i;
4271
4272 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4273
4274 shadow_zero_check = &context->shadow_zero_check;
4275 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4276 context->shadow_root_level, uses_nx,
4277 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4278
4279 if (!shadow_me_mask)
4280 return;
4281
4282 for (i = context->shadow_root_level; --i >= 0;) {
4283 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4284 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4285 }
4286
4287 }
4288
4289 static inline bool boot_cpu_is_amd(void)
4290 {
4291 WARN_ON_ONCE(!tdp_enabled);
4292 return shadow_x_mask == 0;
4293 }
4294
4295 /*
4296 * the direct page table on host, use as much mmu features as
4297 * possible, however, kvm currently does not do execution-protection.
4298 */
4299 static void
4300 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4301 struct kvm_mmu *context)
4302 {
4303 struct rsvd_bits_validate *shadow_zero_check;
4304 int i;
4305
4306 shadow_zero_check = &context->shadow_zero_check;
4307
4308 if (boot_cpu_is_amd())
4309 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4310 context->shadow_root_level, false,
4311 boot_cpu_has(X86_FEATURE_GBPAGES),
4312 false, true);
4313 else
4314 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4315 reserved_hpa_bits(), false);
4316
4317 if (!shadow_me_mask)
4318 return;
4319
4320 for (i = context->shadow_root_level; --i >= 0;) {
4321 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4322 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4323 }
4324 }
4325
4326 /*
4327 * as the comments in reset_shadow_zero_bits_mask() except it
4328 * is the shadow page table for intel nested guest.
4329 */
4330 static void
4331 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4332 struct kvm_mmu *context, bool execonly)
4333 {
4334 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4335 reserved_hpa_bits(), execonly);
4336 }
4337
4338 #define BYTE_MASK(access) \
4339 ((1 & (access) ? 2 : 0) | \
4340 (2 & (access) ? 4 : 0) | \
4341 (3 & (access) ? 8 : 0) | \
4342 (4 & (access) ? 16 : 0) | \
4343 (5 & (access) ? 32 : 0) | \
4344 (6 & (access) ? 64 : 0) | \
4345 (7 & (access) ? 128 : 0))
4346
4347
4348 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4349 {
4350 unsigned byte;
4351
4352 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4353 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4354 const u8 u = BYTE_MASK(ACC_USER_MASK);
4355
4356 bool cr4_smep = is_cr4_smep(mmu);
4357 bool cr4_smap = is_cr4_smap(mmu);
4358 bool cr0_wp = is_cr0_wp(mmu);
4359 bool efer_nx = is_efer_nx(mmu);
4360
4361 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4362 unsigned pfec = byte << 1;
4363
4364 /*
4365 * Each "*f" variable has a 1 bit for each UWX value
4366 * that causes a fault with the given PFEC.
4367 */
4368
4369 /* Faults from writes to non-writable pages */
4370 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4371 /* Faults from user mode accesses to supervisor pages */
4372 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4373 /* Faults from fetches of non-executable pages*/
4374 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4375 /* Faults from kernel mode fetches of user pages */
4376 u8 smepf = 0;
4377 /* Faults from kernel mode accesses of user pages */
4378 u8 smapf = 0;
4379
4380 if (!ept) {
4381 /* Faults from kernel mode accesses to user pages */
4382 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4383
4384 /* Not really needed: !nx will cause pte.nx to fault */
4385 if (!efer_nx)
4386 ff = 0;
4387
4388 /* Allow supervisor writes if !cr0.wp */
4389 if (!cr0_wp)
4390 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4391
4392 /* Disallow supervisor fetches of user code if cr4.smep */
4393 if (cr4_smep)
4394 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4395
4396 /*
4397 * SMAP:kernel-mode data accesses from user-mode
4398 * mappings should fault. A fault is considered
4399 * as a SMAP violation if all of the following
4400 * conditions are true:
4401 * - X86_CR4_SMAP is set in CR4
4402 * - A user page is accessed
4403 * - The access is not a fetch
4404 * - Page fault in kernel mode
4405 * - if CPL = 3 or X86_EFLAGS_AC is clear
4406 *
4407 * Here, we cover the first three conditions.
4408 * The fourth is computed dynamically in permission_fault();
4409 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4410 * *not* subject to SMAP restrictions.
4411 */
4412 if (cr4_smap)
4413 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4414 }
4415
4416 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4417 }
4418 }
4419
4420 /*
4421 * PKU is an additional mechanism by which the paging controls access to
4422 * user-mode addresses based on the value in the PKRU register. Protection
4423 * key violations are reported through a bit in the page fault error code.
4424 * Unlike other bits of the error code, the PK bit is not known at the
4425 * call site of e.g. gva_to_gpa; it must be computed directly in
4426 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4427 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4428 *
4429 * In particular the following conditions come from the error code, the
4430 * page tables and the machine state:
4431 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4432 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4433 * - PK is always zero if U=0 in the page tables
4434 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4435 *
4436 * The PKRU bitmask caches the result of these four conditions. The error
4437 * code (minus the P bit) and the page table's U bit form an index into the
4438 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4439 * with the two bits of the PKRU register corresponding to the protection key.
4440 * For the first three conditions above the bits will be 00, thus masking
4441 * away both AD and WD. For all reads or if the last condition holds, WD
4442 * only will be masked away.
4443 */
4444 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4445 {
4446 unsigned bit;
4447 bool wp;
4448
4449 if (!is_cr4_pke(mmu)) {
4450 mmu->pkru_mask = 0;
4451 return;
4452 }
4453
4454 wp = is_cr0_wp(mmu);
4455
4456 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4457 unsigned pfec, pkey_bits;
4458 bool check_pkey, check_write, ff, uf, wf, pte_user;
4459
4460 pfec = bit << 1;
4461 ff = pfec & PFERR_FETCH_MASK;
4462 uf = pfec & PFERR_USER_MASK;
4463 wf = pfec & PFERR_WRITE_MASK;
4464
4465 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4466 pte_user = pfec & PFERR_RSVD_MASK;
4467
4468 /*
4469 * Only need to check the access which is not an
4470 * instruction fetch and is to a user page.
4471 */
4472 check_pkey = (!ff && pte_user);
4473 /*
4474 * write access is controlled by PKRU if it is a
4475 * user access or CR0.WP = 1.
4476 */
4477 check_write = check_pkey && wf && (uf || wp);
4478
4479 /* PKRU.AD stops both read and write access. */
4480 pkey_bits = !!check_pkey;
4481 /* PKRU.WD stops write access. */
4482 pkey_bits |= (!!check_write) << 1;
4483
4484 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4485 }
4486 }
4487
4488 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4489 struct kvm_mmu *mmu)
4490 {
4491 if (!is_cr0_pg(mmu))
4492 return;
4493
4494 reset_rsvds_bits_mask(vcpu, mmu);
4495 update_permission_bitmask(mmu, false);
4496 update_pkru_bitmask(mmu);
4497 }
4498
4499 static void paging64_init_context(struct kvm_mmu *context)
4500 {
4501 context->page_fault = paging64_page_fault;
4502 context->gva_to_gpa = paging64_gva_to_gpa;
4503 context->sync_page = paging64_sync_page;
4504 context->invlpg = paging64_invlpg;
4505 context->direct_map = false;
4506 }
4507
4508 static void paging32_init_context(struct kvm_mmu *context)
4509 {
4510 context->page_fault = paging32_page_fault;
4511 context->gva_to_gpa = paging32_gva_to_gpa;
4512 context->sync_page = paging32_sync_page;
4513 context->invlpg = paging32_invlpg;
4514 context->direct_map = false;
4515 }
4516
4517 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4518 struct kvm_mmu_role_regs *regs)
4519 {
4520 union kvm_mmu_extended_role ext = {0};
4521
4522 if (____is_cr0_pg(regs)) {
4523 ext.cr0_pg = 1;
4524 ext.cr4_pae = ____is_cr4_pae(regs);
4525 ext.cr4_smep = ____is_cr4_smep(regs);
4526 ext.cr4_smap = ____is_cr4_smap(regs);
4527 ext.cr4_pse = ____is_cr4_pse(regs);
4528
4529 /* PKEY and LA57 are active iff long mode is active. */
4530 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4531 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4532 }
4533
4534 ext.valid = 1;
4535
4536 return ext;
4537 }
4538
4539 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4540 struct kvm_mmu_role_regs *regs,
4541 bool base_only)
4542 {
4543 union kvm_mmu_role role = {0};
4544
4545 role.base.access = ACC_ALL;
4546 if (____is_cr0_pg(regs)) {
4547 role.base.efer_nx = ____is_efer_nx(regs);
4548 role.base.cr0_wp = ____is_cr0_wp(regs);
4549 }
4550 role.base.smm = is_smm(vcpu);
4551 role.base.guest_mode = is_guest_mode(vcpu);
4552
4553 if (base_only)
4554 return role;
4555
4556 role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4557
4558 return role;
4559 }
4560
4561 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4562 {
4563 /* Use 5-level TDP if and only if it's useful/necessary. */
4564 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4565 return 4;
4566
4567 return max_tdp_level;
4568 }
4569
4570 static union kvm_mmu_role
4571 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4572 struct kvm_mmu_role_regs *regs, bool base_only)
4573 {
4574 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4575
4576 role.base.ad_disabled = (shadow_accessed_mask == 0);
4577 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4578 role.base.direct = true;
4579 role.base.gpte_is_8_bytes = true;
4580
4581 return role;
4582 }
4583
4584 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4585 {
4586 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4587 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4588 union kvm_mmu_role new_role =
4589 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4590
4591 if (new_role.as_u64 == context->mmu_role.as_u64)
4592 return;
4593
4594 context->mmu_role.as_u64 = new_role.as_u64;
4595 context->page_fault = kvm_tdp_page_fault;
4596 context->sync_page = nonpaging_sync_page;
4597 context->invlpg = NULL;
4598 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4599 context->direct_map = true;
4600 context->get_guest_pgd = get_cr3;
4601 context->get_pdptr = kvm_pdptr_read;
4602 context->inject_page_fault = kvm_inject_page_fault;
4603 context->root_level = role_regs_to_root_level(&regs);
4604
4605 if (!is_cr0_pg(context))
4606 context->gva_to_gpa = nonpaging_gva_to_gpa;
4607 else if (is_cr4_pae(context))
4608 context->gva_to_gpa = paging64_gva_to_gpa;
4609 else
4610 context->gva_to_gpa = paging32_gva_to_gpa;
4611
4612 reset_guest_paging_metadata(vcpu, context);
4613 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4614 }
4615
4616 static union kvm_mmu_role
4617 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4618 struct kvm_mmu_role_regs *regs, bool base_only)
4619 {
4620 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4621
4622 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4623 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4624 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4625
4626 return role;
4627 }
4628
4629 static union kvm_mmu_role
4630 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4631 struct kvm_mmu_role_regs *regs, bool base_only)
4632 {
4633 union kvm_mmu_role role =
4634 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4635
4636 role.base.direct = !____is_cr0_pg(regs);
4637
4638 if (!____is_efer_lma(regs))
4639 role.base.level = PT32E_ROOT_LEVEL;
4640 else if (____is_cr4_la57(regs))
4641 role.base.level = PT64_ROOT_5LEVEL;
4642 else
4643 role.base.level = PT64_ROOT_4LEVEL;
4644
4645 return role;
4646 }
4647
4648 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4649 struct kvm_mmu_role_regs *regs,
4650 union kvm_mmu_role new_role)
4651 {
4652 if (new_role.as_u64 == context->mmu_role.as_u64)
4653 return;
4654
4655 context->mmu_role.as_u64 = new_role.as_u64;
4656
4657 if (!is_cr0_pg(context))
4658 nonpaging_init_context(context);
4659 else if (is_cr4_pae(context))
4660 paging64_init_context(context);
4661 else
4662 paging32_init_context(context);
4663 context->root_level = role_regs_to_root_level(regs);
4664
4665 reset_guest_paging_metadata(vcpu, context);
4666 context->shadow_root_level = new_role.base.level;
4667
4668 reset_shadow_zero_bits_mask(vcpu, context);
4669 }
4670
4671 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4672 struct kvm_mmu_role_regs *regs)
4673 {
4674 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4675 union kvm_mmu_role new_role =
4676 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4677
4678 shadow_mmu_init_context(vcpu, context, regs, new_role);
4679 }
4680
4681 static union kvm_mmu_role
4682 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4683 struct kvm_mmu_role_regs *regs)
4684 {
4685 union kvm_mmu_role role =
4686 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4687
4688 role.base.direct = false;
4689 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4690
4691 return role;
4692 }
4693
4694 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4695 unsigned long cr4, u64 efer, gpa_t nested_cr3)
4696 {
4697 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4698 struct kvm_mmu_role_regs regs = {
4699 .cr0 = cr0,
4700 .cr4 = cr4,
4701 .efer = efer,
4702 };
4703 union kvm_mmu_role new_role;
4704
4705 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4706
4707 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4708
4709 shadow_mmu_init_context(vcpu, context, &regs, new_role);
4710 }
4711 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4712
4713 static union kvm_mmu_role
4714 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4715 bool execonly, u8 level)
4716 {
4717 union kvm_mmu_role role = {0};
4718
4719 /* SMM flag is inherited from root_mmu */
4720 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4721
4722 role.base.level = level;
4723 role.base.gpte_is_8_bytes = true;
4724 role.base.direct = false;
4725 role.base.ad_disabled = !accessed_dirty;
4726 role.base.guest_mode = true;
4727 role.base.access = ACC_ALL;
4728
4729 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4730 role.ext.word = 0;
4731 role.ext.execonly = execonly;
4732 role.ext.valid = 1;
4733
4734 return role;
4735 }
4736
4737 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4738 bool accessed_dirty, gpa_t new_eptp)
4739 {
4740 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4741 u8 level = vmx_eptp_page_walk_level(new_eptp);
4742 union kvm_mmu_role new_role =
4743 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4744 execonly, level);
4745
4746 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4747
4748 if (new_role.as_u64 == context->mmu_role.as_u64)
4749 return;
4750
4751 context->mmu_role.as_u64 = new_role.as_u64;
4752
4753 context->shadow_root_level = level;
4754
4755 context->ept_ad = accessed_dirty;
4756 context->page_fault = ept_page_fault;
4757 context->gva_to_gpa = ept_gva_to_gpa;
4758 context->sync_page = ept_sync_page;
4759 context->invlpg = ept_invlpg;
4760 context->root_level = level;
4761 context->direct_map = false;
4762
4763 update_permission_bitmask(context, true);
4764 update_pkru_bitmask(context);
4765 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4766 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4767 }
4768 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4769
4770 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4771 {
4772 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4773 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4774
4775 kvm_init_shadow_mmu(vcpu, &regs);
4776
4777 context->get_guest_pgd = get_cr3;
4778 context->get_pdptr = kvm_pdptr_read;
4779 context->inject_page_fault = kvm_inject_page_fault;
4780 }
4781
4782 static union kvm_mmu_role
4783 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4784 {
4785 union kvm_mmu_role role;
4786
4787 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4788
4789 /*
4790 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4791 * shadow pages of their own and so "direct" has no meaning. Set it
4792 * to "true" to try to detect bogus usage of the nested MMU.
4793 */
4794 role.base.direct = true;
4795 role.base.level = role_regs_to_root_level(regs);
4796 return role;
4797 }
4798
4799 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4800 {
4801 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4802 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4803 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4804
4805 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4806 return;
4807
4808 g_context->mmu_role.as_u64 = new_role.as_u64;
4809 g_context->get_guest_pgd = get_cr3;
4810 g_context->get_pdptr = kvm_pdptr_read;
4811 g_context->inject_page_fault = kvm_inject_page_fault;
4812 g_context->root_level = new_role.base.level;
4813
4814 /*
4815 * L2 page tables are never shadowed, so there is no need to sync
4816 * SPTEs.
4817 */
4818 g_context->invlpg = NULL;
4819
4820 /*
4821 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4822 * L1's nested page tables (e.g. EPT12). The nested translation
4823 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4824 * L2's page tables as the first level of translation and L1's
4825 * nested page tables as the second level of translation. Basically
4826 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4827 */
4828 if (!is_paging(vcpu))
4829 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4830 else if (is_long_mode(vcpu))
4831 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4832 else if (is_pae(vcpu))
4833 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4834 else
4835 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4836
4837 reset_guest_paging_metadata(vcpu, g_context);
4838 }
4839
4840 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4841 {
4842 if (mmu_is_nested(vcpu))
4843 init_kvm_nested_mmu(vcpu);
4844 else if (tdp_enabled)
4845 init_kvm_tdp_mmu(vcpu);
4846 else
4847 init_kvm_softmmu(vcpu);
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4850
4851 static union kvm_mmu_page_role
4852 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4853 {
4854 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4855 union kvm_mmu_role role;
4856
4857 if (tdp_enabled)
4858 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4859 else
4860 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4861
4862 return role.base;
4863 }
4864
4865 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4866 {
4867 /*
4868 * Invalidate all MMU roles to force them to reinitialize as CPUID
4869 * information is factored into reserved bit calculations.
4870 */
4871 vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4872 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4873 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4874 kvm_mmu_reset_context(vcpu);
4875
4876 /*
4877 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4878 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4879 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
4880 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise
4881 * sweep the problem under the rug.
4882 *
4883 * KVM's horrific CPUID ABI makes the problem all but impossible to
4884 * solve, as correctly handling multiple vCPU models (with respect to
4885 * paging and physical address properties) in a single VM would require
4886 * tracking all relevant CPUID information in kvm_mmu_page_role. That
4887 * is very undesirable as it would double the memory requirements for
4888 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4889 * no sane VMM mucks with the core vCPU model on the fly.
4890 */
4891 if (vcpu->arch.last_vmentry_cpu != -1) {
4892 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4893 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4894 }
4895 }
4896
4897 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4898 {
4899 kvm_mmu_unload(vcpu);
4900 kvm_init_mmu(vcpu);
4901 }
4902 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4903
4904 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4905 {
4906 int r;
4907
4908 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4909 if (r)
4910 goto out;
4911 r = mmu_alloc_special_roots(vcpu);
4912 if (r)
4913 goto out;
4914 if (vcpu->arch.mmu->direct_map)
4915 r = mmu_alloc_direct_roots(vcpu);
4916 else
4917 r = mmu_alloc_shadow_roots(vcpu);
4918 if (r)
4919 goto out;
4920
4921 kvm_mmu_sync_roots(vcpu);
4922
4923 kvm_mmu_load_pgd(vcpu);
4924 static_call(kvm_x86_tlb_flush_current)(vcpu);
4925 out:
4926 return r;
4927 }
4928
4929 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4930 {
4931 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4932 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4933 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4934 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4935 }
4936
4937 static bool need_remote_flush(u64 old, u64 new)
4938 {
4939 if (!is_shadow_present_pte(old))
4940 return false;
4941 if (!is_shadow_present_pte(new))
4942 return true;
4943 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4944 return true;
4945 old ^= shadow_nx_mask;
4946 new ^= shadow_nx_mask;
4947 return (old & ~new & PT64_PERM_MASK) != 0;
4948 }
4949
4950 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4951 int *bytes)
4952 {
4953 u64 gentry = 0;
4954 int r;
4955
4956 /*
4957 * Assume that the pte write on a page table of the same type
4958 * as the current vcpu paging mode since we update the sptes only
4959 * when they have the same mode.
4960 */
4961 if (is_pae(vcpu) && *bytes == 4) {
4962 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4963 *gpa &= ~(gpa_t)7;
4964 *bytes = 8;
4965 }
4966
4967 if (*bytes == 4 || *bytes == 8) {
4968 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4969 if (r)
4970 gentry = 0;
4971 }
4972
4973 return gentry;
4974 }
4975
4976 /*
4977 * If we're seeing too many writes to a page, it may no longer be a page table,
4978 * or we may be forking, in which case it is better to unmap the page.
4979 */
4980 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4981 {
4982 /*
4983 * Skip write-flooding detected for the sp whose level is 1, because
4984 * it can become unsync, then the guest page is not write-protected.
4985 */
4986 if (sp->role.level == PG_LEVEL_4K)
4987 return false;
4988
4989 atomic_inc(&sp->write_flooding_count);
4990 return atomic_read(&sp->write_flooding_count) >= 3;
4991 }
4992
4993 /*
4994 * Misaligned accesses are too much trouble to fix up; also, they usually
4995 * indicate a page is not used as a page table.
4996 */
4997 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4998 int bytes)
4999 {
5000 unsigned offset, pte_size, misaligned;
5001
5002 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5003 gpa, bytes, sp->role.word);
5004
5005 offset = offset_in_page(gpa);
5006 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5007
5008 /*
5009 * Sometimes, the OS only writes the last one bytes to update status
5010 * bits, for example, in linux, andb instruction is used in clear_bit().
5011 */
5012 if (!(offset & (pte_size - 1)) && bytes == 1)
5013 return false;
5014
5015 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5016 misaligned |= bytes < 4;
5017
5018 return misaligned;
5019 }
5020
5021 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5022 {
5023 unsigned page_offset, quadrant;
5024 u64 *spte;
5025 int level;
5026
5027 page_offset = offset_in_page(gpa);
5028 level = sp->role.level;
5029 *nspte = 1;
5030 if (!sp->role.gpte_is_8_bytes) {
5031 page_offset <<= 1; /* 32->64 */
5032 /*
5033 * A 32-bit pde maps 4MB while the shadow pdes map
5034 * only 2MB. So we need to double the offset again
5035 * and zap two pdes instead of one.
5036 */
5037 if (level == PT32_ROOT_LEVEL) {
5038 page_offset &= ~7; /* kill rounding error */
5039 page_offset <<= 1;
5040 *nspte = 2;
5041 }
5042 quadrant = page_offset >> PAGE_SHIFT;
5043 page_offset &= ~PAGE_MASK;
5044 if (quadrant != sp->role.quadrant)
5045 return NULL;
5046 }
5047
5048 spte = &sp->spt[page_offset / sizeof(*spte)];
5049 return spte;
5050 }
5051
5052 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5053 const u8 *new, int bytes,
5054 struct kvm_page_track_notifier_node *node)
5055 {
5056 gfn_t gfn = gpa >> PAGE_SHIFT;
5057 struct kvm_mmu_page *sp;
5058 LIST_HEAD(invalid_list);
5059 u64 entry, gentry, *spte;
5060 int npte;
5061 bool remote_flush, local_flush;
5062
5063 /*
5064 * If we don't have indirect shadow pages, it means no page is
5065 * write-protected, so we can exit simply.
5066 */
5067 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5068 return;
5069
5070 remote_flush = local_flush = false;
5071
5072 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5073
5074 /*
5075 * No need to care whether allocation memory is successful
5076 * or not since pte prefetch is skipped if it does not have
5077 * enough objects in the cache.
5078 */
5079 mmu_topup_memory_caches(vcpu, true);
5080
5081 write_lock(&vcpu->kvm->mmu_lock);
5082
5083 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5084
5085 ++vcpu->kvm->stat.mmu_pte_write;
5086 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5087
5088 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5089 if (detect_write_misaligned(sp, gpa, bytes) ||
5090 detect_write_flooding(sp)) {
5091 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5092 ++vcpu->kvm->stat.mmu_flooded;
5093 continue;
5094 }
5095
5096 spte = get_written_sptes(sp, gpa, &npte);
5097 if (!spte)
5098 continue;
5099
5100 local_flush = true;
5101 while (npte--) {
5102 entry = *spte;
5103 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5104 if (gentry && sp->role.level != PG_LEVEL_4K)
5105 ++vcpu->kvm->stat.mmu_pde_zapped;
5106 if (need_remote_flush(entry, *spte))
5107 remote_flush = true;
5108 ++spte;
5109 }
5110 }
5111 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5112 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5113 write_unlock(&vcpu->kvm->mmu_lock);
5114 }
5115
5116 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5117 void *insn, int insn_len)
5118 {
5119 int r, emulation_type = EMULTYPE_PF;
5120 bool direct = vcpu->arch.mmu->direct_map;
5121
5122 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5123 return RET_PF_RETRY;
5124
5125 r = RET_PF_INVALID;
5126 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5127 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5128 if (r == RET_PF_EMULATE)
5129 goto emulate;
5130 }
5131
5132 if (r == RET_PF_INVALID) {
5133 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5134 lower_32_bits(error_code), false);
5135 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5136 return -EIO;
5137 }
5138
5139 if (r < 0)
5140 return r;
5141 if (r != RET_PF_EMULATE)
5142 return 1;
5143
5144 /*
5145 * Before emulating the instruction, check if the error code
5146 * was due to a RO violation while translating the guest page.
5147 * This can occur when using nested virtualization with nested
5148 * paging in both guests. If true, we simply unprotect the page
5149 * and resume the guest.
5150 */
5151 if (vcpu->arch.mmu->direct_map &&
5152 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5153 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5154 return 1;
5155 }
5156
5157 /*
5158 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5159 * optimistically try to just unprotect the page and let the processor
5160 * re-execute the instruction that caused the page fault. Do not allow
5161 * retrying MMIO emulation, as it's not only pointless but could also
5162 * cause us to enter an infinite loop because the processor will keep
5163 * faulting on the non-existent MMIO address. Retrying an instruction
5164 * from a nested guest is also pointless and dangerous as we are only
5165 * explicitly shadowing L1's page tables, i.e. unprotecting something
5166 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5167 */
5168 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5169 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5170 emulate:
5171 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5172 insn_len);
5173 }
5174 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5175
5176 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5177 gva_t gva, hpa_t root_hpa)
5178 {
5179 int i;
5180
5181 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5182 if (mmu != &vcpu->arch.guest_mmu) {
5183 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5184 if (is_noncanonical_address(gva, vcpu))
5185 return;
5186
5187 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5188 }
5189
5190 if (!mmu->invlpg)
5191 return;
5192
5193 if (root_hpa == INVALID_PAGE) {
5194 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5195
5196 /*
5197 * INVLPG is required to invalidate any global mappings for the VA,
5198 * irrespective of PCID. Since it would take us roughly similar amount
5199 * of work to determine whether any of the prev_root mappings of the VA
5200 * is marked global, or to just sync it blindly, so we might as well
5201 * just always sync it.
5202 *
5203 * Mappings not reachable via the current cr3 or the prev_roots will be
5204 * synced when switching to that cr3, so nothing needs to be done here
5205 * for them.
5206 */
5207 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5208 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5209 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5210 } else {
5211 mmu->invlpg(vcpu, gva, root_hpa);
5212 }
5213 }
5214
5215 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5216 {
5217 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5218 ++vcpu->stat.invlpg;
5219 }
5220 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5221
5222
5223 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5224 {
5225 struct kvm_mmu *mmu = vcpu->arch.mmu;
5226 bool tlb_flush = false;
5227 uint i;
5228
5229 if (pcid == kvm_get_active_pcid(vcpu)) {
5230 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5231 tlb_flush = true;
5232 }
5233
5234 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5235 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5236 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5237 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5238 tlb_flush = true;
5239 }
5240 }
5241
5242 if (tlb_flush)
5243 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5244
5245 ++vcpu->stat.invlpg;
5246
5247 /*
5248 * Mappings not reachable via the current cr3 or the prev_roots will be
5249 * synced when switching to that cr3, so nothing needs to be done here
5250 * for them.
5251 */
5252 }
5253
5254 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5255 int tdp_huge_page_level)
5256 {
5257 tdp_enabled = enable_tdp;
5258 max_tdp_level = tdp_max_root_level;
5259
5260 /*
5261 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5262 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5263 * the kernel is not. But, KVM never creates a page size greater than
5264 * what is used by the kernel for any given HVA, i.e. the kernel's
5265 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5266 */
5267 if (tdp_enabled)
5268 max_huge_page_level = tdp_huge_page_level;
5269 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5270 max_huge_page_level = PG_LEVEL_1G;
5271 else
5272 max_huge_page_level = PG_LEVEL_2M;
5273 }
5274 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5275
5276 /* The return value indicates if tlb flush on all vcpus is needed. */
5277 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5278 struct kvm_memory_slot *slot);
5279
5280 /* The caller should hold mmu-lock before calling this function. */
5281 static __always_inline bool
5282 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5283 slot_level_handler fn, int start_level, int end_level,
5284 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5285 bool flush)
5286 {
5287 struct slot_rmap_walk_iterator iterator;
5288
5289 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5290 end_gfn, &iterator) {
5291 if (iterator.rmap)
5292 flush |= fn(kvm, iterator.rmap, memslot);
5293
5294 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5295 if (flush && flush_on_yield) {
5296 kvm_flush_remote_tlbs_with_address(kvm,
5297 start_gfn,
5298 iterator.gfn - start_gfn + 1);
5299 flush = false;
5300 }
5301 cond_resched_rwlock_write(&kvm->mmu_lock);
5302 }
5303 }
5304
5305 return flush;
5306 }
5307
5308 static __always_inline bool
5309 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5310 slot_level_handler fn, int start_level, int end_level,
5311 bool flush_on_yield)
5312 {
5313 return slot_handle_level_range(kvm, memslot, fn, start_level,
5314 end_level, memslot->base_gfn,
5315 memslot->base_gfn + memslot->npages - 1,
5316 flush_on_yield, false);
5317 }
5318
5319 static __always_inline bool
5320 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5321 slot_level_handler fn, bool flush_on_yield)
5322 {
5323 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5324 PG_LEVEL_4K, flush_on_yield);
5325 }
5326
5327 static void free_mmu_pages(struct kvm_mmu *mmu)
5328 {
5329 if (!tdp_enabled && mmu->pae_root)
5330 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5331 free_page((unsigned long)mmu->pae_root);
5332 free_page((unsigned long)mmu->pml4_root);
5333 }
5334
5335 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5336 {
5337 struct page *page;
5338 int i;
5339
5340 mmu->root_hpa = INVALID_PAGE;
5341 mmu->root_pgd = 0;
5342 mmu->translate_gpa = translate_gpa;
5343 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5344 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5345
5346 /*
5347 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5348 * while the PDP table is a per-vCPU construct that's allocated at MMU
5349 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5350 * x86_64. Therefore we need to allocate the PDP table in the first
5351 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5352 * generally doesn't use PAE paging and can skip allocating the PDP
5353 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5354 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5355 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5356 */
5357 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5358 return 0;
5359
5360 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5361 if (!page)
5362 return -ENOMEM;
5363
5364 mmu->pae_root = page_address(page);
5365
5366 /*
5367 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5368 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5369 * that KVM's writes and the CPU's reads get along. Note, this is
5370 * only necessary when using shadow paging, as 64-bit NPT can get at
5371 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5372 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5373 */
5374 if (!tdp_enabled)
5375 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5376 else
5377 WARN_ON_ONCE(shadow_me_mask);
5378
5379 for (i = 0; i < 4; ++i)
5380 mmu->pae_root[i] = INVALID_PAE_ROOT;
5381
5382 return 0;
5383 }
5384
5385 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5386 {
5387 int ret;
5388
5389 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5390 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5391
5392 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5393 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5394
5395 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5396
5397 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5398 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5399
5400 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5401
5402 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5403 if (ret)
5404 return ret;
5405
5406 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5407 if (ret)
5408 goto fail_allocate_root;
5409
5410 return ret;
5411 fail_allocate_root:
5412 free_mmu_pages(&vcpu->arch.guest_mmu);
5413 return ret;
5414 }
5415
5416 #define BATCH_ZAP_PAGES 10
5417 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5418 {
5419 struct kvm_mmu_page *sp, *node;
5420 int nr_zapped, batch = 0;
5421
5422 restart:
5423 list_for_each_entry_safe_reverse(sp, node,
5424 &kvm->arch.active_mmu_pages, link) {
5425 /*
5426 * No obsolete valid page exists before a newly created page
5427 * since active_mmu_pages is a FIFO list.
5428 */
5429 if (!is_obsolete_sp(kvm, sp))
5430 break;
5431
5432 /*
5433 * Invalid pages should never land back on the list of active
5434 * pages. Skip the bogus page, otherwise we'll get stuck in an
5435 * infinite loop if the page gets put back on the list (again).
5436 */
5437 if (WARN_ON(sp->role.invalid))
5438 continue;
5439
5440 /*
5441 * No need to flush the TLB since we're only zapping shadow
5442 * pages with an obsolete generation number and all vCPUS have
5443 * loaded a new root, i.e. the shadow pages being zapped cannot
5444 * be in active use by the guest.
5445 */
5446 if (batch >= BATCH_ZAP_PAGES &&
5447 cond_resched_rwlock_write(&kvm->mmu_lock)) {
5448 batch = 0;
5449 goto restart;
5450 }
5451
5452 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5453 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5454 batch += nr_zapped;
5455 goto restart;
5456 }
5457 }
5458
5459 /*
5460 * Trigger a remote TLB flush before freeing the page tables to ensure
5461 * KVM is not in the middle of a lockless shadow page table walk, which
5462 * may reference the pages.
5463 */
5464 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5465 }
5466
5467 /*
5468 * Fast invalidate all shadow pages and use lock-break technique
5469 * to zap obsolete pages.
5470 *
5471 * It's required when memslot is being deleted or VM is being
5472 * destroyed, in these cases, we should ensure that KVM MMU does
5473 * not use any resource of the being-deleted slot or all slots
5474 * after calling the function.
5475 */
5476 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5477 {
5478 lockdep_assert_held(&kvm->slots_lock);
5479
5480 write_lock(&kvm->mmu_lock);
5481 trace_kvm_mmu_zap_all_fast(kvm);
5482
5483 /*
5484 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5485 * held for the entire duration of zapping obsolete pages, it's
5486 * impossible for there to be multiple invalid generations associated
5487 * with *valid* shadow pages at any given time, i.e. there is exactly
5488 * one valid generation and (at most) one invalid generation.
5489 */
5490 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5491
5492 /* In order to ensure all threads see this change when
5493 * handling the MMU reload signal, this must happen in the
5494 * same critical section as kvm_reload_remote_mmus, and
5495 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5496 * could drop the MMU lock and yield.
5497 */
5498 if (is_tdp_mmu_enabled(kvm))
5499 kvm_tdp_mmu_invalidate_all_roots(kvm);
5500
5501 /*
5502 * Notify all vcpus to reload its shadow page table and flush TLB.
5503 * Then all vcpus will switch to new shadow page table with the new
5504 * mmu_valid_gen.
5505 *
5506 * Note: we need to do this under the protection of mmu_lock,
5507 * otherwise, vcpu would purge shadow page but miss tlb flush.
5508 */
5509 kvm_reload_remote_mmus(kvm);
5510
5511 kvm_zap_obsolete_pages(kvm);
5512
5513 write_unlock(&kvm->mmu_lock);
5514
5515 if (is_tdp_mmu_enabled(kvm)) {
5516 read_lock(&kvm->mmu_lock);
5517 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5518 read_unlock(&kvm->mmu_lock);
5519 }
5520 }
5521
5522 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5523 {
5524 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5525 }
5526
5527 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5528 struct kvm_memory_slot *slot,
5529 struct kvm_page_track_notifier_node *node)
5530 {
5531 kvm_mmu_zap_all_fast(kvm);
5532 }
5533
5534 void kvm_mmu_init_vm(struct kvm *kvm)
5535 {
5536 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5537
5538 if (!kvm_mmu_init_tdp_mmu(kvm))
5539 /*
5540 * No smp_load/store wrappers needed here as we are in
5541 * VM init and there cannot be any memslots / other threads
5542 * accessing this struct kvm yet.
5543 */
5544 kvm->arch.memslots_have_rmaps = true;
5545
5546 node->track_write = kvm_mmu_pte_write;
5547 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5548 kvm_page_track_register_notifier(kvm, node);
5549 }
5550
5551 void kvm_mmu_uninit_vm(struct kvm *kvm)
5552 {
5553 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5554
5555 kvm_page_track_unregister_notifier(kvm, node);
5556
5557 kvm_mmu_uninit_tdp_mmu(kvm);
5558 }
5559
5560 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5561 {
5562 struct kvm_memslots *slots;
5563 struct kvm_memory_slot *memslot;
5564 int i;
5565 bool flush = false;
5566
5567 if (kvm_memslots_have_rmaps(kvm)) {
5568 write_lock(&kvm->mmu_lock);
5569 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5570 slots = __kvm_memslots(kvm, i);
5571 kvm_for_each_memslot(memslot, slots) {
5572 gfn_t start, end;
5573
5574 start = max(gfn_start, memslot->base_gfn);
5575 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5576 if (start >= end)
5577 continue;
5578
5579 flush = slot_handle_level_range(kvm, memslot,
5580 kvm_zap_rmapp, PG_LEVEL_4K,
5581 KVM_MAX_HUGEPAGE_LEVEL, start,
5582 end - 1, true, flush);
5583 }
5584 }
5585 if (flush)
5586 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5587 write_unlock(&kvm->mmu_lock);
5588 }
5589
5590 if (is_tdp_mmu_enabled(kvm)) {
5591 flush = false;
5592
5593 read_lock(&kvm->mmu_lock);
5594 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5595 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5596 gfn_end, flush, true);
5597 if (flush)
5598 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5599 gfn_end);
5600
5601 read_unlock(&kvm->mmu_lock);
5602 }
5603 }
5604
5605 static bool slot_rmap_write_protect(struct kvm *kvm,
5606 struct kvm_rmap_head *rmap_head,
5607 struct kvm_memory_slot *slot)
5608 {
5609 return __rmap_write_protect(kvm, rmap_head, false);
5610 }
5611
5612 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5613 struct kvm_memory_slot *memslot,
5614 int start_level)
5615 {
5616 bool flush = false;
5617
5618 if (kvm_memslots_have_rmaps(kvm)) {
5619 write_lock(&kvm->mmu_lock);
5620 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5621 start_level, KVM_MAX_HUGEPAGE_LEVEL,
5622 false);
5623 write_unlock(&kvm->mmu_lock);
5624 }
5625
5626 if (is_tdp_mmu_enabled(kvm)) {
5627 read_lock(&kvm->mmu_lock);
5628 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5629 read_unlock(&kvm->mmu_lock);
5630 }
5631
5632 /*
5633 * We can flush all the TLBs out of the mmu lock without TLB
5634 * corruption since we just change the spte from writable to
5635 * readonly so that we only need to care the case of changing
5636 * spte from present to present (changing the spte from present
5637 * to nonpresent will flush all the TLBs immediately), in other
5638 * words, the only case we care is mmu_spte_update() where we
5639 * have checked Host-writable | MMU-writable instead of
5640 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5641 * anymore.
5642 */
5643 if (flush)
5644 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5645 }
5646
5647 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5648 struct kvm_rmap_head *rmap_head,
5649 struct kvm_memory_slot *slot)
5650 {
5651 u64 *sptep;
5652 struct rmap_iterator iter;
5653 int need_tlb_flush = 0;
5654 kvm_pfn_t pfn;
5655 struct kvm_mmu_page *sp;
5656
5657 restart:
5658 for_each_rmap_spte(rmap_head, &iter, sptep) {
5659 sp = sptep_to_sp(sptep);
5660 pfn = spte_to_pfn(*sptep);
5661
5662 /*
5663 * We cannot do huge page mapping for indirect shadow pages,
5664 * which are found on the last rmap (level = 1) when not using
5665 * tdp; such shadow pages are synced with the page table in
5666 * the guest, and the guest page table is using 4K page size
5667 * mapping if the indirect sp has level = 1.
5668 */
5669 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5670 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5671 pfn, PG_LEVEL_NUM)) {
5672 pte_list_remove(rmap_head, sptep);
5673
5674 if (kvm_available_flush_tlb_with_range())
5675 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5676 KVM_PAGES_PER_HPAGE(sp->role.level));
5677 else
5678 need_tlb_flush = 1;
5679
5680 goto restart;
5681 }
5682 }
5683
5684 return need_tlb_flush;
5685 }
5686
5687 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5688 const struct kvm_memory_slot *memslot)
5689 {
5690 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5691 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5692 bool flush = false;
5693
5694 if (kvm_memslots_have_rmaps(kvm)) {
5695 write_lock(&kvm->mmu_lock);
5696 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5697 if (flush)
5698 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5699 write_unlock(&kvm->mmu_lock);
5700 }
5701
5702 if (is_tdp_mmu_enabled(kvm)) {
5703 read_lock(&kvm->mmu_lock);
5704 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5705 if (flush)
5706 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5707 read_unlock(&kvm->mmu_lock);
5708 }
5709 }
5710
5711 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5712 const struct kvm_memory_slot *memslot)
5713 {
5714 /*
5715 * All current use cases for flushing the TLBs for a specific memslot
5716 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5717 * The interaction between the various operations on memslot must be
5718 * serialized by slots_locks to ensure the TLB flush from one operation
5719 * is observed by any other operation on the same memslot.
5720 */
5721 lockdep_assert_held(&kvm->slots_lock);
5722 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5723 memslot->npages);
5724 }
5725
5726 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5727 struct kvm_memory_slot *memslot)
5728 {
5729 bool flush = false;
5730
5731 if (kvm_memslots_have_rmaps(kvm)) {
5732 write_lock(&kvm->mmu_lock);
5733 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5734 false);
5735 write_unlock(&kvm->mmu_lock);
5736 }
5737
5738 if (is_tdp_mmu_enabled(kvm)) {
5739 read_lock(&kvm->mmu_lock);
5740 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5741 read_unlock(&kvm->mmu_lock);
5742 }
5743
5744 /*
5745 * It's also safe to flush TLBs out of mmu lock here as currently this
5746 * function is only used for dirty logging, in which case flushing TLB
5747 * out of mmu lock also guarantees no dirty pages will be lost in
5748 * dirty_bitmap.
5749 */
5750 if (flush)
5751 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5752 }
5753
5754 void kvm_mmu_zap_all(struct kvm *kvm)
5755 {
5756 struct kvm_mmu_page *sp, *node;
5757 LIST_HEAD(invalid_list);
5758 int ign;
5759
5760 write_lock(&kvm->mmu_lock);
5761 restart:
5762 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5763 if (WARN_ON(sp->role.invalid))
5764 continue;
5765 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5766 goto restart;
5767 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5768 goto restart;
5769 }
5770
5771 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5772
5773 if (is_tdp_mmu_enabled(kvm))
5774 kvm_tdp_mmu_zap_all(kvm);
5775
5776 write_unlock(&kvm->mmu_lock);
5777 }
5778
5779 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5780 {
5781 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5782
5783 gen &= MMIO_SPTE_GEN_MASK;
5784
5785 /*
5786 * Generation numbers are incremented in multiples of the number of
5787 * address spaces in order to provide unique generations across all
5788 * address spaces. Strip what is effectively the address space
5789 * modifier prior to checking for a wrap of the MMIO generation so
5790 * that a wrap in any address space is detected.
5791 */
5792 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5793
5794 /*
5795 * The very rare case: if the MMIO generation number has wrapped,
5796 * zap all shadow pages.
5797 */
5798 if (unlikely(gen == 0)) {
5799 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5800 kvm_mmu_zap_all_fast(kvm);
5801 }
5802 }
5803
5804 static unsigned long
5805 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5806 {
5807 struct kvm *kvm;
5808 int nr_to_scan = sc->nr_to_scan;
5809 unsigned long freed = 0;
5810
5811 mutex_lock(&kvm_lock);
5812
5813 list_for_each_entry(kvm, &vm_list, vm_list) {
5814 int idx;
5815 LIST_HEAD(invalid_list);
5816
5817 /*
5818 * Never scan more than sc->nr_to_scan VM instances.
5819 * Will not hit this condition practically since we do not try
5820 * to shrink more than one VM and it is very unlikely to see
5821 * !n_used_mmu_pages so many times.
5822 */
5823 if (!nr_to_scan--)
5824 break;
5825 /*
5826 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5827 * here. We may skip a VM instance errorneosly, but we do not
5828 * want to shrink a VM that only started to populate its MMU
5829 * anyway.
5830 */
5831 if (!kvm->arch.n_used_mmu_pages &&
5832 !kvm_has_zapped_obsolete_pages(kvm))
5833 continue;
5834
5835 idx = srcu_read_lock(&kvm->srcu);
5836 write_lock(&kvm->mmu_lock);
5837
5838 if (kvm_has_zapped_obsolete_pages(kvm)) {
5839 kvm_mmu_commit_zap_page(kvm,
5840 &kvm->arch.zapped_obsolete_pages);
5841 goto unlock;
5842 }
5843
5844 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5845
5846 unlock:
5847 write_unlock(&kvm->mmu_lock);
5848 srcu_read_unlock(&kvm->srcu, idx);
5849
5850 /*
5851 * unfair on small ones
5852 * per-vm shrinkers cry out
5853 * sadness comes quickly
5854 */
5855 list_move_tail(&kvm->vm_list, &vm_list);
5856 break;
5857 }
5858
5859 mutex_unlock(&kvm_lock);
5860 return freed;
5861 }
5862
5863 static unsigned long
5864 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5865 {
5866 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5867 }
5868
5869 static struct shrinker mmu_shrinker = {
5870 .count_objects = mmu_shrink_count,
5871 .scan_objects = mmu_shrink_scan,
5872 .seeks = DEFAULT_SEEKS * 10,
5873 };
5874
5875 static void mmu_destroy_caches(void)
5876 {
5877 kmem_cache_destroy(pte_list_desc_cache);
5878 kmem_cache_destroy(mmu_page_header_cache);
5879 }
5880
5881 static bool get_nx_auto_mode(void)
5882 {
5883 /* Return true when CPU has the bug, and mitigations are ON */
5884 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5885 }
5886
5887 static void __set_nx_huge_pages(bool val)
5888 {
5889 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5890 }
5891
5892 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5893 {
5894 bool old_val = nx_huge_pages;
5895 bool new_val;
5896
5897 /* In "auto" mode deploy workaround only if CPU has the bug. */
5898 if (sysfs_streq(val, "off"))
5899 new_val = 0;
5900 else if (sysfs_streq(val, "force"))
5901 new_val = 1;
5902 else if (sysfs_streq(val, "auto"))
5903 new_val = get_nx_auto_mode();
5904 else if (strtobool(val, &new_val) < 0)
5905 return -EINVAL;
5906
5907 __set_nx_huge_pages(new_val);
5908
5909 if (new_val != old_val) {
5910 struct kvm *kvm;
5911
5912 mutex_lock(&kvm_lock);
5913
5914 list_for_each_entry(kvm, &vm_list, vm_list) {
5915 mutex_lock(&kvm->slots_lock);
5916 kvm_mmu_zap_all_fast(kvm);
5917 mutex_unlock(&kvm->slots_lock);
5918
5919 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5920 }
5921 mutex_unlock(&kvm_lock);
5922 }
5923
5924 return 0;
5925 }
5926
5927 int kvm_mmu_module_init(void)
5928 {
5929 int ret = -ENOMEM;
5930
5931 if (nx_huge_pages == -1)
5932 __set_nx_huge_pages(get_nx_auto_mode());
5933
5934 /*
5935 * MMU roles use union aliasing which is, generally speaking, an
5936 * undefined behavior. However, we supposedly know how compilers behave
5937 * and the current status quo is unlikely to change. Guardians below are
5938 * supposed to let us know if the assumption becomes false.
5939 */
5940 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5941 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5942 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5943
5944 kvm_mmu_reset_all_pte_masks();
5945
5946 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5947 sizeof(struct pte_list_desc),
5948 0, SLAB_ACCOUNT, NULL);
5949 if (!pte_list_desc_cache)
5950 goto out;
5951
5952 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5953 sizeof(struct kvm_mmu_page),
5954 0, SLAB_ACCOUNT, NULL);
5955 if (!mmu_page_header_cache)
5956 goto out;
5957
5958 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5959 goto out;
5960
5961 ret = register_shrinker(&mmu_shrinker);
5962 if (ret)
5963 goto out;
5964
5965 return 0;
5966
5967 out:
5968 mmu_destroy_caches();
5969 return ret;
5970 }
5971
5972 /*
5973 * Calculate mmu pages needed for kvm.
5974 */
5975 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5976 {
5977 unsigned long nr_mmu_pages;
5978 unsigned long nr_pages = 0;
5979 struct kvm_memslots *slots;
5980 struct kvm_memory_slot *memslot;
5981 int i;
5982
5983 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5984 slots = __kvm_memslots(kvm, i);
5985
5986 kvm_for_each_memslot(memslot, slots)
5987 nr_pages += memslot->npages;
5988 }
5989
5990 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5991 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5992
5993 return nr_mmu_pages;
5994 }
5995
5996 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5997 {
5998 kvm_mmu_unload(vcpu);
5999 free_mmu_pages(&vcpu->arch.root_mmu);
6000 free_mmu_pages(&vcpu->arch.guest_mmu);
6001 mmu_free_memory_caches(vcpu);
6002 }
6003
6004 void kvm_mmu_module_exit(void)
6005 {
6006 mmu_destroy_caches();
6007 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6008 unregister_shrinker(&mmu_shrinker);
6009 mmu_audit_disable();
6010 }
6011
6012 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6013 {
6014 unsigned int old_val;
6015 int err;
6016
6017 old_val = nx_huge_pages_recovery_ratio;
6018 err = param_set_uint(val, kp);
6019 if (err)
6020 return err;
6021
6022 if (READ_ONCE(nx_huge_pages) &&
6023 !old_val && nx_huge_pages_recovery_ratio) {
6024 struct kvm *kvm;
6025
6026 mutex_lock(&kvm_lock);
6027
6028 list_for_each_entry(kvm, &vm_list, vm_list)
6029 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6030
6031 mutex_unlock(&kvm_lock);
6032 }
6033
6034 return err;
6035 }
6036
6037 static void kvm_recover_nx_lpages(struct kvm *kvm)
6038 {
6039 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6040 int rcu_idx;
6041 struct kvm_mmu_page *sp;
6042 unsigned int ratio;
6043 LIST_HEAD(invalid_list);
6044 bool flush = false;
6045 ulong to_zap;
6046
6047 rcu_idx = srcu_read_lock(&kvm->srcu);
6048 write_lock(&kvm->mmu_lock);
6049
6050 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6051 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6052 for ( ; to_zap; --to_zap) {
6053 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6054 break;
6055
6056 /*
6057 * We use a separate list instead of just using active_mmu_pages
6058 * because the number of lpage_disallowed pages is expected to
6059 * be relatively small compared to the total.
6060 */
6061 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6062 struct kvm_mmu_page,
6063 lpage_disallowed_link);
6064 WARN_ON_ONCE(!sp->lpage_disallowed);
6065 if (is_tdp_mmu_page(sp)) {
6066 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6067 } else {
6068 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6069 WARN_ON_ONCE(sp->lpage_disallowed);
6070 }
6071
6072 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6073 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6074 cond_resched_rwlock_write(&kvm->mmu_lock);
6075 flush = false;
6076 }
6077 }
6078 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6079
6080 write_unlock(&kvm->mmu_lock);
6081 srcu_read_unlock(&kvm->srcu, rcu_idx);
6082 }
6083
6084 static long get_nx_lpage_recovery_timeout(u64 start_time)
6085 {
6086 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6087 ? start_time + 60 * HZ - get_jiffies_64()
6088 : MAX_SCHEDULE_TIMEOUT;
6089 }
6090
6091 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6092 {
6093 u64 start_time;
6094 long remaining_time;
6095
6096 while (true) {
6097 start_time = get_jiffies_64();
6098 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6099
6100 set_current_state(TASK_INTERRUPTIBLE);
6101 while (!kthread_should_stop() && remaining_time > 0) {
6102 schedule_timeout(remaining_time);
6103 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6104 set_current_state(TASK_INTERRUPTIBLE);
6105 }
6106
6107 set_current_state(TASK_RUNNING);
6108
6109 if (kthread_should_stop())
6110 return 0;
6111
6112 kvm_recover_nx_lpages(kvm);
6113 }
6114 }
6115
6116 int kvm_mmu_post_init_vm(struct kvm *kvm)
6117 {
6118 int err;
6119
6120 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6121 "kvm-nx-lpage-recovery",
6122 &kvm->arch.nx_lpage_recovery_thread);
6123 if (!err)
6124 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6125
6126 return err;
6127 }
6128
6129 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6130 {
6131 if (kvm->arch.nx_lpage_recovery_thread)
6132 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6133 }