]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
Merge tag 'nfsd-5.8' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "x86.h"
22 #include "kvm_cache_regs.h"
23 #include "kvm_emulate.h"
24 #include "cpuid.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/moduleparam.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/sched/signal.h>
39 #include <linux/uaccess.h>
40 #include <linux/hash.h>
41 #include <linux/kern_levels.h>
42 #include <linux/kthread.h>
43
44 #include <asm/page.h>
45 #include <asm/memtype.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/e820/api.h>
48 #include <asm/io.h>
49 #include <asm/vmx.h>
50 #include <asm/kvm_page_track.h>
51 #include "trace.h"
52
53 extern bool itlb_multihit_kvm_mitigation;
54
55 static int __read_mostly nx_huge_pages = -1;
56 #ifdef CONFIG_PREEMPT_RT
57 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
59 #else
60 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
61 #endif
62
63 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
64 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
65
66 static struct kernel_param_ops nx_huge_pages_ops = {
67 .set = set_nx_huge_pages,
68 .get = param_get_bool,
69 };
70
71 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
72 .set = set_nx_huge_pages_recovery_ratio,
73 .get = param_get_uint,
74 };
75
76 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
77 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
78 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
79 &nx_huge_pages_recovery_ratio, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
81
82 static bool __read_mostly force_flush_and_sync_on_reuse;
83 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
84
85 /*
86 * When setting this variable to true it enables Two-Dimensional-Paging
87 * where the hardware walks 2 page tables:
88 * 1. the guest-virtual to guest-physical
89 * 2. while doing 1. it walks guest-physical to host-physical
90 * If the hardware supports that we don't need to do shadow paging.
91 */
92 bool tdp_enabled = false;
93
94 static int max_page_level __read_mostly;
95
96 enum {
97 AUDIT_PRE_PAGE_FAULT,
98 AUDIT_POST_PAGE_FAULT,
99 AUDIT_PRE_PTE_WRITE,
100 AUDIT_POST_PTE_WRITE,
101 AUDIT_PRE_SYNC,
102 AUDIT_POST_SYNC
103 };
104
105 #undef MMU_DEBUG
106
107 #ifdef MMU_DEBUG
108 static bool dbg = 0;
109 module_param(dbg, bool, 0644);
110
111 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
112 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
113 #define MMU_WARN_ON(x) WARN_ON(x)
114 #else
115 #define pgprintk(x...) do { } while (0)
116 #define rmap_printk(x...) do { } while (0)
117 #define MMU_WARN_ON(x) do { } while (0)
118 #endif
119
120 #define PTE_PREFETCH_NUM 8
121
122 #define PT_FIRST_AVAIL_BITS_SHIFT 10
123 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
124
125 /*
126 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
127 * Access Tracking SPTEs.
128 */
129 #define SPTE_SPECIAL_MASK (3ULL << 52)
130 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
131 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
132 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
133 #define SPTE_MMIO_MASK (3ULL << 52)
134
135 #define PT64_LEVEL_BITS 9
136
137 #define PT64_LEVEL_SHIFT(level) \
138 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
139
140 #define PT64_INDEX(address, level)\
141 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
142
143
144 #define PT32_LEVEL_BITS 10
145
146 #define PT32_LEVEL_SHIFT(level) \
147 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
148
149 #define PT32_LVL_OFFSET_MASK(level) \
150 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 * PT32_LEVEL_BITS))) - 1))
152
153 #define PT32_INDEX(address, level)\
154 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
155
156
157 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
158 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
159 #else
160 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
161 #endif
162 #define PT64_LVL_ADDR_MASK(level) \
163 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
164 * PT64_LEVEL_BITS))) - 1))
165 #define PT64_LVL_OFFSET_MASK(level) \
166 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 * PT64_LEVEL_BITS))) - 1))
168
169 #define PT32_BASE_ADDR_MASK PAGE_MASK
170 #define PT32_DIR_BASE_ADDR_MASK \
171 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
172 #define PT32_LVL_ADDR_MASK(level) \
173 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
174 * PT32_LEVEL_BITS))) - 1))
175
176 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
177 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
178
179 #define ACC_EXEC_MASK 1
180 #define ACC_WRITE_MASK PT_WRITABLE_MASK
181 #define ACC_USER_MASK PT_USER_MASK
182 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
183
184 /* The mask for the R/X bits in EPT PTEs */
185 #define PT64_EPT_READABLE_MASK 0x1ull
186 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
187
188 #include <trace/events/kvm.h>
189
190 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
191 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
192
193 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
194
195 /* make pte_list_desc fit well in cache line */
196 #define PTE_LIST_EXT 3
197
198 /*
199 * Return values of handle_mmio_page_fault and mmu.page_fault:
200 * RET_PF_RETRY: let CPU fault again on the address.
201 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
202 *
203 * For handle_mmio_page_fault only:
204 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
205 */
206 enum {
207 RET_PF_RETRY = 0,
208 RET_PF_EMULATE = 1,
209 RET_PF_INVALID = 2,
210 };
211
212 struct pte_list_desc {
213 u64 *sptes[PTE_LIST_EXT];
214 struct pte_list_desc *more;
215 };
216
217 struct kvm_shadow_walk_iterator {
218 u64 addr;
219 hpa_t shadow_addr;
220 u64 *sptep;
221 int level;
222 unsigned index;
223 };
224
225 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
226 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
227 (_root), (_addr)); \
228 shadow_walk_okay(&(_walker)); \
229 shadow_walk_next(&(_walker)))
230
231 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
232 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
233 shadow_walk_okay(&(_walker)); \
234 shadow_walk_next(&(_walker)))
235
236 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
237 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
238 shadow_walk_okay(&(_walker)) && \
239 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
240 __shadow_walk_next(&(_walker), spte))
241
242 static struct kmem_cache *pte_list_desc_cache;
243 static struct kmem_cache *mmu_page_header_cache;
244 static struct percpu_counter kvm_total_used_mmu_pages;
245
246 static u64 __read_mostly shadow_nx_mask;
247 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
248 static u64 __read_mostly shadow_user_mask;
249 static u64 __read_mostly shadow_accessed_mask;
250 static u64 __read_mostly shadow_dirty_mask;
251 static u64 __read_mostly shadow_mmio_value;
252 static u64 __read_mostly shadow_mmio_access_mask;
253 static u64 __read_mostly shadow_present_mask;
254 static u64 __read_mostly shadow_me_mask;
255
256 /*
257 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
258 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
259 * pages.
260 */
261 static u64 __read_mostly shadow_acc_track_mask;
262
263 /*
264 * The mask/shift to use for saving the original R/X bits when marking the PTE
265 * as not-present for access tracking purposes. We do not save the W bit as the
266 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
267 * restored only when a write is attempted to the page.
268 */
269 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
270 PT64_EPT_EXECUTABLE_MASK;
271 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
272
273 /*
274 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
275 * to guard against L1TF attacks.
276 */
277 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
278
279 /*
280 * The number of high-order 1 bits to use in the mask above.
281 */
282 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
283
284 /*
285 * In some cases, we need to preserve the GFN of a non-present or reserved
286 * SPTE when we usurp the upper five bits of the physical address space to
287 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
288 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
289 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
290 * high and low parts. This mask covers the lower bits of the GFN.
291 */
292 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
293
294 /*
295 * The number of non-reserved physical address bits irrespective of features
296 * that repurpose legal bits, e.g. MKTME.
297 */
298 static u8 __read_mostly shadow_phys_bits;
299
300 static void mmu_spte_set(u64 *sptep, u64 spte);
301 static bool is_executable_pte(u64 spte);
302 static union kvm_mmu_page_role
303 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
304
305 #define CREATE_TRACE_POINTS
306 #include "mmutrace.h"
307
308
309 static inline bool kvm_available_flush_tlb_with_range(void)
310 {
311 return kvm_x86_ops.tlb_remote_flush_with_range;
312 }
313
314 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
315 struct kvm_tlb_range *range)
316 {
317 int ret = -ENOTSUPP;
318
319 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
320 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
321
322 if (ret)
323 kvm_flush_remote_tlbs(kvm);
324 }
325
326 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
327 u64 start_gfn, u64 pages)
328 {
329 struct kvm_tlb_range range;
330
331 range.start_gfn = start_gfn;
332 range.pages = pages;
333
334 kvm_flush_remote_tlbs_with_range(kvm, &range);
335 }
336
337 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
338 {
339 BUG_ON((u64)(unsigned)access_mask != access_mask);
340 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
341 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
342 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
343 shadow_mmio_access_mask = access_mask;
344 }
345 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
346
347 static bool is_mmio_spte(u64 spte)
348 {
349 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
350 }
351
352 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
353 {
354 return sp->role.ad_disabled;
355 }
356
357 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
358 {
359 /*
360 * When using the EPT page-modification log, the GPAs in the log
361 * would come from L2 rather than L1. Therefore, we need to rely
362 * on write protection to record dirty pages. This also bypasses
363 * PML, since writes now result in a vmexit.
364 */
365 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
366 }
367
368 static inline bool spte_ad_enabled(u64 spte)
369 {
370 MMU_WARN_ON(is_mmio_spte(spte));
371 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
372 }
373
374 static inline bool spte_ad_need_write_protect(u64 spte)
375 {
376 MMU_WARN_ON(is_mmio_spte(spte));
377 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
378 }
379
380 static bool is_nx_huge_page_enabled(void)
381 {
382 return READ_ONCE(nx_huge_pages);
383 }
384
385 static inline u64 spte_shadow_accessed_mask(u64 spte)
386 {
387 MMU_WARN_ON(is_mmio_spte(spte));
388 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
389 }
390
391 static inline u64 spte_shadow_dirty_mask(u64 spte)
392 {
393 MMU_WARN_ON(is_mmio_spte(spte));
394 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
395 }
396
397 static inline bool is_access_track_spte(u64 spte)
398 {
399 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
400 }
401
402 /*
403 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
404 * the memslots generation and is derived as follows:
405 *
406 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
407 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
408 *
409 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
410 * the MMIO generation number, as doing so would require stealing a bit from
411 * the "real" generation number and thus effectively halve the maximum number
412 * of MMIO generations that can be handled before encountering a wrap (which
413 * requires a full MMU zap). The flag is instead explicitly queried when
414 * checking for MMIO spte cache hits.
415 */
416 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
417
418 #define MMIO_SPTE_GEN_LOW_START 3
419 #define MMIO_SPTE_GEN_LOW_END 11
420 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
421 MMIO_SPTE_GEN_LOW_START)
422
423 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
424 #define MMIO_SPTE_GEN_HIGH_END 62
425 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
426 MMIO_SPTE_GEN_HIGH_START)
427
428 static u64 generation_mmio_spte_mask(u64 gen)
429 {
430 u64 mask;
431
432 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
433 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
434
435 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
436 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
437 return mask;
438 }
439
440 static u64 get_mmio_spte_generation(u64 spte)
441 {
442 u64 gen;
443
444 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
445 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
446 return gen;
447 }
448
449 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
450 {
451
452 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
453 u64 mask = generation_mmio_spte_mask(gen);
454 u64 gpa = gfn << PAGE_SHIFT;
455
456 access &= shadow_mmio_access_mask;
457 mask |= shadow_mmio_value | access;
458 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
459 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
460 << shadow_nonpresent_or_rsvd_mask_len;
461
462 return mask;
463 }
464
465 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
466 unsigned int access)
467 {
468 u64 mask = make_mmio_spte(vcpu, gfn, access);
469 unsigned int gen = get_mmio_spte_generation(mask);
470
471 access = mask & ACC_ALL;
472
473 trace_mark_mmio_spte(sptep, gfn, access, gen);
474 mmu_spte_set(sptep, mask);
475 }
476
477 static gfn_t get_mmio_spte_gfn(u64 spte)
478 {
479 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
480
481 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
482 & shadow_nonpresent_or_rsvd_mask;
483
484 return gpa >> PAGE_SHIFT;
485 }
486
487 static unsigned get_mmio_spte_access(u64 spte)
488 {
489 return spte & shadow_mmio_access_mask;
490 }
491
492 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
493 kvm_pfn_t pfn, unsigned int access)
494 {
495 if (unlikely(is_noslot_pfn(pfn))) {
496 mark_mmio_spte(vcpu, sptep, gfn, access);
497 return true;
498 }
499
500 return false;
501 }
502
503 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
504 {
505 u64 kvm_gen, spte_gen, gen;
506
507 gen = kvm_vcpu_memslots(vcpu)->generation;
508 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
509 return false;
510
511 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
512 spte_gen = get_mmio_spte_generation(spte);
513
514 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
515 return likely(kvm_gen == spte_gen);
516 }
517
518 /*
519 * Sets the shadow PTE masks used by the MMU.
520 *
521 * Assumptions:
522 * - Setting either @accessed_mask or @dirty_mask requires setting both
523 * - At least one of @accessed_mask or @acc_track_mask must be set
524 */
525 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
526 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
527 u64 acc_track_mask, u64 me_mask)
528 {
529 BUG_ON(!dirty_mask != !accessed_mask);
530 BUG_ON(!accessed_mask && !acc_track_mask);
531 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
532
533 shadow_user_mask = user_mask;
534 shadow_accessed_mask = accessed_mask;
535 shadow_dirty_mask = dirty_mask;
536 shadow_nx_mask = nx_mask;
537 shadow_x_mask = x_mask;
538 shadow_present_mask = p_mask;
539 shadow_acc_track_mask = acc_track_mask;
540 shadow_me_mask = me_mask;
541 }
542 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
543
544 static u8 kvm_get_shadow_phys_bits(void)
545 {
546 /*
547 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
548 * in CPU detection code, but the processor treats those reduced bits as
549 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
550 * the physical address bits reported by CPUID.
551 */
552 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
553 return cpuid_eax(0x80000008) & 0xff;
554
555 /*
556 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
557 * custom CPUID. Proceed with whatever the kernel found since these features
558 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
559 */
560 return boot_cpu_data.x86_phys_bits;
561 }
562
563 static void kvm_mmu_reset_all_pte_masks(void)
564 {
565 u8 low_phys_bits;
566
567 shadow_user_mask = 0;
568 shadow_accessed_mask = 0;
569 shadow_dirty_mask = 0;
570 shadow_nx_mask = 0;
571 shadow_x_mask = 0;
572 shadow_present_mask = 0;
573 shadow_acc_track_mask = 0;
574
575 shadow_phys_bits = kvm_get_shadow_phys_bits();
576
577 /*
578 * If the CPU has 46 or less physical address bits, then set an
579 * appropriate mask to guard against L1TF attacks. Otherwise, it is
580 * assumed that the CPU is not vulnerable to L1TF.
581 *
582 * Some Intel CPUs address the L1 cache using more PA bits than are
583 * reported by CPUID. Use the PA width of the L1 cache when possible
584 * to achieve more effective mitigation, e.g. if system RAM overlaps
585 * the most significant bits of legal physical address space.
586 */
587 shadow_nonpresent_or_rsvd_mask = 0;
588 low_phys_bits = boot_cpu_data.x86_phys_bits;
589 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
590 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
591 52 - shadow_nonpresent_or_rsvd_mask_len)) {
592 low_phys_bits = boot_cpu_data.x86_cache_bits
593 - shadow_nonpresent_or_rsvd_mask_len;
594 shadow_nonpresent_or_rsvd_mask =
595 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
596 }
597
598 shadow_nonpresent_or_rsvd_lower_gfn_mask =
599 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
600 }
601
602 static int is_cpuid_PSE36(void)
603 {
604 return 1;
605 }
606
607 static int is_nx(struct kvm_vcpu *vcpu)
608 {
609 return vcpu->arch.efer & EFER_NX;
610 }
611
612 static int is_shadow_present_pte(u64 pte)
613 {
614 return (pte != 0) && !is_mmio_spte(pte);
615 }
616
617 static int is_large_pte(u64 pte)
618 {
619 return pte & PT_PAGE_SIZE_MASK;
620 }
621
622 static int is_last_spte(u64 pte, int level)
623 {
624 if (level == PG_LEVEL_4K)
625 return 1;
626 if (is_large_pte(pte))
627 return 1;
628 return 0;
629 }
630
631 static bool is_executable_pte(u64 spte)
632 {
633 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
634 }
635
636 static kvm_pfn_t spte_to_pfn(u64 pte)
637 {
638 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
639 }
640
641 static gfn_t pse36_gfn_delta(u32 gpte)
642 {
643 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
644
645 return (gpte & PT32_DIR_PSE36_MASK) << shift;
646 }
647
648 #ifdef CONFIG_X86_64
649 static void __set_spte(u64 *sptep, u64 spte)
650 {
651 WRITE_ONCE(*sptep, spte);
652 }
653
654 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
655 {
656 WRITE_ONCE(*sptep, spte);
657 }
658
659 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
660 {
661 return xchg(sptep, spte);
662 }
663
664 static u64 __get_spte_lockless(u64 *sptep)
665 {
666 return READ_ONCE(*sptep);
667 }
668 #else
669 union split_spte {
670 struct {
671 u32 spte_low;
672 u32 spte_high;
673 };
674 u64 spte;
675 };
676
677 static void count_spte_clear(u64 *sptep, u64 spte)
678 {
679 struct kvm_mmu_page *sp = page_header(__pa(sptep));
680
681 if (is_shadow_present_pte(spte))
682 return;
683
684 /* Ensure the spte is completely set before we increase the count */
685 smp_wmb();
686 sp->clear_spte_count++;
687 }
688
689 static void __set_spte(u64 *sptep, u64 spte)
690 {
691 union split_spte *ssptep, sspte;
692
693 ssptep = (union split_spte *)sptep;
694 sspte = (union split_spte)spte;
695
696 ssptep->spte_high = sspte.spte_high;
697
698 /*
699 * If we map the spte from nonpresent to present, We should store
700 * the high bits firstly, then set present bit, so cpu can not
701 * fetch this spte while we are setting the spte.
702 */
703 smp_wmb();
704
705 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
706 }
707
708 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
709 {
710 union split_spte *ssptep, sspte;
711
712 ssptep = (union split_spte *)sptep;
713 sspte = (union split_spte)spte;
714
715 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
716
717 /*
718 * If we map the spte from present to nonpresent, we should clear
719 * present bit firstly to avoid vcpu fetch the old high bits.
720 */
721 smp_wmb();
722
723 ssptep->spte_high = sspte.spte_high;
724 count_spte_clear(sptep, spte);
725 }
726
727 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
728 {
729 union split_spte *ssptep, sspte, orig;
730
731 ssptep = (union split_spte *)sptep;
732 sspte = (union split_spte)spte;
733
734 /* xchg acts as a barrier before the setting of the high bits */
735 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
736 orig.spte_high = ssptep->spte_high;
737 ssptep->spte_high = sspte.spte_high;
738 count_spte_clear(sptep, spte);
739
740 return orig.spte;
741 }
742
743 /*
744 * The idea using the light way get the spte on x86_32 guest is from
745 * gup_get_pte (mm/gup.c).
746 *
747 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
748 * coalesces them and we are running out of the MMU lock. Therefore
749 * we need to protect against in-progress updates of the spte.
750 *
751 * Reading the spte while an update is in progress may get the old value
752 * for the high part of the spte. The race is fine for a present->non-present
753 * change (because the high part of the spte is ignored for non-present spte),
754 * but for a present->present change we must reread the spte.
755 *
756 * All such changes are done in two steps (present->non-present and
757 * non-present->present), hence it is enough to count the number of
758 * present->non-present updates: if it changed while reading the spte,
759 * we might have hit the race. This is done using clear_spte_count.
760 */
761 static u64 __get_spte_lockless(u64 *sptep)
762 {
763 struct kvm_mmu_page *sp = page_header(__pa(sptep));
764 union split_spte spte, *orig = (union split_spte *)sptep;
765 int count;
766
767 retry:
768 count = sp->clear_spte_count;
769 smp_rmb();
770
771 spte.spte_low = orig->spte_low;
772 smp_rmb();
773
774 spte.spte_high = orig->spte_high;
775 smp_rmb();
776
777 if (unlikely(spte.spte_low != orig->spte_low ||
778 count != sp->clear_spte_count))
779 goto retry;
780
781 return spte.spte;
782 }
783 #endif
784
785 static bool spte_can_locklessly_be_made_writable(u64 spte)
786 {
787 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
788 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
789 }
790
791 static bool spte_has_volatile_bits(u64 spte)
792 {
793 if (!is_shadow_present_pte(spte))
794 return false;
795
796 /*
797 * Always atomically update spte if it can be updated
798 * out of mmu-lock, it can ensure dirty bit is not lost,
799 * also, it can help us to get a stable is_writable_pte()
800 * to ensure tlb flush is not missed.
801 */
802 if (spte_can_locklessly_be_made_writable(spte) ||
803 is_access_track_spte(spte))
804 return true;
805
806 if (spte_ad_enabled(spte)) {
807 if ((spte & shadow_accessed_mask) == 0 ||
808 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
809 return true;
810 }
811
812 return false;
813 }
814
815 static bool is_accessed_spte(u64 spte)
816 {
817 u64 accessed_mask = spte_shadow_accessed_mask(spte);
818
819 return accessed_mask ? spte & accessed_mask
820 : !is_access_track_spte(spte);
821 }
822
823 static bool is_dirty_spte(u64 spte)
824 {
825 u64 dirty_mask = spte_shadow_dirty_mask(spte);
826
827 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
828 }
829
830 /* Rules for using mmu_spte_set:
831 * Set the sptep from nonpresent to present.
832 * Note: the sptep being assigned *must* be either not present
833 * or in a state where the hardware will not attempt to update
834 * the spte.
835 */
836 static void mmu_spte_set(u64 *sptep, u64 new_spte)
837 {
838 WARN_ON(is_shadow_present_pte(*sptep));
839 __set_spte(sptep, new_spte);
840 }
841
842 /*
843 * Update the SPTE (excluding the PFN), but do not track changes in its
844 * accessed/dirty status.
845 */
846 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
847 {
848 u64 old_spte = *sptep;
849
850 WARN_ON(!is_shadow_present_pte(new_spte));
851
852 if (!is_shadow_present_pte(old_spte)) {
853 mmu_spte_set(sptep, new_spte);
854 return old_spte;
855 }
856
857 if (!spte_has_volatile_bits(old_spte))
858 __update_clear_spte_fast(sptep, new_spte);
859 else
860 old_spte = __update_clear_spte_slow(sptep, new_spte);
861
862 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
863
864 return old_spte;
865 }
866
867 /* Rules for using mmu_spte_update:
868 * Update the state bits, it means the mapped pfn is not changed.
869 *
870 * Whenever we overwrite a writable spte with a read-only one we
871 * should flush remote TLBs. Otherwise rmap_write_protect
872 * will find a read-only spte, even though the writable spte
873 * might be cached on a CPU's TLB, the return value indicates this
874 * case.
875 *
876 * Returns true if the TLB needs to be flushed
877 */
878 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
879 {
880 bool flush = false;
881 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
882
883 if (!is_shadow_present_pte(old_spte))
884 return false;
885
886 /*
887 * For the spte updated out of mmu-lock is safe, since
888 * we always atomically update it, see the comments in
889 * spte_has_volatile_bits().
890 */
891 if (spte_can_locklessly_be_made_writable(old_spte) &&
892 !is_writable_pte(new_spte))
893 flush = true;
894
895 /*
896 * Flush TLB when accessed/dirty states are changed in the page tables,
897 * to guarantee consistency between TLB and page tables.
898 */
899
900 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
901 flush = true;
902 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
903 }
904
905 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
906 flush = true;
907 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
908 }
909
910 return flush;
911 }
912
913 /*
914 * Rules for using mmu_spte_clear_track_bits:
915 * It sets the sptep from present to nonpresent, and track the
916 * state bits, it is used to clear the last level sptep.
917 * Returns non-zero if the PTE was previously valid.
918 */
919 static int mmu_spte_clear_track_bits(u64 *sptep)
920 {
921 kvm_pfn_t pfn;
922 u64 old_spte = *sptep;
923
924 if (!spte_has_volatile_bits(old_spte))
925 __update_clear_spte_fast(sptep, 0ull);
926 else
927 old_spte = __update_clear_spte_slow(sptep, 0ull);
928
929 if (!is_shadow_present_pte(old_spte))
930 return 0;
931
932 pfn = spte_to_pfn(old_spte);
933
934 /*
935 * KVM does not hold the refcount of the page used by
936 * kvm mmu, before reclaiming the page, we should
937 * unmap it from mmu first.
938 */
939 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
940
941 if (is_accessed_spte(old_spte))
942 kvm_set_pfn_accessed(pfn);
943
944 if (is_dirty_spte(old_spte))
945 kvm_set_pfn_dirty(pfn);
946
947 return 1;
948 }
949
950 /*
951 * Rules for using mmu_spte_clear_no_track:
952 * Directly clear spte without caring the state bits of sptep,
953 * it is used to set the upper level spte.
954 */
955 static void mmu_spte_clear_no_track(u64 *sptep)
956 {
957 __update_clear_spte_fast(sptep, 0ull);
958 }
959
960 static u64 mmu_spte_get_lockless(u64 *sptep)
961 {
962 return __get_spte_lockless(sptep);
963 }
964
965 static u64 mark_spte_for_access_track(u64 spte)
966 {
967 if (spte_ad_enabled(spte))
968 return spte & ~shadow_accessed_mask;
969
970 if (is_access_track_spte(spte))
971 return spte;
972
973 /*
974 * Making an Access Tracking PTE will result in removal of write access
975 * from the PTE. So, verify that we will be able to restore the write
976 * access in the fast page fault path later on.
977 */
978 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
979 !spte_can_locklessly_be_made_writable(spte),
980 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
981
982 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
983 shadow_acc_track_saved_bits_shift),
984 "kvm: Access Tracking saved bit locations are not zero\n");
985
986 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
987 shadow_acc_track_saved_bits_shift;
988 spte &= ~shadow_acc_track_mask;
989
990 return spte;
991 }
992
993 /* Restore an acc-track PTE back to a regular PTE */
994 static u64 restore_acc_track_spte(u64 spte)
995 {
996 u64 new_spte = spte;
997 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
998 & shadow_acc_track_saved_bits_mask;
999
1000 WARN_ON_ONCE(spte_ad_enabled(spte));
1001 WARN_ON_ONCE(!is_access_track_spte(spte));
1002
1003 new_spte &= ~shadow_acc_track_mask;
1004 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1005 shadow_acc_track_saved_bits_shift);
1006 new_spte |= saved_bits;
1007
1008 return new_spte;
1009 }
1010
1011 /* Returns the Accessed status of the PTE and resets it at the same time. */
1012 static bool mmu_spte_age(u64 *sptep)
1013 {
1014 u64 spte = mmu_spte_get_lockless(sptep);
1015
1016 if (!is_accessed_spte(spte))
1017 return false;
1018
1019 if (spte_ad_enabled(spte)) {
1020 clear_bit((ffs(shadow_accessed_mask) - 1),
1021 (unsigned long *)sptep);
1022 } else {
1023 /*
1024 * Capture the dirty status of the page, so that it doesn't get
1025 * lost when the SPTE is marked for access tracking.
1026 */
1027 if (is_writable_pte(spte))
1028 kvm_set_pfn_dirty(spte_to_pfn(spte));
1029
1030 spte = mark_spte_for_access_track(spte);
1031 mmu_spte_update_no_track(sptep, spte);
1032 }
1033
1034 return true;
1035 }
1036
1037 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1038 {
1039 /*
1040 * Prevent page table teardown by making any free-er wait during
1041 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1042 */
1043 local_irq_disable();
1044
1045 /*
1046 * Make sure a following spte read is not reordered ahead of the write
1047 * to vcpu->mode.
1048 */
1049 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1050 }
1051
1052 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1053 {
1054 /*
1055 * Make sure the write to vcpu->mode is not reordered in front of
1056 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
1057 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1058 */
1059 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1060 local_irq_enable();
1061 }
1062
1063 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1064 struct kmem_cache *base_cache, int min)
1065 {
1066 void *obj;
1067
1068 if (cache->nobjs >= min)
1069 return 0;
1070 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1071 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1072 if (!obj)
1073 return cache->nobjs >= min ? 0 : -ENOMEM;
1074 cache->objects[cache->nobjs++] = obj;
1075 }
1076 return 0;
1077 }
1078
1079 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1080 {
1081 return cache->nobjs;
1082 }
1083
1084 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1085 struct kmem_cache *cache)
1086 {
1087 while (mc->nobjs)
1088 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1089 }
1090
1091 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1092 int min)
1093 {
1094 void *page;
1095
1096 if (cache->nobjs >= min)
1097 return 0;
1098 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1099 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1100 if (!page)
1101 return cache->nobjs >= min ? 0 : -ENOMEM;
1102 cache->objects[cache->nobjs++] = page;
1103 }
1104 return 0;
1105 }
1106
1107 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1108 {
1109 while (mc->nobjs)
1110 free_page((unsigned long)mc->objects[--mc->nobjs]);
1111 }
1112
1113 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1114 {
1115 int r;
1116
1117 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1118 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1119 if (r)
1120 goto out;
1121 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1122 if (r)
1123 goto out;
1124 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1125 mmu_page_header_cache, 4);
1126 out:
1127 return r;
1128 }
1129
1130 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1131 {
1132 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1133 pte_list_desc_cache);
1134 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1135 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1136 mmu_page_header_cache);
1137 }
1138
1139 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1140 {
1141 void *p;
1142
1143 BUG_ON(!mc->nobjs);
1144 p = mc->objects[--mc->nobjs];
1145 return p;
1146 }
1147
1148 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1149 {
1150 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1151 }
1152
1153 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1154 {
1155 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1156 }
1157
1158 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1159 {
1160 if (!sp->role.direct)
1161 return sp->gfns[index];
1162
1163 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1164 }
1165
1166 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1167 {
1168 if (!sp->role.direct) {
1169 sp->gfns[index] = gfn;
1170 return;
1171 }
1172
1173 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1174 pr_err_ratelimited("gfn mismatch under direct page %llx "
1175 "(expected %llx, got %llx)\n",
1176 sp->gfn,
1177 kvm_mmu_page_get_gfn(sp, index), gfn);
1178 }
1179
1180 /*
1181 * Return the pointer to the large page information for a given gfn,
1182 * handling slots that are not large page aligned.
1183 */
1184 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1185 struct kvm_memory_slot *slot,
1186 int level)
1187 {
1188 unsigned long idx;
1189
1190 idx = gfn_to_index(gfn, slot->base_gfn, level);
1191 return &slot->arch.lpage_info[level - 2][idx];
1192 }
1193
1194 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1195 gfn_t gfn, int count)
1196 {
1197 struct kvm_lpage_info *linfo;
1198 int i;
1199
1200 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1201 linfo = lpage_info_slot(gfn, slot, i);
1202 linfo->disallow_lpage += count;
1203 WARN_ON(linfo->disallow_lpage < 0);
1204 }
1205 }
1206
1207 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1208 {
1209 update_gfn_disallow_lpage_count(slot, gfn, 1);
1210 }
1211
1212 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1213 {
1214 update_gfn_disallow_lpage_count(slot, gfn, -1);
1215 }
1216
1217 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1218 {
1219 struct kvm_memslots *slots;
1220 struct kvm_memory_slot *slot;
1221 gfn_t gfn;
1222
1223 kvm->arch.indirect_shadow_pages++;
1224 gfn = sp->gfn;
1225 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1226 slot = __gfn_to_memslot(slots, gfn);
1227
1228 /* the non-leaf shadow pages are keeping readonly. */
1229 if (sp->role.level > PG_LEVEL_4K)
1230 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1231 KVM_PAGE_TRACK_WRITE);
1232
1233 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1234 }
1235
1236 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1237 {
1238 if (sp->lpage_disallowed)
1239 return;
1240
1241 ++kvm->stat.nx_lpage_splits;
1242 list_add_tail(&sp->lpage_disallowed_link,
1243 &kvm->arch.lpage_disallowed_mmu_pages);
1244 sp->lpage_disallowed = true;
1245 }
1246
1247 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1248 {
1249 struct kvm_memslots *slots;
1250 struct kvm_memory_slot *slot;
1251 gfn_t gfn;
1252
1253 kvm->arch.indirect_shadow_pages--;
1254 gfn = sp->gfn;
1255 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1256 slot = __gfn_to_memslot(slots, gfn);
1257 if (sp->role.level > PG_LEVEL_4K)
1258 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1259 KVM_PAGE_TRACK_WRITE);
1260
1261 kvm_mmu_gfn_allow_lpage(slot, gfn);
1262 }
1263
1264 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1265 {
1266 --kvm->stat.nx_lpage_splits;
1267 sp->lpage_disallowed = false;
1268 list_del(&sp->lpage_disallowed_link);
1269 }
1270
1271 static struct kvm_memory_slot *
1272 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1273 bool no_dirty_log)
1274 {
1275 struct kvm_memory_slot *slot;
1276
1277 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1278 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279 return NULL;
1280 if (no_dirty_log && slot->dirty_bitmap)
1281 return NULL;
1282
1283 return slot;
1284 }
1285
1286 /*
1287 * About rmap_head encoding:
1288 *
1289 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1290 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1291 * pte_list_desc containing more mappings.
1292 */
1293
1294 /*
1295 * Returns the number of pointers in the rmap chain, not counting the new one.
1296 */
1297 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1298 struct kvm_rmap_head *rmap_head)
1299 {
1300 struct pte_list_desc *desc;
1301 int i, count = 0;
1302
1303 if (!rmap_head->val) {
1304 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1305 rmap_head->val = (unsigned long)spte;
1306 } else if (!(rmap_head->val & 1)) {
1307 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1308 desc = mmu_alloc_pte_list_desc(vcpu);
1309 desc->sptes[0] = (u64 *)rmap_head->val;
1310 desc->sptes[1] = spte;
1311 rmap_head->val = (unsigned long)desc | 1;
1312 ++count;
1313 } else {
1314 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1315 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1316 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1317 desc = desc->more;
1318 count += PTE_LIST_EXT;
1319 }
1320 if (desc->sptes[PTE_LIST_EXT-1]) {
1321 desc->more = mmu_alloc_pte_list_desc(vcpu);
1322 desc = desc->more;
1323 }
1324 for (i = 0; desc->sptes[i]; ++i)
1325 ++count;
1326 desc->sptes[i] = spte;
1327 }
1328 return count;
1329 }
1330
1331 static void
1332 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1333 struct pte_list_desc *desc, int i,
1334 struct pte_list_desc *prev_desc)
1335 {
1336 int j;
1337
1338 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1339 ;
1340 desc->sptes[i] = desc->sptes[j];
1341 desc->sptes[j] = NULL;
1342 if (j != 0)
1343 return;
1344 if (!prev_desc && !desc->more)
1345 rmap_head->val = 0;
1346 else
1347 if (prev_desc)
1348 prev_desc->more = desc->more;
1349 else
1350 rmap_head->val = (unsigned long)desc->more | 1;
1351 mmu_free_pte_list_desc(desc);
1352 }
1353
1354 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1355 {
1356 struct pte_list_desc *desc;
1357 struct pte_list_desc *prev_desc;
1358 int i;
1359
1360 if (!rmap_head->val) {
1361 pr_err("%s: %p 0->BUG\n", __func__, spte);
1362 BUG();
1363 } else if (!(rmap_head->val & 1)) {
1364 rmap_printk("%s: %p 1->0\n", __func__, spte);
1365 if ((u64 *)rmap_head->val != spte) {
1366 pr_err("%s: %p 1->BUG\n", __func__, spte);
1367 BUG();
1368 }
1369 rmap_head->val = 0;
1370 } else {
1371 rmap_printk("%s: %p many->many\n", __func__, spte);
1372 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1373 prev_desc = NULL;
1374 while (desc) {
1375 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1376 if (desc->sptes[i] == spte) {
1377 pte_list_desc_remove_entry(rmap_head,
1378 desc, i, prev_desc);
1379 return;
1380 }
1381 }
1382 prev_desc = desc;
1383 desc = desc->more;
1384 }
1385 pr_err("%s: %p many->many\n", __func__, spte);
1386 BUG();
1387 }
1388 }
1389
1390 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1391 {
1392 mmu_spte_clear_track_bits(sptep);
1393 __pte_list_remove(sptep, rmap_head);
1394 }
1395
1396 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1397 struct kvm_memory_slot *slot)
1398 {
1399 unsigned long idx;
1400
1401 idx = gfn_to_index(gfn, slot->base_gfn, level);
1402 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1403 }
1404
1405 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1406 struct kvm_mmu_page *sp)
1407 {
1408 struct kvm_memslots *slots;
1409 struct kvm_memory_slot *slot;
1410
1411 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1412 slot = __gfn_to_memslot(slots, gfn);
1413 return __gfn_to_rmap(gfn, sp->role.level, slot);
1414 }
1415
1416 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1417 {
1418 struct kvm_mmu_memory_cache *cache;
1419
1420 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1421 return mmu_memory_cache_free_objects(cache);
1422 }
1423
1424 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1425 {
1426 struct kvm_mmu_page *sp;
1427 struct kvm_rmap_head *rmap_head;
1428
1429 sp = page_header(__pa(spte));
1430 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1431 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1432 return pte_list_add(vcpu, spte, rmap_head);
1433 }
1434
1435 static void rmap_remove(struct kvm *kvm, u64 *spte)
1436 {
1437 struct kvm_mmu_page *sp;
1438 gfn_t gfn;
1439 struct kvm_rmap_head *rmap_head;
1440
1441 sp = page_header(__pa(spte));
1442 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1443 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1444 __pte_list_remove(spte, rmap_head);
1445 }
1446
1447 /*
1448 * Used by the following functions to iterate through the sptes linked by a
1449 * rmap. All fields are private and not assumed to be used outside.
1450 */
1451 struct rmap_iterator {
1452 /* private fields */
1453 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1454 int pos; /* index of the sptep */
1455 };
1456
1457 /*
1458 * Iteration must be started by this function. This should also be used after
1459 * removing/dropping sptes from the rmap link because in such cases the
1460 * information in the iterator may not be valid.
1461 *
1462 * Returns sptep if found, NULL otherwise.
1463 */
1464 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1465 struct rmap_iterator *iter)
1466 {
1467 u64 *sptep;
1468
1469 if (!rmap_head->val)
1470 return NULL;
1471
1472 if (!(rmap_head->val & 1)) {
1473 iter->desc = NULL;
1474 sptep = (u64 *)rmap_head->val;
1475 goto out;
1476 }
1477
1478 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1479 iter->pos = 0;
1480 sptep = iter->desc->sptes[iter->pos];
1481 out:
1482 BUG_ON(!is_shadow_present_pte(*sptep));
1483 return sptep;
1484 }
1485
1486 /*
1487 * Must be used with a valid iterator: e.g. after rmap_get_first().
1488 *
1489 * Returns sptep if found, NULL otherwise.
1490 */
1491 static u64 *rmap_get_next(struct rmap_iterator *iter)
1492 {
1493 u64 *sptep;
1494
1495 if (iter->desc) {
1496 if (iter->pos < PTE_LIST_EXT - 1) {
1497 ++iter->pos;
1498 sptep = iter->desc->sptes[iter->pos];
1499 if (sptep)
1500 goto out;
1501 }
1502
1503 iter->desc = iter->desc->more;
1504
1505 if (iter->desc) {
1506 iter->pos = 0;
1507 /* desc->sptes[0] cannot be NULL */
1508 sptep = iter->desc->sptes[iter->pos];
1509 goto out;
1510 }
1511 }
1512
1513 return NULL;
1514 out:
1515 BUG_ON(!is_shadow_present_pte(*sptep));
1516 return sptep;
1517 }
1518
1519 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1520 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1521 _spte_; _spte_ = rmap_get_next(_iter_))
1522
1523 static void drop_spte(struct kvm *kvm, u64 *sptep)
1524 {
1525 if (mmu_spte_clear_track_bits(sptep))
1526 rmap_remove(kvm, sptep);
1527 }
1528
1529
1530 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1531 {
1532 if (is_large_pte(*sptep)) {
1533 WARN_ON(page_header(__pa(sptep))->role.level == PG_LEVEL_4K);
1534 drop_spte(kvm, sptep);
1535 --kvm->stat.lpages;
1536 return true;
1537 }
1538
1539 return false;
1540 }
1541
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544 if (__drop_large_spte(vcpu->kvm, sptep)) {
1545 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548 KVM_PAGES_PER_HPAGE(sp->role.level));
1549 }
1550 }
1551
1552 /*
1553 * Write-protect on the specified @sptep, @pt_protect indicates whether
1554 * spte write-protection is caused by protecting shadow page table.
1555 *
1556 * Note: write protection is difference between dirty logging and spte
1557 * protection:
1558 * - for dirty logging, the spte can be set to writable at anytime if
1559 * its dirty bitmap is properly set.
1560 * - for spte protection, the spte can be writable only after unsync-ing
1561 * shadow page.
1562 *
1563 * Return true if tlb need be flushed.
1564 */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567 u64 spte = *sptep;
1568
1569 if (!is_writable_pte(spte) &&
1570 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571 return false;
1572
1573 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
1575 if (pt_protect)
1576 spte &= ~SPTE_MMU_WRITEABLE;
1577 spte = spte & ~PT_WRITABLE_MASK;
1578
1579 return mmu_spte_update(sptep, spte);
1580 }
1581
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583 struct kvm_rmap_head *rmap_head,
1584 bool pt_protect)
1585 {
1586 u64 *sptep;
1587 struct rmap_iterator iter;
1588 bool flush = false;
1589
1590 for_each_rmap_spte(rmap_head, &iter, sptep)
1591 flush |= spte_write_protect(sptep, pt_protect);
1592
1593 return flush;
1594 }
1595
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598 u64 spte = *sptep;
1599
1600 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1602 MMU_WARN_ON(!spte_ad_enabled(spte));
1603 spte &= ~shadow_dirty_mask;
1604 return mmu_spte_update(sptep, spte);
1605 }
1606
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610 (unsigned long *)sptep);
1611 if (was_writable && !spte_ad_enabled(*sptep))
1612 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614 return was_writable;
1615 }
1616
1617 /*
1618 * Gets the GFN ready for another round of dirty logging by clearing the
1619 * - D bit on ad-enabled SPTEs, and
1620 * - W bit on ad-disabled SPTEs.
1621 * Returns true iff any D or W bits were cleared.
1622 */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625 u64 *sptep;
1626 struct rmap_iterator iter;
1627 bool flush = false;
1628
1629 for_each_rmap_spte(rmap_head, &iter, sptep)
1630 if (spte_ad_need_write_protect(*sptep))
1631 flush |= spte_wrprot_for_clear_dirty(sptep);
1632 else
1633 flush |= spte_clear_dirty(sptep);
1634
1635 return flush;
1636 }
1637
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640 u64 spte = *sptep;
1641
1642 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1644 /*
1645 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646 * do not bother adding back write access to pages marked
1647 * SPTE_AD_WRPROT_ONLY_MASK.
1648 */
1649 spte |= shadow_dirty_mask;
1650
1651 return mmu_spte_update(sptep, spte);
1652 }
1653
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656 u64 *sptep;
1657 struct rmap_iterator iter;
1658 bool flush = false;
1659
1660 for_each_rmap_spte(rmap_head, &iter, sptep)
1661 if (spte_ad_enabled(*sptep))
1662 flush |= spte_set_dirty(sptep);
1663
1664 return flush;
1665 }
1666
1667 /**
1668 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669 * @kvm: kvm instance
1670 * @slot: slot to protect
1671 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672 * @mask: indicates which pages we should protect
1673 *
1674 * Used when we do not need to care about huge page mappings: e.g. during dirty
1675 * logging we do not have any such mappings.
1676 */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678 struct kvm_memory_slot *slot,
1679 gfn_t gfn_offset, unsigned long mask)
1680 {
1681 struct kvm_rmap_head *rmap_head;
1682
1683 while (mask) {
1684 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685 PG_LEVEL_4K, slot);
1686 __rmap_write_protect(kvm, rmap_head, false);
1687
1688 /* clear the first set bit */
1689 mask &= mask - 1;
1690 }
1691 }
1692
1693 /**
1694 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695 * protect the page if the D-bit isn't supported.
1696 * @kvm: kvm instance
1697 * @slot: slot to clear D-bit
1698 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699 * @mask: indicates which pages we should clear D-bit
1700 *
1701 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702 */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704 struct kvm_memory_slot *slot,
1705 gfn_t gfn_offset, unsigned long mask)
1706 {
1707 struct kvm_rmap_head *rmap_head;
1708
1709 while (mask) {
1710 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711 PG_LEVEL_4K, slot);
1712 __rmap_clear_dirty(kvm, rmap_head);
1713
1714 /* clear the first set bit */
1715 mask &= mask - 1;
1716 }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
1720 /**
1721 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722 * PT level pages.
1723 *
1724 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725 * enable dirty logging for them.
1726 *
1727 * Used when we do not need to care about huge page mappings: e.g. during dirty
1728 * logging we do not have any such mappings.
1729 */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731 struct kvm_memory_slot *slot,
1732 gfn_t gfn_offset, unsigned long mask)
1733 {
1734 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736 mask);
1737 else
1738 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740
1741 /**
1742 * kvm_arch_write_log_dirty - emulate dirty page logging
1743 * @vcpu: Guest mode vcpu
1744 *
1745 * Emulate arch specific page modification logging for the
1746 * nested hypervisor
1747 */
1748 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749 {
1750 if (kvm_x86_ops.write_log_dirty)
1751 return kvm_x86_ops.write_log_dirty(vcpu);
1752
1753 return 0;
1754 }
1755
1756 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757 struct kvm_memory_slot *slot, u64 gfn)
1758 {
1759 struct kvm_rmap_head *rmap_head;
1760 int i;
1761 bool write_protected = false;
1762
1763 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1764 rmap_head = __gfn_to_rmap(gfn, i, slot);
1765 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766 }
1767
1768 return write_protected;
1769 }
1770
1771 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772 {
1773 struct kvm_memory_slot *slot;
1774
1775 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777 }
1778
1779 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780 {
1781 u64 *sptep;
1782 struct rmap_iterator iter;
1783 bool flush = false;
1784
1785 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787
1788 pte_list_remove(rmap_head, sptep);
1789 flush = true;
1790 }
1791
1792 return flush;
1793 }
1794
1795 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797 unsigned long data)
1798 {
1799 return kvm_zap_rmapp(kvm, rmap_head);
1800 }
1801
1802 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804 unsigned long data)
1805 {
1806 u64 *sptep;
1807 struct rmap_iterator iter;
1808 int need_flush = 0;
1809 u64 new_spte;
1810 pte_t *ptep = (pte_t *)data;
1811 kvm_pfn_t new_pfn;
1812
1813 WARN_ON(pte_huge(*ptep));
1814 new_pfn = pte_pfn(*ptep);
1815
1816 restart:
1817 for_each_rmap_spte(rmap_head, &iter, sptep) {
1818 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819 sptep, *sptep, gfn, level);
1820
1821 need_flush = 1;
1822
1823 if (pte_write(*ptep)) {
1824 pte_list_remove(rmap_head, sptep);
1825 goto restart;
1826 } else {
1827 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829
1830 new_spte &= ~PT_WRITABLE_MASK;
1831 new_spte &= ~SPTE_HOST_WRITEABLE;
1832
1833 new_spte = mark_spte_for_access_track(new_spte);
1834
1835 mmu_spte_clear_track_bits(sptep);
1836 mmu_spte_set(sptep, new_spte);
1837 }
1838 }
1839
1840 if (need_flush && kvm_available_flush_tlb_with_range()) {
1841 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842 return 0;
1843 }
1844
1845 return need_flush;
1846 }
1847
1848 struct slot_rmap_walk_iterator {
1849 /* input fields. */
1850 struct kvm_memory_slot *slot;
1851 gfn_t start_gfn;
1852 gfn_t end_gfn;
1853 int start_level;
1854 int end_level;
1855
1856 /* output fields. */
1857 gfn_t gfn;
1858 struct kvm_rmap_head *rmap;
1859 int level;
1860
1861 /* private field. */
1862 struct kvm_rmap_head *end_rmap;
1863 };
1864
1865 static void
1866 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867 {
1868 iterator->level = level;
1869 iterator->gfn = iterator->start_gfn;
1870 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872 iterator->slot);
1873 }
1874
1875 static void
1876 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877 struct kvm_memory_slot *slot, int start_level,
1878 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879 {
1880 iterator->slot = slot;
1881 iterator->start_level = start_level;
1882 iterator->end_level = end_level;
1883 iterator->start_gfn = start_gfn;
1884 iterator->end_gfn = end_gfn;
1885
1886 rmap_walk_init_level(iterator, iterator->start_level);
1887 }
1888
1889 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890 {
1891 return !!iterator->rmap;
1892 }
1893
1894 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895 {
1896 if (++iterator->rmap <= iterator->end_rmap) {
1897 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898 return;
1899 }
1900
1901 if (++iterator->level > iterator->end_level) {
1902 iterator->rmap = NULL;
1903 return;
1904 }
1905
1906 rmap_walk_init_level(iterator, iterator->level);
1907 }
1908
1909 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1910 _start_gfn, _end_gfn, _iter_) \
1911 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1912 _end_level_, _start_gfn, _end_gfn); \
1913 slot_rmap_walk_okay(_iter_); \
1914 slot_rmap_walk_next(_iter_))
1915
1916 static int kvm_handle_hva_range(struct kvm *kvm,
1917 unsigned long start,
1918 unsigned long end,
1919 unsigned long data,
1920 int (*handler)(struct kvm *kvm,
1921 struct kvm_rmap_head *rmap_head,
1922 struct kvm_memory_slot *slot,
1923 gfn_t gfn,
1924 int level,
1925 unsigned long data))
1926 {
1927 struct kvm_memslots *slots;
1928 struct kvm_memory_slot *memslot;
1929 struct slot_rmap_walk_iterator iterator;
1930 int ret = 0;
1931 int i;
1932
1933 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934 slots = __kvm_memslots(kvm, i);
1935 kvm_for_each_memslot(memslot, slots) {
1936 unsigned long hva_start, hva_end;
1937 gfn_t gfn_start, gfn_end;
1938
1939 hva_start = max(start, memslot->userspace_addr);
1940 hva_end = min(end, memslot->userspace_addr +
1941 (memslot->npages << PAGE_SHIFT));
1942 if (hva_start >= hva_end)
1943 continue;
1944 /*
1945 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947 */
1948 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950
1951 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1952 KVM_MAX_HUGEPAGE_LEVEL,
1953 gfn_start, gfn_end - 1,
1954 &iterator)
1955 ret |= handler(kvm, iterator.rmap, memslot,
1956 iterator.gfn, iterator.level, data);
1957 }
1958 }
1959
1960 return ret;
1961 }
1962
1963 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964 unsigned long data,
1965 int (*handler)(struct kvm *kvm,
1966 struct kvm_rmap_head *rmap_head,
1967 struct kvm_memory_slot *slot,
1968 gfn_t gfn, int level,
1969 unsigned long data))
1970 {
1971 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 }
1973
1974 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977 }
1978
1979 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980 {
1981 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 }
1983
1984 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986 unsigned long data)
1987 {
1988 u64 *sptep;
1989 struct rmap_iterator uninitialized_var(iter);
1990 int young = 0;
1991
1992 for_each_rmap_spte(rmap_head, &iter, sptep)
1993 young |= mmu_spte_age(sptep);
1994
1995 trace_kvm_age_page(gfn, level, slot, young);
1996 return young;
1997 }
1998
1999 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000 struct kvm_memory_slot *slot, gfn_t gfn,
2001 int level, unsigned long data)
2002 {
2003 u64 *sptep;
2004 struct rmap_iterator iter;
2005
2006 for_each_rmap_spte(rmap_head, &iter, sptep)
2007 if (is_accessed_spte(*sptep))
2008 return 1;
2009 return 0;
2010 }
2011
2012 #define RMAP_RECYCLE_THRESHOLD 1000
2013
2014 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015 {
2016 struct kvm_rmap_head *rmap_head;
2017 struct kvm_mmu_page *sp;
2018
2019 sp = page_header(__pa(spte));
2020
2021 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022
2023 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025 KVM_PAGES_PER_HPAGE(sp->role.level));
2026 }
2027
2028 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029 {
2030 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 }
2032
2033 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034 {
2035 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036 }
2037
2038 #ifdef MMU_DEBUG
2039 static int is_empty_shadow_page(u64 *spt)
2040 {
2041 u64 *pos;
2042 u64 *end;
2043
2044 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045 if (is_shadow_present_pte(*pos)) {
2046 printk(KERN_ERR "%s: %p %llx\n", __func__,
2047 pos, *pos);
2048 return 0;
2049 }
2050 return 1;
2051 }
2052 #endif
2053
2054 /*
2055 * This value is the sum of all of the kvm instances's
2056 * kvm->arch.n_used_mmu_pages values. We need a global,
2057 * aggregate version in order to make the slab shrinker
2058 * faster
2059 */
2060 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 {
2062 kvm->arch.n_used_mmu_pages += nr;
2063 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064 }
2065
2066 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067 {
2068 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069 hlist_del(&sp->hash_link);
2070 list_del(&sp->link);
2071 free_page((unsigned long)sp->spt);
2072 if (!sp->role.direct)
2073 free_page((unsigned long)sp->gfns);
2074 kmem_cache_free(mmu_page_header_cache, sp);
2075 }
2076
2077 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078 {
2079 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 }
2081
2082 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083 struct kvm_mmu_page *sp, u64 *parent_pte)
2084 {
2085 if (!parent_pte)
2086 return;
2087
2088 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 }
2090
2091 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092 u64 *parent_pte)
2093 {
2094 __pte_list_remove(parent_pte, &sp->parent_ptes);
2095 }
2096
2097 static void drop_parent_pte(struct kvm_mmu_page *sp,
2098 u64 *parent_pte)
2099 {
2100 mmu_page_remove_parent_pte(sp, parent_pte);
2101 mmu_spte_clear_no_track(parent_pte);
2102 }
2103
2104 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2105 {
2106 struct kvm_mmu_page *sp;
2107
2108 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110 if (!direct)
2111 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113
2114 /*
2115 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116 * depends on valid pages being added to the head of the list. See
2117 * comments in kvm_zap_obsolete_pages().
2118 */
2119 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2121 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122 return sp;
2123 }
2124
2125 static void mark_unsync(u64 *spte);
2126 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127 {
2128 u64 *sptep;
2129 struct rmap_iterator iter;
2130
2131 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132 mark_unsync(sptep);
2133 }
2134 }
2135
2136 static void mark_unsync(u64 *spte)
2137 {
2138 struct kvm_mmu_page *sp;
2139 unsigned int index;
2140
2141 sp = page_header(__pa(spte));
2142 index = spte - sp->spt;
2143 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144 return;
2145 if (sp->unsync_children++)
2146 return;
2147 kvm_mmu_mark_parents_unsync(sp);
2148 }
2149
2150 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151 struct kvm_mmu_page *sp)
2152 {
2153 return 0;
2154 }
2155
2156 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2157 struct kvm_mmu_page *sp, u64 *spte,
2158 const void *pte)
2159 {
2160 WARN_ON(1);
2161 }
2162
2163 #define KVM_PAGE_ARRAY_NR 16
2164
2165 struct kvm_mmu_pages {
2166 struct mmu_page_and_offset {
2167 struct kvm_mmu_page *sp;
2168 unsigned int idx;
2169 } page[KVM_PAGE_ARRAY_NR];
2170 unsigned int nr;
2171 };
2172
2173 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2174 int idx)
2175 {
2176 int i;
2177
2178 if (sp->unsync)
2179 for (i=0; i < pvec->nr; i++)
2180 if (pvec->page[i].sp == sp)
2181 return 0;
2182
2183 pvec->page[pvec->nr].sp = sp;
2184 pvec->page[pvec->nr].idx = idx;
2185 pvec->nr++;
2186 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2187 }
2188
2189 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2190 {
2191 --sp->unsync_children;
2192 WARN_ON((int)sp->unsync_children < 0);
2193 __clear_bit(idx, sp->unsync_child_bitmap);
2194 }
2195
2196 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2197 struct kvm_mmu_pages *pvec)
2198 {
2199 int i, ret, nr_unsync_leaf = 0;
2200
2201 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2202 struct kvm_mmu_page *child;
2203 u64 ent = sp->spt[i];
2204
2205 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2206 clear_unsync_child_bit(sp, i);
2207 continue;
2208 }
2209
2210 child = page_header(ent & PT64_BASE_ADDR_MASK);
2211
2212 if (child->unsync_children) {
2213 if (mmu_pages_add(pvec, child, i))
2214 return -ENOSPC;
2215
2216 ret = __mmu_unsync_walk(child, pvec);
2217 if (!ret) {
2218 clear_unsync_child_bit(sp, i);
2219 continue;
2220 } else if (ret > 0) {
2221 nr_unsync_leaf += ret;
2222 } else
2223 return ret;
2224 } else if (child->unsync) {
2225 nr_unsync_leaf++;
2226 if (mmu_pages_add(pvec, child, i))
2227 return -ENOSPC;
2228 } else
2229 clear_unsync_child_bit(sp, i);
2230 }
2231
2232 return nr_unsync_leaf;
2233 }
2234
2235 #define INVALID_INDEX (-1)
2236
2237 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2238 struct kvm_mmu_pages *pvec)
2239 {
2240 pvec->nr = 0;
2241 if (!sp->unsync_children)
2242 return 0;
2243
2244 mmu_pages_add(pvec, sp, INVALID_INDEX);
2245 return __mmu_unsync_walk(sp, pvec);
2246 }
2247
2248 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2249 {
2250 WARN_ON(!sp->unsync);
2251 trace_kvm_mmu_sync_page(sp);
2252 sp->unsync = 0;
2253 --kvm->stat.mmu_unsync;
2254 }
2255
2256 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2257 struct list_head *invalid_list);
2258 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2259 struct list_head *invalid_list);
2260
2261
2262 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2263 hlist_for_each_entry(_sp, \
2264 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2265 if (is_obsolete_sp((_kvm), (_sp))) { \
2266 } else
2267
2268 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2269 for_each_valid_sp(_kvm, _sp, _gfn) \
2270 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2271
2272 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2273 {
2274 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2275 }
2276
2277 /* @sp->gfn should be write-protected at the call site */
2278 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2279 struct list_head *invalid_list)
2280 {
2281 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2282 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2283 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2284 return false;
2285 }
2286
2287 return true;
2288 }
2289
2290 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2291 struct list_head *invalid_list,
2292 bool remote_flush)
2293 {
2294 if (!remote_flush && list_empty(invalid_list))
2295 return false;
2296
2297 if (!list_empty(invalid_list))
2298 kvm_mmu_commit_zap_page(kvm, invalid_list);
2299 else
2300 kvm_flush_remote_tlbs(kvm);
2301 return true;
2302 }
2303
2304 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2305 struct list_head *invalid_list,
2306 bool remote_flush, bool local_flush)
2307 {
2308 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2309 return;
2310
2311 if (local_flush)
2312 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2313 }
2314
2315 #ifdef CONFIG_KVM_MMU_AUDIT
2316 #include "mmu_audit.c"
2317 #else
2318 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2319 static void mmu_audit_disable(void) { }
2320 #endif
2321
2322 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2323 {
2324 return sp->role.invalid ||
2325 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2326 }
2327
2328 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2329 struct list_head *invalid_list)
2330 {
2331 kvm_unlink_unsync_page(vcpu->kvm, sp);
2332 return __kvm_sync_page(vcpu, sp, invalid_list);
2333 }
2334
2335 /* @gfn should be write-protected at the call site */
2336 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2337 struct list_head *invalid_list)
2338 {
2339 struct kvm_mmu_page *s;
2340 bool ret = false;
2341
2342 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2343 if (!s->unsync)
2344 continue;
2345
2346 WARN_ON(s->role.level != PG_LEVEL_4K);
2347 ret |= kvm_sync_page(vcpu, s, invalid_list);
2348 }
2349
2350 return ret;
2351 }
2352
2353 struct mmu_page_path {
2354 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2355 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2356 };
2357
2358 #define for_each_sp(pvec, sp, parents, i) \
2359 for (i = mmu_pages_first(&pvec, &parents); \
2360 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2361 i = mmu_pages_next(&pvec, &parents, i))
2362
2363 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2364 struct mmu_page_path *parents,
2365 int i)
2366 {
2367 int n;
2368
2369 for (n = i+1; n < pvec->nr; n++) {
2370 struct kvm_mmu_page *sp = pvec->page[n].sp;
2371 unsigned idx = pvec->page[n].idx;
2372 int level = sp->role.level;
2373
2374 parents->idx[level-1] = idx;
2375 if (level == PG_LEVEL_4K)
2376 break;
2377
2378 parents->parent[level-2] = sp;
2379 }
2380
2381 return n;
2382 }
2383
2384 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2385 struct mmu_page_path *parents)
2386 {
2387 struct kvm_mmu_page *sp;
2388 int level;
2389
2390 if (pvec->nr == 0)
2391 return 0;
2392
2393 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2394
2395 sp = pvec->page[0].sp;
2396 level = sp->role.level;
2397 WARN_ON(level == PG_LEVEL_4K);
2398
2399 parents->parent[level-2] = sp;
2400
2401 /* Also set up a sentinel. Further entries in pvec are all
2402 * children of sp, so this element is never overwritten.
2403 */
2404 parents->parent[level-1] = NULL;
2405 return mmu_pages_next(pvec, parents, 0);
2406 }
2407
2408 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2409 {
2410 struct kvm_mmu_page *sp;
2411 unsigned int level = 0;
2412
2413 do {
2414 unsigned int idx = parents->idx[level];
2415 sp = parents->parent[level];
2416 if (!sp)
2417 return;
2418
2419 WARN_ON(idx == INVALID_INDEX);
2420 clear_unsync_child_bit(sp, idx);
2421 level++;
2422 } while (!sp->unsync_children);
2423 }
2424
2425 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2426 struct kvm_mmu_page *parent)
2427 {
2428 int i;
2429 struct kvm_mmu_page *sp;
2430 struct mmu_page_path parents;
2431 struct kvm_mmu_pages pages;
2432 LIST_HEAD(invalid_list);
2433 bool flush = false;
2434
2435 while (mmu_unsync_walk(parent, &pages)) {
2436 bool protected = false;
2437
2438 for_each_sp(pages, sp, parents, i)
2439 protected |= rmap_write_protect(vcpu, sp->gfn);
2440
2441 if (protected) {
2442 kvm_flush_remote_tlbs(vcpu->kvm);
2443 flush = false;
2444 }
2445
2446 for_each_sp(pages, sp, parents, i) {
2447 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2448 mmu_pages_clear_parents(&parents);
2449 }
2450 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2451 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2452 cond_resched_lock(&vcpu->kvm->mmu_lock);
2453 flush = false;
2454 }
2455 }
2456
2457 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2458 }
2459
2460 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2461 {
2462 atomic_set(&sp->write_flooding_count, 0);
2463 }
2464
2465 static void clear_sp_write_flooding_count(u64 *spte)
2466 {
2467 struct kvm_mmu_page *sp = page_header(__pa(spte));
2468
2469 __clear_sp_write_flooding_count(sp);
2470 }
2471
2472 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2473 gfn_t gfn,
2474 gva_t gaddr,
2475 unsigned level,
2476 int direct,
2477 unsigned int access)
2478 {
2479 union kvm_mmu_page_role role;
2480 unsigned quadrant;
2481 struct kvm_mmu_page *sp;
2482 bool need_sync = false;
2483 bool flush = false;
2484 int collisions = 0;
2485 LIST_HEAD(invalid_list);
2486
2487 role = vcpu->arch.mmu->mmu_role.base;
2488 role.level = level;
2489 role.direct = direct;
2490 if (role.direct)
2491 role.gpte_is_8_bytes = true;
2492 role.access = access;
2493 if (!vcpu->arch.mmu->direct_map
2494 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2495 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2496 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2497 role.quadrant = quadrant;
2498 }
2499 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2500 if (sp->gfn != gfn) {
2501 collisions++;
2502 continue;
2503 }
2504
2505 if (!need_sync && sp->unsync)
2506 need_sync = true;
2507
2508 if (sp->role.word != role.word)
2509 continue;
2510
2511 if (sp->unsync) {
2512 /* The page is good, but __kvm_sync_page might still end
2513 * up zapping it. If so, break in order to rebuild it.
2514 */
2515 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2516 break;
2517
2518 WARN_ON(!list_empty(&invalid_list));
2519 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2520 }
2521
2522 if (sp->unsync_children)
2523 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2524
2525 __clear_sp_write_flooding_count(sp);
2526 trace_kvm_mmu_get_page(sp, false);
2527 goto out;
2528 }
2529
2530 ++vcpu->kvm->stat.mmu_cache_miss;
2531
2532 sp = kvm_mmu_alloc_page(vcpu, direct);
2533
2534 sp->gfn = gfn;
2535 sp->role = role;
2536 hlist_add_head(&sp->hash_link,
2537 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2538 if (!direct) {
2539 /*
2540 * we should do write protection before syncing pages
2541 * otherwise the content of the synced shadow page may
2542 * be inconsistent with guest page table.
2543 */
2544 account_shadowed(vcpu->kvm, sp);
2545 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2546 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2547
2548 if (level > PG_LEVEL_4K && need_sync)
2549 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2550 }
2551 clear_page(sp->spt);
2552 trace_kvm_mmu_get_page(sp, true);
2553
2554 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2555 out:
2556 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2557 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2558 return sp;
2559 }
2560
2561 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2562 struct kvm_vcpu *vcpu, hpa_t root,
2563 u64 addr)
2564 {
2565 iterator->addr = addr;
2566 iterator->shadow_addr = root;
2567 iterator->level = vcpu->arch.mmu->shadow_root_level;
2568
2569 if (iterator->level == PT64_ROOT_4LEVEL &&
2570 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2571 !vcpu->arch.mmu->direct_map)
2572 --iterator->level;
2573
2574 if (iterator->level == PT32E_ROOT_LEVEL) {
2575 /*
2576 * prev_root is currently only used for 64-bit hosts. So only
2577 * the active root_hpa is valid here.
2578 */
2579 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2580
2581 iterator->shadow_addr
2582 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2583 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2584 --iterator->level;
2585 if (!iterator->shadow_addr)
2586 iterator->level = 0;
2587 }
2588 }
2589
2590 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2591 struct kvm_vcpu *vcpu, u64 addr)
2592 {
2593 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2594 addr);
2595 }
2596
2597 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2598 {
2599 if (iterator->level < PG_LEVEL_4K)
2600 return false;
2601
2602 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2603 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2604 return true;
2605 }
2606
2607 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2608 u64 spte)
2609 {
2610 if (is_last_spte(spte, iterator->level)) {
2611 iterator->level = 0;
2612 return;
2613 }
2614
2615 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2616 --iterator->level;
2617 }
2618
2619 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2620 {
2621 __shadow_walk_next(iterator, *iterator->sptep);
2622 }
2623
2624 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2625 struct kvm_mmu_page *sp)
2626 {
2627 u64 spte;
2628
2629 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2630
2631 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2632 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2633
2634 if (sp_ad_disabled(sp))
2635 spte |= SPTE_AD_DISABLED_MASK;
2636 else
2637 spte |= shadow_accessed_mask;
2638
2639 mmu_spte_set(sptep, spte);
2640
2641 mmu_page_add_parent_pte(vcpu, sp, sptep);
2642
2643 if (sp->unsync_children || sp->unsync)
2644 mark_unsync(sptep);
2645 }
2646
2647 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2648 unsigned direct_access)
2649 {
2650 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2651 struct kvm_mmu_page *child;
2652
2653 /*
2654 * For the direct sp, if the guest pte's dirty bit
2655 * changed form clean to dirty, it will corrupt the
2656 * sp's access: allow writable in the read-only sp,
2657 * so we should update the spte at this point to get
2658 * a new sp with the correct access.
2659 */
2660 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2661 if (child->role.access == direct_access)
2662 return;
2663
2664 drop_parent_pte(child, sptep);
2665 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2666 }
2667 }
2668
2669 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2670 u64 *spte)
2671 {
2672 u64 pte;
2673 struct kvm_mmu_page *child;
2674
2675 pte = *spte;
2676 if (is_shadow_present_pte(pte)) {
2677 if (is_last_spte(pte, sp->role.level)) {
2678 drop_spte(kvm, spte);
2679 if (is_large_pte(pte))
2680 --kvm->stat.lpages;
2681 } else {
2682 child = page_header(pte & PT64_BASE_ADDR_MASK);
2683 drop_parent_pte(child, spte);
2684 }
2685 return true;
2686 }
2687
2688 if (is_mmio_spte(pte))
2689 mmu_spte_clear_no_track(spte);
2690
2691 return false;
2692 }
2693
2694 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2695 struct kvm_mmu_page *sp)
2696 {
2697 unsigned i;
2698
2699 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2700 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2701 }
2702
2703 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2704 {
2705 u64 *sptep;
2706 struct rmap_iterator iter;
2707
2708 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2709 drop_parent_pte(sp, sptep);
2710 }
2711
2712 static int mmu_zap_unsync_children(struct kvm *kvm,
2713 struct kvm_mmu_page *parent,
2714 struct list_head *invalid_list)
2715 {
2716 int i, zapped = 0;
2717 struct mmu_page_path parents;
2718 struct kvm_mmu_pages pages;
2719
2720 if (parent->role.level == PG_LEVEL_4K)
2721 return 0;
2722
2723 while (mmu_unsync_walk(parent, &pages)) {
2724 struct kvm_mmu_page *sp;
2725
2726 for_each_sp(pages, sp, parents, i) {
2727 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2728 mmu_pages_clear_parents(&parents);
2729 zapped++;
2730 }
2731 }
2732
2733 return zapped;
2734 }
2735
2736 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2737 struct kvm_mmu_page *sp,
2738 struct list_head *invalid_list,
2739 int *nr_zapped)
2740 {
2741 bool list_unstable;
2742
2743 trace_kvm_mmu_prepare_zap_page(sp);
2744 ++kvm->stat.mmu_shadow_zapped;
2745 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2746 kvm_mmu_page_unlink_children(kvm, sp);
2747 kvm_mmu_unlink_parents(kvm, sp);
2748
2749 /* Zapping children means active_mmu_pages has become unstable. */
2750 list_unstable = *nr_zapped;
2751
2752 if (!sp->role.invalid && !sp->role.direct)
2753 unaccount_shadowed(kvm, sp);
2754
2755 if (sp->unsync)
2756 kvm_unlink_unsync_page(kvm, sp);
2757 if (!sp->root_count) {
2758 /* Count self */
2759 (*nr_zapped)++;
2760 list_move(&sp->link, invalid_list);
2761 kvm_mod_used_mmu_pages(kvm, -1);
2762 } else {
2763 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2764
2765 /*
2766 * Obsolete pages cannot be used on any vCPUs, see the comment
2767 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2768 * treats invalid shadow pages as being obsolete.
2769 */
2770 if (!is_obsolete_sp(kvm, sp))
2771 kvm_reload_remote_mmus(kvm);
2772 }
2773
2774 if (sp->lpage_disallowed)
2775 unaccount_huge_nx_page(kvm, sp);
2776
2777 sp->role.invalid = 1;
2778 return list_unstable;
2779 }
2780
2781 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2782 struct list_head *invalid_list)
2783 {
2784 int nr_zapped;
2785
2786 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2787 return nr_zapped;
2788 }
2789
2790 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2791 struct list_head *invalid_list)
2792 {
2793 struct kvm_mmu_page *sp, *nsp;
2794
2795 if (list_empty(invalid_list))
2796 return;
2797
2798 /*
2799 * We need to make sure everyone sees our modifications to
2800 * the page tables and see changes to vcpu->mode here. The barrier
2801 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2802 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2803 *
2804 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2805 * guest mode and/or lockless shadow page table walks.
2806 */
2807 kvm_flush_remote_tlbs(kvm);
2808
2809 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2810 WARN_ON(!sp->role.invalid || sp->root_count);
2811 kvm_mmu_free_page(sp);
2812 }
2813 }
2814
2815 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2816 struct list_head *invalid_list)
2817 {
2818 struct kvm_mmu_page *sp;
2819
2820 if (list_empty(&kvm->arch.active_mmu_pages))
2821 return false;
2822
2823 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2824 struct kvm_mmu_page, link);
2825 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2826 }
2827
2828 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2829 {
2830 LIST_HEAD(invalid_list);
2831
2832 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2833 return 0;
2834
2835 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2836 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2837 break;
2838
2839 ++vcpu->kvm->stat.mmu_recycled;
2840 }
2841 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2842
2843 if (!kvm_mmu_available_pages(vcpu->kvm))
2844 return -ENOSPC;
2845 return 0;
2846 }
2847
2848 /*
2849 * Changing the number of mmu pages allocated to the vm
2850 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2851 */
2852 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2853 {
2854 LIST_HEAD(invalid_list);
2855
2856 spin_lock(&kvm->mmu_lock);
2857
2858 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2859 /* Need to free some mmu pages to achieve the goal. */
2860 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2861 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2862 break;
2863
2864 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2865 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2866 }
2867
2868 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2869
2870 spin_unlock(&kvm->mmu_lock);
2871 }
2872
2873 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2874 {
2875 struct kvm_mmu_page *sp;
2876 LIST_HEAD(invalid_list);
2877 int r;
2878
2879 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2880 r = 0;
2881 spin_lock(&kvm->mmu_lock);
2882 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2883 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2884 sp->role.word);
2885 r = 1;
2886 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2887 }
2888 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2889 spin_unlock(&kvm->mmu_lock);
2890
2891 return r;
2892 }
2893 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2894
2895 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2896 {
2897 trace_kvm_mmu_unsync_page(sp);
2898 ++vcpu->kvm->stat.mmu_unsync;
2899 sp->unsync = 1;
2900
2901 kvm_mmu_mark_parents_unsync(sp);
2902 }
2903
2904 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2905 bool can_unsync)
2906 {
2907 struct kvm_mmu_page *sp;
2908
2909 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2910 return true;
2911
2912 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2913 if (!can_unsync)
2914 return true;
2915
2916 if (sp->unsync)
2917 continue;
2918
2919 WARN_ON(sp->role.level != PG_LEVEL_4K);
2920 kvm_unsync_page(vcpu, sp);
2921 }
2922
2923 /*
2924 * We need to ensure that the marking of unsync pages is visible
2925 * before the SPTE is updated to allow writes because
2926 * kvm_mmu_sync_roots() checks the unsync flags without holding
2927 * the MMU lock and so can race with this. If the SPTE was updated
2928 * before the page had been marked as unsync-ed, something like the
2929 * following could happen:
2930 *
2931 * CPU 1 CPU 2
2932 * ---------------------------------------------------------------------
2933 * 1.2 Host updates SPTE
2934 * to be writable
2935 * 2.1 Guest writes a GPTE for GVA X.
2936 * (GPTE being in the guest page table shadowed
2937 * by the SP from CPU 1.)
2938 * This reads SPTE during the page table walk.
2939 * Since SPTE.W is read as 1, there is no
2940 * fault.
2941 *
2942 * 2.2 Guest issues TLB flush.
2943 * That causes a VM Exit.
2944 *
2945 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2946 * Since it is false, so it just returns.
2947 *
2948 * 2.4 Guest accesses GVA X.
2949 * Since the mapping in the SP was not updated,
2950 * so the old mapping for GVA X incorrectly
2951 * gets used.
2952 * 1.1 Host marks SP
2953 * as unsync
2954 * (sp->unsync = true)
2955 *
2956 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2957 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2958 * pairs with this write barrier.
2959 */
2960 smp_wmb();
2961
2962 return false;
2963 }
2964
2965 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2966 {
2967 if (pfn_valid(pfn))
2968 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2969 /*
2970 * Some reserved pages, such as those from NVDIMM
2971 * DAX devices, are not for MMIO, and can be mapped
2972 * with cached memory type for better performance.
2973 * However, the above check misconceives those pages
2974 * as MMIO, and results in KVM mapping them with UC
2975 * memory type, which would hurt the performance.
2976 * Therefore, we check the host memory type in addition
2977 * and only treat UC/UC-/WC pages as MMIO.
2978 */
2979 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2980
2981 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2982 pfn_to_hpa(pfn + 1) - 1,
2983 E820_TYPE_RAM);
2984 }
2985
2986 /* Bits which may be returned by set_spte() */
2987 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2988 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2989
2990 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2991 unsigned int pte_access, int level,
2992 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2993 bool can_unsync, bool host_writable)
2994 {
2995 u64 spte = 0;
2996 int ret = 0;
2997 struct kvm_mmu_page *sp;
2998
2999 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3000 return 0;
3001
3002 sp = page_header(__pa(sptep));
3003 if (sp_ad_disabled(sp))
3004 spte |= SPTE_AD_DISABLED_MASK;
3005 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3006 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3007
3008 /*
3009 * For the EPT case, shadow_present_mask is 0 if hardware
3010 * supports exec-only page table entries. In that case,
3011 * ACC_USER_MASK and shadow_user_mask are used to represent
3012 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3013 */
3014 spte |= shadow_present_mask;
3015 if (!speculative)
3016 spte |= spte_shadow_accessed_mask(spte);
3017
3018 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
3019 is_nx_huge_page_enabled()) {
3020 pte_access &= ~ACC_EXEC_MASK;
3021 }
3022
3023 if (pte_access & ACC_EXEC_MASK)
3024 spte |= shadow_x_mask;
3025 else
3026 spte |= shadow_nx_mask;
3027
3028 if (pte_access & ACC_USER_MASK)
3029 spte |= shadow_user_mask;
3030
3031 if (level > PG_LEVEL_4K)
3032 spte |= PT_PAGE_SIZE_MASK;
3033 if (tdp_enabled)
3034 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3035 kvm_is_mmio_pfn(pfn));
3036
3037 if (host_writable)
3038 spte |= SPTE_HOST_WRITEABLE;
3039 else
3040 pte_access &= ~ACC_WRITE_MASK;
3041
3042 if (!kvm_is_mmio_pfn(pfn))
3043 spte |= shadow_me_mask;
3044
3045 spte |= (u64)pfn << PAGE_SHIFT;
3046
3047 if (pte_access & ACC_WRITE_MASK) {
3048 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3049
3050 /*
3051 * Optimization: for pte sync, if spte was writable the hash
3052 * lookup is unnecessary (and expensive). Write protection
3053 * is responsibility of mmu_get_page / kvm_sync_page.
3054 * Same reasoning can be applied to dirty page accounting.
3055 */
3056 if (!can_unsync && is_writable_pte(*sptep))
3057 goto set_pte;
3058
3059 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3060 pgprintk("%s: found shadow page for %llx, marking ro\n",
3061 __func__, gfn);
3062 ret |= SET_SPTE_WRITE_PROTECTED_PT;
3063 pte_access &= ~ACC_WRITE_MASK;
3064 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3065 }
3066 }
3067
3068 if (pte_access & ACC_WRITE_MASK) {
3069 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3070 spte |= spte_shadow_dirty_mask(spte);
3071 }
3072
3073 if (speculative)
3074 spte = mark_spte_for_access_track(spte);
3075
3076 set_pte:
3077 if (mmu_spte_update(sptep, spte))
3078 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3079 return ret;
3080 }
3081
3082 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3083 unsigned int pte_access, int write_fault, int level,
3084 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3085 bool host_writable)
3086 {
3087 int was_rmapped = 0;
3088 int rmap_count;
3089 int set_spte_ret;
3090 int ret = RET_PF_RETRY;
3091 bool flush = false;
3092
3093 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3094 *sptep, write_fault, gfn);
3095
3096 if (is_shadow_present_pte(*sptep)) {
3097 /*
3098 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3099 * the parent of the now unreachable PTE.
3100 */
3101 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
3102 struct kvm_mmu_page *child;
3103 u64 pte = *sptep;
3104
3105 child = page_header(pte & PT64_BASE_ADDR_MASK);
3106 drop_parent_pte(child, sptep);
3107 flush = true;
3108 } else if (pfn != spte_to_pfn(*sptep)) {
3109 pgprintk("hfn old %llx new %llx\n",
3110 spte_to_pfn(*sptep), pfn);
3111 drop_spte(vcpu->kvm, sptep);
3112 flush = true;
3113 } else
3114 was_rmapped = 1;
3115 }
3116
3117 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3118 speculative, true, host_writable);
3119 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3120 if (write_fault)
3121 ret = RET_PF_EMULATE;
3122 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3123 }
3124
3125 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3126 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3127 KVM_PAGES_PER_HPAGE(level));
3128
3129 if (unlikely(is_mmio_spte(*sptep)))
3130 ret = RET_PF_EMULATE;
3131
3132 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3133 trace_kvm_mmu_set_spte(level, gfn, sptep);
3134 if (!was_rmapped && is_large_pte(*sptep))
3135 ++vcpu->kvm->stat.lpages;
3136
3137 if (is_shadow_present_pte(*sptep)) {
3138 if (!was_rmapped) {
3139 rmap_count = rmap_add(vcpu, sptep, gfn);
3140 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3141 rmap_recycle(vcpu, sptep, gfn);
3142 }
3143 }
3144
3145 return ret;
3146 }
3147
3148 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3149 bool no_dirty_log)
3150 {
3151 struct kvm_memory_slot *slot;
3152
3153 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3154 if (!slot)
3155 return KVM_PFN_ERR_FAULT;
3156
3157 return gfn_to_pfn_memslot_atomic(slot, gfn);
3158 }
3159
3160 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3161 struct kvm_mmu_page *sp,
3162 u64 *start, u64 *end)
3163 {
3164 struct page *pages[PTE_PREFETCH_NUM];
3165 struct kvm_memory_slot *slot;
3166 unsigned int access = sp->role.access;
3167 int i, ret;
3168 gfn_t gfn;
3169
3170 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3171 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3172 if (!slot)
3173 return -1;
3174
3175 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3176 if (ret <= 0)
3177 return -1;
3178
3179 for (i = 0; i < ret; i++, gfn++, start++) {
3180 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3181 page_to_pfn(pages[i]), true, true);
3182 put_page(pages[i]);
3183 }
3184
3185 return 0;
3186 }
3187
3188 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3189 struct kvm_mmu_page *sp, u64 *sptep)
3190 {
3191 u64 *spte, *start = NULL;
3192 int i;
3193
3194 WARN_ON(!sp->role.direct);
3195
3196 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3197 spte = sp->spt + i;
3198
3199 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3200 if (is_shadow_present_pte(*spte) || spte == sptep) {
3201 if (!start)
3202 continue;
3203 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3204 break;
3205 start = NULL;
3206 } else if (!start)
3207 start = spte;
3208 }
3209 }
3210
3211 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3212 {
3213 struct kvm_mmu_page *sp;
3214
3215 sp = page_header(__pa(sptep));
3216
3217 /*
3218 * Without accessed bits, there's no way to distinguish between
3219 * actually accessed translations and prefetched, so disable pte
3220 * prefetch if accessed bits aren't available.
3221 */
3222 if (sp_ad_disabled(sp))
3223 return;
3224
3225 if (sp->role.level > PG_LEVEL_4K)
3226 return;
3227
3228 __direct_pte_prefetch(vcpu, sp, sptep);
3229 }
3230
3231 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3232 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3233 {
3234 unsigned long hva;
3235 pte_t *pte;
3236 int level;
3237
3238 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3239 return PG_LEVEL_4K;
3240
3241 /*
3242 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3243 * is not solely for performance, it's also necessary to avoid the
3244 * "writable" check in __gfn_to_hva_many(), which will always fail on
3245 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3246 * page fault steps have already verified the guest isn't writing a
3247 * read-only memslot.
3248 */
3249 hva = __gfn_to_hva_memslot(slot, gfn);
3250
3251 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3252 if (unlikely(!pte))
3253 return PG_LEVEL_4K;
3254
3255 return level;
3256 }
3257
3258 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3259 int max_level, kvm_pfn_t *pfnp)
3260 {
3261 struct kvm_memory_slot *slot;
3262 struct kvm_lpage_info *linfo;
3263 kvm_pfn_t pfn = *pfnp;
3264 kvm_pfn_t mask;
3265 int level;
3266
3267 if (unlikely(max_level == PG_LEVEL_4K))
3268 return PG_LEVEL_4K;
3269
3270 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3271 return PG_LEVEL_4K;
3272
3273 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3274 if (!slot)
3275 return PG_LEVEL_4K;
3276
3277 max_level = min(max_level, max_page_level);
3278 for ( ; max_level > PG_LEVEL_4K; max_level--) {
3279 linfo = lpage_info_slot(gfn, slot, max_level);
3280 if (!linfo->disallow_lpage)
3281 break;
3282 }
3283
3284 if (max_level == PG_LEVEL_4K)
3285 return PG_LEVEL_4K;
3286
3287 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3288 if (level == PG_LEVEL_4K)
3289 return level;
3290
3291 level = min(level, max_level);
3292
3293 /*
3294 * mmu_notifier_retry() was successful and mmu_lock is held, so
3295 * the pmd can't be split from under us.
3296 */
3297 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3298 VM_BUG_ON((gfn & mask) != (pfn & mask));
3299 *pfnp = pfn & ~mask;
3300
3301 return level;
3302 }
3303
3304 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3305 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3306 {
3307 int level = *levelp;
3308 u64 spte = *it.sptep;
3309
3310 if (it.level == level && level > PG_LEVEL_4K &&
3311 is_nx_huge_page_enabled() &&
3312 is_shadow_present_pte(spte) &&
3313 !is_large_pte(spte)) {
3314 /*
3315 * A small SPTE exists for this pfn, but FNAME(fetch)
3316 * and __direct_map would like to create a large PTE
3317 * instead: just force them to go down another level,
3318 * patching back for them into pfn the next 9 bits of
3319 * the address.
3320 */
3321 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3322 *pfnp |= gfn & page_mask;
3323 (*levelp)--;
3324 }
3325 }
3326
3327 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3328 int map_writable, int max_level, kvm_pfn_t pfn,
3329 bool prefault, bool account_disallowed_nx_lpage)
3330 {
3331 struct kvm_shadow_walk_iterator it;
3332 struct kvm_mmu_page *sp;
3333 int level, ret;
3334 gfn_t gfn = gpa >> PAGE_SHIFT;
3335 gfn_t base_gfn = gfn;
3336
3337 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3338 return RET_PF_RETRY;
3339
3340 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3341
3342 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3343 for_each_shadow_entry(vcpu, gpa, it) {
3344 /*
3345 * We cannot overwrite existing page tables with an NX
3346 * large page, as the leaf could be executable.
3347 */
3348 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3349
3350 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3351 if (it.level == level)
3352 break;
3353
3354 drop_large_spte(vcpu, it.sptep);
3355 if (!is_shadow_present_pte(*it.sptep)) {
3356 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3357 it.level - 1, true, ACC_ALL);
3358
3359 link_shadow_page(vcpu, it.sptep, sp);
3360 if (account_disallowed_nx_lpage)
3361 account_huge_nx_page(vcpu->kvm, sp);
3362 }
3363 }
3364
3365 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3366 write, level, base_gfn, pfn, prefault,
3367 map_writable);
3368 direct_pte_prefetch(vcpu, it.sptep);
3369 ++vcpu->stat.pf_fixed;
3370 return ret;
3371 }
3372
3373 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3374 {
3375 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3376 }
3377
3378 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3379 {
3380 /*
3381 * Do not cache the mmio info caused by writing the readonly gfn
3382 * into the spte otherwise read access on readonly gfn also can
3383 * caused mmio page fault and treat it as mmio access.
3384 */
3385 if (pfn == KVM_PFN_ERR_RO_FAULT)
3386 return RET_PF_EMULATE;
3387
3388 if (pfn == KVM_PFN_ERR_HWPOISON) {
3389 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3390 return RET_PF_RETRY;
3391 }
3392
3393 return -EFAULT;
3394 }
3395
3396 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3397 kvm_pfn_t pfn, unsigned int access,
3398 int *ret_val)
3399 {
3400 /* The pfn is invalid, report the error! */
3401 if (unlikely(is_error_pfn(pfn))) {
3402 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3403 return true;
3404 }
3405
3406 if (unlikely(is_noslot_pfn(pfn)))
3407 vcpu_cache_mmio_info(vcpu, gva, gfn,
3408 access & shadow_mmio_access_mask);
3409
3410 return false;
3411 }
3412
3413 static bool page_fault_can_be_fast(u32 error_code)
3414 {
3415 /*
3416 * Do not fix the mmio spte with invalid generation number which
3417 * need to be updated by slow page fault path.
3418 */
3419 if (unlikely(error_code & PFERR_RSVD_MASK))
3420 return false;
3421
3422 /* See if the page fault is due to an NX violation */
3423 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3424 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3425 return false;
3426
3427 /*
3428 * #PF can be fast if:
3429 * 1. The shadow page table entry is not present, which could mean that
3430 * the fault is potentially caused by access tracking (if enabled).
3431 * 2. The shadow page table entry is present and the fault
3432 * is caused by write-protect, that means we just need change the W
3433 * bit of the spte which can be done out of mmu-lock.
3434 *
3435 * However, if access tracking is disabled we know that a non-present
3436 * page must be a genuine page fault where we have to create a new SPTE.
3437 * So, if access tracking is disabled, we return true only for write
3438 * accesses to a present page.
3439 */
3440
3441 return shadow_acc_track_mask != 0 ||
3442 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3443 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3444 }
3445
3446 /*
3447 * Returns true if the SPTE was fixed successfully. Otherwise,
3448 * someone else modified the SPTE from its original value.
3449 */
3450 static bool
3451 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3452 u64 *sptep, u64 old_spte, u64 new_spte)
3453 {
3454 gfn_t gfn;
3455
3456 WARN_ON(!sp->role.direct);
3457
3458 /*
3459 * Theoretically we could also set dirty bit (and flush TLB) here in
3460 * order to eliminate unnecessary PML logging. See comments in
3461 * set_spte. But fast_page_fault is very unlikely to happen with PML
3462 * enabled, so we do not do this. This might result in the same GPA
3463 * to be logged in PML buffer again when the write really happens, and
3464 * eventually to be called by mark_page_dirty twice. But it's also no
3465 * harm. This also avoids the TLB flush needed after setting dirty bit
3466 * so non-PML cases won't be impacted.
3467 *
3468 * Compare with set_spte where instead shadow_dirty_mask is set.
3469 */
3470 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3471 return false;
3472
3473 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3474 /*
3475 * The gfn of direct spte is stable since it is
3476 * calculated by sp->gfn.
3477 */
3478 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3479 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3480 }
3481
3482 return true;
3483 }
3484
3485 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3486 {
3487 if (fault_err_code & PFERR_FETCH_MASK)
3488 return is_executable_pte(spte);
3489
3490 if (fault_err_code & PFERR_WRITE_MASK)
3491 return is_writable_pte(spte);
3492
3493 /* Fault was on Read access */
3494 return spte & PT_PRESENT_MASK;
3495 }
3496
3497 /*
3498 * Return value:
3499 * - true: let the vcpu to access on the same address again.
3500 * - false: let the real page fault path to fix it.
3501 */
3502 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3503 u32 error_code)
3504 {
3505 struct kvm_shadow_walk_iterator iterator;
3506 struct kvm_mmu_page *sp;
3507 bool fault_handled = false;
3508 u64 spte = 0ull;
3509 uint retry_count = 0;
3510
3511 if (!page_fault_can_be_fast(error_code))
3512 return false;
3513
3514 walk_shadow_page_lockless_begin(vcpu);
3515
3516 do {
3517 u64 new_spte;
3518
3519 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3520 if (!is_shadow_present_pte(spte))
3521 break;
3522
3523 sp = page_header(__pa(iterator.sptep));
3524 if (!is_last_spte(spte, sp->role.level))
3525 break;
3526
3527 /*
3528 * Check whether the memory access that caused the fault would
3529 * still cause it if it were to be performed right now. If not,
3530 * then this is a spurious fault caused by TLB lazily flushed,
3531 * or some other CPU has already fixed the PTE after the
3532 * current CPU took the fault.
3533 *
3534 * Need not check the access of upper level table entries since
3535 * they are always ACC_ALL.
3536 */
3537 if (is_access_allowed(error_code, spte)) {
3538 fault_handled = true;
3539 break;
3540 }
3541
3542 new_spte = spte;
3543
3544 if (is_access_track_spte(spte))
3545 new_spte = restore_acc_track_spte(new_spte);
3546
3547 /*
3548 * Currently, to simplify the code, write-protection can
3549 * be removed in the fast path only if the SPTE was
3550 * write-protected for dirty-logging or access tracking.
3551 */
3552 if ((error_code & PFERR_WRITE_MASK) &&
3553 spte_can_locklessly_be_made_writable(spte)) {
3554 new_spte |= PT_WRITABLE_MASK;
3555
3556 /*
3557 * Do not fix write-permission on the large spte. Since
3558 * we only dirty the first page into the dirty-bitmap in
3559 * fast_pf_fix_direct_spte(), other pages are missed
3560 * if its slot has dirty logging enabled.
3561 *
3562 * Instead, we let the slow page fault path create a
3563 * normal spte to fix the access.
3564 *
3565 * See the comments in kvm_arch_commit_memory_region().
3566 */
3567 if (sp->role.level > PG_LEVEL_4K)
3568 break;
3569 }
3570
3571 /* Verify that the fault can be handled in the fast path */
3572 if (new_spte == spte ||
3573 !is_access_allowed(error_code, new_spte))
3574 break;
3575
3576 /*
3577 * Currently, fast page fault only works for direct mapping
3578 * since the gfn is not stable for indirect shadow page. See
3579 * Documentation/virt/kvm/locking.rst to get more detail.
3580 */
3581 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3582 iterator.sptep, spte,
3583 new_spte);
3584 if (fault_handled)
3585 break;
3586
3587 if (++retry_count > 4) {
3588 printk_once(KERN_WARNING
3589 "kvm: Fast #PF retrying more than 4 times.\n");
3590 break;
3591 }
3592
3593 } while (true);
3594
3595 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3596 spte, fault_handled);
3597 walk_shadow_page_lockless_end(vcpu);
3598
3599 return fault_handled;
3600 }
3601
3602 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3603 struct list_head *invalid_list)
3604 {
3605 struct kvm_mmu_page *sp;
3606
3607 if (!VALID_PAGE(*root_hpa))
3608 return;
3609
3610 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3611 --sp->root_count;
3612 if (!sp->root_count && sp->role.invalid)
3613 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3614
3615 *root_hpa = INVALID_PAGE;
3616 }
3617
3618 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3619 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3620 ulong roots_to_free)
3621 {
3622 int i;
3623 LIST_HEAD(invalid_list);
3624 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3625
3626 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3627
3628 /* Before acquiring the MMU lock, see if we need to do any real work. */
3629 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3630 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3631 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3632 VALID_PAGE(mmu->prev_roots[i].hpa))
3633 break;
3634
3635 if (i == KVM_MMU_NUM_PREV_ROOTS)
3636 return;
3637 }
3638
3639 spin_lock(&vcpu->kvm->mmu_lock);
3640
3641 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3642 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3643 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3644 &invalid_list);
3645
3646 if (free_active_root) {
3647 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3648 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3649 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3650 &invalid_list);
3651 } else {
3652 for (i = 0; i < 4; ++i)
3653 if (mmu->pae_root[i] != 0)
3654 mmu_free_root_page(vcpu->kvm,
3655 &mmu->pae_root[i],
3656 &invalid_list);
3657 mmu->root_hpa = INVALID_PAGE;
3658 }
3659 mmu->root_pgd = 0;
3660 }
3661
3662 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3663 spin_unlock(&vcpu->kvm->mmu_lock);
3664 }
3665 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3666
3667 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3668 {
3669 int ret = 0;
3670
3671 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3672 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3673 ret = 1;
3674 }
3675
3676 return ret;
3677 }
3678
3679 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3680 u8 level, bool direct)
3681 {
3682 struct kvm_mmu_page *sp;
3683
3684 spin_lock(&vcpu->kvm->mmu_lock);
3685
3686 if (make_mmu_pages_available(vcpu)) {
3687 spin_unlock(&vcpu->kvm->mmu_lock);
3688 return INVALID_PAGE;
3689 }
3690 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3691 ++sp->root_count;
3692
3693 spin_unlock(&vcpu->kvm->mmu_lock);
3694 return __pa(sp->spt);
3695 }
3696
3697 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3698 {
3699 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3700 hpa_t root;
3701 unsigned i;
3702
3703 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3704 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3705 if (!VALID_PAGE(root))
3706 return -ENOSPC;
3707 vcpu->arch.mmu->root_hpa = root;
3708 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3709 for (i = 0; i < 4; ++i) {
3710 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3711
3712 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3713 i << 30, PT32_ROOT_LEVEL, true);
3714 if (!VALID_PAGE(root))
3715 return -ENOSPC;
3716 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3717 }
3718 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3719 } else
3720 BUG();
3721
3722 /* root_pgd is ignored for direct MMUs. */
3723 vcpu->arch.mmu->root_pgd = 0;
3724
3725 return 0;
3726 }
3727
3728 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3729 {
3730 u64 pdptr, pm_mask;
3731 gfn_t root_gfn, root_pgd;
3732 hpa_t root;
3733 int i;
3734
3735 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3736 root_gfn = root_pgd >> PAGE_SHIFT;
3737
3738 if (mmu_check_root(vcpu, root_gfn))
3739 return 1;
3740
3741 /*
3742 * Do we shadow a long mode page table? If so we need to
3743 * write-protect the guests page table root.
3744 */
3745 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3746 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3747
3748 root = mmu_alloc_root(vcpu, root_gfn, 0,
3749 vcpu->arch.mmu->shadow_root_level, false);
3750 if (!VALID_PAGE(root))
3751 return -ENOSPC;
3752 vcpu->arch.mmu->root_hpa = root;
3753 goto set_root_pgd;
3754 }
3755
3756 /*
3757 * We shadow a 32 bit page table. This may be a legacy 2-level
3758 * or a PAE 3-level page table. In either case we need to be aware that
3759 * the shadow page table may be a PAE or a long mode page table.
3760 */
3761 pm_mask = PT_PRESENT_MASK;
3762 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3763 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3764
3765 for (i = 0; i < 4; ++i) {
3766 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3767 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3768 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3769 if (!(pdptr & PT_PRESENT_MASK)) {
3770 vcpu->arch.mmu->pae_root[i] = 0;
3771 continue;
3772 }
3773 root_gfn = pdptr >> PAGE_SHIFT;
3774 if (mmu_check_root(vcpu, root_gfn))
3775 return 1;
3776 }
3777
3778 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3779 PT32_ROOT_LEVEL, false);
3780 if (!VALID_PAGE(root))
3781 return -ENOSPC;
3782 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3783 }
3784 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3785
3786 /*
3787 * If we shadow a 32 bit page table with a long mode page
3788 * table we enter this path.
3789 */
3790 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3791 if (vcpu->arch.mmu->lm_root == NULL) {
3792 /*
3793 * The additional page necessary for this is only
3794 * allocated on demand.
3795 */
3796
3797 u64 *lm_root;
3798
3799 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3800 if (lm_root == NULL)
3801 return 1;
3802
3803 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3804
3805 vcpu->arch.mmu->lm_root = lm_root;
3806 }
3807
3808 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3809 }
3810
3811 set_root_pgd:
3812 vcpu->arch.mmu->root_pgd = root_pgd;
3813
3814 return 0;
3815 }
3816
3817 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3818 {
3819 if (vcpu->arch.mmu->direct_map)
3820 return mmu_alloc_direct_roots(vcpu);
3821 else
3822 return mmu_alloc_shadow_roots(vcpu);
3823 }
3824
3825 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3826 {
3827 int i;
3828 struct kvm_mmu_page *sp;
3829
3830 if (vcpu->arch.mmu->direct_map)
3831 return;
3832
3833 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3834 return;
3835
3836 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3837
3838 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3839 hpa_t root = vcpu->arch.mmu->root_hpa;
3840 sp = page_header(root);
3841
3842 /*
3843 * Even if another CPU was marking the SP as unsync-ed
3844 * simultaneously, any guest page table changes are not
3845 * guaranteed to be visible anyway until this VCPU issues a TLB
3846 * flush strictly after those changes are made. We only need to
3847 * ensure that the other CPU sets these flags before any actual
3848 * changes to the page tables are made. The comments in
3849 * mmu_need_write_protect() describe what could go wrong if this
3850 * requirement isn't satisfied.
3851 */
3852 if (!smp_load_acquire(&sp->unsync) &&
3853 !smp_load_acquire(&sp->unsync_children))
3854 return;
3855
3856 spin_lock(&vcpu->kvm->mmu_lock);
3857 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3858
3859 mmu_sync_children(vcpu, sp);
3860
3861 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3862 spin_unlock(&vcpu->kvm->mmu_lock);
3863 return;
3864 }
3865
3866 spin_lock(&vcpu->kvm->mmu_lock);
3867 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3868
3869 for (i = 0; i < 4; ++i) {
3870 hpa_t root = vcpu->arch.mmu->pae_root[i];
3871
3872 if (root && VALID_PAGE(root)) {
3873 root &= PT64_BASE_ADDR_MASK;
3874 sp = page_header(root);
3875 mmu_sync_children(vcpu, sp);
3876 }
3877 }
3878
3879 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3880 spin_unlock(&vcpu->kvm->mmu_lock);
3881 }
3882 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3883
3884 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3885 u32 access, struct x86_exception *exception)
3886 {
3887 if (exception)
3888 exception->error_code = 0;
3889 return vaddr;
3890 }
3891
3892 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3893 u32 access,
3894 struct x86_exception *exception)
3895 {
3896 if (exception)
3897 exception->error_code = 0;
3898 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3899 }
3900
3901 static bool
3902 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3903 {
3904 int bit7 = (pte >> 7) & 1;
3905
3906 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3907 }
3908
3909 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3910 {
3911 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3912 }
3913
3914 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3915 {
3916 /*
3917 * A nested guest cannot use the MMIO cache if it is using nested
3918 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3919 */
3920 if (mmu_is_nested(vcpu))
3921 return false;
3922
3923 if (direct)
3924 return vcpu_match_mmio_gpa(vcpu, addr);
3925
3926 return vcpu_match_mmio_gva(vcpu, addr);
3927 }
3928
3929 /* return true if reserved bit is detected on spte. */
3930 static bool
3931 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3932 {
3933 struct kvm_shadow_walk_iterator iterator;
3934 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3935 struct rsvd_bits_validate *rsvd_check;
3936 int root, leaf;
3937 bool reserved = false;
3938
3939 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3940
3941 walk_shadow_page_lockless_begin(vcpu);
3942
3943 for (shadow_walk_init(&iterator, vcpu, addr),
3944 leaf = root = iterator.level;
3945 shadow_walk_okay(&iterator);
3946 __shadow_walk_next(&iterator, spte)) {
3947 spte = mmu_spte_get_lockless(iterator.sptep);
3948
3949 sptes[leaf - 1] = spte;
3950 leaf--;
3951
3952 if (!is_shadow_present_pte(spte))
3953 break;
3954
3955 /*
3956 * Use a bitwise-OR instead of a logical-OR to aggregate the
3957 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3958 * adding a Jcc in the loop.
3959 */
3960 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3961 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3962 }
3963
3964 walk_shadow_page_lockless_end(vcpu);
3965
3966 if (reserved) {
3967 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3968 __func__, addr);
3969 while (root > leaf) {
3970 pr_err("------ spte 0x%llx level %d.\n",
3971 sptes[root - 1], root);
3972 root--;
3973 }
3974 }
3975
3976 *sptep = spte;
3977 return reserved;
3978 }
3979
3980 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3981 {
3982 u64 spte;
3983 bool reserved;
3984
3985 if (mmio_info_in_cache(vcpu, addr, direct))
3986 return RET_PF_EMULATE;
3987
3988 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3989 if (WARN_ON(reserved))
3990 return -EINVAL;
3991
3992 if (is_mmio_spte(spte)) {
3993 gfn_t gfn = get_mmio_spte_gfn(spte);
3994 unsigned int access = get_mmio_spte_access(spte);
3995
3996 if (!check_mmio_spte(vcpu, spte))
3997 return RET_PF_INVALID;
3998
3999 if (direct)
4000 addr = 0;
4001
4002 trace_handle_mmio_page_fault(addr, gfn, access);
4003 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4004 return RET_PF_EMULATE;
4005 }
4006
4007 /*
4008 * If the page table is zapped by other cpus, let CPU fault again on
4009 * the address.
4010 */
4011 return RET_PF_RETRY;
4012 }
4013
4014 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4015 u32 error_code, gfn_t gfn)
4016 {
4017 if (unlikely(error_code & PFERR_RSVD_MASK))
4018 return false;
4019
4020 if (!(error_code & PFERR_PRESENT_MASK) ||
4021 !(error_code & PFERR_WRITE_MASK))
4022 return false;
4023
4024 /*
4025 * guest is writing the page which is write tracked which can
4026 * not be fixed by page fault handler.
4027 */
4028 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4029 return true;
4030
4031 return false;
4032 }
4033
4034 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4035 {
4036 struct kvm_shadow_walk_iterator iterator;
4037 u64 spte;
4038
4039 walk_shadow_page_lockless_begin(vcpu);
4040 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4041 clear_sp_write_flooding_count(iterator.sptep);
4042 if (!is_shadow_present_pte(spte))
4043 break;
4044 }
4045 walk_shadow_page_lockless_end(vcpu);
4046 }
4047
4048 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4049 gfn_t gfn)
4050 {
4051 struct kvm_arch_async_pf arch;
4052
4053 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4054 arch.gfn = gfn;
4055 arch.direct_map = vcpu->arch.mmu->direct_map;
4056 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4057
4058 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4059 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4060 }
4061
4062 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4063 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4064 bool *writable)
4065 {
4066 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4067 bool async;
4068
4069 /* Don't expose private memslots to L2. */
4070 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4071 *pfn = KVM_PFN_NOSLOT;
4072 *writable = false;
4073 return false;
4074 }
4075
4076 async = false;
4077 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4078 if (!async)
4079 return false; /* *pfn has correct page already */
4080
4081 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4082 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4083 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4084 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4085 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4086 return true;
4087 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4088 return true;
4089 }
4090
4091 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4092 return false;
4093 }
4094
4095 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4096 bool prefault, int max_level, bool is_tdp)
4097 {
4098 bool write = error_code & PFERR_WRITE_MASK;
4099 bool exec = error_code & PFERR_FETCH_MASK;
4100 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4101 bool map_writable;
4102
4103 gfn_t gfn = gpa >> PAGE_SHIFT;
4104 unsigned long mmu_seq;
4105 kvm_pfn_t pfn;
4106 int r;
4107
4108 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4109 return RET_PF_EMULATE;
4110
4111 r = mmu_topup_memory_caches(vcpu);
4112 if (r)
4113 return r;
4114
4115 if (lpage_disallowed)
4116 max_level = PG_LEVEL_4K;
4117
4118 if (fast_page_fault(vcpu, gpa, error_code))
4119 return RET_PF_RETRY;
4120
4121 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4122 smp_rmb();
4123
4124 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4125 return RET_PF_RETRY;
4126
4127 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4128 return r;
4129
4130 r = RET_PF_RETRY;
4131 spin_lock(&vcpu->kvm->mmu_lock);
4132 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4133 goto out_unlock;
4134 if (make_mmu_pages_available(vcpu) < 0)
4135 goto out_unlock;
4136 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4137 prefault, is_tdp && lpage_disallowed);
4138
4139 out_unlock:
4140 spin_unlock(&vcpu->kvm->mmu_lock);
4141 kvm_release_pfn_clean(pfn);
4142 return r;
4143 }
4144
4145 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4146 u32 error_code, bool prefault)
4147 {
4148 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4149
4150 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4151 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4152 PG_LEVEL_2M, false);
4153 }
4154
4155 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4156 u64 fault_address, char *insn, int insn_len)
4157 {
4158 int r = 1;
4159
4160 #ifndef CONFIG_X86_64
4161 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4162 if (WARN_ON_ONCE(fault_address >> 32))
4163 return -EFAULT;
4164 #endif
4165
4166 vcpu->arch.l1tf_flush_l1d = true;
4167 switch (vcpu->arch.apf.host_apf_flags) {
4168 default:
4169 trace_kvm_page_fault(fault_address, error_code);
4170
4171 if (kvm_event_needs_reinjection(vcpu))
4172 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4173 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4174 insn_len);
4175 break;
4176 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4177 vcpu->arch.apf.host_apf_flags = 0;
4178 local_irq_disable();
4179 kvm_async_pf_task_wait_schedule(fault_address);
4180 local_irq_enable();
4181 break;
4182 case KVM_PV_REASON_PAGE_READY:
4183 vcpu->arch.apf.host_apf_flags = 0;
4184 local_irq_disable();
4185 kvm_async_pf_task_wake(fault_address);
4186 local_irq_enable();
4187 break;
4188 }
4189 return r;
4190 }
4191 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4192
4193 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4194 bool prefault)
4195 {
4196 int max_level;
4197
4198 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4199 max_level > PG_LEVEL_4K;
4200 max_level--) {
4201 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4202 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4203
4204 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4205 break;
4206 }
4207
4208 return direct_page_fault(vcpu, gpa, error_code, prefault,
4209 max_level, true);
4210 }
4211
4212 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4213 struct kvm_mmu *context)
4214 {
4215 context->page_fault = nonpaging_page_fault;
4216 context->gva_to_gpa = nonpaging_gva_to_gpa;
4217 context->sync_page = nonpaging_sync_page;
4218 context->invlpg = NULL;
4219 context->update_pte = nonpaging_update_pte;
4220 context->root_level = 0;
4221 context->shadow_root_level = PT32E_ROOT_LEVEL;
4222 context->direct_map = true;
4223 context->nx = false;
4224 }
4225
4226 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4227 union kvm_mmu_page_role role)
4228 {
4229 return (role.direct || pgd == root->pgd) &&
4230 VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4231 role.word == page_header(root->hpa)->role.word;
4232 }
4233
4234 /*
4235 * Find out if a previously cached root matching the new pgd/role is available.
4236 * The current root is also inserted into the cache.
4237 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4238 * returned.
4239 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4240 * false is returned. This root should now be freed by the caller.
4241 */
4242 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4243 union kvm_mmu_page_role new_role)
4244 {
4245 uint i;
4246 struct kvm_mmu_root_info root;
4247 struct kvm_mmu *mmu = vcpu->arch.mmu;
4248
4249 root.pgd = mmu->root_pgd;
4250 root.hpa = mmu->root_hpa;
4251
4252 if (is_root_usable(&root, new_pgd, new_role))
4253 return true;
4254
4255 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4256 swap(root, mmu->prev_roots[i]);
4257
4258 if (is_root_usable(&root, new_pgd, new_role))
4259 break;
4260 }
4261
4262 mmu->root_hpa = root.hpa;
4263 mmu->root_pgd = root.pgd;
4264
4265 return i < KVM_MMU_NUM_PREV_ROOTS;
4266 }
4267
4268 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4269 union kvm_mmu_page_role new_role)
4270 {
4271 struct kvm_mmu *mmu = vcpu->arch.mmu;
4272
4273 /*
4274 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4275 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4276 * later if necessary.
4277 */
4278 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4279 mmu->root_level >= PT64_ROOT_4LEVEL)
4280 return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
4281 cached_root_available(vcpu, new_pgd, new_role);
4282
4283 return false;
4284 }
4285
4286 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4287 union kvm_mmu_page_role new_role,
4288 bool skip_tlb_flush, bool skip_mmu_sync)
4289 {
4290 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4291 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4292 return;
4293 }
4294
4295 /*
4296 * It's possible that the cached previous root page is obsolete because
4297 * of a change in the MMU generation number. However, changing the
4298 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4299 * free the root set here and allocate a new one.
4300 */
4301 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4302
4303 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4304 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4305 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4306 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4307
4308 /*
4309 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4310 * switching to a new CR3, that GVA->GPA mapping may no longer be
4311 * valid. So clear any cached MMIO info even when we don't need to sync
4312 * the shadow page tables.
4313 */
4314 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4315
4316 __clear_sp_write_flooding_count(page_header(vcpu->arch.mmu->root_hpa));
4317 }
4318
4319 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4320 bool skip_mmu_sync)
4321 {
4322 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4323 skip_tlb_flush, skip_mmu_sync);
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4326
4327 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4328 {
4329 return kvm_read_cr3(vcpu);
4330 }
4331
4332 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4333 unsigned int access, int *nr_present)
4334 {
4335 if (unlikely(is_mmio_spte(*sptep))) {
4336 if (gfn != get_mmio_spte_gfn(*sptep)) {
4337 mmu_spte_clear_no_track(sptep);
4338 return true;
4339 }
4340
4341 (*nr_present)++;
4342 mark_mmio_spte(vcpu, sptep, gfn, access);
4343 return true;
4344 }
4345
4346 return false;
4347 }
4348
4349 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4350 unsigned level, unsigned gpte)
4351 {
4352 /*
4353 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4354 * If it is clear, there are no large pages at this level, so clear
4355 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4356 */
4357 gpte &= level - mmu->last_nonleaf_level;
4358
4359 /*
4360 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4361 * iff level <= PG_LEVEL_4K, which for our purpose means
4362 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4363 */
4364 gpte |= level - PG_LEVEL_4K - 1;
4365
4366 return gpte & PT_PAGE_SIZE_MASK;
4367 }
4368
4369 #define PTTYPE_EPT 18 /* arbitrary */
4370 #define PTTYPE PTTYPE_EPT
4371 #include "paging_tmpl.h"
4372 #undef PTTYPE
4373
4374 #define PTTYPE 64
4375 #include "paging_tmpl.h"
4376 #undef PTTYPE
4377
4378 #define PTTYPE 32
4379 #include "paging_tmpl.h"
4380 #undef PTTYPE
4381
4382 static void
4383 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4384 struct rsvd_bits_validate *rsvd_check,
4385 int maxphyaddr, int level, bool nx, bool gbpages,
4386 bool pse, bool amd)
4387 {
4388 u64 exb_bit_rsvd = 0;
4389 u64 gbpages_bit_rsvd = 0;
4390 u64 nonleaf_bit8_rsvd = 0;
4391
4392 rsvd_check->bad_mt_xwr = 0;
4393
4394 if (!nx)
4395 exb_bit_rsvd = rsvd_bits(63, 63);
4396 if (!gbpages)
4397 gbpages_bit_rsvd = rsvd_bits(7, 7);
4398
4399 /*
4400 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4401 * leaf entries) on AMD CPUs only.
4402 */
4403 if (amd)
4404 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4405
4406 switch (level) {
4407 case PT32_ROOT_LEVEL:
4408 /* no rsvd bits for 2 level 4K page table entries */
4409 rsvd_check->rsvd_bits_mask[0][1] = 0;
4410 rsvd_check->rsvd_bits_mask[0][0] = 0;
4411 rsvd_check->rsvd_bits_mask[1][0] =
4412 rsvd_check->rsvd_bits_mask[0][0];
4413
4414 if (!pse) {
4415 rsvd_check->rsvd_bits_mask[1][1] = 0;
4416 break;
4417 }
4418
4419 if (is_cpuid_PSE36())
4420 /* 36bits PSE 4MB page */
4421 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4422 else
4423 /* 32 bits PSE 4MB page */
4424 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4425 break;
4426 case PT32E_ROOT_LEVEL:
4427 rsvd_check->rsvd_bits_mask[0][2] =
4428 rsvd_bits(maxphyaddr, 63) |
4429 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4430 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4431 rsvd_bits(maxphyaddr, 62); /* PDE */
4432 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4433 rsvd_bits(maxphyaddr, 62); /* PTE */
4434 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4435 rsvd_bits(maxphyaddr, 62) |
4436 rsvd_bits(13, 20); /* large page */
4437 rsvd_check->rsvd_bits_mask[1][0] =
4438 rsvd_check->rsvd_bits_mask[0][0];
4439 break;
4440 case PT64_ROOT_5LEVEL:
4441 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4442 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4443 rsvd_bits(maxphyaddr, 51);
4444 rsvd_check->rsvd_bits_mask[1][4] =
4445 rsvd_check->rsvd_bits_mask[0][4];
4446 /* fall through */
4447 case PT64_ROOT_4LEVEL:
4448 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4449 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4450 rsvd_bits(maxphyaddr, 51);
4451 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4452 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4453 rsvd_bits(maxphyaddr, 51);
4454 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4455 rsvd_bits(maxphyaddr, 51);
4456 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4457 rsvd_bits(maxphyaddr, 51);
4458 rsvd_check->rsvd_bits_mask[1][3] =
4459 rsvd_check->rsvd_bits_mask[0][3];
4460 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4461 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4462 rsvd_bits(13, 29);
4463 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4464 rsvd_bits(maxphyaddr, 51) |
4465 rsvd_bits(13, 20); /* large page */
4466 rsvd_check->rsvd_bits_mask[1][0] =
4467 rsvd_check->rsvd_bits_mask[0][0];
4468 break;
4469 }
4470 }
4471
4472 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4473 struct kvm_mmu *context)
4474 {
4475 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4476 cpuid_maxphyaddr(vcpu), context->root_level,
4477 context->nx,
4478 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4479 is_pse(vcpu),
4480 guest_cpuid_is_amd_or_hygon(vcpu));
4481 }
4482
4483 static void
4484 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4485 int maxphyaddr, bool execonly)
4486 {
4487 u64 bad_mt_xwr;
4488
4489 rsvd_check->rsvd_bits_mask[0][4] =
4490 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4491 rsvd_check->rsvd_bits_mask[0][3] =
4492 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4493 rsvd_check->rsvd_bits_mask[0][2] =
4494 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4495 rsvd_check->rsvd_bits_mask[0][1] =
4496 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4497 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4498
4499 /* large page */
4500 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4501 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4502 rsvd_check->rsvd_bits_mask[1][2] =
4503 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4504 rsvd_check->rsvd_bits_mask[1][1] =
4505 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4506 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4507
4508 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4509 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4510 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4511 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4512 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4513 if (!execonly) {
4514 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4515 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4516 }
4517 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4518 }
4519
4520 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4521 struct kvm_mmu *context, bool execonly)
4522 {
4523 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4524 cpuid_maxphyaddr(vcpu), execonly);
4525 }
4526
4527 /*
4528 * the page table on host is the shadow page table for the page
4529 * table in guest or amd nested guest, its mmu features completely
4530 * follow the features in guest.
4531 */
4532 void
4533 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4534 {
4535 bool uses_nx = context->nx ||
4536 context->mmu_role.base.smep_andnot_wp;
4537 struct rsvd_bits_validate *shadow_zero_check;
4538 int i;
4539
4540 /*
4541 * Passing "true" to the last argument is okay; it adds a check
4542 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4543 */
4544 shadow_zero_check = &context->shadow_zero_check;
4545 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4546 shadow_phys_bits,
4547 context->shadow_root_level, uses_nx,
4548 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4549 is_pse(vcpu), true);
4550
4551 if (!shadow_me_mask)
4552 return;
4553
4554 for (i = context->shadow_root_level; --i >= 0;) {
4555 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4556 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4557 }
4558
4559 }
4560 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4561
4562 static inline bool boot_cpu_is_amd(void)
4563 {
4564 WARN_ON_ONCE(!tdp_enabled);
4565 return shadow_x_mask == 0;
4566 }
4567
4568 /*
4569 * the direct page table on host, use as much mmu features as
4570 * possible, however, kvm currently does not do execution-protection.
4571 */
4572 static void
4573 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4574 struct kvm_mmu *context)
4575 {
4576 struct rsvd_bits_validate *shadow_zero_check;
4577 int i;
4578
4579 shadow_zero_check = &context->shadow_zero_check;
4580
4581 if (boot_cpu_is_amd())
4582 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4583 shadow_phys_bits,
4584 context->shadow_root_level, false,
4585 boot_cpu_has(X86_FEATURE_GBPAGES),
4586 true, true);
4587 else
4588 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4589 shadow_phys_bits,
4590 false);
4591
4592 if (!shadow_me_mask)
4593 return;
4594
4595 for (i = context->shadow_root_level; --i >= 0;) {
4596 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4597 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4598 }
4599 }
4600
4601 /*
4602 * as the comments in reset_shadow_zero_bits_mask() except it
4603 * is the shadow page table for intel nested guest.
4604 */
4605 static void
4606 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4607 struct kvm_mmu *context, bool execonly)
4608 {
4609 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4610 shadow_phys_bits, execonly);
4611 }
4612
4613 #define BYTE_MASK(access) \
4614 ((1 & (access) ? 2 : 0) | \
4615 (2 & (access) ? 4 : 0) | \
4616 (3 & (access) ? 8 : 0) | \
4617 (4 & (access) ? 16 : 0) | \
4618 (5 & (access) ? 32 : 0) | \
4619 (6 & (access) ? 64 : 0) | \
4620 (7 & (access) ? 128 : 0))
4621
4622
4623 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4624 struct kvm_mmu *mmu, bool ept)
4625 {
4626 unsigned byte;
4627
4628 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4629 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4630 const u8 u = BYTE_MASK(ACC_USER_MASK);
4631
4632 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4633 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4634 bool cr0_wp = is_write_protection(vcpu);
4635
4636 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4637 unsigned pfec = byte << 1;
4638
4639 /*
4640 * Each "*f" variable has a 1 bit for each UWX value
4641 * that causes a fault with the given PFEC.
4642 */
4643
4644 /* Faults from writes to non-writable pages */
4645 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4646 /* Faults from user mode accesses to supervisor pages */
4647 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4648 /* Faults from fetches of non-executable pages*/
4649 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4650 /* Faults from kernel mode fetches of user pages */
4651 u8 smepf = 0;
4652 /* Faults from kernel mode accesses of user pages */
4653 u8 smapf = 0;
4654
4655 if (!ept) {
4656 /* Faults from kernel mode accesses to user pages */
4657 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4658
4659 /* Not really needed: !nx will cause pte.nx to fault */
4660 if (!mmu->nx)
4661 ff = 0;
4662
4663 /* Allow supervisor writes if !cr0.wp */
4664 if (!cr0_wp)
4665 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4666
4667 /* Disallow supervisor fetches of user code if cr4.smep */
4668 if (cr4_smep)
4669 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4670
4671 /*
4672 * SMAP:kernel-mode data accesses from user-mode
4673 * mappings should fault. A fault is considered
4674 * as a SMAP violation if all of the following
4675 * conditions are true:
4676 * - X86_CR4_SMAP is set in CR4
4677 * - A user page is accessed
4678 * - The access is not a fetch
4679 * - Page fault in kernel mode
4680 * - if CPL = 3 or X86_EFLAGS_AC is clear
4681 *
4682 * Here, we cover the first three conditions.
4683 * The fourth is computed dynamically in permission_fault();
4684 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4685 * *not* subject to SMAP restrictions.
4686 */
4687 if (cr4_smap)
4688 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4689 }
4690
4691 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4692 }
4693 }
4694
4695 /*
4696 * PKU is an additional mechanism by which the paging controls access to
4697 * user-mode addresses based on the value in the PKRU register. Protection
4698 * key violations are reported through a bit in the page fault error code.
4699 * Unlike other bits of the error code, the PK bit is not known at the
4700 * call site of e.g. gva_to_gpa; it must be computed directly in
4701 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4702 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4703 *
4704 * In particular the following conditions come from the error code, the
4705 * page tables and the machine state:
4706 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4707 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4708 * - PK is always zero if U=0 in the page tables
4709 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4710 *
4711 * The PKRU bitmask caches the result of these four conditions. The error
4712 * code (minus the P bit) and the page table's U bit form an index into the
4713 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4714 * with the two bits of the PKRU register corresponding to the protection key.
4715 * For the first three conditions above the bits will be 00, thus masking
4716 * away both AD and WD. For all reads or if the last condition holds, WD
4717 * only will be masked away.
4718 */
4719 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4720 bool ept)
4721 {
4722 unsigned bit;
4723 bool wp;
4724
4725 if (ept) {
4726 mmu->pkru_mask = 0;
4727 return;
4728 }
4729
4730 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4731 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4732 mmu->pkru_mask = 0;
4733 return;
4734 }
4735
4736 wp = is_write_protection(vcpu);
4737
4738 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4739 unsigned pfec, pkey_bits;
4740 bool check_pkey, check_write, ff, uf, wf, pte_user;
4741
4742 pfec = bit << 1;
4743 ff = pfec & PFERR_FETCH_MASK;
4744 uf = pfec & PFERR_USER_MASK;
4745 wf = pfec & PFERR_WRITE_MASK;
4746
4747 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4748 pte_user = pfec & PFERR_RSVD_MASK;
4749
4750 /*
4751 * Only need to check the access which is not an
4752 * instruction fetch and is to a user page.
4753 */
4754 check_pkey = (!ff && pte_user);
4755 /*
4756 * write access is controlled by PKRU if it is a
4757 * user access or CR0.WP = 1.
4758 */
4759 check_write = check_pkey && wf && (uf || wp);
4760
4761 /* PKRU.AD stops both read and write access. */
4762 pkey_bits = !!check_pkey;
4763 /* PKRU.WD stops write access. */
4764 pkey_bits |= (!!check_write) << 1;
4765
4766 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4767 }
4768 }
4769
4770 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4771 {
4772 unsigned root_level = mmu->root_level;
4773
4774 mmu->last_nonleaf_level = root_level;
4775 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4776 mmu->last_nonleaf_level++;
4777 }
4778
4779 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4780 struct kvm_mmu *context,
4781 int level)
4782 {
4783 context->nx = is_nx(vcpu);
4784 context->root_level = level;
4785
4786 reset_rsvds_bits_mask(vcpu, context);
4787 update_permission_bitmask(vcpu, context, false);
4788 update_pkru_bitmask(vcpu, context, false);
4789 update_last_nonleaf_level(vcpu, context);
4790
4791 MMU_WARN_ON(!is_pae(vcpu));
4792 context->page_fault = paging64_page_fault;
4793 context->gva_to_gpa = paging64_gva_to_gpa;
4794 context->sync_page = paging64_sync_page;
4795 context->invlpg = paging64_invlpg;
4796 context->update_pte = paging64_update_pte;
4797 context->shadow_root_level = level;
4798 context->direct_map = false;
4799 }
4800
4801 static void paging64_init_context(struct kvm_vcpu *vcpu,
4802 struct kvm_mmu *context)
4803 {
4804 int root_level = is_la57_mode(vcpu) ?
4805 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4806
4807 paging64_init_context_common(vcpu, context, root_level);
4808 }
4809
4810 static void paging32_init_context(struct kvm_vcpu *vcpu,
4811 struct kvm_mmu *context)
4812 {
4813 context->nx = false;
4814 context->root_level = PT32_ROOT_LEVEL;
4815
4816 reset_rsvds_bits_mask(vcpu, context);
4817 update_permission_bitmask(vcpu, context, false);
4818 update_pkru_bitmask(vcpu, context, false);
4819 update_last_nonleaf_level(vcpu, context);
4820
4821 context->page_fault = paging32_page_fault;
4822 context->gva_to_gpa = paging32_gva_to_gpa;
4823 context->sync_page = paging32_sync_page;
4824 context->invlpg = paging32_invlpg;
4825 context->update_pte = paging32_update_pte;
4826 context->shadow_root_level = PT32E_ROOT_LEVEL;
4827 context->direct_map = false;
4828 }
4829
4830 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4831 struct kvm_mmu *context)
4832 {
4833 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4834 }
4835
4836 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4837 {
4838 union kvm_mmu_extended_role ext = {0};
4839
4840 ext.cr0_pg = !!is_paging(vcpu);
4841 ext.cr4_pae = !!is_pae(vcpu);
4842 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4843 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4844 ext.cr4_pse = !!is_pse(vcpu);
4845 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4846 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4847
4848 ext.valid = 1;
4849
4850 return ext;
4851 }
4852
4853 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4854 bool base_only)
4855 {
4856 union kvm_mmu_role role = {0};
4857
4858 role.base.access = ACC_ALL;
4859 role.base.nxe = !!is_nx(vcpu);
4860 role.base.cr0_wp = is_write_protection(vcpu);
4861 role.base.smm = is_smm(vcpu);
4862 role.base.guest_mode = is_guest_mode(vcpu);
4863
4864 if (base_only)
4865 return role;
4866
4867 role.ext = kvm_calc_mmu_role_ext(vcpu);
4868
4869 return role;
4870 }
4871
4872 static union kvm_mmu_role
4873 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4874 {
4875 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4876
4877 role.base.ad_disabled = (shadow_accessed_mask == 0);
4878 role.base.level = vcpu->arch.tdp_level;
4879 role.base.direct = true;
4880 role.base.gpte_is_8_bytes = true;
4881
4882 return role;
4883 }
4884
4885 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4886 {
4887 struct kvm_mmu *context = vcpu->arch.mmu;
4888 union kvm_mmu_role new_role =
4889 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4890
4891 if (new_role.as_u64 == context->mmu_role.as_u64)
4892 return;
4893
4894 context->mmu_role.as_u64 = new_role.as_u64;
4895 context->page_fault = kvm_tdp_page_fault;
4896 context->sync_page = nonpaging_sync_page;
4897 context->invlpg = NULL;
4898 context->update_pte = nonpaging_update_pte;
4899 context->shadow_root_level = vcpu->arch.tdp_level;
4900 context->direct_map = true;
4901 context->get_guest_pgd = get_cr3;
4902 context->get_pdptr = kvm_pdptr_read;
4903 context->inject_page_fault = kvm_inject_page_fault;
4904
4905 if (!is_paging(vcpu)) {
4906 context->nx = false;
4907 context->gva_to_gpa = nonpaging_gva_to_gpa;
4908 context->root_level = 0;
4909 } else if (is_long_mode(vcpu)) {
4910 context->nx = is_nx(vcpu);
4911 context->root_level = is_la57_mode(vcpu) ?
4912 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4913 reset_rsvds_bits_mask(vcpu, context);
4914 context->gva_to_gpa = paging64_gva_to_gpa;
4915 } else if (is_pae(vcpu)) {
4916 context->nx = is_nx(vcpu);
4917 context->root_level = PT32E_ROOT_LEVEL;
4918 reset_rsvds_bits_mask(vcpu, context);
4919 context->gva_to_gpa = paging64_gva_to_gpa;
4920 } else {
4921 context->nx = false;
4922 context->root_level = PT32_ROOT_LEVEL;
4923 reset_rsvds_bits_mask(vcpu, context);
4924 context->gva_to_gpa = paging32_gva_to_gpa;
4925 }
4926
4927 update_permission_bitmask(vcpu, context, false);
4928 update_pkru_bitmask(vcpu, context, false);
4929 update_last_nonleaf_level(vcpu, context);
4930 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4931 }
4932
4933 static union kvm_mmu_role
4934 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4935 {
4936 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4937
4938 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4939 !is_write_protection(vcpu);
4940 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4941 !is_write_protection(vcpu);
4942 role.base.direct = !is_paging(vcpu);
4943 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4944
4945 if (!is_long_mode(vcpu))
4946 role.base.level = PT32E_ROOT_LEVEL;
4947 else if (is_la57_mode(vcpu))
4948 role.base.level = PT64_ROOT_5LEVEL;
4949 else
4950 role.base.level = PT64_ROOT_4LEVEL;
4951
4952 return role;
4953 }
4954
4955 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4956 {
4957 struct kvm_mmu *context = vcpu->arch.mmu;
4958 union kvm_mmu_role new_role =
4959 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4960
4961 if (new_role.as_u64 == context->mmu_role.as_u64)
4962 return;
4963
4964 if (!(cr0 & X86_CR0_PG))
4965 nonpaging_init_context(vcpu, context);
4966 else if (efer & EFER_LMA)
4967 paging64_init_context(vcpu, context);
4968 else if (cr4 & X86_CR4_PAE)
4969 paging32E_init_context(vcpu, context);
4970 else
4971 paging32_init_context(vcpu, context);
4972
4973 context->mmu_role.as_u64 = new_role.as_u64;
4974 reset_shadow_zero_bits_mask(vcpu, context);
4975 }
4976 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4977
4978 static union kvm_mmu_role
4979 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4980 bool execonly, u8 level)
4981 {
4982 union kvm_mmu_role role = {0};
4983
4984 /* SMM flag is inherited from root_mmu */
4985 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4986
4987 role.base.level = level;
4988 role.base.gpte_is_8_bytes = true;
4989 role.base.direct = false;
4990 role.base.ad_disabled = !accessed_dirty;
4991 role.base.guest_mode = true;
4992 role.base.access = ACC_ALL;
4993
4994 /*
4995 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4996 * SMAP variation to denote shadow EPT entries.
4997 */
4998 role.base.cr0_wp = true;
4999 role.base.smap_andnot_wp = true;
5000
5001 role.ext = kvm_calc_mmu_role_ext(vcpu);
5002 role.ext.execonly = execonly;
5003
5004 return role;
5005 }
5006
5007 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5008 bool accessed_dirty, gpa_t new_eptp)
5009 {
5010 struct kvm_mmu *context = vcpu->arch.mmu;
5011 u8 level = vmx_eptp_page_walk_level(new_eptp);
5012 union kvm_mmu_role new_role =
5013 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5014 execonly, level);
5015
5016 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5017
5018 if (new_role.as_u64 == context->mmu_role.as_u64)
5019 return;
5020
5021 context->shadow_root_level = level;
5022
5023 context->nx = true;
5024 context->ept_ad = accessed_dirty;
5025 context->page_fault = ept_page_fault;
5026 context->gva_to_gpa = ept_gva_to_gpa;
5027 context->sync_page = ept_sync_page;
5028 context->invlpg = ept_invlpg;
5029 context->update_pte = ept_update_pte;
5030 context->root_level = level;
5031 context->direct_map = false;
5032 context->mmu_role.as_u64 = new_role.as_u64;
5033
5034 update_permission_bitmask(vcpu, context, true);
5035 update_pkru_bitmask(vcpu, context, true);
5036 update_last_nonleaf_level(vcpu, context);
5037 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5038 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5039 }
5040 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5041
5042 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5043 {
5044 struct kvm_mmu *context = vcpu->arch.mmu;
5045
5046 kvm_init_shadow_mmu(vcpu,
5047 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5048 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5049 vcpu->arch.efer);
5050
5051 context->get_guest_pgd = get_cr3;
5052 context->get_pdptr = kvm_pdptr_read;
5053 context->inject_page_fault = kvm_inject_page_fault;
5054 }
5055
5056 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5057 {
5058 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5059 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5060
5061 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5062 return;
5063
5064 g_context->mmu_role.as_u64 = new_role.as_u64;
5065 g_context->get_guest_pgd = get_cr3;
5066 g_context->get_pdptr = kvm_pdptr_read;
5067 g_context->inject_page_fault = kvm_inject_page_fault;
5068
5069 /*
5070 * L2 page tables are never shadowed, so there is no need to sync
5071 * SPTEs.
5072 */
5073 g_context->invlpg = NULL;
5074
5075 /*
5076 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5077 * L1's nested page tables (e.g. EPT12). The nested translation
5078 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5079 * L2's page tables as the first level of translation and L1's
5080 * nested page tables as the second level of translation. Basically
5081 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5082 */
5083 if (!is_paging(vcpu)) {
5084 g_context->nx = false;
5085 g_context->root_level = 0;
5086 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5087 } else if (is_long_mode(vcpu)) {
5088 g_context->nx = is_nx(vcpu);
5089 g_context->root_level = is_la57_mode(vcpu) ?
5090 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5091 reset_rsvds_bits_mask(vcpu, g_context);
5092 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5093 } else if (is_pae(vcpu)) {
5094 g_context->nx = is_nx(vcpu);
5095 g_context->root_level = PT32E_ROOT_LEVEL;
5096 reset_rsvds_bits_mask(vcpu, g_context);
5097 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5098 } else {
5099 g_context->nx = false;
5100 g_context->root_level = PT32_ROOT_LEVEL;
5101 reset_rsvds_bits_mask(vcpu, g_context);
5102 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5103 }
5104
5105 update_permission_bitmask(vcpu, g_context, false);
5106 update_pkru_bitmask(vcpu, g_context, false);
5107 update_last_nonleaf_level(vcpu, g_context);
5108 }
5109
5110 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5111 {
5112 if (reset_roots) {
5113 uint i;
5114
5115 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5116
5117 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5118 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5119 }
5120
5121 if (mmu_is_nested(vcpu))
5122 init_kvm_nested_mmu(vcpu);
5123 else if (tdp_enabled)
5124 init_kvm_tdp_mmu(vcpu);
5125 else
5126 init_kvm_softmmu(vcpu);
5127 }
5128 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5129
5130 static union kvm_mmu_page_role
5131 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5132 {
5133 union kvm_mmu_role role;
5134
5135 if (tdp_enabled)
5136 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5137 else
5138 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5139
5140 return role.base;
5141 }
5142
5143 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5144 {
5145 kvm_mmu_unload(vcpu);
5146 kvm_init_mmu(vcpu, true);
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5149
5150 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5151 {
5152 int r;
5153
5154 r = mmu_topup_memory_caches(vcpu);
5155 if (r)
5156 goto out;
5157 r = mmu_alloc_roots(vcpu);
5158 kvm_mmu_sync_roots(vcpu);
5159 if (r)
5160 goto out;
5161 kvm_mmu_load_pgd(vcpu);
5162 kvm_x86_ops.tlb_flush_current(vcpu);
5163 out:
5164 return r;
5165 }
5166 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5167
5168 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5169 {
5170 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5171 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5172 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5173 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5174 }
5175 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5176
5177 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5178 struct kvm_mmu_page *sp, u64 *spte,
5179 const void *new)
5180 {
5181 if (sp->role.level != PG_LEVEL_4K) {
5182 ++vcpu->kvm->stat.mmu_pde_zapped;
5183 return;
5184 }
5185
5186 ++vcpu->kvm->stat.mmu_pte_updated;
5187 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5188 }
5189
5190 static bool need_remote_flush(u64 old, u64 new)
5191 {
5192 if (!is_shadow_present_pte(old))
5193 return false;
5194 if (!is_shadow_present_pte(new))
5195 return true;
5196 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5197 return true;
5198 old ^= shadow_nx_mask;
5199 new ^= shadow_nx_mask;
5200 return (old & ~new & PT64_PERM_MASK) != 0;
5201 }
5202
5203 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5204 int *bytes)
5205 {
5206 u64 gentry = 0;
5207 int r;
5208
5209 /*
5210 * Assume that the pte write on a page table of the same type
5211 * as the current vcpu paging mode since we update the sptes only
5212 * when they have the same mode.
5213 */
5214 if (is_pae(vcpu) && *bytes == 4) {
5215 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5216 *gpa &= ~(gpa_t)7;
5217 *bytes = 8;
5218 }
5219
5220 if (*bytes == 4 || *bytes == 8) {
5221 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5222 if (r)
5223 gentry = 0;
5224 }
5225
5226 return gentry;
5227 }
5228
5229 /*
5230 * If we're seeing too many writes to a page, it may no longer be a page table,
5231 * or we may be forking, in which case it is better to unmap the page.
5232 */
5233 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5234 {
5235 /*
5236 * Skip write-flooding detected for the sp whose level is 1, because
5237 * it can become unsync, then the guest page is not write-protected.
5238 */
5239 if (sp->role.level == PG_LEVEL_4K)
5240 return false;
5241
5242 atomic_inc(&sp->write_flooding_count);
5243 return atomic_read(&sp->write_flooding_count) >= 3;
5244 }
5245
5246 /*
5247 * Misaligned accesses are too much trouble to fix up; also, they usually
5248 * indicate a page is not used as a page table.
5249 */
5250 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5251 int bytes)
5252 {
5253 unsigned offset, pte_size, misaligned;
5254
5255 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5256 gpa, bytes, sp->role.word);
5257
5258 offset = offset_in_page(gpa);
5259 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5260
5261 /*
5262 * Sometimes, the OS only writes the last one bytes to update status
5263 * bits, for example, in linux, andb instruction is used in clear_bit().
5264 */
5265 if (!(offset & (pte_size - 1)) && bytes == 1)
5266 return false;
5267
5268 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5269 misaligned |= bytes < 4;
5270
5271 return misaligned;
5272 }
5273
5274 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5275 {
5276 unsigned page_offset, quadrant;
5277 u64 *spte;
5278 int level;
5279
5280 page_offset = offset_in_page(gpa);
5281 level = sp->role.level;
5282 *nspte = 1;
5283 if (!sp->role.gpte_is_8_bytes) {
5284 page_offset <<= 1; /* 32->64 */
5285 /*
5286 * A 32-bit pde maps 4MB while the shadow pdes map
5287 * only 2MB. So we need to double the offset again
5288 * and zap two pdes instead of one.
5289 */
5290 if (level == PT32_ROOT_LEVEL) {
5291 page_offset &= ~7; /* kill rounding error */
5292 page_offset <<= 1;
5293 *nspte = 2;
5294 }
5295 quadrant = page_offset >> PAGE_SHIFT;
5296 page_offset &= ~PAGE_MASK;
5297 if (quadrant != sp->role.quadrant)
5298 return NULL;
5299 }
5300
5301 spte = &sp->spt[page_offset / sizeof(*spte)];
5302 return spte;
5303 }
5304
5305 /*
5306 * Ignore various flags when determining if a SPTE can be immediately
5307 * overwritten for the current MMU.
5308 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5309 * match the current MMU role, as MMU's level tracks the root level.
5310 * - access: updated based on the new guest PTE
5311 * - quadrant: handled by get_written_sptes()
5312 * - invalid: always false (loop only walks valid shadow pages)
5313 */
5314 static const union kvm_mmu_page_role role_ign = {
5315 .level = 0xf,
5316 .access = 0x7,
5317 .quadrant = 0x3,
5318 .invalid = 0x1,
5319 };
5320
5321 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5322 const u8 *new, int bytes,
5323 struct kvm_page_track_notifier_node *node)
5324 {
5325 gfn_t gfn = gpa >> PAGE_SHIFT;
5326 struct kvm_mmu_page *sp;
5327 LIST_HEAD(invalid_list);
5328 u64 entry, gentry, *spte;
5329 int npte;
5330 bool remote_flush, local_flush;
5331
5332 /*
5333 * If we don't have indirect shadow pages, it means no page is
5334 * write-protected, so we can exit simply.
5335 */
5336 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5337 return;
5338
5339 remote_flush = local_flush = false;
5340
5341 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5342
5343 /*
5344 * No need to care whether allocation memory is successful
5345 * or not since pte prefetch is skiped if it does not have
5346 * enough objects in the cache.
5347 */
5348 mmu_topup_memory_caches(vcpu);
5349
5350 spin_lock(&vcpu->kvm->mmu_lock);
5351
5352 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5353
5354 ++vcpu->kvm->stat.mmu_pte_write;
5355 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5356
5357 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5358 if (detect_write_misaligned(sp, gpa, bytes) ||
5359 detect_write_flooding(sp)) {
5360 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5361 ++vcpu->kvm->stat.mmu_flooded;
5362 continue;
5363 }
5364
5365 spte = get_written_sptes(sp, gpa, &npte);
5366 if (!spte)
5367 continue;
5368
5369 local_flush = true;
5370 while (npte--) {
5371 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5372
5373 entry = *spte;
5374 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5375 if (gentry &&
5376 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5377 rmap_can_add(vcpu))
5378 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5379 if (need_remote_flush(entry, *spte))
5380 remote_flush = true;
5381 ++spte;
5382 }
5383 }
5384 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5385 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5386 spin_unlock(&vcpu->kvm->mmu_lock);
5387 }
5388
5389 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5390 {
5391 gpa_t gpa;
5392 int r;
5393
5394 if (vcpu->arch.mmu->direct_map)
5395 return 0;
5396
5397 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5398
5399 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5400
5401 return r;
5402 }
5403 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5404
5405 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5406 void *insn, int insn_len)
5407 {
5408 int r, emulation_type = EMULTYPE_PF;
5409 bool direct = vcpu->arch.mmu->direct_map;
5410
5411 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5412 return RET_PF_RETRY;
5413
5414 r = RET_PF_INVALID;
5415 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5416 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5417 if (r == RET_PF_EMULATE)
5418 goto emulate;
5419 }
5420
5421 if (r == RET_PF_INVALID) {
5422 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5423 lower_32_bits(error_code), false);
5424 WARN_ON(r == RET_PF_INVALID);
5425 }
5426
5427 if (r == RET_PF_RETRY)
5428 return 1;
5429 if (r < 0)
5430 return r;
5431
5432 /*
5433 * Before emulating the instruction, check if the error code
5434 * was due to a RO violation while translating the guest page.
5435 * This can occur when using nested virtualization with nested
5436 * paging in both guests. If true, we simply unprotect the page
5437 * and resume the guest.
5438 */
5439 if (vcpu->arch.mmu->direct_map &&
5440 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5441 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5442 return 1;
5443 }
5444
5445 /*
5446 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5447 * optimistically try to just unprotect the page and let the processor
5448 * re-execute the instruction that caused the page fault. Do not allow
5449 * retrying MMIO emulation, as it's not only pointless but could also
5450 * cause us to enter an infinite loop because the processor will keep
5451 * faulting on the non-existent MMIO address. Retrying an instruction
5452 * from a nested guest is also pointless and dangerous as we are only
5453 * explicitly shadowing L1's page tables, i.e. unprotecting something
5454 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5455 */
5456 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5457 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5458 emulate:
5459 /*
5460 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5461 * This can happen if a guest gets a page-fault on data access but the HW
5462 * table walker is not able to read the instruction page (e.g instruction
5463 * page is not present in memory). In those cases we simply restart the
5464 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5465 */
5466 if (unlikely(insn && !insn_len)) {
5467 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5468 return 1;
5469 }
5470
5471 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5472 insn_len);
5473 }
5474 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5475
5476 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5477 gva_t gva, hpa_t root_hpa)
5478 {
5479 int i;
5480
5481 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5482 if (mmu != &vcpu->arch.guest_mmu) {
5483 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5484 if (is_noncanonical_address(gva, vcpu))
5485 return;
5486
5487 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5488 }
5489
5490 if (!mmu->invlpg)
5491 return;
5492
5493 if (root_hpa == INVALID_PAGE) {
5494 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5495
5496 /*
5497 * INVLPG is required to invalidate any global mappings for the VA,
5498 * irrespective of PCID. Since it would take us roughly similar amount
5499 * of work to determine whether any of the prev_root mappings of the VA
5500 * is marked global, or to just sync it blindly, so we might as well
5501 * just always sync it.
5502 *
5503 * Mappings not reachable via the current cr3 or the prev_roots will be
5504 * synced when switching to that cr3, so nothing needs to be done here
5505 * for them.
5506 */
5507 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5508 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5509 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5510 } else {
5511 mmu->invlpg(vcpu, gva, root_hpa);
5512 }
5513 }
5514 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5515
5516 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5517 {
5518 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5519 ++vcpu->stat.invlpg;
5520 }
5521 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5522
5523
5524 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5525 {
5526 struct kvm_mmu *mmu = vcpu->arch.mmu;
5527 bool tlb_flush = false;
5528 uint i;
5529
5530 if (pcid == kvm_get_active_pcid(vcpu)) {
5531 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5532 tlb_flush = true;
5533 }
5534
5535 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5536 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5537 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5538 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5539 tlb_flush = true;
5540 }
5541 }
5542
5543 if (tlb_flush)
5544 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5545
5546 ++vcpu->stat.invlpg;
5547
5548 /*
5549 * Mappings not reachable via the current cr3 or the prev_roots will be
5550 * synced when switching to that cr3, so nothing needs to be done here
5551 * for them.
5552 */
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5555
5556 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5557 {
5558 tdp_enabled = enable_tdp;
5559
5560 /*
5561 * max_page_level reflects the capabilities of KVM's MMU irrespective
5562 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5563 * the kernel is not. But, KVM never creates a page size greater than
5564 * what is used by the kernel for any given HVA, i.e. the kernel's
5565 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5566 */
5567 if (tdp_enabled)
5568 max_page_level = tdp_page_level;
5569 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5570 max_page_level = PG_LEVEL_1G;
5571 else
5572 max_page_level = PG_LEVEL_2M;
5573 }
5574 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5575
5576 /* The return value indicates if tlb flush on all vcpus is needed. */
5577 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5578
5579 /* The caller should hold mmu-lock before calling this function. */
5580 static __always_inline bool
5581 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5582 slot_level_handler fn, int start_level, int end_level,
5583 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5584 {
5585 struct slot_rmap_walk_iterator iterator;
5586 bool flush = false;
5587
5588 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5589 end_gfn, &iterator) {
5590 if (iterator.rmap)
5591 flush |= fn(kvm, iterator.rmap);
5592
5593 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5594 if (flush && lock_flush_tlb) {
5595 kvm_flush_remote_tlbs_with_address(kvm,
5596 start_gfn,
5597 iterator.gfn - start_gfn + 1);
5598 flush = false;
5599 }
5600 cond_resched_lock(&kvm->mmu_lock);
5601 }
5602 }
5603
5604 if (flush && lock_flush_tlb) {
5605 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5606 end_gfn - start_gfn + 1);
5607 flush = false;
5608 }
5609
5610 return flush;
5611 }
5612
5613 static __always_inline bool
5614 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5615 slot_level_handler fn, int start_level, int end_level,
5616 bool lock_flush_tlb)
5617 {
5618 return slot_handle_level_range(kvm, memslot, fn, start_level,
5619 end_level, memslot->base_gfn,
5620 memslot->base_gfn + memslot->npages - 1,
5621 lock_flush_tlb);
5622 }
5623
5624 static __always_inline bool
5625 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5626 slot_level_handler fn, bool lock_flush_tlb)
5627 {
5628 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5629 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5630 }
5631
5632 static __always_inline bool
5633 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5634 slot_level_handler fn, bool lock_flush_tlb)
5635 {
5636 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5637 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5638 }
5639
5640 static __always_inline bool
5641 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5642 slot_level_handler fn, bool lock_flush_tlb)
5643 {
5644 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5645 PG_LEVEL_4K, lock_flush_tlb);
5646 }
5647
5648 static void free_mmu_pages(struct kvm_mmu *mmu)
5649 {
5650 free_page((unsigned long)mmu->pae_root);
5651 free_page((unsigned long)mmu->lm_root);
5652 }
5653
5654 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5655 {
5656 struct page *page;
5657 int i;
5658
5659 /*
5660 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5661 * while the PDP table is a per-vCPU construct that's allocated at MMU
5662 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5663 * x86_64. Therefore we need to allocate the PDP table in the first
5664 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5665 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5666 * skip allocating the PDP table.
5667 */
5668 if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
5669 return 0;
5670
5671 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5672 if (!page)
5673 return -ENOMEM;
5674
5675 mmu->pae_root = page_address(page);
5676 for (i = 0; i < 4; ++i)
5677 mmu->pae_root[i] = INVALID_PAGE;
5678
5679 return 0;
5680 }
5681
5682 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5683 {
5684 uint i;
5685 int ret;
5686
5687 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5688 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5689
5690 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5691 vcpu->arch.root_mmu.root_pgd = 0;
5692 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5693 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5694 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5695
5696 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5697 vcpu->arch.guest_mmu.root_pgd = 0;
5698 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5699 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5700 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5701
5702 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5703
5704 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5705 if (ret)
5706 return ret;
5707
5708 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5709 if (ret)
5710 goto fail_allocate_root;
5711
5712 return ret;
5713 fail_allocate_root:
5714 free_mmu_pages(&vcpu->arch.guest_mmu);
5715 return ret;
5716 }
5717
5718 #define BATCH_ZAP_PAGES 10
5719 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5720 {
5721 struct kvm_mmu_page *sp, *node;
5722 int nr_zapped, batch = 0;
5723
5724 restart:
5725 list_for_each_entry_safe_reverse(sp, node,
5726 &kvm->arch.active_mmu_pages, link) {
5727 /*
5728 * No obsolete valid page exists before a newly created page
5729 * since active_mmu_pages is a FIFO list.
5730 */
5731 if (!is_obsolete_sp(kvm, sp))
5732 break;
5733
5734 /*
5735 * Skip invalid pages with a non-zero root count, zapping pages
5736 * with a non-zero root count will never succeed, i.e. the page
5737 * will get thrown back on active_mmu_pages and we'll get stuck
5738 * in an infinite loop.
5739 */
5740 if (sp->role.invalid && sp->root_count)
5741 continue;
5742
5743 /*
5744 * No need to flush the TLB since we're only zapping shadow
5745 * pages with an obsolete generation number and all vCPUS have
5746 * loaded a new root, i.e. the shadow pages being zapped cannot
5747 * be in active use by the guest.
5748 */
5749 if (batch >= BATCH_ZAP_PAGES &&
5750 cond_resched_lock(&kvm->mmu_lock)) {
5751 batch = 0;
5752 goto restart;
5753 }
5754
5755 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5756 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5757 batch += nr_zapped;
5758 goto restart;
5759 }
5760 }
5761
5762 /*
5763 * Trigger a remote TLB flush before freeing the page tables to ensure
5764 * KVM is not in the middle of a lockless shadow page table walk, which
5765 * may reference the pages.
5766 */
5767 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5768 }
5769
5770 /*
5771 * Fast invalidate all shadow pages and use lock-break technique
5772 * to zap obsolete pages.
5773 *
5774 * It's required when memslot is being deleted or VM is being
5775 * destroyed, in these cases, we should ensure that KVM MMU does
5776 * not use any resource of the being-deleted slot or all slots
5777 * after calling the function.
5778 */
5779 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5780 {
5781 lockdep_assert_held(&kvm->slots_lock);
5782
5783 spin_lock(&kvm->mmu_lock);
5784 trace_kvm_mmu_zap_all_fast(kvm);
5785
5786 /*
5787 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5788 * held for the entire duration of zapping obsolete pages, it's
5789 * impossible for there to be multiple invalid generations associated
5790 * with *valid* shadow pages at any given time, i.e. there is exactly
5791 * one valid generation and (at most) one invalid generation.
5792 */
5793 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5794
5795 /*
5796 * Notify all vcpus to reload its shadow page table and flush TLB.
5797 * Then all vcpus will switch to new shadow page table with the new
5798 * mmu_valid_gen.
5799 *
5800 * Note: we need to do this under the protection of mmu_lock,
5801 * otherwise, vcpu would purge shadow page but miss tlb flush.
5802 */
5803 kvm_reload_remote_mmus(kvm);
5804
5805 kvm_zap_obsolete_pages(kvm);
5806 spin_unlock(&kvm->mmu_lock);
5807 }
5808
5809 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5810 {
5811 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5812 }
5813
5814 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5815 struct kvm_memory_slot *slot,
5816 struct kvm_page_track_notifier_node *node)
5817 {
5818 kvm_mmu_zap_all_fast(kvm);
5819 }
5820
5821 void kvm_mmu_init_vm(struct kvm *kvm)
5822 {
5823 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5824
5825 node->track_write = kvm_mmu_pte_write;
5826 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5827 kvm_page_track_register_notifier(kvm, node);
5828 }
5829
5830 void kvm_mmu_uninit_vm(struct kvm *kvm)
5831 {
5832 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5833
5834 kvm_page_track_unregister_notifier(kvm, node);
5835 }
5836
5837 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5838 {
5839 struct kvm_memslots *slots;
5840 struct kvm_memory_slot *memslot;
5841 int i;
5842
5843 spin_lock(&kvm->mmu_lock);
5844 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5845 slots = __kvm_memslots(kvm, i);
5846 kvm_for_each_memslot(memslot, slots) {
5847 gfn_t start, end;
5848
5849 start = max(gfn_start, memslot->base_gfn);
5850 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5851 if (start >= end)
5852 continue;
5853
5854 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5855 PG_LEVEL_4K,
5856 KVM_MAX_HUGEPAGE_LEVEL,
5857 start, end - 1, true);
5858 }
5859 }
5860
5861 spin_unlock(&kvm->mmu_lock);
5862 }
5863
5864 static bool slot_rmap_write_protect(struct kvm *kvm,
5865 struct kvm_rmap_head *rmap_head)
5866 {
5867 return __rmap_write_protect(kvm, rmap_head, false);
5868 }
5869
5870 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5871 struct kvm_memory_slot *memslot,
5872 int start_level)
5873 {
5874 bool flush;
5875
5876 spin_lock(&kvm->mmu_lock);
5877 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5878 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5879 spin_unlock(&kvm->mmu_lock);
5880
5881 /*
5882 * We can flush all the TLBs out of the mmu lock without TLB
5883 * corruption since we just change the spte from writable to
5884 * readonly so that we only need to care the case of changing
5885 * spte from present to present (changing the spte from present
5886 * to nonpresent will flush all the TLBs immediately), in other
5887 * words, the only case we care is mmu_spte_update() where we
5888 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5889 * instead of PT_WRITABLE_MASK, that means it does not depend
5890 * on PT_WRITABLE_MASK anymore.
5891 */
5892 if (flush)
5893 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5894 }
5895
5896 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5897 struct kvm_rmap_head *rmap_head)
5898 {
5899 u64 *sptep;
5900 struct rmap_iterator iter;
5901 int need_tlb_flush = 0;
5902 kvm_pfn_t pfn;
5903 struct kvm_mmu_page *sp;
5904
5905 restart:
5906 for_each_rmap_spte(rmap_head, &iter, sptep) {
5907 sp = page_header(__pa(sptep));
5908 pfn = spte_to_pfn(*sptep);
5909
5910 /*
5911 * We cannot do huge page mapping for indirect shadow pages,
5912 * which are found on the last rmap (level = 1) when not using
5913 * tdp; such shadow pages are synced with the page table in
5914 * the guest, and the guest page table is using 4K page size
5915 * mapping if the indirect sp has level = 1.
5916 */
5917 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5918 (kvm_is_zone_device_pfn(pfn) ||
5919 PageCompound(pfn_to_page(pfn)))) {
5920 pte_list_remove(rmap_head, sptep);
5921
5922 if (kvm_available_flush_tlb_with_range())
5923 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5924 KVM_PAGES_PER_HPAGE(sp->role.level));
5925 else
5926 need_tlb_flush = 1;
5927
5928 goto restart;
5929 }
5930 }
5931
5932 return need_tlb_flush;
5933 }
5934
5935 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5936 const struct kvm_memory_slot *memslot)
5937 {
5938 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5939 spin_lock(&kvm->mmu_lock);
5940 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5941 kvm_mmu_zap_collapsible_spte, true);
5942 spin_unlock(&kvm->mmu_lock);
5943 }
5944
5945 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5946 struct kvm_memory_slot *memslot)
5947 {
5948 /*
5949 * All current use cases for flushing the TLBs for a specific memslot
5950 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5951 * The interaction between the various operations on memslot must be
5952 * serialized by slots_locks to ensure the TLB flush from one operation
5953 * is observed by any other operation on the same memslot.
5954 */
5955 lockdep_assert_held(&kvm->slots_lock);
5956 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5957 memslot->npages);
5958 }
5959
5960 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5961 struct kvm_memory_slot *memslot)
5962 {
5963 bool flush;
5964
5965 spin_lock(&kvm->mmu_lock);
5966 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5967 spin_unlock(&kvm->mmu_lock);
5968
5969 /*
5970 * It's also safe to flush TLBs out of mmu lock here as currently this
5971 * function is only used for dirty logging, in which case flushing TLB
5972 * out of mmu lock also guarantees no dirty pages will be lost in
5973 * dirty_bitmap.
5974 */
5975 if (flush)
5976 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5977 }
5978 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5979
5980 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5981 struct kvm_memory_slot *memslot)
5982 {
5983 bool flush;
5984
5985 spin_lock(&kvm->mmu_lock);
5986 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5987 false);
5988 spin_unlock(&kvm->mmu_lock);
5989
5990 if (flush)
5991 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5992 }
5993 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5994
5995 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5996 struct kvm_memory_slot *memslot)
5997 {
5998 bool flush;
5999
6000 spin_lock(&kvm->mmu_lock);
6001 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6002 spin_unlock(&kvm->mmu_lock);
6003
6004 if (flush)
6005 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6008
6009 void kvm_mmu_zap_all(struct kvm *kvm)
6010 {
6011 struct kvm_mmu_page *sp, *node;
6012 LIST_HEAD(invalid_list);
6013 int ign;
6014
6015 spin_lock(&kvm->mmu_lock);
6016 restart:
6017 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6018 if (sp->role.invalid && sp->root_count)
6019 continue;
6020 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6021 goto restart;
6022 if (cond_resched_lock(&kvm->mmu_lock))
6023 goto restart;
6024 }
6025
6026 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6027 spin_unlock(&kvm->mmu_lock);
6028 }
6029
6030 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6031 {
6032 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6033
6034 gen &= MMIO_SPTE_GEN_MASK;
6035
6036 /*
6037 * Generation numbers are incremented in multiples of the number of
6038 * address spaces in order to provide unique generations across all
6039 * address spaces. Strip what is effectively the address space
6040 * modifier prior to checking for a wrap of the MMIO generation so
6041 * that a wrap in any address space is detected.
6042 */
6043 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6044
6045 /*
6046 * The very rare case: if the MMIO generation number has wrapped,
6047 * zap all shadow pages.
6048 */
6049 if (unlikely(gen == 0)) {
6050 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6051 kvm_mmu_zap_all_fast(kvm);
6052 }
6053 }
6054
6055 static unsigned long
6056 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6057 {
6058 struct kvm *kvm;
6059 int nr_to_scan = sc->nr_to_scan;
6060 unsigned long freed = 0;
6061
6062 mutex_lock(&kvm_lock);
6063
6064 list_for_each_entry(kvm, &vm_list, vm_list) {
6065 int idx;
6066 LIST_HEAD(invalid_list);
6067
6068 /*
6069 * Never scan more than sc->nr_to_scan VM instances.
6070 * Will not hit this condition practically since we do not try
6071 * to shrink more than one VM and it is very unlikely to see
6072 * !n_used_mmu_pages so many times.
6073 */
6074 if (!nr_to_scan--)
6075 break;
6076 /*
6077 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6078 * here. We may skip a VM instance errorneosly, but we do not
6079 * want to shrink a VM that only started to populate its MMU
6080 * anyway.
6081 */
6082 if (!kvm->arch.n_used_mmu_pages &&
6083 !kvm_has_zapped_obsolete_pages(kvm))
6084 continue;
6085
6086 idx = srcu_read_lock(&kvm->srcu);
6087 spin_lock(&kvm->mmu_lock);
6088
6089 if (kvm_has_zapped_obsolete_pages(kvm)) {
6090 kvm_mmu_commit_zap_page(kvm,
6091 &kvm->arch.zapped_obsolete_pages);
6092 goto unlock;
6093 }
6094
6095 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6096 freed++;
6097 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6098
6099 unlock:
6100 spin_unlock(&kvm->mmu_lock);
6101 srcu_read_unlock(&kvm->srcu, idx);
6102
6103 /*
6104 * unfair on small ones
6105 * per-vm shrinkers cry out
6106 * sadness comes quickly
6107 */
6108 list_move_tail(&kvm->vm_list, &vm_list);
6109 break;
6110 }
6111
6112 mutex_unlock(&kvm_lock);
6113 return freed;
6114 }
6115
6116 static unsigned long
6117 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6118 {
6119 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6120 }
6121
6122 static struct shrinker mmu_shrinker = {
6123 .count_objects = mmu_shrink_count,
6124 .scan_objects = mmu_shrink_scan,
6125 .seeks = DEFAULT_SEEKS * 10,
6126 };
6127
6128 static void mmu_destroy_caches(void)
6129 {
6130 kmem_cache_destroy(pte_list_desc_cache);
6131 kmem_cache_destroy(mmu_page_header_cache);
6132 }
6133
6134 static void kvm_set_mmio_spte_mask(void)
6135 {
6136 u64 mask;
6137
6138 /*
6139 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6140 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
6141 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6142 * 52-bit physical addresses then there are no reserved PA bits in the
6143 * PTEs and so the reserved PA approach must be disabled.
6144 */
6145 if (shadow_phys_bits < 52)
6146 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6147 else
6148 mask = 0;
6149
6150 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6151 }
6152
6153 static bool get_nx_auto_mode(void)
6154 {
6155 /* Return true when CPU has the bug, and mitigations are ON */
6156 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6157 }
6158
6159 static void __set_nx_huge_pages(bool val)
6160 {
6161 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6162 }
6163
6164 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6165 {
6166 bool old_val = nx_huge_pages;
6167 bool new_val;
6168
6169 /* In "auto" mode deploy workaround only if CPU has the bug. */
6170 if (sysfs_streq(val, "off"))
6171 new_val = 0;
6172 else if (sysfs_streq(val, "force"))
6173 new_val = 1;
6174 else if (sysfs_streq(val, "auto"))
6175 new_val = get_nx_auto_mode();
6176 else if (strtobool(val, &new_val) < 0)
6177 return -EINVAL;
6178
6179 __set_nx_huge_pages(new_val);
6180
6181 if (new_val != old_val) {
6182 struct kvm *kvm;
6183
6184 mutex_lock(&kvm_lock);
6185
6186 list_for_each_entry(kvm, &vm_list, vm_list) {
6187 mutex_lock(&kvm->slots_lock);
6188 kvm_mmu_zap_all_fast(kvm);
6189 mutex_unlock(&kvm->slots_lock);
6190
6191 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6192 }
6193 mutex_unlock(&kvm_lock);
6194 }
6195
6196 return 0;
6197 }
6198
6199 int kvm_mmu_module_init(void)
6200 {
6201 int ret = -ENOMEM;
6202
6203 if (nx_huge_pages == -1)
6204 __set_nx_huge_pages(get_nx_auto_mode());
6205
6206 /*
6207 * MMU roles use union aliasing which is, generally speaking, an
6208 * undefined behavior. However, we supposedly know how compilers behave
6209 * and the current status quo is unlikely to change. Guardians below are
6210 * supposed to let us know if the assumption becomes false.
6211 */
6212 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6213 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6214 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6215
6216 kvm_mmu_reset_all_pte_masks();
6217
6218 kvm_set_mmio_spte_mask();
6219
6220 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6221 sizeof(struct pte_list_desc),
6222 0, SLAB_ACCOUNT, NULL);
6223 if (!pte_list_desc_cache)
6224 goto out;
6225
6226 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6227 sizeof(struct kvm_mmu_page),
6228 0, SLAB_ACCOUNT, NULL);
6229 if (!mmu_page_header_cache)
6230 goto out;
6231
6232 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6233 goto out;
6234
6235 ret = register_shrinker(&mmu_shrinker);
6236 if (ret)
6237 goto out;
6238
6239 return 0;
6240
6241 out:
6242 mmu_destroy_caches();
6243 return ret;
6244 }
6245
6246 /*
6247 * Calculate mmu pages needed for kvm.
6248 */
6249 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6250 {
6251 unsigned long nr_mmu_pages;
6252 unsigned long nr_pages = 0;
6253 struct kvm_memslots *slots;
6254 struct kvm_memory_slot *memslot;
6255 int i;
6256
6257 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6258 slots = __kvm_memslots(kvm, i);
6259
6260 kvm_for_each_memslot(memslot, slots)
6261 nr_pages += memslot->npages;
6262 }
6263
6264 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6265 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6266
6267 return nr_mmu_pages;
6268 }
6269
6270 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6271 {
6272 kvm_mmu_unload(vcpu);
6273 free_mmu_pages(&vcpu->arch.root_mmu);
6274 free_mmu_pages(&vcpu->arch.guest_mmu);
6275 mmu_free_memory_caches(vcpu);
6276 }
6277
6278 void kvm_mmu_module_exit(void)
6279 {
6280 mmu_destroy_caches();
6281 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6282 unregister_shrinker(&mmu_shrinker);
6283 mmu_audit_disable();
6284 }
6285
6286 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6287 {
6288 unsigned int old_val;
6289 int err;
6290
6291 old_val = nx_huge_pages_recovery_ratio;
6292 err = param_set_uint(val, kp);
6293 if (err)
6294 return err;
6295
6296 if (READ_ONCE(nx_huge_pages) &&
6297 !old_val && nx_huge_pages_recovery_ratio) {
6298 struct kvm *kvm;
6299
6300 mutex_lock(&kvm_lock);
6301
6302 list_for_each_entry(kvm, &vm_list, vm_list)
6303 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6304
6305 mutex_unlock(&kvm_lock);
6306 }
6307
6308 return err;
6309 }
6310
6311 static void kvm_recover_nx_lpages(struct kvm *kvm)
6312 {
6313 int rcu_idx;
6314 struct kvm_mmu_page *sp;
6315 unsigned int ratio;
6316 LIST_HEAD(invalid_list);
6317 ulong to_zap;
6318
6319 rcu_idx = srcu_read_lock(&kvm->srcu);
6320 spin_lock(&kvm->mmu_lock);
6321
6322 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6323 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6324 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6325 /*
6326 * We use a separate list instead of just using active_mmu_pages
6327 * because the number of lpage_disallowed pages is expected to
6328 * be relatively small compared to the total.
6329 */
6330 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6331 struct kvm_mmu_page,
6332 lpage_disallowed_link);
6333 WARN_ON_ONCE(!sp->lpage_disallowed);
6334 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6335 WARN_ON_ONCE(sp->lpage_disallowed);
6336
6337 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6338 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6339 if (to_zap)
6340 cond_resched_lock(&kvm->mmu_lock);
6341 }
6342 }
6343
6344 spin_unlock(&kvm->mmu_lock);
6345 srcu_read_unlock(&kvm->srcu, rcu_idx);
6346 }
6347
6348 static long get_nx_lpage_recovery_timeout(u64 start_time)
6349 {
6350 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6351 ? start_time + 60 * HZ - get_jiffies_64()
6352 : MAX_SCHEDULE_TIMEOUT;
6353 }
6354
6355 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6356 {
6357 u64 start_time;
6358 long remaining_time;
6359
6360 while (true) {
6361 start_time = get_jiffies_64();
6362 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6363
6364 set_current_state(TASK_INTERRUPTIBLE);
6365 while (!kthread_should_stop() && remaining_time > 0) {
6366 schedule_timeout(remaining_time);
6367 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6368 set_current_state(TASK_INTERRUPTIBLE);
6369 }
6370
6371 set_current_state(TASK_RUNNING);
6372
6373 if (kthread_should_stop())
6374 return 0;
6375
6376 kvm_recover_nx_lpages(kvm);
6377 }
6378 }
6379
6380 int kvm_mmu_post_init_vm(struct kvm *kvm)
6381 {
6382 int err;
6383
6384 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6385 "kvm-nx-lpage-recovery",
6386 &kvm->arch.nx_lpage_recovery_thread);
6387 if (!err)
6388 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6389
6390 return err;
6391 }
6392
6393 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6394 {
6395 if (kvm->arch.nx_lpage_recovery_thread)
6396 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6397 }