]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu/mmu.c
Merge branch 'uaccess.access_ok' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "kvm_emulate.h"
23 #include "cpuid.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/moduleparam.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/sched/signal.h>
38 #include <linux/uaccess.h>
39 #include <linux/hash.h>
40 #include <linux/kern_levels.h>
41 #include <linux/kthread.h>
42
43 #include <asm/page.h>
44 #include <asm/memtype.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/e820/api.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 extern bool itlb_multihit_kvm_mitigation;
53
54 static int __read_mostly nx_huge_pages = -1;
55 #ifdef CONFIG_PREEMPT_RT
56 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
57 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
58 #else
59 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
60 #endif
61
62 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
63 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
64
65 static struct kernel_param_ops nx_huge_pages_ops = {
66 .set = set_nx_huge_pages,
67 .get = param_get_bool,
68 };
69
70 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
71 .set = set_nx_huge_pages_recovery_ratio,
72 .get = param_get_uint,
73 };
74
75 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
76 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
77 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
78 &nx_huge_pages_recovery_ratio, 0644);
79 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
80
81 /*
82 * When setting this variable to true it enables Two-Dimensional-Paging
83 * where the hardware walks 2 page tables:
84 * 1. the guest-virtual to guest-physical
85 * 2. while doing 1. it walks guest-physical to host-physical
86 * If the hardware supports that we don't need to do shadow paging.
87 */
88 bool tdp_enabled = false;
89
90 static int max_page_level __read_mostly;
91
92 enum {
93 AUDIT_PRE_PAGE_FAULT,
94 AUDIT_POST_PAGE_FAULT,
95 AUDIT_PRE_PTE_WRITE,
96 AUDIT_POST_PTE_WRITE,
97 AUDIT_PRE_SYNC,
98 AUDIT_POST_SYNC
99 };
100
101 #undef MMU_DEBUG
102
103 #ifdef MMU_DEBUG
104 static bool dbg = 0;
105 module_param(dbg, bool, 0644);
106
107 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
108 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
109 #define MMU_WARN_ON(x) WARN_ON(x)
110 #else
111 #define pgprintk(x...) do { } while (0)
112 #define rmap_printk(x...) do { } while (0)
113 #define MMU_WARN_ON(x) do { } while (0)
114 #endif
115
116 #define PTE_PREFETCH_NUM 8
117
118 #define PT_FIRST_AVAIL_BITS_SHIFT 10
119 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
120
121 /*
122 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
123 * Access Tracking SPTEs.
124 */
125 #define SPTE_SPECIAL_MASK (3ULL << 52)
126 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
127 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
128 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
129 #define SPTE_MMIO_MASK (3ULL << 52)
130
131 #define PT64_LEVEL_BITS 9
132
133 #define PT64_LEVEL_SHIFT(level) \
134 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
135
136 #define PT64_INDEX(address, level)\
137 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
138
139
140 #define PT32_LEVEL_BITS 10
141
142 #define PT32_LEVEL_SHIFT(level) \
143 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
144
145 #define PT32_LVL_OFFSET_MASK(level) \
146 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
147 * PT32_LEVEL_BITS))) - 1))
148
149 #define PT32_INDEX(address, level)\
150 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
151
152
153 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
154 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
155 #else
156 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
157 #endif
158 #define PT64_LVL_ADDR_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
161 #define PT64_LVL_OFFSET_MASK(level) \
162 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
163 * PT64_LEVEL_BITS))) - 1))
164
165 #define PT32_BASE_ADDR_MASK PAGE_MASK
166 #define PT32_DIR_BASE_ADDR_MASK \
167 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
168 #define PT32_LVL_ADDR_MASK(level) \
169 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
170 * PT32_LEVEL_BITS))) - 1))
171
172 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
173 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
174
175 #define ACC_EXEC_MASK 1
176 #define ACC_WRITE_MASK PT_WRITABLE_MASK
177 #define ACC_USER_MASK PT_USER_MASK
178 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
179
180 /* The mask for the R/X bits in EPT PTEs */
181 #define PT64_EPT_READABLE_MASK 0x1ull
182 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
183
184 #include <trace/events/kvm.h>
185
186 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
187 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
188
189 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
190
191 /* make pte_list_desc fit well in cache line */
192 #define PTE_LIST_EXT 3
193
194 /*
195 * Return values of handle_mmio_page_fault and mmu.page_fault:
196 * RET_PF_RETRY: let CPU fault again on the address.
197 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
198 *
199 * For handle_mmio_page_fault only:
200 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
201 */
202 enum {
203 RET_PF_RETRY = 0,
204 RET_PF_EMULATE = 1,
205 RET_PF_INVALID = 2,
206 };
207
208 struct pte_list_desc {
209 u64 *sptes[PTE_LIST_EXT];
210 struct pte_list_desc *more;
211 };
212
213 struct kvm_shadow_walk_iterator {
214 u64 addr;
215 hpa_t shadow_addr;
216 u64 *sptep;
217 int level;
218 unsigned index;
219 };
220
221 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
222 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
223 (_root), (_addr)); \
224 shadow_walk_okay(&(_walker)); \
225 shadow_walk_next(&(_walker)))
226
227 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
228 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
229 shadow_walk_okay(&(_walker)); \
230 shadow_walk_next(&(_walker)))
231
232 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
233 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
234 shadow_walk_okay(&(_walker)) && \
235 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
236 __shadow_walk_next(&(_walker), spte))
237
238 static struct kmem_cache *pte_list_desc_cache;
239 static struct kmem_cache *mmu_page_header_cache;
240 static struct percpu_counter kvm_total_used_mmu_pages;
241
242 static u64 __read_mostly shadow_nx_mask;
243 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
244 static u64 __read_mostly shadow_user_mask;
245 static u64 __read_mostly shadow_accessed_mask;
246 static u64 __read_mostly shadow_dirty_mask;
247 static u64 __read_mostly shadow_mmio_mask;
248 static u64 __read_mostly shadow_mmio_value;
249 static u64 __read_mostly shadow_mmio_access_mask;
250 static u64 __read_mostly shadow_present_mask;
251 static u64 __read_mostly shadow_me_mask;
252
253 /*
254 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
255 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
256 * pages.
257 */
258 static u64 __read_mostly shadow_acc_track_mask;
259
260 /*
261 * The mask/shift to use for saving the original R/X bits when marking the PTE
262 * as not-present for access tracking purposes. We do not save the W bit as the
263 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
264 * restored only when a write is attempted to the page.
265 */
266 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
267 PT64_EPT_EXECUTABLE_MASK;
268 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
269
270 /*
271 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
272 * to guard against L1TF attacks.
273 */
274 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
275
276 /*
277 * The number of high-order 1 bits to use in the mask above.
278 */
279 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
280
281 /*
282 * In some cases, we need to preserve the GFN of a non-present or reserved
283 * SPTE when we usurp the upper five bits of the physical address space to
284 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
285 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
286 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
287 * high and low parts. This mask covers the lower bits of the GFN.
288 */
289 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
290
291 /*
292 * The number of non-reserved physical address bits irrespective of features
293 * that repurpose legal bits, e.g. MKTME.
294 */
295 static u8 __read_mostly shadow_phys_bits;
296
297 static void mmu_spte_set(u64 *sptep, u64 spte);
298 static bool is_executable_pte(u64 spte);
299 static union kvm_mmu_page_role
300 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
301
302 #define CREATE_TRACE_POINTS
303 #include "mmutrace.h"
304
305
306 static inline bool kvm_available_flush_tlb_with_range(void)
307 {
308 return kvm_x86_ops.tlb_remote_flush_with_range;
309 }
310
311 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
312 struct kvm_tlb_range *range)
313 {
314 int ret = -ENOTSUPP;
315
316 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
317 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
318
319 if (ret)
320 kvm_flush_remote_tlbs(kvm);
321 }
322
323 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
324 u64 start_gfn, u64 pages)
325 {
326 struct kvm_tlb_range range;
327
328 range.start_gfn = start_gfn;
329 range.pages = pages;
330
331 kvm_flush_remote_tlbs_with_range(kvm, &range);
332 }
333
334 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
335 {
336 BUG_ON((u64)(unsigned)access_mask != access_mask);
337 BUG_ON((mmio_mask & mmio_value) != mmio_value);
338 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
339 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
340 shadow_mmio_access_mask = access_mask;
341 }
342 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
343
344 static bool is_mmio_spte(u64 spte)
345 {
346 return (spte & shadow_mmio_mask) == shadow_mmio_value;
347 }
348
349 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
350 {
351 return sp->role.ad_disabled;
352 }
353
354 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
355 {
356 /*
357 * When using the EPT page-modification log, the GPAs in the log
358 * would come from L2 rather than L1. Therefore, we need to rely
359 * on write protection to record dirty pages. This also bypasses
360 * PML, since writes now result in a vmexit.
361 */
362 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
363 }
364
365 static inline bool spte_ad_enabled(u64 spte)
366 {
367 MMU_WARN_ON(is_mmio_spte(spte));
368 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
369 }
370
371 static inline bool spte_ad_need_write_protect(u64 spte)
372 {
373 MMU_WARN_ON(is_mmio_spte(spte));
374 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
375 }
376
377 static bool is_nx_huge_page_enabled(void)
378 {
379 return READ_ONCE(nx_huge_pages);
380 }
381
382 static inline u64 spte_shadow_accessed_mask(u64 spte)
383 {
384 MMU_WARN_ON(is_mmio_spte(spte));
385 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
386 }
387
388 static inline u64 spte_shadow_dirty_mask(u64 spte)
389 {
390 MMU_WARN_ON(is_mmio_spte(spte));
391 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
392 }
393
394 static inline bool is_access_track_spte(u64 spte)
395 {
396 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
397 }
398
399 /*
400 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
401 * the memslots generation and is derived as follows:
402 *
403 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
404 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
405 *
406 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
407 * the MMIO generation number, as doing so would require stealing a bit from
408 * the "real" generation number and thus effectively halve the maximum number
409 * of MMIO generations that can be handled before encountering a wrap (which
410 * requires a full MMU zap). The flag is instead explicitly queried when
411 * checking for MMIO spte cache hits.
412 */
413 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
414
415 #define MMIO_SPTE_GEN_LOW_START 3
416 #define MMIO_SPTE_GEN_LOW_END 11
417 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
418 MMIO_SPTE_GEN_LOW_START)
419
420 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
421 #define MMIO_SPTE_GEN_HIGH_END 62
422 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
423 MMIO_SPTE_GEN_HIGH_START)
424
425 static u64 generation_mmio_spte_mask(u64 gen)
426 {
427 u64 mask;
428
429 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
430 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
431
432 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
433 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
434 return mask;
435 }
436
437 static u64 get_mmio_spte_generation(u64 spte)
438 {
439 u64 gen;
440
441 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
442 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
443 return gen;
444 }
445
446 static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
447 {
448
449 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
450 u64 mask = generation_mmio_spte_mask(gen);
451 u64 gpa = gfn << PAGE_SHIFT;
452
453 access &= shadow_mmio_access_mask;
454 mask |= shadow_mmio_value | access;
455 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
456 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
457 << shadow_nonpresent_or_rsvd_mask_len;
458
459 return mask;
460 }
461
462 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
463 unsigned int access)
464 {
465 u64 mask = make_mmio_spte(vcpu, gfn, access);
466 unsigned int gen = get_mmio_spte_generation(mask);
467
468 access = mask & ACC_ALL;
469
470 trace_mark_mmio_spte(sptep, gfn, access, gen);
471 mmu_spte_set(sptep, mask);
472 }
473
474 static gfn_t get_mmio_spte_gfn(u64 spte)
475 {
476 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
477
478 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
479 & shadow_nonpresent_or_rsvd_mask;
480
481 return gpa >> PAGE_SHIFT;
482 }
483
484 static unsigned get_mmio_spte_access(u64 spte)
485 {
486 return spte & shadow_mmio_access_mask;
487 }
488
489 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
490 kvm_pfn_t pfn, unsigned int access)
491 {
492 if (unlikely(is_noslot_pfn(pfn))) {
493 mark_mmio_spte(vcpu, sptep, gfn, access);
494 return true;
495 }
496
497 return false;
498 }
499
500 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
501 {
502 u64 kvm_gen, spte_gen, gen;
503
504 gen = kvm_vcpu_memslots(vcpu)->generation;
505 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
506 return false;
507
508 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
509 spte_gen = get_mmio_spte_generation(spte);
510
511 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
512 return likely(kvm_gen == spte_gen);
513 }
514
515 /*
516 * Sets the shadow PTE masks used by the MMU.
517 *
518 * Assumptions:
519 * - Setting either @accessed_mask or @dirty_mask requires setting both
520 * - At least one of @accessed_mask or @acc_track_mask must be set
521 */
522 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
523 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
524 u64 acc_track_mask, u64 me_mask)
525 {
526 BUG_ON(!dirty_mask != !accessed_mask);
527 BUG_ON(!accessed_mask && !acc_track_mask);
528 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
529
530 shadow_user_mask = user_mask;
531 shadow_accessed_mask = accessed_mask;
532 shadow_dirty_mask = dirty_mask;
533 shadow_nx_mask = nx_mask;
534 shadow_x_mask = x_mask;
535 shadow_present_mask = p_mask;
536 shadow_acc_track_mask = acc_track_mask;
537 shadow_me_mask = me_mask;
538 }
539 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
540
541 static u8 kvm_get_shadow_phys_bits(void)
542 {
543 /*
544 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
545 * in CPU detection code, but the processor treats those reduced bits as
546 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
547 * the physical address bits reported by CPUID.
548 */
549 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
550 return cpuid_eax(0x80000008) & 0xff;
551
552 /*
553 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
554 * custom CPUID. Proceed with whatever the kernel found since these features
555 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
556 */
557 return boot_cpu_data.x86_phys_bits;
558 }
559
560 static void kvm_mmu_reset_all_pte_masks(void)
561 {
562 u8 low_phys_bits;
563
564 shadow_user_mask = 0;
565 shadow_accessed_mask = 0;
566 shadow_dirty_mask = 0;
567 shadow_nx_mask = 0;
568 shadow_x_mask = 0;
569 shadow_mmio_mask = 0;
570 shadow_present_mask = 0;
571 shadow_acc_track_mask = 0;
572
573 shadow_phys_bits = kvm_get_shadow_phys_bits();
574
575 /*
576 * If the CPU has 46 or less physical address bits, then set an
577 * appropriate mask to guard against L1TF attacks. Otherwise, it is
578 * assumed that the CPU is not vulnerable to L1TF.
579 *
580 * Some Intel CPUs address the L1 cache using more PA bits than are
581 * reported by CPUID. Use the PA width of the L1 cache when possible
582 * to achieve more effective mitigation, e.g. if system RAM overlaps
583 * the most significant bits of legal physical address space.
584 */
585 shadow_nonpresent_or_rsvd_mask = 0;
586 low_phys_bits = boot_cpu_data.x86_cache_bits;
587 if (boot_cpu_data.x86_cache_bits <
588 52 - shadow_nonpresent_or_rsvd_mask_len) {
589 shadow_nonpresent_or_rsvd_mask =
590 rsvd_bits(boot_cpu_data.x86_cache_bits -
591 shadow_nonpresent_or_rsvd_mask_len,
592 boot_cpu_data.x86_cache_bits - 1);
593 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
594 } else
595 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
596
597 shadow_nonpresent_or_rsvd_lower_gfn_mask =
598 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
599 }
600
601 static int is_cpuid_PSE36(void)
602 {
603 return 1;
604 }
605
606 static int is_nx(struct kvm_vcpu *vcpu)
607 {
608 return vcpu->arch.efer & EFER_NX;
609 }
610
611 static int is_shadow_present_pte(u64 pte)
612 {
613 return (pte != 0) && !is_mmio_spte(pte);
614 }
615
616 static int is_large_pte(u64 pte)
617 {
618 return pte & PT_PAGE_SIZE_MASK;
619 }
620
621 static int is_last_spte(u64 pte, int level)
622 {
623 if (level == PT_PAGE_TABLE_LEVEL)
624 return 1;
625 if (is_large_pte(pte))
626 return 1;
627 return 0;
628 }
629
630 static bool is_executable_pte(u64 spte)
631 {
632 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
633 }
634
635 static kvm_pfn_t spte_to_pfn(u64 pte)
636 {
637 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
638 }
639
640 static gfn_t pse36_gfn_delta(u32 gpte)
641 {
642 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
643
644 return (gpte & PT32_DIR_PSE36_MASK) << shift;
645 }
646
647 #ifdef CONFIG_X86_64
648 static void __set_spte(u64 *sptep, u64 spte)
649 {
650 WRITE_ONCE(*sptep, spte);
651 }
652
653 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
654 {
655 WRITE_ONCE(*sptep, spte);
656 }
657
658 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659 {
660 return xchg(sptep, spte);
661 }
662
663 static u64 __get_spte_lockless(u64 *sptep)
664 {
665 return READ_ONCE(*sptep);
666 }
667 #else
668 union split_spte {
669 struct {
670 u32 spte_low;
671 u32 spte_high;
672 };
673 u64 spte;
674 };
675
676 static void count_spte_clear(u64 *sptep, u64 spte)
677 {
678 struct kvm_mmu_page *sp = page_header(__pa(sptep));
679
680 if (is_shadow_present_pte(spte))
681 return;
682
683 /* Ensure the spte is completely set before we increase the count */
684 smp_wmb();
685 sp->clear_spte_count++;
686 }
687
688 static void __set_spte(u64 *sptep, u64 spte)
689 {
690 union split_spte *ssptep, sspte;
691
692 ssptep = (union split_spte *)sptep;
693 sspte = (union split_spte)spte;
694
695 ssptep->spte_high = sspte.spte_high;
696
697 /*
698 * If we map the spte from nonpresent to present, We should store
699 * the high bits firstly, then set present bit, so cpu can not
700 * fetch this spte while we are setting the spte.
701 */
702 smp_wmb();
703
704 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
705 }
706
707 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
708 {
709 union split_spte *ssptep, sspte;
710
711 ssptep = (union split_spte *)sptep;
712 sspte = (union split_spte)spte;
713
714 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
715
716 /*
717 * If we map the spte from present to nonpresent, we should clear
718 * present bit firstly to avoid vcpu fetch the old high bits.
719 */
720 smp_wmb();
721
722 ssptep->spte_high = sspte.spte_high;
723 count_spte_clear(sptep, spte);
724 }
725
726 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
727 {
728 union split_spte *ssptep, sspte, orig;
729
730 ssptep = (union split_spte *)sptep;
731 sspte = (union split_spte)spte;
732
733 /* xchg acts as a barrier before the setting of the high bits */
734 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
735 orig.spte_high = ssptep->spte_high;
736 ssptep->spte_high = sspte.spte_high;
737 count_spte_clear(sptep, spte);
738
739 return orig.spte;
740 }
741
742 /*
743 * The idea using the light way get the spte on x86_32 guest is from
744 * gup_get_pte (mm/gup.c).
745 *
746 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
747 * coalesces them and we are running out of the MMU lock. Therefore
748 * we need to protect against in-progress updates of the spte.
749 *
750 * Reading the spte while an update is in progress may get the old value
751 * for the high part of the spte. The race is fine for a present->non-present
752 * change (because the high part of the spte is ignored for non-present spte),
753 * but for a present->present change we must reread the spte.
754 *
755 * All such changes are done in two steps (present->non-present and
756 * non-present->present), hence it is enough to count the number of
757 * present->non-present updates: if it changed while reading the spte,
758 * we might have hit the race. This is done using clear_spte_count.
759 */
760 static u64 __get_spte_lockless(u64 *sptep)
761 {
762 struct kvm_mmu_page *sp = page_header(__pa(sptep));
763 union split_spte spte, *orig = (union split_spte *)sptep;
764 int count;
765
766 retry:
767 count = sp->clear_spte_count;
768 smp_rmb();
769
770 spte.spte_low = orig->spte_low;
771 smp_rmb();
772
773 spte.spte_high = orig->spte_high;
774 smp_rmb();
775
776 if (unlikely(spte.spte_low != orig->spte_low ||
777 count != sp->clear_spte_count))
778 goto retry;
779
780 return spte.spte;
781 }
782 #endif
783
784 static bool spte_can_locklessly_be_made_writable(u64 spte)
785 {
786 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
787 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
788 }
789
790 static bool spte_has_volatile_bits(u64 spte)
791 {
792 if (!is_shadow_present_pte(spte))
793 return false;
794
795 /*
796 * Always atomically update spte if it can be updated
797 * out of mmu-lock, it can ensure dirty bit is not lost,
798 * also, it can help us to get a stable is_writable_pte()
799 * to ensure tlb flush is not missed.
800 */
801 if (spte_can_locklessly_be_made_writable(spte) ||
802 is_access_track_spte(spte))
803 return true;
804
805 if (spte_ad_enabled(spte)) {
806 if ((spte & shadow_accessed_mask) == 0 ||
807 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
808 return true;
809 }
810
811 return false;
812 }
813
814 static bool is_accessed_spte(u64 spte)
815 {
816 u64 accessed_mask = spte_shadow_accessed_mask(spte);
817
818 return accessed_mask ? spte & accessed_mask
819 : !is_access_track_spte(spte);
820 }
821
822 static bool is_dirty_spte(u64 spte)
823 {
824 u64 dirty_mask = spte_shadow_dirty_mask(spte);
825
826 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
827 }
828
829 /* Rules for using mmu_spte_set:
830 * Set the sptep from nonpresent to present.
831 * Note: the sptep being assigned *must* be either not present
832 * or in a state where the hardware will not attempt to update
833 * the spte.
834 */
835 static void mmu_spte_set(u64 *sptep, u64 new_spte)
836 {
837 WARN_ON(is_shadow_present_pte(*sptep));
838 __set_spte(sptep, new_spte);
839 }
840
841 /*
842 * Update the SPTE (excluding the PFN), but do not track changes in its
843 * accessed/dirty status.
844 */
845 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
846 {
847 u64 old_spte = *sptep;
848
849 WARN_ON(!is_shadow_present_pte(new_spte));
850
851 if (!is_shadow_present_pte(old_spte)) {
852 mmu_spte_set(sptep, new_spte);
853 return old_spte;
854 }
855
856 if (!spte_has_volatile_bits(old_spte))
857 __update_clear_spte_fast(sptep, new_spte);
858 else
859 old_spte = __update_clear_spte_slow(sptep, new_spte);
860
861 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
862
863 return old_spte;
864 }
865
866 /* Rules for using mmu_spte_update:
867 * Update the state bits, it means the mapped pfn is not changed.
868 *
869 * Whenever we overwrite a writable spte with a read-only one we
870 * should flush remote TLBs. Otherwise rmap_write_protect
871 * will find a read-only spte, even though the writable spte
872 * might be cached on a CPU's TLB, the return value indicates this
873 * case.
874 *
875 * Returns true if the TLB needs to be flushed
876 */
877 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
878 {
879 bool flush = false;
880 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
881
882 if (!is_shadow_present_pte(old_spte))
883 return false;
884
885 /*
886 * For the spte updated out of mmu-lock is safe, since
887 * we always atomically update it, see the comments in
888 * spte_has_volatile_bits().
889 */
890 if (spte_can_locklessly_be_made_writable(old_spte) &&
891 !is_writable_pte(new_spte))
892 flush = true;
893
894 /*
895 * Flush TLB when accessed/dirty states are changed in the page tables,
896 * to guarantee consistency between TLB and page tables.
897 */
898
899 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
900 flush = true;
901 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
902 }
903
904 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
905 flush = true;
906 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
907 }
908
909 return flush;
910 }
911
912 /*
913 * Rules for using mmu_spte_clear_track_bits:
914 * It sets the sptep from present to nonpresent, and track the
915 * state bits, it is used to clear the last level sptep.
916 * Returns non-zero if the PTE was previously valid.
917 */
918 static int mmu_spte_clear_track_bits(u64 *sptep)
919 {
920 kvm_pfn_t pfn;
921 u64 old_spte = *sptep;
922
923 if (!spte_has_volatile_bits(old_spte))
924 __update_clear_spte_fast(sptep, 0ull);
925 else
926 old_spte = __update_clear_spte_slow(sptep, 0ull);
927
928 if (!is_shadow_present_pte(old_spte))
929 return 0;
930
931 pfn = spte_to_pfn(old_spte);
932
933 /*
934 * KVM does not hold the refcount of the page used by
935 * kvm mmu, before reclaiming the page, we should
936 * unmap it from mmu first.
937 */
938 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
939
940 if (is_accessed_spte(old_spte))
941 kvm_set_pfn_accessed(pfn);
942
943 if (is_dirty_spte(old_spte))
944 kvm_set_pfn_dirty(pfn);
945
946 return 1;
947 }
948
949 /*
950 * Rules for using mmu_spte_clear_no_track:
951 * Directly clear spte without caring the state bits of sptep,
952 * it is used to set the upper level spte.
953 */
954 static void mmu_spte_clear_no_track(u64 *sptep)
955 {
956 __update_clear_spte_fast(sptep, 0ull);
957 }
958
959 static u64 mmu_spte_get_lockless(u64 *sptep)
960 {
961 return __get_spte_lockless(sptep);
962 }
963
964 static u64 mark_spte_for_access_track(u64 spte)
965 {
966 if (spte_ad_enabled(spte))
967 return spte & ~shadow_accessed_mask;
968
969 if (is_access_track_spte(spte))
970 return spte;
971
972 /*
973 * Making an Access Tracking PTE will result in removal of write access
974 * from the PTE. So, verify that we will be able to restore the write
975 * access in the fast page fault path later on.
976 */
977 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
978 !spte_can_locklessly_be_made_writable(spte),
979 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
980
981 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
982 shadow_acc_track_saved_bits_shift),
983 "kvm: Access Tracking saved bit locations are not zero\n");
984
985 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
986 shadow_acc_track_saved_bits_shift;
987 spte &= ~shadow_acc_track_mask;
988
989 return spte;
990 }
991
992 /* Restore an acc-track PTE back to a regular PTE */
993 static u64 restore_acc_track_spte(u64 spte)
994 {
995 u64 new_spte = spte;
996 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
997 & shadow_acc_track_saved_bits_mask;
998
999 WARN_ON_ONCE(spte_ad_enabled(spte));
1000 WARN_ON_ONCE(!is_access_track_spte(spte));
1001
1002 new_spte &= ~shadow_acc_track_mask;
1003 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1004 shadow_acc_track_saved_bits_shift);
1005 new_spte |= saved_bits;
1006
1007 return new_spte;
1008 }
1009
1010 /* Returns the Accessed status of the PTE and resets it at the same time. */
1011 static bool mmu_spte_age(u64 *sptep)
1012 {
1013 u64 spte = mmu_spte_get_lockless(sptep);
1014
1015 if (!is_accessed_spte(spte))
1016 return false;
1017
1018 if (spte_ad_enabled(spte)) {
1019 clear_bit((ffs(shadow_accessed_mask) - 1),
1020 (unsigned long *)sptep);
1021 } else {
1022 /*
1023 * Capture the dirty status of the page, so that it doesn't get
1024 * lost when the SPTE is marked for access tracking.
1025 */
1026 if (is_writable_pte(spte))
1027 kvm_set_pfn_dirty(spte_to_pfn(spte));
1028
1029 spte = mark_spte_for_access_track(spte);
1030 mmu_spte_update_no_track(sptep, spte);
1031 }
1032
1033 return true;
1034 }
1035
1036 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1037 {
1038 /*
1039 * Prevent page table teardown by making any free-er wait during
1040 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1041 */
1042 local_irq_disable();
1043
1044 /*
1045 * Make sure a following spte read is not reordered ahead of the write
1046 * to vcpu->mode.
1047 */
1048 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1049 }
1050
1051 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1052 {
1053 /*
1054 * Make sure the write to vcpu->mode is not reordered in front of
1055 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
1056 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1057 */
1058 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1059 local_irq_enable();
1060 }
1061
1062 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1063 struct kmem_cache *base_cache, int min)
1064 {
1065 void *obj;
1066
1067 if (cache->nobjs >= min)
1068 return 0;
1069 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1070 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1071 if (!obj)
1072 return cache->nobjs >= min ? 0 : -ENOMEM;
1073 cache->objects[cache->nobjs++] = obj;
1074 }
1075 return 0;
1076 }
1077
1078 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1079 {
1080 return cache->nobjs;
1081 }
1082
1083 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1084 struct kmem_cache *cache)
1085 {
1086 while (mc->nobjs)
1087 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1088 }
1089
1090 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1091 int min)
1092 {
1093 void *page;
1094
1095 if (cache->nobjs >= min)
1096 return 0;
1097 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1098 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1099 if (!page)
1100 return cache->nobjs >= min ? 0 : -ENOMEM;
1101 cache->objects[cache->nobjs++] = page;
1102 }
1103 return 0;
1104 }
1105
1106 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1107 {
1108 while (mc->nobjs)
1109 free_page((unsigned long)mc->objects[--mc->nobjs]);
1110 }
1111
1112 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1113 {
1114 int r;
1115
1116 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1117 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1118 if (r)
1119 goto out;
1120 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1121 if (r)
1122 goto out;
1123 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1124 mmu_page_header_cache, 4);
1125 out:
1126 return r;
1127 }
1128
1129 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1130 {
1131 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1132 pte_list_desc_cache);
1133 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1134 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1135 mmu_page_header_cache);
1136 }
1137
1138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1139 {
1140 void *p;
1141
1142 BUG_ON(!mc->nobjs);
1143 p = mc->objects[--mc->nobjs];
1144 return p;
1145 }
1146
1147 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1148 {
1149 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1150 }
1151
1152 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1153 {
1154 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1155 }
1156
1157 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1158 {
1159 if (!sp->role.direct)
1160 return sp->gfns[index];
1161
1162 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1163 }
1164
1165 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1166 {
1167 if (!sp->role.direct) {
1168 sp->gfns[index] = gfn;
1169 return;
1170 }
1171
1172 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1173 pr_err_ratelimited("gfn mismatch under direct page %llx "
1174 "(expected %llx, got %llx)\n",
1175 sp->gfn,
1176 kvm_mmu_page_get_gfn(sp, index), gfn);
1177 }
1178
1179 /*
1180 * Return the pointer to the large page information for a given gfn,
1181 * handling slots that are not large page aligned.
1182 */
1183 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1184 struct kvm_memory_slot *slot,
1185 int level)
1186 {
1187 unsigned long idx;
1188
1189 idx = gfn_to_index(gfn, slot->base_gfn, level);
1190 return &slot->arch.lpage_info[level - 2][idx];
1191 }
1192
1193 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1194 gfn_t gfn, int count)
1195 {
1196 struct kvm_lpage_info *linfo;
1197 int i;
1198
1199 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1200 linfo = lpage_info_slot(gfn, slot, i);
1201 linfo->disallow_lpage += count;
1202 WARN_ON(linfo->disallow_lpage < 0);
1203 }
1204 }
1205
1206 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1207 {
1208 update_gfn_disallow_lpage_count(slot, gfn, 1);
1209 }
1210
1211 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1212 {
1213 update_gfn_disallow_lpage_count(slot, gfn, -1);
1214 }
1215
1216 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1217 {
1218 struct kvm_memslots *slots;
1219 struct kvm_memory_slot *slot;
1220 gfn_t gfn;
1221
1222 kvm->arch.indirect_shadow_pages++;
1223 gfn = sp->gfn;
1224 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1225 slot = __gfn_to_memslot(slots, gfn);
1226
1227 /* the non-leaf shadow pages are keeping readonly. */
1228 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1229 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1230 KVM_PAGE_TRACK_WRITE);
1231
1232 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1233 }
1234
1235 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1236 {
1237 if (sp->lpage_disallowed)
1238 return;
1239
1240 ++kvm->stat.nx_lpage_splits;
1241 list_add_tail(&sp->lpage_disallowed_link,
1242 &kvm->arch.lpage_disallowed_mmu_pages);
1243 sp->lpage_disallowed = true;
1244 }
1245
1246 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1247 {
1248 struct kvm_memslots *slots;
1249 struct kvm_memory_slot *slot;
1250 gfn_t gfn;
1251
1252 kvm->arch.indirect_shadow_pages--;
1253 gfn = sp->gfn;
1254 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1255 slot = __gfn_to_memslot(slots, gfn);
1256 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1257 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1258 KVM_PAGE_TRACK_WRITE);
1259
1260 kvm_mmu_gfn_allow_lpage(slot, gfn);
1261 }
1262
1263 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1264 {
1265 --kvm->stat.nx_lpage_splits;
1266 sp->lpage_disallowed = false;
1267 list_del(&sp->lpage_disallowed_link);
1268 }
1269
1270 static struct kvm_memory_slot *
1271 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1272 bool no_dirty_log)
1273 {
1274 struct kvm_memory_slot *slot;
1275
1276 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1277 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1278 return NULL;
1279 if (no_dirty_log && slot->dirty_bitmap)
1280 return NULL;
1281
1282 return slot;
1283 }
1284
1285 /*
1286 * About rmap_head encoding:
1287 *
1288 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1289 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1290 * pte_list_desc containing more mappings.
1291 */
1292
1293 /*
1294 * Returns the number of pointers in the rmap chain, not counting the new one.
1295 */
1296 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1297 struct kvm_rmap_head *rmap_head)
1298 {
1299 struct pte_list_desc *desc;
1300 int i, count = 0;
1301
1302 if (!rmap_head->val) {
1303 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1304 rmap_head->val = (unsigned long)spte;
1305 } else if (!(rmap_head->val & 1)) {
1306 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1307 desc = mmu_alloc_pte_list_desc(vcpu);
1308 desc->sptes[0] = (u64 *)rmap_head->val;
1309 desc->sptes[1] = spte;
1310 rmap_head->val = (unsigned long)desc | 1;
1311 ++count;
1312 } else {
1313 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1314 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1315 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1316 desc = desc->more;
1317 count += PTE_LIST_EXT;
1318 }
1319 if (desc->sptes[PTE_LIST_EXT-1]) {
1320 desc->more = mmu_alloc_pte_list_desc(vcpu);
1321 desc = desc->more;
1322 }
1323 for (i = 0; desc->sptes[i]; ++i)
1324 ++count;
1325 desc->sptes[i] = spte;
1326 }
1327 return count;
1328 }
1329
1330 static void
1331 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1332 struct pte_list_desc *desc, int i,
1333 struct pte_list_desc *prev_desc)
1334 {
1335 int j;
1336
1337 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1338 ;
1339 desc->sptes[i] = desc->sptes[j];
1340 desc->sptes[j] = NULL;
1341 if (j != 0)
1342 return;
1343 if (!prev_desc && !desc->more)
1344 rmap_head->val = 0;
1345 else
1346 if (prev_desc)
1347 prev_desc->more = desc->more;
1348 else
1349 rmap_head->val = (unsigned long)desc->more | 1;
1350 mmu_free_pte_list_desc(desc);
1351 }
1352
1353 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1354 {
1355 struct pte_list_desc *desc;
1356 struct pte_list_desc *prev_desc;
1357 int i;
1358
1359 if (!rmap_head->val) {
1360 pr_err("%s: %p 0->BUG\n", __func__, spte);
1361 BUG();
1362 } else if (!(rmap_head->val & 1)) {
1363 rmap_printk("%s: %p 1->0\n", __func__, spte);
1364 if ((u64 *)rmap_head->val != spte) {
1365 pr_err("%s: %p 1->BUG\n", __func__, spte);
1366 BUG();
1367 }
1368 rmap_head->val = 0;
1369 } else {
1370 rmap_printk("%s: %p many->many\n", __func__, spte);
1371 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1372 prev_desc = NULL;
1373 while (desc) {
1374 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1375 if (desc->sptes[i] == spte) {
1376 pte_list_desc_remove_entry(rmap_head,
1377 desc, i, prev_desc);
1378 return;
1379 }
1380 }
1381 prev_desc = desc;
1382 desc = desc->more;
1383 }
1384 pr_err("%s: %p many->many\n", __func__, spte);
1385 BUG();
1386 }
1387 }
1388
1389 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1390 {
1391 mmu_spte_clear_track_bits(sptep);
1392 __pte_list_remove(sptep, rmap_head);
1393 }
1394
1395 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1396 struct kvm_memory_slot *slot)
1397 {
1398 unsigned long idx;
1399
1400 idx = gfn_to_index(gfn, slot->base_gfn, level);
1401 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1402 }
1403
1404 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1405 struct kvm_mmu_page *sp)
1406 {
1407 struct kvm_memslots *slots;
1408 struct kvm_memory_slot *slot;
1409
1410 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1411 slot = __gfn_to_memslot(slots, gfn);
1412 return __gfn_to_rmap(gfn, sp->role.level, slot);
1413 }
1414
1415 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1416 {
1417 struct kvm_mmu_memory_cache *cache;
1418
1419 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1420 return mmu_memory_cache_free_objects(cache);
1421 }
1422
1423 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1424 {
1425 struct kvm_mmu_page *sp;
1426 struct kvm_rmap_head *rmap_head;
1427
1428 sp = page_header(__pa(spte));
1429 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1430 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1431 return pte_list_add(vcpu, spte, rmap_head);
1432 }
1433
1434 static void rmap_remove(struct kvm *kvm, u64 *spte)
1435 {
1436 struct kvm_mmu_page *sp;
1437 gfn_t gfn;
1438 struct kvm_rmap_head *rmap_head;
1439
1440 sp = page_header(__pa(spte));
1441 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1442 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1443 __pte_list_remove(spte, rmap_head);
1444 }
1445
1446 /*
1447 * Used by the following functions to iterate through the sptes linked by a
1448 * rmap. All fields are private and not assumed to be used outside.
1449 */
1450 struct rmap_iterator {
1451 /* private fields */
1452 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1453 int pos; /* index of the sptep */
1454 };
1455
1456 /*
1457 * Iteration must be started by this function. This should also be used after
1458 * removing/dropping sptes from the rmap link because in such cases the
1459 * information in the iterator may not be valid.
1460 *
1461 * Returns sptep if found, NULL otherwise.
1462 */
1463 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1464 struct rmap_iterator *iter)
1465 {
1466 u64 *sptep;
1467
1468 if (!rmap_head->val)
1469 return NULL;
1470
1471 if (!(rmap_head->val & 1)) {
1472 iter->desc = NULL;
1473 sptep = (u64 *)rmap_head->val;
1474 goto out;
1475 }
1476
1477 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1478 iter->pos = 0;
1479 sptep = iter->desc->sptes[iter->pos];
1480 out:
1481 BUG_ON(!is_shadow_present_pte(*sptep));
1482 return sptep;
1483 }
1484
1485 /*
1486 * Must be used with a valid iterator: e.g. after rmap_get_first().
1487 *
1488 * Returns sptep if found, NULL otherwise.
1489 */
1490 static u64 *rmap_get_next(struct rmap_iterator *iter)
1491 {
1492 u64 *sptep;
1493
1494 if (iter->desc) {
1495 if (iter->pos < PTE_LIST_EXT - 1) {
1496 ++iter->pos;
1497 sptep = iter->desc->sptes[iter->pos];
1498 if (sptep)
1499 goto out;
1500 }
1501
1502 iter->desc = iter->desc->more;
1503
1504 if (iter->desc) {
1505 iter->pos = 0;
1506 /* desc->sptes[0] cannot be NULL */
1507 sptep = iter->desc->sptes[iter->pos];
1508 goto out;
1509 }
1510 }
1511
1512 return NULL;
1513 out:
1514 BUG_ON(!is_shadow_present_pte(*sptep));
1515 return sptep;
1516 }
1517
1518 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1519 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1520 _spte_; _spte_ = rmap_get_next(_iter_))
1521
1522 static void drop_spte(struct kvm *kvm, u64 *sptep)
1523 {
1524 if (mmu_spte_clear_track_bits(sptep))
1525 rmap_remove(kvm, sptep);
1526 }
1527
1528
1529 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1530 {
1531 if (is_large_pte(*sptep)) {
1532 WARN_ON(page_header(__pa(sptep))->role.level ==
1533 PT_PAGE_TABLE_LEVEL);
1534 drop_spte(kvm, sptep);
1535 --kvm->stat.lpages;
1536 return true;
1537 }
1538
1539 return false;
1540 }
1541
1542 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543 {
1544 if (__drop_large_spte(vcpu->kvm, sptep)) {
1545 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548 KVM_PAGES_PER_HPAGE(sp->role.level));
1549 }
1550 }
1551
1552 /*
1553 * Write-protect on the specified @sptep, @pt_protect indicates whether
1554 * spte write-protection is caused by protecting shadow page table.
1555 *
1556 * Note: write protection is difference between dirty logging and spte
1557 * protection:
1558 * - for dirty logging, the spte can be set to writable at anytime if
1559 * its dirty bitmap is properly set.
1560 * - for spte protection, the spte can be writable only after unsync-ing
1561 * shadow page.
1562 *
1563 * Return true if tlb need be flushed.
1564 */
1565 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1566 {
1567 u64 spte = *sptep;
1568
1569 if (!is_writable_pte(spte) &&
1570 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1571 return false;
1572
1573 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
1575 if (pt_protect)
1576 spte &= ~SPTE_MMU_WRITEABLE;
1577 spte = spte & ~PT_WRITABLE_MASK;
1578
1579 return mmu_spte_update(sptep, spte);
1580 }
1581
1582 static bool __rmap_write_protect(struct kvm *kvm,
1583 struct kvm_rmap_head *rmap_head,
1584 bool pt_protect)
1585 {
1586 u64 *sptep;
1587 struct rmap_iterator iter;
1588 bool flush = false;
1589
1590 for_each_rmap_spte(rmap_head, &iter, sptep)
1591 flush |= spte_write_protect(sptep, pt_protect);
1592
1593 return flush;
1594 }
1595
1596 static bool spte_clear_dirty(u64 *sptep)
1597 {
1598 u64 spte = *sptep;
1599
1600 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1602 MMU_WARN_ON(!spte_ad_enabled(spte));
1603 spte &= ~shadow_dirty_mask;
1604 return mmu_spte_update(sptep, spte);
1605 }
1606
1607 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1608 {
1609 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610 (unsigned long *)sptep);
1611 if (was_writable && !spte_ad_enabled(*sptep))
1612 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614 return was_writable;
1615 }
1616
1617 /*
1618 * Gets the GFN ready for another round of dirty logging by clearing the
1619 * - D bit on ad-enabled SPTEs, and
1620 * - W bit on ad-disabled SPTEs.
1621 * Returns true iff any D or W bits were cleared.
1622 */
1623 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1624 {
1625 u64 *sptep;
1626 struct rmap_iterator iter;
1627 bool flush = false;
1628
1629 for_each_rmap_spte(rmap_head, &iter, sptep)
1630 if (spte_ad_need_write_protect(*sptep))
1631 flush |= spte_wrprot_for_clear_dirty(sptep);
1632 else
1633 flush |= spte_clear_dirty(sptep);
1634
1635 return flush;
1636 }
1637
1638 static bool spte_set_dirty(u64 *sptep)
1639 {
1640 u64 spte = *sptep;
1641
1642 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1644 /*
1645 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1646 * do not bother adding back write access to pages marked
1647 * SPTE_AD_WRPROT_ONLY_MASK.
1648 */
1649 spte |= shadow_dirty_mask;
1650
1651 return mmu_spte_update(sptep, spte);
1652 }
1653
1654 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1655 {
1656 u64 *sptep;
1657 struct rmap_iterator iter;
1658 bool flush = false;
1659
1660 for_each_rmap_spte(rmap_head, &iter, sptep)
1661 if (spte_ad_enabled(*sptep))
1662 flush |= spte_set_dirty(sptep);
1663
1664 return flush;
1665 }
1666
1667 /**
1668 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1669 * @kvm: kvm instance
1670 * @slot: slot to protect
1671 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672 * @mask: indicates which pages we should protect
1673 *
1674 * Used when we do not need to care about huge page mappings: e.g. during dirty
1675 * logging we do not have any such mappings.
1676 */
1677 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1678 struct kvm_memory_slot *slot,
1679 gfn_t gfn_offset, unsigned long mask)
1680 {
1681 struct kvm_rmap_head *rmap_head;
1682
1683 while (mask) {
1684 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685 PT_PAGE_TABLE_LEVEL, slot);
1686 __rmap_write_protect(kvm, rmap_head, false);
1687
1688 /* clear the first set bit */
1689 mask &= mask - 1;
1690 }
1691 }
1692
1693 /**
1694 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695 * protect the page if the D-bit isn't supported.
1696 * @kvm: kvm instance
1697 * @slot: slot to clear D-bit
1698 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699 * @mask: indicates which pages we should clear D-bit
1700 *
1701 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702 */
1703 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704 struct kvm_memory_slot *slot,
1705 gfn_t gfn_offset, unsigned long mask)
1706 {
1707 struct kvm_rmap_head *rmap_head;
1708
1709 while (mask) {
1710 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711 PT_PAGE_TABLE_LEVEL, slot);
1712 __rmap_clear_dirty(kvm, rmap_head);
1713
1714 /* clear the first set bit */
1715 mask &= mask - 1;
1716 }
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
1720 /**
1721 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722 * PT level pages.
1723 *
1724 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725 * enable dirty logging for them.
1726 *
1727 * Used when we do not need to care about huge page mappings: e.g. during dirty
1728 * logging we do not have any such mappings.
1729 */
1730 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731 struct kvm_memory_slot *slot,
1732 gfn_t gfn_offset, unsigned long mask)
1733 {
1734 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1736 mask);
1737 else
1738 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1739 }
1740
1741 /**
1742 * kvm_arch_write_log_dirty - emulate dirty page logging
1743 * @vcpu: Guest mode vcpu
1744 *
1745 * Emulate arch specific page modification logging for the
1746 * nested hypervisor
1747 */
1748 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749 {
1750 if (kvm_x86_ops.write_log_dirty)
1751 return kvm_x86_ops.write_log_dirty(vcpu);
1752
1753 return 0;
1754 }
1755
1756 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757 struct kvm_memory_slot *slot, u64 gfn)
1758 {
1759 struct kvm_rmap_head *rmap_head;
1760 int i;
1761 bool write_protected = false;
1762
1763 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1764 rmap_head = __gfn_to_rmap(gfn, i, slot);
1765 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1766 }
1767
1768 return write_protected;
1769 }
1770
1771 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772 {
1773 struct kvm_memory_slot *slot;
1774
1775 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777 }
1778
1779 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1780 {
1781 u64 *sptep;
1782 struct rmap_iterator iter;
1783 bool flush = false;
1784
1785 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1786 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1787
1788 pte_list_remove(rmap_head, sptep);
1789 flush = true;
1790 }
1791
1792 return flush;
1793 }
1794
1795 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1796 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797 unsigned long data)
1798 {
1799 return kvm_zap_rmapp(kvm, rmap_head);
1800 }
1801
1802 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804 unsigned long data)
1805 {
1806 u64 *sptep;
1807 struct rmap_iterator iter;
1808 int need_flush = 0;
1809 u64 new_spte;
1810 pte_t *ptep = (pte_t *)data;
1811 kvm_pfn_t new_pfn;
1812
1813 WARN_ON(pte_huge(*ptep));
1814 new_pfn = pte_pfn(*ptep);
1815
1816 restart:
1817 for_each_rmap_spte(rmap_head, &iter, sptep) {
1818 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1819 sptep, *sptep, gfn, level);
1820
1821 need_flush = 1;
1822
1823 if (pte_write(*ptep)) {
1824 pte_list_remove(rmap_head, sptep);
1825 goto restart;
1826 } else {
1827 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1828 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829
1830 new_spte &= ~PT_WRITABLE_MASK;
1831 new_spte &= ~SPTE_HOST_WRITEABLE;
1832
1833 new_spte = mark_spte_for_access_track(new_spte);
1834
1835 mmu_spte_clear_track_bits(sptep);
1836 mmu_spte_set(sptep, new_spte);
1837 }
1838 }
1839
1840 if (need_flush && kvm_available_flush_tlb_with_range()) {
1841 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842 return 0;
1843 }
1844
1845 return need_flush;
1846 }
1847
1848 struct slot_rmap_walk_iterator {
1849 /* input fields. */
1850 struct kvm_memory_slot *slot;
1851 gfn_t start_gfn;
1852 gfn_t end_gfn;
1853 int start_level;
1854 int end_level;
1855
1856 /* output fields. */
1857 gfn_t gfn;
1858 struct kvm_rmap_head *rmap;
1859 int level;
1860
1861 /* private field. */
1862 struct kvm_rmap_head *end_rmap;
1863 };
1864
1865 static void
1866 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867 {
1868 iterator->level = level;
1869 iterator->gfn = iterator->start_gfn;
1870 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872 iterator->slot);
1873 }
1874
1875 static void
1876 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877 struct kvm_memory_slot *slot, int start_level,
1878 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879 {
1880 iterator->slot = slot;
1881 iterator->start_level = start_level;
1882 iterator->end_level = end_level;
1883 iterator->start_gfn = start_gfn;
1884 iterator->end_gfn = end_gfn;
1885
1886 rmap_walk_init_level(iterator, iterator->start_level);
1887 }
1888
1889 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890 {
1891 return !!iterator->rmap;
1892 }
1893
1894 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895 {
1896 if (++iterator->rmap <= iterator->end_rmap) {
1897 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898 return;
1899 }
1900
1901 if (++iterator->level > iterator->end_level) {
1902 iterator->rmap = NULL;
1903 return;
1904 }
1905
1906 rmap_walk_init_level(iterator, iterator->level);
1907 }
1908
1909 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1910 _start_gfn, _end_gfn, _iter_) \
1911 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1912 _end_level_, _start_gfn, _end_gfn); \
1913 slot_rmap_walk_okay(_iter_); \
1914 slot_rmap_walk_next(_iter_))
1915
1916 static int kvm_handle_hva_range(struct kvm *kvm,
1917 unsigned long start,
1918 unsigned long end,
1919 unsigned long data,
1920 int (*handler)(struct kvm *kvm,
1921 struct kvm_rmap_head *rmap_head,
1922 struct kvm_memory_slot *slot,
1923 gfn_t gfn,
1924 int level,
1925 unsigned long data))
1926 {
1927 struct kvm_memslots *slots;
1928 struct kvm_memory_slot *memslot;
1929 struct slot_rmap_walk_iterator iterator;
1930 int ret = 0;
1931 int i;
1932
1933 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934 slots = __kvm_memslots(kvm, i);
1935 kvm_for_each_memslot(memslot, slots) {
1936 unsigned long hva_start, hva_end;
1937 gfn_t gfn_start, gfn_end;
1938
1939 hva_start = max(start, memslot->userspace_addr);
1940 hva_end = min(end, memslot->userspace_addr +
1941 (memslot->npages << PAGE_SHIFT));
1942 if (hva_start >= hva_end)
1943 continue;
1944 /*
1945 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947 */
1948 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950
1951 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1952 PT_MAX_HUGEPAGE_LEVEL,
1953 gfn_start, gfn_end - 1,
1954 &iterator)
1955 ret |= handler(kvm, iterator.rmap, memslot,
1956 iterator.gfn, iterator.level, data);
1957 }
1958 }
1959
1960 return ret;
1961 }
1962
1963 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964 unsigned long data,
1965 int (*handler)(struct kvm *kvm,
1966 struct kvm_rmap_head *rmap_head,
1967 struct kvm_memory_slot *slot,
1968 gfn_t gfn, int level,
1969 unsigned long data))
1970 {
1971 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1972 }
1973
1974 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975 {
1976 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977 }
1978
1979 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1980 {
1981 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1982 }
1983
1984 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1985 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986 unsigned long data)
1987 {
1988 u64 *sptep;
1989 struct rmap_iterator uninitialized_var(iter);
1990 int young = 0;
1991
1992 for_each_rmap_spte(rmap_head, &iter, sptep)
1993 young |= mmu_spte_age(sptep);
1994
1995 trace_kvm_age_page(gfn, level, slot, young);
1996 return young;
1997 }
1998
1999 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2000 struct kvm_memory_slot *slot, gfn_t gfn,
2001 int level, unsigned long data)
2002 {
2003 u64 *sptep;
2004 struct rmap_iterator iter;
2005
2006 for_each_rmap_spte(rmap_head, &iter, sptep)
2007 if (is_accessed_spte(*sptep))
2008 return 1;
2009 return 0;
2010 }
2011
2012 #define RMAP_RECYCLE_THRESHOLD 1000
2013
2014 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2015 {
2016 struct kvm_rmap_head *rmap_head;
2017 struct kvm_mmu_page *sp;
2018
2019 sp = page_header(__pa(spte));
2020
2021 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2022
2023 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2024 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025 KVM_PAGES_PER_HPAGE(sp->role.level));
2026 }
2027
2028 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2029 {
2030 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2031 }
2032
2033 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034 {
2035 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036 }
2037
2038 #ifdef MMU_DEBUG
2039 static int is_empty_shadow_page(u64 *spt)
2040 {
2041 u64 *pos;
2042 u64 *end;
2043
2044 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2045 if (is_shadow_present_pte(*pos)) {
2046 printk(KERN_ERR "%s: %p %llx\n", __func__,
2047 pos, *pos);
2048 return 0;
2049 }
2050 return 1;
2051 }
2052 #endif
2053
2054 /*
2055 * This value is the sum of all of the kvm instances's
2056 * kvm->arch.n_used_mmu_pages values. We need a global,
2057 * aggregate version in order to make the slab shrinker
2058 * faster
2059 */
2060 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2061 {
2062 kvm->arch.n_used_mmu_pages += nr;
2063 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064 }
2065
2066 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2067 {
2068 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2069 hlist_del(&sp->hash_link);
2070 list_del(&sp->link);
2071 free_page((unsigned long)sp->spt);
2072 if (!sp->role.direct)
2073 free_page((unsigned long)sp->gfns);
2074 kmem_cache_free(mmu_page_header_cache, sp);
2075 }
2076
2077 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078 {
2079 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2080 }
2081
2082 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2083 struct kvm_mmu_page *sp, u64 *parent_pte)
2084 {
2085 if (!parent_pte)
2086 return;
2087
2088 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2089 }
2090
2091 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2092 u64 *parent_pte)
2093 {
2094 __pte_list_remove(parent_pte, &sp->parent_ptes);
2095 }
2096
2097 static void drop_parent_pte(struct kvm_mmu_page *sp,
2098 u64 *parent_pte)
2099 {
2100 mmu_page_remove_parent_pte(sp, parent_pte);
2101 mmu_spte_clear_no_track(parent_pte);
2102 }
2103
2104 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2105 {
2106 struct kvm_mmu_page *sp;
2107
2108 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2110 if (!direct)
2111 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2112 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2113
2114 /*
2115 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116 * depends on valid pages being added to the head of the list. See
2117 * comments in kvm_zap_obsolete_pages().
2118 */
2119 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2120 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2121 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122 return sp;
2123 }
2124
2125 static void mark_unsync(u64 *spte);
2126 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2127 {
2128 u64 *sptep;
2129 struct rmap_iterator iter;
2130
2131 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132 mark_unsync(sptep);
2133 }
2134 }
2135
2136 static void mark_unsync(u64 *spte)
2137 {
2138 struct kvm_mmu_page *sp;
2139 unsigned int index;
2140
2141 sp = page_header(__pa(spte));
2142 index = spte - sp->spt;
2143 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2144 return;
2145 if (sp->unsync_children++)
2146 return;
2147 kvm_mmu_mark_parents_unsync(sp);
2148 }
2149
2150 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2151 struct kvm_mmu_page *sp)
2152 {
2153 return 0;
2154 }
2155
2156 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2157 {
2158 }
2159
2160 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2161 struct kvm_mmu_page *sp, u64 *spte,
2162 const void *pte)
2163 {
2164 WARN_ON(1);
2165 }
2166
2167 #define KVM_PAGE_ARRAY_NR 16
2168
2169 struct kvm_mmu_pages {
2170 struct mmu_page_and_offset {
2171 struct kvm_mmu_page *sp;
2172 unsigned int idx;
2173 } page[KVM_PAGE_ARRAY_NR];
2174 unsigned int nr;
2175 };
2176
2177 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2178 int idx)
2179 {
2180 int i;
2181
2182 if (sp->unsync)
2183 for (i=0; i < pvec->nr; i++)
2184 if (pvec->page[i].sp == sp)
2185 return 0;
2186
2187 pvec->page[pvec->nr].sp = sp;
2188 pvec->page[pvec->nr].idx = idx;
2189 pvec->nr++;
2190 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2191 }
2192
2193 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2194 {
2195 --sp->unsync_children;
2196 WARN_ON((int)sp->unsync_children < 0);
2197 __clear_bit(idx, sp->unsync_child_bitmap);
2198 }
2199
2200 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2201 struct kvm_mmu_pages *pvec)
2202 {
2203 int i, ret, nr_unsync_leaf = 0;
2204
2205 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2206 struct kvm_mmu_page *child;
2207 u64 ent = sp->spt[i];
2208
2209 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2210 clear_unsync_child_bit(sp, i);
2211 continue;
2212 }
2213
2214 child = page_header(ent & PT64_BASE_ADDR_MASK);
2215
2216 if (child->unsync_children) {
2217 if (mmu_pages_add(pvec, child, i))
2218 return -ENOSPC;
2219
2220 ret = __mmu_unsync_walk(child, pvec);
2221 if (!ret) {
2222 clear_unsync_child_bit(sp, i);
2223 continue;
2224 } else if (ret > 0) {
2225 nr_unsync_leaf += ret;
2226 } else
2227 return ret;
2228 } else if (child->unsync) {
2229 nr_unsync_leaf++;
2230 if (mmu_pages_add(pvec, child, i))
2231 return -ENOSPC;
2232 } else
2233 clear_unsync_child_bit(sp, i);
2234 }
2235
2236 return nr_unsync_leaf;
2237 }
2238
2239 #define INVALID_INDEX (-1)
2240
2241 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2242 struct kvm_mmu_pages *pvec)
2243 {
2244 pvec->nr = 0;
2245 if (!sp->unsync_children)
2246 return 0;
2247
2248 mmu_pages_add(pvec, sp, INVALID_INDEX);
2249 return __mmu_unsync_walk(sp, pvec);
2250 }
2251
2252 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2253 {
2254 WARN_ON(!sp->unsync);
2255 trace_kvm_mmu_sync_page(sp);
2256 sp->unsync = 0;
2257 --kvm->stat.mmu_unsync;
2258 }
2259
2260 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2261 struct list_head *invalid_list);
2262 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2263 struct list_head *invalid_list);
2264
2265
2266 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2267 hlist_for_each_entry(_sp, \
2268 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2269 if (is_obsolete_sp((_kvm), (_sp))) { \
2270 } else
2271
2272 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2273 for_each_valid_sp(_kvm, _sp, _gfn) \
2274 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2275
2276 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2277 {
2278 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2279 }
2280
2281 /* @sp->gfn should be write-protected at the call site */
2282 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2283 struct list_head *invalid_list)
2284 {
2285 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2286 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2287 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2288 return false;
2289 }
2290
2291 return true;
2292 }
2293
2294 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2295 struct list_head *invalid_list,
2296 bool remote_flush)
2297 {
2298 if (!remote_flush && list_empty(invalid_list))
2299 return false;
2300
2301 if (!list_empty(invalid_list))
2302 kvm_mmu_commit_zap_page(kvm, invalid_list);
2303 else
2304 kvm_flush_remote_tlbs(kvm);
2305 return true;
2306 }
2307
2308 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2309 struct list_head *invalid_list,
2310 bool remote_flush, bool local_flush)
2311 {
2312 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2313 return;
2314
2315 if (local_flush)
2316 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2317 }
2318
2319 #ifdef CONFIG_KVM_MMU_AUDIT
2320 #include "mmu_audit.c"
2321 #else
2322 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2323 static void mmu_audit_disable(void) { }
2324 #endif
2325
2326 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2327 {
2328 return sp->role.invalid ||
2329 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2330 }
2331
2332 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2333 struct list_head *invalid_list)
2334 {
2335 kvm_unlink_unsync_page(vcpu->kvm, sp);
2336 return __kvm_sync_page(vcpu, sp, invalid_list);
2337 }
2338
2339 /* @gfn should be write-protected at the call site */
2340 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2341 struct list_head *invalid_list)
2342 {
2343 struct kvm_mmu_page *s;
2344 bool ret = false;
2345
2346 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2347 if (!s->unsync)
2348 continue;
2349
2350 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2351 ret |= kvm_sync_page(vcpu, s, invalid_list);
2352 }
2353
2354 return ret;
2355 }
2356
2357 struct mmu_page_path {
2358 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2359 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2360 };
2361
2362 #define for_each_sp(pvec, sp, parents, i) \
2363 for (i = mmu_pages_first(&pvec, &parents); \
2364 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2365 i = mmu_pages_next(&pvec, &parents, i))
2366
2367 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2368 struct mmu_page_path *parents,
2369 int i)
2370 {
2371 int n;
2372
2373 for (n = i+1; n < pvec->nr; n++) {
2374 struct kvm_mmu_page *sp = pvec->page[n].sp;
2375 unsigned idx = pvec->page[n].idx;
2376 int level = sp->role.level;
2377
2378 parents->idx[level-1] = idx;
2379 if (level == PT_PAGE_TABLE_LEVEL)
2380 break;
2381
2382 parents->parent[level-2] = sp;
2383 }
2384
2385 return n;
2386 }
2387
2388 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2389 struct mmu_page_path *parents)
2390 {
2391 struct kvm_mmu_page *sp;
2392 int level;
2393
2394 if (pvec->nr == 0)
2395 return 0;
2396
2397 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2398
2399 sp = pvec->page[0].sp;
2400 level = sp->role.level;
2401 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2402
2403 parents->parent[level-2] = sp;
2404
2405 /* Also set up a sentinel. Further entries in pvec are all
2406 * children of sp, so this element is never overwritten.
2407 */
2408 parents->parent[level-1] = NULL;
2409 return mmu_pages_next(pvec, parents, 0);
2410 }
2411
2412 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2413 {
2414 struct kvm_mmu_page *sp;
2415 unsigned int level = 0;
2416
2417 do {
2418 unsigned int idx = parents->idx[level];
2419 sp = parents->parent[level];
2420 if (!sp)
2421 return;
2422
2423 WARN_ON(idx == INVALID_INDEX);
2424 clear_unsync_child_bit(sp, idx);
2425 level++;
2426 } while (!sp->unsync_children);
2427 }
2428
2429 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2430 struct kvm_mmu_page *parent)
2431 {
2432 int i;
2433 struct kvm_mmu_page *sp;
2434 struct mmu_page_path parents;
2435 struct kvm_mmu_pages pages;
2436 LIST_HEAD(invalid_list);
2437 bool flush = false;
2438
2439 while (mmu_unsync_walk(parent, &pages)) {
2440 bool protected = false;
2441
2442 for_each_sp(pages, sp, parents, i)
2443 protected |= rmap_write_protect(vcpu, sp->gfn);
2444
2445 if (protected) {
2446 kvm_flush_remote_tlbs(vcpu->kvm);
2447 flush = false;
2448 }
2449
2450 for_each_sp(pages, sp, parents, i) {
2451 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2452 mmu_pages_clear_parents(&parents);
2453 }
2454 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2455 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2456 cond_resched_lock(&vcpu->kvm->mmu_lock);
2457 flush = false;
2458 }
2459 }
2460
2461 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2462 }
2463
2464 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2465 {
2466 atomic_set(&sp->write_flooding_count, 0);
2467 }
2468
2469 static void clear_sp_write_flooding_count(u64 *spte)
2470 {
2471 struct kvm_mmu_page *sp = page_header(__pa(spte));
2472
2473 __clear_sp_write_flooding_count(sp);
2474 }
2475
2476 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2477 gfn_t gfn,
2478 gva_t gaddr,
2479 unsigned level,
2480 int direct,
2481 unsigned int access)
2482 {
2483 union kvm_mmu_page_role role;
2484 unsigned quadrant;
2485 struct kvm_mmu_page *sp;
2486 bool need_sync = false;
2487 bool flush = false;
2488 int collisions = 0;
2489 LIST_HEAD(invalid_list);
2490
2491 role = vcpu->arch.mmu->mmu_role.base;
2492 role.level = level;
2493 role.direct = direct;
2494 if (role.direct)
2495 role.gpte_is_8_bytes = true;
2496 role.access = access;
2497 if (!vcpu->arch.mmu->direct_map
2498 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2499 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2500 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2501 role.quadrant = quadrant;
2502 }
2503 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2504 if (sp->gfn != gfn) {
2505 collisions++;
2506 continue;
2507 }
2508
2509 if (!need_sync && sp->unsync)
2510 need_sync = true;
2511
2512 if (sp->role.word != role.word)
2513 continue;
2514
2515 if (sp->unsync) {
2516 /* The page is good, but __kvm_sync_page might still end
2517 * up zapping it. If so, break in order to rebuild it.
2518 */
2519 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2520 break;
2521
2522 WARN_ON(!list_empty(&invalid_list));
2523 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2524 }
2525
2526 if (sp->unsync_children)
2527 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2528
2529 __clear_sp_write_flooding_count(sp);
2530 trace_kvm_mmu_get_page(sp, false);
2531 goto out;
2532 }
2533
2534 ++vcpu->kvm->stat.mmu_cache_miss;
2535
2536 sp = kvm_mmu_alloc_page(vcpu, direct);
2537
2538 sp->gfn = gfn;
2539 sp->role = role;
2540 hlist_add_head(&sp->hash_link,
2541 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2542 if (!direct) {
2543 /*
2544 * we should do write protection before syncing pages
2545 * otherwise the content of the synced shadow page may
2546 * be inconsistent with guest page table.
2547 */
2548 account_shadowed(vcpu->kvm, sp);
2549 if (level == PT_PAGE_TABLE_LEVEL &&
2550 rmap_write_protect(vcpu, gfn))
2551 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2552
2553 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2554 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2555 }
2556 clear_page(sp->spt);
2557 trace_kvm_mmu_get_page(sp, true);
2558
2559 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2560 out:
2561 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2562 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2563 return sp;
2564 }
2565
2566 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2567 struct kvm_vcpu *vcpu, hpa_t root,
2568 u64 addr)
2569 {
2570 iterator->addr = addr;
2571 iterator->shadow_addr = root;
2572 iterator->level = vcpu->arch.mmu->shadow_root_level;
2573
2574 if (iterator->level == PT64_ROOT_4LEVEL &&
2575 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2576 !vcpu->arch.mmu->direct_map)
2577 --iterator->level;
2578
2579 if (iterator->level == PT32E_ROOT_LEVEL) {
2580 /*
2581 * prev_root is currently only used for 64-bit hosts. So only
2582 * the active root_hpa is valid here.
2583 */
2584 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2585
2586 iterator->shadow_addr
2587 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2588 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2589 --iterator->level;
2590 if (!iterator->shadow_addr)
2591 iterator->level = 0;
2592 }
2593 }
2594
2595 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2596 struct kvm_vcpu *vcpu, u64 addr)
2597 {
2598 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2599 addr);
2600 }
2601
2602 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2603 {
2604 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2605 return false;
2606
2607 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2608 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2609 return true;
2610 }
2611
2612 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2613 u64 spte)
2614 {
2615 if (is_last_spte(spte, iterator->level)) {
2616 iterator->level = 0;
2617 return;
2618 }
2619
2620 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2621 --iterator->level;
2622 }
2623
2624 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2625 {
2626 __shadow_walk_next(iterator, *iterator->sptep);
2627 }
2628
2629 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2630 struct kvm_mmu_page *sp)
2631 {
2632 u64 spte;
2633
2634 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2635
2636 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2637 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2638
2639 if (sp_ad_disabled(sp))
2640 spte |= SPTE_AD_DISABLED_MASK;
2641 else
2642 spte |= shadow_accessed_mask;
2643
2644 mmu_spte_set(sptep, spte);
2645
2646 mmu_page_add_parent_pte(vcpu, sp, sptep);
2647
2648 if (sp->unsync_children || sp->unsync)
2649 mark_unsync(sptep);
2650 }
2651
2652 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2653 unsigned direct_access)
2654 {
2655 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2656 struct kvm_mmu_page *child;
2657
2658 /*
2659 * For the direct sp, if the guest pte's dirty bit
2660 * changed form clean to dirty, it will corrupt the
2661 * sp's access: allow writable in the read-only sp,
2662 * so we should update the spte at this point to get
2663 * a new sp with the correct access.
2664 */
2665 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2666 if (child->role.access == direct_access)
2667 return;
2668
2669 drop_parent_pte(child, sptep);
2670 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2671 }
2672 }
2673
2674 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2675 u64 *spte)
2676 {
2677 u64 pte;
2678 struct kvm_mmu_page *child;
2679
2680 pte = *spte;
2681 if (is_shadow_present_pte(pte)) {
2682 if (is_last_spte(pte, sp->role.level)) {
2683 drop_spte(kvm, spte);
2684 if (is_large_pte(pte))
2685 --kvm->stat.lpages;
2686 } else {
2687 child = page_header(pte & PT64_BASE_ADDR_MASK);
2688 drop_parent_pte(child, spte);
2689 }
2690 return true;
2691 }
2692
2693 if (is_mmio_spte(pte))
2694 mmu_spte_clear_no_track(spte);
2695
2696 return false;
2697 }
2698
2699 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2700 struct kvm_mmu_page *sp)
2701 {
2702 unsigned i;
2703
2704 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2705 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2706 }
2707
2708 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2709 {
2710 u64 *sptep;
2711 struct rmap_iterator iter;
2712
2713 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2714 drop_parent_pte(sp, sptep);
2715 }
2716
2717 static int mmu_zap_unsync_children(struct kvm *kvm,
2718 struct kvm_mmu_page *parent,
2719 struct list_head *invalid_list)
2720 {
2721 int i, zapped = 0;
2722 struct mmu_page_path parents;
2723 struct kvm_mmu_pages pages;
2724
2725 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2726 return 0;
2727
2728 while (mmu_unsync_walk(parent, &pages)) {
2729 struct kvm_mmu_page *sp;
2730
2731 for_each_sp(pages, sp, parents, i) {
2732 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2733 mmu_pages_clear_parents(&parents);
2734 zapped++;
2735 }
2736 }
2737
2738 return zapped;
2739 }
2740
2741 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2742 struct kvm_mmu_page *sp,
2743 struct list_head *invalid_list,
2744 int *nr_zapped)
2745 {
2746 bool list_unstable;
2747
2748 trace_kvm_mmu_prepare_zap_page(sp);
2749 ++kvm->stat.mmu_shadow_zapped;
2750 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2751 kvm_mmu_page_unlink_children(kvm, sp);
2752 kvm_mmu_unlink_parents(kvm, sp);
2753
2754 /* Zapping children means active_mmu_pages has become unstable. */
2755 list_unstable = *nr_zapped;
2756
2757 if (!sp->role.invalid && !sp->role.direct)
2758 unaccount_shadowed(kvm, sp);
2759
2760 if (sp->unsync)
2761 kvm_unlink_unsync_page(kvm, sp);
2762 if (!sp->root_count) {
2763 /* Count self */
2764 (*nr_zapped)++;
2765 list_move(&sp->link, invalid_list);
2766 kvm_mod_used_mmu_pages(kvm, -1);
2767 } else {
2768 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2769
2770 /*
2771 * Obsolete pages cannot be used on any vCPUs, see the comment
2772 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2773 * treats invalid shadow pages as being obsolete.
2774 */
2775 if (!is_obsolete_sp(kvm, sp))
2776 kvm_reload_remote_mmus(kvm);
2777 }
2778
2779 if (sp->lpage_disallowed)
2780 unaccount_huge_nx_page(kvm, sp);
2781
2782 sp->role.invalid = 1;
2783 return list_unstable;
2784 }
2785
2786 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2787 struct list_head *invalid_list)
2788 {
2789 int nr_zapped;
2790
2791 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2792 return nr_zapped;
2793 }
2794
2795 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2796 struct list_head *invalid_list)
2797 {
2798 struct kvm_mmu_page *sp, *nsp;
2799
2800 if (list_empty(invalid_list))
2801 return;
2802
2803 /*
2804 * We need to make sure everyone sees our modifications to
2805 * the page tables and see changes to vcpu->mode here. The barrier
2806 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2807 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2808 *
2809 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2810 * guest mode and/or lockless shadow page table walks.
2811 */
2812 kvm_flush_remote_tlbs(kvm);
2813
2814 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2815 WARN_ON(!sp->role.invalid || sp->root_count);
2816 kvm_mmu_free_page(sp);
2817 }
2818 }
2819
2820 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2821 struct list_head *invalid_list)
2822 {
2823 struct kvm_mmu_page *sp;
2824
2825 if (list_empty(&kvm->arch.active_mmu_pages))
2826 return false;
2827
2828 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2829 struct kvm_mmu_page, link);
2830 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2831 }
2832
2833 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2834 {
2835 LIST_HEAD(invalid_list);
2836
2837 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2838 return 0;
2839
2840 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2841 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2842 break;
2843
2844 ++vcpu->kvm->stat.mmu_recycled;
2845 }
2846 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2847
2848 if (!kvm_mmu_available_pages(vcpu->kvm))
2849 return -ENOSPC;
2850 return 0;
2851 }
2852
2853 /*
2854 * Changing the number of mmu pages allocated to the vm
2855 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2856 */
2857 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2858 {
2859 LIST_HEAD(invalid_list);
2860
2861 spin_lock(&kvm->mmu_lock);
2862
2863 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2864 /* Need to free some mmu pages to achieve the goal. */
2865 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2866 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2867 break;
2868
2869 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2870 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2871 }
2872
2873 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2874
2875 spin_unlock(&kvm->mmu_lock);
2876 }
2877
2878 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2879 {
2880 struct kvm_mmu_page *sp;
2881 LIST_HEAD(invalid_list);
2882 int r;
2883
2884 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2885 r = 0;
2886 spin_lock(&kvm->mmu_lock);
2887 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2888 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2889 sp->role.word);
2890 r = 1;
2891 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2892 }
2893 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2894 spin_unlock(&kvm->mmu_lock);
2895
2896 return r;
2897 }
2898 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2899
2900 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2901 {
2902 trace_kvm_mmu_unsync_page(sp);
2903 ++vcpu->kvm->stat.mmu_unsync;
2904 sp->unsync = 1;
2905
2906 kvm_mmu_mark_parents_unsync(sp);
2907 }
2908
2909 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2910 bool can_unsync)
2911 {
2912 struct kvm_mmu_page *sp;
2913
2914 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2915 return true;
2916
2917 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2918 if (!can_unsync)
2919 return true;
2920
2921 if (sp->unsync)
2922 continue;
2923
2924 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2925 kvm_unsync_page(vcpu, sp);
2926 }
2927
2928 /*
2929 * We need to ensure that the marking of unsync pages is visible
2930 * before the SPTE is updated to allow writes because
2931 * kvm_mmu_sync_roots() checks the unsync flags without holding
2932 * the MMU lock and so can race with this. If the SPTE was updated
2933 * before the page had been marked as unsync-ed, something like the
2934 * following could happen:
2935 *
2936 * CPU 1 CPU 2
2937 * ---------------------------------------------------------------------
2938 * 1.2 Host updates SPTE
2939 * to be writable
2940 * 2.1 Guest writes a GPTE for GVA X.
2941 * (GPTE being in the guest page table shadowed
2942 * by the SP from CPU 1.)
2943 * This reads SPTE during the page table walk.
2944 * Since SPTE.W is read as 1, there is no
2945 * fault.
2946 *
2947 * 2.2 Guest issues TLB flush.
2948 * That causes a VM Exit.
2949 *
2950 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2951 * Since it is false, so it just returns.
2952 *
2953 * 2.4 Guest accesses GVA X.
2954 * Since the mapping in the SP was not updated,
2955 * so the old mapping for GVA X incorrectly
2956 * gets used.
2957 * 1.1 Host marks SP
2958 * as unsync
2959 * (sp->unsync = true)
2960 *
2961 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2962 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2963 * pairs with this write barrier.
2964 */
2965 smp_wmb();
2966
2967 return false;
2968 }
2969
2970 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2971 {
2972 if (pfn_valid(pfn))
2973 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2974 /*
2975 * Some reserved pages, such as those from NVDIMM
2976 * DAX devices, are not for MMIO, and can be mapped
2977 * with cached memory type for better performance.
2978 * However, the above check misconceives those pages
2979 * as MMIO, and results in KVM mapping them with UC
2980 * memory type, which would hurt the performance.
2981 * Therefore, we check the host memory type in addition
2982 * and only treat UC/UC-/WC pages as MMIO.
2983 */
2984 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2985
2986 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2987 pfn_to_hpa(pfn + 1) - 1,
2988 E820_TYPE_RAM);
2989 }
2990
2991 /* Bits which may be returned by set_spte() */
2992 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2993 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2994
2995 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2996 unsigned int pte_access, int level,
2997 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2998 bool can_unsync, bool host_writable)
2999 {
3000 u64 spte = 0;
3001 int ret = 0;
3002 struct kvm_mmu_page *sp;
3003
3004 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3005 return 0;
3006
3007 sp = page_header(__pa(sptep));
3008 if (sp_ad_disabled(sp))
3009 spte |= SPTE_AD_DISABLED_MASK;
3010 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3011 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3012
3013 /*
3014 * For the EPT case, shadow_present_mask is 0 if hardware
3015 * supports exec-only page table entries. In that case,
3016 * ACC_USER_MASK and shadow_user_mask are used to represent
3017 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3018 */
3019 spte |= shadow_present_mask;
3020 if (!speculative)
3021 spte |= spte_shadow_accessed_mask(spte);
3022
3023 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3024 is_nx_huge_page_enabled()) {
3025 pte_access &= ~ACC_EXEC_MASK;
3026 }
3027
3028 if (pte_access & ACC_EXEC_MASK)
3029 spte |= shadow_x_mask;
3030 else
3031 spte |= shadow_nx_mask;
3032
3033 if (pte_access & ACC_USER_MASK)
3034 spte |= shadow_user_mask;
3035
3036 if (level > PT_PAGE_TABLE_LEVEL)
3037 spte |= PT_PAGE_SIZE_MASK;
3038 if (tdp_enabled)
3039 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3040 kvm_is_mmio_pfn(pfn));
3041
3042 if (host_writable)
3043 spte |= SPTE_HOST_WRITEABLE;
3044 else
3045 pte_access &= ~ACC_WRITE_MASK;
3046
3047 if (!kvm_is_mmio_pfn(pfn))
3048 spte |= shadow_me_mask;
3049
3050 spte |= (u64)pfn << PAGE_SHIFT;
3051
3052 if (pte_access & ACC_WRITE_MASK) {
3053 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3054
3055 /*
3056 * Optimization: for pte sync, if spte was writable the hash
3057 * lookup is unnecessary (and expensive). Write protection
3058 * is responsibility of mmu_get_page / kvm_sync_page.
3059 * Same reasoning can be applied to dirty page accounting.
3060 */
3061 if (!can_unsync && is_writable_pte(*sptep))
3062 goto set_pte;
3063
3064 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3065 pgprintk("%s: found shadow page for %llx, marking ro\n",
3066 __func__, gfn);
3067 ret |= SET_SPTE_WRITE_PROTECTED_PT;
3068 pte_access &= ~ACC_WRITE_MASK;
3069 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3070 }
3071 }
3072
3073 if (pte_access & ACC_WRITE_MASK) {
3074 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3075 spte |= spte_shadow_dirty_mask(spte);
3076 }
3077
3078 if (speculative)
3079 spte = mark_spte_for_access_track(spte);
3080
3081 set_pte:
3082 if (mmu_spte_update(sptep, spte))
3083 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3084 return ret;
3085 }
3086
3087 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3088 unsigned int pte_access, int write_fault, int level,
3089 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3090 bool host_writable)
3091 {
3092 int was_rmapped = 0;
3093 int rmap_count;
3094 int set_spte_ret;
3095 int ret = RET_PF_RETRY;
3096 bool flush = false;
3097
3098 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3099 *sptep, write_fault, gfn);
3100
3101 if (is_shadow_present_pte(*sptep)) {
3102 /*
3103 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3104 * the parent of the now unreachable PTE.
3105 */
3106 if (level > PT_PAGE_TABLE_LEVEL &&
3107 !is_large_pte(*sptep)) {
3108 struct kvm_mmu_page *child;
3109 u64 pte = *sptep;
3110
3111 child = page_header(pte & PT64_BASE_ADDR_MASK);
3112 drop_parent_pte(child, sptep);
3113 flush = true;
3114 } else if (pfn != spte_to_pfn(*sptep)) {
3115 pgprintk("hfn old %llx new %llx\n",
3116 spte_to_pfn(*sptep), pfn);
3117 drop_spte(vcpu->kvm, sptep);
3118 flush = true;
3119 } else
3120 was_rmapped = 1;
3121 }
3122
3123 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3124 speculative, true, host_writable);
3125 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3126 if (write_fault)
3127 ret = RET_PF_EMULATE;
3128 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3129 }
3130
3131 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3132 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3133 KVM_PAGES_PER_HPAGE(level));
3134
3135 if (unlikely(is_mmio_spte(*sptep)))
3136 ret = RET_PF_EMULATE;
3137
3138 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3139 trace_kvm_mmu_set_spte(level, gfn, sptep);
3140 if (!was_rmapped && is_large_pte(*sptep))
3141 ++vcpu->kvm->stat.lpages;
3142
3143 if (is_shadow_present_pte(*sptep)) {
3144 if (!was_rmapped) {
3145 rmap_count = rmap_add(vcpu, sptep, gfn);
3146 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3147 rmap_recycle(vcpu, sptep, gfn);
3148 }
3149 }
3150
3151 return ret;
3152 }
3153
3154 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3155 bool no_dirty_log)
3156 {
3157 struct kvm_memory_slot *slot;
3158
3159 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3160 if (!slot)
3161 return KVM_PFN_ERR_FAULT;
3162
3163 return gfn_to_pfn_memslot_atomic(slot, gfn);
3164 }
3165
3166 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3167 struct kvm_mmu_page *sp,
3168 u64 *start, u64 *end)
3169 {
3170 struct page *pages[PTE_PREFETCH_NUM];
3171 struct kvm_memory_slot *slot;
3172 unsigned int access = sp->role.access;
3173 int i, ret;
3174 gfn_t gfn;
3175
3176 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3177 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3178 if (!slot)
3179 return -1;
3180
3181 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3182 if (ret <= 0)
3183 return -1;
3184
3185 for (i = 0; i < ret; i++, gfn++, start++) {
3186 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3187 page_to_pfn(pages[i]), true, true);
3188 put_page(pages[i]);
3189 }
3190
3191 return 0;
3192 }
3193
3194 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3195 struct kvm_mmu_page *sp, u64 *sptep)
3196 {
3197 u64 *spte, *start = NULL;
3198 int i;
3199
3200 WARN_ON(!sp->role.direct);
3201
3202 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3203 spte = sp->spt + i;
3204
3205 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3206 if (is_shadow_present_pte(*spte) || spte == sptep) {
3207 if (!start)
3208 continue;
3209 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3210 break;
3211 start = NULL;
3212 } else if (!start)
3213 start = spte;
3214 }
3215 }
3216
3217 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3218 {
3219 struct kvm_mmu_page *sp;
3220
3221 sp = page_header(__pa(sptep));
3222
3223 /*
3224 * Without accessed bits, there's no way to distinguish between
3225 * actually accessed translations and prefetched, so disable pte
3226 * prefetch if accessed bits aren't available.
3227 */
3228 if (sp_ad_disabled(sp))
3229 return;
3230
3231 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3232 return;
3233
3234 __direct_pte_prefetch(vcpu, sp, sptep);
3235 }
3236
3237 static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3238 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3239 {
3240 unsigned long hva;
3241 pte_t *pte;
3242 int level;
3243
3244 BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3245 PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3246 PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3247
3248 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3249 return PT_PAGE_TABLE_LEVEL;
3250
3251 /*
3252 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3253 * is not solely for performance, it's also necessary to avoid the
3254 * "writable" check in __gfn_to_hva_many(), which will always fail on
3255 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3256 * page fault steps have already verified the guest isn't writing a
3257 * read-only memslot.
3258 */
3259 hva = __gfn_to_hva_memslot(slot, gfn);
3260
3261 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3262 if (unlikely(!pte))
3263 return PT_PAGE_TABLE_LEVEL;
3264
3265 return level;
3266 }
3267
3268 static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3269 int max_level, kvm_pfn_t *pfnp)
3270 {
3271 struct kvm_memory_slot *slot;
3272 struct kvm_lpage_info *linfo;
3273 kvm_pfn_t pfn = *pfnp;
3274 kvm_pfn_t mask;
3275 int level;
3276
3277 if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
3278 return PT_PAGE_TABLE_LEVEL;
3279
3280 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3281 return PT_PAGE_TABLE_LEVEL;
3282
3283 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3284 if (!slot)
3285 return PT_PAGE_TABLE_LEVEL;
3286
3287 max_level = min(max_level, max_page_level);
3288 for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
3289 linfo = lpage_info_slot(gfn, slot, max_level);
3290 if (!linfo->disallow_lpage)
3291 break;
3292 }
3293
3294 if (max_level == PT_PAGE_TABLE_LEVEL)
3295 return PT_PAGE_TABLE_LEVEL;
3296
3297 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3298 if (level == PT_PAGE_TABLE_LEVEL)
3299 return level;
3300
3301 level = min(level, max_level);
3302
3303 /*
3304 * mmu_notifier_retry() was successful and mmu_lock is held, so
3305 * the pmd can't be split from under us.
3306 */
3307 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3308 VM_BUG_ON((gfn & mask) != (pfn & mask));
3309 *pfnp = pfn & ~mask;
3310
3311 return level;
3312 }
3313
3314 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3315 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3316 {
3317 int level = *levelp;
3318 u64 spte = *it.sptep;
3319
3320 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3321 is_nx_huge_page_enabled() &&
3322 is_shadow_present_pte(spte) &&
3323 !is_large_pte(spte)) {
3324 /*
3325 * A small SPTE exists for this pfn, but FNAME(fetch)
3326 * and __direct_map would like to create a large PTE
3327 * instead: just force them to go down another level,
3328 * patching back for them into pfn the next 9 bits of
3329 * the address.
3330 */
3331 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3332 *pfnp |= gfn & page_mask;
3333 (*levelp)--;
3334 }
3335 }
3336
3337 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3338 int map_writable, int max_level, kvm_pfn_t pfn,
3339 bool prefault, bool account_disallowed_nx_lpage)
3340 {
3341 struct kvm_shadow_walk_iterator it;
3342 struct kvm_mmu_page *sp;
3343 int level, ret;
3344 gfn_t gfn = gpa >> PAGE_SHIFT;
3345 gfn_t base_gfn = gfn;
3346
3347 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3348 return RET_PF_RETRY;
3349
3350 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3351
3352 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3353 for_each_shadow_entry(vcpu, gpa, it) {
3354 /*
3355 * We cannot overwrite existing page tables with an NX
3356 * large page, as the leaf could be executable.
3357 */
3358 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3359
3360 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3361 if (it.level == level)
3362 break;
3363
3364 drop_large_spte(vcpu, it.sptep);
3365 if (!is_shadow_present_pte(*it.sptep)) {
3366 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3367 it.level - 1, true, ACC_ALL);
3368
3369 link_shadow_page(vcpu, it.sptep, sp);
3370 if (account_disallowed_nx_lpage)
3371 account_huge_nx_page(vcpu->kvm, sp);
3372 }
3373 }
3374
3375 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3376 write, level, base_gfn, pfn, prefault,
3377 map_writable);
3378 direct_pte_prefetch(vcpu, it.sptep);
3379 ++vcpu->stat.pf_fixed;
3380 return ret;
3381 }
3382
3383 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3384 {
3385 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3386 }
3387
3388 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3389 {
3390 /*
3391 * Do not cache the mmio info caused by writing the readonly gfn
3392 * into the spte otherwise read access on readonly gfn also can
3393 * caused mmio page fault and treat it as mmio access.
3394 */
3395 if (pfn == KVM_PFN_ERR_RO_FAULT)
3396 return RET_PF_EMULATE;
3397
3398 if (pfn == KVM_PFN_ERR_HWPOISON) {
3399 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3400 return RET_PF_RETRY;
3401 }
3402
3403 return -EFAULT;
3404 }
3405
3406 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3407 kvm_pfn_t pfn, unsigned int access,
3408 int *ret_val)
3409 {
3410 /* The pfn is invalid, report the error! */
3411 if (unlikely(is_error_pfn(pfn))) {
3412 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3413 return true;
3414 }
3415
3416 if (unlikely(is_noslot_pfn(pfn)))
3417 vcpu_cache_mmio_info(vcpu, gva, gfn,
3418 access & shadow_mmio_access_mask);
3419
3420 return false;
3421 }
3422
3423 static bool page_fault_can_be_fast(u32 error_code)
3424 {
3425 /*
3426 * Do not fix the mmio spte with invalid generation number which
3427 * need to be updated by slow page fault path.
3428 */
3429 if (unlikely(error_code & PFERR_RSVD_MASK))
3430 return false;
3431
3432 /* See if the page fault is due to an NX violation */
3433 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3434 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3435 return false;
3436
3437 /*
3438 * #PF can be fast if:
3439 * 1. The shadow page table entry is not present, which could mean that
3440 * the fault is potentially caused by access tracking (if enabled).
3441 * 2. The shadow page table entry is present and the fault
3442 * is caused by write-protect, that means we just need change the W
3443 * bit of the spte which can be done out of mmu-lock.
3444 *
3445 * However, if access tracking is disabled we know that a non-present
3446 * page must be a genuine page fault where we have to create a new SPTE.
3447 * So, if access tracking is disabled, we return true only for write
3448 * accesses to a present page.
3449 */
3450
3451 return shadow_acc_track_mask != 0 ||
3452 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3453 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3454 }
3455
3456 /*
3457 * Returns true if the SPTE was fixed successfully. Otherwise,
3458 * someone else modified the SPTE from its original value.
3459 */
3460 static bool
3461 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3462 u64 *sptep, u64 old_spte, u64 new_spte)
3463 {
3464 gfn_t gfn;
3465
3466 WARN_ON(!sp->role.direct);
3467
3468 /*
3469 * Theoretically we could also set dirty bit (and flush TLB) here in
3470 * order to eliminate unnecessary PML logging. See comments in
3471 * set_spte. But fast_page_fault is very unlikely to happen with PML
3472 * enabled, so we do not do this. This might result in the same GPA
3473 * to be logged in PML buffer again when the write really happens, and
3474 * eventually to be called by mark_page_dirty twice. But it's also no
3475 * harm. This also avoids the TLB flush needed after setting dirty bit
3476 * so non-PML cases won't be impacted.
3477 *
3478 * Compare with set_spte where instead shadow_dirty_mask is set.
3479 */
3480 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3481 return false;
3482
3483 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3484 /*
3485 * The gfn of direct spte is stable since it is
3486 * calculated by sp->gfn.
3487 */
3488 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3489 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3490 }
3491
3492 return true;
3493 }
3494
3495 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3496 {
3497 if (fault_err_code & PFERR_FETCH_MASK)
3498 return is_executable_pte(spte);
3499
3500 if (fault_err_code & PFERR_WRITE_MASK)
3501 return is_writable_pte(spte);
3502
3503 /* Fault was on Read access */
3504 return spte & PT_PRESENT_MASK;
3505 }
3506
3507 /*
3508 * Return value:
3509 * - true: let the vcpu to access on the same address again.
3510 * - false: let the real page fault path to fix it.
3511 */
3512 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3513 u32 error_code)
3514 {
3515 struct kvm_shadow_walk_iterator iterator;
3516 struct kvm_mmu_page *sp;
3517 bool fault_handled = false;
3518 u64 spte = 0ull;
3519 uint retry_count = 0;
3520
3521 if (!page_fault_can_be_fast(error_code))
3522 return false;
3523
3524 walk_shadow_page_lockless_begin(vcpu);
3525
3526 do {
3527 u64 new_spte;
3528
3529 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3530 if (!is_shadow_present_pte(spte))
3531 break;
3532
3533 sp = page_header(__pa(iterator.sptep));
3534 if (!is_last_spte(spte, sp->role.level))
3535 break;
3536
3537 /*
3538 * Check whether the memory access that caused the fault would
3539 * still cause it if it were to be performed right now. If not,
3540 * then this is a spurious fault caused by TLB lazily flushed,
3541 * or some other CPU has already fixed the PTE after the
3542 * current CPU took the fault.
3543 *
3544 * Need not check the access of upper level table entries since
3545 * they are always ACC_ALL.
3546 */
3547 if (is_access_allowed(error_code, spte)) {
3548 fault_handled = true;
3549 break;
3550 }
3551
3552 new_spte = spte;
3553
3554 if (is_access_track_spte(spte))
3555 new_spte = restore_acc_track_spte(new_spte);
3556
3557 /*
3558 * Currently, to simplify the code, write-protection can
3559 * be removed in the fast path only if the SPTE was
3560 * write-protected for dirty-logging or access tracking.
3561 */
3562 if ((error_code & PFERR_WRITE_MASK) &&
3563 spte_can_locklessly_be_made_writable(spte)) {
3564 new_spte |= PT_WRITABLE_MASK;
3565
3566 /*
3567 * Do not fix write-permission on the large spte. Since
3568 * we only dirty the first page into the dirty-bitmap in
3569 * fast_pf_fix_direct_spte(), other pages are missed
3570 * if its slot has dirty logging enabled.
3571 *
3572 * Instead, we let the slow page fault path create a
3573 * normal spte to fix the access.
3574 *
3575 * See the comments in kvm_arch_commit_memory_region().
3576 */
3577 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3578 break;
3579 }
3580
3581 /* Verify that the fault can be handled in the fast path */
3582 if (new_spte == spte ||
3583 !is_access_allowed(error_code, new_spte))
3584 break;
3585
3586 /*
3587 * Currently, fast page fault only works for direct mapping
3588 * since the gfn is not stable for indirect shadow page. See
3589 * Documentation/virt/kvm/locking.rst to get more detail.
3590 */
3591 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3592 iterator.sptep, spte,
3593 new_spte);
3594 if (fault_handled)
3595 break;
3596
3597 if (++retry_count > 4) {
3598 printk_once(KERN_WARNING
3599 "kvm: Fast #PF retrying more than 4 times.\n");
3600 break;
3601 }
3602
3603 } while (true);
3604
3605 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3606 spte, fault_handled);
3607 walk_shadow_page_lockless_end(vcpu);
3608
3609 return fault_handled;
3610 }
3611
3612 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3613 struct list_head *invalid_list)
3614 {
3615 struct kvm_mmu_page *sp;
3616
3617 if (!VALID_PAGE(*root_hpa))
3618 return;
3619
3620 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3621 --sp->root_count;
3622 if (!sp->root_count && sp->role.invalid)
3623 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3624
3625 *root_hpa = INVALID_PAGE;
3626 }
3627
3628 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3629 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3630 ulong roots_to_free)
3631 {
3632 int i;
3633 LIST_HEAD(invalid_list);
3634 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3635
3636 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3637
3638 /* Before acquiring the MMU lock, see if we need to do any real work. */
3639 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3640 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3641 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3642 VALID_PAGE(mmu->prev_roots[i].hpa))
3643 break;
3644
3645 if (i == KVM_MMU_NUM_PREV_ROOTS)
3646 return;
3647 }
3648
3649 spin_lock(&vcpu->kvm->mmu_lock);
3650
3651 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3652 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3653 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3654 &invalid_list);
3655
3656 if (free_active_root) {
3657 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3658 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3659 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3660 &invalid_list);
3661 } else {
3662 for (i = 0; i < 4; ++i)
3663 if (mmu->pae_root[i] != 0)
3664 mmu_free_root_page(vcpu->kvm,
3665 &mmu->pae_root[i],
3666 &invalid_list);
3667 mmu->root_hpa = INVALID_PAGE;
3668 }
3669 mmu->root_cr3 = 0;
3670 }
3671
3672 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3673 spin_unlock(&vcpu->kvm->mmu_lock);
3674 }
3675 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3676
3677 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3678 {
3679 int ret = 0;
3680
3681 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3682 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3683 ret = 1;
3684 }
3685
3686 return ret;
3687 }
3688
3689 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3690 {
3691 struct kvm_mmu_page *sp;
3692 unsigned i;
3693
3694 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3695 spin_lock(&vcpu->kvm->mmu_lock);
3696 if(make_mmu_pages_available(vcpu) < 0) {
3697 spin_unlock(&vcpu->kvm->mmu_lock);
3698 return -ENOSPC;
3699 }
3700 sp = kvm_mmu_get_page(vcpu, 0, 0,
3701 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3702 ++sp->root_count;
3703 spin_unlock(&vcpu->kvm->mmu_lock);
3704 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3705 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3706 for (i = 0; i < 4; ++i) {
3707 hpa_t root = vcpu->arch.mmu->pae_root[i];
3708
3709 MMU_WARN_ON(VALID_PAGE(root));
3710 spin_lock(&vcpu->kvm->mmu_lock);
3711 if (make_mmu_pages_available(vcpu) < 0) {
3712 spin_unlock(&vcpu->kvm->mmu_lock);
3713 return -ENOSPC;
3714 }
3715 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3716 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3717 root = __pa(sp->spt);
3718 ++sp->root_count;
3719 spin_unlock(&vcpu->kvm->mmu_lock);
3720 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3721 }
3722 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3723 } else
3724 BUG();
3725
3726 /* root_cr3 is ignored for direct MMUs. */
3727 vcpu->arch.mmu->root_cr3 = 0;
3728
3729 return 0;
3730 }
3731
3732 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3733 {
3734 struct kvm_mmu_page *sp;
3735 u64 pdptr, pm_mask;
3736 gfn_t root_gfn, root_cr3;
3737 int i;
3738
3739 root_cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3740 root_gfn = root_cr3 >> PAGE_SHIFT;
3741
3742 if (mmu_check_root(vcpu, root_gfn))
3743 return 1;
3744
3745 /*
3746 * Do we shadow a long mode page table? If so we need to
3747 * write-protect the guests page table root.
3748 */
3749 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3750 hpa_t root = vcpu->arch.mmu->root_hpa;
3751
3752 MMU_WARN_ON(VALID_PAGE(root));
3753
3754 spin_lock(&vcpu->kvm->mmu_lock);
3755 if (make_mmu_pages_available(vcpu) < 0) {
3756 spin_unlock(&vcpu->kvm->mmu_lock);
3757 return -ENOSPC;
3758 }
3759 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3760 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3761 root = __pa(sp->spt);
3762 ++sp->root_count;
3763 spin_unlock(&vcpu->kvm->mmu_lock);
3764 vcpu->arch.mmu->root_hpa = root;
3765 goto set_root_cr3;
3766 }
3767
3768 /*
3769 * We shadow a 32 bit page table. This may be a legacy 2-level
3770 * or a PAE 3-level page table. In either case we need to be aware that
3771 * the shadow page table may be a PAE or a long mode page table.
3772 */
3773 pm_mask = PT_PRESENT_MASK;
3774 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3775 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3776
3777 for (i = 0; i < 4; ++i) {
3778 hpa_t root = vcpu->arch.mmu->pae_root[i];
3779
3780 MMU_WARN_ON(VALID_PAGE(root));
3781 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3782 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3783 if (!(pdptr & PT_PRESENT_MASK)) {
3784 vcpu->arch.mmu->pae_root[i] = 0;
3785 continue;
3786 }
3787 root_gfn = pdptr >> PAGE_SHIFT;
3788 if (mmu_check_root(vcpu, root_gfn))
3789 return 1;
3790 }
3791 spin_lock(&vcpu->kvm->mmu_lock);
3792 if (make_mmu_pages_available(vcpu) < 0) {
3793 spin_unlock(&vcpu->kvm->mmu_lock);
3794 return -ENOSPC;
3795 }
3796 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3797 0, ACC_ALL);
3798 root = __pa(sp->spt);
3799 ++sp->root_count;
3800 spin_unlock(&vcpu->kvm->mmu_lock);
3801
3802 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3803 }
3804 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3805
3806 /*
3807 * If we shadow a 32 bit page table with a long mode page
3808 * table we enter this path.
3809 */
3810 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3811 if (vcpu->arch.mmu->lm_root == NULL) {
3812 /*
3813 * The additional page necessary for this is only
3814 * allocated on demand.
3815 */
3816
3817 u64 *lm_root;
3818
3819 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3820 if (lm_root == NULL)
3821 return 1;
3822
3823 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3824
3825 vcpu->arch.mmu->lm_root = lm_root;
3826 }
3827
3828 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3829 }
3830
3831 set_root_cr3:
3832 vcpu->arch.mmu->root_cr3 = root_cr3;
3833
3834 return 0;
3835 }
3836
3837 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3838 {
3839 if (vcpu->arch.mmu->direct_map)
3840 return mmu_alloc_direct_roots(vcpu);
3841 else
3842 return mmu_alloc_shadow_roots(vcpu);
3843 }
3844
3845 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3846 {
3847 int i;
3848 struct kvm_mmu_page *sp;
3849
3850 if (vcpu->arch.mmu->direct_map)
3851 return;
3852
3853 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3854 return;
3855
3856 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3857
3858 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3859 hpa_t root = vcpu->arch.mmu->root_hpa;
3860 sp = page_header(root);
3861
3862 /*
3863 * Even if another CPU was marking the SP as unsync-ed
3864 * simultaneously, any guest page table changes are not
3865 * guaranteed to be visible anyway until this VCPU issues a TLB
3866 * flush strictly after those changes are made. We only need to
3867 * ensure that the other CPU sets these flags before any actual
3868 * changes to the page tables are made. The comments in
3869 * mmu_need_write_protect() describe what could go wrong if this
3870 * requirement isn't satisfied.
3871 */
3872 if (!smp_load_acquire(&sp->unsync) &&
3873 !smp_load_acquire(&sp->unsync_children))
3874 return;
3875
3876 spin_lock(&vcpu->kvm->mmu_lock);
3877 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3878
3879 mmu_sync_children(vcpu, sp);
3880
3881 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3882 spin_unlock(&vcpu->kvm->mmu_lock);
3883 return;
3884 }
3885
3886 spin_lock(&vcpu->kvm->mmu_lock);
3887 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3888
3889 for (i = 0; i < 4; ++i) {
3890 hpa_t root = vcpu->arch.mmu->pae_root[i];
3891
3892 if (root && VALID_PAGE(root)) {
3893 root &= PT64_BASE_ADDR_MASK;
3894 sp = page_header(root);
3895 mmu_sync_children(vcpu, sp);
3896 }
3897 }
3898
3899 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3900 spin_unlock(&vcpu->kvm->mmu_lock);
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3903
3904 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3905 u32 access, struct x86_exception *exception)
3906 {
3907 if (exception)
3908 exception->error_code = 0;
3909 return vaddr;
3910 }
3911
3912 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3913 u32 access,
3914 struct x86_exception *exception)
3915 {
3916 if (exception)
3917 exception->error_code = 0;
3918 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3919 }
3920
3921 static bool
3922 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3923 {
3924 int bit7 = (pte >> 7) & 1;
3925
3926 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3927 }
3928
3929 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3930 {
3931 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3932 }
3933
3934 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3935 {
3936 /*
3937 * A nested guest cannot use the MMIO cache if it is using nested
3938 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3939 */
3940 if (mmu_is_nested(vcpu))
3941 return false;
3942
3943 if (direct)
3944 return vcpu_match_mmio_gpa(vcpu, addr);
3945
3946 return vcpu_match_mmio_gva(vcpu, addr);
3947 }
3948
3949 /* return true if reserved bit is detected on spte. */
3950 static bool
3951 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3952 {
3953 struct kvm_shadow_walk_iterator iterator;
3954 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3955 struct rsvd_bits_validate *rsvd_check;
3956 int root, leaf;
3957 bool reserved = false;
3958
3959 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3960
3961 walk_shadow_page_lockless_begin(vcpu);
3962
3963 for (shadow_walk_init(&iterator, vcpu, addr),
3964 leaf = root = iterator.level;
3965 shadow_walk_okay(&iterator);
3966 __shadow_walk_next(&iterator, spte)) {
3967 spte = mmu_spte_get_lockless(iterator.sptep);
3968
3969 sptes[leaf - 1] = spte;
3970 leaf--;
3971
3972 if (!is_shadow_present_pte(spte))
3973 break;
3974
3975 /*
3976 * Use a bitwise-OR instead of a logical-OR to aggregate the
3977 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3978 * adding a Jcc in the loop.
3979 */
3980 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3981 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3982 }
3983
3984 walk_shadow_page_lockless_end(vcpu);
3985
3986 if (reserved) {
3987 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3988 __func__, addr);
3989 while (root > leaf) {
3990 pr_err("------ spte 0x%llx level %d.\n",
3991 sptes[root - 1], root);
3992 root--;
3993 }
3994 }
3995
3996 *sptep = spte;
3997 return reserved;
3998 }
3999
4000 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4001 {
4002 u64 spte;
4003 bool reserved;
4004
4005 if (mmio_info_in_cache(vcpu, addr, direct))
4006 return RET_PF_EMULATE;
4007
4008 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4009 if (WARN_ON(reserved))
4010 return -EINVAL;
4011
4012 if (is_mmio_spte(spte)) {
4013 gfn_t gfn = get_mmio_spte_gfn(spte);
4014 unsigned int access = get_mmio_spte_access(spte);
4015
4016 if (!check_mmio_spte(vcpu, spte))
4017 return RET_PF_INVALID;
4018
4019 if (direct)
4020 addr = 0;
4021
4022 trace_handle_mmio_page_fault(addr, gfn, access);
4023 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4024 return RET_PF_EMULATE;
4025 }
4026
4027 /*
4028 * If the page table is zapped by other cpus, let CPU fault again on
4029 * the address.
4030 */
4031 return RET_PF_RETRY;
4032 }
4033
4034 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4035 u32 error_code, gfn_t gfn)
4036 {
4037 if (unlikely(error_code & PFERR_RSVD_MASK))
4038 return false;
4039
4040 if (!(error_code & PFERR_PRESENT_MASK) ||
4041 !(error_code & PFERR_WRITE_MASK))
4042 return false;
4043
4044 /*
4045 * guest is writing the page which is write tracked which can
4046 * not be fixed by page fault handler.
4047 */
4048 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4049 return true;
4050
4051 return false;
4052 }
4053
4054 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4055 {
4056 struct kvm_shadow_walk_iterator iterator;
4057 u64 spte;
4058
4059 walk_shadow_page_lockless_begin(vcpu);
4060 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4061 clear_sp_write_flooding_count(iterator.sptep);
4062 if (!is_shadow_present_pte(spte))
4063 break;
4064 }
4065 walk_shadow_page_lockless_end(vcpu);
4066 }
4067
4068 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4069 gfn_t gfn)
4070 {
4071 struct kvm_arch_async_pf arch;
4072
4073 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4074 arch.gfn = gfn;
4075 arch.direct_map = vcpu->arch.mmu->direct_map;
4076 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4077
4078 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4079 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4080 }
4081
4082 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4083 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4084 bool *writable)
4085 {
4086 struct kvm_memory_slot *slot;
4087 bool async;
4088
4089 /*
4090 * Don't expose private memslots to L2.
4091 */
4092 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4093 *pfn = KVM_PFN_NOSLOT;
4094 return false;
4095 }
4096
4097 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4098 async = false;
4099 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4100 if (!async)
4101 return false; /* *pfn has correct page already */
4102
4103 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4104 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4105 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4106 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4107 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4108 return true;
4109 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4110 return true;
4111 }
4112
4113 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4114 return false;
4115 }
4116
4117 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4118 bool prefault, int max_level, bool is_tdp)
4119 {
4120 bool write = error_code & PFERR_WRITE_MASK;
4121 bool exec = error_code & PFERR_FETCH_MASK;
4122 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4123 bool map_writable;
4124
4125 gfn_t gfn = gpa >> PAGE_SHIFT;
4126 unsigned long mmu_seq;
4127 kvm_pfn_t pfn;
4128 int r;
4129
4130 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4131 return RET_PF_EMULATE;
4132
4133 r = mmu_topup_memory_caches(vcpu);
4134 if (r)
4135 return r;
4136
4137 if (lpage_disallowed)
4138 max_level = PT_PAGE_TABLE_LEVEL;
4139
4140 if (fast_page_fault(vcpu, gpa, error_code))
4141 return RET_PF_RETRY;
4142
4143 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4144 smp_rmb();
4145
4146 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4147 return RET_PF_RETRY;
4148
4149 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4150 return r;
4151
4152 r = RET_PF_RETRY;
4153 spin_lock(&vcpu->kvm->mmu_lock);
4154 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4155 goto out_unlock;
4156 if (make_mmu_pages_available(vcpu) < 0)
4157 goto out_unlock;
4158 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4159 prefault, is_tdp && lpage_disallowed);
4160
4161 out_unlock:
4162 spin_unlock(&vcpu->kvm->mmu_lock);
4163 kvm_release_pfn_clean(pfn);
4164 return r;
4165 }
4166
4167 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4168 u32 error_code, bool prefault)
4169 {
4170 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4171
4172 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4173 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4174 PT_DIRECTORY_LEVEL, false);
4175 }
4176
4177 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4178 u64 fault_address, char *insn, int insn_len)
4179 {
4180 int r = 1;
4181
4182 #ifndef CONFIG_X86_64
4183 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4184 if (WARN_ON_ONCE(fault_address >> 32))
4185 return -EFAULT;
4186 #endif
4187
4188 vcpu->arch.l1tf_flush_l1d = true;
4189 switch (vcpu->arch.apf.host_apf_reason) {
4190 default:
4191 trace_kvm_page_fault(fault_address, error_code);
4192
4193 if (kvm_event_needs_reinjection(vcpu))
4194 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4195 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4196 insn_len);
4197 break;
4198 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4199 vcpu->arch.apf.host_apf_reason = 0;
4200 local_irq_disable();
4201 kvm_async_pf_task_wait(fault_address, 0);
4202 local_irq_enable();
4203 break;
4204 case KVM_PV_REASON_PAGE_READY:
4205 vcpu->arch.apf.host_apf_reason = 0;
4206 local_irq_disable();
4207 kvm_async_pf_task_wake(fault_address);
4208 local_irq_enable();
4209 break;
4210 }
4211 return r;
4212 }
4213 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4214
4215 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4216 bool prefault)
4217 {
4218 int max_level;
4219
4220 for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4221 max_level > PT_PAGE_TABLE_LEVEL;
4222 max_level--) {
4223 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4224 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4225
4226 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4227 break;
4228 }
4229
4230 return direct_page_fault(vcpu, gpa, error_code, prefault,
4231 max_level, true);
4232 }
4233
4234 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4235 struct kvm_mmu *context)
4236 {
4237 context->page_fault = nonpaging_page_fault;
4238 context->gva_to_gpa = nonpaging_gva_to_gpa;
4239 context->sync_page = nonpaging_sync_page;
4240 context->invlpg = nonpaging_invlpg;
4241 context->update_pte = nonpaging_update_pte;
4242 context->root_level = 0;
4243 context->shadow_root_level = PT32E_ROOT_LEVEL;
4244 context->direct_map = true;
4245 context->nx = false;
4246 }
4247
4248 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
4249 union kvm_mmu_page_role role)
4250 {
4251 return (role.direct || cr3 == root->cr3) &&
4252 VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4253 role.word == page_header(root->hpa)->role.word;
4254 }
4255
4256 /*
4257 * Find out if a previously cached root matching the new CR3/role is available.
4258 * The current root is also inserted into the cache.
4259 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4260 * returned.
4261 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4262 * false is returned. This root should now be freed by the caller.
4263 */
4264 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4265 union kvm_mmu_page_role new_role)
4266 {
4267 uint i;
4268 struct kvm_mmu_root_info root;
4269 struct kvm_mmu *mmu = vcpu->arch.mmu;
4270
4271 root.cr3 = mmu->root_cr3;
4272 root.hpa = mmu->root_hpa;
4273
4274 if (is_root_usable(&root, new_cr3, new_role))
4275 return true;
4276
4277 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4278 swap(root, mmu->prev_roots[i]);
4279
4280 if (is_root_usable(&root, new_cr3, new_role))
4281 break;
4282 }
4283
4284 mmu->root_hpa = root.hpa;
4285 mmu->root_cr3 = root.cr3;
4286
4287 return i < KVM_MMU_NUM_PREV_ROOTS;
4288 }
4289
4290 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4291 union kvm_mmu_page_role new_role,
4292 bool skip_tlb_flush)
4293 {
4294 struct kvm_mmu *mmu = vcpu->arch.mmu;
4295
4296 /*
4297 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4298 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4299 * later if necessary.
4300 */
4301 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4302 mmu->root_level >= PT64_ROOT_4LEVEL) {
4303 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4304 return false;
4305
4306 if (cached_root_available(vcpu, new_cr3, new_role)) {
4307 /*
4308 * It is possible that the cached previous root page is
4309 * obsolete because of a change in the MMU generation
4310 * number. However, changing the generation number is
4311 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4312 * the root set here and allocate a new one.
4313 */
4314 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4315 if (!skip_tlb_flush) {
4316 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4317 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4318 }
4319
4320 /*
4321 * The last MMIO access's GVA and GPA are cached in the
4322 * VCPU. When switching to a new CR3, that GVA->GPA
4323 * mapping may no longer be valid. So clear any cached
4324 * MMIO info even when we don't need to sync the shadow
4325 * page tables.
4326 */
4327 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4328
4329 __clear_sp_write_flooding_count(
4330 page_header(mmu->root_hpa));
4331
4332 return true;
4333 }
4334 }
4335
4336 return false;
4337 }
4338
4339 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4340 union kvm_mmu_page_role new_role,
4341 bool skip_tlb_flush)
4342 {
4343 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4344 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4345 KVM_MMU_ROOT_CURRENT);
4346 }
4347
4348 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4349 {
4350 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4351 skip_tlb_flush);
4352 }
4353 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4354
4355 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4356 {
4357 return kvm_read_cr3(vcpu);
4358 }
4359
4360 static void inject_page_fault(struct kvm_vcpu *vcpu,
4361 struct x86_exception *fault)
4362 {
4363 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4364 }
4365
4366 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4367 unsigned int access, int *nr_present)
4368 {
4369 if (unlikely(is_mmio_spte(*sptep))) {
4370 if (gfn != get_mmio_spte_gfn(*sptep)) {
4371 mmu_spte_clear_no_track(sptep);
4372 return true;
4373 }
4374
4375 (*nr_present)++;
4376 mark_mmio_spte(vcpu, sptep, gfn, access);
4377 return true;
4378 }
4379
4380 return false;
4381 }
4382
4383 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4384 unsigned level, unsigned gpte)
4385 {
4386 /*
4387 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4388 * If it is clear, there are no large pages at this level, so clear
4389 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4390 */
4391 gpte &= level - mmu->last_nonleaf_level;
4392
4393 /*
4394 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4395 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4396 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4397 */
4398 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4399
4400 return gpte & PT_PAGE_SIZE_MASK;
4401 }
4402
4403 #define PTTYPE_EPT 18 /* arbitrary */
4404 #define PTTYPE PTTYPE_EPT
4405 #include "paging_tmpl.h"
4406 #undef PTTYPE
4407
4408 #define PTTYPE 64
4409 #include "paging_tmpl.h"
4410 #undef PTTYPE
4411
4412 #define PTTYPE 32
4413 #include "paging_tmpl.h"
4414 #undef PTTYPE
4415
4416 static void
4417 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4418 struct rsvd_bits_validate *rsvd_check,
4419 int maxphyaddr, int level, bool nx, bool gbpages,
4420 bool pse, bool amd)
4421 {
4422 u64 exb_bit_rsvd = 0;
4423 u64 gbpages_bit_rsvd = 0;
4424 u64 nonleaf_bit8_rsvd = 0;
4425
4426 rsvd_check->bad_mt_xwr = 0;
4427
4428 if (!nx)
4429 exb_bit_rsvd = rsvd_bits(63, 63);
4430 if (!gbpages)
4431 gbpages_bit_rsvd = rsvd_bits(7, 7);
4432
4433 /*
4434 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4435 * leaf entries) on AMD CPUs only.
4436 */
4437 if (amd)
4438 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4439
4440 switch (level) {
4441 case PT32_ROOT_LEVEL:
4442 /* no rsvd bits for 2 level 4K page table entries */
4443 rsvd_check->rsvd_bits_mask[0][1] = 0;
4444 rsvd_check->rsvd_bits_mask[0][0] = 0;
4445 rsvd_check->rsvd_bits_mask[1][0] =
4446 rsvd_check->rsvd_bits_mask[0][0];
4447
4448 if (!pse) {
4449 rsvd_check->rsvd_bits_mask[1][1] = 0;
4450 break;
4451 }
4452
4453 if (is_cpuid_PSE36())
4454 /* 36bits PSE 4MB page */
4455 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4456 else
4457 /* 32 bits PSE 4MB page */
4458 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4459 break;
4460 case PT32E_ROOT_LEVEL:
4461 rsvd_check->rsvd_bits_mask[0][2] =
4462 rsvd_bits(maxphyaddr, 63) |
4463 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4464 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4465 rsvd_bits(maxphyaddr, 62); /* PDE */
4466 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4467 rsvd_bits(maxphyaddr, 62); /* PTE */
4468 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4469 rsvd_bits(maxphyaddr, 62) |
4470 rsvd_bits(13, 20); /* large page */
4471 rsvd_check->rsvd_bits_mask[1][0] =
4472 rsvd_check->rsvd_bits_mask[0][0];
4473 break;
4474 case PT64_ROOT_5LEVEL:
4475 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4476 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4477 rsvd_bits(maxphyaddr, 51);
4478 rsvd_check->rsvd_bits_mask[1][4] =
4479 rsvd_check->rsvd_bits_mask[0][4];
4480 /* fall through */
4481 case PT64_ROOT_4LEVEL:
4482 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4483 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4484 rsvd_bits(maxphyaddr, 51);
4485 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4486 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4487 rsvd_bits(maxphyaddr, 51);
4488 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4489 rsvd_bits(maxphyaddr, 51);
4490 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4491 rsvd_bits(maxphyaddr, 51);
4492 rsvd_check->rsvd_bits_mask[1][3] =
4493 rsvd_check->rsvd_bits_mask[0][3];
4494 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4495 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4496 rsvd_bits(13, 29);
4497 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4498 rsvd_bits(maxphyaddr, 51) |
4499 rsvd_bits(13, 20); /* large page */
4500 rsvd_check->rsvd_bits_mask[1][0] =
4501 rsvd_check->rsvd_bits_mask[0][0];
4502 break;
4503 }
4504 }
4505
4506 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4507 struct kvm_mmu *context)
4508 {
4509 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4510 cpuid_maxphyaddr(vcpu), context->root_level,
4511 context->nx,
4512 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4513 is_pse(vcpu),
4514 guest_cpuid_is_amd_or_hygon(vcpu));
4515 }
4516
4517 static void
4518 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4519 int maxphyaddr, bool execonly)
4520 {
4521 u64 bad_mt_xwr;
4522
4523 rsvd_check->rsvd_bits_mask[0][4] =
4524 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4525 rsvd_check->rsvd_bits_mask[0][3] =
4526 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4527 rsvd_check->rsvd_bits_mask[0][2] =
4528 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4529 rsvd_check->rsvd_bits_mask[0][1] =
4530 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4531 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4532
4533 /* large page */
4534 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4535 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4536 rsvd_check->rsvd_bits_mask[1][2] =
4537 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4538 rsvd_check->rsvd_bits_mask[1][1] =
4539 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4540 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4541
4542 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4543 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4544 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4545 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4546 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4547 if (!execonly) {
4548 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4549 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4550 }
4551 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4552 }
4553
4554 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4555 struct kvm_mmu *context, bool execonly)
4556 {
4557 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4558 cpuid_maxphyaddr(vcpu), execonly);
4559 }
4560
4561 /*
4562 * the page table on host is the shadow page table for the page
4563 * table in guest or amd nested guest, its mmu features completely
4564 * follow the features in guest.
4565 */
4566 void
4567 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4568 {
4569 bool uses_nx = context->nx ||
4570 context->mmu_role.base.smep_andnot_wp;
4571 struct rsvd_bits_validate *shadow_zero_check;
4572 int i;
4573
4574 /*
4575 * Passing "true" to the last argument is okay; it adds a check
4576 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4577 */
4578 shadow_zero_check = &context->shadow_zero_check;
4579 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4580 shadow_phys_bits,
4581 context->shadow_root_level, uses_nx,
4582 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4583 is_pse(vcpu), true);
4584
4585 if (!shadow_me_mask)
4586 return;
4587
4588 for (i = context->shadow_root_level; --i >= 0;) {
4589 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4590 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4591 }
4592
4593 }
4594 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4595
4596 static inline bool boot_cpu_is_amd(void)
4597 {
4598 WARN_ON_ONCE(!tdp_enabled);
4599 return shadow_x_mask == 0;
4600 }
4601
4602 /*
4603 * the direct page table on host, use as much mmu features as
4604 * possible, however, kvm currently does not do execution-protection.
4605 */
4606 static void
4607 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4608 struct kvm_mmu *context)
4609 {
4610 struct rsvd_bits_validate *shadow_zero_check;
4611 int i;
4612
4613 shadow_zero_check = &context->shadow_zero_check;
4614
4615 if (boot_cpu_is_amd())
4616 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4617 shadow_phys_bits,
4618 context->shadow_root_level, false,
4619 boot_cpu_has(X86_FEATURE_GBPAGES),
4620 true, true);
4621 else
4622 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4623 shadow_phys_bits,
4624 false);
4625
4626 if (!shadow_me_mask)
4627 return;
4628
4629 for (i = context->shadow_root_level; --i >= 0;) {
4630 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4631 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4632 }
4633 }
4634
4635 /*
4636 * as the comments in reset_shadow_zero_bits_mask() except it
4637 * is the shadow page table for intel nested guest.
4638 */
4639 static void
4640 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4641 struct kvm_mmu *context, bool execonly)
4642 {
4643 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4644 shadow_phys_bits, execonly);
4645 }
4646
4647 #define BYTE_MASK(access) \
4648 ((1 & (access) ? 2 : 0) | \
4649 (2 & (access) ? 4 : 0) | \
4650 (3 & (access) ? 8 : 0) | \
4651 (4 & (access) ? 16 : 0) | \
4652 (5 & (access) ? 32 : 0) | \
4653 (6 & (access) ? 64 : 0) | \
4654 (7 & (access) ? 128 : 0))
4655
4656
4657 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4658 struct kvm_mmu *mmu, bool ept)
4659 {
4660 unsigned byte;
4661
4662 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4663 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4664 const u8 u = BYTE_MASK(ACC_USER_MASK);
4665
4666 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4667 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4668 bool cr0_wp = is_write_protection(vcpu);
4669
4670 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4671 unsigned pfec = byte << 1;
4672
4673 /*
4674 * Each "*f" variable has a 1 bit for each UWX value
4675 * that causes a fault with the given PFEC.
4676 */
4677
4678 /* Faults from writes to non-writable pages */
4679 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4680 /* Faults from user mode accesses to supervisor pages */
4681 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4682 /* Faults from fetches of non-executable pages*/
4683 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4684 /* Faults from kernel mode fetches of user pages */
4685 u8 smepf = 0;
4686 /* Faults from kernel mode accesses of user pages */
4687 u8 smapf = 0;
4688
4689 if (!ept) {
4690 /* Faults from kernel mode accesses to user pages */
4691 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4692
4693 /* Not really needed: !nx will cause pte.nx to fault */
4694 if (!mmu->nx)
4695 ff = 0;
4696
4697 /* Allow supervisor writes if !cr0.wp */
4698 if (!cr0_wp)
4699 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4700
4701 /* Disallow supervisor fetches of user code if cr4.smep */
4702 if (cr4_smep)
4703 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4704
4705 /*
4706 * SMAP:kernel-mode data accesses from user-mode
4707 * mappings should fault. A fault is considered
4708 * as a SMAP violation if all of the following
4709 * conditions are true:
4710 * - X86_CR4_SMAP is set in CR4
4711 * - A user page is accessed
4712 * - The access is not a fetch
4713 * - Page fault in kernel mode
4714 * - if CPL = 3 or X86_EFLAGS_AC is clear
4715 *
4716 * Here, we cover the first three conditions.
4717 * The fourth is computed dynamically in permission_fault();
4718 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4719 * *not* subject to SMAP restrictions.
4720 */
4721 if (cr4_smap)
4722 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4723 }
4724
4725 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4726 }
4727 }
4728
4729 /*
4730 * PKU is an additional mechanism by which the paging controls access to
4731 * user-mode addresses based on the value in the PKRU register. Protection
4732 * key violations are reported through a bit in the page fault error code.
4733 * Unlike other bits of the error code, the PK bit is not known at the
4734 * call site of e.g. gva_to_gpa; it must be computed directly in
4735 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4736 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4737 *
4738 * In particular the following conditions come from the error code, the
4739 * page tables and the machine state:
4740 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4741 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4742 * - PK is always zero if U=0 in the page tables
4743 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4744 *
4745 * The PKRU bitmask caches the result of these four conditions. The error
4746 * code (minus the P bit) and the page table's U bit form an index into the
4747 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4748 * with the two bits of the PKRU register corresponding to the protection key.
4749 * For the first three conditions above the bits will be 00, thus masking
4750 * away both AD and WD. For all reads or if the last condition holds, WD
4751 * only will be masked away.
4752 */
4753 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4754 bool ept)
4755 {
4756 unsigned bit;
4757 bool wp;
4758
4759 if (ept) {
4760 mmu->pkru_mask = 0;
4761 return;
4762 }
4763
4764 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4765 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4766 mmu->pkru_mask = 0;
4767 return;
4768 }
4769
4770 wp = is_write_protection(vcpu);
4771
4772 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4773 unsigned pfec, pkey_bits;
4774 bool check_pkey, check_write, ff, uf, wf, pte_user;
4775
4776 pfec = bit << 1;
4777 ff = pfec & PFERR_FETCH_MASK;
4778 uf = pfec & PFERR_USER_MASK;
4779 wf = pfec & PFERR_WRITE_MASK;
4780
4781 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4782 pte_user = pfec & PFERR_RSVD_MASK;
4783
4784 /*
4785 * Only need to check the access which is not an
4786 * instruction fetch and is to a user page.
4787 */
4788 check_pkey = (!ff && pte_user);
4789 /*
4790 * write access is controlled by PKRU if it is a
4791 * user access or CR0.WP = 1.
4792 */
4793 check_write = check_pkey && wf && (uf || wp);
4794
4795 /* PKRU.AD stops both read and write access. */
4796 pkey_bits = !!check_pkey;
4797 /* PKRU.WD stops write access. */
4798 pkey_bits |= (!!check_write) << 1;
4799
4800 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4801 }
4802 }
4803
4804 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4805 {
4806 unsigned root_level = mmu->root_level;
4807
4808 mmu->last_nonleaf_level = root_level;
4809 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4810 mmu->last_nonleaf_level++;
4811 }
4812
4813 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4814 struct kvm_mmu *context,
4815 int level)
4816 {
4817 context->nx = is_nx(vcpu);
4818 context->root_level = level;
4819
4820 reset_rsvds_bits_mask(vcpu, context);
4821 update_permission_bitmask(vcpu, context, false);
4822 update_pkru_bitmask(vcpu, context, false);
4823 update_last_nonleaf_level(vcpu, context);
4824
4825 MMU_WARN_ON(!is_pae(vcpu));
4826 context->page_fault = paging64_page_fault;
4827 context->gva_to_gpa = paging64_gva_to_gpa;
4828 context->sync_page = paging64_sync_page;
4829 context->invlpg = paging64_invlpg;
4830 context->update_pte = paging64_update_pte;
4831 context->shadow_root_level = level;
4832 context->direct_map = false;
4833 }
4834
4835 static void paging64_init_context(struct kvm_vcpu *vcpu,
4836 struct kvm_mmu *context)
4837 {
4838 int root_level = is_la57_mode(vcpu) ?
4839 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4840
4841 paging64_init_context_common(vcpu, context, root_level);
4842 }
4843
4844 static void paging32_init_context(struct kvm_vcpu *vcpu,
4845 struct kvm_mmu *context)
4846 {
4847 context->nx = false;
4848 context->root_level = PT32_ROOT_LEVEL;
4849
4850 reset_rsvds_bits_mask(vcpu, context);
4851 update_permission_bitmask(vcpu, context, false);
4852 update_pkru_bitmask(vcpu, context, false);
4853 update_last_nonleaf_level(vcpu, context);
4854
4855 context->page_fault = paging32_page_fault;
4856 context->gva_to_gpa = paging32_gva_to_gpa;
4857 context->sync_page = paging32_sync_page;
4858 context->invlpg = paging32_invlpg;
4859 context->update_pte = paging32_update_pte;
4860 context->shadow_root_level = PT32E_ROOT_LEVEL;
4861 context->direct_map = false;
4862 }
4863
4864 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4865 struct kvm_mmu *context)
4866 {
4867 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4868 }
4869
4870 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4871 {
4872 union kvm_mmu_extended_role ext = {0};
4873
4874 ext.cr0_pg = !!is_paging(vcpu);
4875 ext.cr4_pae = !!is_pae(vcpu);
4876 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4877 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4878 ext.cr4_pse = !!is_pse(vcpu);
4879 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4880 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4881
4882 ext.valid = 1;
4883
4884 return ext;
4885 }
4886
4887 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4888 bool base_only)
4889 {
4890 union kvm_mmu_role role = {0};
4891
4892 role.base.access = ACC_ALL;
4893 role.base.nxe = !!is_nx(vcpu);
4894 role.base.cr0_wp = is_write_protection(vcpu);
4895 role.base.smm = is_smm(vcpu);
4896 role.base.guest_mode = is_guest_mode(vcpu);
4897
4898 if (base_only)
4899 return role;
4900
4901 role.ext = kvm_calc_mmu_role_ext(vcpu);
4902
4903 return role;
4904 }
4905
4906 static union kvm_mmu_role
4907 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4908 {
4909 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4910
4911 role.base.ad_disabled = (shadow_accessed_mask == 0);
4912 role.base.level = kvm_x86_ops.get_tdp_level(vcpu);
4913 role.base.direct = true;
4914 role.base.gpte_is_8_bytes = true;
4915
4916 return role;
4917 }
4918
4919 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4920 {
4921 struct kvm_mmu *context = vcpu->arch.mmu;
4922 union kvm_mmu_role new_role =
4923 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4924
4925 if (new_role.as_u64 == context->mmu_role.as_u64)
4926 return;
4927
4928 context->mmu_role.as_u64 = new_role.as_u64;
4929 context->page_fault = kvm_tdp_page_fault;
4930 context->sync_page = nonpaging_sync_page;
4931 context->invlpg = nonpaging_invlpg;
4932 context->update_pte = nonpaging_update_pte;
4933 context->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
4934 context->direct_map = true;
4935 context->get_guest_pgd = get_cr3;
4936 context->get_pdptr = kvm_pdptr_read;
4937 context->inject_page_fault = kvm_inject_page_fault;
4938
4939 if (!is_paging(vcpu)) {
4940 context->nx = false;
4941 context->gva_to_gpa = nonpaging_gva_to_gpa;
4942 context->root_level = 0;
4943 } else if (is_long_mode(vcpu)) {
4944 context->nx = is_nx(vcpu);
4945 context->root_level = is_la57_mode(vcpu) ?
4946 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4947 reset_rsvds_bits_mask(vcpu, context);
4948 context->gva_to_gpa = paging64_gva_to_gpa;
4949 } else if (is_pae(vcpu)) {
4950 context->nx = is_nx(vcpu);
4951 context->root_level = PT32E_ROOT_LEVEL;
4952 reset_rsvds_bits_mask(vcpu, context);
4953 context->gva_to_gpa = paging64_gva_to_gpa;
4954 } else {
4955 context->nx = false;
4956 context->root_level = PT32_ROOT_LEVEL;
4957 reset_rsvds_bits_mask(vcpu, context);
4958 context->gva_to_gpa = paging32_gva_to_gpa;
4959 }
4960
4961 update_permission_bitmask(vcpu, context, false);
4962 update_pkru_bitmask(vcpu, context, false);
4963 update_last_nonleaf_level(vcpu, context);
4964 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4965 }
4966
4967 static union kvm_mmu_role
4968 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4969 {
4970 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4971
4972 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4973 !is_write_protection(vcpu);
4974 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4975 !is_write_protection(vcpu);
4976 role.base.direct = !is_paging(vcpu);
4977 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4978
4979 if (!is_long_mode(vcpu))
4980 role.base.level = PT32E_ROOT_LEVEL;
4981 else if (is_la57_mode(vcpu))
4982 role.base.level = PT64_ROOT_5LEVEL;
4983 else
4984 role.base.level = PT64_ROOT_4LEVEL;
4985
4986 return role;
4987 }
4988
4989 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4990 {
4991 struct kvm_mmu *context = vcpu->arch.mmu;
4992 union kvm_mmu_role new_role =
4993 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4994
4995 if (new_role.as_u64 == context->mmu_role.as_u64)
4996 return;
4997
4998 if (!is_paging(vcpu))
4999 nonpaging_init_context(vcpu, context);
5000 else if (is_long_mode(vcpu))
5001 paging64_init_context(vcpu, context);
5002 else if (is_pae(vcpu))
5003 paging32E_init_context(vcpu, context);
5004 else
5005 paging32_init_context(vcpu, context);
5006
5007 context->mmu_role.as_u64 = new_role.as_u64;
5008 reset_shadow_zero_bits_mask(vcpu, context);
5009 }
5010 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5011
5012 static union kvm_mmu_role
5013 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5014 bool execonly, u8 level)
5015 {
5016 union kvm_mmu_role role = {0};
5017
5018 /* SMM flag is inherited from root_mmu */
5019 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5020
5021 role.base.level = level;
5022 role.base.gpte_is_8_bytes = true;
5023 role.base.direct = false;
5024 role.base.ad_disabled = !accessed_dirty;
5025 role.base.guest_mode = true;
5026 role.base.access = ACC_ALL;
5027
5028 /*
5029 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5030 * SMAP variation to denote shadow EPT entries.
5031 */
5032 role.base.cr0_wp = true;
5033 role.base.smap_andnot_wp = true;
5034
5035 role.ext = kvm_calc_mmu_role_ext(vcpu);
5036 role.ext.execonly = execonly;
5037
5038 return role;
5039 }
5040
5041 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5042 bool accessed_dirty, gpa_t new_eptp)
5043 {
5044 struct kvm_mmu *context = vcpu->arch.mmu;
5045 u8 level = vmx_eptp_page_walk_level(new_eptp);
5046 union kvm_mmu_role new_role =
5047 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5048 execonly, level);
5049
5050 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5051
5052 if (new_role.as_u64 == context->mmu_role.as_u64)
5053 return;
5054
5055 context->shadow_root_level = level;
5056
5057 context->nx = true;
5058 context->ept_ad = accessed_dirty;
5059 context->page_fault = ept_page_fault;
5060 context->gva_to_gpa = ept_gva_to_gpa;
5061 context->sync_page = ept_sync_page;
5062 context->invlpg = ept_invlpg;
5063 context->update_pte = ept_update_pte;
5064 context->root_level = level;
5065 context->direct_map = false;
5066 context->mmu_role.as_u64 = new_role.as_u64;
5067
5068 update_permission_bitmask(vcpu, context, true);
5069 update_pkru_bitmask(vcpu, context, true);
5070 update_last_nonleaf_level(vcpu, context);
5071 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5072 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5073 }
5074 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5075
5076 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5077 {
5078 struct kvm_mmu *context = vcpu->arch.mmu;
5079
5080 kvm_init_shadow_mmu(vcpu);
5081 context->get_guest_pgd = get_cr3;
5082 context->get_pdptr = kvm_pdptr_read;
5083 context->inject_page_fault = kvm_inject_page_fault;
5084 }
5085
5086 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5087 {
5088 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5089 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5090
5091 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5092 return;
5093
5094 g_context->mmu_role.as_u64 = new_role.as_u64;
5095 g_context->get_guest_pgd = get_cr3;
5096 g_context->get_pdptr = kvm_pdptr_read;
5097 g_context->inject_page_fault = kvm_inject_page_fault;
5098
5099 /*
5100 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5101 * L1's nested page tables (e.g. EPT12). The nested translation
5102 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5103 * L2's page tables as the first level of translation and L1's
5104 * nested page tables as the second level of translation. Basically
5105 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5106 */
5107 if (!is_paging(vcpu)) {
5108 g_context->nx = false;
5109 g_context->root_level = 0;
5110 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5111 } else if (is_long_mode(vcpu)) {
5112 g_context->nx = is_nx(vcpu);
5113 g_context->root_level = is_la57_mode(vcpu) ?
5114 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5115 reset_rsvds_bits_mask(vcpu, g_context);
5116 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5117 } else if (is_pae(vcpu)) {
5118 g_context->nx = is_nx(vcpu);
5119 g_context->root_level = PT32E_ROOT_LEVEL;
5120 reset_rsvds_bits_mask(vcpu, g_context);
5121 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5122 } else {
5123 g_context->nx = false;
5124 g_context->root_level = PT32_ROOT_LEVEL;
5125 reset_rsvds_bits_mask(vcpu, g_context);
5126 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5127 }
5128
5129 update_permission_bitmask(vcpu, g_context, false);
5130 update_pkru_bitmask(vcpu, g_context, false);
5131 update_last_nonleaf_level(vcpu, g_context);
5132 }
5133
5134 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5135 {
5136 if (reset_roots) {
5137 uint i;
5138
5139 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5140
5141 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5142 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5143 }
5144
5145 if (mmu_is_nested(vcpu))
5146 init_kvm_nested_mmu(vcpu);
5147 else if (tdp_enabled)
5148 init_kvm_tdp_mmu(vcpu);
5149 else
5150 init_kvm_softmmu(vcpu);
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5153
5154 static union kvm_mmu_page_role
5155 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5156 {
5157 union kvm_mmu_role role;
5158
5159 if (tdp_enabled)
5160 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5161 else
5162 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5163
5164 return role.base;
5165 }
5166
5167 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5168 {
5169 kvm_mmu_unload(vcpu);
5170 kvm_init_mmu(vcpu, true);
5171 }
5172 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5173
5174 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5175 {
5176 int r;
5177
5178 r = mmu_topup_memory_caches(vcpu);
5179 if (r)
5180 goto out;
5181 r = mmu_alloc_roots(vcpu);
5182 kvm_mmu_sync_roots(vcpu);
5183 if (r)
5184 goto out;
5185 kvm_mmu_load_pgd(vcpu);
5186 kvm_x86_ops.tlb_flush(vcpu, true);
5187 out:
5188 return r;
5189 }
5190 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5191
5192 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5193 {
5194 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5195 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5196 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5197 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5198 }
5199 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5200
5201 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5202 struct kvm_mmu_page *sp, u64 *spte,
5203 const void *new)
5204 {
5205 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5206 ++vcpu->kvm->stat.mmu_pde_zapped;
5207 return;
5208 }
5209
5210 ++vcpu->kvm->stat.mmu_pte_updated;
5211 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5212 }
5213
5214 static bool need_remote_flush(u64 old, u64 new)
5215 {
5216 if (!is_shadow_present_pte(old))
5217 return false;
5218 if (!is_shadow_present_pte(new))
5219 return true;
5220 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5221 return true;
5222 old ^= shadow_nx_mask;
5223 new ^= shadow_nx_mask;
5224 return (old & ~new & PT64_PERM_MASK) != 0;
5225 }
5226
5227 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5228 int *bytes)
5229 {
5230 u64 gentry = 0;
5231 int r;
5232
5233 /*
5234 * Assume that the pte write on a page table of the same type
5235 * as the current vcpu paging mode since we update the sptes only
5236 * when they have the same mode.
5237 */
5238 if (is_pae(vcpu) && *bytes == 4) {
5239 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5240 *gpa &= ~(gpa_t)7;
5241 *bytes = 8;
5242 }
5243
5244 if (*bytes == 4 || *bytes == 8) {
5245 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5246 if (r)
5247 gentry = 0;
5248 }
5249
5250 return gentry;
5251 }
5252
5253 /*
5254 * If we're seeing too many writes to a page, it may no longer be a page table,
5255 * or we may be forking, in which case it is better to unmap the page.
5256 */
5257 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5258 {
5259 /*
5260 * Skip write-flooding detected for the sp whose level is 1, because
5261 * it can become unsync, then the guest page is not write-protected.
5262 */
5263 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5264 return false;
5265
5266 atomic_inc(&sp->write_flooding_count);
5267 return atomic_read(&sp->write_flooding_count) >= 3;
5268 }
5269
5270 /*
5271 * Misaligned accesses are too much trouble to fix up; also, they usually
5272 * indicate a page is not used as a page table.
5273 */
5274 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5275 int bytes)
5276 {
5277 unsigned offset, pte_size, misaligned;
5278
5279 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5280 gpa, bytes, sp->role.word);
5281
5282 offset = offset_in_page(gpa);
5283 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5284
5285 /*
5286 * Sometimes, the OS only writes the last one bytes to update status
5287 * bits, for example, in linux, andb instruction is used in clear_bit().
5288 */
5289 if (!(offset & (pte_size - 1)) && bytes == 1)
5290 return false;
5291
5292 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5293 misaligned |= bytes < 4;
5294
5295 return misaligned;
5296 }
5297
5298 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5299 {
5300 unsigned page_offset, quadrant;
5301 u64 *spte;
5302 int level;
5303
5304 page_offset = offset_in_page(gpa);
5305 level = sp->role.level;
5306 *nspte = 1;
5307 if (!sp->role.gpte_is_8_bytes) {
5308 page_offset <<= 1; /* 32->64 */
5309 /*
5310 * A 32-bit pde maps 4MB while the shadow pdes map
5311 * only 2MB. So we need to double the offset again
5312 * and zap two pdes instead of one.
5313 */
5314 if (level == PT32_ROOT_LEVEL) {
5315 page_offset &= ~7; /* kill rounding error */
5316 page_offset <<= 1;
5317 *nspte = 2;
5318 }
5319 quadrant = page_offset >> PAGE_SHIFT;
5320 page_offset &= ~PAGE_MASK;
5321 if (quadrant != sp->role.quadrant)
5322 return NULL;
5323 }
5324
5325 spte = &sp->spt[page_offset / sizeof(*spte)];
5326 return spte;
5327 }
5328
5329 /*
5330 * Ignore various flags when determining if a SPTE can be immediately
5331 * overwritten for the current MMU.
5332 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5333 * match the current MMU role, as MMU's level tracks the root level.
5334 * - access: updated based on the new guest PTE
5335 * - quadrant: handled by get_written_sptes()
5336 * - invalid: always false (loop only walks valid shadow pages)
5337 */
5338 static const union kvm_mmu_page_role role_ign = {
5339 .level = 0xf,
5340 .access = 0x7,
5341 .quadrant = 0x3,
5342 .invalid = 0x1,
5343 };
5344
5345 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5346 const u8 *new, int bytes,
5347 struct kvm_page_track_notifier_node *node)
5348 {
5349 gfn_t gfn = gpa >> PAGE_SHIFT;
5350 struct kvm_mmu_page *sp;
5351 LIST_HEAD(invalid_list);
5352 u64 entry, gentry, *spte;
5353 int npte;
5354 bool remote_flush, local_flush;
5355
5356 /*
5357 * If we don't have indirect shadow pages, it means no page is
5358 * write-protected, so we can exit simply.
5359 */
5360 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5361 return;
5362
5363 remote_flush = local_flush = false;
5364
5365 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5366
5367 /*
5368 * No need to care whether allocation memory is successful
5369 * or not since pte prefetch is skiped if it does not have
5370 * enough objects in the cache.
5371 */
5372 mmu_topup_memory_caches(vcpu);
5373
5374 spin_lock(&vcpu->kvm->mmu_lock);
5375
5376 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5377
5378 ++vcpu->kvm->stat.mmu_pte_write;
5379 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5380
5381 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5382 if (detect_write_misaligned(sp, gpa, bytes) ||
5383 detect_write_flooding(sp)) {
5384 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5385 ++vcpu->kvm->stat.mmu_flooded;
5386 continue;
5387 }
5388
5389 spte = get_written_sptes(sp, gpa, &npte);
5390 if (!spte)
5391 continue;
5392
5393 local_flush = true;
5394 while (npte--) {
5395 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5396
5397 entry = *spte;
5398 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5399 if (gentry &&
5400 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5401 rmap_can_add(vcpu))
5402 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5403 if (need_remote_flush(entry, *spte))
5404 remote_flush = true;
5405 ++spte;
5406 }
5407 }
5408 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5409 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5410 spin_unlock(&vcpu->kvm->mmu_lock);
5411 }
5412
5413 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5414 {
5415 gpa_t gpa;
5416 int r;
5417
5418 if (vcpu->arch.mmu->direct_map)
5419 return 0;
5420
5421 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5422
5423 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5424
5425 return r;
5426 }
5427 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5428
5429 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5430 void *insn, int insn_len)
5431 {
5432 int r, emulation_type = EMULTYPE_PF;
5433 bool direct = vcpu->arch.mmu->direct_map;
5434
5435 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5436 return RET_PF_RETRY;
5437
5438 r = RET_PF_INVALID;
5439 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5440 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5441 if (r == RET_PF_EMULATE)
5442 goto emulate;
5443 }
5444
5445 if (r == RET_PF_INVALID) {
5446 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5447 lower_32_bits(error_code), false);
5448 WARN_ON(r == RET_PF_INVALID);
5449 }
5450
5451 if (r == RET_PF_RETRY)
5452 return 1;
5453 if (r < 0)
5454 return r;
5455
5456 /*
5457 * Before emulating the instruction, check if the error code
5458 * was due to a RO violation while translating the guest page.
5459 * This can occur when using nested virtualization with nested
5460 * paging in both guests. If true, we simply unprotect the page
5461 * and resume the guest.
5462 */
5463 if (vcpu->arch.mmu->direct_map &&
5464 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5465 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5466 return 1;
5467 }
5468
5469 /*
5470 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5471 * optimistically try to just unprotect the page and let the processor
5472 * re-execute the instruction that caused the page fault. Do not allow
5473 * retrying MMIO emulation, as it's not only pointless but could also
5474 * cause us to enter an infinite loop because the processor will keep
5475 * faulting on the non-existent MMIO address. Retrying an instruction
5476 * from a nested guest is also pointless and dangerous as we are only
5477 * explicitly shadowing L1's page tables, i.e. unprotecting something
5478 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5479 */
5480 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5481 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5482 emulate:
5483 /*
5484 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5485 * This can happen if a guest gets a page-fault on data access but the HW
5486 * table walker is not able to read the instruction page (e.g instruction
5487 * page is not present in memory). In those cases we simply restart the
5488 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5489 */
5490 if (unlikely(insn && !insn_len)) {
5491 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
5492 return 1;
5493 }
5494
5495 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5496 insn_len);
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5499
5500 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5501 {
5502 struct kvm_mmu *mmu = vcpu->arch.mmu;
5503 int i;
5504
5505 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5506 if (is_noncanonical_address(gva, vcpu))
5507 return;
5508
5509 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5510
5511 /*
5512 * INVLPG is required to invalidate any global mappings for the VA,
5513 * irrespective of PCID. Since it would take us roughly similar amount
5514 * of work to determine whether any of the prev_root mappings of the VA
5515 * is marked global, or to just sync it blindly, so we might as well
5516 * just always sync it.
5517 *
5518 * Mappings not reachable via the current cr3 or the prev_roots will be
5519 * synced when switching to that cr3, so nothing needs to be done here
5520 * for them.
5521 */
5522 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5523 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5524 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5525
5526 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5527 ++vcpu->stat.invlpg;
5528 }
5529 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5530
5531 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5532 {
5533 struct kvm_mmu *mmu = vcpu->arch.mmu;
5534 bool tlb_flush = false;
5535 uint i;
5536
5537 if (pcid == kvm_get_active_pcid(vcpu)) {
5538 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5539 tlb_flush = true;
5540 }
5541
5542 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5543 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5544 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5545 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5546 tlb_flush = true;
5547 }
5548 }
5549
5550 if (tlb_flush)
5551 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5552
5553 ++vcpu->stat.invlpg;
5554
5555 /*
5556 * Mappings not reachable via the current cr3 or the prev_roots will be
5557 * synced when switching to that cr3, so nothing needs to be done here
5558 * for them.
5559 */
5560 }
5561 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5562
5563 void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
5564 {
5565 tdp_enabled = enable_tdp;
5566
5567 /*
5568 * max_page_level reflects the capabilities of KVM's MMU irrespective
5569 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5570 * the kernel is not. But, KVM never creates a page size greater than
5571 * what is used by the kernel for any given HVA, i.e. the kernel's
5572 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5573 */
5574 if (tdp_enabled)
5575 max_page_level = tdp_page_level;
5576 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5577 max_page_level = PT_PDPE_LEVEL;
5578 else
5579 max_page_level = PT_DIRECTORY_LEVEL;
5580 }
5581 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5582
5583 /* The return value indicates if tlb flush on all vcpus is needed. */
5584 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5585
5586 /* The caller should hold mmu-lock before calling this function. */
5587 static __always_inline bool
5588 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5589 slot_level_handler fn, int start_level, int end_level,
5590 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5591 {
5592 struct slot_rmap_walk_iterator iterator;
5593 bool flush = false;
5594
5595 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5596 end_gfn, &iterator) {
5597 if (iterator.rmap)
5598 flush |= fn(kvm, iterator.rmap);
5599
5600 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5601 if (flush && lock_flush_tlb) {
5602 kvm_flush_remote_tlbs_with_address(kvm,
5603 start_gfn,
5604 iterator.gfn - start_gfn + 1);
5605 flush = false;
5606 }
5607 cond_resched_lock(&kvm->mmu_lock);
5608 }
5609 }
5610
5611 if (flush && lock_flush_tlb) {
5612 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5613 end_gfn - start_gfn + 1);
5614 flush = false;
5615 }
5616
5617 return flush;
5618 }
5619
5620 static __always_inline bool
5621 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5622 slot_level_handler fn, int start_level, int end_level,
5623 bool lock_flush_tlb)
5624 {
5625 return slot_handle_level_range(kvm, memslot, fn, start_level,
5626 end_level, memslot->base_gfn,
5627 memslot->base_gfn + memslot->npages - 1,
5628 lock_flush_tlb);
5629 }
5630
5631 static __always_inline bool
5632 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5633 slot_level_handler fn, bool lock_flush_tlb)
5634 {
5635 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5636 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5637 }
5638
5639 static __always_inline bool
5640 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5641 slot_level_handler fn, bool lock_flush_tlb)
5642 {
5643 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5644 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5645 }
5646
5647 static __always_inline bool
5648 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5649 slot_level_handler fn, bool lock_flush_tlb)
5650 {
5651 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5652 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5653 }
5654
5655 static void free_mmu_pages(struct kvm_mmu *mmu)
5656 {
5657 free_page((unsigned long)mmu->pae_root);
5658 free_page((unsigned long)mmu->lm_root);
5659 }
5660
5661 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5662 {
5663 struct page *page;
5664 int i;
5665
5666 /*
5667 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5668 * while the PDP table is a per-vCPU construct that's allocated at MMU
5669 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5670 * x86_64. Therefore we need to allocate the PDP table in the first
5671 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5672 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5673 * skip allocating the PDP table.
5674 */
5675 if (tdp_enabled && kvm_x86_ops.get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5676 return 0;
5677
5678 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5679 if (!page)
5680 return -ENOMEM;
5681
5682 mmu->pae_root = page_address(page);
5683 for (i = 0; i < 4; ++i)
5684 mmu->pae_root[i] = INVALID_PAGE;
5685
5686 return 0;
5687 }
5688
5689 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5690 {
5691 uint i;
5692 int ret;
5693
5694 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5695 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5696
5697 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5698 vcpu->arch.root_mmu.root_cr3 = 0;
5699 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5700 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5701 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5702
5703 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5704 vcpu->arch.guest_mmu.root_cr3 = 0;
5705 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5706 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5707 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5708
5709 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5710
5711 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5712 if (ret)
5713 return ret;
5714
5715 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5716 if (ret)
5717 goto fail_allocate_root;
5718
5719 return ret;
5720 fail_allocate_root:
5721 free_mmu_pages(&vcpu->arch.guest_mmu);
5722 return ret;
5723 }
5724
5725 #define BATCH_ZAP_PAGES 10
5726 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5727 {
5728 struct kvm_mmu_page *sp, *node;
5729 int nr_zapped, batch = 0;
5730
5731 restart:
5732 list_for_each_entry_safe_reverse(sp, node,
5733 &kvm->arch.active_mmu_pages, link) {
5734 /*
5735 * No obsolete valid page exists before a newly created page
5736 * since active_mmu_pages is a FIFO list.
5737 */
5738 if (!is_obsolete_sp(kvm, sp))
5739 break;
5740
5741 /*
5742 * Skip invalid pages with a non-zero root count, zapping pages
5743 * with a non-zero root count will never succeed, i.e. the page
5744 * will get thrown back on active_mmu_pages and we'll get stuck
5745 * in an infinite loop.
5746 */
5747 if (sp->role.invalid && sp->root_count)
5748 continue;
5749
5750 /*
5751 * No need to flush the TLB since we're only zapping shadow
5752 * pages with an obsolete generation number and all vCPUS have
5753 * loaded a new root, i.e. the shadow pages being zapped cannot
5754 * be in active use by the guest.
5755 */
5756 if (batch >= BATCH_ZAP_PAGES &&
5757 cond_resched_lock(&kvm->mmu_lock)) {
5758 batch = 0;
5759 goto restart;
5760 }
5761
5762 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5763 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5764 batch += nr_zapped;
5765 goto restart;
5766 }
5767 }
5768
5769 /*
5770 * Trigger a remote TLB flush before freeing the page tables to ensure
5771 * KVM is not in the middle of a lockless shadow page table walk, which
5772 * may reference the pages.
5773 */
5774 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5775 }
5776
5777 /*
5778 * Fast invalidate all shadow pages and use lock-break technique
5779 * to zap obsolete pages.
5780 *
5781 * It's required when memslot is being deleted or VM is being
5782 * destroyed, in these cases, we should ensure that KVM MMU does
5783 * not use any resource of the being-deleted slot or all slots
5784 * after calling the function.
5785 */
5786 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5787 {
5788 lockdep_assert_held(&kvm->slots_lock);
5789
5790 spin_lock(&kvm->mmu_lock);
5791 trace_kvm_mmu_zap_all_fast(kvm);
5792
5793 /*
5794 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5795 * held for the entire duration of zapping obsolete pages, it's
5796 * impossible for there to be multiple invalid generations associated
5797 * with *valid* shadow pages at any given time, i.e. there is exactly
5798 * one valid generation and (at most) one invalid generation.
5799 */
5800 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5801
5802 /*
5803 * Notify all vcpus to reload its shadow page table and flush TLB.
5804 * Then all vcpus will switch to new shadow page table with the new
5805 * mmu_valid_gen.
5806 *
5807 * Note: we need to do this under the protection of mmu_lock,
5808 * otherwise, vcpu would purge shadow page but miss tlb flush.
5809 */
5810 kvm_reload_remote_mmus(kvm);
5811
5812 kvm_zap_obsolete_pages(kvm);
5813 spin_unlock(&kvm->mmu_lock);
5814 }
5815
5816 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5817 {
5818 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5819 }
5820
5821 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5822 struct kvm_memory_slot *slot,
5823 struct kvm_page_track_notifier_node *node)
5824 {
5825 kvm_mmu_zap_all_fast(kvm);
5826 }
5827
5828 void kvm_mmu_init_vm(struct kvm *kvm)
5829 {
5830 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5831
5832 node->track_write = kvm_mmu_pte_write;
5833 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5834 kvm_page_track_register_notifier(kvm, node);
5835 }
5836
5837 void kvm_mmu_uninit_vm(struct kvm *kvm)
5838 {
5839 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5840
5841 kvm_page_track_unregister_notifier(kvm, node);
5842 }
5843
5844 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5845 {
5846 struct kvm_memslots *slots;
5847 struct kvm_memory_slot *memslot;
5848 int i;
5849
5850 spin_lock(&kvm->mmu_lock);
5851 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5852 slots = __kvm_memslots(kvm, i);
5853 kvm_for_each_memslot(memslot, slots) {
5854 gfn_t start, end;
5855
5856 start = max(gfn_start, memslot->base_gfn);
5857 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5858 if (start >= end)
5859 continue;
5860
5861 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5862 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5863 start, end - 1, true);
5864 }
5865 }
5866
5867 spin_unlock(&kvm->mmu_lock);
5868 }
5869
5870 static bool slot_rmap_write_protect(struct kvm *kvm,
5871 struct kvm_rmap_head *rmap_head)
5872 {
5873 return __rmap_write_protect(kvm, rmap_head, false);
5874 }
5875
5876 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5877 struct kvm_memory_slot *memslot,
5878 int start_level)
5879 {
5880 bool flush;
5881
5882 spin_lock(&kvm->mmu_lock);
5883 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5884 start_level, PT_MAX_HUGEPAGE_LEVEL, false);
5885 spin_unlock(&kvm->mmu_lock);
5886
5887 /*
5888 * We can flush all the TLBs out of the mmu lock without TLB
5889 * corruption since we just change the spte from writable to
5890 * readonly so that we only need to care the case of changing
5891 * spte from present to present (changing the spte from present
5892 * to nonpresent will flush all the TLBs immediately), in other
5893 * words, the only case we care is mmu_spte_update() where we
5894 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5895 * instead of PT_WRITABLE_MASK, that means it does not depend
5896 * on PT_WRITABLE_MASK anymore.
5897 */
5898 if (flush)
5899 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5900 }
5901
5902 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5903 struct kvm_rmap_head *rmap_head)
5904 {
5905 u64 *sptep;
5906 struct rmap_iterator iter;
5907 int need_tlb_flush = 0;
5908 kvm_pfn_t pfn;
5909 struct kvm_mmu_page *sp;
5910
5911 restart:
5912 for_each_rmap_spte(rmap_head, &iter, sptep) {
5913 sp = page_header(__pa(sptep));
5914 pfn = spte_to_pfn(*sptep);
5915
5916 /*
5917 * We cannot do huge page mapping for indirect shadow pages,
5918 * which are found on the last rmap (level = 1) when not using
5919 * tdp; such shadow pages are synced with the page table in
5920 * the guest, and the guest page table is using 4K page size
5921 * mapping if the indirect sp has level = 1.
5922 */
5923 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5924 (kvm_is_zone_device_pfn(pfn) ||
5925 PageCompound(pfn_to_page(pfn)))) {
5926 pte_list_remove(rmap_head, sptep);
5927
5928 if (kvm_available_flush_tlb_with_range())
5929 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5930 KVM_PAGES_PER_HPAGE(sp->role.level));
5931 else
5932 need_tlb_flush = 1;
5933
5934 goto restart;
5935 }
5936 }
5937
5938 return need_tlb_flush;
5939 }
5940
5941 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5942 const struct kvm_memory_slot *memslot)
5943 {
5944 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5945 spin_lock(&kvm->mmu_lock);
5946 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5947 kvm_mmu_zap_collapsible_spte, true);
5948 spin_unlock(&kvm->mmu_lock);
5949 }
5950
5951 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5952 struct kvm_memory_slot *memslot)
5953 {
5954 /*
5955 * All current use cases for flushing the TLBs for a specific memslot
5956 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5957 * The interaction between the various operations on memslot must be
5958 * serialized by slots_locks to ensure the TLB flush from one operation
5959 * is observed by any other operation on the same memslot.
5960 */
5961 lockdep_assert_held(&kvm->slots_lock);
5962 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5963 memslot->npages);
5964 }
5965
5966 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5967 struct kvm_memory_slot *memslot)
5968 {
5969 bool flush;
5970
5971 spin_lock(&kvm->mmu_lock);
5972 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5973 spin_unlock(&kvm->mmu_lock);
5974
5975 /*
5976 * It's also safe to flush TLBs out of mmu lock here as currently this
5977 * function is only used for dirty logging, in which case flushing TLB
5978 * out of mmu lock also guarantees no dirty pages will be lost in
5979 * dirty_bitmap.
5980 */
5981 if (flush)
5982 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5983 }
5984 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5985
5986 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5987 struct kvm_memory_slot *memslot)
5988 {
5989 bool flush;
5990
5991 spin_lock(&kvm->mmu_lock);
5992 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5993 false);
5994 spin_unlock(&kvm->mmu_lock);
5995
5996 if (flush)
5997 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5998 }
5999 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6000
6001 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6002 struct kvm_memory_slot *memslot)
6003 {
6004 bool flush;
6005
6006 spin_lock(&kvm->mmu_lock);
6007 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6008 spin_unlock(&kvm->mmu_lock);
6009
6010 if (flush)
6011 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6014
6015 void kvm_mmu_zap_all(struct kvm *kvm)
6016 {
6017 struct kvm_mmu_page *sp, *node;
6018 LIST_HEAD(invalid_list);
6019 int ign;
6020
6021 spin_lock(&kvm->mmu_lock);
6022 restart:
6023 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6024 if (sp->role.invalid && sp->root_count)
6025 continue;
6026 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6027 goto restart;
6028 if (cond_resched_lock(&kvm->mmu_lock))
6029 goto restart;
6030 }
6031
6032 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6033 spin_unlock(&kvm->mmu_lock);
6034 }
6035
6036 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6037 {
6038 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6039
6040 gen &= MMIO_SPTE_GEN_MASK;
6041
6042 /*
6043 * Generation numbers are incremented in multiples of the number of
6044 * address spaces in order to provide unique generations across all
6045 * address spaces. Strip what is effectively the address space
6046 * modifier prior to checking for a wrap of the MMIO generation so
6047 * that a wrap in any address space is detected.
6048 */
6049 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6050
6051 /*
6052 * The very rare case: if the MMIO generation number has wrapped,
6053 * zap all shadow pages.
6054 */
6055 if (unlikely(gen == 0)) {
6056 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6057 kvm_mmu_zap_all_fast(kvm);
6058 }
6059 }
6060
6061 static unsigned long
6062 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6063 {
6064 struct kvm *kvm;
6065 int nr_to_scan = sc->nr_to_scan;
6066 unsigned long freed = 0;
6067
6068 mutex_lock(&kvm_lock);
6069
6070 list_for_each_entry(kvm, &vm_list, vm_list) {
6071 int idx;
6072 LIST_HEAD(invalid_list);
6073
6074 /*
6075 * Never scan more than sc->nr_to_scan VM instances.
6076 * Will not hit this condition practically since we do not try
6077 * to shrink more than one VM and it is very unlikely to see
6078 * !n_used_mmu_pages so many times.
6079 */
6080 if (!nr_to_scan--)
6081 break;
6082 /*
6083 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6084 * here. We may skip a VM instance errorneosly, but we do not
6085 * want to shrink a VM that only started to populate its MMU
6086 * anyway.
6087 */
6088 if (!kvm->arch.n_used_mmu_pages &&
6089 !kvm_has_zapped_obsolete_pages(kvm))
6090 continue;
6091
6092 idx = srcu_read_lock(&kvm->srcu);
6093 spin_lock(&kvm->mmu_lock);
6094
6095 if (kvm_has_zapped_obsolete_pages(kvm)) {
6096 kvm_mmu_commit_zap_page(kvm,
6097 &kvm->arch.zapped_obsolete_pages);
6098 goto unlock;
6099 }
6100
6101 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6102 freed++;
6103 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6104
6105 unlock:
6106 spin_unlock(&kvm->mmu_lock);
6107 srcu_read_unlock(&kvm->srcu, idx);
6108
6109 /*
6110 * unfair on small ones
6111 * per-vm shrinkers cry out
6112 * sadness comes quickly
6113 */
6114 list_move_tail(&kvm->vm_list, &vm_list);
6115 break;
6116 }
6117
6118 mutex_unlock(&kvm_lock);
6119 return freed;
6120 }
6121
6122 static unsigned long
6123 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6124 {
6125 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6126 }
6127
6128 static struct shrinker mmu_shrinker = {
6129 .count_objects = mmu_shrink_count,
6130 .scan_objects = mmu_shrink_scan,
6131 .seeks = DEFAULT_SEEKS * 10,
6132 };
6133
6134 static void mmu_destroy_caches(void)
6135 {
6136 kmem_cache_destroy(pte_list_desc_cache);
6137 kmem_cache_destroy(mmu_page_header_cache);
6138 }
6139
6140 static void kvm_set_mmio_spte_mask(void)
6141 {
6142 u64 mask;
6143
6144 /*
6145 * Set the reserved bits and the present bit of an paging-structure
6146 * entry to generate page fault with PFER.RSV = 1.
6147 */
6148
6149 /*
6150 * Mask the uppermost physical address bit, which would be reserved as
6151 * long as the supported physical address width is less than 52.
6152 */
6153 mask = 1ull << 51;
6154
6155 /* Set the present bit. */
6156 mask |= 1ull;
6157
6158 /*
6159 * If reserved bit is not supported, clear the present bit to disable
6160 * mmio page fault.
6161 */
6162 if (shadow_phys_bits == 52)
6163 mask &= ~1ull;
6164
6165 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6166 }
6167
6168 static bool get_nx_auto_mode(void)
6169 {
6170 /* Return true when CPU has the bug, and mitigations are ON */
6171 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6172 }
6173
6174 static void __set_nx_huge_pages(bool val)
6175 {
6176 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6177 }
6178
6179 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6180 {
6181 bool old_val = nx_huge_pages;
6182 bool new_val;
6183
6184 /* In "auto" mode deploy workaround only if CPU has the bug. */
6185 if (sysfs_streq(val, "off"))
6186 new_val = 0;
6187 else if (sysfs_streq(val, "force"))
6188 new_val = 1;
6189 else if (sysfs_streq(val, "auto"))
6190 new_val = get_nx_auto_mode();
6191 else if (strtobool(val, &new_val) < 0)
6192 return -EINVAL;
6193
6194 __set_nx_huge_pages(new_val);
6195
6196 if (new_val != old_val) {
6197 struct kvm *kvm;
6198
6199 mutex_lock(&kvm_lock);
6200
6201 list_for_each_entry(kvm, &vm_list, vm_list) {
6202 mutex_lock(&kvm->slots_lock);
6203 kvm_mmu_zap_all_fast(kvm);
6204 mutex_unlock(&kvm->slots_lock);
6205
6206 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6207 }
6208 mutex_unlock(&kvm_lock);
6209 }
6210
6211 return 0;
6212 }
6213
6214 int kvm_mmu_module_init(void)
6215 {
6216 int ret = -ENOMEM;
6217
6218 if (nx_huge_pages == -1)
6219 __set_nx_huge_pages(get_nx_auto_mode());
6220
6221 /*
6222 * MMU roles use union aliasing which is, generally speaking, an
6223 * undefined behavior. However, we supposedly know how compilers behave
6224 * and the current status quo is unlikely to change. Guardians below are
6225 * supposed to let us know if the assumption becomes false.
6226 */
6227 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6228 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6229 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6230
6231 kvm_mmu_reset_all_pte_masks();
6232
6233 kvm_set_mmio_spte_mask();
6234
6235 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6236 sizeof(struct pte_list_desc),
6237 0, SLAB_ACCOUNT, NULL);
6238 if (!pte_list_desc_cache)
6239 goto out;
6240
6241 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6242 sizeof(struct kvm_mmu_page),
6243 0, SLAB_ACCOUNT, NULL);
6244 if (!mmu_page_header_cache)
6245 goto out;
6246
6247 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6248 goto out;
6249
6250 ret = register_shrinker(&mmu_shrinker);
6251 if (ret)
6252 goto out;
6253
6254 return 0;
6255
6256 out:
6257 mmu_destroy_caches();
6258 return ret;
6259 }
6260
6261 /*
6262 * Calculate mmu pages needed for kvm.
6263 */
6264 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6265 {
6266 unsigned long nr_mmu_pages;
6267 unsigned long nr_pages = 0;
6268 struct kvm_memslots *slots;
6269 struct kvm_memory_slot *memslot;
6270 int i;
6271
6272 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6273 slots = __kvm_memslots(kvm, i);
6274
6275 kvm_for_each_memslot(memslot, slots)
6276 nr_pages += memslot->npages;
6277 }
6278
6279 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6280 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6281
6282 return nr_mmu_pages;
6283 }
6284
6285 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6286 {
6287 kvm_mmu_unload(vcpu);
6288 free_mmu_pages(&vcpu->arch.root_mmu);
6289 free_mmu_pages(&vcpu->arch.guest_mmu);
6290 mmu_free_memory_caches(vcpu);
6291 }
6292
6293 void kvm_mmu_module_exit(void)
6294 {
6295 mmu_destroy_caches();
6296 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6297 unregister_shrinker(&mmu_shrinker);
6298 mmu_audit_disable();
6299 }
6300
6301 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6302 {
6303 unsigned int old_val;
6304 int err;
6305
6306 old_val = nx_huge_pages_recovery_ratio;
6307 err = param_set_uint(val, kp);
6308 if (err)
6309 return err;
6310
6311 if (READ_ONCE(nx_huge_pages) &&
6312 !old_val && nx_huge_pages_recovery_ratio) {
6313 struct kvm *kvm;
6314
6315 mutex_lock(&kvm_lock);
6316
6317 list_for_each_entry(kvm, &vm_list, vm_list)
6318 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6319
6320 mutex_unlock(&kvm_lock);
6321 }
6322
6323 return err;
6324 }
6325
6326 static void kvm_recover_nx_lpages(struct kvm *kvm)
6327 {
6328 int rcu_idx;
6329 struct kvm_mmu_page *sp;
6330 unsigned int ratio;
6331 LIST_HEAD(invalid_list);
6332 ulong to_zap;
6333
6334 rcu_idx = srcu_read_lock(&kvm->srcu);
6335 spin_lock(&kvm->mmu_lock);
6336
6337 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6338 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6339 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6340 /*
6341 * We use a separate list instead of just using active_mmu_pages
6342 * because the number of lpage_disallowed pages is expected to
6343 * be relatively small compared to the total.
6344 */
6345 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6346 struct kvm_mmu_page,
6347 lpage_disallowed_link);
6348 WARN_ON_ONCE(!sp->lpage_disallowed);
6349 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6350 WARN_ON_ONCE(sp->lpage_disallowed);
6351
6352 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6353 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6354 if (to_zap)
6355 cond_resched_lock(&kvm->mmu_lock);
6356 }
6357 }
6358
6359 spin_unlock(&kvm->mmu_lock);
6360 srcu_read_unlock(&kvm->srcu, rcu_idx);
6361 }
6362
6363 static long get_nx_lpage_recovery_timeout(u64 start_time)
6364 {
6365 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6366 ? start_time + 60 * HZ - get_jiffies_64()
6367 : MAX_SCHEDULE_TIMEOUT;
6368 }
6369
6370 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6371 {
6372 u64 start_time;
6373 long remaining_time;
6374
6375 while (true) {
6376 start_time = get_jiffies_64();
6377 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6378
6379 set_current_state(TASK_INTERRUPTIBLE);
6380 while (!kthread_should_stop() && remaining_time > 0) {
6381 schedule_timeout(remaining_time);
6382 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6383 set_current_state(TASK_INTERRUPTIBLE);
6384 }
6385
6386 set_current_state(TASK_RUNNING);
6387
6388 if (kthread_should_stop())
6389 return 0;
6390
6391 kvm_recover_nx_lpages(kvm);
6392 }
6393 }
6394
6395 int kvm_mmu_post_init_vm(struct kvm *kvm)
6396 {
6397 int err;
6398
6399 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6400 "kvm-nx-lpage-recovery",
6401 &kvm->arch.nx_lpage_recovery_thread);
6402 if (!err)
6403 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6404
6405 return err;
6406 }
6407
6408 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6409 {
6410 if (kvm->arch.nx_lpage_recovery_thread)
6411 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6412 }