]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
Merge tag 'mac80211-for-davem-2020-08-28' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43 #include <linux/kthread.h>
44
45 #include <asm/page.h>
46 #include <asm/memtype.h>
47 #include <asm/cmpxchg.h>
48 #include <asm/e820/api.h>
49 #include <asm/io.h>
50 #include <asm/vmx.h>
51 #include <asm/kvm_page_track.h>
52 #include "trace.h"
53
54 extern bool itlb_multihit_kvm_mitigation;
55
56 static int __read_mostly nx_huge_pages = -1;
57 #ifdef CONFIG_PREEMPT_RT
58 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
59 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
60 #else
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
62 #endif
63
64 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
65 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
66
67 static struct kernel_param_ops nx_huge_pages_ops = {
68 .set = set_nx_huge_pages,
69 .get = param_get_bool,
70 };
71
72 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
73 .set = set_nx_huge_pages_recovery_ratio,
74 .get = param_get_uint,
75 };
76
77 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
79 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
80 &nx_huge_pages_recovery_ratio, 0644);
81 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
82
83 static bool __read_mostly force_flush_and_sync_on_reuse;
84 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
85
86 /*
87 * When setting this variable to true it enables Two-Dimensional-Paging
88 * where the hardware walks 2 page tables:
89 * 1. the guest-virtual to guest-physical
90 * 2. while doing 1. it walks guest-physical to host-physical
91 * If the hardware supports that we don't need to do shadow paging.
92 */
93 bool tdp_enabled = false;
94
95 static int max_huge_page_level __read_mostly;
96 static int max_tdp_level __read_mostly;
97
98 enum {
99 AUDIT_PRE_PAGE_FAULT,
100 AUDIT_POST_PAGE_FAULT,
101 AUDIT_PRE_PTE_WRITE,
102 AUDIT_POST_PTE_WRITE,
103 AUDIT_PRE_SYNC,
104 AUDIT_POST_SYNC
105 };
106
107 #undef MMU_DEBUG
108
109 #ifdef MMU_DEBUG
110 static bool dbg = 0;
111 module_param(dbg, bool, 0644);
112
113 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
114 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
115 #define MMU_WARN_ON(x) WARN_ON(x)
116 #else
117 #define pgprintk(x...) do { } while (0)
118 #define rmap_printk(x...) do { } while (0)
119 #define MMU_WARN_ON(x) do { } while (0)
120 #endif
121
122 #define PTE_PREFETCH_NUM 8
123
124 #define PT_FIRST_AVAIL_BITS_SHIFT 10
125 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
126
127 /*
128 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
129 * Access Tracking SPTEs.
130 */
131 #define SPTE_SPECIAL_MASK (3ULL << 52)
132 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
133 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
134 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
135 #define SPTE_MMIO_MASK (3ULL << 52)
136
137 #define PT64_LEVEL_BITS 9
138
139 #define PT64_LEVEL_SHIFT(level) \
140 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
141
142 #define PT64_INDEX(address, level)\
143 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
144
145
146 #define PT32_LEVEL_BITS 10
147
148 #define PT32_LEVEL_SHIFT(level) \
149 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
150
151 #define PT32_LVL_OFFSET_MASK(level) \
152 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
153 * PT32_LEVEL_BITS))) - 1))
154
155 #define PT32_INDEX(address, level)\
156 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
157
158
159 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
160 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
161 #else
162 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
163 #endif
164 #define PT64_LVL_ADDR_MASK(level) \
165 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
166 * PT64_LEVEL_BITS))) - 1))
167 #define PT64_LVL_OFFSET_MASK(level) \
168 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
169 * PT64_LEVEL_BITS))) - 1))
170
171 #define PT32_BASE_ADDR_MASK PAGE_MASK
172 #define PT32_DIR_BASE_ADDR_MASK \
173 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
174 #define PT32_LVL_ADDR_MASK(level) \
175 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
176 * PT32_LEVEL_BITS))) - 1))
177
178 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
179 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
180
181 #define ACC_EXEC_MASK 1
182 #define ACC_WRITE_MASK PT_WRITABLE_MASK
183 #define ACC_USER_MASK PT_USER_MASK
184 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
185
186 /* The mask for the R/X bits in EPT PTEs */
187 #define PT64_EPT_READABLE_MASK 0x1ull
188 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
189
190 #include <trace/events/kvm.h>
191
192 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
193 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
194
195 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
196
197 /* make pte_list_desc fit well in cache line */
198 #define PTE_LIST_EXT 3
199
200 /*
201 * Return values of handle_mmio_page_fault and mmu.page_fault:
202 * RET_PF_RETRY: let CPU fault again on the address.
203 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
204 *
205 * For handle_mmio_page_fault only:
206 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
207 */
208 enum {
209 RET_PF_RETRY = 0,
210 RET_PF_EMULATE = 1,
211 RET_PF_INVALID = 2,
212 };
213
214 struct pte_list_desc {
215 u64 *sptes[PTE_LIST_EXT];
216 struct pte_list_desc *more;
217 };
218
219 struct kvm_shadow_walk_iterator {
220 u64 addr;
221 hpa_t shadow_addr;
222 u64 *sptep;
223 int level;
224 unsigned index;
225 };
226
227 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
228 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
229 (_root), (_addr)); \
230 shadow_walk_okay(&(_walker)); \
231 shadow_walk_next(&(_walker)))
232
233 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
234 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
235 shadow_walk_okay(&(_walker)); \
236 shadow_walk_next(&(_walker)))
237
238 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
239 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
240 shadow_walk_okay(&(_walker)) && \
241 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
242 __shadow_walk_next(&(_walker), spte))
243
244 static struct kmem_cache *pte_list_desc_cache;
245 static struct kmem_cache *mmu_page_header_cache;
246 static struct percpu_counter kvm_total_used_mmu_pages;
247
248 static u64 __read_mostly shadow_nx_mask;
249 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
250 static u64 __read_mostly shadow_user_mask;
251 static u64 __read_mostly shadow_accessed_mask;
252 static u64 __read_mostly shadow_dirty_mask;
253 static u64 __read_mostly shadow_mmio_value;
254 static u64 __read_mostly shadow_mmio_access_mask;
255 static u64 __read_mostly shadow_present_mask;
256 static u64 __read_mostly shadow_me_mask;
257
258 /*
259 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
260 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
261 * pages.
262 */
263 static u64 __read_mostly shadow_acc_track_mask;
264
265 /*
266 * The mask/shift to use for saving the original R/X bits when marking the PTE
267 * as not-present for access tracking purposes. We do not save the W bit as the
268 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
269 * restored only when a write is attempted to the page.
270 */
271 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
272 PT64_EPT_EXECUTABLE_MASK;
273 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
274
275 /*
276 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
277 * to guard against L1TF attacks.
278 */
279 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
280
281 /*
282 * The number of high-order 1 bits to use in the mask above.
283 */
284 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
285
286 /*
287 * In some cases, we need to preserve the GFN of a non-present or reserved
288 * SPTE when we usurp the upper five bits of the physical address space to
289 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
290 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
291 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
292 * high and low parts. This mask covers the lower bits of the GFN.
293 */
294 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
295
296 /*
297 * The number of non-reserved physical address bits irrespective of features
298 * that repurpose legal bits, e.g. MKTME.
299 */
300 static u8 __read_mostly shadow_phys_bits;
301
302 static void mmu_spte_set(u64 *sptep, u64 spte);
303 static bool is_executable_pte(u64 spte);
304 static union kvm_mmu_page_role
305 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
306
307 #define CREATE_TRACE_POINTS
308 #include "mmutrace.h"
309
310
311 static inline bool kvm_available_flush_tlb_with_range(void)
312 {
313 return kvm_x86_ops.tlb_remote_flush_with_range;
314 }
315
316 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
317 struct kvm_tlb_range *range)
318 {
319 int ret = -ENOTSUPP;
320
321 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
322 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
323
324 if (ret)
325 kvm_flush_remote_tlbs(kvm);
326 }
327
328 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
329 u64 start_gfn, u64 pages)
330 {
331 struct kvm_tlb_range range;
332
333 range.start_gfn = start_gfn;
334 range.pages = pages;
335
336 kvm_flush_remote_tlbs_with_range(kvm, &range);
337 }
338
339 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
340 {
341 BUG_ON((u64)(unsigned)access_mask != access_mask);
342 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
343 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
344 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
345 shadow_mmio_access_mask = access_mask;
346 }
347 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
348
349 static bool is_mmio_spte(u64 spte)
350 {
351 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
352 }
353
354 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
355 {
356 return sp->role.ad_disabled;
357 }
358
359 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
360 {
361 /*
362 * When using the EPT page-modification log, the GPAs in the log
363 * would come from L2 rather than L1. Therefore, we need to rely
364 * on write protection to record dirty pages. This also bypasses
365 * PML, since writes now result in a vmexit.
366 */
367 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
368 }
369
370 static inline bool spte_ad_enabled(u64 spte)
371 {
372 MMU_WARN_ON(is_mmio_spte(spte));
373 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
374 }
375
376 static inline bool spte_ad_need_write_protect(u64 spte)
377 {
378 MMU_WARN_ON(is_mmio_spte(spte));
379 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
380 }
381
382 static bool is_nx_huge_page_enabled(void)
383 {
384 return READ_ONCE(nx_huge_pages);
385 }
386
387 static inline u64 spte_shadow_accessed_mask(u64 spte)
388 {
389 MMU_WARN_ON(is_mmio_spte(spte));
390 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
391 }
392
393 static inline u64 spte_shadow_dirty_mask(u64 spte)
394 {
395 MMU_WARN_ON(is_mmio_spte(spte));
396 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
397 }
398
399 static inline bool is_access_track_spte(u64 spte)
400 {
401 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
402 }
403
404 /*
405 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
406 * the memslots generation and is derived as follows:
407 *
408 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
409 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
410 *
411 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
412 * the MMIO generation number, as doing so would require stealing a bit from
413 * the "real" generation number and thus effectively halve the maximum number
414 * of MMIO generations that can be handled before encountering a wrap (which
415 * requires a full MMU zap). The flag is instead explicitly queried when
416 * checking for MMIO spte cache hits.
417 */
418 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
419
420 #define MMIO_SPTE_GEN_LOW_START 3
421 #define MMIO_SPTE_GEN_LOW_END 11
422 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
423 MMIO_SPTE_GEN_LOW_START)
424
425 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
426 #define MMIO_SPTE_GEN_HIGH_END 62
427 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
428 MMIO_SPTE_GEN_HIGH_START)
429
430 static u64 generation_mmio_spte_mask(u64 gen)
431 {
432 u64 mask;
433
434 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
435 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
436
437 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
438 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
439 return mask;
440 }
441
442 static u64 get_mmio_spte_generation(u64 spte)
443 {
444 u64 gen;
445
446 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
447 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
448 return gen;
449 }
450
451 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
452 {
453
454 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
455 u64 mask = generation_mmio_spte_mask(gen);
456 u64 gpa = gfn << PAGE_SHIFT;
457
458 access &= shadow_mmio_access_mask;
459 mask |= shadow_mmio_value | access;
460 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
461 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
462 << shadow_nonpresent_or_rsvd_mask_len;
463
464 return mask;
465 }
466
467 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
468 unsigned int access)
469 {
470 u64 mask = make_mmio_spte(vcpu, gfn, access);
471 unsigned int gen = get_mmio_spte_generation(mask);
472
473 access = mask & ACC_ALL;
474
475 trace_mark_mmio_spte(sptep, gfn, access, gen);
476 mmu_spte_set(sptep, mask);
477 }
478
479 static gfn_t get_mmio_spte_gfn(u64 spte)
480 {
481 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
482
483 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
484 & shadow_nonpresent_or_rsvd_mask;
485
486 return gpa >> PAGE_SHIFT;
487 }
488
489 static unsigned get_mmio_spte_access(u64 spte)
490 {
491 return spte & shadow_mmio_access_mask;
492 }
493
494 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
495 kvm_pfn_t pfn, unsigned int access)
496 {
497 if (unlikely(is_noslot_pfn(pfn))) {
498 mark_mmio_spte(vcpu, sptep, gfn, access);
499 return true;
500 }
501
502 return false;
503 }
504
505 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
506 {
507 u64 kvm_gen, spte_gen, gen;
508
509 gen = kvm_vcpu_memslots(vcpu)->generation;
510 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
511 return false;
512
513 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
514 spte_gen = get_mmio_spte_generation(spte);
515
516 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
517 return likely(kvm_gen == spte_gen);
518 }
519
520 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
521 struct x86_exception *exception)
522 {
523 /* Check if guest physical address doesn't exceed guest maximum */
524 if (kvm_mmu_is_illegal_gpa(vcpu, gpa)) {
525 exception->error_code |= PFERR_RSVD_MASK;
526 return UNMAPPED_GVA;
527 }
528
529 return gpa;
530 }
531
532 /*
533 * Sets the shadow PTE masks used by the MMU.
534 *
535 * Assumptions:
536 * - Setting either @accessed_mask or @dirty_mask requires setting both
537 * - At least one of @accessed_mask or @acc_track_mask must be set
538 */
539 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
540 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
541 u64 acc_track_mask, u64 me_mask)
542 {
543 BUG_ON(!dirty_mask != !accessed_mask);
544 BUG_ON(!accessed_mask && !acc_track_mask);
545 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
546
547 shadow_user_mask = user_mask;
548 shadow_accessed_mask = accessed_mask;
549 shadow_dirty_mask = dirty_mask;
550 shadow_nx_mask = nx_mask;
551 shadow_x_mask = x_mask;
552 shadow_present_mask = p_mask;
553 shadow_acc_track_mask = acc_track_mask;
554 shadow_me_mask = me_mask;
555 }
556 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
557
558 static u8 kvm_get_shadow_phys_bits(void)
559 {
560 /*
561 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
562 * in CPU detection code, but the processor treats those reduced bits as
563 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
564 * the physical address bits reported by CPUID.
565 */
566 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
567 return cpuid_eax(0x80000008) & 0xff;
568
569 /*
570 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
571 * custom CPUID. Proceed with whatever the kernel found since these features
572 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
573 */
574 return boot_cpu_data.x86_phys_bits;
575 }
576
577 static void kvm_mmu_reset_all_pte_masks(void)
578 {
579 u8 low_phys_bits;
580
581 shadow_user_mask = 0;
582 shadow_accessed_mask = 0;
583 shadow_dirty_mask = 0;
584 shadow_nx_mask = 0;
585 shadow_x_mask = 0;
586 shadow_present_mask = 0;
587 shadow_acc_track_mask = 0;
588
589 shadow_phys_bits = kvm_get_shadow_phys_bits();
590
591 /*
592 * If the CPU has 46 or less physical address bits, then set an
593 * appropriate mask to guard against L1TF attacks. Otherwise, it is
594 * assumed that the CPU is not vulnerable to L1TF.
595 *
596 * Some Intel CPUs address the L1 cache using more PA bits than are
597 * reported by CPUID. Use the PA width of the L1 cache when possible
598 * to achieve more effective mitigation, e.g. if system RAM overlaps
599 * the most significant bits of legal physical address space.
600 */
601 shadow_nonpresent_or_rsvd_mask = 0;
602 low_phys_bits = boot_cpu_data.x86_phys_bits;
603 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
604 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
605 52 - shadow_nonpresent_or_rsvd_mask_len)) {
606 low_phys_bits = boot_cpu_data.x86_cache_bits
607 - shadow_nonpresent_or_rsvd_mask_len;
608 shadow_nonpresent_or_rsvd_mask =
609 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
610 }
611
612 shadow_nonpresent_or_rsvd_lower_gfn_mask =
613 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
614 }
615
616 static int is_cpuid_PSE36(void)
617 {
618 return 1;
619 }
620
621 static int is_nx(struct kvm_vcpu *vcpu)
622 {
623 return vcpu->arch.efer & EFER_NX;
624 }
625
626 static int is_shadow_present_pte(u64 pte)
627 {
628 return (pte != 0) && !is_mmio_spte(pte);
629 }
630
631 static int is_large_pte(u64 pte)
632 {
633 return pte & PT_PAGE_SIZE_MASK;
634 }
635
636 static int is_last_spte(u64 pte, int level)
637 {
638 if (level == PG_LEVEL_4K)
639 return 1;
640 if (is_large_pte(pte))
641 return 1;
642 return 0;
643 }
644
645 static bool is_executable_pte(u64 spte)
646 {
647 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
648 }
649
650 static kvm_pfn_t spte_to_pfn(u64 pte)
651 {
652 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
653 }
654
655 static gfn_t pse36_gfn_delta(u32 gpte)
656 {
657 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
658
659 return (gpte & PT32_DIR_PSE36_MASK) << shift;
660 }
661
662 #ifdef CONFIG_X86_64
663 static void __set_spte(u64 *sptep, u64 spte)
664 {
665 WRITE_ONCE(*sptep, spte);
666 }
667
668 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
669 {
670 WRITE_ONCE(*sptep, spte);
671 }
672
673 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
674 {
675 return xchg(sptep, spte);
676 }
677
678 static u64 __get_spte_lockless(u64 *sptep)
679 {
680 return READ_ONCE(*sptep);
681 }
682 #else
683 union split_spte {
684 struct {
685 u32 spte_low;
686 u32 spte_high;
687 };
688 u64 spte;
689 };
690
691 static void count_spte_clear(u64 *sptep, u64 spte)
692 {
693 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
694
695 if (is_shadow_present_pte(spte))
696 return;
697
698 /* Ensure the spte is completely set before we increase the count */
699 smp_wmb();
700 sp->clear_spte_count++;
701 }
702
703 static void __set_spte(u64 *sptep, u64 spte)
704 {
705 union split_spte *ssptep, sspte;
706
707 ssptep = (union split_spte *)sptep;
708 sspte = (union split_spte)spte;
709
710 ssptep->spte_high = sspte.spte_high;
711
712 /*
713 * If we map the spte from nonpresent to present, We should store
714 * the high bits firstly, then set present bit, so cpu can not
715 * fetch this spte while we are setting the spte.
716 */
717 smp_wmb();
718
719 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
720 }
721
722 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
723 {
724 union split_spte *ssptep, sspte;
725
726 ssptep = (union split_spte *)sptep;
727 sspte = (union split_spte)spte;
728
729 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
730
731 /*
732 * If we map the spte from present to nonpresent, we should clear
733 * present bit firstly to avoid vcpu fetch the old high bits.
734 */
735 smp_wmb();
736
737 ssptep->spte_high = sspte.spte_high;
738 count_spte_clear(sptep, spte);
739 }
740
741 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
742 {
743 union split_spte *ssptep, sspte, orig;
744
745 ssptep = (union split_spte *)sptep;
746 sspte = (union split_spte)spte;
747
748 /* xchg acts as a barrier before the setting of the high bits */
749 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
750 orig.spte_high = ssptep->spte_high;
751 ssptep->spte_high = sspte.spte_high;
752 count_spte_clear(sptep, spte);
753
754 return orig.spte;
755 }
756
757 /*
758 * The idea using the light way get the spte on x86_32 guest is from
759 * gup_get_pte (mm/gup.c).
760 *
761 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
762 * coalesces them and we are running out of the MMU lock. Therefore
763 * we need to protect against in-progress updates of the spte.
764 *
765 * Reading the spte while an update is in progress may get the old value
766 * for the high part of the spte. The race is fine for a present->non-present
767 * change (because the high part of the spte is ignored for non-present spte),
768 * but for a present->present change we must reread the spte.
769 *
770 * All such changes are done in two steps (present->non-present and
771 * non-present->present), hence it is enough to count the number of
772 * present->non-present updates: if it changed while reading the spte,
773 * we might have hit the race. This is done using clear_spte_count.
774 */
775 static u64 __get_spte_lockless(u64 *sptep)
776 {
777 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
778 union split_spte spte, *orig = (union split_spte *)sptep;
779 int count;
780
781 retry:
782 count = sp->clear_spte_count;
783 smp_rmb();
784
785 spte.spte_low = orig->spte_low;
786 smp_rmb();
787
788 spte.spte_high = orig->spte_high;
789 smp_rmb();
790
791 if (unlikely(spte.spte_low != orig->spte_low ||
792 count != sp->clear_spte_count))
793 goto retry;
794
795 return spte.spte;
796 }
797 #endif
798
799 static bool spte_can_locklessly_be_made_writable(u64 spte)
800 {
801 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
802 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
803 }
804
805 static bool spte_has_volatile_bits(u64 spte)
806 {
807 if (!is_shadow_present_pte(spte))
808 return false;
809
810 /*
811 * Always atomically update spte if it can be updated
812 * out of mmu-lock, it can ensure dirty bit is not lost,
813 * also, it can help us to get a stable is_writable_pte()
814 * to ensure tlb flush is not missed.
815 */
816 if (spte_can_locklessly_be_made_writable(spte) ||
817 is_access_track_spte(spte))
818 return true;
819
820 if (spte_ad_enabled(spte)) {
821 if ((spte & shadow_accessed_mask) == 0 ||
822 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
823 return true;
824 }
825
826 return false;
827 }
828
829 static bool is_accessed_spte(u64 spte)
830 {
831 u64 accessed_mask = spte_shadow_accessed_mask(spte);
832
833 return accessed_mask ? spte & accessed_mask
834 : !is_access_track_spte(spte);
835 }
836
837 static bool is_dirty_spte(u64 spte)
838 {
839 u64 dirty_mask = spte_shadow_dirty_mask(spte);
840
841 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
842 }
843
844 /* Rules for using mmu_spte_set:
845 * Set the sptep from nonpresent to present.
846 * Note: the sptep being assigned *must* be either not present
847 * or in a state where the hardware will not attempt to update
848 * the spte.
849 */
850 static void mmu_spte_set(u64 *sptep, u64 new_spte)
851 {
852 WARN_ON(is_shadow_present_pte(*sptep));
853 __set_spte(sptep, new_spte);
854 }
855
856 /*
857 * Update the SPTE (excluding the PFN), but do not track changes in its
858 * accessed/dirty status.
859 */
860 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
861 {
862 u64 old_spte = *sptep;
863
864 WARN_ON(!is_shadow_present_pte(new_spte));
865
866 if (!is_shadow_present_pte(old_spte)) {
867 mmu_spte_set(sptep, new_spte);
868 return old_spte;
869 }
870
871 if (!spte_has_volatile_bits(old_spte))
872 __update_clear_spte_fast(sptep, new_spte);
873 else
874 old_spte = __update_clear_spte_slow(sptep, new_spte);
875
876 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
877
878 return old_spte;
879 }
880
881 /* Rules for using mmu_spte_update:
882 * Update the state bits, it means the mapped pfn is not changed.
883 *
884 * Whenever we overwrite a writable spte with a read-only one we
885 * should flush remote TLBs. Otherwise rmap_write_protect
886 * will find a read-only spte, even though the writable spte
887 * might be cached on a CPU's TLB, the return value indicates this
888 * case.
889 *
890 * Returns true if the TLB needs to be flushed
891 */
892 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
893 {
894 bool flush = false;
895 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
896
897 if (!is_shadow_present_pte(old_spte))
898 return false;
899
900 /*
901 * For the spte updated out of mmu-lock is safe, since
902 * we always atomically update it, see the comments in
903 * spte_has_volatile_bits().
904 */
905 if (spte_can_locklessly_be_made_writable(old_spte) &&
906 !is_writable_pte(new_spte))
907 flush = true;
908
909 /*
910 * Flush TLB when accessed/dirty states are changed in the page tables,
911 * to guarantee consistency between TLB and page tables.
912 */
913
914 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
915 flush = true;
916 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
917 }
918
919 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
920 flush = true;
921 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
922 }
923
924 return flush;
925 }
926
927 /*
928 * Rules for using mmu_spte_clear_track_bits:
929 * It sets the sptep from present to nonpresent, and track the
930 * state bits, it is used to clear the last level sptep.
931 * Returns non-zero if the PTE was previously valid.
932 */
933 static int mmu_spte_clear_track_bits(u64 *sptep)
934 {
935 kvm_pfn_t pfn;
936 u64 old_spte = *sptep;
937
938 if (!spte_has_volatile_bits(old_spte))
939 __update_clear_spte_fast(sptep, 0ull);
940 else
941 old_spte = __update_clear_spte_slow(sptep, 0ull);
942
943 if (!is_shadow_present_pte(old_spte))
944 return 0;
945
946 pfn = spte_to_pfn(old_spte);
947
948 /*
949 * KVM does not hold the refcount of the page used by
950 * kvm mmu, before reclaiming the page, we should
951 * unmap it from mmu first.
952 */
953 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
954
955 if (is_accessed_spte(old_spte))
956 kvm_set_pfn_accessed(pfn);
957
958 if (is_dirty_spte(old_spte))
959 kvm_set_pfn_dirty(pfn);
960
961 return 1;
962 }
963
964 /*
965 * Rules for using mmu_spte_clear_no_track:
966 * Directly clear spte without caring the state bits of sptep,
967 * it is used to set the upper level spte.
968 */
969 static void mmu_spte_clear_no_track(u64 *sptep)
970 {
971 __update_clear_spte_fast(sptep, 0ull);
972 }
973
974 static u64 mmu_spte_get_lockless(u64 *sptep)
975 {
976 return __get_spte_lockless(sptep);
977 }
978
979 static u64 mark_spte_for_access_track(u64 spte)
980 {
981 if (spte_ad_enabled(spte))
982 return spte & ~shadow_accessed_mask;
983
984 if (is_access_track_spte(spte))
985 return spte;
986
987 /*
988 * Making an Access Tracking PTE will result in removal of write access
989 * from the PTE. So, verify that we will be able to restore the write
990 * access in the fast page fault path later on.
991 */
992 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
993 !spte_can_locklessly_be_made_writable(spte),
994 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
995
996 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
997 shadow_acc_track_saved_bits_shift),
998 "kvm: Access Tracking saved bit locations are not zero\n");
999
1000 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
1001 shadow_acc_track_saved_bits_shift;
1002 spte &= ~shadow_acc_track_mask;
1003
1004 return spte;
1005 }
1006
1007 /* Restore an acc-track PTE back to a regular PTE */
1008 static u64 restore_acc_track_spte(u64 spte)
1009 {
1010 u64 new_spte = spte;
1011 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
1012 & shadow_acc_track_saved_bits_mask;
1013
1014 WARN_ON_ONCE(spte_ad_enabled(spte));
1015 WARN_ON_ONCE(!is_access_track_spte(spte));
1016
1017 new_spte &= ~shadow_acc_track_mask;
1018 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1019 shadow_acc_track_saved_bits_shift);
1020 new_spte |= saved_bits;
1021
1022 return new_spte;
1023 }
1024
1025 /* Returns the Accessed status of the PTE and resets it at the same time. */
1026 static bool mmu_spte_age(u64 *sptep)
1027 {
1028 u64 spte = mmu_spte_get_lockless(sptep);
1029
1030 if (!is_accessed_spte(spte))
1031 return false;
1032
1033 if (spte_ad_enabled(spte)) {
1034 clear_bit((ffs(shadow_accessed_mask) - 1),
1035 (unsigned long *)sptep);
1036 } else {
1037 /*
1038 * Capture the dirty status of the page, so that it doesn't get
1039 * lost when the SPTE is marked for access tracking.
1040 */
1041 if (is_writable_pte(spte))
1042 kvm_set_pfn_dirty(spte_to_pfn(spte));
1043
1044 spte = mark_spte_for_access_track(spte);
1045 mmu_spte_update_no_track(sptep, spte);
1046 }
1047
1048 return true;
1049 }
1050
1051 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1052 {
1053 /*
1054 * Prevent page table teardown by making any free-er wait during
1055 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1056 */
1057 local_irq_disable();
1058
1059 /*
1060 * Make sure a following spte read is not reordered ahead of the write
1061 * to vcpu->mode.
1062 */
1063 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1064 }
1065
1066 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1067 {
1068 /*
1069 * Make sure the write to vcpu->mode is not reordered in front of
1070 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
1071 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1072 */
1073 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1074 local_irq_enable();
1075 }
1076
1077 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
1078 {
1079 int r;
1080
1081 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
1082 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1083 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
1084 if (r)
1085 return r;
1086 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
1087 PT64_ROOT_MAX_LEVEL);
1088 if (r)
1089 return r;
1090 if (maybe_indirect) {
1091 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
1092 PT64_ROOT_MAX_LEVEL);
1093 if (r)
1094 return r;
1095 }
1096 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1097 PT64_ROOT_MAX_LEVEL);
1098 }
1099
1100 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1101 {
1102 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
1103 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
1104 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
1105 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
1106 }
1107
1108 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1109 {
1110 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1111 }
1112
1113 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1114 {
1115 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1116 }
1117
1118 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1119 {
1120 if (!sp->role.direct)
1121 return sp->gfns[index];
1122
1123 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1124 }
1125
1126 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1127 {
1128 if (!sp->role.direct) {
1129 sp->gfns[index] = gfn;
1130 return;
1131 }
1132
1133 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1134 pr_err_ratelimited("gfn mismatch under direct page %llx "
1135 "(expected %llx, got %llx)\n",
1136 sp->gfn,
1137 kvm_mmu_page_get_gfn(sp, index), gfn);
1138 }
1139
1140 /*
1141 * Return the pointer to the large page information for a given gfn,
1142 * handling slots that are not large page aligned.
1143 */
1144 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1145 struct kvm_memory_slot *slot,
1146 int level)
1147 {
1148 unsigned long idx;
1149
1150 idx = gfn_to_index(gfn, slot->base_gfn, level);
1151 return &slot->arch.lpage_info[level - 2][idx];
1152 }
1153
1154 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1155 gfn_t gfn, int count)
1156 {
1157 struct kvm_lpage_info *linfo;
1158 int i;
1159
1160 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1161 linfo = lpage_info_slot(gfn, slot, i);
1162 linfo->disallow_lpage += count;
1163 WARN_ON(linfo->disallow_lpage < 0);
1164 }
1165 }
1166
1167 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1168 {
1169 update_gfn_disallow_lpage_count(slot, gfn, 1);
1170 }
1171
1172 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1173 {
1174 update_gfn_disallow_lpage_count(slot, gfn, -1);
1175 }
1176
1177 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1178 {
1179 struct kvm_memslots *slots;
1180 struct kvm_memory_slot *slot;
1181 gfn_t gfn;
1182
1183 kvm->arch.indirect_shadow_pages++;
1184 gfn = sp->gfn;
1185 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1186 slot = __gfn_to_memslot(slots, gfn);
1187
1188 /* the non-leaf shadow pages are keeping readonly. */
1189 if (sp->role.level > PG_LEVEL_4K)
1190 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1191 KVM_PAGE_TRACK_WRITE);
1192
1193 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1194 }
1195
1196 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1197 {
1198 if (sp->lpage_disallowed)
1199 return;
1200
1201 ++kvm->stat.nx_lpage_splits;
1202 list_add_tail(&sp->lpage_disallowed_link,
1203 &kvm->arch.lpage_disallowed_mmu_pages);
1204 sp->lpage_disallowed = true;
1205 }
1206
1207 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1208 {
1209 struct kvm_memslots *slots;
1210 struct kvm_memory_slot *slot;
1211 gfn_t gfn;
1212
1213 kvm->arch.indirect_shadow_pages--;
1214 gfn = sp->gfn;
1215 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1216 slot = __gfn_to_memslot(slots, gfn);
1217 if (sp->role.level > PG_LEVEL_4K)
1218 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1219 KVM_PAGE_TRACK_WRITE);
1220
1221 kvm_mmu_gfn_allow_lpage(slot, gfn);
1222 }
1223
1224 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1225 {
1226 --kvm->stat.nx_lpage_splits;
1227 sp->lpage_disallowed = false;
1228 list_del(&sp->lpage_disallowed_link);
1229 }
1230
1231 static struct kvm_memory_slot *
1232 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1233 bool no_dirty_log)
1234 {
1235 struct kvm_memory_slot *slot;
1236
1237 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1238 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1239 return NULL;
1240 if (no_dirty_log && slot->dirty_bitmap)
1241 return NULL;
1242
1243 return slot;
1244 }
1245
1246 /*
1247 * About rmap_head encoding:
1248 *
1249 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1250 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1251 * pte_list_desc containing more mappings.
1252 */
1253
1254 /*
1255 * Returns the number of pointers in the rmap chain, not counting the new one.
1256 */
1257 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1258 struct kvm_rmap_head *rmap_head)
1259 {
1260 struct pte_list_desc *desc;
1261 int i, count = 0;
1262
1263 if (!rmap_head->val) {
1264 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1265 rmap_head->val = (unsigned long)spte;
1266 } else if (!(rmap_head->val & 1)) {
1267 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1268 desc = mmu_alloc_pte_list_desc(vcpu);
1269 desc->sptes[0] = (u64 *)rmap_head->val;
1270 desc->sptes[1] = spte;
1271 rmap_head->val = (unsigned long)desc | 1;
1272 ++count;
1273 } else {
1274 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1275 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1276 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1277 desc = desc->more;
1278 count += PTE_LIST_EXT;
1279 }
1280 if (desc->sptes[PTE_LIST_EXT-1]) {
1281 desc->more = mmu_alloc_pte_list_desc(vcpu);
1282 desc = desc->more;
1283 }
1284 for (i = 0; desc->sptes[i]; ++i)
1285 ++count;
1286 desc->sptes[i] = spte;
1287 }
1288 return count;
1289 }
1290
1291 static void
1292 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1293 struct pte_list_desc *desc, int i,
1294 struct pte_list_desc *prev_desc)
1295 {
1296 int j;
1297
1298 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1299 ;
1300 desc->sptes[i] = desc->sptes[j];
1301 desc->sptes[j] = NULL;
1302 if (j != 0)
1303 return;
1304 if (!prev_desc && !desc->more)
1305 rmap_head->val = 0;
1306 else
1307 if (prev_desc)
1308 prev_desc->more = desc->more;
1309 else
1310 rmap_head->val = (unsigned long)desc->more | 1;
1311 mmu_free_pte_list_desc(desc);
1312 }
1313
1314 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1315 {
1316 struct pte_list_desc *desc;
1317 struct pte_list_desc *prev_desc;
1318 int i;
1319
1320 if (!rmap_head->val) {
1321 pr_err("%s: %p 0->BUG\n", __func__, spte);
1322 BUG();
1323 } else if (!(rmap_head->val & 1)) {
1324 rmap_printk("%s: %p 1->0\n", __func__, spte);
1325 if ((u64 *)rmap_head->val != spte) {
1326 pr_err("%s: %p 1->BUG\n", __func__, spte);
1327 BUG();
1328 }
1329 rmap_head->val = 0;
1330 } else {
1331 rmap_printk("%s: %p many->many\n", __func__, spte);
1332 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1333 prev_desc = NULL;
1334 while (desc) {
1335 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1336 if (desc->sptes[i] == spte) {
1337 pte_list_desc_remove_entry(rmap_head,
1338 desc, i, prev_desc);
1339 return;
1340 }
1341 }
1342 prev_desc = desc;
1343 desc = desc->more;
1344 }
1345 pr_err("%s: %p many->many\n", __func__, spte);
1346 BUG();
1347 }
1348 }
1349
1350 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1351 {
1352 mmu_spte_clear_track_bits(sptep);
1353 __pte_list_remove(sptep, rmap_head);
1354 }
1355
1356 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1357 struct kvm_memory_slot *slot)
1358 {
1359 unsigned long idx;
1360
1361 idx = gfn_to_index(gfn, slot->base_gfn, level);
1362 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1363 }
1364
1365 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1366 struct kvm_mmu_page *sp)
1367 {
1368 struct kvm_memslots *slots;
1369 struct kvm_memory_slot *slot;
1370
1371 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1372 slot = __gfn_to_memslot(slots, gfn);
1373 return __gfn_to_rmap(gfn, sp->role.level, slot);
1374 }
1375
1376 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1377 {
1378 struct kvm_mmu_memory_cache *mc;
1379
1380 mc = &vcpu->arch.mmu_pte_list_desc_cache;
1381 return kvm_mmu_memory_cache_nr_free_objects(mc);
1382 }
1383
1384 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1385 {
1386 struct kvm_mmu_page *sp;
1387 struct kvm_rmap_head *rmap_head;
1388
1389 sp = sptep_to_sp(spte);
1390 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1391 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1392 return pte_list_add(vcpu, spte, rmap_head);
1393 }
1394
1395 static void rmap_remove(struct kvm *kvm, u64 *spte)
1396 {
1397 struct kvm_mmu_page *sp;
1398 gfn_t gfn;
1399 struct kvm_rmap_head *rmap_head;
1400
1401 sp = sptep_to_sp(spte);
1402 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1403 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1404 __pte_list_remove(spte, rmap_head);
1405 }
1406
1407 /*
1408 * Used by the following functions to iterate through the sptes linked by a
1409 * rmap. All fields are private and not assumed to be used outside.
1410 */
1411 struct rmap_iterator {
1412 /* private fields */
1413 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1414 int pos; /* index of the sptep */
1415 };
1416
1417 /*
1418 * Iteration must be started by this function. This should also be used after
1419 * removing/dropping sptes from the rmap link because in such cases the
1420 * information in the iterator may not be valid.
1421 *
1422 * Returns sptep if found, NULL otherwise.
1423 */
1424 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1425 struct rmap_iterator *iter)
1426 {
1427 u64 *sptep;
1428
1429 if (!rmap_head->val)
1430 return NULL;
1431
1432 if (!(rmap_head->val & 1)) {
1433 iter->desc = NULL;
1434 sptep = (u64 *)rmap_head->val;
1435 goto out;
1436 }
1437
1438 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1439 iter->pos = 0;
1440 sptep = iter->desc->sptes[iter->pos];
1441 out:
1442 BUG_ON(!is_shadow_present_pte(*sptep));
1443 return sptep;
1444 }
1445
1446 /*
1447 * Must be used with a valid iterator: e.g. after rmap_get_first().
1448 *
1449 * Returns sptep if found, NULL otherwise.
1450 */
1451 static u64 *rmap_get_next(struct rmap_iterator *iter)
1452 {
1453 u64 *sptep;
1454
1455 if (iter->desc) {
1456 if (iter->pos < PTE_LIST_EXT - 1) {
1457 ++iter->pos;
1458 sptep = iter->desc->sptes[iter->pos];
1459 if (sptep)
1460 goto out;
1461 }
1462
1463 iter->desc = iter->desc->more;
1464
1465 if (iter->desc) {
1466 iter->pos = 0;
1467 /* desc->sptes[0] cannot be NULL */
1468 sptep = iter->desc->sptes[iter->pos];
1469 goto out;
1470 }
1471 }
1472
1473 return NULL;
1474 out:
1475 BUG_ON(!is_shadow_present_pte(*sptep));
1476 return sptep;
1477 }
1478
1479 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1480 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1481 _spte_; _spte_ = rmap_get_next(_iter_))
1482
1483 static void drop_spte(struct kvm *kvm, u64 *sptep)
1484 {
1485 if (mmu_spte_clear_track_bits(sptep))
1486 rmap_remove(kvm, sptep);
1487 }
1488
1489
1490 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1491 {
1492 if (is_large_pte(*sptep)) {
1493 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1494 drop_spte(kvm, sptep);
1495 --kvm->stat.lpages;
1496 return true;
1497 }
1498
1499 return false;
1500 }
1501
1502 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1503 {
1504 if (__drop_large_spte(vcpu->kvm, sptep)) {
1505 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1506
1507 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1508 KVM_PAGES_PER_HPAGE(sp->role.level));
1509 }
1510 }
1511
1512 /*
1513 * Write-protect on the specified @sptep, @pt_protect indicates whether
1514 * spte write-protection is caused by protecting shadow page table.
1515 *
1516 * Note: write protection is difference between dirty logging and spte
1517 * protection:
1518 * - for dirty logging, the spte can be set to writable at anytime if
1519 * its dirty bitmap is properly set.
1520 * - for spte protection, the spte can be writable only after unsync-ing
1521 * shadow page.
1522 *
1523 * Return true if tlb need be flushed.
1524 */
1525 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1526 {
1527 u64 spte = *sptep;
1528
1529 if (!is_writable_pte(spte) &&
1530 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1531 return false;
1532
1533 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1534
1535 if (pt_protect)
1536 spte &= ~SPTE_MMU_WRITEABLE;
1537 spte = spte & ~PT_WRITABLE_MASK;
1538
1539 return mmu_spte_update(sptep, spte);
1540 }
1541
1542 static bool __rmap_write_protect(struct kvm *kvm,
1543 struct kvm_rmap_head *rmap_head,
1544 bool pt_protect)
1545 {
1546 u64 *sptep;
1547 struct rmap_iterator iter;
1548 bool flush = false;
1549
1550 for_each_rmap_spte(rmap_head, &iter, sptep)
1551 flush |= spte_write_protect(sptep, pt_protect);
1552
1553 return flush;
1554 }
1555
1556 static bool spte_clear_dirty(u64 *sptep)
1557 {
1558 u64 spte = *sptep;
1559
1560 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1561
1562 MMU_WARN_ON(!spte_ad_enabled(spte));
1563 spte &= ~shadow_dirty_mask;
1564 return mmu_spte_update(sptep, spte);
1565 }
1566
1567 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1568 {
1569 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1570 (unsigned long *)sptep);
1571 if (was_writable && !spte_ad_enabled(*sptep))
1572 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1573
1574 return was_writable;
1575 }
1576
1577 /*
1578 * Gets the GFN ready for another round of dirty logging by clearing the
1579 * - D bit on ad-enabled SPTEs, and
1580 * - W bit on ad-disabled SPTEs.
1581 * Returns true iff any D or W bits were cleared.
1582 */
1583 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1584 {
1585 u64 *sptep;
1586 struct rmap_iterator iter;
1587 bool flush = false;
1588
1589 for_each_rmap_spte(rmap_head, &iter, sptep)
1590 if (spte_ad_need_write_protect(*sptep))
1591 flush |= spte_wrprot_for_clear_dirty(sptep);
1592 else
1593 flush |= spte_clear_dirty(sptep);
1594
1595 return flush;
1596 }
1597
1598 static bool spte_set_dirty(u64 *sptep)
1599 {
1600 u64 spte = *sptep;
1601
1602 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1603
1604 /*
1605 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1606 * do not bother adding back write access to pages marked
1607 * SPTE_AD_WRPROT_ONLY_MASK.
1608 */
1609 spte |= shadow_dirty_mask;
1610
1611 return mmu_spte_update(sptep, spte);
1612 }
1613
1614 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1615 {
1616 u64 *sptep;
1617 struct rmap_iterator iter;
1618 bool flush = false;
1619
1620 for_each_rmap_spte(rmap_head, &iter, sptep)
1621 if (spte_ad_enabled(*sptep))
1622 flush |= spte_set_dirty(sptep);
1623
1624 return flush;
1625 }
1626
1627 /**
1628 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1629 * @kvm: kvm instance
1630 * @slot: slot to protect
1631 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1632 * @mask: indicates which pages we should protect
1633 *
1634 * Used when we do not need to care about huge page mappings: e.g. during dirty
1635 * logging we do not have any such mappings.
1636 */
1637 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1638 struct kvm_memory_slot *slot,
1639 gfn_t gfn_offset, unsigned long mask)
1640 {
1641 struct kvm_rmap_head *rmap_head;
1642
1643 while (mask) {
1644 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1645 PG_LEVEL_4K, slot);
1646 __rmap_write_protect(kvm, rmap_head, false);
1647
1648 /* clear the first set bit */
1649 mask &= mask - 1;
1650 }
1651 }
1652
1653 /**
1654 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1655 * protect the page if the D-bit isn't supported.
1656 * @kvm: kvm instance
1657 * @slot: slot to clear D-bit
1658 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1659 * @mask: indicates which pages we should clear D-bit
1660 *
1661 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1662 */
1663 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1664 struct kvm_memory_slot *slot,
1665 gfn_t gfn_offset, unsigned long mask)
1666 {
1667 struct kvm_rmap_head *rmap_head;
1668
1669 while (mask) {
1670 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1671 PG_LEVEL_4K, slot);
1672 __rmap_clear_dirty(kvm, rmap_head);
1673
1674 /* clear the first set bit */
1675 mask &= mask - 1;
1676 }
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1679
1680 /**
1681 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1682 * PT level pages.
1683 *
1684 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1685 * enable dirty logging for them.
1686 *
1687 * Used when we do not need to care about huge page mappings: e.g. during dirty
1688 * logging we do not have any such mappings.
1689 */
1690 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1691 struct kvm_memory_slot *slot,
1692 gfn_t gfn_offset, unsigned long mask)
1693 {
1694 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1695 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1696 mask);
1697 else
1698 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1699 }
1700
1701 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1702 struct kvm_memory_slot *slot, u64 gfn)
1703 {
1704 struct kvm_rmap_head *rmap_head;
1705 int i;
1706 bool write_protected = false;
1707
1708 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1709 rmap_head = __gfn_to_rmap(gfn, i, slot);
1710 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1711 }
1712
1713 return write_protected;
1714 }
1715
1716 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1717 {
1718 struct kvm_memory_slot *slot;
1719
1720 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1722 }
1723
1724 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1725 {
1726 u64 *sptep;
1727 struct rmap_iterator iter;
1728 bool flush = false;
1729
1730 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1731 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1732
1733 pte_list_remove(rmap_head, sptep);
1734 flush = true;
1735 }
1736
1737 return flush;
1738 }
1739
1740 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1741 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1742 unsigned long data)
1743 {
1744 return kvm_zap_rmapp(kvm, rmap_head);
1745 }
1746
1747 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1748 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1749 unsigned long data)
1750 {
1751 u64 *sptep;
1752 struct rmap_iterator iter;
1753 int need_flush = 0;
1754 u64 new_spte;
1755 pte_t *ptep = (pte_t *)data;
1756 kvm_pfn_t new_pfn;
1757
1758 WARN_ON(pte_huge(*ptep));
1759 new_pfn = pte_pfn(*ptep);
1760
1761 restart:
1762 for_each_rmap_spte(rmap_head, &iter, sptep) {
1763 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1764 sptep, *sptep, gfn, level);
1765
1766 need_flush = 1;
1767
1768 if (pte_write(*ptep)) {
1769 pte_list_remove(rmap_head, sptep);
1770 goto restart;
1771 } else {
1772 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1773 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1774
1775 new_spte &= ~PT_WRITABLE_MASK;
1776 new_spte &= ~SPTE_HOST_WRITEABLE;
1777
1778 new_spte = mark_spte_for_access_track(new_spte);
1779
1780 mmu_spte_clear_track_bits(sptep);
1781 mmu_spte_set(sptep, new_spte);
1782 }
1783 }
1784
1785 if (need_flush && kvm_available_flush_tlb_with_range()) {
1786 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1787 return 0;
1788 }
1789
1790 return need_flush;
1791 }
1792
1793 struct slot_rmap_walk_iterator {
1794 /* input fields. */
1795 struct kvm_memory_slot *slot;
1796 gfn_t start_gfn;
1797 gfn_t end_gfn;
1798 int start_level;
1799 int end_level;
1800
1801 /* output fields. */
1802 gfn_t gfn;
1803 struct kvm_rmap_head *rmap;
1804 int level;
1805
1806 /* private field. */
1807 struct kvm_rmap_head *end_rmap;
1808 };
1809
1810 static void
1811 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1812 {
1813 iterator->level = level;
1814 iterator->gfn = iterator->start_gfn;
1815 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1816 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1817 iterator->slot);
1818 }
1819
1820 static void
1821 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1822 struct kvm_memory_slot *slot, int start_level,
1823 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1824 {
1825 iterator->slot = slot;
1826 iterator->start_level = start_level;
1827 iterator->end_level = end_level;
1828 iterator->start_gfn = start_gfn;
1829 iterator->end_gfn = end_gfn;
1830
1831 rmap_walk_init_level(iterator, iterator->start_level);
1832 }
1833
1834 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1835 {
1836 return !!iterator->rmap;
1837 }
1838
1839 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1840 {
1841 if (++iterator->rmap <= iterator->end_rmap) {
1842 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1843 return;
1844 }
1845
1846 if (++iterator->level > iterator->end_level) {
1847 iterator->rmap = NULL;
1848 return;
1849 }
1850
1851 rmap_walk_init_level(iterator, iterator->level);
1852 }
1853
1854 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1855 _start_gfn, _end_gfn, _iter_) \
1856 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1857 _end_level_, _start_gfn, _end_gfn); \
1858 slot_rmap_walk_okay(_iter_); \
1859 slot_rmap_walk_next(_iter_))
1860
1861 static int kvm_handle_hva_range(struct kvm *kvm,
1862 unsigned long start,
1863 unsigned long end,
1864 unsigned long data,
1865 int (*handler)(struct kvm *kvm,
1866 struct kvm_rmap_head *rmap_head,
1867 struct kvm_memory_slot *slot,
1868 gfn_t gfn,
1869 int level,
1870 unsigned long data))
1871 {
1872 struct kvm_memslots *slots;
1873 struct kvm_memory_slot *memslot;
1874 struct slot_rmap_walk_iterator iterator;
1875 int ret = 0;
1876 int i;
1877
1878 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1879 slots = __kvm_memslots(kvm, i);
1880 kvm_for_each_memslot(memslot, slots) {
1881 unsigned long hva_start, hva_end;
1882 gfn_t gfn_start, gfn_end;
1883
1884 hva_start = max(start, memslot->userspace_addr);
1885 hva_end = min(end, memslot->userspace_addr +
1886 (memslot->npages << PAGE_SHIFT));
1887 if (hva_start >= hva_end)
1888 continue;
1889 /*
1890 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1891 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1892 */
1893 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1894 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1895
1896 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1897 KVM_MAX_HUGEPAGE_LEVEL,
1898 gfn_start, gfn_end - 1,
1899 &iterator)
1900 ret |= handler(kvm, iterator.rmap, memslot,
1901 iterator.gfn, iterator.level, data);
1902 }
1903 }
1904
1905 return ret;
1906 }
1907
1908 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1909 unsigned long data,
1910 int (*handler)(struct kvm *kvm,
1911 struct kvm_rmap_head *rmap_head,
1912 struct kvm_memory_slot *slot,
1913 gfn_t gfn, int level,
1914 unsigned long data))
1915 {
1916 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1917 }
1918
1919 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1920 unsigned flags)
1921 {
1922 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1923 }
1924
1925 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1926 {
1927 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1928 }
1929
1930 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1931 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1932 unsigned long data)
1933 {
1934 u64 *sptep;
1935 struct rmap_iterator iter;
1936 int young = 0;
1937
1938 for_each_rmap_spte(rmap_head, &iter, sptep)
1939 young |= mmu_spte_age(sptep);
1940
1941 trace_kvm_age_page(gfn, level, slot, young);
1942 return young;
1943 }
1944
1945 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1946 struct kvm_memory_slot *slot, gfn_t gfn,
1947 int level, unsigned long data)
1948 {
1949 u64 *sptep;
1950 struct rmap_iterator iter;
1951
1952 for_each_rmap_spte(rmap_head, &iter, sptep)
1953 if (is_accessed_spte(*sptep))
1954 return 1;
1955 return 0;
1956 }
1957
1958 #define RMAP_RECYCLE_THRESHOLD 1000
1959
1960 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1961 {
1962 struct kvm_rmap_head *rmap_head;
1963 struct kvm_mmu_page *sp;
1964
1965 sp = sptep_to_sp(spte);
1966
1967 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1968
1969 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1970 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1971 KVM_PAGES_PER_HPAGE(sp->role.level));
1972 }
1973
1974 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1977 }
1978
1979 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1980 {
1981 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1982 }
1983
1984 #ifdef MMU_DEBUG
1985 static int is_empty_shadow_page(u64 *spt)
1986 {
1987 u64 *pos;
1988 u64 *end;
1989
1990 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1991 if (is_shadow_present_pte(*pos)) {
1992 printk(KERN_ERR "%s: %p %llx\n", __func__,
1993 pos, *pos);
1994 return 0;
1995 }
1996 return 1;
1997 }
1998 #endif
1999
2000 /*
2001 * This value is the sum of all of the kvm instances's
2002 * kvm->arch.n_used_mmu_pages values. We need a global,
2003 * aggregate version in order to make the slab shrinker
2004 * faster
2005 */
2006 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2007 {
2008 kvm->arch.n_used_mmu_pages += nr;
2009 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2010 }
2011
2012 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2013 {
2014 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2015 hlist_del(&sp->hash_link);
2016 list_del(&sp->link);
2017 free_page((unsigned long)sp->spt);
2018 if (!sp->role.direct)
2019 free_page((unsigned long)sp->gfns);
2020 kmem_cache_free(mmu_page_header_cache, sp);
2021 }
2022
2023 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2024 {
2025 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2026 }
2027
2028 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2029 struct kvm_mmu_page *sp, u64 *parent_pte)
2030 {
2031 if (!parent_pte)
2032 return;
2033
2034 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2035 }
2036
2037 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2038 u64 *parent_pte)
2039 {
2040 __pte_list_remove(parent_pte, &sp->parent_ptes);
2041 }
2042
2043 static void drop_parent_pte(struct kvm_mmu_page *sp,
2044 u64 *parent_pte)
2045 {
2046 mmu_page_remove_parent_pte(sp, parent_pte);
2047 mmu_spte_clear_no_track(parent_pte);
2048 }
2049
2050 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2051 {
2052 struct kvm_mmu_page *sp;
2053
2054 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2055 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
2056 if (!direct)
2057 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
2058 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2059
2060 /*
2061 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2062 * depends on valid pages being added to the head of the list. See
2063 * comments in kvm_zap_obsolete_pages().
2064 */
2065 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2066 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2067 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2068 return sp;
2069 }
2070
2071 static void mark_unsync(u64 *spte);
2072 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2073 {
2074 u64 *sptep;
2075 struct rmap_iterator iter;
2076
2077 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2078 mark_unsync(sptep);
2079 }
2080 }
2081
2082 static void mark_unsync(u64 *spte)
2083 {
2084 struct kvm_mmu_page *sp;
2085 unsigned int index;
2086
2087 sp = sptep_to_sp(spte);
2088 index = spte - sp->spt;
2089 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2090 return;
2091 if (sp->unsync_children++)
2092 return;
2093 kvm_mmu_mark_parents_unsync(sp);
2094 }
2095
2096 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2097 struct kvm_mmu_page *sp)
2098 {
2099 return 0;
2100 }
2101
2102 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2103 struct kvm_mmu_page *sp, u64 *spte,
2104 const void *pte)
2105 {
2106 WARN_ON(1);
2107 }
2108
2109 #define KVM_PAGE_ARRAY_NR 16
2110
2111 struct kvm_mmu_pages {
2112 struct mmu_page_and_offset {
2113 struct kvm_mmu_page *sp;
2114 unsigned int idx;
2115 } page[KVM_PAGE_ARRAY_NR];
2116 unsigned int nr;
2117 };
2118
2119 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2120 int idx)
2121 {
2122 int i;
2123
2124 if (sp->unsync)
2125 for (i=0; i < pvec->nr; i++)
2126 if (pvec->page[i].sp == sp)
2127 return 0;
2128
2129 pvec->page[pvec->nr].sp = sp;
2130 pvec->page[pvec->nr].idx = idx;
2131 pvec->nr++;
2132 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2133 }
2134
2135 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2136 {
2137 --sp->unsync_children;
2138 WARN_ON((int)sp->unsync_children < 0);
2139 __clear_bit(idx, sp->unsync_child_bitmap);
2140 }
2141
2142 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2143 struct kvm_mmu_pages *pvec)
2144 {
2145 int i, ret, nr_unsync_leaf = 0;
2146
2147 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2148 struct kvm_mmu_page *child;
2149 u64 ent = sp->spt[i];
2150
2151 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2152 clear_unsync_child_bit(sp, i);
2153 continue;
2154 }
2155
2156 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
2157
2158 if (child->unsync_children) {
2159 if (mmu_pages_add(pvec, child, i))
2160 return -ENOSPC;
2161
2162 ret = __mmu_unsync_walk(child, pvec);
2163 if (!ret) {
2164 clear_unsync_child_bit(sp, i);
2165 continue;
2166 } else if (ret > 0) {
2167 nr_unsync_leaf += ret;
2168 } else
2169 return ret;
2170 } else if (child->unsync) {
2171 nr_unsync_leaf++;
2172 if (mmu_pages_add(pvec, child, i))
2173 return -ENOSPC;
2174 } else
2175 clear_unsync_child_bit(sp, i);
2176 }
2177
2178 return nr_unsync_leaf;
2179 }
2180
2181 #define INVALID_INDEX (-1)
2182
2183 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2184 struct kvm_mmu_pages *pvec)
2185 {
2186 pvec->nr = 0;
2187 if (!sp->unsync_children)
2188 return 0;
2189
2190 mmu_pages_add(pvec, sp, INVALID_INDEX);
2191 return __mmu_unsync_walk(sp, pvec);
2192 }
2193
2194 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2195 {
2196 WARN_ON(!sp->unsync);
2197 trace_kvm_mmu_sync_page(sp);
2198 sp->unsync = 0;
2199 --kvm->stat.mmu_unsync;
2200 }
2201
2202 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2203 struct list_head *invalid_list);
2204 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2205 struct list_head *invalid_list);
2206
2207 #define for_each_valid_sp(_kvm, _sp, _list) \
2208 hlist_for_each_entry(_sp, _list, hash_link) \
2209 if (is_obsolete_sp((_kvm), (_sp))) { \
2210 } else
2211
2212 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2213 for_each_valid_sp(_kvm, _sp, \
2214 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
2215 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2216
2217 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2218 {
2219 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2220 }
2221
2222 /* @sp->gfn should be write-protected at the call site */
2223 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2224 struct list_head *invalid_list)
2225 {
2226 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2227 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2228 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2229 return false;
2230 }
2231
2232 return true;
2233 }
2234
2235 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2236 struct list_head *invalid_list,
2237 bool remote_flush)
2238 {
2239 if (!remote_flush && list_empty(invalid_list))
2240 return false;
2241
2242 if (!list_empty(invalid_list))
2243 kvm_mmu_commit_zap_page(kvm, invalid_list);
2244 else
2245 kvm_flush_remote_tlbs(kvm);
2246 return true;
2247 }
2248
2249 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2250 struct list_head *invalid_list,
2251 bool remote_flush, bool local_flush)
2252 {
2253 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2254 return;
2255
2256 if (local_flush)
2257 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2258 }
2259
2260 #ifdef CONFIG_KVM_MMU_AUDIT
2261 #include "mmu_audit.c"
2262 #else
2263 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2264 static void mmu_audit_disable(void) { }
2265 #endif
2266
2267 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2268 {
2269 return sp->role.invalid ||
2270 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2271 }
2272
2273 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2274 struct list_head *invalid_list)
2275 {
2276 kvm_unlink_unsync_page(vcpu->kvm, sp);
2277 return __kvm_sync_page(vcpu, sp, invalid_list);
2278 }
2279
2280 /* @gfn should be write-protected at the call site */
2281 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2282 struct list_head *invalid_list)
2283 {
2284 struct kvm_mmu_page *s;
2285 bool ret = false;
2286
2287 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2288 if (!s->unsync)
2289 continue;
2290
2291 WARN_ON(s->role.level != PG_LEVEL_4K);
2292 ret |= kvm_sync_page(vcpu, s, invalid_list);
2293 }
2294
2295 return ret;
2296 }
2297
2298 struct mmu_page_path {
2299 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2300 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2301 };
2302
2303 #define for_each_sp(pvec, sp, parents, i) \
2304 for (i = mmu_pages_first(&pvec, &parents); \
2305 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2306 i = mmu_pages_next(&pvec, &parents, i))
2307
2308 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2309 struct mmu_page_path *parents,
2310 int i)
2311 {
2312 int n;
2313
2314 for (n = i+1; n < pvec->nr; n++) {
2315 struct kvm_mmu_page *sp = pvec->page[n].sp;
2316 unsigned idx = pvec->page[n].idx;
2317 int level = sp->role.level;
2318
2319 parents->idx[level-1] = idx;
2320 if (level == PG_LEVEL_4K)
2321 break;
2322
2323 parents->parent[level-2] = sp;
2324 }
2325
2326 return n;
2327 }
2328
2329 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2330 struct mmu_page_path *parents)
2331 {
2332 struct kvm_mmu_page *sp;
2333 int level;
2334
2335 if (pvec->nr == 0)
2336 return 0;
2337
2338 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2339
2340 sp = pvec->page[0].sp;
2341 level = sp->role.level;
2342 WARN_ON(level == PG_LEVEL_4K);
2343
2344 parents->parent[level-2] = sp;
2345
2346 /* Also set up a sentinel. Further entries in pvec are all
2347 * children of sp, so this element is never overwritten.
2348 */
2349 parents->parent[level-1] = NULL;
2350 return mmu_pages_next(pvec, parents, 0);
2351 }
2352
2353 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2354 {
2355 struct kvm_mmu_page *sp;
2356 unsigned int level = 0;
2357
2358 do {
2359 unsigned int idx = parents->idx[level];
2360 sp = parents->parent[level];
2361 if (!sp)
2362 return;
2363
2364 WARN_ON(idx == INVALID_INDEX);
2365 clear_unsync_child_bit(sp, idx);
2366 level++;
2367 } while (!sp->unsync_children);
2368 }
2369
2370 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2371 struct kvm_mmu_page *parent)
2372 {
2373 int i;
2374 struct kvm_mmu_page *sp;
2375 struct mmu_page_path parents;
2376 struct kvm_mmu_pages pages;
2377 LIST_HEAD(invalid_list);
2378 bool flush = false;
2379
2380 while (mmu_unsync_walk(parent, &pages)) {
2381 bool protected = false;
2382
2383 for_each_sp(pages, sp, parents, i)
2384 protected |= rmap_write_protect(vcpu, sp->gfn);
2385
2386 if (protected) {
2387 kvm_flush_remote_tlbs(vcpu->kvm);
2388 flush = false;
2389 }
2390
2391 for_each_sp(pages, sp, parents, i) {
2392 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2393 mmu_pages_clear_parents(&parents);
2394 }
2395 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2396 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2397 cond_resched_lock(&vcpu->kvm->mmu_lock);
2398 flush = false;
2399 }
2400 }
2401
2402 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2403 }
2404
2405 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2406 {
2407 atomic_set(&sp->write_flooding_count, 0);
2408 }
2409
2410 static void clear_sp_write_flooding_count(u64 *spte)
2411 {
2412 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2413 }
2414
2415 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2416 gfn_t gfn,
2417 gva_t gaddr,
2418 unsigned level,
2419 int direct,
2420 unsigned int access)
2421 {
2422 bool direct_mmu = vcpu->arch.mmu->direct_map;
2423 union kvm_mmu_page_role role;
2424 struct hlist_head *sp_list;
2425 unsigned quadrant;
2426 struct kvm_mmu_page *sp;
2427 bool need_sync = false;
2428 bool flush = false;
2429 int collisions = 0;
2430 LIST_HEAD(invalid_list);
2431
2432 role = vcpu->arch.mmu->mmu_role.base;
2433 role.level = level;
2434 role.direct = direct;
2435 if (role.direct)
2436 role.gpte_is_8_bytes = true;
2437 role.access = access;
2438 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2439 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2440 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2441 role.quadrant = quadrant;
2442 }
2443
2444 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2445 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2446 if (sp->gfn != gfn) {
2447 collisions++;
2448 continue;
2449 }
2450
2451 if (!need_sync && sp->unsync)
2452 need_sync = true;
2453
2454 if (sp->role.word != role.word)
2455 continue;
2456
2457 if (direct_mmu)
2458 goto trace_get_page;
2459
2460 if (sp->unsync) {
2461 /* The page is good, but __kvm_sync_page might still end
2462 * up zapping it. If so, break in order to rebuild it.
2463 */
2464 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2465 break;
2466
2467 WARN_ON(!list_empty(&invalid_list));
2468 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2469 }
2470
2471 if (sp->unsync_children)
2472 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2473
2474 __clear_sp_write_flooding_count(sp);
2475
2476 trace_get_page:
2477 trace_kvm_mmu_get_page(sp, false);
2478 goto out;
2479 }
2480
2481 ++vcpu->kvm->stat.mmu_cache_miss;
2482
2483 sp = kvm_mmu_alloc_page(vcpu, direct);
2484
2485 sp->gfn = gfn;
2486 sp->role = role;
2487 hlist_add_head(&sp->hash_link, sp_list);
2488 if (!direct) {
2489 /*
2490 * we should do write protection before syncing pages
2491 * otherwise the content of the synced shadow page may
2492 * be inconsistent with guest page table.
2493 */
2494 account_shadowed(vcpu->kvm, sp);
2495 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2496 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2497
2498 if (level > PG_LEVEL_4K && need_sync)
2499 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2500 }
2501 trace_kvm_mmu_get_page(sp, true);
2502
2503 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2504 out:
2505 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2506 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2507 return sp;
2508 }
2509
2510 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2511 struct kvm_vcpu *vcpu, hpa_t root,
2512 u64 addr)
2513 {
2514 iterator->addr = addr;
2515 iterator->shadow_addr = root;
2516 iterator->level = vcpu->arch.mmu->shadow_root_level;
2517
2518 if (iterator->level == PT64_ROOT_4LEVEL &&
2519 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2520 !vcpu->arch.mmu->direct_map)
2521 --iterator->level;
2522
2523 if (iterator->level == PT32E_ROOT_LEVEL) {
2524 /*
2525 * prev_root is currently only used for 64-bit hosts. So only
2526 * the active root_hpa is valid here.
2527 */
2528 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2529
2530 iterator->shadow_addr
2531 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2532 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2533 --iterator->level;
2534 if (!iterator->shadow_addr)
2535 iterator->level = 0;
2536 }
2537 }
2538
2539 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2540 struct kvm_vcpu *vcpu, u64 addr)
2541 {
2542 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2543 addr);
2544 }
2545
2546 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2547 {
2548 if (iterator->level < PG_LEVEL_4K)
2549 return false;
2550
2551 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2552 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2553 return true;
2554 }
2555
2556 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2557 u64 spte)
2558 {
2559 if (is_last_spte(spte, iterator->level)) {
2560 iterator->level = 0;
2561 return;
2562 }
2563
2564 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2565 --iterator->level;
2566 }
2567
2568 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2569 {
2570 __shadow_walk_next(iterator, *iterator->sptep);
2571 }
2572
2573 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2574 struct kvm_mmu_page *sp)
2575 {
2576 u64 spte;
2577
2578 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2579
2580 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2581 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2582
2583 if (sp_ad_disabled(sp))
2584 spte |= SPTE_AD_DISABLED_MASK;
2585 else
2586 spte |= shadow_accessed_mask;
2587
2588 mmu_spte_set(sptep, spte);
2589
2590 mmu_page_add_parent_pte(vcpu, sp, sptep);
2591
2592 if (sp->unsync_children || sp->unsync)
2593 mark_unsync(sptep);
2594 }
2595
2596 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2597 unsigned direct_access)
2598 {
2599 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2600 struct kvm_mmu_page *child;
2601
2602 /*
2603 * For the direct sp, if the guest pte's dirty bit
2604 * changed form clean to dirty, it will corrupt the
2605 * sp's access: allow writable in the read-only sp,
2606 * so we should update the spte at this point to get
2607 * a new sp with the correct access.
2608 */
2609 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2610 if (child->role.access == direct_access)
2611 return;
2612
2613 drop_parent_pte(child, sptep);
2614 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2615 }
2616 }
2617
2618 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2619 u64 *spte)
2620 {
2621 u64 pte;
2622 struct kvm_mmu_page *child;
2623
2624 pte = *spte;
2625 if (is_shadow_present_pte(pte)) {
2626 if (is_last_spte(pte, sp->role.level)) {
2627 drop_spte(kvm, spte);
2628 if (is_large_pte(pte))
2629 --kvm->stat.lpages;
2630 } else {
2631 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2632 drop_parent_pte(child, spte);
2633 }
2634 return true;
2635 }
2636
2637 if (is_mmio_spte(pte))
2638 mmu_spte_clear_no_track(spte);
2639
2640 return false;
2641 }
2642
2643 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2644 struct kvm_mmu_page *sp)
2645 {
2646 unsigned i;
2647
2648 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2649 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2650 }
2651
2652 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2653 {
2654 u64 *sptep;
2655 struct rmap_iterator iter;
2656
2657 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2658 drop_parent_pte(sp, sptep);
2659 }
2660
2661 static int mmu_zap_unsync_children(struct kvm *kvm,
2662 struct kvm_mmu_page *parent,
2663 struct list_head *invalid_list)
2664 {
2665 int i, zapped = 0;
2666 struct mmu_page_path parents;
2667 struct kvm_mmu_pages pages;
2668
2669 if (parent->role.level == PG_LEVEL_4K)
2670 return 0;
2671
2672 while (mmu_unsync_walk(parent, &pages)) {
2673 struct kvm_mmu_page *sp;
2674
2675 for_each_sp(pages, sp, parents, i) {
2676 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2677 mmu_pages_clear_parents(&parents);
2678 zapped++;
2679 }
2680 }
2681
2682 return zapped;
2683 }
2684
2685 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2686 struct kvm_mmu_page *sp,
2687 struct list_head *invalid_list,
2688 int *nr_zapped)
2689 {
2690 bool list_unstable;
2691
2692 trace_kvm_mmu_prepare_zap_page(sp);
2693 ++kvm->stat.mmu_shadow_zapped;
2694 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2695 kvm_mmu_page_unlink_children(kvm, sp);
2696 kvm_mmu_unlink_parents(kvm, sp);
2697
2698 /* Zapping children means active_mmu_pages has become unstable. */
2699 list_unstable = *nr_zapped;
2700
2701 if (!sp->role.invalid && !sp->role.direct)
2702 unaccount_shadowed(kvm, sp);
2703
2704 if (sp->unsync)
2705 kvm_unlink_unsync_page(kvm, sp);
2706 if (!sp->root_count) {
2707 /* Count self */
2708 (*nr_zapped)++;
2709
2710 /*
2711 * Already invalid pages (previously active roots) are not on
2712 * the active page list. See list_del() in the "else" case of
2713 * !sp->root_count.
2714 */
2715 if (sp->role.invalid)
2716 list_add(&sp->link, invalid_list);
2717 else
2718 list_move(&sp->link, invalid_list);
2719 kvm_mod_used_mmu_pages(kvm, -1);
2720 } else {
2721 /*
2722 * Remove the active root from the active page list, the root
2723 * will be explicitly freed when the root_count hits zero.
2724 */
2725 list_del(&sp->link);
2726
2727 /*
2728 * Obsolete pages cannot be used on any vCPUs, see the comment
2729 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2730 * treats invalid shadow pages as being obsolete.
2731 */
2732 if (!is_obsolete_sp(kvm, sp))
2733 kvm_reload_remote_mmus(kvm);
2734 }
2735
2736 if (sp->lpage_disallowed)
2737 unaccount_huge_nx_page(kvm, sp);
2738
2739 sp->role.invalid = 1;
2740 return list_unstable;
2741 }
2742
2743 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2744 struct list_head *invalid_list)
2745 {
2746 int nr_zapped;
2747
2748 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2749 return nr_zapped;
2750 }
2751
2752 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2753 struct list_head *invalid_list)
2754 {
2755 struct kvm_mmu_page *sp, *nsp;
2756
2757 if (list_empty(invalid_list))
2758 return;
2759
2760 /*
2761 * We need to make sure everyone sees our modifications to
2762 * the page tables and see changes to vcpu->mode here. The barrier
2763 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2764 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2765 *
2766 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2767 * guest mode and/or lockless shadow page table walks.
2768 */
2769 kvm_flush_remote_tlbs(kvm);
2770
2771 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2772 WARN_ON(!sp->role.invalid || sp->root_count);
2773 kvm_mmu_free_page(sp);
2774 }
2775 }
2776
2777 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2778 unsigned long nr_to_zap)
2779 {
2780 unsigned long total_zapped = 0;
2781 struct kvm_mmu_page *sp, *tmp;
2782 LIST_HEAD(invalid_list);
2783 bool unstable;
2784 int nr_zapped;
2785
2786 if (list_empty(&kvm->arch.active_mmu_pages))
2787 return 0;
2788
2789 restart:
2790 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2791 /*
2792 * Don't zap active root pages, the page itself can't be freed
2793 * and zapping it will just force vCPUs to realloc and reload.
2794 */
2795 if (sp->root_count)
2796 continue;
2797
2798 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2799 &nr_zapped);
2800 total_zapped += nr_zapped;
2801 if (total_zapped >= nr_to_zap)
2802 break;
2803
2804 if (unstable)
2805 goto restart;
2806 }
2807
2808 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2809
2810 kvm->stat.mmu_recycled += total_zapped;
2811 return total_zapped;
2812 }
2813
2814 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2815 {
2816 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2817 return kvm->arch.n_max_mmu_pages -
2818 kvm->arch.n_used_mmu_pages;
2819
2820 return 0;
2821 }
2822
2823 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2824 {
2825 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2826
2827 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2828 return 0;
2829
2830 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2831
2832 if (!kvm_mmu_available_pages(vcpu->kvm))
2833 return -ENOSPC;
2834 return 0;
2835 }
2836
2837 /*
2838 * Changing the number of mmu pages allocated to the vm
2839 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2840 */
2841 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2842 {
2843 spin_lock(&kvm->mmu_lock);
2844
2845 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2846 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2847 goal_nr_mmu_pages);
2848
2849 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2850 }
2851
2852 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2853
2854 spin_unlock(&kvm->mmu_lock);
2855 }
2856
2857 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2858 {
2859 struct kvm_mmu_page *sp;
2860 LIST_HEAD(invalid_list);
2861 int r;
2862
2863 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2864 r = 0;
2865 spin_lock(&kvm->mmu_lock);
2866 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2867 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2868 sp->role.word);
2869 r = 1;
2870 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2871 }
2872 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2873 spin_unlock(&kvm->mmu_lock);
2874
2875 return r;
2876 }
2877 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2878
2879 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2880 {
2881 trace_kvm_mmu_unsync_page(sp);
2882 ++vcpu->kvm->stat.mmu_unsync;
2883 sp->unsync = 1;
2884
2885 kvm_mmu_mark_parents_unsync(sp);
2886 }
2887
2888 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2889 bool can_unsync)
2890 {
2891 struct kvm_mmu_page *sp;
2892
2893 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2894 return true;
2895
2896 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2897 if (!can_unsync)
2898 return true;
2899
2900 if (sp->unsync)
2901 continue;
2902
2903 WARN_ON(sp->role.level != PG_LEVEL_4K);
2904 kvm_unsync_page(vcpu, sp);
2905 }
2906
2907 /*
2908 * We need to ensure that the marking of unsync pages is visible
2909 * before the SPTE is updated to allow writes because
2910 * kvm_mmu_sync_roots() checks the unsync flags without holding
2911 * the MMU lock and so can race with this. If the SPTE was updated
2912 * before the page had been marked as unsync-ed, something like the
2913 * following could happen:
2914 *
2915 * CPU 1 CPU 2
2916 * ---------------------------------------------------------------------
2917 * 1.2 Host updates SPTE
2918 * to be writable
2919 * 2.1 Guest writes a GPTE for GVA X.
2920 * (GPTE being in the guest page table shadowed
2921 * by the SP from CPU 1.)
2922 * This reads SPTE during the page table walk.
2923 * Since SPTE.W is read as 1, there is no
2924 * fault.
2925 *
2926 * 2.2 Guest issues TLB flush.
2927 * That causes a VM Exit.
2928 *
2929 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2930 * Since it is false, so it just returns.
2931 *
2932 * 2.4 Guest accesses GVA X.
2933 * Since the mapping in the SP was not updated,
2934 * so the old mapping for GVA X incorrectly
2935 * gets used.
2936 * 1.1 Host marks SP
2937 * as unsync
2938 * (sp->unsync = true)
2939 *
2940 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2941 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2942 * pairs with this write barrier.
2943 */
2944 smp_wmb();
2945
2946 return false;
2947 }
2948
2949 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2950 {
2951 if (pfn_valid(pfn))
2952 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2953 /*
2954 * Some reserved pages, such as those from NVDIMM
2955 * DAX devices, are not for MMIO, and can be mapped
2956 * with cached memory type for better performance.
2957 * However, the above check misconceives those pages
2958 * as MMIO, and results in KVM mapping them with UC
2959 * memory type, which would hurt the performance.
2960 * Therefore, we check the host memory type in addition
2961 * and only treat UC/UC-/WC pages as MMIO.
2962 */
2963 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2964
2965 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2966 pfn_to_hpa(pfn + 1) - 1,
2967 E820_TYPE_RAM);
2968 }
2969
2970 /* Bits which may be returned by set_spte() */
2971 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2972 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2973
2974 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2975 unsigned int pte_access, int level,
2976 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2977 bool can_unsync, bool host_writable)
2978 {
2979 u64 spte = 0;
2980 int ret = 0;
2981 struct kvm_mmu_page *sp;
2982
2983 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2984 return 0;
2985
2986 sp = sptep_to_sp(sptep);
2987 if (sp_ad_disabled(sp))
2988 spte |= SPTE_AD_DISABLED_MASK;
2989 else if (kvm_vcpu_ad_need_write_protect(vcpu))
2990 spte |= SPTE_AD_WRPROT_ONLY_MASK;
2991
2992 /*
2993 * For the EPT case, shadow_present_mask is 0 if hardware
2994 * supports exec-only page table entries. In that case,
2995 * ACC_USER_MASK and shadow_user_mask are used to represent
2996 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2997 */
2998 spte |= shadow_present_mask;
2999 if (!speculative)
3000 spte |= spte_shadow_accessed_mask(spte);
3001
3002 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
3003 is_nx_huge_page_enabled()) {
3004 pte_access &= ~ACC_EXEC_MASK;
3005 }
3006
3007 if (pte_access & ACC_EXEC_MASK)
3008 spte |= shadow_x_mask;
3009 else
3010 spte |= shadow_nx_mask;
3011
3012 if (pte_access & ACC_USER_MASK)
3013 spte |= shadow_user_mask;
3014
3015 if (level > PG_LEVEL_4K)
3016 spte |= PT_PAGE_SIZE_MASK;
3017 if (tdp_enabled)
3018 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3019 kvm_is_mmio_pfn(pfn));
3020
3021 if (host_writable)
3022 spte |= SPTE_HOST_WRITEABLE;
3023 else
3024 pte_access &= ~ACC_WRITE_MASK;
3025
3026 if (!kvm_is_mmio_pfn(pfn))
3027 spte |= shadow_me_mask;
3028
3029 spte |= (u64)pfn << PAGE_SHIFT;
3030
3031 if (pte_access & ACC_WRITE_MASK) {
3032 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3033
3034 /*
3035 * Optimization: for pte sync, if spte was writable the hash
3036 * lookup is unnecessary (and expensive). Write protection
3037 * is responsibility of mmu_get_page / kvm_sync_page.
3038 * Same reasoning can be applied to dirty page accounting.
3039 */
3040 if (!can_unsync && is_writable_pte(*sptep))
3041 goto set_pte;
3042
3043 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3044 pgprintk("%s: found shadow page for %llx, marking ro\n",
3045 __func__, gfn);
3046 ret |= SET_SPTE_WRITE_PROTECTED_PT;
3047 pte_access &= ~ACC_WRITE_MASK;
3048 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3049 }
3050 }
3051
3052 if (pte_access & ACC_WRITE_MASK) {
3053 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3054 spte |= spte_shadow_dirty_mask(spte);
3055 }
3056
3057 if (speculative)
3058 spte = mark_spte_for_access_track(spte);
3059
3060 set_pte:
3061 if (mmu_spte_update(sptep, spte))
3062 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3063 return ret;
3064 }
3065
3066 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3067 unsigned int pte_access, int write_fault, int level,
3068 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3069 bool host_writable)
3070 {
3071 int was_rmapped = 0;
3072 int rmap_count;
3073 int set_spte_ret;
3074 int ret = RET_PF_RETRY;
3075 bool flush = false;
3076
3077 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3078 *sptep, write_fault, gfn);
3079
3080 if (is_shadow_present_pte(*sptep)) {
3081 /*
3082 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3083 * the parent of the now unreachable PTE.
3084 */
3085 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3086 struct kvm_mmu_page *child;
3087 u64 pte = *sptep;
3088
3089 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
3090 drop_parent_pte(child, sptep);
3091 flush = true;
3092 } else if (pfn != spte_to_pfn(*sptep)) {
3093 pgprintk("hfn old %llx new %llx\n",
3094 spte_to_pfn(*sptep), pfn);
3095 drop_spte(vcpu->kvm, sptep);
3096 flush = true;
3097 } else
3098 was_rmapped = 1;
3099 }
3100
3101 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3102 speculative, true, host_writable);
3103 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3104 if (write_fault)
3105 ret = RET_PF_EMULATE;
3106 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3107 }
3108
3109 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3110 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3111 KVM_PAGES_PER_HPAGE(level));
3112
3113 if (unlikely(is_mmio_spte(*sptep)))
3114 ret = RET_PF_EMULATE;
3115
3116 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3117 trace_kvm_mmu_set_spte(level, gfn, sptep);
3118 if (!was_rmapped && is_large_pte(*sptep))
3119 ++vcpu->kvm->stat.lpages;
3120
3121 if (is_shadow_present_pte(*sptep)) {
3122 if (!was_rmapped) {
3123 rmap_count = rmap_add(vcpu, sptep, gfn);
3124 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3125 rmap_recycle(vcpu, sptep, gfn);
3126 }
3127 }
3128
3129 return ret;
3130 }
3131
3132 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3133 bool no_dirty_log)
3134 {
3135 struct kvm_memory_slot *slot;
3136
3137 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3138 if (!slot)
3139 return KVM_PFN_ERR_FAULT;
3140
3141 return gfn_to_pfn_memslot_atomic(slot, gfn);
3142 }
3143
3144 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3145 struct kvm_mmu_page *sp,
3146 u64 *start, u64 *end)
3147 {
3148 struct page *pages[PTE_PREFETCH_NUM];
3149 struct kvm_memory_slot *slot;
3150 unsigned int access = sp->role.access;
3151 int i, ret;
3152 gfn_t gfn;
3153
3154 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3155 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3156 if (!slot)
3157 return -1;
3158
3159 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3160 if (ret <= 0)
3161 return -1;
3162
3163 for (i = 0; i < ret; i++, gfn++, start++) {
3164 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3165 page_to_pfn(pages[i]), true, true);
3166 put_page(pages[i]);
3167 }
3168
3169 return 0;
3170 }
3171
3172 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3173 struct kvm_mmu_page *sp, u64 *sptep)
3174 {
3175 u64 *spte, *start = NULL;
3176 int i;
3177
3178 WARN_ON(!sp->role.direct);
3179
3180 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3181 spte = sp->spt + i;
3182
3183 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3184 if (is_shadow_present_pte(*spte) || spte == sptep) {
3185 if (!start)
3186 continue;
3187 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3188 break;
3189 start = NULL;
3190 } else if (!start)
3191 start = spte;
3192 }
3193 }
3194
3195 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3196 {
3197 struct kvm_mmu_page *sp;
3198
3199 sp = sptep_to_sp(sptep);
3200
3201 /*
3202 * Without accessed bits, there's no way to distinguish between
3203 * actually accessed translations and prefetched, so disable pte
3204 * prefetch if accessed bits aren't available.
3205 */
3206 if (sp_ad_disabled(sp))
3207 return;
3208
3209 if (sp->role.level > PG_LEVEL_4K)
3210 return;
3211
3212 __direct_pte_prefetch(vcpu, sp, sptep);
3213 }
3214
3215 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3216 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3217 {
3218 unsigned long hva;
3219 pte_t *pte;
3220 int level;
3221
3222 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3223 return PG_LEVEL_4K;
3224
3225 /*
3226 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3227 * is not solely for performance, it's also necessary to avoid the
3228 * "writable" check in __gfn_to_hva_many(), which will always fail on
3229 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3230 * page fault steps have already verified the guest isn't writing a
3231 * read-only memslot.
3232 */
3233 hva = __gfn_to_hva_memslot(slot, gfn);
3234
3235 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3236 if (unlikely(!pte))
3237 return PG_LEVEL_4K;
3238
3239 return level;
3240 }
3241
3242 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3243 int max_level, kvm_pfn_t *pfnp)
3244 {
3245 struct kvm_memory_slot *slot;
3246 struct kvm_lpage_info *linfo;
3247 kvm_pfn_t pfn = *pfnp;
3248 kvm_pfn_t mask;
3249 int level;
3250
3251 if (unlikely(max_level == PG_LEVEL_4K))
3252 return PG_LEVEL_4K;
3253
3254 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3255 return PG_LEVEL_4K;
3256
3257 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3258 if (!slot)
3259 return PG_LEVEL_4K;
3260
3261 max_level = min(max_level, max_huge_page_level);
3262 for ( ; max_level > PG_LEVEL_4K; max_level--) {
3263 linfo = lpage_info_slot(gfn, slot, max_level);
3264 if (!linfo->disallow_lpage)
3265 break;
3266 }
3267
3268 if (max_level == PG_LEVEL_4K)
3269 return PG_LEVEL_4K;
3270
3271 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3272 if (level == PG_LEVEL_4K)
3273 return level;
3274
3275 level = min(level, max_level);
3276
3277 /*
3278 * mmu_notifier_retry() was successful and mmu_lock is held, so
3279 * the pmd can't be split from under us.
3280 */
3281 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3282 VM_BUG_ON((gfn & mask) != (pfn & mask));
3283 *pfnp = pfn & ~mask;
3284
3285 return level;
3286 }
3287
3288 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3289 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3290 {
3291 int level = *levelp;
3292 u64 spte = *it.sptep;
3293
3294 if (it.level == level && level > PG_LEVEL_4K &&
3295 is_nx_huge_page_enabled() &&
3296 is_shadow_present_pte(spte) &&
3297 !is_large_pte(spte)) {
3298 /*
3299 * A small SPTE exists for this pfn, but FNAME(fetch)
3300 * and __direct_map would like to create a large PTE
3301 * instead: just force them to go down another level,
3302 * patching back for them into pfn the next 9 bits of
3303 * the address.
3304 */
3305 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3306 *pfnp |= gfn & page_mask;
3307 (*levelp)--;
3308 }
3309 }
3310
3311 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3312 int map_writable, int max_level, kvm_pfn_t pfn,
3313 bool prefault, bool account_disallowed_nx_lpage)
3314 {
3315 struct kvm_shadow_walk_iterator it;
3316 struct kvm_mmu_page *sp;
3317 int level, ret;
3318 gfn_t gfn = gpa >> PAGE_SHIFT;
3319 gfn_t base_gfn = gfn;
3320
3321 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3322 return RET_PF_RETRY;
3323
3324 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3325
3326 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3327 for_each_shadow_entry(vcpu, gpa, it) {
3328 /*
3329 * We cannot overwrite existing page tables with an NX
3330 * large page, as the leaf could be executable.
3331 */
3332 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3333
3334 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3335 if (it.level == level)
3336 break;
3337
3338 drop_large_spte(vcpu, it.sptep);
3339 if (!is_shadow_present_pte(*it.sptep)) {
3340 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3341 it.level - 1, true, ACC_ALL);
3342
3343 link_shadow_page(vcpu, it.sptep, sp);
3344 if (account_disallowed_nx_lpage)
3345 account_huge_nx_page(vcpu->kvm, sp);
3346 }
3347 }
3348
3349 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3350 write, level, base_gfn, pfn, prefault,
3351 map_writable);
3352 direct_pte_prefetch(vcpu, it.sptep);
3353 ++vcpu->stat.pf_fixed;
3354 return ret;
3355 }
3356
3357 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3358 {
3359 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3360 }
3361
3362 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3363 {
3364 /*
3365 * Do not cache the mmio info caused by writing the readonly gfn
3366 * into the spte otherwise read access on readonly gfn also can
3367 * caused mmio page fault and treat it as mmio access.
3368 */
3369 if (pfn == KVM_PFN_ERR_RO_FAULT)
3370 return RET_PF_EMULATE;
3371
3372 if (pfn == KVM_PFN_ERR_HWPOISON) {
3373 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3374 return RET_PF_RETRY;
3375 }
3376
3377 return -EFAULT;
3378 }
3379
3380 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3381 kvm_pfn_t pfn, unsigned int access,
3382 int *ret_val)
3383 {
3384 /* The pfn is invalid, report the error! */
3385 if (unlikely(is_error_pfn(pfn))) {
3386 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3387 return true;
3388 }
3389
3390 if (unlikely(is_noslot_pfn(pfn)))
3391 vcpu_cache_mmio_info(vcpu, gva, gfn,
3392 access & shadow_mmio_access_mask);
3393
3394 return false;
3395 }
3396
3397 static bool page_fault_can_be_fast(u32 error_code)
3398 {
3399 /*
3400 * Do not fix the mmio spte with invalid generation number which
3401 * need to be updated by slow page fault path.
3402 */
3403 if (unlikely(error_code & PFERR_RSVD_MASK))
3404 return false;
3405
3406 /* See if the page fault is due to an NX violation */
3407 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3408 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3409 return false;
3410
3411 /*
3412 * #PF can be fast if:
3413 * 1. The shadow page table entry is not present, which could mean that
3414 * the fault is potentially caused by access tracking (if enabled).
3415 * 2. The shadow page table entry is present and the fault
3416 * is caused by write-protect, that means we just need change the W
3417 * bit of the spte which can be done out of mmu-lock.
3418 *
3419 * However, if access tracking is disabled we know that a non-present
3420 * page must be a genuine page fault where we have to create a new SPTE.
3421 * So, if access tracking is disabled, we return true only for write
3422 * accesses to a present page.
3423 */
3424
3425 return shadow_acc_track_mask != 0 ||
3426 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3427 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3428 }
3429
3430 /*
3431 * Returns true if the SPTE was fixed successfully. Otherwise,
3432 * someone else modified the SPTE from its original value.
3433 */
3434 static bool
3435 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3436 u64 *sptep, u64 old_spte, u64 new_spte)
3437 {
3438 gfn_t gfn;
3439
3440 WARN_ON(!sp->role.direct);
3441
3442 /*
3443 * Theoretically we could also set dirty bit (and flush TLB) here in
3444 * order to eliminate unnecessary PML logging. See comments in
3445 * set_spte. But fast_page_fault is very unlikely to happen with PML
3446 * enabled, so we do not do this. This might result in the same GPA
3447 * to be logged in PML buffer again when the write really happens, and
3448 * eventually to be called by mark_page_dirty twice. But it's also no
3449 * harm. This also avoids the TLB flush needed after setting dirty bit
3450 * so non-PML cases won't be impacted.
3451 *
3452 * Compare with set_spte where instead shadow_dirty_mask is set.
3453 */
3454 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3455 return false;
3456
3457 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3458 /*
3459 * The gfn of direct spte is stable since it is
3460 * calculated by sp->gfn.
3461 */
3462 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3463 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3464 }
3465
3466 return true;
3467 }
3468
3469 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3470 {
3471 if (fault_err_code & PFERR_FETCH_MASK)
3472 return is_executable_pte(spte);
3473
3474 if (fault_err_code & PFERR_WRITE_MASK)
3475 return is_writable_pte(spte);
3476
3477 /* Fault was on Read access */
3478 return spte & PT_PRESENT_MASK;
3479 }
3480
3481 /*
3482 * Return value:
3483 * - true: let the vcpu to access on the same address again.
3484 * - false: let the real page fault path to fix it.
3485 */
3486 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3487 u32 error_code)
3488 {
3489 struct kvm_shadow_walk_iterator iterator;
3490 struct kvm_mmu_page *sp;
3491 bool fault_handled = false;
3492 u64 spte = 0ull;
3493 uint retry_count = 0;
3494
3495 if (!page_fault_can_be_fast(error_code))
3496 return false;
3497
3498 walk_shadow_page_lockless_begin(vcpu);
3499
3500 do {
3501 u64 new_spte;
3502
3503 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3504 if (!is_shadow_present_pte(spte))
3505 break;
3506
3507 sp = sptep_to_sp(iterator.sptep);
3508 if (!is_last_spte(spte, sp->role.level))
3509 break;
3510
3511 /*
3512 * Check whether the memory access that caused the fault would
3513 * still cause it if it were to be performed right now. If not,
3514 * then this is a spurious fault caused by TLB lazily flushed,
3515 * or some other CPU has already fixed the PTE after the
3516 * current CPU took the fault.
3517 *
3518 * Need not check the access of upper level table entries since
3519 * they are always ACC_ALL.
3520 */
3521 if (is_access_allowed(error_code, spte)) {
3522 fault_handled = true;
3523 break;
3524 }
3525
3526 new_spte = spte;
3527
3528 if (is_access_track_spte(spte))
3529 new_spte = restore_acc_track_spte(new_spte);
3530
3531 /*
3532 * Currently, to simplify the code, write-protection can
3533 * be removed in the fast path only if the SPTE was
3534 * write-protected for dirty-logging or access tracking.
3535 */
3536 if ((error_code & PFERR_WRITE_MASK) &&
3537 spte_can_locklessly_be_made_writable(spte)) {
3538 new_spte |= PT_WRITABLE_MASK;
3539
3540 /*
3541 * Do not fix write-permission on the large spte. Since
3542 * we only dirty the first page into the dirty-bitmap in
3543 * fast_pf_fix_direct_spte(), other pages are missed
3544 * if its slot has dirty logging enabled.
3545 *
3546 * Instead, we let the slow page fault path create a
3547 * normal spte to fix the access.
3548 *
3549 * See the comments in kvm_arch_commit_memory_region().
3550 */
3551 if (sp->role.level > PG_LEVEL_4K)
3552 break;
3553 }
3554
3555 /* Verify that the fault can be handled in the fast path */
3556 if (new_spte == spte ||
3557 !is_access_allowed(error_code, new_spte))
3558 break;
3559
3560 /*
3561 * Currently, fast page fault only works for direct mapping
3562 * since the gfn is not stable for indirect shadow page. See
3563 * Documentation/virt/kvm/locking.rst to get more detail.
3564 */
3565 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3566 iterator.sptep, spte,
3567 new_spte);
3568 if (fault_handled)
3569 break;
3570
3571 if (++retry_count > 4) {
3572 printk_once(KERN_WARNING
3573 "kvm: Fast #PF retrying more than 4 times.\n");
3574 break;
3575 }
3576
3577 } while (true);
3578
3579 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3580 spte, fault_handled);
3581 walk_shadow_page_lockless_end(vcpu);
3582
3583 return fault_handled;
3584 }
3585
3586 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3587 struct list_head *invalid_list)
3588 {
3589 struct kvm_mmu_page *sp;
3590
3591 if (!VALID_PAGE(*root_hpa))
3592 return;
3593
3594 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3595 --sp->root_count;
3596 if (!sp->root_count && sp->role.invalid)
3597 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3598
3599 *root_hpa = INVALID_PAGE;
3600 }
3601
3602 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3603 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3604 ulong roots_to_free)
3605 {
3606 int i;
3607 LIST_HEAD(invalid_list);
3608 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3609
3610 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3611
3612 /* Before acquiring the MMU lock, see if we need to do any real work. */
3613 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3614 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3615 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3616 VALID_PAGE(mmu->prev_roots[i].hpa))
3617 break;
3618
3619 if (i == KVM_MMU_NUM_PREV_ROOTS)
3620 return;
3621 }
3622
3623 spin_lock(&vcpu->kvm->mmu_lock);
3624
3625 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3626 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3627 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3628 &invalid_list);
3629
3630 if (free_active_root) {
3631 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3632 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3633 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3634 &invalid_list);
3635 } else {
3636 for (i = 0; i < 4; ++i)
3637 if (mmu->pae_root[i] != 0)
3638 mmu_free_root_page(vcpu->kvm,
3639 &mmu->pae_root[i],
3640 &invalid_list);
3641 mmu->root_hpa = INVALID_PAGE;
3642 }
3643 mmu->root_pgd = 0;
3644 }
3645
3646 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3647 spin_unlock(&vcpu->kvm->mmu_lock);
3648 }
3649 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3650
3651 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3652 {
3653 int ret = 0;
3654
3655 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3656 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3657 ret = 1;
3658 }
3659
3660 return ret;
3661 }
3662
3663 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3664 u8 level, bool direct)
3665 {
3666 struct kvm_mmu_page *sp;
3667
3668 spin_lock(&vcpu->kvm->mmu_lock);
3669
3670 if (make_mmu_pages_available(vcpu)) {
3671 spin_unlock(&vcpu->kvm->mmu_lock);
3672 return INVALID_PAGE;
3673 }
3674 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3675 ++sp->root_count;
3676
3677 spin_unlock(&vcpu->kvm->mmu_lock);
3678 return __pa(sp->spt);
3679 }
3680
3681 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3682 {
3683 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3684 hpa_t root;
3685 unsigned i;
3686
3687 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3688 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3689 if (!VALID_PAGE(root))
3690 return -ENOSPC;
3691 vcpu->arch.mmu->root_hpa = root;
3692 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3693 for (i = 0; i < 4; ++i) {
3694 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3695
3696 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3697 i << 30, PT32_ROOT_LEVEL, true);
3698 if (!VALID_PAGE(root))
3699 return -ENOSPC;
3700 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3701 }
3702 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3703 } else
3704 BUG();
3705
3706 /* root_pgd is ignored for direct MMUs. */
3707 vcpu->arch.mmu->root_pgd = 0;
3708
3709 return 0;
3710 }
3711
3712 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3713 {
3714 u64 pdptr, pm_mask;
3715 gfn_t root_gfn, root_pgd;
3716 hpa_t root;
3717 int i;
3718
3719 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3720 root_gfn = root_pgd >> PAGE_SHIFT;
3721
3722 if (mmu_check_root(vcpu, root_gfn))
3723 return 1;
3724
3725 /*
3726 * Do we shadow a long mode page table? If so we need to
3727 * write-protect the guests page table root.
3728 */
3729 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3730 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3731
3732 root = mmu_alloc_root(vcpu, root_gfn, 0,
3733 vcpu->arch.mmu->shadow_root_level, false);
3734 if (!VALID_PAGE(root))
3735 return -ENOSPC;
3736 vcpu->arch.mmu->root_hpa = root;
3737 goto set_root_pgd;
3738 }
3739
3740 /*
3741 * We shadow a 32 bit page table. This may be a legacy 2-level
3742 * or a PAE 3-level page table. In either case we need to be aware that
3743 * the shadow page table may be a PAE or a long mode page table.
3744 */
3745 pm_mask = PT_PRESENT_MASK;
3746 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3747 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3748
3749 for (i = 0; i < 4; ++i) {
3750 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3751 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3752 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3753 if (!(pdptr & PT_PRESENT_MASK)) {
3754 vcpu->arch.mmu->pae_root[i] = 0;
3755 continue;
3756 }
3757 root_gfn = pdptr >> PAGE_SHIFT;
3758 if (mmu_check_root(vcpu, root_gfn))
3759 return 1;
3760 }
3761
3762 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3763 PT32_ROOT_LEVEL, false);
3764 if (!VALID_PAGE(root))
3765 return -ENOSPC;
3766 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3767 }
3768 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3769
3770 /*
3771 * If we shadow a 32 bit page table with a long mode page
3772 * table we enter this path.
3773 */
3774 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3775 if (vcpu->arch.mmu->lm_root == NULL) {
3776 /*
3777 * The additional page necessary for this is only
3778 * allocated on demand.
3779 */
3780
3781 u64 *lm_root;
3782
3783 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3784 if (lm_root == NULL)
3785 return 1;
3786
3787 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3788
3789 vcpu->arch.mmu->lm_root = lm_root;
3790 }
3791
3792 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3793 }
3794
3795 set_root_pgd:
3796 vcpu->arch.mmu->root_pgd = root_pgd;
3797
3798 return 0;
3799 }
3800
3801 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3802 {
3803 if (vcpu->arch.mmu->direct_map)
3804 return mmu_alloc_direct_roots(vcpu);
3805 else
3806 return mmu_alloc_shadow_roots(vcpu);
3807 }
3808
3809 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3810 {
3811 int i;
3812 struct kvm_mmu_page *sp;
3813
3814 if (vcpu->arch.mmu->direct_map)
3815 return;
3816
3817 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3818 return;
3819
3820 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3821
3822 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3823 hpa_t root = vcpu->arch.mmu->root_hpa;
3824 sp = to_shadow_page(root);
3825
3826 /*
3827 * Even if another CPU was marking the SP as unsync-ed
3828 * simultaneously, any guest page table changes are not
3829 * guaranteed to be visible anyway until this VCPU issues a TLB
3830 * flush strictly after those changes are made. We only need to
3831 * ensure that the other CPU sets these flags before any actual
3832 * changes to the page tables are made. The comments in
3833 * mmu_need_write_protect() describe what could go wrong if this
3834 * requirement isn't satisfied.
3835 */
3836 if (!smp_load_acquire(&sp->unsync) &&
3837 !smp_load_acquire(&sp->unsync_children))
3838 return;
3839
3840 spin_lock(&vcpu->kvm->mmu_lock);
3841 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3842
3843 mmu_sync_children(vcpu, sp);
3844
3845 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3846 spin_unlock(&vcpu->kvm->mmu_lock);
3847 return;
3848 }
3849
3850 spin_lock(&vcpu->kvm->mmu_lock);
3851 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3852
3853 for (i = 0; i < 4; ++i) {
3854 hpa_t root = vcpu->arch.mmu->pae_root[i];
3855
3856 if (root && VALID_PAGE(root)) {
3857 root &= PT64_BASE_ADDR_MASK;
3858 sp = to_shadow_page(root);
3859 mmu_sync_children(vcpu, sp);
3860 }
3861 }
3862
3863 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3864 spin_unlock(&vcpu->kvm->mmu_lock);
3865 }
3866 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3867
3868 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3869 u32 access, struct x86_exception *exception)
3870 {
3871 if (exception)
3872 exception->error_code = 0;
3873 return vaddr;
3874 }
3875
3876 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3877 u32 access,
3878 struct x86_exception *exception)
3879 {
3880 if (exception)
3881 exception->error_code = 0;
3882 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3883 }
3884
3885 static bool
3886 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3887 {
3888 int bit7 = (pte >> 7) & 1;
3889
3890 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3891 }
3892
3893 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3894 {
3895 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3896 }
3897
3898 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3899 {
3900 /*
3901 * A nested guest cannot use the MMIO cache if it is using nested
3902 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3903 */
3904 if (mmu_is_nested(vcpu))
3905 return false;
3906
3907 if (direct)
3908 return vcpu_match_mmio_gpa(vcpu, addr);
3909
3910 return vcpu_match_mmio_gva(vcpu, addr);
3911 }
3912
3913 /* return true if reserved bit is detected on spte. */
3914 static bool
3915 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3916 {
3917 struct kvm_shadow_walk_iterator iterator;
3918 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3919 struct rsvd_bits_validate *rsvd_check;
3920 int root, leaf;
3921 bool reserved = false;
3922
3923 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3924
3925 walk_shadow_page_lockless_begin(vcpu);
3926
3927 for (shadow_walk_init(&iterator, vcpu, addr),
3928 leaf = root = iterator.level;
3929 shadow_walk_okay(&iterator);
3930 __shadow_walk_next(&iterator, spte)) {
3931 spte = mmu_spte_get_lockless(iterator.sptep);
3932
3933 sptes[leaf - 1] = spte;
3934 leaf--;
3935
3936 if (!is_shadow_present_pte(spte))
3937 break;
3938
3939 /*
3940 * Use a bitwise-OR instead of a logical-OR to aggregate the
3941 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3942 * adding a Jcc in the loop.
3943 */
3944 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3945 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3946 }
3947
3948 walk_shadow_page_lockless_end(vcpu);
3949
3950 if (reserved) {
3951 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3952 __func__, addr);
3953 while (root > leaf) {
3954 pr_err("------ spte 0x%llx level %d.\n",
3955 sptes[root - 1], root);
3956 root--;
3957 }
3958 }
3959
3960 *sptep = spte;
3961 return reserved;
3962 }
3963
3964 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3965 {
3966 u64 spte;
3967 bool reserved;
3968
3969 if (mmio_info_in_cache(vcpu, addr, direct))
3970 return RET_PF_EMULATE;
3971
3972 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3973 if (WARN_ON(reserved))
3974 return -EINVAL;
3975
3976 if (is_mmio_spte(spte)) {
3977 gfn_t gfn = get_mmio_spte_gfn(spte);
3978 unsigned int access = get_mmio_spte_access(spte);
3979
3980 if (!check_mmio_spte(vcpu, spte))
3981 return RET_PF_INVALID;
3982
3983 if (direct)
3984 addr = 0;
3985
3986 trace_handle_mmio_page_fault(addr, gfn, access);
3987 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3988 return RET_PF_EMULATE;
3989 }
3990
3991 /*
3992 * If the page table is zapped by other cpus, let CPU fault again on
3993 * the address.
3994 */
3995 return RET_PF_RETRY;
3996 }
3997
3998 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3999 u32 error_code, gfn_t gfn)
4000 {
4001 if (unlikely(error_code & PFERR_RSVD_MASK))
4002 return false;
4003
4004 if (!(error_code & PFERR_PRESENT_MASK) ||
4005 !(error_code & PFERR_WRITE_MASK))
4006 return false;
4007
4008 /*
4009 * guest is writing the page which is write tracked which can
4010 * not be fixed by page fault handler.
4011 */
4012 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4013 return true;
4014
4015 return false;
4016 }
4017
4018 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4019 {
4020 struct kvm_shadow_walk_iterator iterator;
4021 u64 spte;
4022
4023 walk_shadow_page_lockless_begin(vcpu);
4024 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4025 clear_sp_write_flooding_count(iterator.sptep);
4026 if (!is_shadow_present_pte(spte))
4027 break;
4028 }
4029 walk_shadow_page_lockless_end(vcpu);
4030 }
4031
4032 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4033 gfn_t gfn)
4034 {
4035 struct kvm_arch_async_pf arch;
4036
4037 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4038 arch.gfn = gfn;
4039 arch.direct_map = vcpu->arch.mmu->direct_map;
4040 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4041
4042 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4043 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4044 }
4045
4046 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4047 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4048 bool *writable)
4049 {
4050 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4051 bool async;
4052
4053 /* Don't expose private memslots to L2. */
4054 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4055 *pfn = KVM_PFN_NOSLOT;
4056 *writable = false;
4057 return false;
4058 }
4059
4060 async = false;
4061 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4062 if (!async)
4063 return false; /* *pfn has correct page already */
4064
4065 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4066 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4067 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4068 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4069 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4070 return true;
4071 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4072 return true;
4073 }
4074
4075 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4076 return false;
4077 }
4078
4079 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4080 bool prefault, int max_level, bool is_tdp)
4081 {
4082 bool write = error_code & PFERR_WRITE_MASK;
4083 bool exec = error_code & PFERR_FETCH_MASK;
4084 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4085 bool map_writable;
4086
4087 gfn_t gfn = gpa >> PAGE_SHIFT;
4088 unsigned long mmu_seq;
4089 kvm_pfn_t pfn;
4090 int r;
4091
4092 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4093 return RET_PF_EMULATE;
4094
4095 if (fast_page_fault(vcpu, gpa, error_code))
4096 return RET_PF_RETRY;
4097
4098 r = mmu_topup_memory_caches(vcpu, false);
4099 if (r)
4100 return r;
4101
4102 if (lpage_disallowed)
4103 max_level = PG_LEVEL_4K;
4104
4105 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4106 smp_rmb();
4107
4108 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4109 return RET_PF_RETRY;
4110
4111 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4112 return r;
4113
4114 r = RET_PF_RETRY;
4115 spin_lock(&vcpu->kvm->mmu_lock);
4116 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4117 goto out_unlock;
4118 r = make_mmu_pages_available(vcpu);
4119 if (r)
4120 goto out_unlock;
4121 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4122 prefault, is_tdp && lpage_disallowed);
4123
4124 out_unlock:
4125 spin_unlock(&vcpu->kvm->mmu_lock);
4126 kvm_release_pfn_clean(pfn);
4127 return r;
4128 }
4129
4130 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4131 u32 error_code, bool prefault)
4132 {
4133 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4134
4135 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4136 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4137 PG_LEVEL_2M, false);
4138 }
4139
4140 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4141 u64 fault_address, char *insn, int insn_len)
4142 {
4143 int r = 1;
4144 u32 flags = vcpu->arch.apf.host_apf_flags;
4145
4146 #ifndef CONFIG_X86_64
4147 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4148 if (WARN_ON_ONCE(fault_address >> 32))
4149 return -EFAULT;
4150 #endif
4151
4152 vcpu->arch.l1tf_flush_l1d = true;
4153 if (!flags) {
4154 trace_kvm_page_fault(fault_address, error_code);
4155
4156 if (kvm_event_needs_reinjection(vcpu))
4157 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4158 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4159 insn_len);
4160 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4161 vcpu->arch.apf.host_apf_flags = 0;
4162 local_irq_disable();
4163 kvm_async_pf_task_wait_schedule(fault_address);
4164 local_irq_enable();
4165 } else {
4166 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4167 }
4168
4169 return r;
4170 }
4171 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4172
4173 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4174 bool prefault)
4175 {
4176 int max_level;
4177
4178 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4179 max_level > PG_LEVEL_4K;
4180 max_level--) {
4181 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4182 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4183
4184 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4185 break;
4186 }
4187
4188 return direct_page_fault(vcpu, gpa, error_code, prefault,
4189 max_level, true);
4190 }
4191
4192 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4193 struct kvm_mmu *context)
4194 {
4195 context->page_fault = nonpaging_page_fault;
4196 context->gva_to_gpa = nonpaging_gva_to_gpa;
4197 context->sync_page = nonpaging_sync_page;
4198 context->invlpg = NULL;
4199 context->update_pte = nonpaging_update_pte;
4200 context->root_level = 0;
4201 context->shadow_root_level = PT32E_ROOT_LEVEL;
4202 context->direct_map = true;
4203 context->nx = false;
4204 }
4205
4206 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4207 union kvm_mmu_page_role role)
4208 {
4209 return (role.direct || pgd == root->pgd) &&
4210 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4211 role.word == to_shadow_page(root->hpa)->role.word;
4212 }
4213
4214 /*
4215 * Find out if a previously cached root matching the new pgd/role is available.
4216 * The current root is also inserted into the cache.
4217 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4218 * returned.
4219 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4220 * false is returned. This root should now be freed by the caller.
4221 */
4222 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4223 union kvm_mmu_page_role new_role)
4224 {
4225 uint i;
4226 struct kvm_mmu_root_info root;
4227 struct kvm_mmu *mmu = vcpu->arch.mmu;
4228
4229 root.pgd = mmu->root_pgd;
4230 root.hpa = mmu->root_hpa;
4231
4232 if (is_root_usable(&root, new_pgd, new_role))
4233 return true;
4234
4235 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4236 swap(root, mmu->prev_roots[i]);
4237
4238 if (is_root_usable(&root, new_pgd, new_role))
4239 break;
4240 }
4241
4242 mmu->root_hpa = root.hpa;
4243 mmu->root_pgd = root.pgd;
4244
4245 return i < KVM_MMU_NUM_PREV_ROOTS;
4246 }
4247
4248 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4249 union kvm_mmu_page_role new_role)
4250 {
4251 struct kvm_mmu *mmu = vcpu->arch.mmu;
4252
4253 /*
4254 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4255 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4256 * later if necessary.
4257 */
4258 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4259 mmu->root_level >= PT64_ROOT_4LEVEL)
4260 return cached_root_available(vcpu, new_pgd, new_role);
4261
4262 return false;
4263 }
4264
4265 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4266 union kvm_mmu_page_role new_role,
4267 bool skip_tlb_flush, bool skip_mmu_sync)
4268 {
4269 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4270 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4271 return;
4272 }
4273
4274 /*
4275 * It's possible that the cached previous root page is obsolete because
4276 * of a change in the MMU generation number. However, changing the
4277 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4278 * free the root set here and allocate a new one.
4279 */
4280 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4281
4282 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4283 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4284 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4285 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4286
4287 /*
4288 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4289 * switching to a new CR3, that GVA->GPA mapping may no longer be
4290 * valid. So clear any cached MMIO info even when we don't need to sync
4291 * the shadow page tables.
4292 */
4293 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4294
4295 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
4296 }
4297
4298 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4299 bool skip_mmu_sync)
4300 {
4301 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4302 skip_tlb_flush, skip_mmu_sync);
4303 }
4304 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4305
4306 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4307 {
4308 return kvm_read_cr3(vcpu);
4309 }
4310
4311 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4312 unsigned int access, int *nr_present)
4313 {
4314 if (unlikely(is_mmio_spte(*sptep))) {
4315 if (gfn != get_mmio_spte_gfn(*sptep)) {
4316 mmu_spte_clear_no_track(sptep);
4317 return true;
4318 }
4319
4320 (*nr_present)++;
4321 mark_mmio_spte(vcpu, sptep, gfn, access);
4322 return true;
4323 }
4324
4325 return false;
4326 }
4327
4328 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4329 unsigned level, unsigned gpte)
4330 {
4331 /*
4332 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4333 * If it is clear, there are no large pages at this level, so clear
4334 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4335 */
4336 gpte &= level - mmu->last_nonleaf_level;
4337
4338 /*
4339 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4340 * iff level <= PG_LEVEL_4K, which for our purpose means
4341 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4342 */
4343 gpte |= level - PG_LEVEL_4K - 1;
4344
4345 return gpte & PT_PAGE_SIZE_MASK;
4346 }
4347
4348 #define PTTYPE_EPT 18 /* arbitrary */
4349 #define PTTYPE PTTYPE_EPT
4350 #include "paging_tmpl.h"
4351 #undef PTTYPE
4352
4353 #define PTTYPE 64
4354 #include "paging_tmpl.h"
4355 #undef PTTYPE
4356
4357 #define PTTYPE 32
4358 #include "paging_tmpl.h"
4359 #undef PTTYPE
4360
4361 static void
4362 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4363 struct rsvd_bits_validate *rsvd_check,
4364 int maxphyaddr, int level, bool nx, bool gbpages,
4365 bool pse, bool amd)
4366 {
4367 u64 exb_bit_rsvd = 0;
4368 u64 gbpages_bit_rsvd = 0;
4369 u64 nonleaf_bit8_rsvd = 0;
4370
4371 rsvd_check->bad_mt_xwr = 0;
4372
4373 if (!nx)
4374 exb_bit_rsvd = rsvd_bits(63, 63);
4375 if (!gbpages)
4376 gbpages_bit_rsvd = rsvd_bits(7, 7);
4377
4378 /*
4379 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4380 * leaf entries) on AMD CPUs only.
4381 */
4382 if (amd)
4383 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4384
4385 switch (level) {
4386 case PT32_ROOT_LEVEL:
4387 /* no rsvd bits for 2 level 4K page table entries */
4388 rsvd_check->rsvd_bits_mask[0][1] = 0;
4389 rsvd_check->rsvd_bits_mask[0][0] = 0;
4390 rsvd_check->rsvd_bits_mask[1][0] =
4391 rsvd_check->rsvd_bits_mask[0][0];
4392
4393 if (!pse) {
4394 rsvd_check->rsvd_bits_mask[1][1] = 0;
4395 break;
4396 }
4397
4398 if (is_cpuid_PSE36())
4399 /* 36bits PSE 4MB page */
4400 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4401 else
4402 /* 32 bits PSE 4MB page */
4403 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4404 break;
4405 case PT32E_ROOT_LEVEL:
4406 rsvd_check->rsvd_bits_mask[0][2] =
4407 rsvd_bits(maxphyaddr, 63) |
4408 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4409 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4410 rsvd_bits(maxphyaddr, 62); /* PDE */
4411 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4412 rsvd_bits(maxphyaddr, 62); /* PTE */
4413 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4414 rsvd_bits(maxphyaddr, 62) |
4415 rsvd_bits(13, 20); /* large page */
4416 rsvd_check->rsvd_bits_mask[1][0] =
4417 rsvd_check->rsvd_bits_mask[0][0];
4418 break;
4419 case PT64_ROOT_5LEVEL:
4420 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4421 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4422 rsvd_bits(maxphyaddr, 51);
4423 rsvd_check->rsvd_bits_mask[1][4] =
4424 rsvd_check->rsvd_bits_mask[0][4];
4425 /* fall through */
4426 case PT64_ROOT_4LEVEL:
4427 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4428 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4429 rsvd_bits(maxphyaddr, 51);
4430 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4431 gbpages_bit_rsvd |
4432 rsvd_bits(maxphyaddr, 51);
4433 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4434 rsvd_bits(maxphyaddr, 51);
4435 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4436 rsvd_bits(maxphyaddr, 51);
4437 rsvd_check->rsvd_bits_mask[1][3] =
4438 rsvd_check->rsvd_bits_mask[0][3];
4439 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4440 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4441 rsvd_bits(13, 29);
4442 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4443 rsvd_bits(maxphyaddr, 51) |
4444 rsvd_bits(13, 20); /* large page */
4445 rsvd_check->rsvd_bits_mask[1][0] =
4446 rsvd_check->rsvd_bits_mask[0][0];
4447 break;
4448 }
4449 }
4450
4451 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4452 struct kvm_mmu *context)
4453 {
4454 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4455 cpuid_maxphyaddr(vcpu), context->root_level,
4456 context->nx,
4457 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4458 is_pse(vcpu),
4459 guest_cpuid_is_amd_or_hygon(vcpu));
4460 }
4461
4462 static void
4463 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4464 int maxphyaddr, bool execonly)
4465 {
4466 u64 bad_mt_xwr;
4467
4468 rsvd_check->rsvd_bits_mask[0][4] =
4469 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4470 rsvd_check->rsvd_bits_mask[0][3] =
4471 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4472 rsvd_check->rsvd_bits_mask[0][2] =
4473 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4474 rsvd_check->rsvd_bits_mask[0][1] =
4475 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4476 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4477
4478 /* large page */
4479 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4480 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4481 rsvd_check->rsvd_bits_mask[1][2] =
4482 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4483 rsvd_check->rsvd_bits_mask[1][1] =
4484 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4485 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4486
4487 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4488 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4489 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4490 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4491 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4492 if (!execonly) {
4493 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4494 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4495 }
4496 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4497 }
4498
4499 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4500 struct kvm_mmu *context, bool execonly)
4501 {
4502 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4503 cpuid_maxphyaddr(vcpu), execonly);
4504 }
4505
4506 /*
4507 * the page table on host is the shadow page table for the page
4508 * table in guest or amd nested guest, its mmu features completely
4509 * follow the features in guest.
4510 */
4511 void
4512 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4513 {
4514 bool uses_nx = context->nx ||
4515 context->mmu_role.base.smep_andnot_wp;
4516 struct rsvd_bits_validate *shadow_zero_check;
4517 int i;
4518
4519 /*
4520 * Passing "true" to the last argument is okay; it adds a check
4521 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4522 */
4523 shadow_zero_check = &context->shadow_zero_check;
4524 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4525 shadow_phys_bits,
4526 context->shadow_root_level, uses_nx,
4527 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4528 is_pse(vcpu), true);
4529
4530 if (!shadow_me_mask)
4531 return;
4532
4533 for (i = context->shadow_root_level; --i >= 0;) {
4534 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4535 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4536 }
4537
4538 }
4539 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4540
4541 static inline bool boot_cpu_is_amd(void)
4542 {
4543 WARN_ON_ONCE(!tdp_enabled);
4544 return shadow_x_mask == 0;
4545 }
4546
4547 /*
4548 * the direct page table on host, use as much mmu features as
4549 * possible, however, kvm currently does not do execution-protection.
4550 */
4551 static void
4552 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4553 struct kvm_mmu *context)
4554 {
4555 struct rsvd_bits_validate *shadow_zero_check;
4556 int i;
4557
4558 shadow_zero_check = &context->shadow_zero_check;
4559
4560 if (boot_cpu_is_amd())
4561 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4562 shadow_phys_bits,
4563 context->shadow_root_level, false,
4564 boot_cpu_has(X86_FEATURE_GBPAGES),
4565 true, true);
4566 else
4567 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4568 shadow_phys_bits,
4569 false);
4570
4571 if (!shadow_me_mask)
4572 return;
4573
4574 for (i = context->shadow_root_level; --i >= 0;) {
4575 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4576 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4577 }
4578 }
4579
4580 /*
4581 * as the comments in reset_shadow_zero_bits_mask() except it
4582 * is the shadow page table for intel nested guest.
4583 */
4584 static void
4585 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4586 struct kvm_mmu *context, bool execonly)
4587 {
4588 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4589 shadow_phys_bits, execonly);
4590 }
4591
4592 #define BYTE_MASK(access) \
4593 ((1 & (access) ? 2 : 0) | \
4594 (2 & (access) ? 4 : 0) | \
4595 (3 & (access) ? 8 : 0) | \
4596 (4 & (access) ? 16 : 0) | \
4597 (5 & (access) ? 32 : 0) | \
4598 (6 & (access) ? 64 : 0) | \
4599 (7 & (access) ? 128 : 0))
4600
4601
4602 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4603 struct kvm_mmu *mmu, bool ept)
4604 {
4605 unsigned byte;
4606
4607 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4608 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4609 const u8 u = BYTE_MASK(ACC_USER_MASK);
4610
4611 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4612 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4613 bool cr0_wp = is_write_protection(vcpu);
4614
4615 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4616 unsigned pfec = byte << 1;
4617
4618 /*
4619 * Each "*f" variable has a 1 bit for each UWX value
4620 * that causes a fault with the given PFEC.
4621 */
4622
4623 /* Faults from writes to non-writable pages */
4624 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4625 /* Faults from user mode accesses to supervisor pages */
4626 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4627 /* Faults from fetches of non-executable pages*/
4628 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4629 /* Faults from kernel mode fetches of user pages */
4630 u8 smepf = 0;
4631 /* Faults from kernel mode accesses of user pages */
4632 u8 smapf = 0;
4633
4634 if (!ept) {
4635 /* Faults from kernel mode accesses to user pages */
4636 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4637
4638 /* Not really needed: !nx will cause pte.nx to fault */
4639 if (!mmu->nx)
4640 ff = 0;
4641
4642 /* Allow supervisor writes if !cr0.wp */
4643 if (!cr0_wp)
4644 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4645
4646 /* Disallow supervisor fetches of user code if cr4.smep */
4647 if (cr4_smep)
4648 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4649
4650 /*
4651 * SMAP:kernel-mode data accesses from user-mode
4652 * mappings should fault. A fault is considered
4653 * as a SMAP violation if all of the following
4654 * conditions are true:
4655 * - X86_CR4_SMAP is set in CR4
4656 * - A user page is accessed
4657 * - The access is not a fetch
4658 * - Page fault in kernel mode
4659 * - if CPL = 3 or X86_EFLAGS_AC is clear
4660 *
4661 * Here, we cover the first three conditions.
4662 * The fourth is computed dynamically in permission_fault();
4663 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4664 * *not* subject to SMAP restrictions.
4665 */
4666 if (cr4_smap)
4667 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4668 }
4669
4670 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4671 }
4672 }
4673
4674 /*
4675 * PKU is an additional mechanism by which the paging controls access to
4676 * user-mode addresses based on the value in the PKRU register. Protection
4677 * key violations are reported through a bit in the page fault error code.
4678 * Unlike other bits of the error code, the PK bit is not known at the
4679 * call site of e.g. gva_to_gpa; it must be computed directly in
4680 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4681 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4682 *
4683 * In particular the following conditions come from the error code, the
4684 * page tables and the machine state:
4685 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4686 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4687 * - PK is always zero if U=0 in the page tables
4688 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4689 *
4690 * The PKRU bitmask caches the result of these four conditions. The error
4691 * code (minus the P bit) and the page table's U bit form an index into the
4692 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4693 * with the two bits of the PKRU register corresponding to the protection key.
4694 * For the first three conditions above the bits will be 00, thus masking
4695 * away both AD and WD. For all reads or if the last condition holds, WD
4696 * only will be masked away.
4697 */
4698 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4699 bool ept)
4700 {
4701 unsigned bit;
4702 bool wp;
4703
4704 if (ept) {
4705 mmu->pkru_mask = 0;
4706 return;
4707 }
4708
4709 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4710 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4711 mmu->pkru_mask = 0;
4712 return;
4713 }
4714
4715 wp = is_write_protection(vcpu);
4716
4717 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4718 unsigned pfec, pkey_bits;
4719 bool check_pkey, check_write, ff, uf, wf, pte_user;
4720
4721 pfec = bit << 1;
4722 ff = pfec & PFERR_FETCH_MASK;
4723 uf = pfec & PFERR_USER_MASK;
4724 wf = pfec & PFERR_WRITE_MASK;
4725
4726 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4727 pte_user = pfec & PFERR_RSVD_MASK;
4728
4729 /*
4730 * Only need to check the access which is not an
4731 * instruction fetch and is to a user page.
4732 */
4733 check_pkey = (!ff && pte_user);
4734 /*
4735 * write access is controlled by PKRU if it is a
4736 * user access or CR0.WP = 1.
4737 */
4738 check_write = check_pkey && wf && (uf || wp);
4739
4740 /* PKRU.AD stops both read and write access. */
4741 pkey_bits = !!check_pkey;
4742 /* PKRU.WD stops write access. */
4743 pkey_bits |= (!!check_write) << 1;
4744
4745 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4746 }
4747 }
4748
4749 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4750 {
4751 unsigned root_level = mmu->root_level;
4752
4753 mmu->last_nonleaf_level = root_level;
4754 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4755 mmu->last_nonleaf_level++;
4756 }
4757
4758 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4759 struct kvm_mmu *context,
4760 int level)
4761 {
4762 context->nx = is_nx(vcpu);
4763 context->root_level = level;
4764
4765 reset_rsvds_bits_mask(vcpu, context);
4766 update_permission_bitmask(vcpu, context, false);
4767 update_pkru_bitmask(vcpu, context, false);
4768 update_last_nonleaf_level(vcpu, context);
4769
4770 MMU_WARN_ON(!is_pae(vcpu));
4771 context->page_fault = paging64_page_fault;
4772 context->gva_to_gpa = paging64_gva_to_gpa;
4773 context->sync_page = paging64_sync_page;
4774 context->invlpg = paging64_invlpg;
4775 context->update_pte = paging64_update_pte;
4776 context->shadow_root_level = level;
4777 context->direct_map = false;
4778 }
4779
4780 static void paging64_init_context(struct kvm_vcpu *vcpu,
4781 struct kvm_mmu *context)
4782 {
4783 int root_level = is_la57_mode(vcpu) ?
4784 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4785
4786 paging64_init_context_common(vcpu, context, root_level);
4787 }
4788
4789 static void paging32_init_context(struct kvm_vcpu *vcpu,
4790 struct kvm_mmu *context)
4791 {
4792 context->nx = false;
4793 context->root_level = PT32_ROOT_LEVEL;
4794
4795 reset_rsvds_bits_mask(vcpu, context);
4796 update_permission_bitmask(vcpu, context, false);
4797 update_pkru_bitmask(vcpu, context, false);
4798 update_last_nonleaf_level(vcpu, context);
4799
4800 context->page_fault = paging32_page_fault;
4801 context->gva_to_gpa = paging32_gva_to_gpa;
4802 context->sync_page = paging32_sync_page;
4803 context->invlpg = paging32_invlpg;
4804 context->update_pte = paging32_update_pte;
4805 context->shadow_root_level = PT32E_ROOT_LEVEL;
4806 context->direct_map = false;
4807 }
4808
4809 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4810 struct kvm_mmu *context)
4811 {
4812 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4813 }
4814
4815 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4816 {
4817 union kvm_mmu_extended_role ext = {0};
4818
4819 ext.cr0_pg = !!is_paging(vcpu);
4820 ext.cr4_pae = !!is_pae(vcpu);
4821 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4822 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4823 ext.cr4_pse = !!is_pse(vcpu);
4824 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4825 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4826
4827 ext.valid = 1;
4828
4829 return ext;
4830 }
4831
4832 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4833 bool base_only)
4834 {
4835 union kvm_mmu_role role = {0};
4836
4837 role.base.access = ACC_ALL;
4838 role.base.nxe = !!is_nx(vcpu);
4839 role.base.cr0_wp = is_write_protection(vcpu);
4840 role.base.smm = is_smm(vcpu);
4841 role.base.guest_mode = is_guest_mode(vcpu);
4842
4843 if (base_only)
4844 return role;
4845
4846 role.ext = kvm_calc_mmu_role_ext(vcpu);
4847
4848 return role;
4849 }
4850
4851 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4852 {
4853 /* Use 5-level TDP if and only if it's useful/necessary. */
4854 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4855 return 4;
4856
4857 return max_tdp_level;
4858 }
4859
4860 static union kvm_mmu_role
4861 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4862 {
4863 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4864
4865 role.base.ad_disabled = (shadow_accessed_mask == 0);
4866 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4867 role.base.direct = true;
4868 role.base.gpte_is_8_bytes = true;
4869
4870 return role;
4871 }
4872
4873 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4874 {
4875 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4876 union kvm_mmu_role new_role =
4877 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4878
4879 if (new_role.as_u64 == context->mmu_role.as_u64)
4880 return;
4881
4882 context->mmu_role.as_u64 = new_role.as_u64;
4883 context->page_fault = kvm_tdp_page_fault;
4884 context->sync_page = nonpaging_sync_page;
4885 context->invlpg = NULL;
4886 context->update_pte = nonpaging_update_pte;
4887 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4888 context->direct_map = true;
4889 context->get_guest_pgd = get_cr3;
4890 context->get_pdptr = kvm_pdptr_read;
4891 context->inject_page_fault = kvm_inject_page_fault;
4892
4893 if (!is_paging(vcpu)) {
4894 context->nx = false;
4895 context->gva_to_gpa = nonpaging_gva_to_gpa;
4896 context->root_level = 0;
4897 } else if (is_long_mode(vcpu)) {
4898 context->nx = is_nx(vcpu);
4899 context->root_level = is_la57_mode(vcpu) ?
4900 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4901 reset_rsvds_bits_mask(vcpu, context);
4902 context->gva_to_gpa = paging64_gva_to_gpa;
4903 } else if (is_pae(vcpu)) {
4904 context->nx = is_nx(vcpu);
4905 context->root_level = PT32E_ROOT_LEVEL;
4906 reset_rsvds_bits_mask(vcpu, context);
4907 context->gva_to_gpa = paging64_gva_to_gpa;
4908 } else {
4909 context->nx = false;
4910 context->root_level = PT32_ROOT_LEVEL;
4911 reset_rsvds_bits_mask(vcpu, context);
4912 context->gva_to_gpa = paging32_gva_to_gpa;
4913 }
4914
4915 update_permission_bitmask(vcpu, context, false);
4916 update_pkru_bitmask(vcpu, context, false);
4917 update_last_nonleaf_level(vcpu, context);
4918 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4919 }
4920
4921 static union kvm_mmu_role
4922 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4923 {
4924 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4925
4926 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4927 !is_write_protection(vcpu);
4928 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4929 !is_write_protection(vcpu);
4930 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4931
4932 return role;
4933 }
4934
4935 static union kvm_mmu_role
4936 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4937 {
4938 union kvm_mmu_role role =
4939 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4940
4941 role.base.direct = !is_paging(vcpu);
4942
4943 if (!is_long_mode(vcpu))
4944 role.base.level = PT32E_ROOT_LEVEL;
4945 else if (is_la57_mode(vcpu))
4946 role.base.level = PT64_ROOT_5LEVEL;
4947 else
4948 role.base.level = PT64_ROOT_4LEVEL;
4949
4950 return role;
4951 }
4952
4953 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4954 u32 cr0, u32 cr4, u32 efer,
4955 union kvm_mmu_role new_role)
4956 {
4957 if (!(cr0 & X86_CR0_PG))
4958 nonpaging_init_context(vcpu, context);
4959 else if (efer & EFER_LMA)
4960 paging64_init_context(vcpu, context);
4961 else if (cr4 & X86_CR4_PAE)
4962 paging32E_init_context(vcpu, context);
4963 else
4964 paging32_init_context(vcpu, context);
4965
4966 context->mmu_role.as_u64 = new_role.as_u64;
4967 reset_shadow_zero_bits_mask(vcpu, context);
4968 }
4969
4970 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4971 {
4972 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4973 union kvm_mmu_role new_role =
4974 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4975
4976 if (new_role.as_u64 != context->mmu_role.as_u64)
4977 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4978 }
4979
4980 static union kvm_mmu_role
4981 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4982 {
4983 union kvm_mmu_role role =
4984 kvm_calc_shadow_root_page_role_common(vcpu, false);
4985
4986 role.base.direct = false;
4987 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4988
4989 return role;
4990 }
4991
4992 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4993 gpa_t nested_cr3)
4994 {
4995 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4996 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4997
4998 context->shadow_root_level = new_role.base.level;
4999
5000 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
5001
5002 if (new_role.as_u64 != context->mmu_role.as_u64)
5003 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
5004 }
5005 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5006
5007 static union kvm_mmu_role
5008 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5009 bool execonly, u8 level)
5010 {
5011 union kvm_mmu_role role = {0};
5012
5013 /* SMM flag is inherited from root_mmu */
5014 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5015
5016 role.base.level = level;
5017 role.base.gpte_is_8_bytes = true;
5018 role.base.direct = false;
5019 role.base.ad_disabled = !accessed_dirty;
5020 role.base.guest_mode = true;
5021 role.base.access = ACC_ALL;
5022
5023 /*
5024 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5025 * SMAP variation to denote shadow EPT entries.
5026 */
5027 role.base.cr0_wp = true;
5028 role.base.smap_andnot_wp = true;
5029
5030 role.ext = kvm_calc_mmu_role_ext(vcpu);
5031 role.ext.execonly = execonly;
5032
5033 return role;
5034 }
5035
5036 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5037 bool accessed_dirty, gpa_t new_eptp)
5038 {
5039 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5040 u8 level = vmx_eptp_page_walk_level(new_eptp);
5041 union kvm_mmu_role new_role =
5042 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5043 execonly, level);
5044
5045 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5046
5047 if (new_role.as_u64 == context->mmu_role.as_u64)
5048 return;
5049
5050 context->shadow_root_level = level;
5051
5052 context->nx = true;
5053 context->ept_ad = accessed_dirty;
5054 context->page_fault = ept_page_fault;
5055 context->gva_to_gpa = ept_gva_to_gpa;
5056 context->sync_page = ept_sync_page;
5057 context->invlpg = ept_invlpg;
5058 context->update_pte = ept_update_pte;
5059 context->root_level = level;
5060 context->direct_map = false;
5061 context->mmu_role.as_u64 = new_role.as_u64;
5062
5063 update_permission_bitmask(vcpu, context, true);
5064 update_pkru_bitmask(vcpu, context, true);
5065 update_last_nonleaf_level(vcpu, context);
5066 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5067 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5068 }
5069 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5070
5071 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5072 {
5073 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5074
5075 kvm_init_shadow_mmu(vcpu,
5076 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5077 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5078 vcpu->arch.efer);
5079
5080 context->get_guest_pgd = get_cr3;
5081 context->get_pdptr = kvm_pdptr_read;
5082 context->inject_page_fault = kvm_inject_page_fault;
5083 }
5084
5085 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5086 {
5087 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5088 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5089
5090 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5091 return;
5092
5093 g_context->mmu_role.as_u64 = new_role.as_u64;
5094 g_context->get_guest_pgd = get_cr3;
5095 g_context->get_pdptr = kvm_pdptr_read;
5096 g_context->inject_page_fault = kvm_inject_page_fault;
5097
5098 /*
5099 * L2 page tables are never shadowed, so there is no need to sync
5100 * SPTEs.
5101 */
5102 g_context->invlpg = NULL;
5103
5104 /*
5105 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5106 * L1's nested page tables (e.g. EPT12). The nested translation
5107 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5108 * L2's page tables as the first level of translation and L1's
5109 * nested page tables as the second level of translation. Basically
5110 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5111 */
5112 if (!is_paging(vcpu)) {
5113 g_context->nx = false;
5114 g_context->root_level = 0;
5115 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5116 } else if (is_long_mode(vcpu)) {
5117 g_context->nx = is_nx(vcpu);
5118 g_context->root_level = is_la57_mode(vcpu) ?
5119 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5120 reset_rsvds_bits_mask(vcpu, g_context);
5121 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5122 } else if (is_pae(vcpu)) {
5123 g_context->nx = is_nx(vcpu);
5124 g_context->root_level = PT32E_ROOT_LEVEL;
5125 reset_rsvds_bits_mask(vcpu, g_context);
5126 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5127 } else {
5128 g_context->nx = false;
5129 g_context->root_level = PT32_ROOT_LEVEL;
5130 reset_rsvds_bits_mask(vcpu, g_context);
5131 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5132 }
5133
5134 update_permission_bitmask(vcpu, g_context, false);
5135 update_pkru_bitmask(vcpu, g_context, false);
5136 update_last_nonleaf_level(vcpu, g_context);
5137 }
5138
5139 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5140 {
5141 if (reset_roots) {
5142 uint i;
5143
5144 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5145
5146 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5147 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5148 }
5149
5150 if (mmu_is_nested(vcpu))
5151 init_kvm_nested_mmu(vcpu);
5152 else if (tdp_enabled)
5153 init_kvm_tdp_mmu(vcpu);
5154 else
5155 init_kvm_softmmu(vcpu);
5156 }
5157 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5158
5159 static union kvm_mmu_page_role
5160 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5161 {
5162 union kvm_mmu_role role;
5163
5164 if (tdp_enabled)
5165 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5166 else
5167 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5168
5169 return role.base;
5170 }
5171
5172 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5173 {
5174 kvm_mmu_unload(vcpu);
5175 kvm_init_mmu(vcpu, true);
5176 }
5177 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5178
5179 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5180 {
5181 int r;
5182
5183 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5184 if (r)
5185 goto out;
5186 r = mmu_alloc_roots(vcpu);
5187 kvm_mmu_sync_roots(vcpu);
5188 if (r)
5189 goto out;
5190 kvm_mmu_load_pgd(vcpu);
5191 kvm_x86_ops.tlb_flush_current(vcpu);
5192 out:
5193 return r;
5194 }
5195 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5196
5197 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5198 {
5199 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5200 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5201 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5202 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5203 }
5204 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5205
5206 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5207 struct kvm_mmu_page *sp, u64 *spte,
5208 const void *new)
5209 {
5210 if (sp->role.level != PG_LEVEL_4K) {
5211 ++vcpu->kvm->stat.mmu_pde_zapped;
5212 return;
5213 }
5214
5215 ++vcpu->kvm->stat.mmu_pte_updated;
5216 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5217 }
5218
5219 static bool need_remote_flush(u64 old, u64 new)
5220 {
5221 if (!is_shadow_present_pte(old))
5222 return false;
5223 if (!is_shadow_present_pte(new))
5224 return true;
5225 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5226 return true;
5227 old ^= shadow_nx_mask;
5228 new ^= shadow_nx_mask;
5229 return (old & ~new & PT64_PERM_MASK) != 0;
5230 }
5231
5232 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5233 int *bytes)
5234 {
5235 u64 gentry = 0;
5236 int r;
5237
5238 /*
5239 * Assume that the pte write on a page table of the same type
5240 * as the current vcpu paging mode since we update the sptes only
5241 * when they have the same mode.
5242 */
5243 if (is_pae(vcpu) && *bytes == 4) {
5244 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5245 *gpa &= ~(gpa_t)7;
5246 *bytes = 8;
5247 }
5248
5249 if (*bytes == 4 || *bytes == 8) {
5250 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5251 if (r)
5252 gentry = 0;
5253 }
5254
5255 return gentry;
5256 }
5257
5258 /*
5259 * If we're seeing too many writes to a page, it may no longer be a page table,
5260 * or we may be forking, in which case it is better to unmap the page.
5261 */
5262 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5263 {
5264 /*
5265 * Skip write-flooding detected for the sp whose level is 1, because
5266 * it can become unsync, then the guest page is not write-protected.
5267 */
5268 if (sp->role.level == PG_LEVEL_4K)
5269 return false;
5270
5271 atomic_inc(&sp->write_flooding_count);
5272 return atomic_read(&sp->write_flooding_count) >= 3;
5273 }
5274
5275 /*
5276 * Misaligned accesses are too much trouble to fix up; also, they usually
5277 * indicate a page is not used as a page table.
5278 */
5279 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5280 int bytes)
5281 {
5282 unsigned offset, pte_size, misaligned;
5283
5284 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5285 gpa, bytes, sp->role.word);
5286
5287 offset = offset_in_page(gpa);
5288 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5289
5290 /*
5291 * Sometimes, the OS only writes the last one bytes to update status
5292 * bits, for example, in linux, andb instruction is used in clear_bit().
5293 */
5294 if (!(offset & (pte_size - 1)) && bytes == 1)
5295 return false;
5296
5297 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5298 misaligned |= bytes < 4;
5299
5300 return misaligned;
5301 }
5302
5303 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5304 {
5305 unsigned page_offset, quadrant;
5306 u64 *spte;
5307 int level;
5308
5309 page_offset = offset_in_page(gpa);
5310 level = sp->role.level;
5311 *nspte = 1;
5312 if (!sp->role.gpte_is_8_bytes) {
5313 page_offset <<= 1; /* 32->64 */
5314 /*
5315 * A 32-bit pde maps 4MB while the shadow pdes map
5316 * only 2MB. So we need to double the offset again
5317 * and zap two pdes instead of one.
5318 */
5319 if (level == PT32_ROOT_LEVEL) {
5320 page_offset &= ~7; /* kill rounding error */
5321 page_offset <<= 1;
5322 *nspte = 2;
5323 }
5324 quadrant = page_offset >> PAGE_SHIFT;
5325 page_offset &= ~PAGE_MASK;
5326 if (quadrant != sp->role.quadrant)
5327 return NULL;
5328 }
5329
5330 spte = &sp->spt[page_offset / sizeof(*spte)];
5331 return spte;
5332 }
5333
5334 /*
5335 * Ignore various flags when determining if a SPTE can be immediately
5336 * overwritten for the current MMU.
5337 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5338 * match the current MMU role, as MMU's level tracks the root level.
5339 * - access: updated based on the new guest PTE
5340 * - quadrant: handled by get_written_sptes()
5341 * - invalid: always false (loop only walks valid shadow pages)
5342 */
5343 static const union kvm_mmu_page_role role_ign = {
5344 .level = 0xf,
5345 .access = 0x7,
5346 .quadrant = 0x3,
5347 .invalid = 0x1,
5348 };
5349
5350 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5351 const u8 *new, int bytes,
5352 struct kvm_page_track_notifier_node *node)
5353 {
5354 gfn_t gfn = gpa >> PAGE_SHIFT;
5355 struct kvm_mmu_page *sp;
5356 LIST_HEAD(invalid_list);
5357 u64 entry, gentry, *spte;
5358 int npte;
5359 bool remote_flush, local_flush;
5360
5361 /*
5362 * If we don't have indirect shadow pages, it means no page is
5363 * write-protected, so we can exit simply.
5364 */
5365 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5366 return;
5367
5368 remote_flush = local_flush = false;
5369
5370 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5371
5372 /*
5373 * No need to care whether allocation memory is successful
5374 * or not since pte prefetch is skiped if it does not have
5375 * enough objects in the cache.
5376 */
5377 mmu_topup_memory_caches(vcpu, true);
5378
5379 spin_lock(&vcpu->kvm->mmu_lock);
5380
5381 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5382
5383 ++vcpu->kvm->stat.mmu_pte_write;
5384 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5385
5386 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5387 if (detect_write_misaligned(sp, gpa, bytes) ||
5388 detect_write_flooding(sp)) {
5389 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5390 ++vcpu->kvm->stat.mmu_flooded;
5391 continue;
5392 }
5393
5394 spte = get_written_sptes(sp, gpa, &npte);
5395 if (!spte)
5396 continue;
5397
5398 local_flush = true;
5399 while (npte--) {
5400 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5401
5402 entry = *spte;
5403 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5404 if (gentry &&
5405 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5406 rmap_can_add(vcpu))
5407 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5408 if (need_remote_flush(entry, *spte))
5409 remote_flush = true;
5410 ++spte;
5411 }
5412 }
5413 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5414 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5415 spin_unlock(&vcpu->kvm->mmu_lock);
5416 }
5417
5418 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5419 {
5420 gpa_t gpa;
5421 int r;
5422
5423 if (vcpu->arch.mmu->direct_map)
5424 return 0;
5425
5426 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5427
5428 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5429
5430 return r;
5431 }
5432 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5433
5434 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5435 void *insn, int insn_len)
5436 {
5437 int r, emulation_type = EMULTYPE_PF;
5438 bool direct = vcpu->arch.mmu->direct_map;
5439
5440 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5441 return RET_PF_RETRY;
5442
5443 r = RET_PF_INVALID;
5444 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5445 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5446 if (r == RET_PF_EMULATE)
5447 goto emulate;
5448 }
5449
5450 if (r == RET_PF_INVALID) {
5451 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5452 lower_32_bits(error_code), false);
5453 WARN_ON(r == RET_PF_INVALID);
5454 }
5455
5456 if (r == RET_PF_RETRY)
5457 return 1;
5458 if (r < 0)
5459 return r;
5460
5461 /*
5462 * Before emulating the instruction, check if the error code
5463 * was due to a RO violation while translating the guest page.
5464 * This can occur when using nested virtualization with nested
5465 * paging in both guests. If true, we simply unprotect the page
5466 * and resume the guest.
5467 */
5468 if (vcpu->arch.mmu->direct_map &&
5469 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5470 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5471 return 1;
5472 }
5473
5474 /*
5475 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5476 * optimistically try to just unprotect the page and let the processor
5477 * re-execute the instruction that caused the page fault. Do not allow
5478 * retrying MMIO emulation, as it's not only pointless but could also
5479 * cause us to enter an infinite loop because the processor will keep
5480 * faulting on the non-existent MMIO address. Retrying an instruction
5481 * from a nested guest is also pointless and dangerous as we are only
5482 * explicitly shadowing L1's page tables, i.e. unprotecting something
5483 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5484 */
5485 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5486 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5487 emulate:
5488 /*
5489 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5490 * This can happen if a guest gets a page-fault on data access but the HW
5491 * table walker is not able to read the instruction page (e.g instruction
5492 * page is not present in memory). In those cases we simply restart the
5493 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5494 */
5495 if (unlikely(insn && !insn_len)) {
5496 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5497 return 1;
5498 }
5499
5500 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5501 insn_len);
5502 }
5503 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5504
5505 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5506 gva_t gva, hpa_t root_hpa)
5507 {
5508 int i;
5509
5510 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5511 if (mmu != &vcpu->arch.guest_mmu) {
5512 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5513 if (is_noncanonical_address(gva, vcpu))
5514 return;
5515
5516 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5517 }
5518
5519 if (!mmu->invlpg)
5520 return;
5521
5522 if (root_hpa == INVALID_PAGE) {
5523 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5524
5525 /*
5526 * INVLPG is required to invalidate any global mappings for the VA,
5527 * irrespective of PCID. Since it would take us roughly similar amount
5528 * of work to determine whether any of the prev_root mappings of the VA
5529 * is marked global, or to just sync it blindly, so we might as well
5530 * just always sync it.
5531 *
5532 * Mappings not reachable via the current cr3 or the prev_roots will be
5533 * synced when switching to that cr3, so nothing needs to be done here
5534 * for them.
5535 */
5536 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5537 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5538 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5539 } else {
5540 mmu->invlpg(vcpu, gva, root_hpa);
5541 }
5542 }
5543 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5544
5545 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5546 {
5547 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5548 ++vcpu->stat.invlpg;
5549 }
5550 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5551
5552
5553 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5554 {
5555 struct kvm_mmu *mmu = vcpu->arch.mmu;
5556 bool tlb_flush = false;
5557 uint i;
5558
5559 if (pcid == kvm_get_active_pcid(vcpu)) {
5560 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5561 tlb_flush = true;
5562 }
5563
5564 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5565 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5566 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5567 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5568 tlb_flush = true;
5569 }
5570 }
5571
5572 if (tlb_flush)
5573 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5574
5575 ++vcpu->stat.invlpg;
5576
5577 /*
5578 * Mappings not reachable via the current cr3 or the prev_roots will be
5579 * synced when switching to that cr3, so nothing needs to be done here
5580 * for them.
5581 */
5582 }
5583 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5584
5585 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5586 int tdp_huge_page_level)
5587 {
5588 tdp_enabled = enable_tdp;
5589 max_tdp_level = tdp_max_root_level;
5590
5591 /*
5592 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5593 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5594 * the kernel is not. But, KVM never creates a page size greater than
5595 * what is used by the kernel for any given HVA, i.e. the kernel's
5596 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5597 */
5598 if (tdp_enabled)
5599 max_huge_page_level = tdp_huge_page_level;
5600 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5601 max_huge_page_level = PG_LEVEL_1G;
5602 else
5603 max_huge_page_level = PG_LEVEL_2M;
5604 }
5605 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5606
5607 /* The return value indicates if tlb flush on all vcpus is needed. */
5608 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5609
5610 /* The caller should hold mmu-lock before calling this function. */
5611 static __always_inline bool
5612 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5613 slot_level_handler fn, int start_level, int end_level,
5614 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5615 {
5616 struct slot_rmap_walk_iterator iterator;
5617 bool flush = false;
5618
5619 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5620 end_gfn, &iterator) {
5621 if (iterator.rmap)
5622 flush |= fn(kvm, iterator.rmap);
5623
5624 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5625 if (flush && lock_flush_tlb) {
5626 kvm_flush_remote_tlbs_with_address(kvm,
5627 start_gfn,
5628 iterator.gfn - start_gfn + 1);
5629 flush = false;
5630 }
5631 cond_resched_lock(&kvm->mmu_lock);
5632 }
5633 }
5634
5635 if (flush && lock_flush_tlb) {
5636 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5637 end_gfn - start_gfn + 1);
5638 flush = false;
5639 }
5640
5641 return flush;
5642 }
5643
5644 static __always_inline bool
5645 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5646 slot_level_handler fn, int start_level, int end_level,
5647 bool lock_flush_tlb)
5648 {
5649 return slot_handle_level_range(kvm, memslot, fn, start_level,
5650 end_level, memslot->base_gfn,
5651 memslot->base_gfn + memslot->npages - 1,
5652 lock_flush_tlb);
5653 }
5654
5655 static __always_inline bool
5656 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5657 slot_level_handler fn, bool lock_flush_tlb)
5658 {
5659 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5660 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5661 }
5662
5663 static __always_inline bool
5664 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5665 slot_level_handler fn, bool lock_flush_tlb)
5666 {
5667 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5668 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5669 }
5670
5671 static __always_inline bool
5672 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5673 slot_level_handler fn, bool lock_flush_tlb)
5674 {
5675 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5676 PG_LEVEL_4K, lock_flush_tlb);
5677 }
5678
5679 static void free_mmu_pages(struct kvm_mmu *mmu)
5680 {
5681 free_page((unsigned long)mmu->pae_root);
5682 free_page((unsigned long)mmu->lm_root);
5683 }
5684
5685 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5686 {
5687 struct page *page;
5688 int i;
5689
5690 /*
5691 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5692 * while the PDP table is a per-vCPU construct that's allocated at MMU
5693 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5694 * x86_64. Therefore we need to allocate the PDP table in the first
5695 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5696 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5697 * skip allocating the PDP table.
5698 */
5699 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5700 return 0;
5701
5702 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5703 if (!page)
5704 return -ENOMEM;
5705
5706 mmu->pae_root = page_address(page);
5707 for (i = 0; i < 4; ++i)
5708 mmu->pae_root[i] = INVALID_PAGE;
5709
5710 return 0;
5711 }
5712
5713 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5714 {
5715 uint i;
5716 int ret;
5717
5718 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5719 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5720
5721 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5722 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5723
5724 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5725
5726 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5727 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5728
5729 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5730 vcpu->arch.root_mmu.root_pgd = 0;
5731 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5732 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5733 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5734
5735 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5736 vcpu->arch.guest_mmu.root_pgd = 0;
5737 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5738 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5739 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5740
5741 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5742
5743 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5744 if (ret)
5745 return ret;
5746
5747 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5748 if (ret)
5749 goto fail_allocate_root;
5750
5751 return ret;
5752 fail_allocate_root:
5753 free_mmu_pages(&vcpu->arch.guest_mmu);
5754 return ret;
5755 }
5756
5757 #define BATCH_ZAP_PAGES 10
5758 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5759 {
5760 struct kvm_mmu_page *sp, *node;
5761 int nr_zapped, batch = 0;
5762
5763 restart:
5764 list_for_each_entry_safe_reverse(sp, node,
5765 &kvm->arch.active_mmu_pages, link) {
5766 /*
5767 * No obsolete valid page exists before a newly created page
5768 * since active_mmu_pages is a FIFO list.
5769 */
5770 if (!is_obsolete_sp(kvm, sp))
5771 break;
5772
5773 /*
5774 * Invalid pages should never land back on the list of active
5775 * pages. Skip the bogus page, otherwise we'll get stuck in an
5776 * infinite loop if the page gets put back on the list (again).
5777 */
5778 if (WARN_ON(sp->role.invalid))
5779 continue;
5780
5781 /*
5782 * No need to flush the TLB since we're only zapping shadow
5783 * pages with an obsolete generation number and all vCPUS have
5784 * loaded a new root, i.e. the shadow pages being zapped cannot
5785 * be in active use by the guest.
5786 */
5787 if (batch >= BATCH_ZAP_PAGES &&
5788 cond_resched_lock(&kvm->mmu_lock)) {
5789 batch = 0;
5790 goto restart;
5791 }
5792
5793 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5794 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5795 batch += nr_zapped;
5796 goto restart;
5797 }
5798 }
5799
5800 /*
5801 * Trigger a remote TLB flush before freeing the page tables to ensure
5802 * KVM is not in the middle of a lockless shadow page table walk, which
5803 * may reference the pages.
5804 */
5805 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5806 }
5807
5808 /*
5809 * Fast invalidate all shadow pages and use lock-break technique
5810 * to zap obsolete pages.
5811 *
5812 * It's required when memslot is being deleted or VM is being
5813 * destroyed, in these cases, we should ensure that KVM MMU does
5814 * not use any resource of the being-deleted slot or all slots
5815 * after calling the function.
5816 */
5817 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5818 {
5819 lockdep_assert_held(&kvm->slots_lock);
5820
5821 spin_lock(&kvm->mmu_lock);
5822 trace_kvm_mmu_zap_all_fast(kvm);
5823
5824 /*
5825 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5826 * held for the entire duration of zapping obsolete pages, it's
5827 * impossible for there to be multiple invalid generations associated
5828 * with *valid* shadow pages at any given time, i.e. there is exactly
5829 * one valid generation and (at most) one invalid generation.
5830 */
5831 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5832
5833 /*
5834 * Notify all vcpus to reload its shadow page table and flush TLB.
5835 * Then all vcpus will switch to new shadow page table with the new
5836 * mmu_valid_gen.
5837 *
5838 * Note: we need to do this under the protection of mmu_lock,
5839 * otherwise, vcpu would purge shadow page but miss tlb flush.
5840 */
5841 kvm_reload_remote_mmus(kvm);
5842
5843 kvm_zap_obsolete_pages(kvm);
5844 spin_unlock(&kvm->mmu_lock);
5845 }
5846
5847 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5848 {
5849 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5850 }
5851
5852 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5853 struct kvm_memory_slot *slot,
5854 struct kvm_page_track_notifier_node *node)
5855 {
5856 kvm_mmu_zap_all_fast(kvm);
5857 }
5858
5859 void kvm_mmu_init_vm(struct kvm *kvm)
5860 {
5861 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5862
5863 node->track_write = kvm_mmu_pte_write;
5864 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5865 kvm_page_track_register_notifier(kvm, node);
5866 }
5867
5868 void kvm_mmu_uninit_vm(struct kvm *kvm)
5869 {
5870 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5871
5872 kvm_page_track_unregister_notifier(kvm, node);
5873 }
5874
5875 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5876 {
5877 struct kvm_memslots *slots;
5878 struct kvm_memory_slot *memslot;
5879 int i;
5880
5881 spin_lock(&kvm->mmu_lock);
5882 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5883 slots = __kvm_memslots(kvm, i);
5884 kvm_for_each_memslot(memslot, slots) {
5885 gfn_t start, end;
5886
5887 start = max(gfn_start, memslot->base_gfn);
5888 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5889 if (start >= end)
5890 continue;
5891
5892 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5893 PG_LEVEL_4K,
5894 KVM_MAX_HUGEPAGE_LEVEL,
5895 start, end - 1, true);
5896 }
5897 }
5898
5899 spin_unlock(&kvm->mmu_lock);
5900 }
5901
5902 static bool slot_rmap_write_protect(struct kvm *kvm,
5903 struct kvm_rmap_head *rmap_head)
5904 {
5905 return __rmap_write_protect(kvm, rmap_head, false);
5906 }
5907
5908 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5909 struct kvm_memory_slot *memslot,
5910 int start_level)
5911 {
5912 bool flush;
5913
5914 spin_lock(&kvm->mmu_lock);
5915 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5916 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5917 spin_unlock(&kvm->mmu_lock);
5918
5919 /*
5920 * We can flush all the TLBs out of the mmu lock without TLB
5921 * corruption since we just change the spte from writable to
5922 * readonly so that we only need to care the case of changing
5923 * spte from present to present (changing the spte from present
5924 * to nonpresent will flush all the TLBs immediately), in other
5925 * words, the only case we care is mmu_spte_update() where we
5926 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5927 * instead of PT_WRITABLE_MASK, that means it does not depend
5928 * on PT_WRITABLE_MASK anymore.
5929 */
5930 if (flush)
5931 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5932 }
5933
5934 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5935 struct kvm_rmap_head *rmap_head)
5936 {
5937 u64 *sptep;
5938 struct rmap_iterator iter;
5939 int need_tlb_flush = 0;
5940 kvm_pfn_t pfn;
5941 struct kvm_mmu_page *sp;
5942
5943 restart:
5944 for_each_rmap_spte(rmap_head, &iter, sptep) {
5945 sp = sptep_to_sp(sptep);
5946 pfn = spte_to_pfn(*sptep);
5947
5948 /*
5949 * We cannot do huge page mapping for indirect shadow pages,
5950 * which are found on the last rmap (level = 1) when not using
5951 * tdp; such shadow pages are synced with the page table in
5952 * the guest, and the guest page table is using 4K page size
5953 * mapping if the indirect sp has level = 1.
5954 */
5955 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5956 (kvm_is_zone_device_pfn(pfn) ||
5957 PageCompound(pfn_to_page(pfn)))) {
5958 pte_list_remove(rmap_head, sptep);
5959
5960 if (kvm_available_flush_tlb_with_range())
5961 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5962 KVM_PAGES_PER_HPAGE(sp->role.level));
5963 else
5964 need_tlb_flush = 1;
5965
5966 goto restart;
5967 }
5968 }
5969
5970 return need_tlb_flush;
5971 }
5972
5973 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5974 const struct kvm_memory_slot *memslot)
5975 {
5976 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5977 spin_lock(&kvm->mmu_lock);
5978 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5979 kvm_mmu_zap_collapsible_spte, true);
5980 spin_unlock(&kvm->mmu_lock);
5981 }
5982
5983 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5984 struct kvm_memory_slot *memslot)
5985 {
5986 /*
5987 * All current use cases for flushing the TLBs for a specific memslot
5988 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5989 * The interaction between the various operations on memslot must be
5990 * serialized by slots_locks to ensure the TLB flush from one operation
5991 * is observed by any other operation on the same memslot.
5992 */
5993 lockdep_assert_held(&kvm->slots_lock);
5994 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5995 memslot->npages);
5996 }
5997
5998 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5999 struct kvm_memory_slot *memslot)
6000 {
6001 bool flush;
6002
6003 spin_lock(&kvm->mmu_lock);
6004 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6005 spin_unlock(&kvm->mmu_lock);
6006
6007 /*
6008 * It's also safe to flush TLBs out of mmu lock here as currently this
6009 * function is only used for dirty logging, in which case flushing TLB
6010 * out of mmu lock also guarantees no dirty pages will be lost in
6011 * dirty_bitmap.
6012 */
6013 if (flush)
6014 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6015 }
6016 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6017
6018 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6019 struct kvm_memory_slot *memslot)
6020 {
6021 bool flush;
6022
6023 spin_lock(&kvm->mmu_lock);
6024 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6025 false);
6026 spin_unlock(&kvm->mmu_lock);
6027
6028 if (flush)
6029 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6030 }
6031 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6032
6033 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6034 struct kvm_memory_slot *memslot)
6035 {
6036 bool flush;
6037
6038 spin_lock(&kvm->mmu_lock);
6039 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6040 spin_unlock(&kvm->mmu_lock);
6041
6042 if (flush)
6043 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6044 }
6045 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6046
6047 void kvm_mmu_zap_all(struct kvm *kvm)
6048 {
6049 struct kvm_mmu_page *sp, *node;
6050 LIST_HEAD(invalid_list);
6051 int ign;
6052
6053 spin_lock(&kvm->mmu_lock);
6054 restart:
6055 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6056 if (WARN_ON(sp->role.invalid))
6057 continue;
6058 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6059 goto restart;
6060 if (cond_resched_lock(&kvm->mmu_lock))
6061 goto restart;
6062 }
6063
6064 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6065 spin_unlock(&kvm->mmu_lock);
6066 }
6067
6068 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6069 {
6070 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6071
6072 gen &= MMIO_SPTE_GEN_MASK;
6073
6074 /*
6075 * Generation numbers are incremented in multiples of the number of
6076 * address spaces in order to provide unique generations across all
6077 * address spaces. Strip what is effectively the address space
6078 * modifier prior to checking for a wrap of the MMIO generation so
6079 * that a wrap in any address space is detected.
6080 */
6081 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6082
6083 /*
6084 * The very rare case: if the MMIO generation number has wrapped,
6085 * zap all shadow pages.
6086 */
6087 if (unlikely(gen == 0)) {
6088 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6089 kvm_mmu_zap_all_fast(kvm);
6090 }
6091 }
6092
6093 static unsigned long
6094 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6095 {
6096 struct kvm *kvm;
6097 int nr_to_scan = sc->nr_to_scan;
6098 unsigned long freed = 0;
6099
6100 mutex_lock(&kvm_lock);
6101
6102 list_for_each_entry(kvm, &vm_list, vm_list) {
6103 int idx;
6104 LIST_HEAD(invalid_list);
6105
6106 /*
6107 * Never scan more than sc->nr_to_scan VM instances.
6108 * Will not hit this condition practically since we do not try
6109 * to shrink more than one VM and it is very unlikely to see
6110 * !n_used_mmu_pages so many times.
6111 */
6112 if (!nr_to_scan--)
6113 break;
6114 /*
6115 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6116 * here. We may skip a VM instance errorneosly, but we do not
6117 * want to shrink a VM that only started to populate its MMU
6118 * anyway.
6119 */
6120 if (!kvm->arch.n_used_mmu_pages &&
6121 !kvm_has_zapped_obsolete_pages(kvm))
6122 continue;
6123
6124 idx = srcu_read_lock(&kvm->srcu);
6125 spin_lock(&kvm->mmu_lock);
6126
6127 if (kvm_has_zapped_obsolete_pages(kvm)) {
6128 kvm_mmu_commit_zap_page(kvm,
6129 &kvm->arch.zapped_obsolete_pages);
6130 goto unlock;
6131 }
6132
6133 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6134
6135 unlock:
6136 spin_unlock(&kvm->mmu_lock);
6137 srcu_read_unlock(&kvm->srcu, idx);
6138
6139 /*
6140 * unfair on small ones
6141 * per-vm shrinkers cry out
6142 * sadness comes quickly
6143 */
6144 list_move_tail(&kvm->vm_list, &vm_list);
6145 break;
6146 }
6147
6148 mutex_unlock(&kvm_lock);
6149 return freed;
6150 }
6151
6152 static unsigned long
6153 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6154 {
6155 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6156 }
6157
6158 static struct shrinker mmu_shrinker = {
6159 .count_objects = mmu_shrink_count,
6160 .scan_objects = mmu_shrink_scan,
6161 .seeks = DEFAULT_SEEKS * 10,
6162 };
6163
6164 static void mmu_destroy_caches(void)
6165 {
6166 kmem_cache_destroy(pte_list_desc_cache);
6167 kmem_cache_destroy(mmu_page_header_cache);
6168 }
6169
6170 static void kvm_set_mmio_spte_mask(void)
6171 {
6172 u64 mask;
6173
6174 /*
6175 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6176 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
6177 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6178 * 52-bit physical addresses then there are no reserved PA bits in the
6179 * PTEs and so the reserved PA approach must be disabled.
6180 */
6181 if (shadow_phys_bits < 52)
6182 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6183 else
6184 mask = 0;
6185
6186 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6187 }
6188
6189 static bool get_nx_auto_mode(void)
6190 {
6191 /* Return true when CPU has the bug, and mitigations are ON */
6192 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6193 }
6194
6195 static void __set_nx_huge_pages(bool val)
6196 {
6197 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6198 }
6199
6200 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6201 {
6202 bool old_val = nx_huge_pages;
6203 bool new_val;
6204
6205 /* In "auto" mode deploy workaround only if CPU has the bug. */
6206 if (sysfs_streq(val, "off"))
6207 new_val = 0;
6208 else if (sysfs_streq(val, "force"))
6209 new_val = 1;
6210 else if (sysfs_streq(val, "auto"))
6211 new_val = get_nx_auto_mode();
6212 else if (strtobool(val, &new_val) < 0)
6213 return -EINVAL;
6214
6215 __set_nx_huge_pages(new_val);
6216
6217 if (new_val != old_val) {
6218 struct kvm *kvm;
6219
6220 mutex_lock(&kvm_lock);
6221
6222 list_for_each_entry(kvm, &vm_list, vm_list) {
6223 mutex_lock(&kvm->slots_lock);
6224 kvm_mmu_zap_all_fast(kvm);
6225 mutex_unlock(&kvm->slots_lock);
6226
6227 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6228 }
6229 mutex_unlock(&kvm_lock);
6230 }
6231
6232 return 0;
6233 }
6234
6235 int kvm_mmu_module_init(void)
6236 {
6237 int ret = -ENOMEM;
6238
6239 if (nx_huge_pages == -1)
6240 __set_nx_huge_pages(get_nx_auto_mode());
6241
6242 /*
6243 * MMU roles use union aliasing which is, generally speaking, an
6244 * undefined behavior. However, we supposedly know how compilers behave
6245 * and the current status quo is unlikely to change. Guardians below are
6246 * supposed to let us know if the assumption becomes false.
6247 */
6248 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6249 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6250 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6251
6252 kvm_mmu_reset_all_pte_masks();
6253
6254 kvm_set_mmio_spte_mask();
6255
6256 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6257 sizeof(struct pte_list_desc),
6258 0, SLAB_ACCOUNT, NULL);
6259 if (!pte_list_desc_cache)
6260 goto out;
6261
6262 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6263 sizeof(struct kvm_mmu_page),
6264 0, SLAB_ACCOUNT, NULL);
6265 if (!mmu_page_header_cache)
6266 goto out;
6267
6268 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6269 goto out;
6270
6271 ret = register_shrinker(&mmu_shrinker);
6272 if (ret)
6273 goto out;
6274
6275 return 0;
6276
6277 out:
6278 mmu_destroy_caches();
6279 return ret;
6280 }
6281
6282 /*
6283 * Calculate mmu pages needed for kvm.
6284 */
6285 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6286 {
6287 unsigned long nr_mmu_pages;
6288 unsigned long nr_pages = 0;
6289 struct kvm_memslots *slots;
6290 struct kvm_memory_slot *memslot;
6291 int i;
6292
6293 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6294 slots = __kvm_memslots(kvm, i);
6295
6296 kvm_for_each_memslot(memslot, slots)
6297 nr_pages += memslot->npages;
6298 }
6299
6300 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6301 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6302
6303 return nr_mmu_pages;
6304 }
6305
6306 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6307 {
6308 kvm_mmu_unload(vcpu);
6309 free_mmu_pages(&vcpu->arch.root_mmu);
6310 free_mmu_pages(&vcpu->arch.guest_mmu);
6311 mmu_free_memory_caches(vcpu);
6312 }
6313
6314 void kvm_mmu_module_exit(void)
6315 {
6316 mmu_destroy_caches();
6317 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6318 unregister_shrinker(&mmu_shrinker);
6319 mmu_audit_disable();
6320 }
6321
6322 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6323 {
6324 unsigned int old_val;
6325 int err;
6326
6327 old_val = nx_huge_pages_recovery_ratio;
6328 err = param_set_uint(val, kp);
6329 if (err)
6330 return err;
6331
6332 if (READ_ONCE(nx_huge_pages) &&
6333 !old_val && nx_huge_pages_recovery_ratio) {
6334 struct kvm *kvm;
6335
6336 mutex_lock(&kvm_lock);
6337
6338 list_for_each_entry(kvm, &vm_list, vm_list)
6339 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6340
6341 mutex_unlock(&kvm_lock);
6342 }
6343
6344 return err;
6345 }
6346
6347 static void kvm_recover_nx_lpages(struct kvm *kvm)
6348 {
6349 int rcu_idx;
6350 struct kvm_mmu_page *sp;
6351 unsigned int ratio;
6352 LIST_HEAD(invalid_list);
6353 ulong to_zap;
6354
6355 rcu_idx = srcu_read_lock(&kvm->srcu);
6356 spin_lock(&kvm->mmu_lock);
6357
6358 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6359 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6360 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6361 /*
6362 * We use a separate list instead of just using active_mmu_pages
6363 * because the number of lpage_disallowed pages is expected to
6364 * be relatively small compared to the total.
6365 */
6366 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6367 struct kvm_mmu_page,
6368 lpage_disallowed_link);
6369 WARN_ON_ONCE(!sp->lpage_disallowed);
6370 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6371 WARN_ON_ONCE(sp->lpage_disallowed);
6372
6373 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6374 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6375 if (to_zap)
6376 cond_resched_lock(&kvm->mmu_lock);
6377 }
6378 }
6379
6380 spin_unlock(&kvm->mmu_lock);
6381 srcu_read_unlock(&kvm->srcu, rcu_idx);
6382 }
6383
6384 static long get_nx_lpage_recovery_timeout(u64 start_time)
6385 {
6386 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6387 ? start_time + 60 * HZ - get_jiffies_64()
6388 : MAX_SCHEDULE_TIMEOUT;
6389 }
6390
6391 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6392 {
6393 u64 start_time;
6394 long remaining_time;
6395
6396 while (true) {
6397 start_time = get_jiffies_64();
6398 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6399
6400 set_current_state(TASK_INTERRUPTIBLE);
6401 while (!kthread_should_stop() && remaining_time > 0) {
6402 schedule_timeout(remaining_time);
6403 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6404 set_current_state(TASK_INTERRUPTIBLE);
6405 }
6406
6407 set_current_state(TASK_RUNNING);
6408
6409 if (kthread_should_stop())
6410 return 0;
6411
6412 kvm_recover_nx_lpages(kvm);
6413 }
6414 }
6415
6416 int kvm_mmu_post_init_vm(struct kvm *kvm)
6417 {
6418 int err;
6419
6420 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6421 "kvm-nx-lpage-recovery",
6422 &kvm->arch.nx_lpage_recovery_thread);
6423 if (!err)
6424 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6425
6426 return err;
6427 }
6428
6429 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6430 {
6431 if (kvm->arch.nx_lpage_recovery_thread)
6432 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6433 }