]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
Merge branch 'rcu/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/vmx.h>
52 #include <asm/kvm_page_track.h>
53 #include "trace.h"
54
55 extern bool itlb_multihit_kvm_mitigation;
56
57 static int __read_mostly nx_huge_pages = -1;
58 #ifdef CONFIG_PREEMPT_RT
59 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61 #else
62 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63 #endif
64
65 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67
68 static const struct kernel_param_ops nx_huge_pages_ops = {
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71 };
72
73 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76 };
77
78 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83
84 static bool __read_mostly force_flush_and_sync_on_reuse;
85 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
87 /*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
94 bool tdp_enabled = false;
95
96 static int max_huge_page_level __read_mostly;
97 static int max_tdp_level __read_mostly;
98
99 enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
106 };
107
108 #ifdef MMU_DEBUG
109 bool dbg = 0;
110 module_param(dbg, bool, 0644);
111 #endif
112
113 #define PTE_PREFETCH_NUM 8
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119
120 #define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #include <trace/events/kvm.h>
136
137 /* make pte_list_desc fit well in cache line */
138 #define PTE_LIST_EXT 3
139
140 struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
143 };
144
145 struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
148 u64 *sptep;
149 int level;
150 unsigned index;
151 };
152
153 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
164 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
170 static struct kmem_cache *pte_list_desc_cache;
171 struct kmem_cache *mmu_page_header_cache;
172 static struct percpu_counter kvm_total_used_mmu_pages;
173
174 static void mmu_spte_set(u64 *sptep, u64 spte);
175 static union kvm_mmu_page_role
176 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177
178 #define CREATE_TRACE_POINTS
179 #include "mmutrace.h"
180
181
182 static inline bool kvm_available_flush_tlb_with_range(void)
183 {
184 return kvm_x86_ops.tlb_remote_flush_with_range;
185 }
186
187 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189 {
190 int ret = -ENOTSUPP;
191
192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197 }
198
199 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200 u64 start_gfn, u64 pages)
201 {
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208 }
209
210 bool is_nx_huge_page_enabled(void)
211 {
212 return READ_ONCE(nx_huge_pages);
213 }
214
215 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217 {
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
219
220 trace_mark_mmio_spte(sptep, gfn, mask);
221 mmu_spte_set(sptep, mask);
222 }
223
224 static gfn_t get_mmio_spte_gfn(u64 spte)
225 {
226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227
228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
232 }
233
234 static unsigned get_mmio_spte_access(u64 spte)
235 {
236 return spte & shadow_mmio_access_mask;
237 }
238
239 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240 kvm_pfn_t pfn, unsigned int access)
241 {
242 if (unlikely(is_noslot_pfn(pfn))) {
243 mark_mmio_spte(vcpu, sptep, gfn, access);
244 return true;
245 }
246
247 return false;
248 }
249
250 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251 {
252 u64 kvm_gen, spte_gen, gen;
253
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
257
258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
263 }
264
265 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267 {
268 /* Check if guest physical address doesn't exceed guest maximum */
269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
274 return gpa;
275 }
276
277 static int is_cpuid_PSE36(void)
278 {
279 return 1;
280 }
281
282 static int is_nx(struct kvm_vcpu *vcpu)
283 {
284 return vcpu->arch.efer & EFER_NX;
285 }
286
287 static gfn_t pse36_gfn_delta(u32 gpte)
288 {
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292 }
293
294 #ifdef CONFIG_X86_64
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 WRITE_ONCE(*sptep, spte);
298 }
299
300 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301 {
302 WRITE_ONCE(*sptep, spte);
303 }
304
305 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306 {
307 return xchg(sptep, spte);
308 }
309
310 static u64 __get_spte_lockless(u64 *sptep)
311 {
312 return READ_ONCE(*sptep);
313 }
314 #else
315 union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321 };
322
323 static void count_spte_clear(u64 *sptep, u64 spte)
324 {
325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333 }
334
335 static void __set_spte(u64 *sptep, u64 spte)
336 {
337 union split_spte *ssptep, sspte;
338
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352 }
353
354 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355 {
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
370 count_spte_clear(sptep, spte);
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
384 count_spte_clear(sptep, spte);
385
386 return orig.spte;
387 }
388
389 /*
390 * The idea using the light way get the spte on x86_32 guest is from
391 * gup_get_pte (mm/gup.c).
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
406 */
407 static u64 __get_spte_lockless(u64 *sptep)
408 {
409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413 retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428 }
429 #endif
430
431 static bool spte_has_volatile_bits(u64 spte)
432 {
433 if (!is_shadow_present_pte(spte))
434 return false;
435
436 /*
437 * Always atomically update spte if it can be updated
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
444 return true;
445
446 if (spte_ad_enabled(spte)) {
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
451
452 return false;
453 }
454
455 /* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461 static void mmu_spte_set(u64 *sptep, u64 new_spte)
462 {
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465 }
466
467 /*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
470 */
471 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472 {
473 u64 old_spte = *sptep;
474
475 WARN_ON(!is_shadow_present_pte(new_spte));
476
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
479 return old_spte;
480 }
481
482 if (!spte_has_volatile_bits(old_spte))
483 __update_clear_spte_fast(sptep, new_spte);
484 else
485 old_spte = __update_clear_spte_slow(sptep, new_spte);
486
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
489 return old_spte;
490 }
491
492 /* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504 {
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
511 /*
512 * For the spte updated out of mmu-lock is safe, since
513 * we always atomically update it, see the comments in
514 * spte_has_volatile_bits().
515 */
516 if (spte_can_locklessly_be_made_writable(old_spte) &&
517 !is_writable_pte(new_spte))
518 flush = true;
519
520 /*
521 * Flush TLB when accessed/dirty states are changed in the page tables,
522 * to guarantee consistency between TLB and page tables.
523 */
524
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533 }
534
535 return flush;
536 }
537
538 /*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
542 * Returns non-zero if the PTE was previously valid.
543 */
544 static int mmu_spte_clear_track_bits(u64 *sptep)
545 {
546 kvm_pfn_t pfn;
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
550 __update_clear_spte_fast(sptep, 0ull);
551 else
552 old_spte = __update_clear_spte_slow(sptep, 0ull);
553
554 if (!is_shadow_present_pte(old_spte))
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565
566 if (is_accessed_spte(old_spte))
567 kvm_set_pfn_accessed(pfn);
568
569 if (is_dirty_spte(old_spte))
570 kvm_set_pfn_dirty(pfn);
571
572 return 1;
573 }
574
575 /*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 return __get_spte_lockless(sptep);
588 }
589
590 /* Restore an acc-track PTE back to a regular PTE */
591 static u64 restore_acc_track_spte(u64 spte)
592 {
593 u64 new_spte = spte;
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596
597 WARN_ON_ONCE(spte_ad_enabled(spte));
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603 new_spte |= saved_bits;
604
605 return new_spte;
606 }
607
608 /* Returns the Accessed status of the PTE and resets it at the same time. */
609 static bool mmu_spte_age(u64 *sptep)
610 {
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
616 if (spte_ad_enabled(spte)) {
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632 }
633
634 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635 {
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
641
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647 }
648
649 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650 {
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657 local_irq_enable();
658 }
659
660 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661 {
662 int r;
663
664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667 if (r)
668 return r;
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
671 if (r)
672 return r;
673 if (maybe_indirect) {
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
676 if (r)
677 return r;
678 }
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689 }
690
691 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692 {
693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694 }
695
696 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697 {
698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699 }
700
701 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702 {
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707 }
708
709 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710 {
711 if (!sp->role.direct) {
712 sp->gfns[index] = gfn;
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
721 }
722
723 /*
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
726 */
727 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
730 {
731 unsigned long idx;
732
733 idx = gfn_to_index(gfn, slot->base_gfn, level);
734 return &slot->arch.lpage_info[level - 2][idx];
735 }
736
737 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739 {
740 struct kvm_lpage_info *linfo;
741 int i;
742
743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748 }
749
750 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751 {
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753 }
754
755 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756 {
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758 }
759
760 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761 {
762 struct kvm_memslots *slots;
763 struct kvm_memory_slot *slot;
764 gfn_t gfn;
765
766 kvm->arch.indirect_shadow_pages++;
767 gfn = sp->gfn;
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
770
771 /* the non-leaf shadow pages are keeping readonly. */
772 if (sp->role.level > PG_LEVEL_4K)
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
777 }
778
779 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780 {
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
787 sp->lpage_disallowed = true;
788 }
789
790 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791 {
792 struct kvm_memslots *slots;
793 struct kvm_memory_slot *slot;
794 gfn_t gfn;
795
796 kvm->arch.indirect_shadow_pages--;
797 gfn = sp->gfn;
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
800 if (sp->role.level > PG_LEVEL_4K)
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
804 kvm_mmu_gfn_allow_lpage(slot, gfn);
805 }
806
807 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
811 list_del(&sp->lpage_disallowed_link);
812 }
813
814 static struct kvm_memory_slot *
815 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
817 {
818 struct kvm_memory_slot *slot;
819
820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
824 return NULL;
825
826 return slot;
827 }
828
829 /*
830 * About rmap_head encoding:
831 *
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834 * pte_list_desc containing more mappings.
835 */
836
837 /*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
839 */
840 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841 struct kvm_rmap_head *rmap_head)
842 {
843 struct pte_list_desc *desc;
844 int i, count = 0;
845
846 if (!rmap_head->val) {
847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
852 desc->sptes[0] = (u64 *)rmap_head->val;
853 desc->sptes[1] = spte;
854 rmap_head->val = (unsigned long)desc | 1;
855 ++count;
856 } else {
857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859 while (desc->sptes[PTE_LIST_EXT-1]) {
860 count += PTE_LIST_EXT;
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
867 desc = desc->more;
868 }
869 for (i = 0; desc->sptes[i]; ++i)
870 ++count;
871 desc->sptes[i] = spte;
872 }
873 return count;
874 }
875
876 static void
877 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
880 {
881 int j;
882
883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884 ;
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
890 rmap_head->val = 0;
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
895 rmap_head->val = (unsigned long)desc->more | 1;
896 mmu_free_pte_list_desc(desc);
897 }
898
899 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900 {
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
903 int i;
904
905 if (!rmap_head->val) {
906 pr_err("%s: %p 0->BUG\n", __func__, spte);
907 BUG();
908 } else if (!(rmap_head->val & 1)) {
909 rmap_printk("%s: %p 1->0\n", __func__, spte);
910 if ((u64 *)rmap_head->val != spte) {
911 pr_err("%s: %p 1->BUG\n", __func__, spte);
912 BUG();
913 }
914 rmap_head->val = 0;
915 } else {
916 rmap_printk("%s: %p many->many\n", __func__, spte);
917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918 prev_desc = NULL;
919 while (desc) {
920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921 if (desc->sptes[i] == spte) {
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
924 return;
925 }
926 }
927 prev_desc = desc;
928 desc = desc->more;
929 }
930 pr_err("%s: %p many->many\n", __func__, spte);
931 BUG();
932 }
933 }
934
935 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936 {
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939 }
940
941 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
943 {
944 unsigned long idx;
945
946 idx = gfn_to_index(gfn, slot->base_gfn, level);
947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948 }
949
950 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
952 {
953 struct kvm_memslots *slots;
954 struct kvm_memory_slot *slot;
955
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
958 return __gfn_to_rmap(gfn, sp->role.level, slot);
959 }
960
961 static bool rmap_can_add(struct kvm_vcpu *vcpu)
962 {
963 struct kvm_mmu_memory_cache *mc;
964
965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
966 return kvm_mmu_memory_cache_nr_free_objects(mc);
967 }
968
969 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970 {
971 struct kvm_mmu_page *sp;
972 struct kvm_rmap_head *rmap_head;
973
974 sp = sptep_to_sp(spte);
975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
978 }
979
980 static void rmap_remove(struct kvm *kvm, u64 *spte)
981 {
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
984 struct kvm_rmap_head *rmap_head;
985
986 sp = sptep_to_sp(spte);
987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
989 __pte_list_remove(spte, rmap_head);
990 }
991
992 /*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996 struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000 };
1001
1002 /*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
1005 * information in the iterator may not be valid.
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
1009 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1011 {
1012 u64 *sptep;
1013
1014 if (!rmap_head->val)
1015 return NULL;
1016
1017 if (!(rmap_head->val & 1)) {
1018 iter->desc = NULL;
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1021 }
1022
1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 iter->pos = 0;
1025 sptep = iter->desc->sptes[iter->pos];
1026 out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1029 }
1030
1031 /*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036 static u64 *rmap_get_next(struct rmap_iterator *iter)
1037 {
1038 u64 *sptep;
1039
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
1045 goto out;
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1055 }
1056 }
1057
1058 return NULL;
1059 out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1062 }
1063
1064 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1066 _spte_; _spte_ = rmap_get_next(_iter_))
1067
1068 static void drop_spte(struct kvm *kvm, u64 *sptep)
1069 {
1070 if (mmu_spte_clear_track_bits(sptep))
1071 rmap_remove(kvm, sptep);
1072 }
1073
1074
1075 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077 if (is_large_pte(*sptep)) {
1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085 }
1086
1087 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088 {
1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
1095 }
1096
1097 /*
1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
1099 * spte write-protection is caused by protecting shadow page table.
1100 *
1101 * Note: write protection is difference between dirty logging and spte
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
1107 *
1108 * Return true if tlb need be flushed.
1109 */
1110 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111 {
1112 u64 spte = *sptep;
1113
1114 if (!is_writable_pte(spte) &&
1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116 return false;
1117
1118 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
1122 spte = spte & ~PT_WRITABLE_MASK;
1123
1124 return mmu_spte_update(sptep, spte);
1125 }
1126
1127 static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
1129 bool pt_protect)
1130 {
1131 u64 *sptep;
1132 struct rmap_iterator iter;
1133 bool flush = false;
1134
1135 for_each_rmap_spte(rmap_head, &iter, sptep)
1136 flush |= spte_write_protect(sptep, pt_protect);
1137
1138 return flush;
1139 }
1140
1141 static bool spte_clear_dirty(u64 *sptep)
1142 {
1143 u64 spte = *sptep;
1144
1145 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146
1147 MMU_WARN_ON(!spte_ad_enabled(spte));
1148 spte &= ~shadow_dirty_mask;
1149 return mmu_spte_update(sptep, spte);
1150 }
1151
1152 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153 {
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1156 if (was_writable && !spte_ad_enabled(*sptep))
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160 }
1161
1162 /*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
1168 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169 {
1170 u64 *sptep;
1171 struct rmap_iterator iter;
1172 bool flush = false;
1173
1174 for_each_rmap_spte(rmap_head, &iter, sptep)
1175 if (spte_ad_need_write_protect(*sptep))
1176 flush |= spte_wrprot_for_clear_dirty(sptep);
1177 else
1178 flush |= spte_clear_dirty(sptep);
1179
1180 return flush;
1181 }
1182
1183 static bool spte_set_dirty(u64 *sptep)
1184 {
1185 u64 spte = *sptep;
1186
1187 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188
1189 /*
1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191 * do not bother adding back write access to pages marked
1192 * SPTE_AD_WRPROT_ONLY_MASK.
1193 */
1194 spte |= shadow_dirty_mask;
1195
1196 return mmu_spte_update(sptep, spte);
1197 }
1198
1199 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200 {
1201 u64 *sptep;
1202 struct rmap_iterator iter;
1203 bool flush = false;
1204
1205 for_each_rmap_spte(rmap_head, &iter, sptep)
1206 if (spte_ad_enabled(*sptep))
1207 flush |= spte_set_dirty(sptep);
1208
1209 return flush;
1210 }
1211
1212 /**
1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214 * @kvm: kvm instance
1215 * @slot: slot to protect
1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217 * @mask: indicates which pages we should protect
1218 *
1219 * Used when we do not need to care about huge page mappings: e.g. during dirty
1220 * logging we do not have any such mappings.
1221 */
1222 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223 struct kvm_memory_slot *slot,
1224 gfn_t gfn_offset, unsigned long mask)
1225 {
1226 struct kvm_rmap_head *rmap_head;
1227
1228 if (kvm->arch.tdp_mmu_enabled)
1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 slot->base_gfn + gfn_offset, mask, true);
1231 while (mask) {
1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233 PG_LEVEL_4K, slot);
1234 __rmap_write_protect(kvm, rmap_head, false);
1235
1236 /* clear the first set bit */
1237 mask &= mask - 1;
1238 }
1239 }
1240
1241 /**
1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243 * protect the page if the D-bit isn't supported.
1244 * @kvm: kvm instance
1245 * @slot: slot to clear D-bit
1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247 * @mask: indicates which pages we should clear D-bit
1248 *
1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250 */
1251 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 struct kvm_memory_slot *slot,
1253 gfn_t gfn_offset, unsigned long mask)
1254 {
1255 struct kvm_rmap_head *rmap_head;
1256
1257 if (kvm->arch.tdp_mmu_enabled)
1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 slot->base_gfn + gfn_offset, mask, false);
1260 while (mask) {
1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262 PG_LEVEL_4K, slot);
1263 __rmap_clear_dirty(kvm, rmap_head);
1264
1265 /* clear the first set bit */
1266 mask &= mask - 1;
1267 }
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
1271 /**
1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273 * PT level pages.
1274 *
1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276 * enable dirty logging for them.
1277 *
1278 * Used when we do not need to care about huge page mappings: e.g. during dirty
1279 * logging we do not have any such mappings.
1280 */
1281 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 struct kvm_memory_slot *slot,
1283 gfn_t gfn_offset, unsigned long mask)
1284 {
1285 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287 mask);
1288 else
1289 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290 }
1291
1292 int kvm_cpu_dirty_log_size(void)
1293 {
1294 if (kvm_x86_ops.cpu_dirty_log_size)
1295 return kvm_x86_ops.cpu_dirty_log_size();
1296
1297 return 0;
1298 }
1299
1300 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1301 struct kvm_memory_slot *slot, u64 gfn)
1302 {
1303 struct kvm_rmap_head *rmap_head;
1304 int i;
1305 bool write_protected = false;
1306
1307 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1308 rmap_head = __gfn_to_rmap(gfn, i, slot);
1309 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1310 }
1311
1312 if (kvm->arch.tdp_mmu_enabled)
1313 write_protected |=
1314 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1315
1316 return write_protected;
1317 }
1318
1319 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1320 {
1321 struct kvm_memory_slot *slot;
1322
1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1325 }
1326
1327 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1328 {
1329 u64 *sptep;
1330 struct rmap_iterator iter;
1331 bool flush = false;
1332
1333 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1334 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1335
1336 pte_list_remove(rmap_head, sptep);
1337 flush = true;
1338 }
1339
1340 return flush;
1341 }
1342
1343 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1344 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1345 unsigned long data)
1346 {
1347 return kvm_zap_rmapp(kvm, rmap_head);
1348 }
1349
1350 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1351 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1352 unsigned long data)
1353 {
1354 u64 *sptep;
1355 struct rmap_iterator iter;
1356 int need_flush = 0;
1357 u64 new_spte;
1358 pte_t *ptep = (pte_t *)data;
1359 kvm_pfn_t new_pfn;
1360
1361 WARN_ON(pte_huge(*ptep));
1362 new_pfn = pte_pfn(*ptep);
1363
1364 restart:
1365 for_each_rmap_spte(rmap_head, &iter, sptep) {
1366 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1367 sptep, *sptep, gfn, level);
1368
1369 need_flush = 1;
1370
1371 if (pte_write(*ptep)) {
1372 pte_list_remove(rmap_head, sptep);
1373 goto restart;
1374 } else {
1375 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1376 *sptep, new_pfn);
1377
1378 mmu_spte_clear_track_bits(sptep);
1379 mmu_spte_set(sptep, new_spte);
1380 }
1381 }
1382
1383 if (need_flush && kvm_available_flush_tlb_with_range()) {
1384 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1385 return 0;
1386 }
1387
1388 return need_flush;
1389 }
1390
1391 struct slot_rmap_walk_iterator {
1392 /* input fields. */
1393 struct kvm_memory_slot *slot;
1394 gfn_t start_gfn;
1395 gfn_t end_gfn;
1396 int start_level;
1397 int end_level;
1398
1399 /* output fields. */
1400 gfn_t gfn;
1401 struct kvm_rmap_head *rmap;
1402 int level;
1403
1404 /* private field. */
1405 struct kvm_rmap_head *end_rmap;
1406 };
1407
1408 static void
1409 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1410 {
1411 iterator->level = level;
1412 iterator->gfn = iterator->start_gfn;
1413 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1414 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1415 iterator->slot);
1416 }
1417
1418 static void
1419 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1420 struct kvm_memory_slot *slot, int start_level,
1421 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1422 {
1423 iterator->slot = slot;
1424 iterator->start_level = start_level;
1425 iterator->end_level = end_level;
1426 iterator->start_gfn = start_gfn;
1427 iterator->end_gfn = end_gfn;
1428
1429 rmap_walk_init_level(iterator, iterator->start_level);
1430 }
1431
1432 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1433 {
1434 return !!iterator->rmap;
1435 }
1436
1437 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1438 {
1439 if (++iterator->rmap <= iterator->end_rmap) {
1440 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1441 return;
1442 }
1443
1444 if (++iterator->level > iterator->end_level) {
1445 iterator->rmap = NULL;
1446 return;
1447 }
1448
1449 rmap_walk_init_level(iterator, iterator->level);
1450 }
1451
1452 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1453 _start_gfn, _end_gfn, _iter_) \
1454 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1455 _end_level_, _start_gfn, _end_gfn); \
1456 slot_rmap_walk_okay(_iter_); \
1457 slot_rmap_walk_next(_iter_))
1458
1459 static int kvm_handle_hva_range(struct kvm *kvm,
1460 unsigned long start,
1461 unsigned long end,
1462 unsigned long data,
1463 int (*handler)(struct kvm *kvm,
1464 struct kvm_rmap_head *rmap_head,
1465 struct kvm_memory_slot *slot,
1466 gfn_t gfn,
1467 int level,
1468 unsigned long data))
1469 {
1470 struct kvm_memslots *slots;
1471 struct kvm_memory_slot *memslot;
1472 struct slot_rmap_walk_iterator iterator;
1473 int ret = 0;
1474 int i;
1475
1476 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1477 slots = __kvm_memslots(kvm, i);
1478 kvm_for_each_memslot(memslot, slots) {
1479 unsigned long hva_start, hva_end;
1480 gfn_t gfn_start, gfn_end;
1481
1482 hva_start = max(start, memslot->userspace_addr);
1483 hva_end = min(end, memslot->userspace_addr +
1484 (memslot->npages << PAGE_SHIFT));
1485 if (hva_start >= hva_end)
1486 continue;
1487 /*
1488 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1489 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1490 */
1491 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1492 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1493
1494 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1495 KVM_MAX_HUGEPAGE_LEVEL,
1496 gfn_start, gfn_end - 1,
1497 &iterator)
1498 ret |= handler(kvm, iterator.rmap, memslot,
1499 iterator.gfn, iterator.level, data);
1500 }
1501 }
1502
1503 return ret;
1504 }
1505
1506 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1507 unsigned long data,
1508 int (*handler)(struct kvm *kvm,
1509 struct kvm_rmap_head *rmap_head,
1510 struct kvm_memory_slot *slot,
1511 gfn_t gfn, int level,
1512 unsigned long data))
1513 {
1514 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1515 }
1516
1517 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1518 unsigned flags)
1519 {
1520 int r;
1521
1522 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1523
1524 if (kvm->arch.tdp_mmu_enabled)
1525 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1526
1527 return r;
1528 }
1529
1530 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1531 {
1532 int r;
1533
1534 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1535
1536 if (kvm->arch.tdp_mmu_enabled)
1537 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1538
1539 return r;
1540 }
1541
1542 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1543 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1544 unsigned long data)
1545 {
1546 u64 *sptep;
1547 struct rmap_iterator iter;
1548 int young = 0;
1549
1550 for_each_rmap_spte(rmap_head, &iter, sptep)
1551 young |= mmu_spte_age(sptep);
1552
1553 trace_kvm_age_page(gfn, level, slot, young);
1554 return young;
1555 }
1556
1557 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1558 struct kvm_memory_slot *slot, gfn_t gfn,
1559 int level, unsigned long data)
1560 {
1561 u64 *sptep;
1562 struct rmap_iterator iter;
1563
1564 for_each_rmap_spte(rmap_head, &iter, sptep)
1565 if (is_accessed_spte(*sptep))
1566 return 1;
1567 return 0;
1568 }
1569
1570 #define RMAP_RECYCLE_THRESHOLD 1000
1571
1572 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1573 {
1574 struct kvm_rmap_head *rmap_head;
1575 struct kvm_mmu_page *sp;
1576
1577 sp = sptep_to_sp(spte);
1578
1579 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1580
1581 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1582 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1583 KVM_PAGES_PER_HPAGE(sp->role.level));
1584 }
1585
1586 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1587 {
1588 int young = false;
1589
1590 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1591 if (kvm->arch.tdp_mmu_enabled)
1592 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1593
1594 return young;
1595 }
1596
1597 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1598 {
1599 int young = false;
1600
1601 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1602 if (kvm->arch.tdp_mmu_enabled)
1603 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1604
1605 return young;
1606 }
1607
1608 #ifdef MMU_DEBUG
1609 static int is_empty_shadow_page(u64 *spt)
1610 {
1611 u64 *pos;
1612 u64 *end;
1613
1614 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1615 if (is_shadow_present_pte(*pos)) {
1616 printk(KERN_ERR "%s: %p %llx\n", __func__,
1617 pos, *pos);
1618 return 0;
1619 }
1620 return 1;
1621 }
1622 #endif
1623
1624 /*
1625 * This value is the sum of all of the kvm instances's
1626 * kvm->arch.n_used_mmu_pages values. We need a global,
1627 * aggregate version in order to make the slab shrinker
1628 * faster
1629 */
1630 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1631 {
1632 kvm->arch.n_used_mmu_pages += nr;
1633 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1634 }
1635
1636 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1637 {
1638 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1639 hlist_del(&sp->hash_link);
1640 list_del(&sp->link);
1641 free_page((unsigned long)sp->spt);
1642 if (!sp->role.direct)
1643 free_page((unsigned long)sp->gfns);
1644 kmem_cache_free(mmu_page_header_cache, sp);
1645 }
1646
1647 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1648 {
1649 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1650 }
1651
1652 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1653 struct kvm_mmu_page *sp, u64 *parent_pte)
1654 {
1655 if (!parent_pte)
1656 return;
1657
1658 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1659 }
1660
1661 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1662 u64 *parent_pte)
1663 {
1664 __pte_list_remove(parent_pte, &sp->parent_ptes);
1665 }
1666
1667 static void drop_parent_pte(struct kvm_mmu_page *sp,
1668 u64 *parent_pte)
1669 {
1670 mmu_page_remove_parent_pte(sp, parent_pte);
1671 mmu_spte_clear_no_track(parent_pte);
1672 }
1673
1674 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1675 {
1676 struct kvm_mmu_page *sp;
1677
1678 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1679 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1680 if (!direct)
1681 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1682 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1683
1684 /*
1685 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1686 * depends on valid pages being added to the head of the list. See
1687 * comments in kvm_zap_obsolete_pages().
1688 */
1689 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1690 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1691 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1692 return sp;
1693 }
1694
1695 static void mark_unsync(u64 *spte);
1696 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1697 {
1698 u64 *sptep;
1699 struct rmap_iterator iter;
1700
1701 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1702 mark_unsync(sptep);
1703 }
1704 }
1705
1706 static void mark_unsync(u64 *spte)
1707 {
1708 struct kvm_mmu_page *sp;
1709 unsigned int index;
1710
1711 sp = sptep_to_sp(spte);
1712 index = spte - sp->spt;
1713 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1714 return;
1715 if (sp->unsync_children++)
1716 return;
1717 kvm_mmu_mark_parents_unsync(sp);
1718 }
1719
1720 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1721 struct kvm_mmu_page *sp)
1722 {
1723 return 0;
1724 }
1725
1726 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1727 struct kvm_mmu_page *sp, u64 *spte,
1728 const void *pte)
1729 {
1730 WARN_ON(1);
1731 }
1732
1733 #define KVM_PAGE_ARRAY_NR 16
1734
1735 struct kvm_mmu_pages {
1736 struct mmu_page_and_offset {
1737 struct kvm_mmu_page *sp;
1738 unsigned int idx;
1739 } page[KVM_PAGE_ARRAY_NR];
1740 unsigned int nr;
1741 };
1742
1743 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1744 int idx)
1745 {
1746 int i;
1747
1748 if (sp->unsync)
1749 for (i=0; i < pvec->nr; i++)
1750 if (pvec->page[i].sp == sp)
1751 return 0;
1752
1753 pvec->page[pvec->nr].sp = sp;
1754 pvec->page[pvec->nr].idx = idx;
1755 pvec->nr++;
1756 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1757 }
1758
1759 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1760 {
1761 --sp->unsync_children;
1762 WARN_ON((int)sp->unsync_children < 0);
1763 __clear_bit(idx, sp->unsync_child_bitmap);
1764 }
1765
1766 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1767 struct kvm_mmu_pages *pvec)
1768 {
1769 int i, ret, nr_unsync_leaf = 0;
1770
1771 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1772 struct kvm_mmu_page *child;
1773 u64 ent = sp->spt[i];
1774
1775 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1776 clear_unsync_child_bit(sp, i);
1777 continue;
1778 }
1779
1780 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1781
1782 if (child->unsync_children) {
1783 if (mmu_pages_add(pvec, child, i))
1784 return -ENOSPC;
1785
1786 ret = __mmu_unsync_walk(child, pvec);
1787 if (!ret) {
1788 clear_unsync_child_bit(sp, i);
1789 continue;
1790 } else if (ret > 0) {
1791 nr_unsync_leaf += ret;
1792 } else
1793 return ret;
1794 } else if (child->unsync) {
1795 nr_unsync_leaf++;
1796 if (mmu_pages_add(pvec, child, i))
1797 return -ENOSPC;
1798 } else
1799 clear_unsync_child_bit(sp, i);
1800 }
1801
1802 return nr_unsync_leaf;
1803 }
1804
1805 #define INVALID_INDEX (-1)
1806
1807 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1808 struct kvm_mmu_pages *pvec)
1809 {
1810 pvec->nr = 0;
1811 if (!sp->unsync_children)
1812 return 0;
1813
1814 mmu_pages_add(pvec, sp, INVALID_INDEX);
1815 return __mmu_unsync_walk(sp, pvec);
1816 }
1817
1818 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1819 {
1820 WARN_ON(!sp->unsync);
1821 trace_kvm_mmu_sync_page(sp);
1822 sp->unsync = 0;
1823 --kvm->stat.mmu_unsync;
1824 }
1825
1826 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1827 struct list_head *invalid_list);
1828 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1829 struct list_head *invalid_list);
1830
1831 #define for_each_valid_sp(_kvm, _sp, _list) \
1832 hlist_for_each_entry(_sp, _list, hash_link) \
1833 if (is_obsolete_sp((_kvm), (_sp))) { \
1834 } else
1835
1836 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1837 for_each_valid_sp(_kvm, _sp, \
1838 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1839 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1840
1841 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1842 {
1843 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1844 }
1845
1846 /* @sp->gfn should be write-protected at the call site */
1847 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1848 struct list_head *invalid_list)
1849 {
1850 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1851 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1852 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1853 return false;
1854 }
1855
1856 return true;
1857 }
1858
1859 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1860 struct list_head *invalid_list,
1861 bool remote_flush)
1862 {
1863 if (!remote_flush && list_empty(invalid_list))
1864 return false;
1865
1866 if (!list_empty(invalid_list))
1867 kvm_mmu_commit_zap_page(kvm, invalid_list);
1868 else
1869 kvm_flush_remote_tlbs(kvm);
1870 return true;
1871 }
1872
1873 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1874 struct list_head *invalid_list,
1875 bool remote_flush, bool local_flush)
1876 {
1877 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1878 return;
1879
1880 if (local_flush)
1881 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1882 }
1883
1884 #ifdef CONFIG_KVM_MMU_AUDIT
1885 #include "mmu_audit.c"
1886 #else
1887 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1888 static void mmu_audit_disable(void) { }
1889 #endif
1890
1891 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1892 {
1893 return sp->role.invalid ||
1894 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1895 }
1896
1897 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1898 struct list_head *invalid_list)
1899 {
1900 kvm_unlink_unsync_page(vcpu->kvm, sp);
1901 return __kvm_sync_page(vcpu, sp, invalid_list);
1902 }
1903
1904 /* @gfn should be write-protected at the call site */
1905 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1906 struct list_head *invalid_list)
1907 {
1908 struct kvm_mmu_page *s;
1909 bool ret = false;
1910
1911 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1912 if (!s->unsync)
1913 continue;
1914
1915 WARN_ON(s->role.level != PG_LEVEL_4K);
1916 ret |= kvm_sync_page(vcpu, s, invalid_list);
1917 }
1918
1919 return ret;
1920 }
1921
1922 struct mmu_page_path {
1923 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1924 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1925 };
1926
1927 #define for_each_sp(pvec, sp, parents, i) \
1928 for (i = mmu_pages_first(&pvec, &parents); \
1929 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1930 i = mmu_pages_next(&pvec, &parents, i))
1931
1932 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1933 struct mmu_page_path *parents,
1934 int i)
1935 {
1936 int n;
1937
1938 for (n = i+1; n < pvec->nr; n++) {
1939 struct kvm_mmu_page *sp = pvec->page[n].sp;
1940 unsigned idx = pvec->page[n].idx;
1941 int level = sp->role.level;
1942
1943 parents->idx[level-1] = idx;
1944 if (level == PG_LEVEL_4K)
1945 break;
1946
1947 parents->parent[level-2] = sp;
1948 }
1949
1950 return n;
1951 }
1952
1953 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1954 struct mmu_page_path *parents)
1955 {
1956 struct kvm_mmu_page *sp;
1957 int level;
1958
1959 if (pvec->nr == 0)
1960 return 0;
1961
1962 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1963
1964 sp = pvec->page[0].sp;
1965 level = sp->role.level;
1966 WARN_ON(level == PG_LEVEL_4K);
1967
1968 parents->parent[level-2] = sp;
1969
1970 /* Also set up a sentinel. Further entries in pvec are all
1971 * children of sp, so this element is never overwritten.
1972 */
1973 parents->parent[level-1] = NULL;
1974 return mmu_pages_next(pvec, parents, 0);
1975 }
1976
1977 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1978 {
1979 struct kvm_mmu_page *sp;
1980 unsigned int level = 0;
1981
1982 do {
1983 unsigned int idx = parents->idx[level];
1984 sp = parents->parent[level];
1985 if (!sp)
1986 return;
1987
1988 WARN_ON(idx == INVALID_INDEX);
1989 clear_unsync_child_bit(sp, idx);
1990 level++;
1991 } while (!sp->unsync_children);
1992 }
1993
1994 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1995 struct kvm_mmu_page *parent)
1996 {
1997 int i;
1998 struct kvm_mmu_page *sp;
1999 struct mmu_page_path parents;
2000 struct kvm_mmu_pages pages;
2001 LIST_HEAD(invalid_list);
2002 bool flush = false;
2003
2004 while (mmu_unsync_walk(parent, &pages)) {
2005 bool protected = false;
2006
2007 for_each_sp(pages, sp, parents, i)
2008 protected |= rmap_write_protect(vcpu, sp->gfn);
2009
2010 if (protected) {
2011 kvm_flush_remote_tlbs(vcpu->kvm);
2012 flush = false;
2013 }
2014
2015 for_each_sp(pages, sp, parents, i) {
2016 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2017 mmu_pages_clear_parents(&parents);
2018 }
2019 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2020 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2021 cond_resched_lock(&vcpu->kvm->mmu_lock);
2022 flush = false;
2023 }
2024 }
2025
2026 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2027 }
2028
2029 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2030 {
2031 atomic_set(&sp->write_flooding_count, 0);
2032 }
2033
2034 static void clear_sp_write_flooding_count(u64 *spte)
2035 {
2036 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2037 }
2038
2039 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2040 gfn_t gfn,
2041 gva_t gaddr,
2042 unsigned level,
2043 int direct,
2044 unsigned int access)
2045 {
2046 bool direct_mmu = vcpu->arch.mmu->direct_map;
2047 union kvm_mmu_page_role role;
2048 struct hlist_head *sp_list;
2049 unsigned quadrant;
2050 struct kvm_mmu_page *sp;
2051 bool need_sync = false;
2052 bool flush = false;
2053 int collisions = 0;
2054 LIST_HEAD(invalid_list);
2055
2056 role = vcpu->arch.mmu->mmu_role.base;
2057 role.level = level;
2058 role.direct = direct;
2059 if (role.direct)
2060 role.gpte_is_8_bytes = true;
2061 role.access = access;
2062 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2063 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2064 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2065 role.quadrant = quadrant;
2066 }
2067
2068 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2069 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2070 if (sp->gfn != gfn) {
2071 collisions++;
2072 continue;
2073 }
2074
2075 if (!need_sync && sp->unsync)
2076 need_sync = true;
2077
2078 if (sp->role.word != role.word)
2079 continue;
2080
2081 if (direct_mmu)
2082 goto trace_get_page;
2083
2084 if (sp->unsync) {
2085 /* The page is good, but __kvm_sync_page might still end
2086 * up zapping it. If so, break in order to rebuild it.
2087 */
2088 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2089 break;
2090
2091 WARN_ON(!list_empty(&invalid_list));
2092 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2093 }
2094
2095 if (sp->unsync_children)
2096 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2097
2098 __clear_sp_write_flooding_count(sp);
2099
2100 trace_get_page:
2101 trace_kvm_mmu_get_page(sp, false);
2102 goto out;
2103 }
2104
2105 ++vcpu->kvm->stat.mmu_cache_miss;
2106
2107 sp = kvm_mmu_alloc_page(vcpu, direct);
2108
2109 sp->gfn = gfn;
2110 sp->role = role;
2111 hlist_add_head(&sp->hash_link, sp_list);
2112 if (!direct) {
2113 /*
2114 * we should do write protection before syncing pages
2115 * otherwise the content of the synced shadow page may
2116 * be inconsistent with guest page table.
2117 */
2118 account_shadowed(vcpu->kvm, sp);
2119 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2120 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2121
2122 if (level > PG_LEVEL_4K && need_sync)
2123 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2124 }
2125 trace_kvm_mmu_get_page(sp, true);
2126
2127 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2128 out:
2129 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2130 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2131 return sp;
2132 }
2133
2134 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2135 struct kvm_vcpu *vcpu, hpa_t root,
2136 u64 addr)
2137 {
2138 iterator->addr = addr;
2139 iterator->shadow_addr = root;
2140 iterator->level = vcpu->arch.mmu->shadow_root_level;
2141
2142 if (iterator->level == PT64_ROOT_4LEVEL &&
2143 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2144 !vcpu->arch.mmu->direct_map)
2145 --iterator->level;
2146
2147 if (iterator->level == PT32E_ROOT_LEVEL) {
2148 /*
2149 * prev_root is currently only used for 64-bit hosts. So only
2150 * the active root_hpa is valid here.
2151 */
2152 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2153
2154 iterator->shadow_addr
2155 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2156 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2157 --iterator->level;
2158 if (!iterator->shadow_addr)
2159 iterator->level = 0;
2160 }
2161 }
2162
2163 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2164 struct kvm_vcpu *vcpu, u64 addr)
2165 {
2166 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2167 addr);
2168 }
2169
2170 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2171 {
2172 if (iterator->level < PG_LEVEL_4K)
2173 return false;
2174
2175 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2176 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2177 return true;
2178 }
2179
2180 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2181 u64 spte)
2182 {
2183 if (is_last_spte(spte, iterator->level)) {
2184 iterator->level = 0;
2185 return;
2186 }
2187
2188 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2189 --iterator->level;
2190 }
2191
2192 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2193 {
2194 __shadow_walk_next(iterator, *iterator->sptep);
2195 }
2196
2197 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2198 struct kvm_mmu_page *sp)
2199 {
2200 u64 spte;
2201
2202 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2203
2204 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2205
2206 mmu_spte_set(sptep, spte);
2207
2208 mmu_page_add_parent_pte(vcpu, sp, sptep);
2209
2210 if (sp->unsync_children || sp->unsync)
2211 mark_unsync(sptep);
2212 }
2213
2214 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2215 unsigned direct_access)
2216 {
2217 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2218 struct kvm_mmu_page *child;
2219
2220 /*
2221 * For the direct sp, if the guest pte's dirty bit
2222 * changed form clean to dirty, it will corrupt the
2223 * sp's access: allow writable in the read-only sp,
2224 * so we should update the spte at this point to get
2225 * a new sp with the correct access.
2226 */
2227 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2228 if (child->role.access == direct_access)
2229 return;
2230
2231 drop_parent_pte(child, sptep);
2232 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2233 }
2234 }
2235
2236 /* Returns the number of zapped non-leaf child shadow pages. */
2237 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2238 u64 *spte, struct list_head *invalid_list)
2239 {
2240 u64 pte;
2241 struct kvm_mmu_page *child;
2242
2243 pte = *spte;
2244 if (is_shadow_present_pte(pte)) {
2245 if (is_last_spte(pte, sp->role.level)) {
2246 drop_spte(kvm, spte);
2247 if (is_large_pte(pte))
2248 --kvm->stat.lpages;
2249 } else {
2250 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2251 drop_parent_pte(child, spte);
2252
2253 /*
2254 * Recursively zap nested TDP SPs, parentless SPs are
2255 * unlikely to be used again in the near future. This
2256 * avoids retaining a large number of stale nested SPs.
2257 */
2258 if (tdp_enabled && invalid_list &&
2259 child->role.guest_mode && !child->parent_ptes.val)
2260 return kvm_mmu_prepare_zap_page(kvm, child,
2261 invalid_list);
2262 }
2263 } else if (is_mmio_spte(pte)) {
2264 mmu_spte_clear_no_track(spte);
2265 }
2266 return 0;
2267 }
2268
2269 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2270 struct kvm_mmu_page *sp,
2271 struct list_head *invalid_list)
2272 {
2273 int zapped = 0;
2274 unsigned i;
2275
2276 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2277 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2278
2279 return zapped;
2280 }
2281
2282 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2283 {
2284 u64 *sptep;
2285 struct rmap_iterator iter;
2286
2287 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2288 drop_parent_pte(sp, sptep);
2289 }
2290
2291 static int mmu_zap_unsync_children(struct kvm *kvm,
2292 struct kvm_mmu_page *parent,
2293 struct list_head *invalid_list)
2294 {
2295 int i, zapped = 0;
2296 struct mmu_page_path parents;
2297 struct kvm_mmu_pages pages;
2298
2299 if (parent->role.level == PG_LEVEL_4K)
2300 return 0;
2301
2302 while (mmu_unsync_walk(parent, &pages)) {
2303 struct kvm_mmu_page *sp;
2304
2305 for_each_sp(pages, sp, parents, i) {
2306 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2307 mmu_pages_clear_parents(&parents);
2308 zapped++;
2309 }
2310 }
2311
2312 return zapped;
2313 }
2314
2315 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2316 struct kvm_mmu_page *sp,
2317 struct list_head *invalid_list,
2318 int *nr_zapped)
2319 {
2320 bool list_unstable;
2321
2322 trace_kvm_mmu_prepare_zap_page(sp);
2323 ++kvm->stat.mmu_shadow_zapped;
2324 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2325 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2326 kvm_mmu_unlink_parents(kvm, sp);
2327
2328 /* Zapping children means active_mmu_pages has become unstable. */
2329 list_unstable = *nr_zapped;
2330
2331 if (!sp->role.invalid && !sp->role.direct)
2332 unaccount_shadowed(kvm, sp);
2333
2334 if (sp->unsync)
2335 kvm_unlink_unsync_page(kvm, sp);
2336 if (!sp->root_count) {
2337 /* Count self */
2338 (*nr_zapped)++;
2339
2340 /*
2341 * Already invalid pages (previously active roots) are not on
2342 * the active page list. See list_del() in the "else" case of
2343 * !sp->root_count.
2344 */
2345 if (sp->role.invalid)
2346 list_add(&sp->link, invalid_list);
2347 else
2348 list_move(&sp->link, invalid_list);
2349 kvm_mod_used_mmu_pages(kvm, -1);
2350 } else {
2351 /*
2352 * Remove the active root from the active page list, the root
2353 * will be explicitly freed when the root_count hits zero.
2354 */
2355 list_del(&sp->link);
2356
2357 /*
2358 * Obsolete pages cannot be used on any vCPUs, see the comment
2359 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2360 * treats invalid shadow pages as being obsolete.
2361 */
2362 if (!is_obsolete_sp(kvm, sp))
2363 kvm_reload_remote_mmus(kvm);
2364 }
2365
2366 if (sp->lpage_disallowed)
2367 unaccount_huge_nx_page(kvm, sp);
2368
2369 sp->role.invalid = 1;
2370 return list_unstable;
2371 }
2372
2373 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2374 struct list_head *invalid_list)
2375 {
2376 int nr_zapped;
2377
2378 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2379 return nr_zapped;
2380 }
2381
2382 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2383 struct list_head *invalid_list)
2384 {
2385 struct kvm_mmu_page *sp, *nsp;
2386
2387 if (list_empty(invalid_list))
2388 return;
2389
2390 /*
2391 * We need to make sure everyone sees our modifications to
2392 * the page tables and see changes to vcpu->mode here. The barrier
2393 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2394 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2395 *
2396 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2397 * guest mode and/or lockless shadow page table walks.
2398 */
2399 kvm_flush_remote_tlbs(kvm);
2400
2401 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2402 WARN_ON(!sp->role.invalid || sp->root_count);
2403 kvm_mmu_free_page(sp);
2404 }
2405 }
2406
2407 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2408 unsigned long nr_to_zap)
2409 {
2410 unsigned long total_zapped = 0;
2411 struct kvm_mmu_page *sp, *tmp;
2412 LIST_HEAD(invalid_list);
2413 bool unstable;
2414 int nr_zapped;
2415
2416 if (list_empty(&kvm->arch.active_mmu_pages))
2417 return 0;
2418
2419 restart:
2420 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2421 /*
2422 * Don't zap active root pages, the page itself can't be freed
2423 * and zapping it will just force vCPUs to realloc and reload.
2424 */
2425 if (sp->root_count)
2426 continue;
2427
2428 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2429 &nr_zapped);
2430 total_zapped += nr_zapped;
2431 if (total_zapped >= nr_to_zap)
2432 break;
2433
2434 if (unstable)
2435 goto restart;
2436 }
2437
2438 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2439
2440 kvm->stat.mmu_recycled += total_zapped;
2441 return total_zapped;
2442 }
2443
2444 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2445 {
2446 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2447 return kvm->arch.n_max_mmu_pages -
2448 kvm->arch.n_used_mmu_pages;
2449
2450 return 0;
2451 }
2452
2453 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2454 {
2455 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2456
2457 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2458 return 0;
2459
2460 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2461
2462 if (!kvm_mmu_available_pages(vcpu->kvm))
2463 return -ENOSPC;
2464 return 0;
2465 }
2466
2467 /*
2468 * Changing the number of mmu pages allocated to the vm
2469 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2470 */
2471 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2472 {
2473 spin_lock(&kvm->mmu_lock);
2474
2475 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2476 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2477 goal_nr_mmu_pages);
2478
2479 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2480 }
2481
2482 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2483
2484 spin_unlock(&kvm->mmu_lock);
2485 }
2486
2487 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2488 {
2489 struct kvm_mmu_page *sp;
2490 LIST_HEAD(invalid_list);
2491 int r;
2492
2493 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2494 r = 0;
2495 spin_lock(&kvm->mmu_lock);
2496 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2497 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2498 sp->role.word);
2499 r = 1;
2500 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2501 }
2502 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2503 spin_unlock(&kvm->mmu_lock);
2504
2505 return r;
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2508
2509 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2510 {
2511 trace_kvm_mmu_unsync_page(sp);
2512 ++vcpu->kvm->stat.mmu_unsync;
2513 sp->unsync = 1;
2514
2515 kvm_mmu_mark_parents_unsync(sp);
2516 }
2517
2518 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2519 bool can_unsync)
2520 {
2521 struct kvm_mmu_page *sp;
2522
2523 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2524 return true;
2525
2526 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2527 if (!can_unsync)
2528 return true;
2529
2530 if (sp->unsync)
2531 continue;
2532
2533 WARN_ON(sp->role.level != PG_LEVEL_4K);
2534 kvm_unsync_page(vcpu, sp);
2535 }
2536
2537 /*
2538 * We need to ensure that the marking of unsync pages is visible
2539 * before the SPTE is updated to allow writes because
2540 * kvm_mmu_sync_roots() checks the unsync flags without holding
2541 * the MMU lock and so can race with this. If the SPTE was updated
2542 * before the page had been marked as unsync-ed, something like the
2543 * following could happen:
2544 *
2545 * CPU 1 CPU 2
2546 * ---------------------------------------------------------------------
2547 * 1.2 Host updates SPTE
2548 * to be writable
2549 * 2.1 Guest writes a GPTE for GVA X.
2550 * (GPTE being in the guest page table shadowed
2551 * by the SP from CPU 1.)
2552 * This reads SPTE during the page table walk.
2553 * Since SPTE.W is read as 1, there is no
2554 * fault.
2555 *
2556 * 2.2 Guest issues TLB flush.
2557 * That causes a VM Exit.
2558 *
2559 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2560 * Since it is false, so it just returns.
2561 *
2562 * 2.4 Guest accesses GVA X.
2563 * Since the mapping in the SP was not updated,
2564 * so the old mapping for GVA X incorrectly
2565 * gets used.
2566 * 1.1 Host marks SP
2567 * as unsync
2568 * (sp->unsync = true)
2569 *
2570 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2571 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2572 * pairs with this write barrier.
2573 */
2574 smp_wmb();
2575
2576 return false;
2577 }
2578
2579 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2580 unsigned int pte_access, int level,
2581 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2582 bool can_unsync, bool host_writable)
2583 {
2584 u64 spte;
2585 struct kvm_mmu_page *sp;
2586 int ret;
2587
2588 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2589 return 0;
2590
2591 sp = sptep_to_sp(sptep);
2592
2593 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2594 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2595
2596 if (spte & PT_WRITABLE_MASK)
2597 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2598
2599 if (*sptep == spte)
2600 ret |= SET_SPTE_SPURIOUS;
2601 else if (mmu_spte_update(sptep, spte))
2602 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2603 return ret;
2604 }
2605
2606 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2607 unsigned int pte_access, bool write_fault, int level,
2608 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2609 bool host_writable)
2610 {
2611 int was_rmapped = 0;
2612 int rmap_count;
2613 int set_spte_ret;
2614 int ret = RET_PF_FIXED;
2615 bool flush = false;
2616
2617 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2618 *sptep, write_fault, gfn);
2619
2620 if (is_shadow_present_pte(*sptep)) {
2621 /*
2622 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2623 * the parent of the now unreachable PTE.
2624 */
2625 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2626 struct kvm_mmu_page *child;
2627 u64 pte = *sptep;
2628
2629 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2630 drop_parent_pte(child, sptep);
2631 flush = true;
2632 } else if (pfn != spte_to_pfn(*sptep)) {
2633 pgprintk("hfn old %llx new %llx\n",
2634 spte_to_pfn(*sptep), pfn);
2635 drop_spte(vcpu->kvm, sptep);
2636 flush = true;
2637 } else
2638 was_rmapped = 1;
2639 }
2640
2641 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2642 speculative, true, host_writable);
2643 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2644 if (write_fault)
2645 ret = RET_PF_EMULATE;
2646 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2647 }
2648
2649 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2650 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2651 KVM_PAGES_PER_HPAGE(level));
2652
2653 if (unlikely(is_mmio_spte(*sptep)))
2654 ret = RET_PF_EMULATE;
2655
2656 /*
2657 * The fault is fully spurious if and only if the new SPTE and old SPTE
2658 * are identical, and emulation is not required.
2659 */
2660 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2661 WARN_ON_ONCE(!was_rmapped);
2662 return RET_PF_SPURIOUS;
2663 }
2664
2665 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2666 trace_kvm_mmu_set_spte(level, gfn, sptep);
2667 if (!was_rmapped && is_large_pte(*sptep))
2668 ++vcpu->kvm->stat.lpages;
2669
2670 if (is_shadow_present_pte(*sptep)) {
2671 if (!was_rmapped) {
2672 rmap_count = rmap_add(vcpu, sptep, gfn);
2673 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2674 rmap_recycle(vcpu, sptep, gfn);
2675 }
2676 }
2677
2678 return ret;
2679 }
2680
2681 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2682 bool no_dirty_log)
2683 {
2684 struct kvm_memory_slot *slot;
2685
2686 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2687 if (!slot)
2688 return KVM_PFN_ERR_FAULT;
2689
2690 return gfn_to_pfn_memslot_atomic(slot, gfn);
2691 }
2692
2693 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2694 struct kvm_mmu_page *sp,
2695 u64 *start, u64 *end)
2696 {
2697 struct page *pages[PTE_PREFETCH_NUM];
2698 struct kvm_memory_slot *slot;
2699 unsigned int access = sp->role.access;
2700 int i, ret;
2701 gfn_t gfn;
2702
2703 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2704 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2705 if (!slot)
2706 return -1;
2707
2708 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2709 if (ret <= 0)
2710 return -1;
2711
2712 for (i = 0; i < ret; i++, gfn++, start++) {
2713 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2714 page_to_pfn(pages[i]), true, true);
2715 put_page(pages[i]);
2716 }
2717
2718 return 0;
2719 }
2720
2721 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2722 struct kvm_mmu_page *sp, u64 *sptep)
2723 {
2724 u64 *spte, *start = NULL;
2725 int i;
2726
2727 WARN_ON(!sp->role.direct);
2728
2729 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2730 spte = sp->spt + i;
2731
2732 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2733 if (is_shadow_present_pte(*spte) || spte == sptep) {
2734 if (!start)
2735 continue;
2736 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2737 break;
2738 start = NULL;
2739 } else if (!start)
2740 start = spte;
2741 }
2742 }
2743
2744 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2745 {
2746 struct kvm_mmu_page *sp;
2747
2748 sp = sptep_to_sp(sptep);
2749
2750 /*
2751 * Without accessed bits, there's no way to distinguish between
2752 * actually accessed translations and prefetched, so disable pte
2753 * prefetch if accessed bits aren't available.
2754 */
2755 if (sp_ad_disabled(sp))
2756 return;
2757
2758 if (sp->role.level > PG_LEVEL_4K)
2759 return;
2760
2761 __direct_pte_prefetch(vcpu, sp, sptep);
2762 }
2763
2764 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2765 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2766 {
2767 unsigned long hva;
2768 pte_t *pte;
2769 int level;
2770
2771 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2772 return PG_LEVEL_4K;
2773
2774 /*
2775 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2776 * is not solely for performance, it's also necessary to avoid the
2777 * "writable" check in __gfn_to_hva_many(), which will always fail on
2778 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2779 * page fault steps have already verified the guest isn't writing a
2780 * read-only memslot.
2781 */
2782 hva = __gfn_to_hva_memslot(slot, gfn);
2783
2784 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2785 if (unlikely(!pte))
2786 return PG_LEVEL_4K;
2787
2788 return level;
2789 }
2790
2791 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2792 int max_level, kvm_pfn_t *pfnp,
2793 bool huge_page_disallowed, int *req_level)
2794 {
2795 struct kvm_memory_slot *slot;
2796 struct kvm_lpage_info *linfo;
2797 kvm_pfn_t pfn = *pfnp;
2798 kvm_pfn_t mask;
2799 int level;
2800
2801 *req_level = PG_LEVEL_4K;
2802
2803 if (unlikely(max_level == PG_LEVEL_4K))
2804 return PG_LEVEL_4K;
2805
2806 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2807 return PG_LEVEL_4K;
2808
2809 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2810 if (!slot)
2811 return PG_LEVEL_4K;
2812
2813 max_level = min(max_level, max_huge_page_level);
2814 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2815 linfo = lpage_info_slot(gfn, slot, max_level);
2816 if (!linfo->disallow_lpage)
2817 break;
2818 }
2819
2820 if (max_level == PG_LEVEL_4K)
2821 return PG_LEVEL_4K;
2822
2823 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2824 if (level == PG_LEVEL_4K)
2825 return level;
2826
2827 *req_level = level = min(level, max_level);
2828
2829 /*
2830 * Enforce the iTLB multihit workaround after capturing the requested
2831 * level, which will be used to do precise, accurate accounting.
2832 */
2833 if (huge_page_disallowed)
2834 return PG_LEVEL_4K;
2835
2836 /*
2837 * mmu_notifier_retry() was successful and mmu_lock is held, so
2838 * the pmd can't be split from under us.
2839 */
2840 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2841 VM_BUG_ON((gfn & mask) != (pfn & mask));
2842 *pfnp = pfn & ~mask;
2843
2844 return level;
2845 }
2846
2847 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2848 kvm_pfn_t *pfnp, int *goal_levelp)
2849 {
2850 int level = *goal_levelp;
2851
2852 if (cur_level == level && level > PG_LEVEL_4K &&
2853 is_shadow_present_pte(spte) &&
2854 !is_large_pte(spte)) {
2855 /*
2856 * A small SPTE exists for this pfn, but FNAME(fetch)
2857 * and __direct_map would like to create a large PTE
2858 * instead: just force them to go down another level,
2859 * patching back for them into pfn the next 9 bits of
2860 * the address.
2861 */
2862 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2863 KVM_PAGES_PER_HPAGE(level - 1);
2864 *pfnp |= gfn & page_mask;
2865 (*goal_levelp)--;
2866 }
2867 }
2868
2869 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2870 int map_writable, int max_level, kvm_pfn_t pfn,
2871 bool prefault, bool is_tdp)
2872 {
2873 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2874 bool write = error_code & PFERR_WRITE_MASK;
2875 bool exec = error_code & PFERR_FETCH_MASK;
2876 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2877 struct kvm_shadow_walk_iterator it;
2878 struct kvm_mmu_page *sp;
2879 int level, req_level, ret;
2880 gfn_t gfn = gpa >> PAGE_SHIFT;
2881 gfn_t base_gfn = gfn;
2882
2883 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2884 return RET_PF_RETRY;
2885
2886 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2887 huge_page_disallowed, &req_level);
2888
2889 trace_kvm_mmu_spte_requested(gpa, level, pfn);
2890 for_each_shadow_entry(vcpu, gpa, it) {
2891 /*
2892 * We cannot overwrite existing page tables with an NX
2893 * large page, as the leaf could be executable.
2894 */
2895 if (nx_huge_page_workaround_enabled)
2896 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2897 &pfn, &level);
2898
2899 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2900 if (it.level == level)
2901 break;
2902
2903 drop_large_spte(vcpu, it.sptep);
2904 if (!is_shadow_present_pte(*it.sptep)) {
2905 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2906 it.level - 1, true, ACC_ALL);
2907
2908 link_shadow_page(vcpu, it.sptep, sp);
2909 if (is_tdp && huge_page_disallowed &&
2910 req_level >= it.level)
2911 account_huge_nx_page(vcpu->kvm, sp);
2912 }
2913 }
2914
2915 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2916 write, level, base_gfn, pfn, prefault,
2917 map_writable);
2918 if (ret == RET_PF_SPURIOUS)
2919 return ret;
2920
2921 direct_pte_prefetch(vcpu, it.sptep);
2922 ++vcpu->stat.pf_fixed;
2923 return ret;
2924 }
2925
2926 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2927 {
2928 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2929 }
2930
2931 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2932 {
2933 /*
2934 * Do not cache the mmio info caused by writing the readonly gfn
2935 * into the spte otherwise read access on readonly gfn also can
2936 * caused mmio page fault and treat it as mmio access.
2937 */
2938 if (pfn == KVM_PFN_ERR_RO_FAULT)
2939 return RET_PF_EMULATE;
2940
2941 if (pfn == KVM_PFN_ERR_HWPOISON) {
2942 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2943 return RET_PF_RETRY;
2944 }
2945
2946 return -EFAULT;
2947 }
2948
2949 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2950 kvm_pfn_t pfn, unsigned int access,
2951 int *ret_val)
2952 {
2953 /* The pfn is invalid, report the error! */
2954 if (unlikely(is_error_pfn(pfn))) {
2955 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2956 return true;
2957 }
2958
2959 if (unlikely(is_noslot_pfn(pfn)))
2960 vcpu_cache_mmio_info(vcpu, gva, gfn,
2961 access & shadow_mmio_access_mask);
2962
2963 return false;
2964 }
2965
2966 static bool page_fault_can_be_fast(u32 error_code)
2967 {
2968 /*
2969 * Do not fix the mmio spte with invalid generation number which
2970 * need to be updated by slow page fault path.
2971 */
2972 if (unlikely(error_code & PFERR_RSVD_MASK))
2973 return false;
2974
2975 /* See if the page fault is due to an NX violation */
2976 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2977 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2978 return false;
2979
2980 /*
2981 * #PF can be fast if:
2982 * 1. The shadow page table entry is not present, which could mean that
2983 * the fault is potentially caused by access tracking (if enabled).
2984 * 2. The shadow page table entry is present and the fault
2985 * is caused by write-protect, that means we just need change the W
2986 * bit of the spte which can be done out of mmu-lock.
2987 *
2988 * However, if access tracking is disabled we know that a non-present
2989 * page must be a genuine page fault where we have to create a new SPTE.
2990 * So, if access tracking is disabled, we return true only for write
2991 * accesses to a present page.
2992 */
2993
2994 return shadow_acc_track_mask != 0 ||
2995 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2996 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2997 }
2998
2999 /*
3000 * Returns true if the SPTE was fixed successfully. Otherwise,
3001 * someone else modified the SPTE from its original value.
3002 */
3003 static bool
3004 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3005 u64 *sptep, u64 old_spte, u64 new_spte)
3006 {
3007 gfn_t gfn;
3008
3009 WARN_ON(!sp->role.direct);
3010
3011 /*
3012 * Theoretically we could also set dirty bit (and flush TLB) here in
3013 * order to eliminate unnecessary PML logging. See comments in
3014 * set_spte. But fast_page_fault is very unlikely to happen with PML
3015 * enabled, so we do not do this. This might result in the same GPA
3016 * to be logged in PML buffer again when the write really happens, and
3017 * eventually to be called by mark_page_dirty twice. But it's also no
3018 * harm. This also avoids the TLB flush needed after setting dirty bit
3019 * so non-PML cases won't be impacted.
3020 *
3021 * Compare with set_spte where instead shadow_dirty_mask is set.
3022 */
3023 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3024 return false;
3025
3026 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3027 /*
3028 * The gfn of direct spte is stable since it is
3029 * calculated by sp->gfn.
3030 */
3031 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3032 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3033 }
3034
3035 return true;
3036 }
3037
3038 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3039 {
3040 if (fault_err_code & PFERR_FETCH_MASK)
3041 return is_executable_pte(spte);
3042
3043 if (fault_err_code & PFERR_WRITE_MASK)
3044 return is_writable_pte(spte);
3045
3046 /* Fault was on Read access */
3047 return spte & PT_PRESENT_MASK;
3048 }
3049
3050 /*
3051 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3052 */
3053 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3054 u32 error_code)
3055 {
3056 struct kvm_shadow_walk_iterator iterator;
3057 struct kvm_mmu_page *sp;
3058 int ret = RET_PF_INVALID;
3059 u64 spte = 0ull;
3060 uint retry_count = 0;
3061
3062 if (!page_fault_can_be_fast(error_code))
3063 return ret;
3064
3065 walk_shadow_page_lockless_begin(vcpu);
3066
3067 do {
3068 u64 new_spte;
3069
3070 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3071 if (!is_shadow_present_pte(spte))
3072 break;
3073
3074 sp = sptep_to_sp(iterator.sptep);
3075 if (!is_last_spte(spte, sp->role.level))
3076 break;
3077
3078 /*
3079 * Check whether the memory access that caused the fault would
3080 * still cause it if it were to be performed right now. If not,
3081 * then this is a spurious fault caused by TLB lazily flushed,
3082 * or some other CPU has already fixed the PTE after the
3083 * current CPU took the fault.
3084 *
3085 * Need not check the access of upper level table entries since
3086 * they are always ACC_ALL.
3087 */
3088 if (is_access_allowed(error_code, spte)) {
3089 ret = RET_PF_SPURIOUS;
3090 break;
3091 }
3092
3093 new_spte = spte;
3094
3095 if (is_access_track_spte(spte))
3096 new_spte = restore_acc_track_spte(new_spte);
3097
3098 /*
3099 * Currently, to simplify the code, write-protection can
3100 * be removed in the fast path only if the SPTE was
3101 * write-protected for dirty-logging or access tracking.
3102 */
3103 if ((error_code & PFERR_WRITE_MASK) &&
3104 spte_can_locklessly_be_made_writable(spte)) {
3105 new_spte |= PT_WRITABLE_MASK;
3106
3107 /*
3108 * Do not fix write-permission on the large spte. Since
3109 * we only dirty the first page into the dirty-bitmap in
3110 * fast_pf_fix_direct_spte(), other pages are missed
3111 * if its slot has dirty logging enabled.
3112 *
3113 * Instead, we let the slow page fault path create a
3114 * normal spte to fix the access.
3115 *
3116 * See the comments in kvm_arch_commit_memory_region().
3117 */
3118 if (sp->role.level > PG_LEVEL_4K)
3119 break;
3120 }
3121
3122 /* Verify that the fault can be handled in the fast path */
3123 if (new_spte == spte ||
3124 !is_access_allowed(error_code, new_spte))
3125 break;
3126
3127 /*
3128 * Currently, fast page fault only works for direct mapping
3129 * since the gfn is not stable for indirect shadow page. See
3130 * Documentation/virt/kvm/locking.rst to get more detail.
3131 */
3132 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3133 new_spte)) {
3134 ret = RET_PF_FIXED;
3135 break;
3136 }
3137
3138 if (++retry_count > 4) {
3139 printk_once(KERN_WARNING
3140 "kvm: Fast #PF retrying more than 4 times.\n");
3141 break;
3142 }
3143
3144 } while (true);
3145
3146 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3147 spte, ret);
3148 walk_shadow_page_lockless_end(vcpu);
3149
3150 return ret;
3151 }
3152
3153 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3154 struct list_head *invalid_list)
3155 {
3156 struct kvm_mmu_page *sp;
3157
3158 if (!VALID_PAGE(*root_hpa))
3159 return;
3160
3161 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3162
3163 if (kvm_mmu_put_root(kvm, sp)) {
3164 if (sp->tdp_mmu_page)
3165 kvm_tdp_mmu_free_root(kvm, sp);
3166 else if (sp->role.invalid)
3167 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3168 }
3169
3170 *root_hpa = INVALID_PAGE;
3171 }
3172
3173 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3174 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3175 ulong roots_to_free)
3176 {
3177 struct kvm *kvm = vcpu->kvm;
3178 int i;
3179 LIST_HEAD(invalid_list);
3180 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3181
3182 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3183
3184 /* Before acquiring the MMU lock, see if we need to do any real work. */
3185 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3186 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3187 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3188 VALID_PAGE(mmu->prev_roots[i].hpa))
3189 break;
3190
3191 if (i == KVM_MMU_NUM_PREV_ROOTS)
3192 return;
3193 }
3194
3195 spin_lock(&kvm->mmu_lock);
3196
3197 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3198 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3199 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3200 &invalid_list);
3201
3202 if (free_active_root) {
3203 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3204 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3205 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3206 } else {
3207 for (i = 0; i < 4; ++i)
3208 if (mmu->pae_root[i] != 0)
3209 mmu_free_root_page(kvm,
3210 &mmu->pae_root[i],
3211 &invalid_list);
3212 mmu->root_hpa = INVALID_PAGE;
3213 }
3214 mmu->root_pgd = 0;
3215 }
3216
3217 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3218 spin_unlock(&kvm->mmu_lock);
3219 }
3220 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3221
3222 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3223 {
3224 int ret = 0;
3225
3226 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3227 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3228 ret = 1;
3229 }
3230
3231 return ret;
3232 }
3233
3234 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3235 u8 level, bool direct)
3236 {
3237 struct kvm_mmu_page *sp;
3238
3239 spin_lock(&vcpu->kvm->mmu_lock);
3240
3241 if (make_mmu_pages_available(vcpu)) {
3242 spin_unlock(&vcpu->kvm->mmu_lock);
3243 return INVALID_PAGE;
3244 }
3245 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3246 ++sp->root_count;
3247
3248 spin_unlock(&vcpu->kvm->mmu_lock);
3249 return __pa(sp->spt);
3250 }
3251
3252 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3253 {
3254 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3255 hpa_t root;
3256 unsigned i;
3257
3258 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3259 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3260
3261 if (!VALID_PAGE(root))
3262 return -ENOSPC;
3263 vcpu->arch.mmu->root_hpa = root;
3264 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3265 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3266 true);
3267
3268 if (!VALID_PAGE(root))
3269 return -ENOSPC;
3270 vcpu->arch.mmu->root_hpa = root;
3271 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3272 for (i = 0; i < 4; ++i) {
3273 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3274
3275 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3276 i << 30, PT32_ROOT_LEVEL, true);
3277 if (!VALID_PAGE(root))
3278 return -ENOSPC;
3279 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3280 }
3281 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3282 } else
3283 BUG();
3284
3285 /* root_pgd is ignored for direct MMUs. */
3286 vcpu->arch.mmu->root_pgd = 0;
3287
3288 return 0;
3289 }
3290
3291 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3292 {
3293 u64 pdptr, pm_mask;
3294 gfn_t root_gfn, root_pgd;
3295 hpa_t root;
3296 int i;
3297
3298 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3299 root_gfn = root_pgd >> PAGE_SHIFT;
3300
3301 if (mmu_check_root(vcpu, root_gfn))
3302 return 1;
3303
3304 /*
3305 * Do we shadow a long mode page table? If so we need to
3306 * write-protect the guests page table root.
3307 */
3308 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3309 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3310
3311 root = mmu_alloc_root(vcpu, root_gfn, 0,
3312 vcpu->arch.mmu->shadow_root_level, false);
3313 if (!VALID_PAGE(root))
3314 return -ENOSPC;
3315 vcpu->arch.mmu->root_hpa = root;
3316 goto set_root_pgd;
3317 }
3318
3319 /*
3320 * We shadow a 32 bit page table. This may be a legacy 2-level
3321 * or a PAE 3-level page table. In either case we need to be aware that
3322 * the shadow page table may be a PAE or a long mode page table.
3323 */
3324 pm_mask = PT_PRESENT_MASK;
3325 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3326 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3327
3328 for (i = 0; i < 4; ++i) {
3329 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3330 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3331 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3332 if (!(pdptr & PT_PRESENT_MASK)) {
3333 vcpu->arch.mmu->pae_root[i] = 0;
3334 continue;
3335 }
3336 root_gfn = pdptr >> PAGE_SHIFT;
3337 if (mmu_check_root(vcpu, root_gfn))
3338 return 1;
3339 }
3340
3341 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3342 PT32_ROOT_LEVEL, false);
3343 if (!VALID_PAGE(root))
3344 return -ENOSPC;
3345 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3346 }
3347 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3348
3349 /*
3350 * If we shadow a 32 bit page table with a long mode page
3351 * table we enter this path.
3352 */
3353 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3354 if (vcpu->arch.mmu->lm_root == NULL) {
3355 /*
3356 * The additional page necessary for this is only
3357 * allocated on demand.
3358 */
3359
3360 u64 *lm_root;
3361
3362 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3363 if (lm_root == NULL)
3364 return 1;
3365
3366 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3367
3368 vcpu->arch.mmu->lm_root = lm_root;
3369 }
3370
3371 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3372 }
3373
3374 set_root_pgd:
3375 vcpu->arch.mmu->root_pgd = root_pgd;
3376
3377 return 0;
3378 }
3379
3380 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3381 {
3382 if (vcpu->arch.mmu->direct_map)
3383 return mmu_alloc_direct_roots(vcpu);
3384 else
3385 return mmu_alloc_shadow_roots(vcpu);
3386 }
3387
3388 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3389 {
3390 int i;
3391 struct kvm_mmu_page *sp;
3392
3393 if (vcpu->arch.mmu->direct_map)
3394 return;
3395
3396 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3397 return;
3398
3399 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3400
3401 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3402 hpa_t root = vcpu->arch.mmu->root_hpa;
3403 sp = to_shadow_page(root);
3404
3405 /*
3406 * Even if another CPU was marking the SP as unsync-ed
3407 * simultaneously, any guest page table changes are not
3408 * guaranteed to be visible anyway until this VCPU issues a TLB
3409 * flush strictly after those changes are made. We only need to
3410 * ensure that the other CPU sets these flags before any actual
3411 * changes to the page tables are made. The comments in
3412 * mmu_need_write_protect() describe what could go wrong if this
3413 * requirement isn't satisfied.
3414 */
3415 if (!smp_load_acquire(&sp->unsync) &&
3416 !smp_load_acquire(&sp->unsync_children))
3417 return;
3418
3419 spin_lock(&vcpu->kvm->mmu_lock);
3420 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3421
3422 mmu_sync_children(vcpu, sp);
3423
3424 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3425 spin_unlock(&vcpu->kvm->mmu_lock);
3426 return;
3427 }
3428
3429 spin_lock(&vcpu->kvm->mmu_lock);
3430 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3431
3432 for (i = 0; i < 4; ++i) {
3433 hpa_t root = vcpu->arch.mmu->pae_root[i];
3434
3435 if (root && VALID_PAGE(root)) {
3436 root &= PT64_BASE_ADDR_MASK;
3437 sp = to_shadow_page(root);
3438 mmu_sync_children(vcpu, sp);
3439 }
3440 }
3441
3442 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3443 spin_unlock(&vcpu->kvm->mmu_lock);
3444 }
3445 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3446
3447 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448 u32 access, struct x86_exception *exception)
3449 {
3450 if (exception)
3451 exception->error_code = 0;
3452 return vaddr;
3453 }
3454
3455 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3456 u32 access,
3457 struct x86_exception *exception)
3458 {
3459 if (exception)
3460 exception->error_code = 0;
3461 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3462 }
3463
3464 static bool
3465 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3466 {
3467 int bit7 = (pte >> 7) & 1;
3468
3469 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3470 }
3471
3472 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3473 {
3474 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3475 }
3476
3477 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3478 {
3479 /*
3480 * A nested guest cannot use the MMIO cache if it is using nested
3481 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3482 */
3483 if (mmu_is_nested(vcpu))
3484 return false;
3485
3486 if (direct)
3487 return vcpu_match_mmio_gpa(vcpu, addr);
3488
3489 return vcpu_match_mmio_gva(vcpu, addr);
3490 }
3491
3492 /*
3493 * Return the level of the lowest level SPTE added to sptes.
3494 * That SPTE may be non-present.
3495 */
3496 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3497 {
3498 struct kvm_shadow_walk_iterator iterator;
3499 int leaf = vcpu->arch.mmu->root_level;
3500 u64 spte;
3501
3502
3503 walk_shadow_page_lockless_begin(vcpu);
3504
3505 for (shadow_walk_init(&iterator, vcpu, addr);
3506 shadow_walk_okay(&iterator);
3507 __shadow_walk_next(&iterator, spte)) {
3508 leaf = iterator.level;
3509 spte = mmu_spte_get_lockless(iterator.sptep);
3510
3511 sptes[leaf - 1] = spte;
3512
3513 if (!is_shadow_present_pte(spte))
3514 break;
3515
3516 }
3517
3518 walk_shadow_page_lockless_end(vcpu);
3519
3520 return leaf;
3521 }
3522
3523 /* return true if reserved bit is detected on spte. */
3524 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3525 {
3526 u64 sptes[PT64_ROOT_MAX_LEVEL];
3527 struct rsvd_bits_validate *rsvd_check;
3528 int root = vcpu->arch.mmu->shadow_root_level;
3529 int leaf;
3530 int level;
3531 bool reserved = false;
3532
3533 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3534 *sptep = 0ull;
3535 return reserved;
3536 }
3537
3538 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3539 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
3540 else
3541 leaf = get_walk(vcpu, addr, sptes);
3542
3543 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3544
3545 for (level = root; level >= leaf; level--) {
3546 if (!is_shadow_present_pte(sptes[level - 1]))
3547 break;
3548 /*
3549 * Use a bitwise-OR instead of a logical-OR to aggregate the
3550 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3551 * adding a Jcc in the loop.
3552 */
3553 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
3554 __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3555 level);
3556 }
3557
3558 if (reserved) {
3559 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3560 __func__, addr);
3561 for (level = root; level >= leaf; level--)
3562 pr_err("------ spte 0x%llx level %d.\n",
3563 sptes[level - 1], level);
3564 }
3565
3566 *sptep = sptes[leaf - 1];
3567
3568 return reserved;
3569 }
3570
3571 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3572 {
3573 u64 spte;
3574 bool reserved;
3575
3576 if (mmio_info_in_cache(vcpu, addr, direct))
3577 return RET_PF_EMULATE;
3578
3579 reserved = get_mmio_spte(vcpu, addr, &spte);
3580 if (WARN_ON(reserved))
3581 return -EINVAL;
3582
3583 if (is_mmio_spte(spte)) {
3584 gfn_t gfn = get_mmio_spte_gfn(spte);
3585 unsigned int access = get_mmio_spte_access(spte);
3586
3587 if (!check_mmio_spte(vcpu, spte))
3588 return RET_PF_INVALID;
3589
3590 if (direct)
3591 addr = 0;
3592
3593 trace_handle_mmio_page_fault(addr, gfn, access);
3594 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3595 return RET_PF_EMULATE;
3596 }
3597
3598 /*
3599 * If the page table is zapped by other cpus, let CPU fault again on
3600 * the address.
3601 */
3602 return RET_PF_RETRY;
3603 }
3604
3605 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3606 u32 error_code, gfn_t gfn)
3607 {
3608 if (unlikely(error_code & PFERR_RSVD_MASK))
3609 return false;
3610
3611 if (!(error_code & PFERR_PRESENT_MASK) ||
3612 !(error_code & PFERR_WRITE_MASK))
3613 return false;
3614
3615 /*
3616 * guest is writing the page which is write tracked which can
3617 * not be fixed by page fault handler.
3618 */
3619 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3620 return true;
3621
3622 return false;
3623 }
3624
3625 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3626 {
3627 struct kvm_shadow_walk_iterator iterator;
3628 u64 spte;
3629
3630 walk_shadow_page_lockless_begin(vcpu);
3631 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3632 clear_sp_write_flooding_count(iterator.sptep);
3633 if (!is_shadow_present_pte(spte))
3634 break;
3635 }
3636 walk_shadow_page_lockless_end(vcpu);
3637 }
3638
3639 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3640 gfn_t gfn)
3641 {
3642 struct kvm_arch_async_pf arch;
3643
3644 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3645 arch.gfn = gfn;
3646 arch.direct_map = vcpu->arch.mmu->direct_map;
3647 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3648
3649 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3650 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3651 }
3652
3653 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3654 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3655 bool *writable)
3656 {
3657 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3658 bool async;
3659
3660 /* Don't expose private memslots to L2. */
3661 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3662 *pfn = KVM_PFN_NOSLOT;
3663 *writable = false;
3664 return false;
3665 }
3666
3667 async = false;
3668 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3669 if (!async)
3670 return false; /* *pfn has correct page already */
3671
3672 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3673 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3674 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3675 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3676 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3677 return true;
3678 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3679 return true;
3680 }
3681
3682 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3683 return false;
3684 }
3685
3686 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3687 bool prefault, int max_level, bool is_tdp)
3688 {
3689 bool write = error_code & PFERR_WRITE_MASK;
3690 bool map_writable;
3691
3692 gfn_t gfn = gpa >> PAGE_SHIFT;
3693 unsigned long mmu_seq;
3694 kvm_pfn_t pfn;
3695 int r;
3696
3697 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3698 return RET_PF_EMULATE;
3699
3700 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3701 r = fast_page_fault(vcpu, gpa, error_code);
3702 if (r != RET_PF_INVALID)
3703 return r;
3704 }
3705
3706 r = mmu_topup_memory_caches(vcpu, false);
3707 if (r)
3708 return r;
3709
3710 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3711 smp_rmb();
3712
3713 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3714 return RET_PF_RETRY;
3715
3716 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3717 return r;
3718
3719 r = RET_PF_RETRY;
3720 spin_lock(&vcpu->kvm->mmu_lock);
3721 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3722 goto out_unlock;
3723 r = make_mmu_pages_available(vcpu);
3724 if (r)
3725 goto out_unlock;
3726
3727 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3728 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3729 pfn, prefault);
3730 else
3731 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3732 prefault, is_tdp);
3733
3734 out_unlock:
3735 spin_unlock(&vcpu->kvm->mmu_lock);
3736 kvm_release_pfn_clean(pfn);
3737 return r;
3738 }
3739
3740 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3741 u32 error_code, bool prefault)
3742 {
3743 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3744
3745 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3746 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3747 PG_LEVEL_2M, false);
3748 }
3749
3750 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3751 u64 fault_address, char *insn, int insn_len)
3752 {
3753 int r = 1;
3754 u32 flags = vcpu->arch.apf.host_apf_flags;
3755
3756 #ifndef CONFIG_X86_64
3757 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3758 if (WARN_ON_ONCE(fault_address >> 32))
3759 return -EFAULT;
3760 #endif
3761
3762 vcpu->arch.l1tf_flush_l1d = true;
3763 if (!flags) {
3764 trace_kvm_page_fault(fault_address, error_code);
3765
3766 if (kvm_event_needs_reinjection(vcpu))
3767 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3768 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3769 insn_len);
3770 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3771 vcpu->arch.apf.host_apf_flags = 0;
3772 local_irq_disable();
3773 kvm_async_pf_task_wait_schedule(fault_address);
3774 local_irq_enable();
3775 } else {
3776 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3777 }
3778
3779 return r;
3780 }
3781 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3782
3783 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3784 bool prefault)
3785 {
3786 int max_level;
3787
3788 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3789 max_level > PG_LEVEL_4K;
3790 max_level--) {
3791 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3792 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3793
3794 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3795 break;
3796 }
3797
3798 return direct_page_fault(vcpu, gpa, error_code, prefault,
3799 max_level, true);
3800 }
3801
3802 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3803 struct kvm_mmu *context)
3804 {
3805 context->page_fault = nonpaging_page_fault;
3806 context->gva_to_gpa = nonpaging_gva_to_gpa;
3807 context->sync_page = nonpaging_sync_page;
3808 context->invlpg = NULL;
3809 context->update_pte = nonpaging_update_pte;
3810 context->root_level = 0;
3811 context->shadow_root_level = PT32E_ROOT_LEVEL;
3812 context->direct_map = true;
3813 context->nx = false;
3814 }
3815
3816 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3817 union kvm_mmu_page_role role)
3818 {
3819 return (role.direct || pgd == root->pgd) &&
3820 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3821 role.word == to_shadow_page(root->hpa)->role.word;
3822 }
3823
3824 /*
3825 * Find out if a previously cached root matching the new pgd/role is available.
3826 * The current root is also inserted into the cache.
3827 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3828 * returned.
3829 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3830 * false is returned. This root should now be freed by the caller.
3831 */
3832 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3833 union kvm_mmu_page_role new_role)
3834 {
3835 uint i;
3836 struct kvm_mmu_root_info root;
3837 struct kvm_mmu *mmu = vcpu->arch.mmu;
3838
3839 root.pgd = mmu->root_pgd;
3840 root.hpa = mmu->root_hpa;
3841
3842 if (is_root_usable(&root, new_pgd, new_role))
3843 return true;
3844
3845 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3846 swap(root, mmu->prev_roots[i]);
3847
3848 if (is_root_usable(&root, new_pgd, new_role))
3849 break;
3850 }
3851
3852 mmu->root_hpa = root.hpa;
3853 mmu->root_pgd = root.pgd;
3854
3855 return i < KVM_MMU_NUM_PREV_ROOTS;
3856 }
3857
3858 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3859 union kvm_mmu_page_role new_role)
3860 {
3861 struct kvm_mmu *mmu = vcpu->arch.mmu;
3862
3863 /*
3864 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3865 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3866 * later if necessary.
3867 */
3868 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3869 mmu->root_level >= PT64_ROOT_4LEVEL)
3870 return cached_root_available(vcpu, new_pgd, new_role);
3871
3872 return false;
3873 }
3874
3875 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3876 union kvm_mmu_page_role new_role,
3877 bool skip_tlb_flush, bool skip_mmu_sync)
3878 {
3879 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3880 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3881 return;
3882 }
3883
3884 /*
3885 * It's possible that the cached previous root page is obsolete because
3886 * of a change in the MMU generation number. However, changing the
3887 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3888 * free the root set here and allocate a new one.
3889 */
3890 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3891
3892 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3894 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3895 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3896
3897 /*
3898 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3899 * switching to a new CR3, that GVA->GPA mapping may no longer be
3900 * valid. So clear any cached MMIO info even when we don't need to sync
3901 * the shadow page tables.
3902 */
3903 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3904
3905 /*
3906 * If this is a direct root page, it doesn't have a write flooding
3907 * count. Otherwise, clear the write flooding count.
3908 */
3909 if (!new_role.direct)
3910 __clear_sp_write_flooding_count(
3911 to_shadow_page(vcpu->arch.mmu->root_hpa));
3912 }
3913
3914 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3915 bool skip_mmu_sync)
3916 {
3917 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3918 skip_tlb_flush, skip_mmu_sync);
3919 }
3920 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3921
3922 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3923 {
3924 return kvm_read_cr3(vcpu);
3925 }
3926
3927 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3928 unsigned int access, int *nr_present)
3929 {
3930 if (unlikely(is_mmio_spte(*sptep))) {
3931 if (gfn != get_mmio_spte_gfn(*sptep)) {
3932 mmu_spte_clear_no_track(sptep);
3933 return true;
3934 }
3935
3936 (*nr_present)++;
3937 mark_mmio_spte(vcpu, sptep, gfn, access);
3938 return true;
3939 }
3940
3941 return false;
3942 }
3943
3944 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3945 unsigned level, unsigned gpte)
3946 {
3947 /*
3948 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3949 * If it is clear, there are no large pages at this level, so clear
3950 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3951 */
3952 gpte &= level - mmu->last_nonleaf_level;
3953
3954 /*
3955 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3956 * iff level <= PG_LEVEL_4K, which for our purpose means
3957 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3958 */
3959 gpte |= level - PG_LEVEL_4K - 1;
3960
3961 return gpte & PT_PAGE_SIZE_MASK;
3962 }
3963
3964 #define PTTYPE_EPT 18 /* arbitrary */
3965 #define PTTYPE PTTYPE_EPT
3966 #include "paging_tmpl.h"
3967 #undef PTTYPE
3968
3969 #define PTTYPE 64
3970 #include "paging_tmpl.h"
3971 #undef PTTYPE
3972
3973 #define PTTYPE 32
3974 #include "paging_tmpl.h"
3975 #undef PTTYPE
3976
3977 static void
3978 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3979 struct rsvd_bits_validate *rsvd_check,
3980 int maxphyaddr, int level, bool nx, bool gbpages,
3981 bool pse, bool amd)
3982 {
3983 u64 exb_bit_rsvd = 0;
3984 u64 gbpages_bit_rsvd = 0;
3985 u64 nonleaf_bit8_rsvd = 0;
3986
3987 rsvd_check->bad_mt_xwr = 0;
3988
3989 if (!nx)
3990 exb_bit_rsvd = rsvd_bits(63, 63);
3991 if (!gbpages)
3992 gbpages_bit_rsvd = rsvd_bits(7, 7);
3993
3994 /*
3995 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3996 * leaf entries) on AMD CPUs only.
3997 */
3998 if (amd)
3999 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4000
4001 switch (level) {
4002 case PT32_ROOT_LEVEL:
4003 /* no rsvd bits for 2 level 4K page table entries */
4004 rsvd_check->rsvd_bits_mask[0][1] = 0;
4005 rsvd_check->rsvd_bits_mask[0][0] = 0;
4006 rsvd_check->rsvd_bits_mask[1][0] =
4007 rsvd_check->rsvd_bits_mask[0][0];
4008
4009 if (!pse) {
4010 rsvd_check->rsvd_bits_mask[1][1] = 0;
4011 break;
4012 }
4013
4014 if (is_cpuid_PSE36())
4015 /* 36bits PSE 4MB page */
4016 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4017 else
4018 /* 32 bits PSE 4MB page */
4019 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4020 break;
4021 case PT32E_ROOT_LEVEL:
4022 rsvd_check->rsvd_bits_mask[0][2] =
4023 rsvd_bits(maxphyaddr, 63) |
4024 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4025 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4026 rsvd_bits(maxphyaddr, 62); /* PDE */
4027 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4028 rsvd_bits(maxphyaddr, 62); /* PTE */
4029 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4030 rsvd_bits(maxphyaddr, 62) |
4031 rsvd_bits(13, 20); /* large page */
4032 rsvd_check->rsvd_bits_mask[1][0] =
4033 rsvd_check->rsvd_bits_mask[0][0];
4034 break;
4035 case PT64_ROOT_5LEVEL:
4036 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4037 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4038 rsvd_bits(maxphyaddr, 51);
4039 rsvd_check->rsvd_bits_mask[1][4] =
4040 rsvd_check->rsvd_bits_mask[0][4];
4041 fallthrough;
4042 case PT64_ROOT_4LEVEL:
4043 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4044 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4045 rsvd_bits(maxphyaddr, 51);
4046 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4047 gbpages_bit_rsvd |
4048 rsvd_bits(maxphyaddr, 51);
4049 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4050 rsvd_bits(maxphyaddr, 51);
4051 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4052 rsvd_bits(maxphyaddr, 51);
4053 rsvd_check->rsvd_bits_mask[1][3] =
4054 rsvd_check->rsvd_bits_mask[0][3];
4055 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4056 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4057 rsvd_bits(13, 29);
4058 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4059 rsvd_bits(maxphyaddr, 51) |
4060 rsvd_bits(13, 20); /* large page */
4061 rsvd_check->rsvd_bits_mask[1][0] =
4062 rsvd_check->rsvd_bits_mask[0][0];
4063 break;
4064 }
4065 }
4066
4067 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4068 struct kvm_mmu *context)
4069 {
4070 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4071 cpuid_maxphyaddr(vcpu), context->root_level,
4072 context->nx,
4073 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4074 is_pse(vcpu),
4075 guest_cpuid_is_amd_or_hygon(vcpu));
4076 }
4077
4078 static void
4079 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4080 int maxphyaddr, bool execonly)
4081 {
4082 u64 bad_mt_xwr;
4083
4084 rsvd_check->rsvd_bits_mask[0][4] =
4085 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4086 rsvd_check->rsvd_bits_mask[0][3] =
4087 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4088 rsvd_check->rsvd_bits_mask[0][2] =
4089 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4090 rsvd_check->rsvd_bits_mask[0][1] =
4091 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4092 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4093
4094 /* large page */
4095 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4096 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4097 rsvd_check->rsvd_bits_mask[1][2] =
4098 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4099 rsvd_check->rsvd_bits_mask[1][1] =
4100 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4101 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4102
4103 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4104 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4105 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4106 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4107 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4108 if (!execonly) {
4109 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4110 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4111 }
4112 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4113 }
4114
4115 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4116 struct kvm_mmu *context, bool execonly)
4117 {
4118 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4119 cpuid_maxphyaddr(vcpu), execonly);
4120 }
4121
4122 /*
4123 * the page table on host is the shadow page table for the page
4124 * table in guest or amd nested guest, its mmu features completely
4125 * follow the features in guest.
4126 */
4127 void
4128 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4129 {
4130 bool uses_nx = context->nx ||
4131 context->mmu_role.base.smep_andnot_wp;
4132 struct rsvd_bits_validate *shadow_zero_check;
4133 int i;
4134
4135 /*
4136 * Passing "true" to the last argument is okay; it adds a check
4137 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4138 */
4139 shadow_zero_check = &context->shadow_zero_check;
4140 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4141 shadow_phys_bits,
4142 context->shadow_root_level, uses_nx,
4143 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4144 is_pse(vcpu), true);
4145
4146 if (!shadow_me_mask)
4147 return;
4148
4149 for (i = context->shadow_root_level; --i >= 0;) {
4150 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4151 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4152 }
4153
4154 }
4155 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4156
4157 static inline bool boot_cpu_is_amd(void)
4158 {
4159 WARN_ON_ONCE(!tdp_enabled);
4160 return shadow_x_mask == 0;
4161 }
4162
4163 /*
4164 * the direct page table on host, use as much mmu features as
4165 * possible, however, kvm currently does not do execution-protection.
4166 */
4167 static void
4168 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4169 struct kvm_mmu *context)
4170 {
4171 struct rsvd_bits_validate *shadow_zero_check;
4172 int i;
4173
4174 shadow_zero_check = &context->shadow_zero_check;
4175
4176 if (boot_cpu_is_amd())
4177 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4178 shadow_phys_bits,
4179 context->shadow_root_level, false,
4180 boot_cpu_has(X86_FEATURE_GBPAGES),
4181 true, true);
4182 else
4183 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4184 shadow_phys_bits,
4185 false);
4186
4187 if (!shadow_me_mask)
4188 return;
4189
4190 for (i = context->shadow_root_level; --i >= 0;) {
4191 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193 }
4194 }
4195
4196 /*
4197 * as the comments in reset_shadow_zero_bits_mask() except it
4198 * is the shadow page table for intel nested guest.
4199 */
4200 static void
4201 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4202 struct kvm_mmu *context, bool execonly)
4203 {
4204 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4205 shadow_phys_bits, execonly);
4206 }
4207
4208 #define BYTE_MASK(access) \
4209 ((1 & (access) ? 2 : 0) | \
4210 (2 & (access) ? 4 : 0) | \
4211 (3 & (access) ? 8 : 0) | \
4212 (4 & (access) ? 16 : 0) | \
4213 (5 & (access) ? 32 : 0) | \
4214 (6 & (access) ? 64 : 0) | \
4215 (7 & (access) ? 128 : 0))
4216
4217
4218 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4219 struct kvm_mmu *mmu, bool ept)
4220 {
4221 unsigned byte;
4222
4223 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4224 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4225 const u8 u = BYTE_MASK(ACC_USER_MASK);
4226
4227 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4228 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4229 bool cr0_wp = is_write_protection(vcpu);
4230
4231 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4232 unsigned pfec = byte << 1;
4233
4234 /*
4235 * Each "*f" variable has a 1 bit for each UWX value
4236 * that causes a fault with the given PFEC.
4237 */
4238
4239 /* Faults from writes to non-writable pages */
4240 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4241 /* Faults from user mode accesses to supervisor pages */
4242 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4243 /* Faults from fetches of non-executable pages*/
4244 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4245 /* Faults from kernel mode fetches of user pages */
4246 u8 smepf = 0;
4247 /* Faults from kernel mode accesses of user pages */
4248 u8 smapf = 0;
4249
4250 if (!ept) {
4251 /* Faults from kernel mode accesses to user pages */
4252 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4253
4254 /* Not really needed: !nx will cause pte.nx to fault */
4255 if (!mmu->nx)
4256 ff = 0;
4257
4258 /* Allow supervisor writes if !cr0.wp */
4259 if (!cr0_wp)
4260 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4261
4262 /* Disallow supervisor fetches of user code if cr4.smep */
4263 if (cr4_smep)
4264 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4265
4266 /*
4267 * SMAP:kernel-mode data accesses from user-mode
4268 * mappings should fault. A fault is considered
4269 * as a SMAP violation if all of the following
4270 * conditions are true:
4271 * - X86_CR4_SMAP is set in CR4
4272 * - A user page is accessed
4273 * - The access is not a fetch
4274 * - Page fault in kernel mode
4275 * - if CPL = 3 or X86_EFLAGS_AC is clear
4276 *
4277 * Here, we cover the first three conditions.
4278 * The fourth is computed dynamically in permission_fault();
4279 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4280 * *not* subject to SMAP restrictions.
4281 */
4282 if (cr4_smap)
4283 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4284 }
4285
4286 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4287 }
4288 }
4289
4290 /*
4291 * PKU is an additional mechanism by which the paging controls access to
4292 * user-mode addresses based on the value in the PKRU register. Protection
4293 * key violations are reported through a bit in the page fault error code.
4294 * Unlike other bits of the error code, the PK bit is not known at the
4295 * call site of e.g. gva_to_gpa; it must be computed directly in
4296 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4297 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4298 *
4299 * In particular the following conditions come from the error code, the
4300 * page tables and the machine state:
4301 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4302 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4303 * - PK is always zero if U=0 in the page tables
4304 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4305 *
4306 * The PKRU bitmask caches the result of these four conditions. The error
4307 * code (minus the P bit) and the page table's U bit form an index into the
4308 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4309 * with the two bits of the PKRU register corresponding to the protection key.
4310 * For the first three conditions above the bits will be 00, thus masking
4311 * away both AD and WD. For all reads or if the last condition holds, WD
4312 * only will be masked away.
4313 */
4314 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4315 bool ept)
4316 {
4317 unsigned bit;
4318 bool wp;
4319
4320 if (ept) {
4321 mmu->pkru_mask = 0;
4322 return;
4323 }
4324
4325 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4326 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4327 mmu->pkru_mask = 0;
4328 return;
4329 }
4330
4331 wp = is_write_protection(vcpu);
4332
4333 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4334 unsigned pfec, pkey_bits;
4335 bool check_pkey, check_write, ff, uf, wf, pte_user;
4336
4337 pfec = bit << 1;
4338 ff = pfec & PFERR_FETCH_MASK;
4339 uf = pfec & PFERR_USER_MASK;
4340 wf = pfec & PFERR_WRITE_MASK;
4341
4342 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4343 pte_user = pfec & PFERR_RSVD_MASK;
4344
4345 /*
4346 * Only need to check the access which is not an
4347 * instruction fetch and is to a user page.
4348 */
4349 check_pkey = (!ff && pte_user);
4350 /*
4351 * write access is controlled by PKRU if it is a
4352 * user access or CR0.WP = 1.
4353 */
4354 check_write = check_pkey && wf && (uf || wp);
4355
4356 /* PKRU.AD stops both read and write access. */
4357 pkey_bits = !!check_pkey;
4358 /* PKRU.WD stops write access. */
4359 pkey_bits |= (!!check_write) << 1;
4360
4361 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4362 }
4363 }
4364
4365 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4366 {
4367 unsigned root_level = mmu->root_level;
4368
4369 mmu->last_nonleaf_level = root_level;
4370 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4371 mmu->last_nonleaf_level++;
4372 }
4373
4374 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4375 struct kvm_mmu *context,
4376 int level)
4377 {
4378 context->nx = is_nx(vcpu);
4379 context->root_level = level;
4380
4381 reset_rsvds_bits_mask(vcpu, context);
4382 update_permission_bitmask(vcpu, context, false);
4383 update_pkru_bitmask(vcpu, context, false);
4384 update_last_nonleaf_level(vcpu, context);
4385
4386 MMU_WARN_ON(!is_pae(vcpu));
4387 context->page_fault = paging64_page_fault;
4388 context->gva_to_gpa = paging64_gva_to_gpa;
4389 context->sync_page = paging64_sync_page;
4390 context->invlpg = paging64_invlpg;
4391 context->update_pte = paging64_update_pte;
4392 context->shadow_root_level = level;
4393 context->direct_map = false;
4394 }
4395
4396 static void paging64_init_context(struct kvm_vcpu *vcpu,
4397 struct kvm_mmu *context)
4398 {
4399 int root_level = is_la57_mode(vcpu) ?
4400 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4401
4402 paging64_init_context_common(vcpu, context, root_level);
4403 }
4404
4405 static void paging32_init_context(struct kvm_vcpu *vcpu,
4406 struct kvm_mmu *context)
4407 {
4408 context->nx = false;
4409 context->root_level = PT32_ROOT_LEVEL;
4410
4411 reset_rsvds_bits_mask(vcpu, context);
4412 update_permission_bitmask(vcpu, context, false);
4413 update_pkru_bitmask(vcpu, context, false);
4414 update_last_nonleaf_level(vcpu, context);
4415
4416 context->page_fault = paging32_page_fault;
4417 context->gva_to_gpa = paging32_gva_to_gpa;
4418 context->sync_page = paging32_sync_page;
4419 context->invlpg = paging32_invlpg;
4420 context->update_pte = paging32_update_pte;
4421 context->shadow_root_level = PT32E_ROOT_LEVEL;
4422 context->direct_map = false;
4423 }
4424
4425 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4426 struct kvm_mmu *context)
4427 {
4428 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4429 }
4430
4431 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4432 {
4433 union kvm_mmu_extended_role ext = {0};
4434
4435 ext.cr0_pg = !!is_paging(vcpu);
4436 ext.cr4_pae = !!is_pae(vcpu);
4437 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4438 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4439 ext.cr4_pse = !!is_pse(vcpu);
4440 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4441 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4442
4443 ext.valid = 1;
4444
4445 return ext;
4446 }
4447
4448 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4449 bool base_only)
4450 {
4451 union kvm_mmu_role role = {0};
4452
4453 role.base.access = ACC_ALL;
4454 role.base.nxe = !!is_nx(vcpu);
4455 role.base.cr0_wp = is_write_protection(vcpu);
4456 role.base.smm = is_smm(vcpu);
4457 role.base.guest_mode = is_guest_mode(vcpu);
4458
4459 if (base_only)
4460 return role;
4461
4462 role.ext = kvm_calc_mmu_role_ext(vcpu);
4463
4464 return role;
4465 }
4466
4467 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4468 {
4469 /* Use 5-level TDP if and only if it's useful/necessary. */
4470 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4471 return 4;
4472
4473 return max_tdp_level;
4474 }
4475
4476 static union kvm_mmu_role
4477 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4478 {
4479 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4480
4481 role.base.ad_disabled = (shadow_accessed_mask == 0);
4482 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4483 role.base.direct = true;
4484 role.base.gpte_is_8_bytes = true;
4485
4486 return role;
4487 }
4488
4489 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4490 {
4491 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4492 union kvm_mmu_role new_role =
4493 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4494
4495 if (new_role.as_u64 == context->mmu_role.as_u64)
4496 return;
4497
4498 context->mmu_role.as_u64 = new_role.as_u64;
4499 context->page_fault = kvm_tdp_page_fault;
4500 context->sync_page = nonpaging_sync_page;
4501 context->invlpg = NULL;
4502 context->update_pte = nonpaging_update_pte;
4503 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4504 context->direct_map = true;
4505 context->get_guest_pgd = get_cr3;
4506 context->get_pdptr = kvm_pdptr_read;
4507 context->inject_page_fault = kvm_inject_page_fault;
4508
4509 if (!is_paging(vcpu)) {
4510 context->nx = false;
4511 context->gva_to_gpa = nonpaging_gva_to_gpa;
4512 context->root_level = 0;
4513 } else if (is_long_mode(vcpu)) {
4514 context->nx = is_nx(vcpu);
4515 context->root_level = is_la57_mode(vcpu) ?
4516 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4517 reset_rsvds_bits_mask(vcpu, context);
4518 context->gva_to_gpa = paging64_gva_to_gpa;
4519 } else if (is_pae(vcpu)) {
4520 context->nx = is_nx(vcpu);
4521 context->root_level = PT32E_ROOT_LEVEL;
4522 reset_rsvds_bits_mask(vcpu, context);
4523 context->gva_to_gpa = paging64_gva_to_gpa;
4524 } else {
4525 context->nx = false;
4526 context->root_level = PT32_ROOT_LEVEL;
4527 reset_rsvds_bits_mask(vcpu, context);
4528 context->gva_to_gpa = paging32_gva_to_gpa;
4529 }
4530
4531 update_permission_bitmask(vcpu, context, false);
4532 update_pkru_bitmask(vcpu, context, false);
4533 update_last_nonleaf_level(vcpu, context);
4534 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4535 }
4536
4537 static union kvm_mmu_role
4538 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4539 {
4540 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4541
4542 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4543 !is_write_protection(vcpu);
4544 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4545 !is_write_protection(vcpu);
4546 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4547
4548 return role;
4549 }
4550
4551 static union kvm_mmu_role
4552 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4553 {
4554 union kvm_mmu_role role =
4555 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4556
4557 role.base.direct = !is_paging(vcpu);
4558
4559 if (!is_long_mode(vcpu))
4560 role.base.level = PT32E_ROOT_LEVEL;
4561 else if (is_la57_mode(vcpu))
4562 role.base.level = PT64_ROOT_5LEVEL;
4563 else
4564 role.base.level = PT64_ROOT_4LEVEL;
4565
4566 return role;
4567 }
4568
4569 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4570 u32 cr0, u32 cr4, u32 efer,
4571 union kvm_mmu_role new_role)
4572 {
4573 if (!(cr0 & X86_CR0_PG))
4574 nonpaging_init_context(vcpu, context);
4575 else if (efer & EFER_LMA)
4576 paging64_init_context(vcpu, context);
4577 else if (cr4 & X86_CR4_PAE)
4578 paging32E_init_context(vcpu, context);
4579 else
4580 paging32_init_context(vcpu, context);
4581
4582 context->mmu_role.as_u64 = new_role.as_u64;
4583 reset_shadow_zero_bits_mask(vcpu, context);
4584 }
4585
4586 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4587 {
4588 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4589 union kvm_mmu_role new_role =
4590 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4591
4592 if (new_role.as_u64 != context->mmu_role.as_u64)
4593 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4594 }
4595
4596 static union kvm_mmu_role
4597 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4598 {
4599 union kvm_mmu_role role =
4600 kvm_calc_shadow_root_page_role_common(vcpu, false);
4601
4602 role.base.direct = false;
4603 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4604
4605 return role;
4606 }
4607
4608 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4609 gpa_t nested_cr3)
4610 {
4611 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4612 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4613
4614 context->shadow_root_level = new_role.base.level;
4615
4616 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4617
4618 if (new_role.as_u64 != context->mmu_role.as_u64)
4619 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4620 }
4621 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4622
4623 static union kvm_mmu_role
4624 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4625 bool execonly, u8 level)
4626 {
4627 union kvm_mmu_role role = {0};
4628
4629 /* SMM flag is inherited from root_mmu */
4630 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4631
4632 role.base.level = level;
4633 role.base.gpte_is_8_bytes = true;
4634 role.base.direct = false;
4635 role.base.ad_disabled = !accessed_dirty;
4636 role.base.guest_mode = true;
4637 role.base.access = ACC_ALL;
4638
4639 /*
4640 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4641 * SMAP variation to denote shadow EPT entries.
4642 */
4643 role.base.cr0_wp = true;
4644 role.base.smap_andnot_wp = true;
4645
4646 role.ext = kvm_calc_mmu_role_ext(vcpu);
4647 role.ext.execonly = execonly;
4648
4649 return role;
4650 }
4651
4652 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4653 bool accessed_dirty, gpa_t new_eptp)
4654 {
4655 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4656 u8 level = vmx_eptp_page_walk_level(new_eptp);
4657 union kvm_mmu_role new_role =
4658 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4659 execonly, level);
4660
4661 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4662
4663 if (new_role.as_u64 == context->mmu_role.as_u64)
4664 return;
4665
4666 context->shadow_root_level = level;
4667
4668 context->nx = true;
4669 context->ept_ad = accessed_dirty;
4670 context->page_fault = ept_page_fault;
4671 context->gva_to_gpa = ept_gva_to_gpa;
4672 context->sync_page = ept_sync_page;
4673 context->invlpg = ept_invlpg;
4674 context->update_pte = ept_update_pte;
4675 context->root_level = level;
4676 context->direct_map = false;
4677 context->mmu_role.as_u64 = new_role.as_u64;
4678
4679 update_permission_bitmask(vcpu, context, true);
4680 update_pkru_bitmask(vcpu, context, true);
4681 update_last_nonleaf_level(vcpu, context);
4682 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4683 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4684 }
4685 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4686
4687 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4688 {
4689 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4690
4691 kvm_init_shadow_mmu(vcpu,
4692 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4693 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4694 vcpu->arch.efer);
4695
4696 context->get_guest_pgd = get_cr3;
4697 context->get_pdptr = kvm_pdptr_read;
4698 context->inject_page_fault = kvm_inject_page_fault;
4699 }
4700
4701 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4702 {
4703 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4704 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4705
4706 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4707 return;
4708
4709 g_context->mmu_role.as_u64 = new_role.as_u64;
4710 g_context->get_guest_pgd = get_cr3;
4711 g_context->get_pdptr = kvm_pdptr_read;
4712 g_context->inject_page_fault = kvm_inject_page_fault;
4713
4714 /*
4715 * L2 page tables are never shadowed, so there is no need to sync
4716 * SPTEs.
4717 */
4718 g_context->invlpg = NULL;
4719
4720 /*
4721 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4722 * L1's nested page tables (e.g. EPT12). The nested translation
4723 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4724 * L2's page tables as the first level of translation and L1's
4725 * nested page tables as the second level of translation. Basically
4726 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4727 */
4728 if (!is_paging(vcpu)) {
4729 g_context->nx = false;
4730 g_context->root_level = 0;
4731 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4732 } else if (is_long_mode(vcpu)) {
4733 g_context->nx = is_nx(vcpu);
4734 g_context->root_level = is_la57_mode(vcpu) ?
4735 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4736 reset_rsvds_bits_mask(vcpu, g_context);
4737 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4738 } else if (is_pae(vcpu)) {
4739 g_context->nx = is_nx(vcpu);
4740 g_context->root_level = PT32E_ROOT_LEVEL;
4741 reset_rsvds_bits_mask(vcpu, g_context);
4742 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4743 } else {
4744 g_context->nx = false;
4745 g_context->root_level = PT32_ROOT_LEVEL;
4746 reset_rsvds_bits_mask(vcpu, g_context);
4747 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4748 }
4749
4750 update_permission_bitmask(vcpu, g_context, false);
4751 update_pkru_bitmask(vcpu, g_context, false);
4752 update_last_nonleaf_level(vcpu, g_context);
4753 }
4754
4755 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4756 {
4757 if (reset_roots) {
4758 uint i;
4759
4760 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4761
4762 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4763 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4764 }
4765
4766 if (mmu_is_nested(vcpu))
4767 init_kvm_nested_mmu(vcpu);
4768 else if (tdp_enabled)
4769 init_kvm_tdp_mmu(vcpu);
4770 else
4771 init_kvm_softmmu(vcpu);
4772 }
4773 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4774
4775 static union kvm_mmu_page_role
4776 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4777 {
4778 union kvm_mmu_role role;
4779
4780 if (tdp_enabled)
4781 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4782 else
4783 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4784
4785 return role.base;
4786 }
4787
4788 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4789 {
4790 kvm_mmu_unload(vcpu);
4791 kvm_init_mmu(vcpu, true);
4792 }
4793 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4794
4795 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4796 {
4797 int r;
4798
4799 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4800 if (r)
4801 goto out;
4802 r = mmu_alloc_roots(vcpu);
4803 kvm_mmu_sync_roots(vcpu);
4804 if (r)
4805 goto out;
4806 kvm_mmu_load_pgd(vcpu);
4807 kvm_x86_ops.tlb_flush_current(vcpu);
4808 out:
4809 return r;
4810 }
4811 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4812
4813 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4814 {
4815 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4816 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4817 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4818 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4819 }
4820 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4821
4822 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4823 struct kvm_mmu_page *sp, u64 *spte,
4824 const void *new)
4825 {
4826 if (sp->role.level != PG_LEVEL_4K) {
4827 ++vcpu->kvm->stat.mmu_pde_zapped;
4828 return;
4829 }
4830
4831 ++vcpu->kvm->stat.mmu_pte_updated;
4832 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4833 }
4834
4835 static bool need_remote_flush(u64 old, u64 new)
4836 {
4837 if (!is_shadow_present_pte(old))
4838 return false;
4839 if (!is_shadow_present_pte(new))
4840 return true;
4841 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4842 return true;
4843 old ^= shadow_nx_mask;
4844 new ^= shadow_nx_mask;
4845 return (old & ~new & PT64_PERM_MASK) != 0;
4846 }
4847
4848 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4849 int *bytes)
4850 {
4851 u64 gentry = 0;
4852 int r;
4853
4854 /*
4855 * Assume that the pte write on a page table of the same type
4856 * as the current vcpu paging mode since we update the sptes only
4857 * when they have the same mode.
4858 */
4859 if (is_pae(vcpu) && *bytes == 4) {
4860 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4861 *gpa &= ~(gpa_t)7;
4862 *bytes = 8;
4863 }
4864
4865 if (*bytes == 4 || *bytes == 8) {
4866 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4867 if (r)
4868 gentry = 0;
4869 }
4870
4871 return gentry;
4872 }
4873
4874 /*
4875 * If we're seeing too many writes to a page, it may no longer be a page table,
4876 * or we may be forking, in which case it is better to unmap the page.
4877 */
4878 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4879 {
4880 /*
4881 * Skip write-flooding detected for the sp whose level is 1, because
4882 * it can become unsync, then the guest page is not write-protected.
4883 */
4884 if (sp->role.level == PG_LEVEL_4K)
4885 return false;
4886
4887 atomic_inc(&sp->write_flooding_count);
4888 return atomic_read(&sp->write_flooding_count) >= 3;
4889 }
4890
4891 /*
4892 * Misaligned accesses are too much trouble to fix up; also, they usually
4893 * indicate a page is not used as a page table.
4894 */
4895 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4896 int bytes)
4897 {
4898 unsigned offset, pte_size, misaligned;
4899
4900 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4901 gpa, bytes, sp->role.word);
4902
4903 offset = offset_in_page(gpa);
4904 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4905
4906 /*
4907 * Sometimes, the OS only writes the last one bytes to update status
4908 * bits, for example, in linux, andb instruction is used in clear_bit().
4909 */
4910 if (!(offset & (pte_size - 1)) && bytes == 1)
4911 return false;
4912
4913 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4914 misaligned |= bytes < 4;
4915
4916 return misaligned;
4917 }
4918
4919 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4920 {
4921 unsigned page_offset, quadrant;
4922 u64 *spte;
4923 int level;
4924
4925 page_offset = offset_in_page(gpa);
4926 level = sp->role.level;
4927 *nspte = 1;
4928 if (!sp->role.gpte_is_8_bytes) {
4929 page_offset <<= 1; /* 32->64 */
4930 /*
4931 * A 32-bit pde maps 4MB while the shadow pdes map
4932 * only 2MB. So we need to double the offset again
4933 * and zap two pdes instead of one.
4934 */
4935 if (level == PT32_ROOT_LEVEL) {
4936 page_offset &= ~7; /* kill rounding error */
4937 page_offset <<= 1;
4938 *nspte = 2;
4939 }
4940 quadrant = page_offset >> PAGE_SHIFT;
4941 page_offset &= ~PAGE_MASK;
4942 if (quadrant != sp->role.quadrant)
4943 return NULL;
4944 }
4945
4946 spte = &sp->spt[page_offset / sizeof(*spte)];
4947 return spte;
4948 }
4949
4950 /*
4951 * Ignore various flags when determining if a SPTE can be immediately
4952 * overwritten for the current MMU.
4953 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4954 * match the current MMU role, as MMU's level tracks the root level.
4955 * - access: updated based on the new guest PTE
4956 * - quadrant: handled by get_written_sptes()
4957 * - invalid: always false (loop only walks valid shadow pages)
4958 */
4959 static const union kvm_mmu_page_role role_ign = {
4960 .level = 0xf,
4961 .access = 0x7,
4962 .quadrant = 0x3,
4963 .invalid = 0x1,
4964 };
4965
4966 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4967 const u8 *new, int bytes,
4968 struct kvm_page_track_notifier_node *node)
4969 {
4970 gfn_t gfn = gpa >> PAGE_SHIFT;
4971 struct kvm_mmu_page *sp;
4972 LIST_HEAD(invalid_list);
4973 u64 entry, gentry, *spte;
4974 int npte;
4975 bool remote_flush, local_flush;
4976
4977 /*
4978 * If we don't have indirect shadow pages, it means no page is
4979 * write-protected, so we can exit simply.
4980 */
4981 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4982 return;
4983
4984 remote_flush = local_flush = false;
4985
4986 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4987
4988 /*
4989 * No need to care whether allocation memory is successful
4990 * or not since pte prefetch is skiped if it does not have
4991 * enough objects in the cache.
4992 */
4993 mmu_topup_memory_caches(vcpu, true);
4994
4995 spin_lock(&vcpu->kvm->mmu_lock);
4996
4997 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4998
4999 ++vcpu->kvm->stat.mmu_pte_write;
5000 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5001
5002 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5003 if (detect_write_misaligned(sp, gpa, bytes) ||
5004 detect_write_flooding(sp)) {
5005 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5006 ++vcpu->kvm->stat.mmu_flooded;
5007 continue;
5008 }
5009
5010 spte = get_written_sptes(sp, gpa, &npte);
5011 if (!spte)
5012 continue;
5013
5014 local_flush = true;
5015 while (npte--) {
5016 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5017
5018 entry = *spte;
5019 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5020 if (gentry &&
5021 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5022 rmap_can_add(vcpu))
5023 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5024 if (need_remote_flush(entry, *spte))
5025 remote_flush = true;
5026 ++spte;
5027 }
5028 }
5029 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5030 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5031 spin_unlock(&vcpu->kvm->mmu_lock);
5032 }
5033
5034 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5035 {
5036 gpa_t gpa;
5037 int r;
5038
5039 if (vcpu->arch.mmu->direct_map)
5040 return 0;
5041
5042 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5043
5044 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5045
5046 return r;
5047 }
5048 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5049
5050 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5051 void *insn, int insn_len)
5052 {
5053 int r, emulation_type = EMULTYPE_PF;
5054 bool direct = vcpu->arch.mmu->direct_map;
5055
5056 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5057 return RET_PF_RETRY;
5058
5059 r = RET_PF_INVALID;
5060 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5061 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5062 if (r == RET_PF_EMULATE)
5063 goto emulate;
5064 }
5065
5066 if (r == RET_PF_INVALID) {
5067 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5068 lower_32_bits(error_code), false);
5069 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5070 return -EIO;
5071 }
5072
5073 if (r < 0)
5074 return r;
5075 if (r != RET_PF_EMULATE)
5076 return 1;
5077
5078 /*
5079 * Before emulating the instruction, check if the error code
5080 * was due to a RO violation while translating the guest page.
5081 * This can occur when using nested virtualization with nested
5082 * paging in both guests. If true, we simply unprotect the page
5083 * and resume the guest.
5084 */
5085 if (vcpu->arch.mmu->direct_map &&
5086 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5087 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5088 return 1;
5089 }
5090
5091 /*
5092 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5093 * optimistically try to just unprotect the page and let the processor
5094 * re-execute the instruction that caused the page fault. Do not allow
5095 * retrying MMIO emulation, as it's not only pointless but could also
5096 * cause us to enter an infinite loop because the processor will keep
5097 * faulting on the non-existent MMIO address. Retrying an instruction
5098 * from a nested guest is also pointless and dangerous as we are only
5099 * explicitly shadowing L1's page tables, i.e. unprotecting something
5100 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5101 */
5102 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5103 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5104 emulate:
5105 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5106 insn_len);
5107 }
5108 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5109
5110 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5111 gva_t gva, hpa_t root_hpa)
5112 {
5113 int i;
5114
5115 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5116 if (mmu != &vcpu->arch.guest_mmu) {
5117 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5118 if (is_noncanonical_address(gva, vcpu))
5119 return;
5120
5121 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5122 }
5123
5124 if (!mmu->invlpg)
5125 return;
5126
5127 if (root_hpa == INVALID_PAGE) {
5128 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5129
5130 /*
5131 * INVLPG is required to invalidate any global mappings for the VA,
5132 * irrespective of PCID. Since it would take us roughly similar amount
5133 * of work to determine whether any of the prev_root mappings of the VA
5134 * is marked global, or to just sync it blindly, so we might as well
5135 * just always sync it.
5136 *
5137 * Mappings not reachable via the current cr3 or the prev_roots will be
5138 * synced when switching to that cr3, so nothing needs to be done here
5139 * for them.
5140 */
5141 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5142 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5143 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5144 } else {
5145 mmu->invlpg(vcpu, gva, root_hpa);
5146 }
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5149
5150 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5151 {
5152 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5153 ++vcpu->stat.invlpg;
5154 }
5155 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5156
5157
5158 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5159 {
5160 struct kvm_mmu *mmu = vcpu->arch.mmu;
5161 bool tlb_flush = false;
5162 uint i;
5163
5164 if (pcid == kvm_get_active_pcid(vcpu)) {
5165 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5166 tlb_flush = true;
5167 }
5168
5169 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5170 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5171 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5172 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5173 tlb_flush = true;
5174 }
5175 }
5176
5177 if (tlb_flush)
5178 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5179
5180 ++vcpu->stat.invlpg;
5181
5182 /*
5183 * Mappings not reachable via the current cr3 or the prev_roots will be
5184 * synced when switching to that cr3, so nothing needs to be done here
5185 * for them.
5186 */
5187 }
5188 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5189
5190 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5191 int tdp_huge_page_level)
5192 {
5193 tdp_enabled = enable_tdp;
5194 max_tdp_level = tdp_max_root_level;
5195
5196 /*
5197 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5198 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5199 * the kernel is not. But, KVM never creates a page size greater than
5200 * what is used by the kernel for any given HVA, i.e. the kernel's
5201 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5202 */
5203 if (tdp_enabled)
5204 max_huge_page_level = tdp_huge_page_level;
5205 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5206 max_huge_page_level = PG_LEVEL_1G;
5207 else
5208 max_huge_page_level = PG_LEVEL_2M;
5209 }
5210 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5211
5212 /* The return value indicates if tlb flush on all vcpus is needed. */
5213 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5214
5215 /* The caller should hold mmu-lock before calling this function. */
5216 static __always_inline bool
5217 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5218 slot_level_handler fn, int start_level, int end_level,
5219 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5220 {
5221 struct slot_rmap_walk_iterator iterator;
5222 bool flush = false;
5223
5224 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5225 end_gfn, &iterator) {
5226 if (iterator.rmap)
5227 flush |= fn(kvm, iterator.rmap);
5228
5229 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5230 if (flush && lock_flush_tlb) {
5231 kvm_flush_remote_tlbs_with_address(kvm,
5232 start_gfn,
5233 iterator.gfn - start_gfn + 1);
5234 flush = false;
5235 }
5236 cond_resched_lock(&kvm->mmu_lock);
5237 }
5238 }
5239
5240 if (flush && lock_flush_tlb) {
5241 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5242 end_gfn - start_gfn + 1);
5243 flush = false;
5244 }
5245
5246 return flush;
5247 }
5248
5249 static __always_inline bool
5250 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5251 slot_level_handler fn, int start_level, int end_level,
5252 bool lock_flush_tlb)
5253 {
5254 return slot_handle_level_range(kvm, memslot, fn, start_level,
5255 end_level, memslot->base_gfn,
5256 memslot->base_gfn + memslot->npages - 1,
5257 lock_flush_tlb);
5258 }
5259
5260 static __always_inline bool
5261 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5262 slot_level_handler fn, bool lock_flush_tlb)
5263 {
5264 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5265 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5266 }
5267
5268 static __always_inline bool
5269 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5270 slot_level_handler fn, bool lock_flush_tlb)
5271 {
5272 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5273 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5274 }
5275
5276 static __always_inline bool
5277 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5278 slot_level_handler fn, bool lock_flush_tlb)
5279 {
5280 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5281 PG_LEVEL_4K, lock_flush_tlb);
5282 }
5283
5284 static void free_mmu_pages(struct kvm_mmu *mmu)
5285 {
5286 free_page((unsigned long)mmu->pae_root);
5287 free_page((unsigned long)mmu->lm_root);
5288 }
5289
5290 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5291 {
5292 struct page *page;
5293 int i;
5294
5295 mmu->root_hpa = INVALID_PAGE;
5296 mmu->root_pgd = 0;
5297 mmu->translate_gpa = translate_gpa;
5298 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5299 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5300
5301 /*
5302 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5303 * while the PDP table is a per-vCPU construct that's allocated at MMU
5304 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5305 * x86_64. Therefore we need to allocate the PDP table in the first
5306 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5307 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5308 * skip allocating the PDP table.
5309 */
5310 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5311 return 0;
5312
5313 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5314 if (!page)
5315 return -ENOMEM;
5316
5317 mmu->pae_root = page_address(page);
5318 for (i = 0; i < 4; ++i)
5319 mmu->pae_root[i] = INVALID_PAGE;
5320
5321 return 0;
5322 }
5323
5324 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5325 {
5326 int ret;
5327
5328 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5329 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5330
5331 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5332 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5333
5334 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5335
5336 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5337 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5338
5339 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5340
5341 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5342 if (ret)
5343 return ret;
5344
5345 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5346 if (ret)
5347 goto fail_allocate_root;
5348
5349 return ret;
5350 fail_allocate_root:
5351 free_mmu_pages(&vcpu->arch.guest_mmu);
5352 return ret;
5353 }
5354
5355 #define BATCH_ZAP_PAGES 10
5356 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5357 {
5358 struct kvm_mmu_page *sp, *node;
5359 int nr_zapped, batch = 0;
5360
5361 restart:
5362 list_for_each_entry_safe_reverse(sp, node,
5363 &kvm->arch.active_mmu_pages, link) {
5364 /*
5365 * No obsolete valid page exists before a newly created page
5366 * since active_mmu_pages is a FIFO list.
5367 */
5368 if (!is_obsolete_sp(kvm, sp))
5369 break;
5370
5371 /*
5372 * Invalid pages should never land back on the list of active
5373 * pages. Skip the bogus page, otherwise we'll get stuck in an
5374 * infinite loop if the page gets put back on the list (again).
5375 */
5376 if (WARN_ON(sp->role.invalid))
5377 continue;
5378
5379 /*
5380 * No need to flush the TLB since we're only zapping shadow
5381 * pages with an obsolete generation number and all vCPUS have
5382 * loaded a new root, i.e. the shadow pages being zapped cannot
5383 * be in active use by the guest.
5384 */
5385 if (batch >= BATCH_ZAP_PAGES &&
5386 cond_resched_lock(&kvm->mmu_lock)) {
5387 batch = 0;
5388 goto restart;
5389 }
5390
5391 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5392 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5393 batch += nr_zapped;
5394 goto restart;
5395 }
5396 }
5397
5398 /*
5399 * Trigger a remote TLB flush before freeing the page tables to ensure
5400 * KVM is not in the middle of a lockless shadow page table walk, which
5401 * may reference the pages.
5402 */
5403 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5404 }
5405
5406 /*
5407 * Fast invalidate all shadow pages and use lock-break technique
5408 * to zap obsolete pages.
5409 *
5410 * It's required when memslot is being deleted or VM is being
5411 * destroyed, in these cases, we should ensure that KVM MMU does
5412 * not use any resource of the being-deleted slot or all slots
5413 * after calling the function.
5414 */
5415 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5416 {
5417 lockdep_assert_held(&kvm->slots_lock);
5418
5419 spin_lock(&kvm->mmu_lock);
5420 trace_kvm_mmu_zap_all_fast(kvm);
5421
5422 /*
5423 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5424 * held for the entire duration of zapping obsolete pages, it's
5425 * impossible for there to be multiple invalid generations associated
5426 * with *valid* shadow pages at any given time, i.e. there is exactly
5427 * one valid generation and (at most) one invalid generation.
5428 */
5429 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5430
5431 /*
5432 * Notify all vcpus to reload its shadow page table and flush TLB.
5433 * Then all vcpus will switch to new shadow page table with the new
5434 * mmu_valid_gen.
5435 *
5436 * Note: we need to do this under the protection of mmu_lock,
5437 * otherwise, vcpu would purge shadow page but miss tlb flush.
5438 */
5439 kvm_reload_remote_mmus(kvm);
5440
5441 kvm_zap_obsolete_pages(kvm);
5442
5443 if (kvm->arch.tdp_mmu_enabled)
5444 kvm_tdp_mmu_zap_all(kvm);
5445
5446 spin_unlock(&kvm->mmu_lock);
5447 }
5448
5449 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5450 {
5451 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5452 }
5453
5454 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5455 struct kvm_memory_slot *slot,
5456 struct kvm_page_track_notifier_node *node)
5457 {
5458 kvm_mmu_zap_all_fast(kvm);
5459 }
5460
5461 void kvm_mmu_init_vm(struct kvm *kvm)
5462 {
5463 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5464
5465 kvm_mmu_init_tdp_mmu(kvm);
5466
5467 node->track_write = kvm_mmu_pte_write;
5468 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5469 kvm_page_track_register_notifier(kvm, node);
5470 }
5471
5472 void kvm_mmu_uninit_vm(struct kvm *kvm)
5473 {
5474 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5475
5476 kvm_page_track_unregister_notifier(kvm, node);
5477
5478 kvm_mmu_uninit_tdp_mmu(kvm);
5479 }
5480
5481 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5482 {
5483 struct kvm_memslots *slots;
5484 struct kvm_memory_slot *memslot;
5485 int i;
5486 bool flush;
5487
5488 spin_lock(&kvm->mmu_lock);
5489 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5490 slots = __kvm_memslots(kvm, i);
5491 kvm_for_each_memslot(memslot, slots) {
5492 gfn_t start, end;
5493
5494 start = max(gfn_start, memslot->base_gfn);
5495 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5496 if (start >= end)
5497 continue;
5498
5499 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5500 PG_LEVEL_4K,
5501 KVM_MAX_HUGEPAGE_LEVEL,
5502 start, end - 1, true);
5503 }
5504 }
5505
5506 if (kvm->arch.tdp_mmu_enabled) {
5507 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5508 if (flush)
5509 kvm_flush_remote_tlbs(kvm);
5510 }
5511
5512 spin_unlock(&kvm->mmu_lock);
5513 }
5514
5515 static bool slot_rmap_write_protect(struct kvm *kvm,
5516 struct kvm_rmap_head *rmap_head)
5517 {
5518 return __rmap_write_protect(kvm, rmap_head, false);
5519 }
5520
5521 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5522 struct kvm_memory_slot *memslot,
5523 int start_level)
5524 {
5525 bool flush;
5526
5527 spin_lock(&kvm->mmu_lock);
5528 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5529 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5530 if (kvm->arch.tdp_mmu_enabled)
5531 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5532 spin_unlock(&kvm->mmu_lock);
5533
5534 /*
5535 * We can flush all the TLBs out of the mmu lock without TLB
5536 * corruption since we just change the spte from writable to
5537 * readonly so that we only need to care the case of changing
5538 * spte from present to present (changing the spte from present
5539 * to nonpresent will flush all the TLBs immediately), in other
5540 * words, the only case we care is mmu_spte_update() where we
5541 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5542 * instead of PT_WRITABLE_MASK, that means it does not depend
5543 * on PT_WRITABLE_MASK anymore.
5544 */
5545 if (flush)
5546 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5547 }
5548
5549 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5550 struct kvm_rmap_head *rmap_head)
5551 {
5552 u64 *sptep;
5553 struct rmap_iterator iter;
5554 int need_tlb_flush = 0;
5555 kvm_pfn_t pfn;
5556 struct kvm_mmu_page *sp;
5557
5558 restart:
5559 for_each_rmap_spte(rmap_head, &iter, sptep) {
5560 sp = sptep_to_sp(sptep);
5561 pfn = spte_to_pfn(*sptep);
5562
5563 /*
5564 * We cannot do huge page mapping for indirect shadow pages,
5565 * which are found on the last rmap (level = 1) when not using
5566 * tdp; such shadow pages are synced with the page table in
5567 * the guest, and the guest page table is using 4K page size
5568 * mapping if the indirect sp has level = 1.
5569 */
5570 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5571 (kvm_is_zone_device_pfn(pfn) ||
5572 PageCompound(pfn_to_page(pfn)))) {
5573 pte_list_remove(rmap_head, sptep);
5574
5575 if (kvm_available_flush_tlb_with_range())
5576 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5577 KVM_PAGES_PER_HPAGE(sp->role.level));
5578 else
5579 need_tlb_flush = 1;
5580
5581 goto restart;
5582 }
5583 }
5584
5585 return need_tlb_flush;
5586 }
5587
5588 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5589 const struct kvm_memory_slot *memslot)
5590 {
5591 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5592 spin_lock(&kvm->mmu_lock);
5593 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5594 kvm_mmu_zap_collapsible_spte, true);
5595
5596 if (kvm->arch.tdp_mmu_enabled)
5597 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5598 spin_unlock(&kvm->mmu_lock);
5599 }
5600
5601 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5602 struct kvm_memory_slot *memslot)
5603 {
5604 /*
5605 * All current use cases for flushing the TLBs for a specific memslot
5606 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5607 * The interaction between the various operations on memslot must be
5608 * serialized by slots_locks to ensure the TLB flush from one operation
5609 * is observed by any other operation on the same memslot.
5610 */
5611 lockdep_assert_held(&kvm->slots_lock);
5612 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5613 memslot->npages);
5614 }
5615
5616 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5617 struct kvm_memory_slot *memslot)
5618 {
5619 bool flush;
5620
5621 spin_lock(&kvm->mmu_lock);
5622 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5623 if (kvm->arch.tdp_mmu_enabled)
5624 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5625 spin_unlock(&kvm->mmu_lock);
5626
5627 /*
5628 * It's also safe to flush TLBs out of mmu lock here as currently this
5629 * function is only used for dirty logging, in which case flushing TLB
5630 * out of mmu lock also guarantees no dirty pages will be lost in
5631 * dirty_bitmap.
5632 */
5633 if (flush)
5634 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5635 }
5636 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5637
5638 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5639 struct kvm_memory_slot *memslot)
5640 {
5641 bool flush;
5642
5643 spin_lock(&kvm->mmu_lock);
5644 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5645 false);
5646 if (kvm->arch.tdp_mmu_enabled)
5647 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5648 spin_unlock(&kvm->mmu_lock);
5649
5650 if (flush)
5651 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5652 }
5653 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5654
5655 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5656 struct kvm_memory_slot *memslot)
5657 {
5658 bool flush;
5659
5660 spin_lock(&kvm->mmu_lock);
5661 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5662 if (kvm->arch.tdp_mmu_enabled)
5663 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5664 spin_unlock(&kvm->mmu_lock);
5665
5666 if (flush)
5667 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5668 }
5669 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5670
5671 void kvm_mmu_zap_all(struct kvm *kvm)
5672 {
5673 struct kvm_mmu_page *sp, *node;
5674 LIST_HEAD(invalid_list);
5675 int ign;
5676
5677 spin_lock(&kvm->mmu_lock);
5678 restart:
5679 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5680 if (WARN_ON(sp->role.invalid))
5681 continue;
5682 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5683 goto restart;
5684 if (cond_resched_lock(&kvm->mmu_lock))
5685 goto restart;
5686 }
5687
5688 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5689
5690 if (kvm->arch.tdp_mmu_enabled)
5691 kvm_tdp_mmu_zap_all(kvm);
5692
5693 spin_unlock(&kvm->mmu_lock);
5694 }
5695
5696 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5697 {
5698 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5699
5700 gen &= MMIO_SPTE_GEN_MASK;
5701
5702 /*
5703 * Generation numbers are incremented in multiples of the number of
5704 * address spaces in order to provide unique generations across all
5705 * address spaces. Strip what is effectively the address space
5706 * modifier prior to checking for a wrap of the MMIO generation so
5707 * that a wrap in any address space is detected.
5708 */
5709 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5710
5711 /*
5712 * The very rare case: if the MMIO generation number has wrapped,
5713 * zap all shadow pages.
5714 */
5715 if (unlikely(gen == 0)) {
5716 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5717 kvm_mmu_zap_all_fast(kvm);
5718 }
5719 }
5720
5721 static unsigned long
5722 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5723 {
5724 struct kvm *kvm;
5725 int nr_to_scan = sc->nr_to_scan;
5726 unsigned long freed = 0;
5727
5728 mutex_lock(&kvm_lock);
5729
5730 list_for_each_entry(kvm, &vm_list, vm_list) {
5731 int idx;
5732 LIST_HEAD(invalid_list);
5733
5734 /*
5735 * Never scan more than sc->nr_to_scan VM instances.
5736 * Will not hit this condition practically since we do not try
5737 * to shrink more than one VM and it is very unlikely to see
5738 * !n_used_mmu_pages so many times.
5739 */
5740 if (!nr_to_scan--)
5741 break;
5742 /*
5743 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5744 * here. We may skip a VM instance errorneosly, but we do not
5745 * want to shrink a VM that only started to populate its MMU
5746 * anyway.
5747 */
5748 if (!kvm->arch.n_used_mmu_pages &&
5749 !kvm_has_zapped_obsolete_pages(kvm))
5750 continue;
5751
5752 idx = srcu_read_lock(&kvm->srcu);
5753 spin_lock(&kvm->mmu_lock);
5754
5755 if (kvm_has_zapped_obsolete_pages(kvm)) {
5756 kvm_mmu_commit_zap_page(kvm,
5757 &kvm->arch.zapped_obsolete_pages);
5758 goto unlock;
5759 }
5760
5761 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5762
5763 unlock:
5764 spin_unlock(&kvm->mmu_lock);
5765 srcu_read_unlock(&kvm->srcu, idx);
5766
5767 /*
5768 * unfair on small ones
5769 * per-vm shrinkers cry out
5770 * sadness comes quickly
5771 */
5772 list_move_tail(&kvm->vm_list, &vm_list);
5773 break;
5774 }
5775
5776 mutex_unlock(&kvm_lock);
5777 return freed;
5778 }
5779
5780 static unsigned long
5781 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5782 {
5783 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5784 }
5785
5786 static struct shrinker mmu_shrinker = {
5787 .count_objects = mmu_shrink_count,
5788 .scan_objects = mmu_shrink_scan,
5789 .seeks = DEFAULT_SEEKS * 10,
5790 };
5791
5792 static void mmu_destroy_caches(void)
5793 {
5794 kmem_cache_destroy(pte_list_desc_cache);
5795 kmem_cache_destroy(mmu_page_header_cache);
5796 }
5797
5798 static void kvm_set_mmio_spte_mask(void)
5799 {
5800 u64 mask;
5801
5802 /*
5803 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5804 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5805 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5806 * 52-bit physical addresses then there are no reserved PA bits in the
5807 * PTEs and so the reserved PA approach must be disabled.
5808 */
5809 if (shadow_phys_bits < 52)
5810 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5811 else
5812 mask = 0;
5813
5814 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5815 }
5816
5817 static bool get_nx_auto_mode(void)
5818 {
5819 /* Return true when CPU has the bug, and mitigations are ON */
5820 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5821 }
5822
5823 static void __set_nx_huge_pages(bool val)
5824 {
5825 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5826 }
5827
5828 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5829 {
5830 bool old_val = nx_huge_pages;
5831 bool new_val;
5832
5833 /* In "auto" mode deploy workaround only if CPU has the bug. */
5834 if (sysfs_streq(val, "off"))
5835 new_val = 0;
5836 else if (sysfs_streq(val, "force"))
5837 new_val = 1;
5838 else if (sysfs_streq(val, "auto"))
5839 new_val = get_nx_auto_mode();
5840 else if (strtobool(val, &new_val) < 0)
5841 return -EINVAL;
5842
5843 __set_nx_huge_pages(new_val);
5844
5845 if (new_val != old_val) {
5846 struct kvm *kvm;
5847
5848 mutex_lock(&kvm_lock);
5849
5850 list_for_each_entry(kvm, &vm_list, vm_list) {
5851 mutex_lock(&kvm->slots_lock);
5852 kvm_mmu_zap_all_fast(kvm);
5853 mutex_unlock(&kvm->slots_lock);
5854
5855 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5856 }
5857 mutex_unlock(&kvm_lock);
5858 }
5859
5860 return 0;
5861 }
5862
5863 int kvm_mmu_module_init(void)
5864 {
5865 int ret = -ENOMEM;
5866
5867 if (nx_huge_pages == -1)
5868 __set_nx_huge_pages(get_nx_auto_mode());
5869
5870 /*
5871 * MMU roles use union aliasing which is, generally speaking, an
5872 * undefined behavior. However, we supposedly know how compilers behave
5873 * and the current status quo is unlikely to change. Guardians below are
5874 * supposed to let us know if the assumption becomes false.
5875 */
5876 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5877 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5878 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5879
5880 kvm_mmu_reset_all_pte_masks();
5881
5882 kvm_set_mmio_spte_mask();
5883
5884 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5885 sizeof(struct pte_list_desc),
5886 0, SLAB_ACCOUNT, NULL);
5887 if (!pte_list_desc_cache)
5888 goto out;
5889
5890 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5891 sizeof(struct kvm_mmu_page),
5892 0, SLAB_ACCOUNT, NULL);
5893 if (!mmu_page_header_cache)
5894 goto out;
5895
5896 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5897 goto out;
5898
5899 ret = register_shrinker(&mmu_shrinker);
5900 if (ret)
5901 goto out;
5902
5903 return 0;
5904
5905 out:
5906 mmu_destroy_caches();
5907 return ret;
5908 }
5909
5910 /*
5911 * Calculate mmu pages needed for kvm.
5912 */
5913 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5914 {
5915 unsigned long nr_mmu_pages;
5916 unsigned long nr_pages = 0;
5917 struct kvm_memslots *slots;
5918 struct kvm_memory_slot *memslot;
5919 int i;
5920
5921 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5922 slots = __kvm_memslots(kvm, i);
5923
5924 kvm_for_each_memslot(memslot, slots)
5925 nr_pages += memslot->npages;
5926 }
5927
5928 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5929 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5930
5931 return nr_mmu_pages;
5932 }
5933
5934 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5935 {
5936 kvm_mmu_unload(vcpu);
5937 free_mmu_pages(&vcpu->arch.root_mmu);
5938 free_mmu_pages(&vcpu->arch.guest_mmu);
5939 mmu_free_memory_caches(vcpu);
5940 }
5941
5942 void kvm_mmu_module_exit(void)
5943 {
5944 mmu_destroy_caches();
5945 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5946 unregister_shrinker(&mmu_shrinker);
5947 mmu_audit_disable();
5948 }
5949
5950 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5951 {
5952 unsigned int old_val;
5953 int err;
5954
5955 old_val = nx_huge_pages_recovery_ratio;
5956 err = param_set_uint(val, kp);
5957 if (err)
5958 return err;
5959
5960 if (READ_ONCE(nx_huge_pages) &&
5961 !old_val && nx_huge_pages_recovery_ratio) {
5962 struct kvm *kvm;
5963
5964 mutex_lock(&kvm_lock);
5965
5966 list_for_each_entry(kvm, &vm_list, vm_list)
5967 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5968
5969 mutex_unlock(&kvm_lock);
5970 }
5971
5972 return err;
5973 }
5974
5975 static void kvm_recover_nx_lpages(struct kvm *kvm)
5976 {
5977 int rcu_idx;
5978 struct kvm_mmu_page *sp;
5979 unsigned int ratio;
5980 LIST_HEAD(invalid_list);
5981 ulong to_zap;
5982
5983 rcu_idx = srcu_read_lock(&kvm->srcu);
5984 spin_lock(&kvm->mmu_lock);
5985
5986 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5987 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5988 for ( ; to_zap; --to_zap) {
5989 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5990 break;
5991
5992 /*
5993 * We use a separate list instead of just using active_mmu_pages
5994 * because the number of lpage_disallowed pages is expected to
5995 * be relatively small compared to the total.
5996 */
5997 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5998 struct kvm_mmu_page,
5999 lpage_disallowed_link);
6000 WARN_ON_ONCE(!sp->lpage_disallowed);
6001 if (sp->tdp_mmu_page)
6002 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
6003 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
6004 else {
6005 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6006 WARN_ON_ONCE(sp->lpage_disallowed);
6007 }
6008
6009 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6010 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6011 cond_resched_lock(&kvm->mmu_lock);
6012 }
6013 }
6014 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6015
6016 spin_unlock(&kvm->mmu_lock);
6017 srcu_read_unlock(&kvm->srcu, rcu_idx);
6018 }
6019
6020 static long get_nx_lpage_recovery_timeout(u64 start_time)
6021 {
6022 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6023 ? start_time + 60 * HZ - get_jiffies_64()
6024 : MAX_SCHEDULE_TIMEOUT;
6025 }
6026
6027 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6028 {
6029 u64 start_time;
6030 long remaining_time;
6031
6032 while (true) {
6033 start_time = get_jiffies_64();
6034 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6035
6036 set_current_state(TASK_INTERRUPTIBLE);
6037 while (!kthread_should_stop() && remaining_time > 0) {
6038 schedule_timeout(remaining_time);
6039 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6040 set_current_state(TASK_INTERRUPTIBLE);
6041 }
6042
6043 set_current_state(TASK_RUNNING);
6044
6045 if (kthread_should_stop())
6046 return 0;
6047
6048 kvm_recover_nx_lpages(kvm);
6049 }
6050 }
6051
6052 int kvm_mmu_post_init_vm(struct kvm *kvm)
6053 {
6054 int err;
6055
6056 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6057 "kvm-nx-lpage-recovery",
6058 &kvm->arch.nx_lpage_recovery_thread);
6059 if (!err)
6060 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6061
6062 return err;
6063 }
6064
6065 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6066 {
6067 if (kvm->arch.nx_lpage_recovery_thread)
6068 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6069 }