]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72 .set = set_nx_huge_pages,
73 .get = param_get_bool,
74 };
75
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 .set = set_nx_huge_pages_recovery_ratio,
78 .get = param_get_uint,
79 };
80
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84 &nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89
90 /*
91 * When setting this variable to true it enables Two-Dimensional-Paging
92 * where the hardware walks 2 page tables:
93 * 1. the guest-virtual to guest-physical
94 * 2. while doing 1. it walks guest-physical to host-physical
95 * If the hardware supports that we don't need to do shadow paging.
96 */
97 bool tdp_enabled = false;
98
99 static int max_huge_page_level __read_mostly;
100 static int max_tdp_level __read_mostly;
101
102 enum {
103 AUDIT_PRE_PAGE_FAULT,
104 AUDIT_POST_PAGE_FAULT,
105 AUDIT_PRE_PTE_WRITE,
106 AUDIT_POST_PTE_WRITE,
107 AUDIT_PRE_SYNC,
108 AUDIT_POST_SYNC
109 };
110
111 #ifdef MMU_DEBUG
112 bool dbg = 0;
113 module_param(dbg, bool, 0644);
114 #endif
115
116 #define PTE_PREFETCH_NUM 8
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 #define PT32_LVL_ADDR_MASK(level) \
135 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 * PT32_LEVEL_BITS))) - 1))
137
138 #include <trace/events/kvm.h>
139
140 /* make pte_list_desc fit well in cache lines */
141 #define PTE_LIST_EXT 14
142
143 /*
144 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
145 * at the start; then accessing it will only use one single cacheline for
146 * either full (entries==PTE_LIST_EXT) case or entries<=6.
147 */
148 struct pte_list_desc {
149 struct pte_list_desc *more;
150 /*
151 * Stores number of entries stored in the pte_list_desc. No need to be
152 * u64 but just for easier alignment. When PTE_LIST_EXT, means full.
153 */
154 u64 spte_count;
155 u64 *sptes[PTE_LIST_EXT];
156 };
157
158 struct kvm_shadow_walk_iterator {
159 u64 addr;
160 hpa_t shadow_addr;
161 u64 *sptep;
162 int level;
163 unsigned index;
164 };
165
166 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
167 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
168 (_root), (_addr)); \
169 shadow_walk_okay(&(_walker)); \
170 shadow_walk_next(&(_walker)))
171
172 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
173 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
174 shadow_walk_okay(&(_walker)); \
175 shadow_walk_next(&(_walker)))
176
177 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
178 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
179 shadow_walk_okay(&(_walker)) && \
180 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
181 __shadow_walk_next(&(_walker), spte))
182
183 static struct kmem_cache *pte_list_desc_cache;
184 struct kmem_cache *mmu_page_header_cache;
185 static struct percpu_counter kvm_total_used_mmu_pages;
186
187 static void mmu_spte_set(u64 *sptep, u64 spte);
188 static union kvm_mmu_page_role
189 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
190
191 struct kvm_mmu_role_regs {
192 const unsigned long cr0;
193 const unsigned long cr4;
194 const u64 efer;
195 };
196
197 #define CREATE_TRACE_POINTS
198 #include "mmutrace.h"
199
200 /*
201 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
202 * reading from the role_regs. Once the mmu_role is constructed, it becomes
203 * the single source of truth for the MMU's state.
204 */
205 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
206 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
207 { \
208 return !!(regs->reg & flag); \
209 }
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
220
221 /*
222 * The MMU itself (with a valid role) is the single source of truth for the
223 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
224 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
225 * and the vCPU may be incorrect/irrelevant.
226 */
227 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
228 static inline bool is_##reg##_##name(struct kvm_mmu *mmu) \
229 { \
230 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \
231 }
232 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg);
233 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
234 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
235 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae);
236 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
237 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
238 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
239 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
240 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
241
242 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
243 {
244 struct kvm_mmu_role_regs regs = {
245 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
246 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
247 .efer = vcpu->arch.efer,
248 };
249
250 return regs;
251 }
252
253 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
254 {
255 if (!____is_cr0_pg(regs))
256 return 0;
257 else if (____is_efer_lma(regs))
258 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
259 PT64_ROOT_4LEVEL;
260 else if (____is_cr4_pae(regs))
261 return PT32E_ROOT_LEVEL;
262 else
263 return PT32_ROOT_LEVEL;
264 }
265
266 static inline bool kvm_available_flush_tlb_with_range(void)
267 {
268 return kvm_x86_ops.tlb_remote_flush_with_range;
269 }
270
271 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
272 struct kvm_tlb_range *range)
273 {
274 int ret = -ENOTSUPP;
275
276 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
277 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
278
279 if (ret)
280 kvm_flush_remote_tlbs(kvm);
281 }
282
283 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
284 u64 start_gfn, u64 pages)
285 {
286 struct kvm_tlb_range range;
287
288 range.start_gfn = start_gfn;
289 range.pages = pages;
290
291 kvm_flush_remote_tlbs_with_range(kvm, &range);
292 }
293
294 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
295 unsigned int access)
296 {
297 u64 spte = make_mmio_spte(vcpu, gfn, access);
298
299 trace_mark_mmio_spte(sptep, gfn, spte);
300 mmu_spte_set(sptep, spte);
301 }
302
303 static gfn_t get_mmio_spte_gfn(u64 spte)
304 {
305 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
306
307 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
308 & shadow_nonpresent_or_rsvd_mask;
309
310 return gpa >> PAGE_SHIFT;
311 }
312
313 static unsigned get_mmio_spte_access(u64 spte)
314 {
315 return spte & shadow_mmio_access_mask;
316 }
317
318 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
319 {
320 u64 kvm_gen, spte_gen, gen;
321
322 gen = kvm_vcpu_memslots(vcpu)->generation;
323 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
324 return false;
325
326 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
327 spte_gen = get_mmio_spte_generation(spte);
328
329 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
330 return likely(kvm_gen == spte_gen);
331 }
332
333 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
334 struct x86_exception *exception)
335 {
336 /* Check if guest physical address doesn't exceed guest maximum */
337 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
338 exception->error_code |= PFERR_RSVD_MASK;
339 return UNMAPPED_GVA;
340 }
341
342 return gpa;
343 }
344
345 static int is_cpuid_PSE36(void)
346 {
347 return 1;
348 }
349
350 static gfn_t pse36_gfn_delta(u32 gpte)
351 {
352 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
353
354 return (gpte & PT32_DIR_PSE36_MASK) << shift;
355 }
356
357 #ifdef CONFIG_X86_64
358 static void __set_spte(u64 *sptep, u64 spte)
359 {
360 WRITE_ONCE(*sptep, spte);
361 }
362
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365 WRITE_ONCE(*sptep, spte);
366 }
367
368 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
369 {
370 return xchg(sptep, spte);
371 }
372
373 static u64 __get_spte_lockless(u64 *sptep)
374 {
375 return READ_ONCE(*sptep);
376 }
377 #else
378 union split_spte {
379 struct {
380 u32 spte_low;
381 u32 spte_high;
382 };
383 u64 spte;
384 };
385
386 static void count_spte_clear(u64 *sptep, u64 spte)
387 {
388 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
389
390 if (is_shadow_present_pte(spte))
391 return;
392
393 /* Ensure the spte is completely set before we increase the count */
394 smp_wmb();
395 sp->clear_spte_count++;
396 }
397
398 static void __set_spte(u64 *sptep, u64 spte)
399 {
400 union split_spte *ssptep, sspte;
401
402 ssptep = (union split_spte *)sptep;
403 sspte = (union split_spte)spte;
404
405 ssptep->spte_high = sspte.spte_high;
406
407 /*
408 * If we map the spte from nonpresent to present, We should store
409 * the high bits firstly, then set present bit, so cpu can not
410 * fetch this spte while we are setting the spte.
411 */
412 smp_wmb();
413
414 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
415 }
416
417 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
418 {
419 union split_spte *ssptep, sspte;
420
421 ssptep = (union split_spte *)sptep;
422 sspte = (union split_spte)spte;
423
424 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
425
426 /*
427 * If we map the spte from present to nonpresent, we should clear
428 * present bit firstly to avoid vcpu fetch the old high bits.
429 */
430 smp_wmb();
431
432 ssptep->spte_high = sspte.spte_high;
433 count_spte_clear(sptep, spte);
434 }
435
436 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
437 {
438 union split_spte *ssptep, sspte, orig;
439
440 ssptep = (union split_spte *)sptep;
441 sspte = (union split_spte)spte;
442
443 /* xchg acts as a barrier before the setting of the high bits */
444 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
445 orig.spte_high = ssptep->spte_high;
446 ssptep->spte_high = sspte.spte_high;
447 count_spte_clear(sptep, spte);
448
449 return orig.spte;
450 }
451
452 /*
453 * The idea using the light way get the spte on x86_32 guest is from
454 * gup_get_pte (mm/gup.c).
455 *
456 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
457 * coalesces them and we are running out of the MMU lock. Therefore
458 * we need to protect against in-progress updates of the spte.
459 *
460 * Reading the spte while an update is in progress may get the old value
461 * for the high part of the spte. The race is fine for a present->non-present
462 * change (because the high part of the spte is ignored for non-present spte),
463 * but for a present->present change we must reread the spte.
464 *
465 * All such changes are done in two steps (present->non-present and
466 * non-present->present), hence it is enough to count the number of
467 * present->non-present updates: if it changed while reading the spte,
468 * we might have hit the race. This is done using clear_spte_count.
469 */
470 static u64 __get_spte_lockless(u64 *sptep)
471 {
472 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
473 union split_spte spte, *orig = (union split_spte *)sptep;
474 int count;
475
476 retry:
477 count = sp->clear_spte_count;
478 smp_rmb();
479
480 spte.spte_low = orig->spte_low;
481 smp_rmb();
482
483 spte.spte_high = orig->spte_high;
484 smp_rmb();
485
486 if (unlikely(spte.spte_low != orig->spte_low ||
487 count != sp->clear_spte_count))
488 goto retry;
489
490 return spte.spte;
491 }
492 #endif
493
494 static bool spte_has_volatile_bits(u64 spte)
495 {
496 if (!is_shadow_present_pte(spte))
497 return false;
498
499 /*
500 * Always atomically update spte if it can be updated
501 * out of mmu-lock, it can ensure dirty bit is not lost,
502 * also, it can help us to get a stable is_writable_pte()
503 * to ensure tlb flush is not missed.
504 */
505 if (spte_can_locklessly_be_made_writable(spte) ||
506 is_access_track_spte(spte))
507 return true;
508
509 if (spte_ad_enabled(spte)) {
510 if ((spte & shadow_accessed_mask) == 0 ||
511 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
512 return true;
513 }
514
515 return false;
516 }
517
518 /* Rules for using mmu_spte_set:
519 * Set the sptep from nonpresent to present.
520 * Note: the sptep being assigned *must* be either not present
521 * or in a state where the hardware will not attempt to update
522 * the spte.
523 */
524 static void mmu_spte_set(u64 *sptep, u64 new_spte)
525 {
526 WARN_ON(is_shadow_present_pte(*sptep));
527 __set_spte(sptep, new_spte);
528 }
529
530 /*
531 * Update the SPTE (excluding the PFN), but do not track changes in its
532 * accessed/dirty status.
533 */
534 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
535 {
536 u64 old_spte = *sptep;
537
538 WARN_ON(!is_shadow_present_pte(new_spte));
539
540 if (!is_shadow_present_pte(old_spte)) {
541 mmu_spte_set(sptep, new_spte);
542 return old_spte;
543 }
544
545 if (!spte_has_volatile_bits(old_spte))
546 __update_clear_spte_fast(sptep, new_spte);
547 else
548 old_spte = __update_clear_spte_slow(sptep, new_spte);
549
550 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
551
552 return old_spte;
553 }
554
555 /* Rules for using mmu_spte_update:
556 * Update the state bits, it means the mapped pfn is not changed.
557 *
558 * Whenever we overwrite a writable spte with a read-only one we
559 * should flush remote TLBs. Otherwise rmap_write_protect
560 * will find a read-only spte, even though the writable spte
561 * might be cached on a CPU's TLB, the return value indicates this
562 * case.
563 *
564 * Returns true if the TLB needs to be flushed
565 */
566 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
567 {
568 bool flush = false;
569 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
570
571 if (!is_shadow_present_pte(old_spte))
572 return false;
573
574 /*
575 * For the spte updated out of mmu-lock is safe, since
576 * we always atomically update it, see the comments in
577 * spte_has_volatile_bits().
578 */
579 if (spte_can_locklessly_be_made_writable(old_spte) &&
580 !is_writable_pte(new_spte))
581 flush = true;
582
583 /*
584 * Flush TLB when accessed/dirty states are changed in the page tables,
585 * to guarantee consistency between TLB and page tables.
586 */
587
588 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
589 flush = true;
590 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
591 }
592
593 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
594 flush = true;
595 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
596 }
597
598 return flush;
599 }
600
601 /*
602 * Rules for using mmu_spte_clear_track_bits:
603 * It sets the sptep from present to nonpresent, and track the
604 * state bits, it is used to clear the last level sptep.
605 * Returns the old PTE.
606 */
607 static u64 mmu_spte_clear_track_bits(u64 *sptep)
608 {
609 kvm_pfn_t pfn;
610 u64 old_spte = *sptep;
611
612 if (!spte_has_volatile_bits(old_spte))
613 __update_clear_spte_fast(sptep, 0ull);
614 else
615 old_spte = __update_clear_spte_slow(sptep, 0ull);
616
617 if (!is_shadow_present_pte(old_spte))
618 return old_spte;
619
620 pfn = spte_to_pfn(old_spte);
621
622 /*
623 * KVM does not hold the refcount of the page used by
624 * kvm mmu, before reclaiming the page, we should
625 * unmap it from mmu first.
626 */
627 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
628
629 if (is_accessed_spte(old_spte))
630 kvm_set_pfn_accessed(pfn);
631
632 if (is_dirty_spte(old_spte))
633 kvm_set_pfn_dirty(pfn);
634
635 return old_spte;
636 }
637
638 /*
639 * Rules for using mmu_spte_clear_no_track:
640 * Directly clear spte without caring the state bits of sptep,
641 * it is used to set the upper level spte.
642 */
643 static void mmu_spte_clear_no_track(u64 *sptep)
644 {
645 __update_clear_spte_fast(sptep, 0ull);
646 }
647
648 static u64 mmu_spte_get_lockless(u64 *sptep)
649 {
650 return __get_spte_lockless(sptep);
651 }
652
653 /* Restore an acc-track PTE back to a regular PTE */
654 static u64 restore_acc_track_spte(u64 spte)
655 {
656 u64 new_spte = spte;
657 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
658 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
659
660 WARN_ON_ONCE(spte_ad_enabled(spte));
661 WARN_ON_ONCE(!is_access_track_spte(spte));
662
663 new_spte &= ~shadow_acc_track_mask;
664 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
665 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
666 new_spte |= saved_bits;
667
668 return new_spte;
669 }
670
671 /* Returns the Accessed status of the PTE and resets it at the same time. */
672 static bool mmu_spte_age(u64 *sptep)
673 {
674 u64 spte = mmu_spte_get_lockless(sptep);
675
676 if (!is_accessed_spte(spte))
677 return false;
678
679 if (spte_ad_enabled(spte)) {
680 clear_bit((ffs(shadow_accessed_mask) - 1),
681 (unsigned long *)sptep);
682 } else {
683 /*
684 * Capture the dirty status of the page, so that it doesn't get
685 * lost when the SPTE is marked for access tracking.
686 */
687 if (is_writable_pte(spte))
688 kvm_set_pfn_dirty(spte_to_pfn(spte));
689
690 spte = mark_spte_for_access_track(spte);
691 mmu_spte_update_no_track(sptep, spte);
692 }
693
694 return true;
695 }
696
697 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
698 {
699 if (is_tdp_mmu(vcpu->arch.mmu)) {
700 kvm_tdp_mmu_walk_lockless_begin();
701 } else {
702 /*
703 * Prevent page table teardown by making any free-er wait during
704 * kvm_flush_remote_tlbs() IPI to all active vcpus.
705 */
706 local_irq_disable();
707
708 /*
709 * Make sure a following spte read is not reordered ahead of the write
710 * to vcpu->mode.
711 */
712 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
713 }
714 }
715
716 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
717 {
718 if (is_tdp_mmu(vcpu->arch.mmu)) {
719 kvm_tdp_mmu_walk_lockless_end();
720 } else {
721 /*
722 * Make sure the write to vcpu->mode is not reordered in front of
723 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
724 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
725 */
726 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
727 local_irq_enable();
728 }
729 }
730
731 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
732 {
733 int r;
734
735 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
736 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
738 if (r)
739 return r;
740 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
741 PT64_ROOT_MAX_LEVEL);
742 if (r)
743 return r;
744 if (maybe_indirect) {
745 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
746 PT64_ROOT_MAX_LEVEL);
747 if (r)
748 return r;
749 }
750 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
751 PT64_ROOT_MAX_LEVEL);
752 }
753
754 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
755 {
756 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
757 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
758 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
759 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
760 }
761
762 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
763 {
764 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
765 }
766
767 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
768 {
769 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
770 }
771
772 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
773 {
774 if (!sp->role.direct)
775 return sp->gfns[index];
776
777 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
778 }
779
780 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
781 {
782 if (!sp->role.direct) {
783 sp->gfns[index] = gfn;
784 return;
785 }
786
787 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
788 pr_err_ratelimited("gfn mismatch under direct page %llx "
789 "(expected %llx, got %llx)\n",
790 sp->gfn,
791 kvm_mmu_page_get_gfn(sp, index), gfn);
792 }
793
794 /*
795 * Return the pointer to the large page information for a given gfn,
796 * handling slots that are not large page aligned.
797 */
798 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
799 const struct kvm_memory_slot *slot, int level)
800 {
801 unsigned long idx;
802
803 idx = gfn_to_index(gfn, slot->base_gfn, level);
804 return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
808 gfn_t gfn, int count)
809 {
810 struct kvm_lpage_info *linfo;
811 int i;
812
813 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->disallow_lpage += count;
816 WARN_ON(linfo->disallow_lpage < 0);
817 }
818 }
819
820 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
821 {
822 update_gfn_disallow_lpage_count(slot, gfn, 1);
823 }
824
825 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
826 {
827 update_gfn_disallow_lpage_count(slot, gfn, -1);
828 }
829
830 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
831 {
832 struct kvm_memslots *slots;
833 struct kvm_memory_slot *slot;
834 gfn_t gfn;
835
836 kvm->arch.indirect_shadow_pages++;
837 gfn = sp->gfn;
838 slots = kvm_memslots_for_spte_role(kvm, sp->role);
839 slot = __gfn_to_memslot(slots, gfn);
840
841 /* the non-leaf shadow pages are keeping readonly. */
842 if (sp->role.level > PG_LEVEL_4K)
843 return kvm_slot_page_track_add_page(kvm, slot, gfn,
844 KVM_PAGE_TRACK_WRITE);
845
846 kvm_mmu_gfn_disallow_lpage(slot, gfn);
847 }
848
849 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
850 {
851 if (sp->lpage_disallowed)
852 return;
853
854 ++kvm->stat.nx_lpage_splits;
855 list_add_tail(&sp->lpage_disallowed_link,
856 &kvm->arch.lpage_disallowed_mmu_pages);
857 sp->lpage_disallowed = true;
858 }
859
860 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
861 {
862 struct kvm_memslots *slots;
863 struct kvm_memory_slot *slot;
864 gfn_t gfn;
865
866 kvm->arch.indirect_shadow_pages--;
867 gfn = sp->gfn;
868 slots = kvm_memslots_for_spte_role(kvm, sp->role);
869 slot = __gfn_to_memslot(slots, gfn);
870 if (sp->role.level > PG_LEVEL_4K)
871 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
872 KVM_PAGE_TRACK_WRITE);
873
874 kvm_mmu_gfn_allow_lpage(slot, gfn);
875 }
876
877 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
878 {
879 --kvm->stat.nx_lpage_splits;
880 sp->lpage_disallowed = false;
881 list_del(&sp->lpage_disallowed_link);
882 }
883
884 static struct kvm_memory_slot *
885 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
886 bool no_dirty_log)
887 {
888 struct kvm_memory_slot *slot;
889
890 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
891 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
892 return NULL;
893 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
894 return NULL;
895
896 return slot;
897 }
898
899 /*
900 * About rmap_head encoding:
901 *
902 * If the bit zero of rmap_head->val is clear, then it points to the only spte
903 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
904 * pte_list_desc containing more mappings.
905 */
906
907 /*
908 * Returns the number of pointers in the rmap chain, not counting the new one.
909 */
910 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
911 struct kvm_rmap_head *rmap_head)
912 {
913 struct pte_list_desc *desc;
914 int count = 0;
915
916 if (!rmap_head->val) {
917 rmap_printk("%p %llx 0->1\n", spte, *spte);
918 rmap_head->val = (unsigned long)spte;
919 } else if (!(rmap_head->val & 1)) {
920 rmap_printk("%p %llx 1->many\n", spte, *spte);
921 desc = mmu_alloc_pte_list_desc(vcpu);
922 desc->sptes[0] = (u64 *)rmap_head->val;
923 desc->sptes[1] = spte;
924 desc->spte_count = 2;
925 rmap_head->val = (unsigned long)desc | 1;
926 ++count;
927 } else {
928 rmap_printk("%p %llx many->many\n", spte, *spte);
929 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
930 while (desc->spte_count == PTE_LIST_EXT) {
931 count += PTE_LIST_EXT;
932 if (!desc->more) {
933 desc->more = mmu_alloc_pte_list_desc(vcpu);
934 desc = desc->more;
935 desc->spte_count = 0;
936 break;
937 }
938 desc = desc->more;
939 }
940 count += desc->spte_count;
941 desc->sptes[desc->spte_count++] = spte;
942 }
943 return count;
944 }
945
946 static void
947 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
948 struct pte_list_desc *desc, int i,
949 struct pte_list_desc *prev_desc)
950 {
951 int j = desc->spte_count - 1;
952
953 desc->sptes[i] = desc->sptes[j];
954 desc->sptes[j] = NULL;
955 desc->spte_count--;
956 if (desc->spte_count)
957 return;
958 if (!prev_desc && !desc->more)
959 rmap_head->val = 0;
960 else
961 if (prev_desc)
962 prev_desc->more = desc->more;
963 else
964 rmap_head->val = (unsigned long)desc->more | 1;
965 mmu_free_pte_list_desc(desc);
966 }
967
968 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
969 {
970 struct pte_list_desc *desc;
971 struct pte_list_desc *prev_desc;
972 int i;
973
974 if (!rmap_head->val) {
975 pr_err("%s: %p 0->BUG\n", __func__, spte);
976 BUG();
977 } else if (!(rmap_head->val & 1)) {
978 rmap_printk("%p 1->0\n", spte);
979 if ((u64 *)rmap_head->val != spte) {
980 pr_err("%s: %p 1->BUG\n", __func__, spte);
981 BUG();
982 }
983 rmap_head->val = 0;
984 } else {
985 rmap_printk("%p many->many\n", spte);
986 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
987 prev_desc = NULL;
988 while (desc) {
989 for (i = 0; i < desc->spte_count; ++i) {
990 if (desc->sptes[i] == spte) {
991 pte_list_desc_remove_entry(rmap_head,
992 desc, i, prev_desc);
993 return;
994 }
995 }
996 prev_desc = desc;
997 desc = desc->more;
998 }
999 pr_err("%s: %p many->many\n", __func__, spte);
1000 BUG();
1001 }
1002 }
1003
1004 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1005 {
1006 mmu_spte_clear_track_bits(sptep);
1007 __pte_list_remove(sptep, rmap_head);
1008 }
1009
1010 /* Return true if rmap existed, false otherwise */
1011 static bool pte_list_destroy(struct kvm_rmap_head *rmap_head)
1012 {
1013 struct pte_list_desc *desc, *next;
1014 int i;
1015
1016 if (!rmap_head->val)
1017 return false;
1018
1019 if (!(rmap_head->val & 1)) {
1020 mmu_spte_clear_track_bits((u64 *)rmap_head->val);
1021 goto out;
1022 }
1023
1024 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1025
1026 for (; desc; desc = next) {
1027 for (i = 0; i < desc->spte_count; i++)
1028 mmu_spte_clear_track_bits(desc->sptes[i]);
1029 next = desc->more;
1030 mmu_free_pte_list_desc(desc);
1031 }
1032 out:
1033 /* rmap_head is meaningless now, remember to reset it */
1034 rmap_head->val = 0;
1035 return true;
1036 }
1037
1038 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1039 {
1040 struct pte_list_desc *desc;
1041 unsigned int count = 0;
1042
1043 if (!rmap_head->val)
1044 return 0;
1045 else if (!(rmap_head->val & 1))
1046 return 1;
1047
1048 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1049
1050 while (desc) {
1051 count += desc->spte_count;
1052 desc = desc->more;
1053 }
1054
1055 return count;
1056 }
1057
1058 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1059 const struct kvm_memory_slot *slot)
1060 {
1061 unsigned long idx;
1062
1063 idx = gfn_to_index(gfn, slot->base_gfn, level);
1064 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1065 }
1066
1067 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1068 {
1069 struct kvm_mmu_memory_cache *mc;
1070
1071 mc = &vcpu->arch.mmu_pte_list_desc_cache;
1072 return kvm_mmu_memory_cache_nr_free_objects(mc);
1073 }
1074
1075 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1076 {
1077 struct kvm_memory_slot *slot;
1078 struct kvm_mmu_page *sp;
1079 struct kvm_rmap_head *rmap_head;
1080
1081 sp = sptep_to_sp(spte);
1082 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1083 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1084 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1085 return pte_list_add(vcpu, spte, rmap_head);
1086 }
1087
1088
1089 static void rmap_remove(struct kvm *kvm, u64 *spte)
1090 {
1091 struct kvm_memslots *slots;
1092 struct kvm_memory_slot *slot;
1093 struct kvm_mmu_page *sp;
1094 gfn_t gfn;
1095 struct kvm_rmap_head *rmap_head;
1096
1097 sp = sptep_to_sp(spte);
1098 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1099
1100 /*
1101 * Unlike rmap_add and rmap_recycle, rmap_remove does not run in the
1102 * context of a vCPU so have to determine which memslots to use based
1103 * on context information in sp->role.
1104 */
1105 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1106
1107 slot = __gfn_to_memslot(slots, gfn);
1108 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1109
1110 __pte_list_remove(spte, rmap_head);
1111 }
1112
1113 /*
1114 * Used by the following functions to iterate through the sptes linked by a
1115 * rmap. All fields are private and not assumed to be used outside.
1116 */
1117 struct rmap_iterator {
1118 /* private fields */
1119 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1120 int pos; /* index of the sptep */
1121 };
1122
1123 /*
1124 * Iteration must be started by this function. This should also be used after
1125 * removing/dropping sptes from the rmap link because in such cases the
1126 * information in the iterator may not be valid.
1127 *
1128 * Returns sptep if found, NULL otherwise.
1129 */
1130 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1131 struct rmap_iterator *iter)
1132 {
1133 u64 *sptep;
1134
1135 if (!rmap_head->val)
1136 return NULL;
1137
1138 if (!(rmap_head->val & 1)) {
1139 iter->desc = NULL;
1140 sptep = (u64 *)rmap_head->val;
1141 goto out;
1142 }
1143
1144 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1145 iter->pos = 0;
1146 sptep = iter->desc->sptes[iter->pos];
1147 out:
1148 BUG_ON(!is_shadow_present_pte(*sptep));
1149 return sptep;
1150 }
1151
1152 /*
1153 * Must be used with a valid iterator: e.g. after rmap_get_first().
1154 *
1155 * Returns sptep if found, NULL otherwise.
1156 */
1157 static u64 *rmap_get_next(struct rmap_iterator *iter)
1158 {
1159 u64 *sptep;
1160
1161 if (iter->desc) {
1162 if (iter->pos < PTE_LIST_EXT - 1) {
1163 ++iter->pos;
1164 sptep = iter->desc->sptes[iter->pos];
1165 if (sptep)
1166 goto out;
1167 }
1168
1169 iter->desc = iter->desc->more;
1170
1171 if (iter->desc) {
1172 iter->pos = 0;
1173 /* desc->sptes[0] cannot be NULL */
1174 sptep = iter->desc->sptes[iter->pos];
1175 goto out;
1176 }
1177 }
1178
1179 return NULL;
1180 out:
1181 BUG_ON(!is_shadow_present_pte(*sptep));
1182 return sptep;
1183 }
1184
1185 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1186 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1187 _spte_; _spte_ = rmap_get_next(_iter_))
1188
1189 static void drop_spte(struct kvm *kvm, u64 *sptep)
1190 {
1191 u64 old_spte = mmu_spte_clear_track_bits(sptep);
1192
1193 if (is_shadow_present_pte(old_spte))
1194 rmap_remove(kvm, sptep);
1195 }
1196
1197
1198 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1199 {
1200 if (is_large_pte(*sptep)) {
1201 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1202 drop_spte(kvm, sptep);
1203 --kvm->stat.lpages;
1204 return true;
1205 }
1206
1207 return false;
1208 }
1209
1210 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1211 {
1212 if (__drop_large_spte(vcpu->kvm, sptep)) {
1213 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1214
1215 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1216 KVM_PAGES_PER_HPAGE(sp->role.level));
1217 }
1218 }
1219
1220 /*
1221 * Write-protect on the specified @sptep, @pt_protect indicates whether
1222 * spte write-protection is caused by protecting shadow page table.
1223 *
1224 * Note: write protection is difference between dirty logging and spte
1225 * protection:
1226 * - for dirty logging, the spte can be set to writable at anytime if
1227 * its dirty bitmap is properly set.
1228 * - for spte protection, the spte can be writable only after unsync-ing
1229 * shadow page.
1230 *
1231 * Return true if tlb need be flushed.
1232 */
1233 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1234 {
1235 u64 spte = *sptep;
1236
1237 if (!is_writable_pte(spte) &&
1238 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1239 return false;
1240
1241 rmap_printk("spte %p %llx\n", sptep, *sptep);
1242
1243 if (pt_protect)
1244 spte &= ~shadow_mmu_writable_mask;
1245 spte = spte & ~PT_WRITABLE_MASK;
1246
1247 return mmu_spte_update(sptep, spte);
1248 }
1249
1250 static bool __rmap_write_protect(struct kvm *kvm,
1251 struct kvm_rmap_head *rmap_head,
1252 bool pt_protect)
1253 {
1254 u64 *sptep;
1255 struct rmap_iterator iter;
1256 bool flush = false;
1257
1258 for_each_rmap_spte(rmap_head, &iter, sptep)
1259 flush |= spte_write_protect(sptep, pt_protect);
1260
1261 return flush;
1262 }
1263
1264 static bool spte_clear_dirty(u64 *sptep)
1265 {
1266 u64 spte = *sptep;
1267
1268 rmap_printk("spte %p %llx\n", sptep, *sptep);
1269
1270 MMU_WARN_ON(!spte_ad_enabled(spte));
1271 spte &= ~shadow_dirty_mask;
1272 return mmu_spte_update(sptep, spte);
1273 }
1274
1275 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1276 {
1277 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1278 (unsigned long *)sptep);
1279 if (was_writable && !spte_ad_enabled(*sptep))
1280 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1281
1282 return was_writable;
1283 }
1284
1285 /*
1286 * Gets the GFN ready for another round of dirty logging by clearing the
1287 * - D bit on ad-enabled SPTEs, and
1288 * - W bit on ad-disabled SPTEs.
1289 * Returns true iff any D or W bits were cleared.
1290 */
1291 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1292 const struct kvm_memory_slot *slot)
1293 {
1294 u64 *sptep;
1295 struct rmap_iterator iter;
1296 bool flush = false;
1297
1298 for_each_rmap_spte(rmap_head, &iter, sptep)
1299 if (spte_ad_need_write_protect(*sptep))
1300 flush |= spte_wrprot_for_clear_dirty(sptep);
1301 else
1302 flush |= spte_clear_dirty(sptep);
1303
1304 return flush;
1305 }
1306
1307 /**
1308 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1309 * @kvm: kvm instance
1310 * @slot: slot to protect
1311 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1312 * @mask: indicates which pages we should protect
1313 *
1314 * Used when we do not need to care about huge page mappings.
1315 */
1316 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1317 struct kvm_memory_slot *slot,
1318 gfn_t gfn_offset, unsigned long mask)
1319 {
1320 struct kvm_rmap_head *rmap_head;
1321
1322 if (is_tdp_mmu_enabled(kvm))
1323 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1324 slot->base_gfn + gfn_offset, mask, true);
1325
1326 if (!kvm_memslots_have_rmaps(kvm))
1327 return;
1328
1329 while (mask) {
1330 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1331 PG_LEVEL_4K, slot);
1332 __rmap_write_protect(kvm, rmap_head, false);
1333
1334 /* clear the first set bit */
1335 mask &= mask - 1;
1336 }
1337 }
1338
1339 /**
1340 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1341 * protect the page if the D-bit isn't supported.
1342 * @kvm: kvm instance
1343 * @slot: slot to clear D-bit
1344 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1345 * @mask: indicates which pages we should clear D-bit
1346 *
1347 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1348 */
1349 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1350 struct kvm_memory_slot *slot,
1351 gfn_t gfn_offset, unsigned long mask)
1352 {
1353 struct kvm_rmap_head *rmap_head;
1354
1355 if (is_tdp_mmu_enabled(kvm))
1356 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1357 slot->base_gfn + gfn_offset, mask, false);
1358
1359 if (!kvm_memslots_have_rmaps(kvm))
1360 return;
1361
1362 while (mask) {
1363 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1364 PG_LEVEL_4K, slot);
1365 __rmap_clear_dirty(kvm, rmap_head, slot);
1366
1367 /* clear the first set bit */
1368 mask &= mask - 1;
1369 }
1370 }
1371
1372 /**
1373 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1374 * PT level pages.
1375 *
1376 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1377 * enable dirty logging for them.
1378 *
1379 * We need to care about huge page mappings: e.g. during dirty logging we may
1380 * have such mappings.
1381 */
1382 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1383 struct kvm_memory_slot *slot,
1384 gfn_t gfn_offset, unsigned long mask)
1385 {
1386 /*
1387 * Huge pages are NOT write protected when we start dirty logging in
1388 * initially-all-set mode; must write protect them here so that they
1389 * are split to 4K on the first write.
1390 *
1391 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1392 * of memslot has no such restriction, so the range can cross two large
1393 * pages.
1394 */
1395 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1396 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1397 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1398
1399 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1400
1401 /* Cross two large pages? */
1402 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1403 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1404 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1405 PG_LEVEL_2M);
1406 }
1407
1408 /* Now handle 4K PTEs. */
1409 if (kvm_x86_ops.cpu_dirty_log_size)
1410 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1411 else
1412 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1413 }
1414
1415 int kvm_cpu_dirty_log_size(void)
1416 {
1417 return kvm_x86_ops.cpu_dirty_log_size;
1418 }
1419
1420 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1421 struct kvm_memory_slot *slot, u64 gfn,
1422 int min_level)
1423 {
1424 struct kvm_rmap_head *rmap_head;
1425 int i;
1426 bool write_protected = false;
1427
1428 if (kvm_memslots_have_rmaps(kvm)) {
1429 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1430 rmap_head = gfn_to_rmap(gfn, i, slot);
1431 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1432 }
1433 }
1434
1435 if (is_tdp_mmu_enabled(kvm))
1436 write_protected |=
1437 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1438
1439 return write_protected;
1440 }
1441
1442 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1443 {
1444 struct kvm_memory_slot *slot;
1445
1446 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1447 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1448 }
1449
1450 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1451 const struct kvm_memory_slot *slot)
1452 {
1453 return pte_list_destroy(rmap_head);
1454 }
1455
1456 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1457 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1458 pte_t unused)
1459 {
1460 return kvm_zap_rmapp(kvm, rmap_head, slot);
1461 }
1462
1463 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1464 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1465 pte_t pte)
1466 {
1467 u64 *sptep;
1468 struct rmap_iterator iter;
1469 int need_flush = 0;
1470 u64 new_spte;
1471 kvm_pfn_t new_pfn;
1472
1473 WARN_ON(pte_huge(pte));
1474 new_pfn = pte_pfn(pte);
1475
1476 restart:
1477 for_each_rmap_spte(rmap_head, &iter, sptep) {
1478 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1479 sptep, *sptep, gfn, level);
1480
1481 need_flush = 1;
1482
1483 if (pte_write(pte)) {
1484 pte_list_remove(rmap_head, sptep);
1485 goto restart;
1486 } else {
1487 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1488 *sptep, new_pfn);
1489
1490 mmu_spte_clear_track_bits(sptep);
1491 mmu_spte_set(sptep, new_spte);
1492 }
1493 }
1494
1495 if (need_flush && kvm_available_flush_tlb_with_range()) {
1496 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1497 return 0;
1498 }
1499
1500 return need_flush;
1501 }
1502
1503 struct slot_rmap_walk_iterator {
1504 /* input fields. */
1505 const struct kvm_memory_slot *slot;
1506 gfn_t start_gfn;
1507 gfn_t end_gfn;
1508 int start_level;
1509 int end_level;
1510
1511 /* output fields. */
1512 gfn_t gfn;
1513 struct kvm_rmap_head *rmap;
1514 int level;
1515
1516 /* private field. */
1517 struct kvm_rmap_head *end_rmap;
1518 };
1519
1520 static void
1521 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1522 {
1523 iterator->level = level;
1524 iterator->gfn = iterator->start_gfn;
1525 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1526 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1527 }
1528
1529 static void
1530 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1531 const struct kvm_memory_slot *slot, int start_level,
1532 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1533 {
1534 iterator->slot = slot;
1535 iterator->start_level = start_level;
1536 iterator->end_level = end_level;
1537 iterator->start_gfn = start_gfn;
1538 iterator->end_gfn = end_gfn;
1539
1540 rmap_walk_init_level(iterator, iterator->start_level);
1541 }
1542
1543 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1544 {
1545 return !!iterator->rmap;
1546 }
1547
1548 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1549 {
1550 if (++iterator->rmap <= iterator->end_rmap) {
1551 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1552 return;
1553 }
1554
1555 if (++iterator->level > iterator->end_level) {
1556 iterator->rmap = NULL;
1557 return;
1558 }
1559
1560 rmap_walk_init_level(iterator, iterator->level);
1561 }
1562
1563 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1564 _start_gfn, _end_gfn, _iter_) \
1565 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1566 _end_level_, _start_gfn, _end_gfn); \
1567 slot_rmap_walk_okay(_iter_); \
1568 slot_rmap_walk_next(_iter_))
1569
1570 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1571 struct kvm_memory_slot *slot, gfn_t gfn,
1572 int level, pte_t pte);
1573
1574 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1575 struct kvm_gfn_range *range,
1576 rmap_handler_t handler)
1577 {
1578 struct slot_rmap_walk_iterator iterator;
1579 bool ret = false;
1580
1581 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1582 range->start, range->end - 1, &iterator)
1583 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1584 iterator.level, range->pte);
1585
1586 return ret;
1587 }
1588
1589 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1590 {
1591 bool flush = false;
1592
1593 if (kvm_memslots_have_rmaps(kvm))
1594 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1595
1596 if (is_tdp_mmu_enabled(kvm))
1597 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1598
1599 return flush;
1600 }
1601
1602 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1603 {
1604 bool flush = false;
1605
1606 if (kvm_memslots_have_rmaps(kvm))
1607 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1608
1609 if (is_tdp_mmu_enabled(kvm))
1610 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1611
1612 return flush;
1613 }
1614
1615 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1616 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1617 pte_t unused)
1618 {
1619 u64 *sptep;
1620 struct rmap_iterator iter;
1621 int young = 0;
1622
1623 for_each_rmap_spte(rmap_head, &iter, sptep)
1624 young |= mmu_spte_age(sptep);
1625
1626 return young;
1627 }
1628
1629 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1630 struct kvm_memory_slot *slot, gfn_t gfn,
1631 int level, pte_t unused)
1632 {
1633 u64 *sptep;
1634 struct rmap_iterator iter;
1635
1636 for_each_rmap_spte(rmap_head, &iter, sptep)
1637 if (is_accessed_spte(*sptep))
1638 return 1;
1639 return 0;
1640 }
1641
1642 #define RMAP_RECYCLE_THRESHOLD 1000
1643
1644 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1645 {
1646 struct kvm_memory_slot *slot;
1647 struct kvm_rmap_head *rmap_head;
1648 struct kvm_mmu_page *sp;
1649
1650 sp = sptep_to_sp(spte);
1651 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1652 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1653
1654 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1655 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1656 KVM_PAGES_PER_HPAGE(sp->role.level));
1657 }
1658
1659 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1660 {
1661 bool young = false;
1662
1663 if (kvm_memslots_have_rmaps(kvm))
1664 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1665
1666 if (is_tdp_mmu_enabled(kvm))
1667 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1668
1669 return young;
1670 }
1671
1672 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1673 {
1674 bool young = false;
1675
1676 if (kvm_memslots_have_rmaps(kvm))
1677 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1678
1679 if (is_tdp_mmu_enabled(kvm))
1680 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1681
1682 return young;
1683 }
1684
1685 #ifdef MMU_DEBUG
1686 static int is_empty_shadow_page(u64 *spt)
1687 {
1688 u64 *pos;
1689 u64 *end;
1690
1691 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1692 if (is_shadow_present_pte(*pos)) {
1693 printk(KERN_ERR "%s: %p %llx\n", __func__,
1694 pos, *pos);
1695 return 0;
1696 }
1697 return 1;
1698 }
1699 #endif
1700
1701 /*
1702 * This value is the sum of all of the kvm instances's
1703 * kvm->arch.n_used_mmu_pages values. We need a global,
1704 * aggregate version in order to make the slab shrinker
1705 * faster
1706 */
1707 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1708 {
1709 kvm->arch.n_used_mmu_pages += nr;
1710 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1711 }
1712
1713 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1714 {
1715 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1716 hlist_del(&sp->hash_link);
1717 list_del(&sp->link);
1718 free_page((unsigned long)sp->spt);
1719 if (!sp->role.direct)
1720 free_page((unsigned long)sp->gfns);
1721 kmem_cache_free(mmu_page_header_cache, sp);
1722 }
1723
1724 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1725 {
1726 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1727 }
1728
1729 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1730 struct kvm_mmu_page *sp, u64 *parent_pte)
1731 {
1732 if (!parent_pte)
1733 return;
1734
1735 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1736 }
1737
1738 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1739 u64 *parent_pte)
1740 {
1741 __pte_list_remove(parent_pte, &sp->parent_ptes);
1742 }
1743
1744 static void drop_parent_pte(struct kvm_mmu_page *sp,
1745 u64 *parent_pte)
1746 {
1747 mmu_page_remove_parent_pte(sp, parent_pte);
1748 mmu_spte_clear_no_track(parent_pte);
1749 }
1750
1751 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1752 {
1753 struct kvm_mmu_page *sp;
1754
1755 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1756 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1757 if (!direct)
1758 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1759 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1760
1761 /*
1762 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1763 * depends on valid pages being added to the head of the list. See
1764 * comments in kvm_zap_obsolete_pages().
1765 */
1766 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1767 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1768 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1769 return sp;
1770 }
1771
1772 static void mark_unsync(u64 *spte);
1773 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1774 {
1775 u64 *sptep;
1776 struct rmap_iterator iter;
1777
1778 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1779 mark_unsync(sptep);
1780 }
1781 }
1782
1783 static void mark_unsync(u64 *spte)
1784 {
1785 struct kvm_mmu_page *sp;
1786 unsigned int index;
1787
1788 sp = sptep_to_sp(spte);
1789 index = spte - sp->spt;
1790 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1791 return;
1792 if (sp->unsync_children++)
1793 return;
1794 kvm_mmu_mark_parents_unsync(sp);
1795 }
1796
1797 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1798 struct kvm_mmu_page *sp)
1799 {
1800 return 0;
1801 }
1802
1803 #define KVM_PAGE_ARRAY_NR 16
1804
1805 struct kvm_mmu_pages {
1806 struct mmu_page_and_offset {
1807 struct kvm_mmu_page *sp;
1808 unsigned int idx;
1809 } page[KVM_PAGE_ARRAY_NR];
1810 unsigned int nr;
1811 };
1812
1813 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1814 int idx)
1815 {
1816 int i;
1817
1818 if (sp->unsync)
1819 for (i=0; i < pvec->nr; i++)
1820 if (pvec->page[i].sp == sp)
1821 return 0;
1822
1823 pvec->page[pvec->nr].sp = sp;
1824 pvec->page[pvec->nr].idx = idx;
1825 pvec->nr++;
1826 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1827 }
1828
1829 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1830 {
1831 --sp->unsync_children;
1832 WARN_ON((int)sp->unsync_children < 0);
1833 __clear_bit(idx, sp->unsync_child_bitmap);
1834 }
1835
1836 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1837 struct kvm_mmu_pages *pvec)
1838 {
1839 int i, ret, nr_unsync_leaf = 0;
1840
1841 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1842 struct kvm_mmu_page *child;
1843 u64 ent = sp->spt[i];
1844
1845 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1846 clear_unsync_child_bit(sp, i);
1847 continue;
1848 }
1849
1850 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1851
1852 if (child->unsync_children) {
1853 if (mmu_pages_add(pvec, child, i))
1854 return -ENOSPC;
1855
1856 ret = __mmu_unsync_walk(child, pvec);
1857 if (!ret) {
1858 clear_unsync_child_bit(sp, i);
1859 continue;
1860 } else if (ret > 0) {
1861 nr_unsync_leaf += ret;
1862 } else
1863 return ret;
1864 } else if (child->unsync) {
1865 nr_unsync_leaf++;
1866 if (mmu_pages_add(pvec, child, i))
1867 return -ENOSPC;
1868 } else
1869 clear_unsync_child_bit(sp, i);
1870 }
1871
1872 return nr_unsync_leaf;
1873 }
1874
1875 #define INVALID_INDEX (-1)
1876
1877 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1878 struct kvm_mmu_pages *pvec)
1879 {
1880 pvec->nr = 0;
1881 if (!sp->unsync_children)
1882 return 0;
1883
1884 mmu_pages_add(pvec, sp, INVALID_INDEX);
1885 return __mmu_unsync_walk(sp, pvec);
1886 }
1887
1888 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1889 {
1890 WARN_ON(!sp->unsync);
1891 trace_kvm_mmu_sync_page(sp);
1892 sp->unsync = 0;
1893 --kvm->stat.mmu_unsync;
1894 }
1895
1896 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1897 struct list_head *invalid_list);
1898 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1899 struct list_head *invalid_list);
1900
1901 #define for_each_valid_sp(_kvm, _sp, _list) \
1902 hlist_for_each_entry(_sp, _list, hash_link) \
1903 if (is_obsolete_sp((_kvm), (_sp))) { \
1904 } else
1905
1906 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1907 for_each_valid_sp(_kvm, _sp, \
1908 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1909 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1910
1911 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1912 struct list_head *invalid_list)
1913 {
1914 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1915 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1916 return false;
1917 }
1918
1919 return true;
1920 }
1921
1922 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1923 struct list_head *invalid_list,
1924 bool remote_flush)
1925 {
1926 if (!remote_flush && list_empty(invalid_list))
1927 return false;
1928
1929 if (!list_empty(invalid_list))
1930 kvm_mmu_commit_zap_page(kvm, invalid_list);
1931 else
1932 kvm_flush_remote_tlbs(kvm);
1933 return true;
1934 }
1935
1936 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1937 struct list_head *invalid_list,
1938 bool remote_flush, bool local_flush)
1939 {
1940 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1941 return;
1942
1943 if (local_flush)
1944 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1945 }
1946
1947 #ifdef CONFIG_KVM_MMU_AUDIT
1948 #include "mmu_audit.c"
1949 #else
1950 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1951 static void mmu_audit_disable(void) { }
1952 #endif
1953
1954 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1955 {
1956 return sp->role.invalid ||
1957 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1958 }
1959
1960 struct mmu_page_path {
1961 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1962 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1963 };
1964
1965 #define for_each_sp(pvec, sp, parents, i) \
1966 for (i = mmu_pages_first(&pvec, &parents); \
1967 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1968 i = mmu_pages_next(&pvec, &parents, i))
1969
1970 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1971 struct mmu_page_path *parents,
1972 int i)
1973 {
1974 int n;
1975
1976 for (n = i+1; n < pvec->nr; n++) {
1977 struct kvm_mmu_page *sp = pvec->page[n].sp;
1978 unsigned idx = pvec->page[n].idx;
1979 int level = sp->role.level;
1980
1981 parents->idx[level-1] = idx;
1982 if (level == PG_LEVEL_4K)
1983 break;
1984
1985 parents->parent[level-2] = sp;
1986 }
1987
1988 return n;
1989 }
1990
1991 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1992 struct mmu_page_path *parents)
1993 {
1994 struct kvm_mmu_page *sp;
1995 int level;
1996
1997 if (pvec->nr == 0)
1998 return 0;
1999
2000 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2001
2002 sp = pvec->page[0].sp;
2003 level = sp->role.level;
2004 WARN_ON(level == PG_LEVEL_4K);
2005
2006 parents->parent[level-2] = sp;
2007
2008 /* Also set up a sentinel. Further entries in pvec are all
2009 * children of sp, so this element is never overwritten.
2010 */
2011 parents->parent[level-1] = NULL;
2012 return mmu_pages_next(pvec, parents, 0);
2013 }
2014
2015 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2016 {
2017 struct kvm_mmu_page *sp;
2018 unsigned int level = 0;
2019
2020 do {
2021 unsigned int idx = parents->idx[level];
2022 sp = parents->parent[level];
2023 if (!sp)
2024 return;
2025
2026 WARN_ON(idx == INVALID_INDEX);
2027 clear_unsync_child_bit(sp, idx);
2028 level++;
2029 } while (!sp->unsync_children);
2030 }
2031
2032 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2033 struct kvm_mmu_page *parent)
2034 {
2035 int i;
2036 struct kvm_mmu_page *sp;
2037 struct mmu_page_path parents;
2038 struct kvm_mmu_pages pages;
2039 LIST_HEAD(invalid_list);
2040 bool flush = false;
2041
2042 while (mmu_unsync_walk(parent, &pages)) {
2043 bool protected = false;
2044
2045 for_each_sp(pages, sp, parents, i)
2046 protected |= rmap_write_protect(vcpu, sp->gfn);
2047
2048 if (protected) {
2049 kvm_flush_remote_tlbs(vcpu->kvm);
2050 flush = false;
2051 }
2052
2053 for_each_sp(pages, sp, parents, i) {
2054 kvm_unlink_unsync_page(vcpu->kvm, sp);
2055 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2056 mmu_pages_clear_parents(&parents);
2057 }
2058 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2059 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2060 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2061 flush = false;
2062 }
2063 }
2064
2065 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2066 }
2067
2068 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2069 {
2070 atomic_set(&sp->write_flooding_count, 0);
2071 }
2072
2073 static void clear_sp_write_flooding_count(u64 *spte)
2074 {
2075 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2076 }
2077
2078 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2079 gfn_t gfn,
2080 gva_t gaddr,
2081 unsigned level,
2082 int direct,
2083 unsigned int access)
2084 {
2085 bool direct_mmu = vcpu->arch.mmu->direct_map;
2086 union kvm_mmu_page_role role;
2087 struct hlist_head *sp_list;
2088 unsigned quadrant;
2089 struct kvm_mmu_page *sp;
2090 int collisions = 0;
2091 LIST_HEAD(invalid_list);
2092
2093 role = vcpu->arch.mmu->mmu_role.base;
2094 role.level = level;
2095 role.direct = direct;
2096 if (role.direct)
2097 role.gpte_is_8_bytes = true;
2098 role.access = access;
2099 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2100 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2101 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2102 role.quadrant = quadrant;
2103 }
2104
2105 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2106 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2107 if (sp->gfn != gfn) {
2108 collisions++;
2109 continue;
2110 }
2111
2112 if (sp->role.word != role.word) {
2113 /*
2114 * If the guest is creating an upper-level page, zap
2115 * unsync pages for the same gfn. While it's possible
2116 * the guest is using recursive page tables, in all
2117 * likelihood the guest has stopped using the unsync
2118 * page and is installing a completely unrelated page.
2119 * Unsync pages must not be left as is, because the new
2120 * upper-level page will be write-protected.
2121 */
2122 if (level > PG_LEVEL_4K && sp->unsync)
2123 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2124 &invalid_list);
2125 continue;
2126 }
2127
2128 if (direct_mmu)
2129 goto trace_get_page;
2130
2131 if (sp->unsync) {
2132 /*
2133 * The page is good, but is stale. kvm_sync_page does
2134 * get the latest guest state, but (unlike mmu_unsync_children)
2135 * it doesn't write-protect the page or mark it synchronized!
2136 * This way the validity of the mapping is ensured, but the
2137 * overhead of write protection is not incurred until the
2138 * guest invalidates the TLB mapping. This allows multiple
2139 * SPs for a single gfn to be unsync.
2140 *
2141 * If the sync fails, the page is zapped. If so, break
2142 * in order to rebuild it.
2143 */
2144 if (!kvm_sync_page(vcpu, sp, &invalid_list))
2145 break;
2146
2147 WARN_ON(!list_empty(&invalid_list));
2148 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2149 }
2150
2151 if (sp->unsync_children)
2152 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2153
2154 __clear_sp_write_flooding_count(sp);
2155
2156 trace_get_page:
2157 trace_kvm_mmu_get_page(sp, false);
2158 goto out;
2159 }
2160
2161 ++vcpu->kvm->stat.mmu_cache_miss;
2162
2163 sp = kvm_mmu_alloc_page(vcpu, direct);
2164
2165 sp->gfn = gfn;
2166 sp->role = role;
2167 hlist_add_head(&sp->hash_link, sp_list);
2168 if (!direct) {
2169 account_shadowed(vcpu->kvm, sp);
2170 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2171 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2172 }
2173 trace_kvm_mmu_get_page(sp, true);
2174 out:
2175 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2176
2177 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2178 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2179 return sp;
2180 }
2181
2182 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2183 struct kvm_vcpu *vcpu, hpa_t root,
2184 u64 addr)
2185 {
2186 iterator->addr = addr;
2187 iterator->shadow_addr = root;
2188 iterator->level = vcpu->arch.mmu->shadow_root_level;
2189
2190 if (iterator->level == PT64_ROOT_4LEVEL &&
2191 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2192 !vcpu->arch.mmu->direct_map)
2193 --iterator->level;
2194
2195 if (iterator->level == PT32E_ROOT_LEVEL) {
2196 /*
2197 * prev_root is currently only used for 64-bit hosts. So only
2198 * the active root_hpa is valid here.
2199 */
2200 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2201
2202 iterator->shadow_addr
2203 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2204 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2205 --iterator->level;
2206 if (!iterator->shadow_addr)
2207 iterator->level = 0;
2208 }
2209 }
2210
2211 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2212 struct kvm_vcpu *vcpu, u64 addr)
2213 {
2214 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2215 addr);
2216 }
2217
2218 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2219 {
2220 if (iterator->level < PG_LEVEL_4K)
2221 return false;
2222
2223 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2224 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2225 return true;
2226 }
2227
2228 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2229 u64 spte)
2230 {
2231 if (is_last_spte(spte, iterator->level)) {
2232 iterator->level = 0;
2233 return;
2234 }
2235
2236 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2237 --iterator->level;
2238 }
2239
2240 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2241 {
2242 __shadow_walk_next(iterator, *iterator->sptep);
2243 }
2244
2245 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2246 struct kvm_mmu_page *sp)
2247 {
2248 u64 spte;
2249
2250 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2251
2252 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2253
2254 mmu_spte_set(sptep, spte);
2255
2256 mmu_page_add_parent_pte(vcpu, sp, sptep);
2257
2258 if (sp->unsync_children || sp->unsync)
2259 mark_unsync(sptep);
2260 }
2261
2262 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2263 unsigned direct_access)
2264 {
2265 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2266 struct kvm_mmu_page *child;
2267
2268 /*
2269 * For the direct sp, if the guest pte's dirty bit
2270 * changed form clean to dirty, it will corrupt the
2271 * sp's access: allow writable in the read-only sp,
2272 * so we should update the spte at this point to get
2273 * a new sp with the correct access.
2274 */
2275 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2276 if (child->role.access == direct_access)
2277 return;
2278
2279 drop_parent_pte(child, sptep);
2280 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2281 }
2282 }
2283
2284 /* Returns the number of zapped non-leaf child shadow pages. */
2285 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2286 u64 *spte, struct list_head *invalid_list)
2287 {
2288 u64 pte;
2289 struct kvm_mmu_page *child;
2290
2291 pte = *spte;
2292 if (is_shadow_present_pte(pte)) {
2293 if (is_last_spte(pte, sp->role.level)) {
2294 drop_spte(kvm, spte);
2295 if (is_large_pte(pte))
2296 --kvm->stat.lpages;
2297 } else {
2298 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2299 drop_parent_pte(child, spte);
2300
2301 /*
2302 * Recursively zap nested TDP SPs, parentless SPs are
2303 * unlikely to be used again in the near future. This
2304 * avoids retaining a large number of stale nested SPs.
2305 */
2306 if (tdp_enabled && invalid_list &&
2307 child->role.guest_mode && !child->parent_ptes.val)
2308 return kvm_mmu_prepare_zap_page(kvm, child,
2309 invalid_list);
2310 }
2311 } else if (is_mmio_spte(pte)) {
2312 mmu_spte_clear_no_track(spte);
2313 }
2314 return 0;
2315 }
2316
2317 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2318 struct kvm_mmu_page *sp,
2319 struct list_head *invalid_list)
2320 {
2321 int zapped = 0;
2322 unsigned i;
2323
2324 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2325 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2326
2327 return zapped;
2328 }
2329
2330 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2331 {
2332 u64 *sptep;
2333 struct rmap_iterator iter;
2334
2335 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2336 drop_parent_pte(sp, sptep);
2337 }
2338
2339 static int mmu_zap_unsync_children(struct kvm *kvm,
2340 struct kvm_mmu_page *parent,
2341 struct list_head *invalid_list)
2342 {
2343 int i, zapped = 0;
2344 struct mmu_page_path parents;
2345 struct kvm_mmu_pages pages;
2346
2347 if (parent->role.level == PG_LEVEL_4K)
2348 return 0;
2349
2350 while (mmu_unsync_walk(parent, &pages)) {
2351 struct kvm_mmu_page *sp;
2352
2353 for_each_sp(pages, sp, parents, i) {
2354 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2355 mmu_pages_clear_parents(&parents);
2356 zapped++;
2357 }
2358 }
2359
2360 return zapped;
2361 }
2362
2363 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2364 struct kvm_mmu_page *sp,
2365 struct list_head *invalid_list,
2366 int *nr_zapped)
2367 {
2368 bool list_unstable;
2369
2370 trace_kvm_mmu_prepare_zap_page(sp);
2371 ++kvm->stat.mmu_shadow_zapped;
2372 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2373 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2374 kvm_mmu_unlink_parents(kvm, sp);
2375
2376 /* Zapping children means active_mmu_pages has become unstable. */
2377 list_unstable = *nr_zapped;
2378
2379 if (!sp->role.invalid && !sp->role.direct)
2380 unaccount_shadowed(kvm, sp);
2381
2382 if (sp->unsync)
2383 kvm_unlink_unsync_page(kvm, sp);
2384 if (!sp->root_count) {
2385 /* Count self */
2386 (*nr_zapped)++;
2387
2388 /*
2389 * Already invalid pages (previously active roots) are not on
2390 * the active page list. See list_del() in the "else" case of
2391 * !sp->root_count.
2392 */
2393 if (sp->role.invalid)
2394 list_add(&sp->link, invalid_list);
2395 else
2396 list_move(&sp->link, invalid_list);
2397 kvm_mod_used_mmu_pages(kvm, -1);
2398 } else {
2399 /*
2400 * Remove the active root from the active page list, the root
2401 * will be explicitly freed when the root_count hits zero.
2402 */
2403 list_del(&sp->link);
2404
2405 /*
2406 * Obsolete pages cannot be used on any vCPUs, see the comment
2407 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2408 * treats invalid shadow pages as being obsolete.
2409 */
2410 if (!is_obsolete_sp(kvm, sp))
2411 kvm_reload_remote_mmus(kvm);
2412 }
2413
2414 if (sp->lpage_disallowed)
2415 unaccount_huge_nx_page(kvm, sp);
2416
2417 sp->role.invalid = 1;
2418 return list_unstable;
2419 }
2420
2421 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2422 struct list_head *invalid_list)
2423 {
2424 int nr_zapped;
2425
2426 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2427 return nr_zapped;
2428 }
2429
2430 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2431 struct list_head *invalid_list)
2432 {
2433 struct kvm_mmu_page *sp, *nsp;
2434
2435 if (list_empty(invalid_list))
2436 return;
2437
2438 /*
2439 * We need to make sure everyone sees our modifications to
2440 * the page tables and see changes to vcpu->mode here. The barrier
2441 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2442 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2443 *
2444 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2445 * guest mode and/or lockless shadow page table walks.
2446 */
2447 kvm_flush_remote_tlbs(kvm);
2448
2449 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2450 WARN_ON(!sp->role.invalid || sp->root_count);
2451 kvm_mmu_free_page(sp);
2452 }
2453 }
2454
2455 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2456 unsigned long nr_to_zap)
2457 {
2458 unsigned long total_zapped = 0;
2459 struct kvm_mmu_page *sp, *tmp;
2460 LIST_HEAD(invalid_list);
2461 bool unstable;
2462 int nr_zapped;
2463
2464 if (list_empty(&kvm->arch.active_mmu_pages))
2465 return 0;
2466
2467 restart:
2468 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2469 /*
2470 * Don't zap active root pages, the page itself can't be freed
2471 * and zapping it will just force vCPUs to realloc and reload.
2472 */
2473 if (sp->root_count)
2474 continue;
2475
2476 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2477 &nr_zapped);
2478 total_zapped += nr_zapped;
2479 if (total_zapped >= nr_to_zap)
2480 break;
2481
2482 if (unstable)
2483 goto restart;
2484 }
2485
2486 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2487
2488 kvm->stat.mmu_recycled += total_zapped;
2489 return total_zapped;
2490 }
2491
2492 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2493 {
2494 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2495 return kvm->arch.n_max_mmu_pages -
2496 kvm->arch.n_used_mmu_pages;
2497
2498 return 0;
2499 }
2500
2501 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2502 {
2503 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2504
2505 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2506 return 0;
2507
2508 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2509
2510 /*
2511 * Note, this check is intentionally soft, it only guarantees that one
2512 * page is available, while the caller may end up allocating as many as
2513 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2514 * exceeding the (arbitrary by default) limit will not harm the host,
2515 * being too aggressive may unnecessarily kill the guest, and getting an
2516 * exact count is far more trouble than it's worth, especially in the
2517 * page fault paths.
2518 */
2519 if (!kvm_mmu_available_pages(vcpu->kvm))
2520 return -ENOSPC;
2521 return 0;
2522 }
2523
2524 /*
2525 * Changing the number of mmu pages allocated to the vm
2526 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2527 */
2528 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2529 {
2530 write_lock(&kvm->mmu_lock);
2531
2532 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2533 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2534 goal_nr_mmu_pages);
2535
2536 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2537 }
2538
2539 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2540
2541 write_unlock(&kvm->mmu_lock);
2542 }
2543
2544 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2545 {
2546 struct kvm_mmu_page *sp;
2547 LIST_HEAD(invalid_list);
2548 int r;
2549
2550 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2551 r = 0;
2552 write_lock(&kvm->mmu_lock);
2553 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2554 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2555 sp->role.word);
2556 r = 1;
2557 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2558 }
2559 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2560 write_unlock(&kvm->mmu_lock);
2561
2562 return r;
2563 }
2564
2565 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2566 {
2567 gpa_t gpa;
2568 int r;
2569
2570 if (vcpu->arch.mmu->direct_map)
2571 return 0;
2572
2573 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2574
2575 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2576
2577 return r;
2578 }
2579
2580 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2581 {
2582 trace_kvm_mmu_unsync_page(sp);
2583 ++vcpu->kvm->stat.mmu_unsync;
2584 sp->unsync = 1;
2585
2586 kvm_mmu_mark_parents_unsync(sp);
2587 }
2588
2589 /*
2590 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2591 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2592 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2593 * be write-protected.
2594 */
2595 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2596 {
2597 struct kvm_mmu_page *sp;
2598 bool locked = false;
2599
2600 /*
2601 * Force write-protection if the page is being tracked. Note, the page
2602 * track machinery is used to write-protect upper-level shadow pages,
2603 * i.e. this guards the role.level == 4K assertion below!
2604 */
2605 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2606 return -EPERM;
2607
2608 /*
2609 * The page is not write-tracked, mark existing shadow pages unsync
2610 * unless KVM is synchronizing an unsync SP (can_unsync = false). In
2611 * that case, KVM must complete emulation of the guest TLB flush before
2612 * allowing shadow pages to become unsync (writable by the guest).
2613 */
2614 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2615 if (!can_unsync)
2616 return -EPERM;
2617
2618 if (sp->unsync)
2619 continue;
2620
2621 /*
2622 * TDP MMU page faults require an additional spinlock as they
2623 * run with mmu_lock held for read, not write, and the unsync
2624 * logic is not thread safe. Take the spinklock regardless of
2625 * the MMU type to avoid extra conditionals/parameters, there's
2626 * no meaningful penalty if mmu_lock is held for write.
2627 */
2628 if (!locked) {
2629 locked = true;
2630 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2631
2632 /*
2633 * Recheck after taking the spinlock, a different vCPU
2634 * may have since marked the page unsync. A false
2635 * positive on the unprotected check above is not
2636 * possible as clearing sp->unsync _must_ hold mmu_lock
2637 * for write, i.e. unsync cannot transition from 0->1
2638 * while this CPU holds mmu_lock for read (or write).
2639 */
2640 if (READ_ONCE(sp->unsync))
2641 continue;
2642 }
2643
2644 WARN_ON(sp->role.level != PG_LEVEL_4K);
2645 kvm_unsync_page(vcpu, sp);
2646 }
2647 if (locked)
2648 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2649
2650 /*
2651 * We need to ensure that the marking of unsync pages is visible
2652 * before the SPTE is updated to allow writes because
2653 * kvm_mmu_sync_roots() checks the unsync flags without holding
2654 * the MMU lock and so can race with this. If the SPTE was updated
2655 * before the page had been marked as unsync-ed, something like the
2656 * following could happen:
2657 *
2658 * CPU 1 CPU 2
2659 * ---------------------------------------------------------------------
2660 * 1.2 Host updates SPTE
2661 * to be writable
2662 * 2.1 Guest writes a GPTE for GVA X.
2663 * (GPTE being in the guest page table shadowed
2664 * by the SP from CPU 1.)
2665 * This reads SPTE during the page table walk.
2666 * Since SPTE.W is read as 1, there is no
2667 * fault.
2668 *
2669 * 2.2 Guest issues TLB flush.
2670 * That causes a VM Exit.
2671 *
2672 * 2.3 Walking of unsync pages sees sp->unsync is
2673 * false and skips the page.
2674 *
2675 * 2.4 Guest accesses GVA X.
2676 * Since the mapping in the SP was not updated,
2677 * so the old mapping for GVA X incorrectly
2678 * gets used.
2679 * 1.1 Host marks SP
2680 * as unsync
2681 * (sp->unsync = true)
2682 *
2683 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2684 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2685 * pairs with this write barrier.
2686 */
2687 smp_wmb();
2688
2689 return 0;
2690 }
2691
2692 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2693 unsigned int pte_access, int level,
2694 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2695 bool can_unsync, bool host_writable)
2696 {
2697 u64 spte;
2698 struct kvm_mmu_page *sp;
2699 int ret;
2700
2701 sp = sptep_to_sp(sptep);
2702
2703 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2704 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2705
2706 if (spte & PT_WRITABLE_MASK)
2707 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2708
2709 if (*sptep == spte)
2710 ret |= SET_SPTE_SPURIOUS;
2711 else if (mmu_spte_update(sptep, spte))
2712 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2713 return ret;
2714 }
2715
2716 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2717 unsigned int pte_access, bool write_fault, int level,
2718 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2719 bool host_writable)
2720 {
2721 int was_rmapped = 0;
2722 int rmap_count;
2723 int set_spte_ret;
2724 int ret = RET_PF_FIXED;
2725 bool flush = false;
2726
2727 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2728 *sptep, write_fault, gfn);
2729
2730 if (unlikely(is_noslot_pfn(pfn))) {
2731 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2732 return RET_PF_EMULATE;
2733 }
2734
2735 if (is_shadow_present_pte(*sptep)) {
2736 /*
2737 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2738 * the parent of the now unreachable PTE.
2739 */
2740 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2741 struct kvm_mmu_page *child;
2742 u64 pte = *sptep;
2743
2744 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2745 drop_parent_pte(child, sptep);
2746 flush = true;
2747 } else if (pfn != spte_to_pfn(*sptep)) {
2748 pgprintk("hfn old %llx new %llx\n",
2749 spte_to_pfn(*sptep), pfn);
2750 drop_spte(vcpu->kvm, sptep);
2751 flush = true;
2752 } else
2753 was_rmapped = 1;
2754 }
2755
2756 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2757 speculative, true, host_writable);
2758 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2759 if (write_fault)
2760 ret = RET_PF_EMULATE;
2761 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2762 }
2763
2764 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2765 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2766 KVM_PAGES_PER_HPAGE(level));
2767
2768 /*
2769 * The fault is fully spurious if and only if the new SPTE and old SPTE
2770 * are identical, and emulation is not required.
2771 */
2772 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2773 WARN_ON_ONCE(!was_rmapped);
2774 return RET_PF_SPURIOUS;
2775 }
2776
2777 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2778 trace_kvm_mmu_set_spte(level, gfn, sptep);
2779 if (!was_rmapped && is_large_pte(*sptep))
2780 ++vcpu->kvm->stat.lpages;
2781
2782 if (is_shadow_present_pte(*sptep)) {
2783 if (!was_rmapped) {
2784 rmap_count = rmap_add(vcpu, sptep, gfn);
2785 if (rmap_count > vcpu->kvm->stat.max_mmu_rmap_size)
2786 vcpu->kvm->stat.max_mmu_rmap_size = rmap_count;
2787 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2788 rmap_recycle(vcpu, sptep, gfn);
2789 }
2790 }
2791
2792 return ret;
2793 }
2794
2795 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2796 bool no_dirty_log)
2797 {
2798 struct kvm_memory_slot *slot;
2799
2800 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2801 if (!slot)
2802 return KVM_PFN_ERR_FAULT;
2803
2804 return gfn_to_pfn_memslot_atomic(slot, gfn);
2805 }
2806
2807 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2808 struct kvm_mmu_page *sp,
2809 u64 *start, u64 *end)
2810 {
2811 struct page *pages[PTE_PREFETCH_NUM];
2812 struct kvm_memory_slot *slot;
2813 unsigned int access = sp->role.access;
2814 int i, ret;
2815 gfn_t gfn;
2816
2817 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2818 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2819 if (!slot)
2820 return -1;
2821
2822 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2823 if (ret <= 0)
2824 return -1;
2825
2826 for (i = 0; i < ret; i++, gfn++, start++) {
2827 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2828 page_to_pfn(pages[i]), true, true);
2829 put_page(pages[i]);
2830 }
2831
2832 return 0;
2833 }
2834
2835 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2836 struct kvm_mmu_page *sp, u64 *sptep)
2837 {
2838 u64 *spte, *start = NULL;
2839 int i;
2840
2841 WARN_ON(!sp->role.direct);
2842
2843 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2844 spte = sp->spt + i;
2845
2846 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2847 if (is_shadow_present_pte(*spte) || spte == sptep) {
2848 if (!start)
2849 continue;
2850 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2851 break;
2852 start = NULL;
2853 } else if (!start)
2854 start = spte;
2855 }
2856 }
2857
2858 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2859 {
2860 struct kvm_mmu_page *sp;
2861
2862 sp = sptep_to_sp(sptep);
2863
2864 /*
2865 * Without accessed bits, there's no way to distinguish between
2866 * actually accessed translations and prefetched, so disable pte
2867 * prefetch if accessed bits aren't available.
2868 */
2869 if (sp_ad_disabled(sp))
2870 return;
2871
2872 if (sp->role.level > PG_LEVEL_4K)
2873 return;
2874
2875 /*
2876 * If addresses are being invalidated, skip prefetching to avoid
2877 * accidentally prefetching those addresses.
2878 */
2879 if (unlikely(vcpu->kvm->mmu_notifier_count))
2880 return;
2881
2882 __direct_pte_prefetch(vcpu, sp, sptep);
2883 }
2884
2885 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2886 const struct kvm_memory_slot *slot)
2887 {
2888 unsigned long hva;
2889 pte_t *pte;
2890 int level;
2891
2892 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2893 return PG_LEVEL_4K;
2894
2895 /*
2896 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2897 * is not solely for performance, it's also necessary to avoid the
2898 * "writable" check in __gfn_to_hva_many(), which will always fail on
2899 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2900 * page fault steps have already verified the guest isn't writing a
2901 * read-only memslot.
2902 */
2903 hva = __gfn_to_hva_memslot(slot, gfn);
2904
2905 pte = lookup_address_in_mm(kvm->mm, hva, &level);
2906 if (unlikely(!pte))
2907 return PG_LEVEL_4K;
2908
2909 return level;
2910 }
2911
2912 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2913 const struct kvm_memory_slot *slot, gfn_t gfn,
2914 kvm_pfn_t pfn, int max_level)
2915 {
2916 struct kvm_lpage_info *linfo;
2917
2918 max_level = min(max_level, max_huge_page_level);
2919 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2920 linfo = lpage_info_slot(gfn, slot, max_level);
2921 if (!linfo->disallow_lpage)
2922 break;
2923 }
2924
2925 if (max_level == PG_LEVEL_4K)
2926 return PG_LEVEL_4K;
2927
2928 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2929 }
2930
2931 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2932 int max_level, kvm_pfn_t *pfnp,
2933 bool huge_page_disallowed, int *req_level)
2934 {
2935 struct kvm_memory_slot *slot;
2936 kvm_pfn_t pfn = *pfnp;
2937 kvm_pfn_t mask;
2938 int level;
2939
2940 *req_level = PG_LEVEL_4K;
2941
2942 if (unlikely(max_level == PG_LEVEL_4K))
2943 return PG_LEVEL_4K;
2944
2945 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2946 return PG_LEVEL_4K;
2947
2948 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2949 if (!slot)
2950 return PG_LEVEL_4K;
2951
2952 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2953 if (level == PG_LEVEL_4K)
2954 return level;
2955
2956 *req_level = level = min(level, max_level);
2957
2958 /*
2959 * Enforce the iTLB multihit workaround after capturing the requested
2960 * level, which will be used to do precise, accurate accounting.
2961 */
2962 if (huge_page_disallowed)
2963 return PG_LEVEL_4K;
2964
2965 /*
2966 * mmu_notifier_retry() was successful and mmu_lock is held, so
2967 * the pmd can't be split from under us.
2968 */
2969 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2970 VM_BUG_ON((gfn & mask) != (pfn & mask));
2971 *pfnp = pfn & ~mask;
2972
2973 return level;
2974 }
2975
2976 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2977 kvm_pfn_t *pfnp, int *goal_levelp)
2978 {
2979 int level = *goal_levelp;
2980
2981 if (cur_level == level && level > PG_LEVEL_4K &&
2982 is_shadow_present_pte(spte) &&
2983 !is_large_pte(spte)) {
2984 /*
2985 * A small SPTE exists for this pfn, but FNAME(fetch)
2986 * and __direct_map would like to create a large PTE
2987 * instead: just force them to go down another level,
2988 * patching back for them into pfn the next 9 bits of
2989 * the address.
2990 */
2991 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2992 KVM_PAGES_PER_HPAGE(level - 1);
2993 *pfnp |= gfn & page_mask;
2994 (*goal_levelp)--;
2995 }
2996 }
2997
2998 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2999 int map_writable, int max_level, kvm_pfn_t pfn,
3000 bool prefault, bool is_tdp)
3001 {
3002 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
3003 bool write = error_code & PFERR_WRITE_MASK;
3004 bool exec = error_code & PFERR_FETCH_MASK;
3005 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3006 struct kvm_shadow_walk_iterator it;
3007 struct kvm_mmu_page *sp;
3008 int level, req_level, ret;
3009 gfn_t gfn = gpa >> PAGE_SHIFT;
3010 gfn_t base_gfn = gfn;
3011
3012 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
3013 huge_page_disallowed, &req_level);
3014
3015 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3016 for_each_shadow_entry(vcpu, gpa, it) {
3017 /*
3018 * We cannot overwrite existing page tables with an NX
3019 * large page, as the leaf could be executable.
3020 */
3021 if (nx_huge_page_workaround_enabled)
3022 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
3023 &pfn, &level);
3024
3025 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3026 if (it.level == level)
3027 break;
3028
3029 drop_large_spte(vcpu, it.sptep);
3030 if (is_shadow_present_pte(*it.sptep))
3031 continue;
3032
3033 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3034 it.level - 1, true, ACC_ALL);
3035
3036 link_shadow_page(vcpu, it.sptep, sp);
3037 if (is_tdp && huge_page_disallowed &&
3038 req_level >= it.level)
3039 account_huge_nx_page(vcpu->kvm, sp);
3040 }
3041
3042 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3043 write, level, base_gfn, pfn, prefault,
3044 map_writable);
3045 if (ret == RET_PF_SPURIOUS)
3046 return ret;
3047
3048 direct_pte_prefetch(vcpu, it.sptep);
3049 ++vcpu->stat.pf_fixed;
3050 return ret;
3051 }
3052
3053 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3054 {
3055 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3056 }
3057
3058 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3059 {
3060 /*
3061 * Do not cache the mmio info caused by writing the readonly gfn
3062 * into the spte otherwise read access on readonly gfn also can
3063 * caused mmio page fault and treat it as mmio access.
3064 */
3065 if (pfn == KVM_PFN_ERR_RO_FAULT)
3066 return RET_PF_EMULATE;
3067
3068 if (pfn == KVM_PFN_ERR_HWPOISON) {
3069 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3070 return RET_PF_RETRY;
3071 }
3072
3073 return -EFAULT;
3074 }
3075
3076 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3077 kvm_pfn_t pfn, unsigned int access,
3078 int *ret_val)
3079 {
3080 /* The pfn is invalid, report the error! */
3081 if (unlikely(is_error_pfn(pfn))) {
3082 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3083 return true;
3084 }
3085
3086 if (unlikely(is_noslot_pfn(pfn))) {
3087 vcpu_cache_mmio_info(vcpu, gva, gfn,
3088 access & shadow_mmio_access_mask);
3089 /*
3090 * If MMIO caching is disabled, emulate immediately without
3091 * touching the shadow page tables as attempting to install an
3092 * MMIO SPTE will just be an expensive nop.
3093 */
3094 if (unlikely(!shadow_mmio_value)) {
3095 *ret_val = RET_PF_EMULATE;
3096 return true;
3097 }
3098 }
3099
3100 return false;
3101 }
3102
3103 static bool page_fault_can_be_fast(u32 error_code)
3104 {
3105 /*
3106 * Do not fix the mmio spte with invalid generation number which
3107 * need to be updated by slow page fault path.
3108 */
3109 if (unlikely(error_code & PFERR_RSVD_MASK))
3110 return false;
3111
3112 /* See if the page fault is due to an NX violation */
3113 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3114 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3115 return false;
3116
3117 /*
3118 * #PF can be fast if:
3119 * 1. The shadow page table entry is not present, which could mean that
3120 * the fault is potentially caused by access tracking (if enabled).
3121 * 2. The shadow page table entry is present and the fault
3122 * is caused by write-protect, that means we just need change the W
3123 * bit of the spte which can be done out of mmu-lock.
3124 *
3125 * However, if access tracking is disabled we know that a non-present
3126 * page must be a genuine page fault where we have to create a new SPTE.
3127 * So, if access tracking is disabled, we return true only for write
3128 * accesses to a present page.
3129 */
3130
3131 return shadow_acc_track_mask != 0 ||
3132 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3133 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3134 }
3135
3136 /*
3137 * Returns true if the SPTE was fixed successfully. Otherwise,
3138 * someone else modified the SPTE from its original value.
3139 */
3140 static bool
3141 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3142 u64 *sptep, u64 old_spte, u64 new_spte)
3143 {
3144 gfn_t gfn;
3145
3146 WARN_ON(!sp->role.direct);
3147
3148 /*
3149 * Theoretically we could also set dirty bit (and flush TLB) here in
3150 * order to eliminate unnecessary PML logging. See comments in
3151 * set_spte. But fast_page_fault is very unlikely to happen with PML
3152 * enabled, so we do not do this. This might result in the same GPA
3153 * to be logged in PML buffer again when the write really happens, and
3154 * eventually to be called by mark_page_dirty twice. But it's also no
3155 * harm. This also avoids the TLB flush needed after setting dirty bit
3156 * so non-PML cases won't be impacted.
3157 *
3158 * Compare with set_spte where instead shadow_dirty_mask is set.
3159 */
3160 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3161 return false;
3162
3163 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3164 /*
3165 * The gfn of direct spte is stable since it is
3166 * calculated by sp->gfn.
3167 */
3168 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3169 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3170 }
3171
3172 return true;
3173 }
3174
3175 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3176 {
3177 if (fault_err_code & PFERR_FETCH_MASK)
3178 return is_executable_pte(spte);
3179
3180 if (fault_err_code & PFERR_WRITE_MASK)
3181 return is_writable_pte(spte);
3182
3183 /* Fault was on Read access */
3184 return spte & PT_PRESENT_MASK;
3185 }
3186
3187 /*
3188 * Returns the last level spte pointer of the shadow page walk for the given
3189 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3190 * walk could be performed, returns NULL and *spte does not contain valid data.
3191 *
3192 * Contract:
3193 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3194 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3195 */
3196 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3197 {
3198 struct kvm_shadow_walk_iterator iterator;
3199 u64 old_spte;
3200 u64 *sptep = NULL;
3201
3202 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3203 sptep = iterator.sptep;
3204 *spte = old_spte;
3205
3206 if (!is_shadow_present_pte(old_spte))
3207 break;
3208 }
3209
3210 return sptep;
3211 }
3212
3213 /*
3214 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3215 */
3216 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3217 {
3218 struct kvm_mmu_page *sp;
3219 int ret = RET_PF_INVALID;
3220 u64 spte = 0ull;
3221 u64 *sptep = NULL;
3222 uint retry_count = 0;
3223
3224 if (!page_fault_can_be_fast(error_code))
3225 return ret;
3226
3227 walk_shadow_page_lockless_begin(vcpu);
3228
3229 do {
3230 u64 new_spte;
3231
3232 if (is_tdp_mmu(vcpu->arch.mmu))
3233 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
3234 else
3235 sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3236
3237 if (!is_shadow_present_pte(spte))
3238 break;
3239
3240 sp = sptep_to_sp(sptep);
3241 if (!is_last_spte(spte, sp->role.level))
3242 break;
3243
3244 /*
3245 * Check whether the memory access that caused the fault would
3246 * still cause it if it were to be performed right now. If not,
3247 * then this is a spurious fault caused by TLB lazily flushed,
3248 * or some other CPU has already fixed the PTE after the
3249 * current CPU took the fault.
3250 *
3251 * Need not check the access of upper level table entries since
3252 * they are always ACC_ALL.
3253 */
3254 if (is_access_allowed(error_code, spte)) {
3255 ret = RET_PF_SPURIOUS;
3256 break;
3257 }
3258
3259 new_spte = spte;
3260
3261 if (is_access_track_spte(spte))
3262 new_spte = restore_acc_track_spte(new_spte);
3263
3264 /*
3265 * Currently, to simplify the code, write-protection can
3266 * be removed in the fast path only if the SPTE was
3267 * write-protected for dirty-logging or access tracking.
3268 */
3269 if ((error_code & PFERR_WRITE_MASK) &&
3270 spte_can_locklessly_be_made_writable(spte)) {
3271 new_spte |= PT_WRITABLE_MASK;
3272
3273 /*
3274 * Do not fix write-permission on the large spte. Since
3275 * we only dirty the first page into the dirty-bitmap in
3276 * fast_pf_fix_direct_spte(), other pages are missed
3277 * if its slot has dirty logging enabled.
3278 *
3279 * Instead, we let the slow page fault path create a
3280 * normal spte to fix the access.
3281 *
3282 * See the comments in kvm_arch_commit_memory_region().
3283 */
3284 if (sp->role.level > PG_LEVEL_4K)
3285 break;
3286 }
3287
3288 /* Verify that the fault can be handled in the fast path */
3289 if (new_spte == spte ||
3290 !is_access_allowed(error_code, new_spte))
3291 break;
3292
3293 /*
3294 * Currently, fast page fault only works for direct mapping
3295 * since the gfn is not stable for indirect shadow page. See
3296 * Documentation/virt/kvm/locking.rst to get more detail.
3297 */
3298 if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3299 ret = RET_PF_FIXED;
3300 break;
3301 }
3302
3303 if (++retry_count > 4) {
3304 printk_once(KERN_WARNING
3305 "kvm: Fast #PF retrying more than 4 times.\n");
3306 break;
3307 }
3308
3309 } while (true);
3310
3311 trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3312 walk_shadow_page_lockless_end(vcpu);
3313
3314 return ret;
3315 }
3316
3317 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3318 struct list_head *invalid_list)
3319 {
3320 struct kvm_mmu_page *sp;
3321
3322 if (!VALID_PAGE(*root_hpa))
3323 return;
3324
3325 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3326
3327 if (is_tdp_mmu_page(sp))
3328 kvm_tdp_mmu_put_root(kvm, sp, false);
3329 else if (!--sp->root_count && sp->role.invalid)
3330 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3331
3332 *root_hpa = INVALID_PAGE;
3333 }
3334
3335 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3336 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3337 ulong roots_to_free)
3338 {
3339 struct kvm *kvm = vcpu->kvm;
3340 int i;
3341 LIST_HEAD(invalid_list);
3342 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3343
3344 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3345
3346 /* Before acquiring the MMU lock, see if we need to do any real work. */
3347 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3348 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3349 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3350 VALID_PAGE(mmu->prev_roots[i].hpa))
3351 break;
3352
3353 if (i == KVM_MMU_NUM_PREV_ROOTS)
3354 return;
3355 }
3356
3357 write_lock(&kvm->mmu_lock);
3358
3359 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3360 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3361 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3362 &invalid_list);
3363
3364 if (free_active_root) {
3365 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3366 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3367 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3368 } else if (mmu->pae_root) {
3369 for (i = 0; i < 4; ++i) {
3370 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3371 continue;
3372
3373 mmu_free_root_page(kvm, &mmu->pae_root[i],
3374 &invalid_list);
3375 mmu->pae_root[i] = INVALID_PAE_ROOT;
3376 }
3377 }
3378 mmu->root_hpa = INVALID_PAGE;
3379 mmu->root_pgd = 0;
3380 }
3381
3382 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3383 write_unlock(&kvm->mmu_lock);
3384 }
3385 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3386
3387 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3388 {
3389 unsigned long roots_to_free = 0;
3390 hpa_t root_hpa;
3391 int i;
3392
3393 /*
3394 * This should not be called while L2 is active, L2 can't invalidate
3395 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3396 */
3397 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3398
3399 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3400 root_hpa = mmu->prev_roots[i].hpa;
3401 if (!VALID_PAGE(root_hpa))
3402 continue;
3403
3404 if (!to_shadow_page(root_hpa) ||
3405 to_shadow_page(root_hpa)->role.guest_mode)
3406 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3407 }
3408
3409 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3410 }
3411 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3412
3413
3414 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3415 {
3416 int ret = 0;
3417
3418 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3419 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3420 ret = 1;
3421 }
3422
3423 return ret;
3424 }
3425
3426 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3427 u8 level, bool direct)
3428 {
3429 struct kvm_mmu_page *sp;
3430
3431 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3432 ++sp->root_count;
3433
3434 return __pa(sp->spt);
3435 }
3436
3437 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3438 {
3439 struct kvm_mmu *mmu = vcpu->arch.mmu;
3440 u8 shadow_root_level = mmu->shadow_root_level;
3441 hpa_t root;
3442 unsigned i;
3443 int r;
3444
3445 write_lock(&vcpu->kvm->mmu_lock);
3446 r = make_mmu_pages_available(vcpu);
3447 if (r < 0)
3448 goto out_unlock;
3449
3450 if (is_tdp_mmu_enabled(vcpu->kvm)) {
3451 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3452 mmu->root_hpa = root;
3453 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3454 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3455 mmu->root_hpa = root;
3456 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3457 if (WARN_ON_ONCE(!mmu->pae_root)) {
3458 r = -EIO;
3459 goto out_unlock;
3460 }
3461
3462 for (i = 0; i < 4; ++i) {
3463 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3464
3465 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3466 i << 30, PT32_ROOT_LEVEL, true);
3467 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3468 shadow_me_mask;
3469 }
3470 mmu->root_hpa = __pa(mmu->pae_root);
3471 } else {
3472 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3473 r = -EIO;
3474 goto out_unlock;
3475 }
3476
3477 /* root_pgd is ignored for direct MMUs. */
3478 mmu->root_pgd = 0;
3479 out_unlock:
3480 write_unlock(&vcpu->kvm->mmu_lock);
3481 return r;
3482 }
3483
3484 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3485 {
3486 struct kvm_mmu *mmu = vcpu->arch.mmu;
3487 u64 pdptrs[4], pm_mask;
3488 gfn_t root_gfn, root_pgd;
3489 hpa_t root;
3490 unsigned i;
3491 int r;
3492
3493 root_pgd = mmu->get_guest_pgd(vcpu);
3494 root_gfn = root_pgd >> PAGE_SHIFT;
3495
3496 if (mmu_check_root(vcpu, root_gfn))
3497 return 1;
3498
3499 /*
3500 * On SVM, reading PDPTRs might access guest memory, which might fault
3501 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3502 */
3503 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3504 for (i = 0; i < 4; ++i) {
3505 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3506 if (!(pdptrs[i] & PT_PRESENT_MASK))
3507 continue;
3508
3509 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3510 return 1;
3511 }
3512 }
3513
3514 r = alloc_all_memslots_rmaps(vcpu->kvm);
3515 if (r)
3516 return r;
3517
3518 write_lock(&vcpu->kvm->mmu_lock);
3519 r = make_mmu_pages_available(vcpu);
3520 if (r < 0)
3521 goto out_unlock;
3522
3523 /*
3524 * Do we shadow a long mode page table? If so we need to
3525 * write-protect the guests page table root.
3526 */
3527 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3528 root = mmu_alloc_root(vcpu, root_gfn, 0,
3529 mmu->shadow_root_level, false);
3530 mmu->root_hpa = root;
3531 goto set_root_pgd;
3532 }
3533
3534 if (WARN_ON_ONCE(!mmu->pae_root)) {
3535 r = -EIO;
3536 goto out_unlock;
3537 }
3538
3539 /*
3540 * We shadow a 32 bit page table. This may be a legacy 2-level
3541 * or a PAE 3-level page table. In either case we need to be aware that
3542 * the shadow page table may be a PAE or a long mode page table.
3543 */
3544 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3545 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3546 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3547
3548 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3549 r = -EIO;
3550 goto out_unlock;
3551 }
3552
3553 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3554 }
3555
3556 for (i = 0; i < 4; ++i) {
3557 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3558
3559 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3560 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3561 mmu->pae_root[i] = INVALID_PAE_ROOT;
3562 continue;
3563 }
3564 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3565 }
3566
3567 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3568 PT32_ROOT_LEVEL, false);
3569 mmu->pae_root[i] = root | pm_mask;
3570 }
3571
3572 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3573 mmu->root_hpa = __pa(mmu->pml4_root);
3574 else
3575 mmu->root_hpa = __pa(mmu->pae_root);
3576
3577 set_root_pgd:
3578 mmu->root_pgd = root_pgd;
3579 out_unlock:
3580 write_unlock(&vcpu->kvm->mmu_lock);
3581
3582 return 0;
3583 }
3584
3585 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3586 {
3587 struct kvm_mmu *mmu = vcpu->arch.mmu;
3588 u64 *pml4_root, *pae_root;
3589
3590 /*
3591 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3592 * tables are allocated and initialized at root creation as there is no
3593 * equivalent level in the guest's NPT to shadow. Allocate the tables
3594 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3595 */
3596 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3597 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3598 return 0;
3599
3600 /*
3601 * This mess only works with 4-level paging and needs to be updated to
3602 * work with 5-level paging.
3603 */
3604 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3605 return -EIO;
3606
3607 if (mmu->pae_root && mmu->pml4_root)
3608 return 0;
3609
3610 /*
3611 * The special roots should always be allocated in concert. Yell and
3612 * bail if KVM ends up in a state where only one of the roots is valid.
3613 */
3614 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3615 return -EIO;
3616
3617 /*
3618 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3619 * doesn't need to be decrypted.
3620 */
3621 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3622 if (!pae_root)
3623 return -ENOMEM;
3624
3625 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3626 if (!pml4_root) {
3627 free_page((unsigned long)pae_root);
3628 return -ENOMEM;
3629 }
3630
3631 mmu->pae_root = pae_root;
3632 mmu->pml4_root = pml4_root;
3633
3634 return 0;
3635 }
3636
3637 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3638 {
3639 int i;
3640 struct kvm_mmu_page *sp;
3641
3642 if (vcpu->arch.mmu->direct_map)
3643 return;
3644
3645 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3646 return;
3647
3648 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3649
3650 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3651 hpa_t root = vcpu->arch.mmu->root_hpa;
3652 sp = to_shadow_page(root);
3653
3654 /*
3655 * Even if another CPU was marking the SP as unsync-ed
3656 * simultaneously, any guest page table changes are not
3657 * guaranteed to be visible anyway until this VCPU issues a TLB
3658 * flush strictly after those changes are made. We only need to
3659 * ensure that the other CPU sets these flags before any actual
3660 * changes to the page tables are made. The comments in
3661 * mmu_try_to_unsync_pages() describe what could go wrong if
3662 * this requirement isn't satisfied.
3663 */
3664 if (!smp_load_acquire(&sp->unsync) &&
3665 !smp_load_acquire(&sp->unsync_children))
3666 return;
3667
3668 write_lock(&vcpu->kvm->mmu_lock);
3669 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3670
3671 mmu_sync_children(vcpu, sp);
3672
3673 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3674 write_unlock(&vcpu->kvm->mmu_lock);
3675 return;
3676 }
3677
3678 write_lock(&vcpu->kvm->mmu_lock);
3679 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3680
3681 for (i = 0; i < 4; ++i) {
3682 hpa_t root = vcpu->arch.mmu->pae_root[i];
3683
3684 if (IS_VALID_PAE_ROOT(root)) {
3685 root &= PT64_BASE_ADDR_MASK;
3686 sp = to_shadow_page(root);
3687 mmu_sync_children(vcpu, sp);
3688 }
3689 }
3690
3691 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3692 write_unlock(&vcpu->kvm->mmu_lock);
3693 }
3694
3695 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3696 u32 access, struct x86_exception *exception)
3697 {
3698 if (exception)
3699 exception->error_code = 0;
3700 return vaddr;
3701 }
3702
3703 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3704 u32 access,
3705 struct x86_exception *exception)
3706 {
3707 if (exception)
3708 exception->error_code = 0;
3709 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3710 }
3711
3712 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3713 {
3714 /*
3715 * A nested guest cannot use the MMIO cache if it is using nested
3716 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3717 */
3718 if (mmu_is_nested(vcpu))
3719 return false;
3720
3721 if (direct)
3722 return vcpu_match_mmio_gpa(vcpu, addr);
3723
3724 return vcpu_match_mmio_gva(vcpu, addr);
3725 }
3726
3727 /*
3728 * Return the level of the lowest level SPTE added to sptes.
3729 * That SPTE may be non-present.
3730 *
3731 * Must be called between walk_shadow_page_lockless_{begin,end}.
3732 */
3733 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3734 {
3735 struct kvm_shadow_walk_iterator iterator;
3736 int leaf = -1;
3737 u64 spte;
3738
3739 for (shadow_walk_init(&iterator, vcpu, addr),
3740 *root_level = iterator.level;
3741 shadow_walk_okay(&iterator);
3742 __shadow_walk_next(&iterator, spte)) {
3743 leaf = iterator.level;
3744 spte = mmu_spte_get_lockless(iterator.sptep);
3745
3746 sptes[leaf] = spte;
3747
3748 if (!is_shadow_present_pte(spte))
3749 break;
3750 }
3751
3752 return leaf;
3753 }
3754
3755 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3756 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3757 {
3758 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3759 struct rsvd_bits_validate *rsvd_check;
3760 int root, leaf, level;
3761 bool reserved = false;
3762
3763 walk_shadow_page_lockless_begin(vcpu);
3764
3765 if (is_tdp_mmu(vcpu->arch.mmu))
3766 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3767 else
3768 leaf = get_walk(vcpu, addr, sptes, &root);
3769
3770 walk_shadow_page_lockless_end(vcpu);
3771
3772 if (unlikely(leaf < 0)) {
3773 *sptep = 0ull;
3774 return reserved;
3775 }
3776
3777 *sptep = sptes[leaf];
3778
3779 /*
3780 * Skip reserved bits checks on the terminal leaf if it's not a valid
3781 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3782 * design, always have reserved bits set. The purpose of the checks is
3783 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3784 */
3785 if (!is_shadow_present_pte(sptes[leaf]))
3786 leaf++;
3787
3788 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3789
3790 for (level = root; level >= leaf; level--)
3791 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3792
3793 if (reserved) {
3794 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3795 __func__, addr);
3796 for (level = root; level >= leaf; level--)
3797 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3798 sptes[level], level,
3799 get_rsvd_bits(rsvd_check, sptes[level], level));
3800 }
3801
3802 return reserved;
3803 }
3804
3805 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3806 {
3807 u64 spte;
3808 bool reserved;
3809
3810 if (mmio_info_in_cache(vcpu, addr, direct))
3811 return RET_PF_EMULATE;
3812
3813 reserved = get_mmio_spte(vcpu, addr, &spte);
3814 if (WARN_ON(reserved))
3815 return -EINVAL;
3816
3817 if (is_mmio_spte(spte)) {
3818 gfn_t gfn = get_mmio_spte_gfn(spte);
3819 unsigned int access = get_mmio_spte_access(spte);
3820
3821 if (!check_mmio_spte(vcpu, spte))
3822 return RET_PF_INVALID;
3823
3824 if (direct)
3825 addr = 0;
3826
3827 trace_handle_mmio_page_fault(addr, gfn, access);
3828 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3829 return RET_PF_EMULATE;
3830 }
3831
3832 /*
3833 * If the page table is zapped by other cpus, let CPU fault again on
3834 * the address.
3835 */
3836 return RET_PF_RETRY;
3837 }
3838
3839 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3840 u32 error_code, gfn_t gfn)
3841 {
3842 if (unlikely(error_code & PFERR_RSVD_MASK))
3843 return false;
3844
3845 if (!(error_code & PFERR_PRESENT_MASK) ||
3846 !(error_code & PFERR_WRITE_MASK))
3847 return false;
3848
3849 /*
3850 * guest is writing the page which is write tracked which can
3851 * not be fixed by page fault handler.
3852 */
3853 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3854 return true;
3855
3856 return false;
3857 }
3858
3859 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3860 {
3861 struct kvm_shadow_walk_iterator iterator;
3862 u64 spte;
3863
3864 walk_shadow_page_lockless_begin(vcpu);
3865 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3866 clear_sp_write_flooding_count(iterator.sptep);
3867 if (!is_shadow_present_pte(spte))
3868 break;
3869 }
3870 walk_shadow_page_lockless_end(vcpu);
3871 }
3872
3873 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3874 gfn_t gfn)
3875 {
3876 struct kvm_arch_async_pf arch;
3877
3878 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3879 arch.gfn = gfn;
3880 arch.direct_map = vcpu->arch.mmu->direct_map;
3881 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3882
3883 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3884 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3885 }
3886
3887 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3888 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3889 bool write, bool *writable, int *r)
3890 {
3891 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3892 bool async;
3893
3894 /*
3895 * Retry the page fault if the gfn hit a memslot that is being deleted
3896 * or moved. This ensures any existing SPTEs for the old memslot will
3897 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3898 */
3899 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3900 goto out_retry;
3901
3902 /* Don't expose private memslots to L2. */
3903 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3904 *pfn = KVM_PFN_NOSLOT;
3905 *writable = false;
3906 return false;
3907 }
3908
3909 async = false;
3910 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3911 write, writable, hva);
3912 if (!async)
3913 return false; /* *pfn has correct page already */
3914
3915 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3916 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3917 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3918 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3919 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3920 goto out_retry;
3921 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3922 goto out_retry;
3923 }
3924
3925 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3926 write, writable, hva);
3927
3928 out_retry:
3929 *r = RET_PF_RETRY;
3930 return true;
3931 }
3932
3933 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3934 bool prefault, int max_level, bool is_tdp)
3935 {
3936 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3937 bool write = error_code & PFERR_WRITE_MASK;
3938 bool map_writable;
3939
3940 gfn_t gfn = gpa >> PAGE_SHIFT;
3941 unsigned long mmu_seq;
3942 kvm_pfn_t pfn;
3943 hva_t hva;
3944 int r;
3945
3946 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3947 return RET_PF_EMULATE;
3948
3949 r = fast_page_fault(vcpu, gpa, error_code);
3950 if (r != RET_PF_INVALID)
3951 return r;
3952
3953 r = mmu_topup_memory_caches(vcpu, false);
3954 if (r)
3955 return r;
3956
3957 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3958 smp_rmb();
3959
3960 if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
3961 write, &map_writable, &r))
3962 return r;
3963
3964 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3965 return r;
3966
3967 r = RET_PF_RETRY;
3968
3969 if (is_tdp_mmu_fault)
3970 read_lock(&vcpu->kvm->mmu_lock);
3971 else
3972 write_lock(&vcpu->kvm->mmu_lock);
3973
3974 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3975 goto out_unlock;
3976 r = make_mmu_pages_available(vcpu);
3977 if (r)
3978 goto out_unlock;
3979
3980 if (is_tdp_mmu_fault)
3981 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3982 pfn, prefault);
3983 else
3984 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3985 prefault, is_tdp);
3986
3987 out_unlock:
3988 if (is_tdp_mmu_fault)
3989 read_unlock(&vcpu->kvm->mmu_lock);
3990 else
3991 write_unlock(&vcpu->kvm->mmu_lock);
3992 kvm_release_pfn_clean(pfn);
3993 return r;
3994 }
3995
3996 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3997 u32 error_code, bool prefault)
3998 {
3999 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4000
4001 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4002 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4003 PG_LEVEL_2M, false);
4004 }
4005
4006 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4007 u64 fault_address, char *insn, int insn_len)
4008 {
4009 int r = 1;
4010 u32 flags = vcpu->arch.apf.host_apf_flags;
4011
4012 #ifndef CONFIG_X86_64
4013 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4014 if (WARN_ON_ONCE(fault_address >> 32))
4015 return -EFAULT;
4016 #endif
4017
4018 vcpu->arch.l1tf_flush_l1d = true;
4019 if (!flags) {
4020 trace_kvm_page_fault(fault_address, error_code);
4021
4022 if (kvm_event_needs_reinjection(vcpu))
4023 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4024 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4025 insn_len);
4026 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4027 vcpu->arch.apf.host_apf_flags = 0;
4028 local_irq_disable();
4029 kvm_async_pf_task_wait_schedule(fault_address);
4030 local_irq_enable();
4031 } else {
4032 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4033 }
4034
4035 return r;
4036 }
4037 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4038
4039 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4040 bool prefault)
4041 {
4042 int max_level;
4043
4044 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4045 max_level > PG_LEVEL_4K;
4046 max_level--) {
4047 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4048 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4049
4050 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4051 break;
4052 }
4053
4054 return direct_page_fault(vcpu, gpa, error_code, prefault,
4055 max_level, true);
4056 }
4057
4058 static void nonpaging_init_context(struct kvm_mmu *context)
4059 {
4060 context->page_fault = nonpaging_page_fault;
4061 context->gva_to_gpa = nonpaging_gva_to_gpa;
4062 context->sync_page = nonpaging_sync_page;
4063 context->invlpg = NULL;
4064 context->direct_map = true;
4065 }
4066
4067 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4068 union kvm_mmu_page_role role)
4069 {
4070 return (role.direct || pgd == root->pgd) &&
4071 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4072 role.word == to_shadow_page(root->hpa)->role.word;
4073 }
4074
4075 /*
4076 * Find out if a previously cached root matching the new pgd/role is available.
4077 * The current root is also inserted into the cache.
4078 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4079 * returned.
4080 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4081 * false is returned. This root should now be freed by the caller.
4082 */
4083 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4084 union kvm_mmu_page_role new_role)
4085 {
4086 uint i;
4087 struct kvm_mmu_root_info root;
4088 struct kvm_mmu *mmu = vcpu->arch.mmu;
4089
4090 root.pgd = mmu->root_pgd;
4091 root.hpa = mmu->root_hpa;
4092
4093 if (is_root_usable(&root, new_pgd, new_role))
4094 return true;
4095
4096 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4097 swap(root, mmu->prev_roots[i]);
4098
4099 if (is_root_usable(&root, new_pgd, new_role))
4100 break;
4101 }
4102
4103 mmu->root_hpa = root.hpa;
4104 mmu->root_pgd = root.pgd;
4105
4106 return i < KVM_MMU_NUM_PREV_ROOTS;
4107 }
4108
4109 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4110 union kvm_mmu_page_role new_role)
4111 {
4112 struct kvm_mmu *mmu = vcpu->arch.mmu;
4113
4114 /*
4115 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4116 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4117 * later if necessary.
4118 */
4119 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4120 mmu->root_level >= PT64_ROOT_4LEVEL)
4121 return cached_root_available(vcpu, new_pgd, new_role);
4122
4123 return false;
4124 }
4125
4126 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4127 union kvm_mmu_page_role new_role)
4128 {
4129 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4130 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4131 return;
4132 }
4133
4134 /*
4135 * It's possible that the cached previous root page is obsolete because
4136 * of a change in the MMU generation number. However, changing the
4137 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4138 * free the root set here and allocate a new one.
4139 */
4140 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4141
4142 if (force_flush_and_sync_on_reuse) {
4143 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4144 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4145 }
4146
4147 /*
4148 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4149 * switching to a new CR3, that GVA->GPA mapping may no longer be
4150 * valid. So clear any cached MMIO info even when we don't need to sync
4151 * the shadow page tables.
4152 */
4153 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4154
4155 /*
4156 * If this is a direct root page, it doesn't have a write flooding
4157 * count. Otherwise, clear the write flooding count.
4158 */
4159 if (!new_role.direct)
4160 __clear_sp_write_flooding_count(
4161 to_shadow_page(vcpu->arch.mmu->root_hpa));
4162 }
4163
4164 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4165 {
4166 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4167 }
4168 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4169
4170 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4171 {
4172 return kvm_read_cr3(vcpu);
4173 }
4174
4175 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4176 unsigned int access, int *nr_present)
4177 {
4178 if (unlikely(is_mmio_spte(*sptep))) {
4179 if (gfn != get_mmio_spte_gfn(*sptep)) {
4180 mmu_spte_clear_no_track(sptep);
4181 return true;
4182 }
4183
4184 (*nr_present)++;
4185 mark_mmio_spte(vcpu, sptep, gfn, access);
4186 return true;
4187 }
4188
4189 return false;
4190 }
4191
4192 #define PTTYPE_EPT 18 /* arbitrary */
4193 #define PTTYPE PTTYPE_EPT
4194 #include "paging_tmpl.h"
4195 #undef PTTYPE
4196
4197 #define PTTYPE 64
4198 #include "paging_tmpl.h"
4199 #undef PTTYPE
4200
4201 #define PTTYPE 32
4202 #include "paging_tmpl.h"
4203 #undef PTTYPE
4204
4205 static void
4206 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4207 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4208 bool pse, bool amd)
4209 {
4210 u64 gbpages_bit_rsvd = 0;
4211 u64 nonleaf_bit8_rsvd = 0;
4212 u64 high_bits_rsvd;
4213
4214 rsvd_check->bad_mt_xwr = 0;
4215
4216 if (!gbpages)
4217 gbpages_bit_rsvd = rsvd_bits(7, 7);
4218
4219 if (level == PT32E_ROOT_LEVEL)
4220 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4221 else
4222 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4223
4224 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4225 if (!nx)
4226 high_bits_rsvd |= rsvd_bits(63, 63);
4227
4228 /*
4229 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4230 * leaf entries) on AMD CPUs only.
4231 */
4232 if (amd)
4233 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4234
4235 switch (level) {
4236 case PT32_ROOT_LEVEL:
4237 /* no rsvd bits for 2 level 4K page table entries */
4238 rsvd_check->rsvd_bits_mask[0][1] = 0;
4239 rsvd_check->rsvd_bits_mask[0][0] = 0;
4240 rsvd_check->rsvd_bits_mask[1][0] =
4241 rsvd_check->rsvd_bits_mask[0][0];
4242
4243 if (!pse) {
4244 rsvd_check->rsvd_bits_mask[1][1] = 0;
4245 break;
4246 }
4247
4248 if (is_cpuid_PSE36())
4249 /* 36bits PSE 4MB page */
4250 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4251 else
4252 /* 32 bits PSE 4MB page */
4253 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4254 break;
4255 case PT32E_ROOT_LEVEL:
4256 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4257 high_bits_rsvd |
4258 rsvd_bits(5, 8) |
4259 rsvd_bits(1, 2); /* PDPTE */
4260 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4261 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4262 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4263 rsvd_bits(13, 20); /* large page */
4264 rsvd_check->rsvd_bits_mask[1][0] =
4265 rsvd_check->rsvd_bits_mask[0][0];
4266 break;
4267 case PT64_ROOT_5LEVEL:
4268 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4269 nonleaf_bit8_rsvd |
4270 rsvd_bits(7, 7);
4271 rsvd_check->rsvd_bits_mask[1][4] =
4272 rsvd_check->rsvd_bits_mask[0][4];
4273 fallthrough;
4274 case PT64_ROOT_4LEVEL:
4275 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4276 nonleaf_bit8_rsvd |
4277 rsvd_bits(7, 7);
4278 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4279 gbpages_bit_rsvd;
4280 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4281 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4282 rsvd_check->rsvd_bits_mask[1][3] =
4283 rsvd_check->rsvd_bits_mask[0][3];
4284 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4285 gbpages_bit_rsvd |
4286 rsvd_bits(13, 29);
4287 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4288 rsvd_bits(13, 20); /* large page */
4289 rsvd_check->rsvd_bits_mask[1][0] =
4290 rsvd_check->rsvd_bits_mask[0][0];
4291 break;
4292 }
4293 }
4294
4295 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4296 {
4297 /*
4298 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4299 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
4300 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4301 * walk for performance and complexity reasons. Not to mention KVM
4302 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4303 * KVM once a TDP translation is installed. Mimic hardware behavior so
4304 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4305 */
4306 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4307 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4308 }
4309
4310 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4311 struct kvm_mmu *context)
4312 {
4313 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4314 vcpu->arch.reserved_gpa_bits,
4315 context->root_level, is_efer_nx(context),
4316 guest_can_use_gbpages(vcpu),
4317 is_cr4_pse(context),
4318 guest_cpuid_is_amd_or_hygon(vcpu));
4319 }
4320
4321 static void
4322 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4323 u64 pa_bits_rsvd, bool execonly)
4324 {
4325 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4326 u64 bad_mt_xwr;
4327
4328 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4329 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4330 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4331 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4332 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4333
4334 /* large page */
4335 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4336 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4337 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4338 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4339 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4340
4341 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4342 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4343 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4344 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4345 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4346 if (!execonly) {
4347 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4348 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4349 }
4350 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4351 }
4352
4353 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4354 struct kvm_mmu *context, bool execonly)
4355 {
4356 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4357 vcpu->arch.reserved_gpa_bits, execonly);
4358 }
4359
4360 static inline u64 reserved_hpa_bits(void)
4361 {
4362 return rsvd_bits(shadow_phys_bits, 63);
4363 }
4364
4365 /*
4366 * the page table on host is the shadow page table for the page
4367 * table in guest or amd nested guest, its mmu features completely
4368 * follow the features in guest.
4369 */
4370 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4371 struct kvm_mmu *context)
4372 {
4373 /*
4374 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4375 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4376 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4377 * The iTLB multi-hit workaround can be toggled at any time, so assume
4378 * NX can be used by any non-nested shadow MMU to avoid having to reset
4379 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled.
4380 */
4381 bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4382
4383 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4384 bool is_amd = true;
4385 /* KVM doesn't use 2-level page tables for the shadow MMU. */
4386 bool is_pse = false;
4387 struct rsvd_bits_validate *shadow_zero_check;
4388 int i;
4389
4390 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4391
4392 shadow_zero_check = &context->shadow_zero_check;
4393 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4394 context->shadow_root_level, uses_nx,
4395 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4396
4397 if (!shadow_me_mask)
4398 return;
4399
4400 for (i = context->shadow_root_level; --i >= 0;) {
4401 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4402 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4403 }
4404
4405 }
4406
4407 static inline bool boot_cpu_is_amd(void)
4408 {
4409 WARN_ON_ONCE(!tdp_enabled);
4410 return shadow_x_mask == 0;
4411 }
4412
4413 /*
4414 * the direct page table on host, use as much mmu features as
4415 * possible, however, kvm currently does not do execution-protection.
4416 */
4417 static void
4418 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4419 struct kvm_mmu *context)
4420 {
4421 struct rsvd_bits_validate *shadow_zero_check;
4422 int i;
4423
4424 shadow_zero_check = &context->shadow_zero_check;
4425
4426 if (boot_cpu_is_amd())
4427 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4428 context->shadow_root_level, false,
4429 boot_cpu_has(X86_FEATURE_GBPAGES),
4430 false, true);
4431 else
4432 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4433 reserved_hpa_bits(), false);
4434
4435 if (!shadow_me_mask)
4436 return;
4437
4438 for (i = context->shadow_root_level; --i >= 0;) {
4439 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4440 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4441 }
4442 }
4443
4444 /*
4445 * as the comments in reset_shadow_zero_bits_mask() except it
4446 * is the shadow page table for intel nested guest.
4447 */
4448 static void
4449 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4450 struct kvm_mmu *context, bool execonly)
4451 {
4452 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4453 reserved_hpa_bits(), execonly);
4454 }
4455
4456 #define BYTE_MASK(access) \
4457 ((1 & (access) ? 2 : 0) | \
4458 (2 & (access) ? 4 : 0) | \
4459 (3 & (access) ? 8 : 0) | \
4460 (4 & (access) ? 16 : 0) | \
4461 (5 & (access) ? 32 : 0) | \
4462 (6 & (access) ? 64 : 0) | \
4463 (7 & (access) ? 128 : 0))
4464
4465
4466 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4467 {
4468 unsigned byte;
4469
4470 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4471 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4472 const u8 u = BYTE_MASK(ACC_USER_MASK);
4473
4474 bool cr4_smep = is_cr4_smep(mmu);
4475 bool cr4_smap = is_cr4_smap(mmu);
4476 bool cr0_wp = is_cr0_wp(mmu);
4477 bool efer_nx = is_efer_nx(mmu);
4478
4479 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4480 unsigned pfec = byte << 1;
4481
4482 /*
4483 * Each "*f" variable has a 1 bit for each UWX value
4484 * that causes a fault with the given PFEC.
4485 */
4486
4487 /* Faults from writes to non-writable pages */
4488 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4489 /* Faults from user mode accesses to supervisor pages */
4490 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4491 /* Faults from fetches of non-executable pages*/
4492 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4493 /* Faults from kernel mode fetches of user pages */
4494 u8 smepf = 0;
4495 /* Faults from kernel mode accesses of user pages */
4496 u8 smapf = 0;
4497
4498 if (!ept) {
4499 /* Faults from kernel mode accesses to user pages */
4500 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4501
4502 /* Not really needed: !nx will cause pte.nx to fault */
4503 if (!efer_nx)
4504 ff = 0;
4505
4506 /* Allow supervisor writes if !cr0.wp */
4507 if (!cr0_wp)
4508 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4509
4510 /* Disallow supervisor fetches of user code if cr4.smep */
4511 if (cr4_smep)
4512 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4513
4514 /*
4515 * SMAP:kernel-mode data accesses from user-mode
4516 * mappings should fault. A fault is considered
4517 * as a SMAP violation if all of the following
4518 * conditions are true:
4519 * - X86_CR4_SMAP is set in CR4
4520 * - A user page is accessed
4521 * - The access is not a fetch
4522 * - Page fault in kernel mode
4523 * - if CPL = 3 or X86_EFLAGS_AC is clear
4524 *
4525 * Here, we cover the first three conditions.
4526 * The fourth is computed dynamically in permission_fault();
4527 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4528 * *not* subject to SMAP restrictions.
4529 */
4530 if (cr4_smap)
4531 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4532 }
4533
4534 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4535 }
4536 }
4537
4538 /*
4539 * PKU is an additional mechanism by which the paging controls access to
4540 * user-mode addresses based on the value in the PKRU register. Protection
4541 * key violations are reported through a bit in the page fault error code.
4542 * Unlike other bits of the error code, the PK bit is not known at the
4543 * call site of e.g. gva_to_gpa; it must be computed directly in
4544 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4545 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4546 *
4547 * In particular the following conditions come from the error code, the
4548 * page tables and the machine state:
4549 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4550 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4551 * - PK is always zero if U=0 in the page tables
4552 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4553 *
4554 * The PKRU bitmask caches the result of these four conditions. The error
4555 * code (minus the P bit) and the page table's U bit form an index into the
4556 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4557 * with the two bits of the PKRU register corresponding to the protection key.
4558 * For the first three conditions above the bits will be 00, thus masking
4559 * away both AD and WD. For all reads or if the last condition holds, WD
4560 * only will be masked away.
4561 */
4562 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4563 {
4564 unsigned bit;
4565 bool wp;
4566
4567 if (!is_cr4_pke(mmu)) {
4568 mmu->pkru_mask = 0;
4569 return;
4570 }
4571
4572 wp = is_cr0_wp(mmu);
4573
4574 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4575 unsigned pfec, pkey_bits;
4576 bool check_pkey, check_write, ff, uf, wf, pte_user;
4577
4578 pfec = bit << 1;
4579 ff = pfec & PFERR_FETCH_MASK;
4580 uf = pfec & PFERR_USER_MASK;
4581 wf = pfec & PFERR_WRITE_MASK;
4582
4583 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4584 pte_user = pfec & PFERR_RSVD_MASK;
4585
4586 /*
4587 * Only need to check the access which is not an
4588 * instruction fetch and is to a user page.
4589 */
4590 check_pkey = (!ff && pte_user);
4591 /*
4592 * write access is controlled by PKRU if it is a
4593 * user access or CR0.WP = 1.
4594 */
4595 check_write = check_pkey && wf && (uf || wp);
4596
4597 /* PKRU.AD stops both read and write access. */
4598 pkey_bits = !!check_pkey;
4599 /* PKRU.WD stops write access. */
4600 pkey_bits |= (!!check_write) << 1;
4601
4602 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4603 }
4604 }
4605
4606 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4607 struct kvm_mmu *mmu)
4608 {
4609 if (!is_cr0_pg(mmu))
4610 return;
4611
4612 reset_rsvds_bits_mask(vcpu, mmu);
4613 update_permission_bitmask(mmu, false);
4614 update_pkru_bitmask(mmu);
4615 }
4616
4617 static void paging64_init_context(struct kvm_mmu *context)
4618 {
4619 context->page_fault = paging64_page_fault;
4620 context->gva_to_gpa = paging64_gva_to_gpa;
4621 context->sync_page = paging64_sync_page;
4622 context->invlpg = paging64_invlpg;
4623 context->direct_map = false;
4624 }
4625
4626 static void paging32_init_context(struct kvm_mmu *context)
4627 {
4628 context->page_fault = paging32_page_fault;
4629 context->gva_to_gpa = paging32_gva_to_gpa;
4630 context->sync_page = paging32_sync_page;
4631 context->invlpg = paging32_invlpg;
4632 context->direct_map = false;
4633 }
4634
4635 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4636 struct kvm_mmu_role_regs *regs)
4637 {
4638 union kvm_mmu_extended_role ext = {0};
4639
4640 if (____is_cr0_pg(regs)) {
4641 ext.cr0_pg = 1;
4642 ext.cr4_pae = ____is_cr4_pae(regs);
4643 ext.cr4_smep = ____is_cr4_smep(regs);
4644 ext.cr4_smap = ____is_cr4_smap(regs);
4645 ext.cr4_pse = ____is_cr4_pse(regs);
4646
4647 /* PKEY and LA57 are active iff long mode is active. */
4648 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4649 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4650 }
4651
4652 ext.valid = 1;
4653
4654 return ext;
4655 }
4656
4657 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4658 struct kvm_mmu_role_regs *regs,
4659 bool base_only)
4660 {
4661 union kvm_mmu_role role = {0};
4662
4663 role.base.access = ACC_ALL;
4664 if (____is_cr0_pg(regs)) {
4665 role.base.efer_nx = ____is_efer_nx(regs);
4666 role.base.cr0_wp = ____is_cr0_wp(regs);
4667 }
4668 role.base.smm = is_smm(vcpu);
4669 role.base.guest_mode = is_guest_mode(vcpu);
4670
4671 if (base_only)
4672 return role;
4673
4674 role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4675
4676 return role;
4677 }
4678
4679 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4680 {
4681 /* Use 5-level TDP if and only if it's useful/necessary. */
4682 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4683 return 4;
4684
4685 return max_tdp_level;
4686 }
4687
4688 static union kvm_mmu_role
4689 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4690 struct kvm_mmu_role_regs *regs, bool base_only)
4691 {
4692 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4693
4694 role.base.ad_disabled = (shadow_accessed_mask == 0);
4695 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4696 role.base.direct = true;
4697 role.base.gpte_is_8_bytes = true;
4698
4699 return role;
4700 }
4701
4702 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4703 {
4704 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4705 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4706 union kvm_mmu_role new_role =
4707 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4708
4709 if (new_role.as_u64 == context->mmu_role.as_u64)
4710 return;
4711
4712 context->mmu_role.as_u64 = new_role.as_u64;
4713 context->page_fault = kvm_tdp_page_fault;
4714 context->sync_page = nonpaging_sync_page;
4715 context->invlpg = NULL;
4716 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4717 context->direct_map = true;
4718 context->get_guest_pgd = get_cr3;
4719 context->get_pdptr = kvm_pdptr_read;
4720 context->inject_page_fault = kvm_inject_page_fault;
4721 context->root_level = role_regs_to_root_level(&regs);
4722
4723 if (!is_cr0_pg(context))
4724 context->gva_to_gpa = nonpaging_gva_to_gpa;
4725 else if (is_cr4_pae(context))
4726 context->gva_to_gpa = paging64_gva_to_gpa;
4727 else
4728 context->gva_to_gpa = paging32_gva_to_gpa;
4729
4730 reset_guest_paging_metadata(vcpu, context);
4731 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4732 }
4733
4734 static union kvm_mmu_role
4735 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4736 struct kvm_mmu_role_regs *regs, bool base_only)
4737 {
4738 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4739
4740 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4741 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4742 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4743
4744 return role;
4745 }
4746
4747 static union kvm_mmu_role
4748 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4749 struct kvm_mmu_role_regs *regs, bool base_only)
4750 {
4751 union kvm_mmu_role role =
4752 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4753
4754 role.base.direct = !____is_cr0_pg(regs);
4755
4756 if (!____is_efer_lma(regs))
4757 role.base.level = PT32E_ROOT_LEVEL;
4758 else if (____is_cr4_la57(regs))
4759 role.base.level = PT64_ROOT_5LEVEL;
4760 else
4761 role.base.level = PT64_ROOT_4LEVEL;
4762
4763 return role;
4764 }
4765
4766 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4767 struct kvm_mmu_role_regs *regs,
4768 union kvm_mmu_role new_role)
4769 {
4770 if (new_role.as_u64 == context->mmu_role.as_u64)
4771 return;
4772
4773 context->mmu_role.as_u64 = new_role.as_u64;
4774
4775 if (!is_cr0_pg(context))
4776 nonpaging_init_context(context);
4777 else if (is_cr4_pae(context))
4778 paging64_init_context(context);
4779 else
4780 paging32_init_context(context);
4781 context->root_level = role_regs_to_root_level(regs);
4782
4783 reset_guest_paging_metadata(vcpu, context);
4784 context->shadow_root_level = new_role.base.level;
4785
4786 reset_shadow_zero_bits_mask(vcpu, context);
4787 }
4788
4789 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4790 struct kvm_mmu_role_regs *regs)
4791 {
4792 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4793 union kvm_mmu_role new_role =
4794 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4795
4796 shadow_mmu_init_context(vcpu, context, regs, new_role);
4797 }
4798
4799 static union kvm_mmu_role
4800 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4801 struct kvm_mmu_role_regs *regs)
4802 {
4803 union kvm_mmu_role role =
4804 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4805
4806 role.base.direct = false;
4807 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4808
4809 return role;
4810 }
4811
4812 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4813 unsigned long cr4, u64 efer, gpa_t nested_cr3)
4814 {
4815 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4816 struct kvm_mmu_role_regs regs = {
4817 .cr0 = cr0,
4818 .cr4 = cr4,
4819 .efer = efer,
4820 };
4821 union kvm_mmu_role new_role;
4822
4823 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4824
4825 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4826
4827 shadow_mmu_init_context(vcpu, context, &regs, new_role);
4828 }
4829 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4830
4831 static union kvm_mmu_role
4832 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4833 bool execonly, u8 level)
4834 {
4835 union kvm_mmu_role role = {0};
4836
4837 /* SMM flag is inherited from root_mmu */
4838 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4839
4840 role.base.level = level;
4841 role.base.gpte_is_8_bytes = true;
4842 role.base.direct = false;
4843 role.base.ad_disabled = !accessed_dirty;
4844 role.base.guest_mode = true;
4845 role.base.access = ACC_ALL;
4846
4847 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4848 role.ext.word = 0;
4849 role.ext.execonly = execonly;
4850 role.ext.valid = 1;
4851
4852 return role;
4853 }
4854
4855 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4856 bool accessed_dirty, gpa_t new_eptp)
4857 {
4858 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4859 u8 level = vmx_eptp_page_walk_level(new_eptp);
4860 union kvm_mmu_role new_role =
4861 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4862 execonly, level);
4863
4864 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4865
4866 if (new_role.as_u64 == context->mmu_role.as_u64)
4867 return;
4868
4869 context->mmu_role.as_u64 = new_role.as_u64;
4870
4871 context->shadow_root_level = level;
4872
4873 context->ept_ad = accessed_dirty;
4874 context->page_fault = ept_page_fault;
4875 context->gva_to_gpa = ept_gva_to_gpa;
4876 context->sync_page = ept_sync_page;
4877 context->invlpg = ept_invlpg;
4878 context->root_level = level;
4879 context->direct_map = false;
4880
4881 update_permission_bitmask(context, true);
4882 update_pkru_bitmask(context);
4883 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4884 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4885 }
4886 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4887
4888 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4889 {
4890 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4891 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4892
4893 kvm_init_shadow_mmu(vcpu, &regs);
4894
4895 context->get_guest_pgd = get_cr3;
4896 context->get_pdptr = kvm_pdptr_read;
4897 context->inject_page_fault = kvm_inject_page_fault;
4898 }
4899
4900 static union kvm_mmu_role
4901 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4902 {
4903 union kvm_mmu_role role;
4904
4905 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4906
4907 /*
4908 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4909 * shadow pages of their own and so "direct" has no meaning. Set it
4910 * to "true" to try to detect bogus usage of the nested MMU.
4911 */
4912 role.base.direct = true;
4913 role.base.level = role_regs_to_root_level(regs);
4914 return role;
4915 }
4916
4917 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4918 {
4919 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4920 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4921 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4922
4923 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4924 return;
4925
4926 g_context->mmu_role.as_u64 = new_role.as_u64;
4927 g_context->get_guest_pgd = get_cr3;
4928 g_context->get_pdptr = kvm_pdptr_read;
4929 g_context->inject_page_fault = kvm_inject_page_fault;
4930 g_context->root_level = new_role.base.level;
4931
4932 /*
4933 * L2 page tables are never shadowed, so there is no need to sync
4934 * SPTEs.
4935 */
4936 g_context->invlpg = NULL;
4937
4938 /*
4939 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4940 * L1's nested page tables (e.g. EPT12). The nested translation
4941 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4942 * L2's page tables as the first level of translation and L1's
4943 * nested page tables as the second level of translation. Basically
4944 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4945 */
4946 if (!is_paging(vcpu))
4947 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4948 else if (is_long_mode(vcpu))
4949 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4950 else if (is_pae(vcpu))
4951 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4952 else
4953 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4954
4955 reset_guest_paging_metadata(vcpu, g_context);
4956 }
4957
4958 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4959 {
4960 if (mmu_is_nested(vcpu))
4961 init_kvm_nested_mmu(vcpu);
4962 else if (tdp_enabled)
4963 init_kvm_tdp_mmu(vcpu);
4964 else
4965 init_kvm_softmmu(vcpu);
4966 }
4967 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4968
4969 static union kvm_mmu_page_role
4970 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4971 {
4972 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4973 union kvm_mmu_role role;
4974
4975 if (tdp_enabled)
4976 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4977 else
4978 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4979
4980 return role.base;
4981 }
4982
4983 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4984 {
4985 /*
4986 * Invalidate all MMU roles to force them to reinitialize as CPUID
4987 * information is factored into reserved bit calculations.
4988 */
4989 vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4990 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4991 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4992 kvm_mmu_reset_context(vcpu);
4993
4994 /*
4995 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4996 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4997 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
4998 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise
4999 * sweep the problem under the rug.
5000 *
5001 * KVM's horrific CPUID ABI makes the problem all but impossible to
5002 * solve, as correctly handling multiple vCPU models (with respect to
5003 * paging and physical address properties) in a single VM would require
5004 * tracking all relevant CPUID information in kvm_mmu_page_role. That
5005 * is very undesirable as it would double the memory requirements for
5006 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
5007 * no sane VMM mucks with the core vCPU model on the fly.
5008 */
5009 if (vcpu->arch.last_vmentry_cpu != -1) {
5010 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
5011 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
5012 }
5013 }
5014
5015 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5016 {
5017 kvm_mmu_unload(vcpu);
5018 kvm_init_mmu(vcpu);
5019 }
5020 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5021
5022 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5023 {
5024 int r;
5025
5026 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5027 if (r)
5028 goto out;
5029 r = mmu_alloc_special_roots(vcpu);
5030 if (r)
5031 goto out;
5032 if (vcpu->arch.mmu->direct_map)
5033 r = mmu_alloc_direct_roots(vcpu);
5034 else
5035 r = mmu_alloc_shadow_roots(vcpu);
5036 if (r)
5037 goto out;
5038
5039 kvm_mmu_sync_roots(vcpu);
5040
5041 kvm_mmu_load_pgd(vcpu);
5042 static_call(kvm_x86_tlb_flush_current)(vcpu);
5043 out:
5044 return r;
5045 }
5046
5047 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5048 {
5049 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5050 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5051 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5052 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5053 }
5054
5055 static bool need_remote_flush(u64 old, u64 new)
5056 {
5057 if (!is_shadow_present_pte(old))
5058 return false;
5059 if (!is_shadow_present_pte(new))
5060 return true;
5061 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5062 return true;
5063 old ^= shadow_nx_mask;
5064 new ^= shadow_nx_mask;
5065 return (old & ~new & PT64_PERM_MASK) != 0;
5066 }
5067
5068 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5069 int *bytes)
5070 {
5071 u64 gentry = 0;
5072 int r;
5073
5074 /*
5075 * Assume that the pte write on a page table of the same type
5076 * as the current vcpu paging mode since we update the sptes only
5077 * when they have the same mode.
5078 */
5079 if (is_pae(vcpu) && *bytes == 4) {
5080 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5081 *gpa &= ~(gpa_t)7;
5082 *bytes = 8;
5083 }
5084
5085 if (*bytes == 4 || *bytes == 8) {
5086 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5087 if (r)
5088 gentry = 0;
5089 }
5090
5091 return gentry;
5092 }
5093
5094 /*
5095 * If we're seeing too many writes to a page, it may no longer be a page table,
5096 * or we may be forking, in which case it is better to unmap the page.
5097 */
5098 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5099 {
5100 /*
5101 * Skip write-flooding detected for the sp whose level is 1, because
5102 * it can become unsync, then the guest page is not write-protected.
5103 */
5104 if (sp->role.level == PG_LEVEL_4K)
5105 return false;
5106
5107 atomic_inc(&sp->write_flooding_count);
5108 return atomic_read(&sp->write_flooding_count) >= 3;
5109 }
5110
5111 /*
5112 * Misaligned accesses are too much trouble to fix up; also, they usually
5113 * indicate a page is not used as a page table.
5114 */
5115 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5116 int bytes)
5117 {
5118 unsigned offset, pte_size, misaligned;
5119
5120 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5121 gpa, bytes, sp->role.word);
5122
5123 offset = offset_in_page(gpa);
5124 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5125
5126 /*
5127 * Sometimes, the OS only writes the last one bytes to update status
5128 * bits, for example, in linux, andb instruction is used in clear_bit().
5129 */
5130 if (!(offset & (pte_size - 1)) && bytes == 1)
5131 return false;
5132
5133 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5134 misaligned |= bytes < 4;
5135
5136 return misaligned;
5137 }
5138
5139 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5140 {
5141 unsigned page_offset, quadrant;
5142 u64 *spte;
5143 int level;
5144
5145 page_offset = offset_in_page(gpa);
5146 level = sp->role.level;
5147 *nspte = 1;
5148 if (!sp->role.gpte_is_8_bytes) {
5149 page_offset <<= 1; /* 32->64 */
5150 /*
5151 * A 32-bit pde maps 4MB while the shadow pdes map
5152 * only 2MB. So we need to double the offset again
5153 * and zap two pdes instead of one.
5154 */
5155 if (level == PT32_ROOT_LEVEL) {
5156 page_offset &= ~7; /* kill rounding error */
5157 page_offset <<= 1;
5158 *nspte = 2;
5159 }
5160 quadrant = page_offset >> PAGE_SHIFT;
5161 page_offset &= ~PAGE_MASK;
5162 if (quadrant != sp->role.quadrant)
5163 return NULL;
5164 }
5165
5166 spte = &sp->spt[page_offset / sizeof(*spte)];
5167 return spte;
5168 }
5169
5170 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5171 const u8 *new, int bytes,
5172 struct kvm_page_track_notifier_node *node)
5173 {
5174 gfn_t gfn = gpa >> PAGE_SHIFT;
5175 struct kvm_mmu_page *sp;
5176 LIST_HEAD(invalid_list);
5177 u64 entry, gentry, *spte;
5178 int npte;
5179 bool remote_flush, local_flush;
5180
5181 /*
5182 * If we don't have indirect shadow pages, it means no page is
5183 * write-protected, so we can exit simply.
5184 */
5185 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5186 return;
5187
5188 remote_flush = local_flush = false;
5189
5190 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5191
5192 /*
5193 * No need to care whether allocation memory is successful
5194 * or not since pte prefetch is skipped if it does not have
5195 * enough objects in the cache.
5196 */
5197 mmu_topup_memory_caches(vcpu, true);
5198
5199 write_lock(&vcpu->kvm->mmu_lock);
5200
5201 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5202
5203 ++vcpu->kvm->stat.mmu_pte_write;
5204 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5205
5206 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5207 if (detect_write_misaligned(sp, gpa, bytes) ||
5208 detect_write_flooding(sp)) {
5209 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5210 ++vcpu->kvm->stat.mmu_flooded;
5211 continue;
5212 }
5213
5214 spte = get_written_sptes(sp, gpa, &npte);
5215 if (!spte)
5216 continue;
5217
5218 local_flush = true;
5219 while (npte--) {
5220 entry = *spte;
5221 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5222 if (gentry && sp->role.level != PG_LEVEL_4K)
5223 ++vcpu->kvm->stat.mmu_pde_zapped;
5224 if (need_remote_flush(entry, *spte))
5225 remote_flush = true;
5226 ++spte;
5227 }
5228 }
5229 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5230 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5231 write_unlock(&vcpu->kvm->mmu_lock);
5232 }
5233
5234 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5235 void *insn, int insn_len)
5236 {
5237 int r, emulation_type = EMULTYPE_PF;
5238 bool direct = vcpu->arch.mmu->direct_map;
5239
5240 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5241 return RET_PF_RETRY;
5242
5243 r = RET_PF_INVALID;
5244 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5245 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5246 if (r == RET_PF_EMULATE)
5247 goto emulate;
5248 }
5249
5250 if (r == RET_PF_INVALID) {
5251 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5252 lower_32_bits(error_code), false);
5253 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5254 return -EIO;
5255 }
5256
5257 if (r < 0)
5258 return r;
5259 if (r != RET_PF_EMULATE)
5260 return 1;
5261
5262 /*
5263 * Before emulating the instruction, check if the error code
5264 * was due to a RO violation while translating the guest page.
5265 * This can occur when using nested virtualization with nested
5266 * paging in both guests. If true, we simply unprotect the page
5267 * and resume the guest.
5268 */
5269 if (vcpu->arch.mmu->direct_map &&
5270 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5271 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5272 return 1;
5273 }
5274
5275 /*
5276 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5277 * optimistically try to just unprotect the page and let the processor
5278 * re-execute the instruction that caused the page fault. Do not allow
5279 * retrying MMIO emulation, as it's not only pointless but could also
5280 * cause us to enter an infinite loop because the processor will keep
5281 * faulting on the non-existent MMIO address. Retrying an instruction
5282 * from a nested guest is also pointless and dangerous as we are only
5283 * explicitly shadowing L1's page tables, i.e. unprotecting something
5284 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5285 */
5286 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5287 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5288 emulate:
5289 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5290 insn_len);
5291 }
5292 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5293
5294 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5295 gva_t gva, hpa_t root_hpa)
5296 {
5297 int i;
5298
5299 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5300 if (mmu != &vcpu->arch.guest_mmu) {
5301 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5302 if (is_noncanonical_address(gva, vcpu))
5303 return;
5304
5305 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5306 }
5307
5308 if (!mmu->invlpg)
5309 return;
5310
5311 if (root_hpa == INVALID_PAGE) {
5312 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5313
5314 /*
5315 * INVLPG is required to invalidate any global mappings for the VA,
5316 * irrespective of PCID. Since it would take us roughly similar amount
5317 * of work to determine whether any of the prev_root mappings of the VA
5318 * is marked global, or to just sync it blindly, so we might as well
5319 * just always sync it.
5320 *
5321 * Mappings not reachable via the current cr3 or the prev_roots will be
5322 * synced when switching to that cr3, so nothing needs to be done here
5323 * for them.
5324 */
5325 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5326 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5327 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5328 } else {
5329 mmu->invlpg(vcpu, gva, root_hpa);
5330 }
5331 }
5332
5333 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5334 {
5335 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5336 ++vcpu->stat.invlpg;
5337 }
5338 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5339
5340
5341 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5342 {
5343 struct kvm_mmu *mmu = vcpu->arch.mmu;
5344 bool tlb_flush = false;
5345 uint i;
5346
5347 if (pcid == kvm_get_active_pcid(vcpu)) {
5348 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5349 tlb_flush = true;
5350 }
5351
5352 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5353 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5354 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5355 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5356 tlb_flush = true;
5357 }
5358 }
5359
5360 if (tlb_flush)
5361 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5362
5363 ++vcpu->stat.invlpg;
5364
5365 /*
5366 * Mappings not reachable via the current cr3 or the prev_roots will be
5367 * synced when switching to that cr3, so nothing needs to be done here
5368 * for them.
5369 */
5370 }
5371
5372 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5373 int tdp_huge_page_level)
5374 {
5375 tdp_enabled = enable_tdp;
5376 max_tdp_level = tdp_max_root_level;
5377
5378 /*
5379 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5380 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5381 * the kernel is not. But, KVM never creates a page size greater than
5382 * what is used by the kernel for any given HVA, i.e. the kernel's
5383 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5384 */
5385 if (tdp_enabled)
5386 max_huge_page_level = tdp_huge_page_level;
5387 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5388 max_huge_page_level = PG_LEVEL_1G;
5389 else
5390 max_huge_page_level = PG_LEVEL_2M;
5391 }
5392 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5393
5394 /* The return value indicates if tlb flush on all vcpus is needed. */
5395 typedef bool (*slot_level_handler) (struct kvm *kvm,
5396 struct kvm_rmap_head *rmap_head,
5397 const struct kvm_memory_slot *slot);
5398
5399 /* The caller should hold mmu-lock before calling this function. */
5400 static __always_inline bool
5401 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5402 slot_level_handler fn, int start_level, int end_level,
5403 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5404 bool flush)
5405 {
5406 struct slot_rmap_walk_iterator iterator;
5407
5408 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5409 end_gfn, &iterator) {
5410 if (iterator.rmap)
5411 flush |= fn(kvm, iterator.rmap, memslot);
5412
5413 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5414 if (flush && flush_on_yield) {
5415 kvm_flush_remote_tlbs_with_address(kvm,
5416 start_gfn,
5417 iterator.gfn - start_gfn + 1);
5418 flush = false;
5419 }
5420 cond_resched_rwlock_write(&kvm->mmu_lock);
5421 }
5422 }
5423
5424 return flush;
5425 }
5426
5427 static __always_inline bool
5428 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5429 slot_level_handler fn, int start_level, int end_level,
5430 bool flush_on_yield)
5431 {
5432 return slot_handle_level_range(kvm, memslot, fn, start_level,
5433 end_level, memslot->base_gfn,
5434 memslot->base_gfn + memslot->npages - 1,
5435 flush_on_yield, false);
5436 }
5437
5438 static __always_inline bool
5439 slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5440 slot_level_handler fn, bool flush_on_yield)
5441 {
5442 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5443 PG_LEVEL_4K, flush_on_yield);
5444 }
5445
5446 static void free_mmu_pages(struct kvm_mmu *mmu)
5447 {
5448 if (!tdp_enabled && mmu->pae_root)
5449 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5450 free_page((unsigned long)mmu->pae_root);
5451 free_page((unsigned long)mmu->pml4_root);
5452 }
5453
5454 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5455 {
5456 struct page *page;
5457 int i;
5458
5459 mmu->root_hpa = INVALID_PAGE;
5460 mmu->root_pgd = 0;
5461 mmu->translate_gpa = translate_gpa;
5462 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5463 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5464
5465 /*
5466 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5467 * while the PDP table is a per-vCPU construct that's allocated at MMU
5468 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5469 * x86_64. Therefore we need to allocate the PDP table in the first
5470 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5471 * generally doesn't use PAE paging and can skip allocating the PDP
5472 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5473 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5474 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5475 */
5476 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5477 return 0;
5478
5479 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5480 if (!page)
5481 return -ENOMEM;
5482
5483 mmu->pae_root = page_address(page);
5484
5485 /*
5486 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5487 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5488 * that KVM's writes and the CPU's reads get along. Note, this is
5489 * only necessary when using shadow paging, as 64-bit NPT can get at
5490 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5491 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5492 */
5493 if (!tdp_enabled)
5494 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5495 else
5496 WARN_ON_ONCE(shadow_me_mask);
5497
5498 for (i = 0; i < 4; ++i)
5499 mmu->pae_root[i] = INVALID_PAE_ROOT;
5500
5501 return 0;
5502 }
5503
5504 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5505 {
5506 int ret;
5507
5508 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5509 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5510
5511 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5512 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5513
5514 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5515
5516 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5517 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5518
5519 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5520
5521 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5522 if (ret)
5523 return ret;
5524
5525 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5526 if (ret)
5527 goto fail_allocate_root;
5528
5529 return ret;
5530 fail_allocate_root:
5531 free_mmu_pages(&vcpu->arch.guest_mmu);
5532 return ret;
5533 }
5534
5535 #define BATCH_ZAP_PAGES 10
5536 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5537 {
5538 struct kvm_mmu_page *sp, *node;
5539 int nr_zapped, batch = 0;
5540
5541 restart:
5542 list_for_each_entry_safe_reverse(sp, node,
5543 &kvm->arch.active_mmu_pages, link) {
5544 /*
5545 * No obsolete valid page exists before a newly created page
5546 * since active_mmu_pages is a FIFO list.
5547 */
5548 if (!is_obsolete_sp(kvm, sp))
5549 break;
5550
5551 /*
5552 * Invalid pages should never land back on the list of active
5553 * pages. Skip the bogus page, otherwise we'll get stuck in an
5554 * infinite loop if the page gets put back on the list (again).
5555 */
5556 if (WARN_ON(sp->role.invalid))
5557 continue;
5558
5559 /*
5560 * No need to flush the TLB since we're only zapping shadow
5561 * pages with an obsolete generation number and all vCPUS have
5562 * loaded a new root, i.e. the shadow pages being zapped cannot
5563 * be in active use by the guest.
5564 */
5565 if (batch >= BATCH_ZAP_PAGES &&
5566 cond_resched_rwlock_write(&kvm->mmu_lock)) {
5567 batch = 0;
5568 goto restart;
5569 }
5570
5571 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5572 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5573 batch += nr_zapped;
5574 goto restart;
5575 }
5576 }
5577
5578 /*
5579 * Trigger a remote TLB flush before freeing the page tables to ensure
5580 * KVM is not in the middle of a lockless shadow page table walk, which
5581 * may reference the pages.
5582 */
5583 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5584 }
5585
5586 /*
5587 * Fast invalidate all shadow pages and use lock-break technique
5588 * to zap obsolete pages.
5589 *
5590 * It's required when memslot is being deleted or VM is being
5591 * destroyed, in these cases, we should ensure that KVM MMU does
5592 * not use any resource of the being-deleted slot or all slots
5593 * after calling the function.
5594 */
5595 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5596 {
5597 lockdep_assert_held(&kvm->slots_lock);
5598
5599 write_lock(&kvm->mmu_lock);
5600 trace_kvm_mmu_zap_all_fast(kvm);
5601
5602 /*
5603 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5604 * held for the entire duration of zapping obsolete pages, it's
5605 * impossible for there to be multiple invalid generations associated
5606 * with *valid* shadow pages at any given time, i.e. there is exactly
5607 * one valid generation and (at most) one invalid generation.
5608 */
5609 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5610
5611 /* In order to ensure all threads see this change when
5612 * handling the MMU reload signal, this must happen in the
5613 * same critical section as kvm_reload_remote_mmus, and
5614 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5615 * could drop the MMU lock and yield.
5616 */
5617 if (is_tdp_mmu_enabled(kvm))
5618 kvm_tdp_mmu_invalidate_all_roots(kvm);
5619
5620 /*
5621 * Notify all vcpus to reload its shadow page table and flush TLB.
5622 * Then all vcpus will switch to new shadow page table with the new
5623 * mmu_valid_gen.
5624 *
5625 * Note: we need to do this under the protection of mmu_lock,
5626 * otherwise, vcpu would purge shadow page but miss tlb flush.
5627 */
5628 kvm_reload_remote_mmus(kvm);
5629
5630 kvm_zap_obsolete_pages(kvm);
5631
5632 write_unlock(&kvm->mmu_lock);
5633
5634 if (is_tdp_mmu_enabled(kvm)) {
5635 read_lock(&kvm->mmu_lock);
5636 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5637 read_unlock(&kvm->mmu_lock);
5638 }
5639 }
5640
5641 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5642 {
5643 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5644 }
5645
5646 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5647 struct kvm_memory_slot *slot,
5648 struct kvm_page_track_notifier_node *node)
5649 {
5650 kvm_mmu_zap_all_fast(kvm);
5651 }
5652
5653 void kvm_mmu_init_vm(struct kvm *kvm)
5654 {
5655 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5656
5657 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5658
5659 if (!kvm_mmu_init_tdp_mmu(kvm))
5660 /*
5661 * No smp_load/store wrappers needed here as we are in
5662 * VM init and there cannot be any memslots / other threads
5663 * accessing this struct kvm yet.
5664 */
5665 kvm->arch.memslots_have_rmaps = true;
5666
5667 node->track_write = kvm_mmu_pte_write;
5668 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5669 kvm_page_track_register_notifier(kvm, node);
5670 }
5671
5672 void kvm_mmu_uninit_vm(struct kvm *kvm)
5673 {
5674 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5675
5676 kvm_page_track_unregister_notifier(kvm, node);
5677
5678 kvm_mmu_uninit_tdp_mmu(kvm);
5679 }
5680
5681 /*
5682 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5683 * (not including it)
5684 */
5685 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5686 {
5687 struct kvm_memslots *slots;
5688 struct kvm_memory_slot *memslot;
5689 int i;
5690 bool flush = false;
5691
5692 write_lock(&kvm->mmu_lock);
5693
5694 kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5695
5696 if (kvm_memslots_have_rmaps(kvm)) {
5697 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5698 slots = __kvm_memslots(kvm, i);
5699 kvm_for_each_memslot(memslot, slots) {
5700 gfn_t start, end;
5701
5702 start = max(gfn_start, memslot->base_gfn);
5703 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5704 if (start >= end)
5705 continue;
5706
5707 flush = slot_handle_level_range(kvm,
5708 (const struct kvm_memory_slot *) memslot,
5709 kvm_zap_rmapp, PG_LEVEL_4K,
5710 KVM_MAX_HUGEPAGE_LEVEL, start,
5711 end - 1, true, flush);
5712 }
5713 }
5714 if (flush)
5715 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5716 gfn_end - gfn_start);
5717 }
5718
5719 if (is_tdp_mmu_enabled(kvm)) {
5720 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5721 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5722 gfn_end, flush);
5723 if (flush)
5724 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5725 gfn_end - gfn_start);
5726 }
5727
5728 if (flush)
5729 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5730
5731 kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5732
5733 write_unlock(&kvm->mmu_lock);
5734 }
5735
5736 static bool slot_rmap_write_protect(struct kvm *kvm,
5737 struct kvm_rmap_head *rmap_head,
5738 const struct kvm_memory_slot *slot)
5739 {
5740 return __rmap_write_protect(kvm, rmap_head, false);
5741 }
5742
5743 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5744 const struct kvm_memory_slot *memslot,
5745 int start_level)
5746 {
5747 bool flush = false;
5748
5749 if (kvm_memslots_have_rmaps(kvm)) {
5750 write_lock(&kvm->mmu_lock);
5751 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5752 start_level, KVM_MAX_HUGEPAGE_LEVEL,
5753 false);
5754 write_unlock(&kvm->mmu_lock);
5755 }
5756
5757 if (is_tdp_mmu_enabled(kvm)) {
5758 read_lock(&kvm->mmu_lock);
5759 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5760 read_unlock(&kvm->mmu_lock);
5761 }
5762
5763 /*
5764 * We can flush all the TLBs out of the mmu lock without TLB
5765 * corruption since we just change the spte from writable to
5766 * readonly so that we only need to care the case of changing
5767 * spte from present to present (changing the spte from present
5768 * to nonpresent will flush all the TLBs immediately), in other
5769 * words, the only case we care is mmu_spte_update() where we
5770 * have checked Host-writable | MMU-writable instead of
5771 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5772 * anymore.
5773 */
5774 if (flush)
5775 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5776 }
5777
5778 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5779 struct kvm_rmap_head *rmap_head,
5780 const struct kvm_memory_slot *slot)
5781 {
5782 u64 *sptep;
5783 struct rmap_iterator iter;
5784 int need_tlb_flush = 0;
5785 kvm_pfn_t pfn;
5786 struct kvm_mmu_page *sp;
5787
5788 restart:
5789 for_each_rmap_spte(rmap_head, &iter, sptep) {
5790 sp = sptep_to_sp(sptep);
5791 pfn = spte_to_pfn(*sptep);
5792
5793 /*
5794 * We cannot do huge page mapping for indirect shadow pages,
5795 * which are found on the last rmap (level = 1) when not using
5796 * tdp; such shadow pages are synced with the page table in
5797 * the guest, and the guest page table is using 4K page size
5798 * mapping if the indirect sp has level = 1.
5799 */
5800 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5801 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5802 pfn, PG_LEVEL_NUM)) {
5803 pte_list_remove(rmap_head, sptep);
5804
5805 if (kvm_available_flush_tlb_with_range())
5806 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5807 KVM_PAGES_PER_HPAGE(sp->role.level));
5808 else
5809 need_tlb_flush = 1;
5810
5811 goto restart;
5812 }
5813 }
5814
5815 return need_tlb_flush;
5816 }
5817
5818 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5819 const struct kvm_memory_slot *slot)
5820 {
5821 bool flush = false;
5822
5823 if (kvm_memslots_have_rmaps(kvm)) {
5824 write_lock(&kvm->mmu_lock);
5825 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5826 if (flush)
5827 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5828 write_unlock(&kvm->mmu_lock);
5829 }
5830
5831 if (is_tdp_mmu_enabled(kvm)) {
5832 read_lock(&kvm->mmu_lock);
5833 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5834 if (flush)
5835 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5836 read_unlock(&kvm->mmu_lock);
5837 }
5838 }
5839
5840 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5841 const struct kvm_memory_slot *memslot)
5842 {
5843 /*
5844 * All current use cases for flushing the TLBs for a specific memslot
5845 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5846 * The interaction between the various operations on memslot must be
5847 * serialized by slots_locks to ensure the TLB flush from one operation
5848 * is observed by any other operation on the same memslot.
5849 */
5850 lockdep_assert_held(&kvm->slots_lock);
5851 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5852 memslot->npages);
5853 }
5854
5855 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5856 const struct kvm_memory_slot *memslot)
5857 {
5858 bool flush = false;
5859
5860 if (kvm_memslots_have_rmaps(kvm)) {
5861 write_lock(&kvm->mmu_lock);
5862 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5863 false);
5864 write_unlock(&kvm->mmu_lock);
5865 }
5866
5867 if (is_tdp_mmu_enabled(kvm)) {
5868 read_lock(&kvm->mmu_lock);
5869 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5870 read_unlock(&kvm->mmu_lock);
5871 }
5872
5873 /*
5874 * It's also safe to flush TLBs out of mmu lock here as currently this
5875 * function is only used for dirty logging, in which case flushing TLB
5876 * out of mmu lock also guarantees no dirty pages will be lost in
5877 * dirty_bitmap.
5878 */
5879 if (flush)
5880 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5881 }
5882
5883 void kvm_mmu_zap_all(struct kvm *kvm)
5884 {
5885 struct kvm_mmu_page *sp, *node;
5886 LIST_HEAD(invalid_list);
5887 int ign;
5888
5889 write_lock(&kvm->mmu_lock);
5890 restart:
5891 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5892 if (WARN_ON(sp->role.invalid))
5893 continue;
5894 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5895 goto restart;
5896 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5897 goto restart;
5898 }
5899
5900 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5901
5902 if (is_tdp_mmu_enabled(kvm))
5903 kvm_tdp_mmu_zap_all(kvm);
5904
5905 write_unlock(&kvm->mmu_lock);
5906 }
5907
5908 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5909 {
5910 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5911
5912 gen &= MMIO_SPTE_GEN_MASK;
5913
5914 /*
5915 * Generation numbers are incremented in multiples of the number of
5916 * address spaces in order to provide unique generations across all
5917 * address spaces. Strip what is effectively the address space
5918 * modifier prior to checking for a wrap of the MMIO generation so
5919 * that a wrap in any address space is detected.
5920 */
5921 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5922
5923 /*
5924 * The very rare case: if the MMIO generation number has wrapped,
5925 * zap all shadow pages.
5926 */
5927 if (unlikely(gen == 0)) {
5928 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5929 kvm_mmu_zap_all_fast(kvm);
5930 }
5931 }
5932
5933 static unsigned long
5934 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5935 {
5936 struct kvm *kvm;
5937 int nr_to_scan = sc->nr_to_scan;
5938 unsigned long freed = 0;
5939
5940 mutex_lock(&kvm_lock);
5941
5942 list_for_each_entry(kvm, &vm_list, vm_list) {
5943 int idx;
5944 LIST_HEAD(invalid_list);
5945
5946 /*
5947 * Never scan more than sc->nr_to_scan VM instances.
5948 * Will not hit this condition practically since we do not try
5949 * to shrink more than one VM and it is very unlikely to see
5950 * !n_used_mmu_pages so many times.
5951 */
5952 if (!nr_to_scan--)
5953 break;
5954 /*
5955 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5956 * here. We may skip a VM instance errorneosly, but we do not
5957 * want to shrink a VM that only started to populate its MMU
5958 * anyway.
5959 */
5960 if (!kvm->arch.n_used_mmu_pages &&
5961 !kvm_has_zapped_obsolete_pages(kvm))
5962 continue;
5963
5964 idx = srcu_read_lock(&kvm->srcu);
5965 write_lock(&kvm->mmu_lock);
5966
5967 if (kvm_has_zapped_obsolete_pages(kvm)) {
5968 kvm_mmu_commit_zap_page(kvm,
5969 &kvm->arch.zapped_obsolete_pages);
5970 goto unlock;
5971 }
5972
5973 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5974
5975 unlock:
5976 write_unlock(&kvm->mmu_lock);
5977 srcu_read_unlock(&kvm->srcu, idx);
5978
5979 /*
5980 * unfair on small ones
5981 * per-vm shrinkers cry out
5982 * sadness comes quickly
5983 */
5984 list_move_tail(&kvm->vm_list, &vm_list);
5985 break;
5986 }
5987
5988 mutex_unlock(&kvm_lock);
5989 return freed;
5990 }
5991
5992 static unsigned long
5993 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5994 {
5995 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5996 }
5997
5998 static struct shrinker mmu_shrinker = {
5999 .count_objects = mmu_shrink_count,
6000 .scan_objects = mmu_shrink_scan,
6001 .seeks = DEFAULT_SEEKS * 10,
6002 };
6003
6004 static void mmu_destroy_caches(void)
6005 {
6006 kmem_cache_destroy(pte_list_desc_cache);
6007 kmem_cache_destroy(mmu_page_header_cache);
6008 }
6009
6010 static bool get_nx_auto_mode(void)
6011 {
6012 /* Return true when CPU has the bug, and mitigations are ON */
6013 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6014 }
6015
6016 static void __set_nx_huge_pages(bool val)
6017 {
6018 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6019 }
6020
6021 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6022 {
6023 bool old_val = nx_huge_pages;
6024 bool new_val;
6025
6026 /* In "auto" mode deploy workaround only if CPU has the bug. */
6027 if (sysfs_streq(val, "off"))
6028 new_val = 0;
6029 else if (sysfs_streq(val, "force"))
6030 new_val = 1;
6031 else if (sysfs_streq(val, "auto"))
6032 new_val = get_nx_auto_mode();
6033 else if (strtobool(val, &new_val) < 0)
6034 return -EINVAL;
6035
6036 __set_nx_huge_pages(new_val);
6037
6038 if (new_val != old_val) {
6039 struct kvm *kvm;
6040
6041 mutex_lock(&kvm_lock);
6042
6043 list_for_each_entry(kvm, &vm_list, vm_list) {
6044 mutex_lock(&kvm->slots_lock);
6045 kvm_mmu_zap_all_fast(kvm);
6046 mutex_unlock(&kvm->slots_lock);
6047
6048 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6049 }
6050 mutex_unlock(&kvm_lock);
6051 }
6052
6053 return 0;
6054 }
6055
6056 int kvm_mmu_module_init(void)
6057 {
6058 int ret = -ENOMEM;
6059
6060 if (nx_huge_pages == -1)
6061 __set_nx_huge_pages(get_nx_auto_mode());
6062
6063 /*
6064 * MMU roles use union aliasing which is, generally speaking, an
6065 * undefined behavior. However, we supposedly know how compilers behave
6066 * and the current status quo is unlikely to change. Guardians below are
6067 * supposed to let us know if the assumption becomes false.
6068 */
6069 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6070 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6071 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6072
6073 kvm_mmu_reset_all_pte_masks();
6074
6075 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6076 sizeof(struct pte_list_desc),
6077 0, SLAB_ACCOUNT, NULL);
6078 if (!pte_list_desc_cache)
6079 goto out;
6080
6081 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6082 sizeof(struct kvm_mmu_page),
6083 0, SLAB_ACCOUNT, NULL);
6084 if (!mmu_page_header_cache)
6085 goto out;
6086
6087 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6088 goto out;
6089
6090 ret = register_shrinker(&mmu_shrinker);
6091 if (ret)
6092 goto out;
6093
6094 return 0;
6095
6096 out:
6097 mmu_destroy_caches();
6098 return ret;
6099 }
6100
6101 /*
6102 * Calculate mmu pages needed for kvm.
6103 */
6104 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6105 {
6106 unsigned long nr_mmu_pages;
6107 unsigned long nr_pages = 0;
6108 struct kvm_memslots *slots;
6109 struct kvm_memory_slot *memslot;
6110 int i;
6111
6112 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6113 slots = __kvm_memslots(kvm, i);
6114
6115 kvm_for_each_memslot(memslot, slots)
6116 nr_pages += memslot->npages;
6117 }
6118
6119 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6120 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6121
6122 return nr_mmu_pages;
6123 }
6124
6125 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6126 {
6127 kvm_mmu_unload(vcpu);
6128 free_mmu_pages(&vcpu->arch.root_mmu);
6129 free_mmu_pages(&vcpu->arch.guest_mmu);
6130 mmu_free_memory_caches(vcpu);
6131 }
6132
6133 void kvm_mmu_module_exit(void)
6134 {
6135 mmu_destroy_caches();
6136 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6137 unregister_shrinker(&mmu_shrinker);
6138 mmu_audit_disable();
6139 }
6140
6141 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6142 {
6143 unsigned int old_val;
6144 int err;
6145
6146 old_val = nx_huge_pages_recovery_ratio;
6147 err = param_set_uint(val, kp);
6148 if (err)
6149 return err;
6150
6151 if (READ_ONCE(nx_huge_pages) &&
6152 !old_val && nx_huge_pages_recovery_ratio) {
6153 struct kvm *kvm;
6154
6155 mutex_lock(&kvm_lock);
6156
6157 list_for_each_entry(kvm, &vm_list, vm_list)
6158 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6159
6160 mutex_unlock(&kvm_lock);
6161 }
6162
6163 return err;
6164 }
6165
6166 static void kvm_recover_nx_lpages(struct kvm *kvm)
6167 {
6168 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6169 int rcu_idx;
6170 struct kvm_mmu_page *sp;
6171 unsigned int ratio;
6172 LIST_HEAD(invalid_list);
6173 bool flush = false;
6174 ulong to_zap;
6175
6176 rcu_idx = srcu_read_lock(&kvm->srcu);
6177 write_lock(&kvm->mmu_lock);
6178
6179 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6180 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6181 for ( ; to_zap; --to_zap) {
6182 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6183 break;
6184
6185 /*
6186 * We use a separate list instead of just using active_mmu_pages
6187 * because the number of lpage_disallowed pages is expected to
6188 * be relatively small compared to the total.
6189 */
6190 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6191 struct kvm_mmu_page,
6192 lpage_disallowed_link);
6193 WARN_ON_ONCE(!sp->lpage_disallowed);
6194 if (is_tdp_mmu_page(sp)) {
6195 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6196 } else {
6197 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6198 WARN_ON_ONCE(sp->lpage_disallowed);
6199 }
6200
6201 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6202 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6203 cond_resched_rwlock_write(&kvm->mmu_lock);
6204 flush = false;
6205 }
6206 }
6207 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6208
6209 write_unlock(&kvm->mmu_lock);
6210 srcu_read_unlock(&kvm->srcu, rcu_idx);
6211 }
6212
6213 static long get_nx_lpage_recovery_timeout(u64 start_time)
6214 {
6215 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6216 ? start_time + 60 * HZ - get_jiffies_64()
6217 : MAX_SCHEDULE_TIMEOUT;
6218 }
6219
6220 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6221 {
6222 u64 start_time;
6223 long remaining_time;
6224
6225 while (true) {
6226 start_time = get_jiffies_64();
6227 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6228
6229 set_current_state(TASK_INTERRUPTIBLE);
6230 while (!kthread_should_stop() && remaining_time > 0) {
6231 schedule_timeout(remaining_time);
6232 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6233 set_current_state(TASK_INTERRUPTIBLE);
6234 }
6235
6236 set_current_state(TASK_RUNNING);
6237
6238 if (kthread_should_stop())
6239 return 0;
6240
6241 kvm_recover_nx_lpages(kvm);
6242 }
6243 }
6244
6245 int kvm_mmu_post_init_vm(struct kvm *kvm)
6246 {
6247 int err;
6248
6249 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6250 "kvm-nx-lpage-recovery",
6251 &kvm->arch.nx_lpage_recovery_thread);
6252 if (!err)
6253 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6254
6255 return err;
6256 }
6257
6258 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6259 {
6260 if (kvm->arch.nx_lpage_recovery_thread)
6261 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6262 }