]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: do not reuse the obsolete page
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 struct kvm_mmu_page *sp = page_header(__pa(sptep));
203
204 access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
206 sp->mmio_cached = true;
207 trace_mark_mmio_spte(sptep, gfn, access);
208 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210
211 static bool is_mmio_spte(u64 spte)
212 {
213 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215
216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220
221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225
226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228 if (unlikely(is_noslot_pfn(pfn))) {
229 mark_mmio_spte(sptep, gfn, access);
230 return true;
231 }
232
233 return false;
234 }
235
236 static inline u64 rsvd_bits(int s, int e)
237 {
238 return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240
241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242 u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244 shadow_user_mask = user_mask;
245 shadow_accessed_mask = accessed_mask;
246 shadow_dirty_mask = dirty_mask;
247 shadow_nx_mask = nx_mask;
248 shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
252 static int is_cpuid_PSE36(void)
253 {
254 return 1;
255 }
256
257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259 return vcpu->arch.efer & EFER_NX;
260 }
261
262 static int is_shadow_present_pte(u64 pte)
263 {
264 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266
267 static int is_large_pte(u64 pte)
268 {
269 return pte & PT_PAGE_SIZE_MASK;
270 }
271
272 static int is_dirty_gpte(unsigned long pte)
273 {
274 return pte & PT_DIRTY_MASK;
275 }
276
277 static int is_rmap_spte(u64 pte)
278 {
279 return is_shadow_present_pte(pte);
280 }
281
282 static int is_last_spte(u64 pte, int level)
283 {
284 if (level == PT_PAGE_TABLE_LEVEL)
285 return 1;
286 if (is_large_pte(pte))
287 return 1;
288 return 0;
289 }
290
291 static pfn_t spte_to_pfn(u64 pte)
292 {
293 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295
296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300 return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302
303 #ifdef CONFIG_X86_64
304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306 *sptep = spte;
307 }
308
309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311 *sptep = spte;
312 }
313
314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316 return xchg(sptep, spte);
317 }
318
319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321 return ACCESS_ONCE(*sptep);
322 }
323
324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326 /* It is valid if the spte is zapped. */
327 return spte == 0ull;
328 }
329 #else
330 union split_spte {
331 struct {
332 u32 spte_low;
333 u32 spte_high;
334 };
335 u64 spte;
336 };
337
338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340 struct kvm_mmu_page *sp = page_header(__pa(sptep));
341
342 if (is_shadow_present_pte(spte))
343 return;
344
345 /* Ensure the spte is completely set before we increase the count */
346 smp_wmb();
347 sp->clear_spte_count++;
348 }
349
350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352 union split_spte *ssptep, sspte;
353
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 ssptep->spte_high = sspte.spte_high;
358
359 /*
360 * If we map the spte from nonpresent to present, We should store
361 * the high bits firstly, then set present bit, so cpu can not
362 * fetch this spte while we are setting the spte.
363 */
364 smp_wmb();
365
366 ssptep->spte_low = sspte.spte_low;
367 }
368
369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371 union split_spte *ssptep, sspte;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 ssptep->spte_low = sspte.spte_low;
377
378 /*
379 * If we map the spte from present to nonpresent, we should clear
380 * present bit firstly to avoid vcpu fetch the old high bits.
381 */
382 smp_wmb();
383
384 ssptep->spte_high = sspte.spte_high;
385 count_spte_clear(sptep, spte);
386 }
387
388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390 union split_spte *ssptep, sspte, orig;
391
392 ssptep = (union split_spte *)sptep;
393 sspte = (union split_spte)spte;
394
395 /* xchg acts as a barrier before the setting of the high bits */
396 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397 orig.spte_high = ssptep->spte_high;
398 ssptep->spte_high = sspte.spte_high;
399 count_spte_clear(sptep, spte);
400
401 return orig.spte;
402 }
403
404 /*
405 * The idea using the light way get the spte on x86_32 guest is from
406 * gup_get_pte(arch/x86/mm/gup.c).
407 * The difference is we can not catch the spte tlb flush if we leave
408 * guest mode, so we emulate it by increase clear_spte_count when spte
409 * is cleared.
410 */
411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413 struct kvm_mmu_page *sp = page_header(__pa(sptep));
414 union split_spte spte, *orig = (union split_spte *)sptep;
415 int count;
416
417 retry:
418 count = sp->clear_spte_count;
419 smp_rmb();
420
421 spte.spte_low = orig->spte_low;
422 smp_rmb();
423
424 spte.spte_high = orig->spte_high;
425 smp_rmb();
426
427 if (unlikely(spte.spte_low != orig->spte_low ||
428 count != sp->clear_spte_count))
429 goto retry;
430
431 return spte.spte;
432 }
433
434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436 union split_spte sspte = (union split_spte)spte;
437 u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439 /* It is valid if the spte is zapped. */
440 if (spte == 0ull)
441 return true;
442
443 /* It is valid if the spte is being zapped. */
444 if (sspte.spte_low == 0ull &&
445 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 return true;
447
448 return false;
449 }
450 #endif
451
452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457
458 static bool spte_has_volatile_bits(u64 spte)
459 {
460 /*
461 * Always atomicly update spte if it can be updated
462 * out of mmu-lock, it can ensure dirty bit is not lost,
463 * also, it can help us to get a stable is_writable_pte()
464 * to ensure tlb flush is not missed.
465 */
466 if (spte_is_locklessly_modifiable(spte))
467 return true;
468
469 if (!shadow_accessed_mask)
470 return false;
471
472 if (!is_shadow_present_pte(spte))
473 return false;
474
475 if ((spte & shadow_accessed_mask) &&
476 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477 return false;
478
479 return true;
480 }
481
482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484 return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486
487 /* Rules for using mmu_spte_set:
488 * Set the sptep from nonpresent to present.
489 * Note: the sptep being assigned *must* be either not present
490 * or in a state where the hardware will not attempt to update
491 * the spte.
492 */
493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495 WARN_ON(is_shadow_present_pte(*sptep));
496 __set_spte(sptep, new_spte);
497 }
498
499 /* Rules for using mmu_spte_update:
500 * Update the state bits, it means the mapped pfn is not changged.
501 *
502 * Whenever we overwrite a writable spte with a read-only one we
503 * should flush remote TLBs. Otherwise rmap_write_protect
504 * will find a read-only spte, even though the writable spte
505 * might be cached on a CPU's TLB, the return value indicates this
506 * case.
507 */
508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510 u64 old_spte = *sptep;
511 bool ret = false;
512
513 WARN_ON(!is_rmap_spte(new_spte));
514
515 if (!is_shadow_present_pte(old_spte)) {
516 mmu_spte_set(sptep, new_spte);
517 return ret;
518 }
519
520 if (!spte_has_volatile_bits(old_spte))
521 __update_clear_spte_fast(sptep, new_spte);
522 else
523 old_spte = __update_clear_spte_slow(sptep, new_spte);
524
525 /*
526 * For the spte updated out of mmu-lock is safe, since
527 * we always atomicly update it, see the comments in
528 * spte_has_volatile_bits().
529 */
530 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 ret = true;
532
533 if (!shadow_accessed_mask)
534 return ret;
535
536 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540
541 return ret;
542 }
543
544 /*
545 * Rules for using mmu_spte_clear_track_bits:
546 * It sets the sptep from present to nonpresent, and track the
547 * state bits, it is used to clear the last level sptep.
548 */
549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551 pfn_t pfn;
552 u64 old_spte = *sptep;
553
554 if (!spte_has_volatile_bits(old_spte))
555 __update_clear_spte_fast(sptep, 0ull);
556 else
557 old_spte = __update_clear_spte_slow(sptep, 0ull);
558
559 if (!is_rmap_spte(old_spte))
560 return 0;
561
562 pfn = spte_to_pfn(old_spte);
563
564 /*
565 * KVM does not hold the refcount of the page used by
566 * kvm mmu, before reclaiming the page, we should
567 * unmap it from mmu first.
568 */
569 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
571 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 kvm_set_pfn_accessed(pfn);
573 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 kvm_set_pfn_dirty(pfn);
575 return 1;
576 }
577
578 /*
579 * Rules for using mmu_spte_clear_no_track:
580 * Directly clear spte without caring the state bits of sptep,
581 * it is used to set the upper level spte.
582 */
583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585 __update_clear_spte_fast(sptep, 0ull);
586 }
587
588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590 return __get_spte_lockless(sptep);
591 }
592
593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595 /*
596 * Prevent page table teardown by making any free-er wait during
597 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 */
599 local_irq_disable();
600 vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 /*
602 * Make sure a following spte read is not reordered ahead of the write
603 * to vcpu->mode.
604 */
605 smp_mb();
606 }
607
608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610 /*
611 * Make sure the write to vcpu->mode is not reordered in front of
612 * reads to sptes. If it does, kvm_commit_zap_page() can see us
613 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 */
615 smp_mb();
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 local_irq_enable();
618 }
619
620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621 struct kmem_cache *base_cache, int min)
622 {
623 void *obj;
624
625 if (cache->nobjs >= min)
626 return 0;
627 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629 if (!obj)
630 return -ENOMEM;
631 cache->objects[cache->nobjs++] = obj;
632 }
633 return 0;
634 }
635
636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638 return cache->nobjs;
639 }
640
641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 struct kmem_cache *cache)
643 {
644 while (mc->nobjs)
645 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647
648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649 int min)
650 {
651 void *page;
652
653 if (cache->nobjs >= min)
654 return 0;
655 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656 page = (void *)__get_free_page(GFP_KERNEL);
657 if (!page)
658 return -ENOMEM;
659 cache->objects[cache->nobjs++] = page;
660 }
661 return 0;
662 }
663
664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666 while (mc->nobjs)
667 free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669
670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672 int r;
673
674 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676 if (r)
677 goto out;
678 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679 if (r)
680 goto out;
681 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682 mmu_page_header_cache, 4);
683 out:
684 return r;
685 }
686
687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 pte_list_desc_cache);
691 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 mmu_page_header_cache);
694 }
695
696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698 void *p;
699
700 BUG_ON(!mc->nobjs);
701 p = mc->objects[--mc->nobjs];
702 return p;
703 }
704
705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725 if (sp->role.direct)
726 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 else
728 sp->gfns[index] = gfn;
729 }
730
731 /*
732 * Return the pointer to the large page information for a given gfn,
733 * handling slots that are not large page aligned.
734 */
735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 struct kvm_memory_slot *slot,
737 int level)
738 {
739 unsigned long idx;
740
741 idx = gfn_to_index(gfn, slot->base_gfn, level);
742 return &slot->arch.lpage_info[level - 2][idx];
743 }
744
745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747 struct kvm_memory_slot *slot;
748 struct kvm_lpage_info *linfo;
749 int i;
750
751 slot = gfn_to_memslot(kvm, gfn);
752 for (i = PT_DIRECTORY_LEVEL;
753 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754 linfo = lpage_info_slot(gfn, slot, i);
755 linfo->write_count += 1;
756 }
757 kvm->arch.indirect_shadow_pages++;
758 }
759
760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762 struct kvm_memory_slot *slot;
763 struct kvm_lpage_info *linfo;
764 int i;
765
766 slot = gfn_to_memslot(kvm, gfn);
767 for (i = PT_DIRECTORY_LEVEL;
768 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769 linfo = lpage_info_slot(gfn, slot, i);
770 linfo->write_count -= 1;
771 WARN_ON(linfo->write_count < 0);
772 }
773 kvm->arch.indirect_shadow_pages--;
774 }
775
776 static int has_wrprotected_page(struct kvm *kvm,
777 gfn_t gfn,
778 int level)
779 {
780 struct kvm_memory_slot *slot;
781 struct kvm_lpage_info *linfo;
782
783 slot = gfn_to_memslot(kvm, gfn);
784 if (slot) {
785 linfo = lpage_info_slot(gfn, slot, level);
786 return linfo->write_count;
787 }
788
789 return 1;
790 }
791
792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794 unsigned long page_size;
795 int i, ret = 0;
796
797 page_size = kvm_host_page_size(kvm, gfn);
798
799 for (i = PT_PAGE_TABLE_LEVEL;
800 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 if (page_size >= KVM_HPAGE_SIZE(i))
802 ret = i;
803 else
804 break;
805 }
806
807 return ret;
808 }
809
810 static struct kvm_memory_slot *
811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
813 {
814 struct kvm_memory_slot *slot;
815
816 slot = gfn_to_memslot(vcpu->kvm, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 (no_dirty_log && slot->dirty_bitmap))
819 slot = NULL;
820
821 return slot;
822 }
823
824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828
829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831 int host_level, level, max_level;
832
833 host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835 if (host_level == PT_PAGE_TABLE_LEVEL)
836 return host_level;
837
838 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839
840 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 break;
843
844 return level - 1;
845 }
846
847 /*
848 * Pte mapping structures:
849 *
850 * If pte_list bit zero is zero, then pte_list point to the spte.
851 *
852 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853 * pte_list_desc containing more mappings.
854 *
855 * Returns the number of pte entries before the spte was added or zero if
856 * the spte was not added.
857 *
858 */
859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 unsigned long *pte_list)
861 {
862 struct pte_list_desc *desc;
863 int i, count = 0;
864
865 if (!*pte_list) {
866 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 *pte_list = (unsigned long)spte;
868 } else if (!(*pte_list & 1)) {
869 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 desc = mmu_alloc_pte_list_desc(vcpu);
871 desc->sptes[0] = (u64 *)*pte_list;
872 desc->sptes[1] = spte;
873 *pte_list = (unsigned long)desc | 1;
874 ++count;
875 } else {
876 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879 desc = desc->more;
880 count += PTE_LIST_EXT;
881 }
882 if (desc->sptes[PTE_LIST_EXT-1]) {
883 desc->more = mmu_alloc_pte_list_desc(vcpu);
884 desc = desc->more;
885 }
886 for (i = 0; desc->sptes[i]; ++i)
887 ++count;
888 desc->sptes[i] = spte;
889 }
890 return count;
891 }
892
893 static void
894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 int i, struct pte_list_desc *prev_desc)
896 {
897 int j;
898
899 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900 ;
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
903 if (j != 0)
904 return;
905 if (!prev_desc && !desc->more)
906 *pte_list = (unsigned long)desc->sptes[0];
907 else
908 if (prev_desc)
909 prev_desc->more = desc->more;
910 else
911 *pte_list = (unsigned long)desc->more | 1;
912 mmu_free_pte_list_desc(desc);
913 }
914
915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917 struct pte_list_desc *desc;
918 struct pte_list_desc *prev_desc;
919 int i;
920
921 if (!*pte_list) {
922 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923 BUG();
924 } else if (!(*pte_list & 1)) {
925 rmap_printk("pte_list_remove: %p 1->0\n", spte);
926 if ((u64 *)*pte_list != spte) {
927 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
928 BUG();
929 }
930 *pte_list = 0;
931 } else {
932 rmap_printk("pte_list_remove: %p many->many\n", spte);
933 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934 prev_desc = NULL;
935 while (desc) {
936 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937 if (desc->sptes[i] == spte) {
938 pte_list_desc_remove_entry(pte_list,
939 desc, i,
940 prev_desc);
941 return;
942 }
943 prev_desc = desc;
944 desc = desc->more;
945 }
946 pr_err("pte_list_remove: %p many->many\n", spte);
947 BUG();
948 }
949 }
950
951 typedef void (*pte_list_walk_fn) (u64 *spte);
952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954 struct pte_list_desc *desc;
955 int i;
956
957 if (!*pte_list)
958 return;
959
960 if (!(*pte_list & 1))
961 return fn((u64 *)*pte_list);
962
963 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 while (desc) {
965 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 fn(desc->sptes[i]);
967 desc = desc->more;
968 }
969 }
970
971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972 struct kvm_memory_slot *slot)
973 {
974 unsigned long idx;
975
976 idx = gfn_to_index(gfn, slot->base_gfn, level);
977 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979
980 /*
981 * Take gfn and return the reverse mapping to it.
982 */
983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
988 return __gfn_to_rmap(gfn, level, slot);
989 }
990
991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997 }
998
999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026 struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030 };
1031
1032 /*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081 }
1082
1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085 if (mmu_spte_clear_track_bits(sptep))
1086 rmap_remove(kvm, sptep);
1087 }
1088
1089
1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101 }
1102
1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
1120 *
1121 * Return true if the spte is dropped.
1122 */
1123 static bool
1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126 u64 spte = *sptep;
1127
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
1136 return true;
1137 }
1138
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
1141 spte = spte & ~PT_WRITABLE_MASK;
1142
1143 *flush |= mmu_spte_update(sptep, spte);
1144 return false;
1145 }
1146
1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148 bool pt_protect)
1149 {
1150 u64 *sptep;
1151 struct rmap_iterator iter;
1152 bool flush = false;
1153
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 sptep = rmap_get_first(*rmapp, &iter);
1158 continue;
1159 }
1160
1161 sptep = rmap_get_next(&iter);
1162 }
1163
1164 return flush;
1165 }
1166
1167 /**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
1180 {
1181 unsigned long *rmapp;
1182
1183 while (mask) {
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
1186 __rmap_write_protect(kvm, rmapp, false);
1187
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
1191 }
1192
1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195 struct kvm_memory_slot *slot;
1196 unsigned long *rmapp;
1197 int i;
1198 bool write_protected = false;
1199
1200 slot = gfn_to_memslot(kvm, gfn);
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
1205 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206 }
1207
1208 return write_protected;
1209 }
1210
1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212 struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214 u64 *sptep;
1215 struct rmap_iterator iter;
1216 int need_tlb_flush = 0;
1217
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
1223 need_tlb_flush = 1;
1224 }
1225
1226 return need_tlb_flush;
1227 }
1228
1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230 struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232 u64 *sptep;
1233 struct rmap_iterator iter;
1234 int need_flush = 0;
1235 u64 new_spte;
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
1246 need_flush = 1;
1247
1248 if (pte_write(*ptep)) {
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
1251 } else {
1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
1257 new_spte &= ~shadow_accessed_mask;
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
1262 }
1263 }
1264
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269 }
1270
1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
1277 struct kvm_memory_slot *slot,
1278 unsigned long data))
1279 {
1280 int j;
1281 int ret = 0;
1282 struct kvm_memslots *slots;
1283 struct kvm_memory_slot *memslot;
1284
1285 slots = kvm_memslots(kvm);
1286
1287 kvm_for_each_memslot(memslot, slots) {
1288 unsigned long hva_start, hva_end;
1289 gfn_t gfn_start, gfn_end;
1290
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299 */
1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
1307
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314
1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
1319 }
1320 }
1321
1322 return ret;
1323 }
1324
1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328 struct kvm_memory_slot *slot,
1329 unsigned long data))
1330 {
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333
1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338
1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343
1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348
1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350 struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352 u64 *sptep;
1353 struct rmap_iterator uninitialized_var(iter);
1354 int young = 0;
1355
1356 /*
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
1368
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
1371 BUG_ON(!is_shadow_present_pte(*sptep));
1372
1373 if (*sptep & shadow_accessed_mask) {
1374 young = 1;
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
1377 }
1378 }
1379 out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
1382 return young;
1383 }
1384
1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386 struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388 u64 *sptep;
1389 struct rmap_iterator iter;
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
1402 BUG_ON(!is_shadow_present_pte(*sptep));
1403
1404 if (*sptep & shadow_accessed_mask) {
1405 young = 1;
1406 break;
1407 }
1408 }
1409 out:
1410 return young;
1411 }
1412
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414
1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417 unsigned long *rmapp;
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
1421
1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423
1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427
1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432
1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437
1438 #ifdef MMU_DEBUG
1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441 u64 *pos;
1442 u64 *end;
1443
1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445 if (is_shadow_present_pte(*pos)) {
1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
1447 pos, *pos);
1448 return 0;
1449 }
1450 return 1;
1451 }
1452 #endif
1453
1454 /*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465
1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468 ASSERT(is_empty_shadow_page(sp->spt));
1469 hlist_del(&sp->hash_link);
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
1472 if (!sp->role.direct)
1473 free_page((unsigned long)sp->gfns);
1474 kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476
1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481
1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483 struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485 if (!parent_pte)
1486 return;
1487
1488 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490
1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492 u64 *parent_pte)
1493 {
1494 pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496
1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 u64 *parent_pte)
1499 {
1500 mmu_page_remove_parent_pte(sp, parent_pte);
1501 mmu_spte_clear_no_track(parent_pte);
1502 }
1503
1504 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 u64 *parent_pte, int direct)
1506 {
1507 struct kvm_mmu_page *sp;
1508
1509 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1511 if (!direct)
1512 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1513 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514
1515 /*
1516 * The active_mmu_pages list is the FIFO list, do not move the
1517 * page until it is zapped. kvm_zap_obsolete_pages depends on
1518 * this feature. See the comments in kvm_zap_obsolete_pages().
1519 */
1520 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1521 sp->parent_ptes = 0;
1522 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1523 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1524 return sp;
1525 }
1526
1527 static void mark_unsync(u64 *spte);
1528 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1529 {
1530 pte_list_walk(&sp->parent_ptes, mark_unsync);
1531 }
1532
1533 static void mark_unsync(u64 *spte)
1534 {
1535 struct kvm_mmu_page *sp;
1536 unsigned int index;
1537
1538 sp = page_header(__pa(spte));
1539 index = spte - sp->spt;
1540 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1541 return;
1542 if (sp->unsync_children++)
1543 return;
1544 kvm_mmu_mark_parents_unsync(sp);
1545 }
1546
1547 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1548 struct kvm_mmu_page *sp)
1549 {
1550 return 1;
1551 }
1552
1553 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1554 {
1555 }
1556
1557 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1558 struct kvm_mmu_page *sp, u64 *spte,
1559 const void *pte)
1560 {
1561 WARN_ON(1);
1562 }
1563
1564 #define KVM_PAGE_ARRAY_NR 16
1565
1566 struct kvm_mmu_pages {
1567 struct mmu_page_and_offset {
1568 struct kvm_mmu_page *sp;
1569 unsigned int idx;
1570 } page[KVM_PAGE_ARRAY_NR];
1571 unsigned int nr;
1572 };
1573
1574 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1575 int idx)
1576 {
1577 int i;
1578
1579 if (sp->unsync)
1580 for (i=0; i < pvec->nr; i++)
1581 if (pvec->page[i].sp == sp)
1582 return 0;
1583
1584 pvec->page[pvec->nr].sp = sp;
1585 pvec->page[pvec->nr].idx = idx;
1586 pvec->nr++;
1587 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1588 }
1589
1590 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1591 struct kvm_mmu_pages *pvec)
1592 {
1593 int i, ret, nr_unsync_leaf = 0;
1594
1595 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1596 struct kvm_mmu_page *child;
1597 u64 ent = sp->spt[i];
1598
1599 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1600 goto clear_child_bitmap;
1601
1602 child = page_header(ent & PT64_BASE_ADDR_MASK);
1603
1604 if (child->unsync_children) {
1605 if (mmu_pages_add(pvec, child, i))
1606 return -ENOSPC;
1607
1608 ret = __mmu_unsync_walk(child, pvec);
1609 if (!ret)
1610 goto clear_child_bitmap;
1611 else if (ret > 0)
1612 nr_unsync_leaf += ret;
1613 else
1614 return ret;
1615 } else if (child->unsync) {
1616 nr_unsync_leaf++;
1617 if (mmu_pages_add(pvec, child, i))
1618 return -ENOSPC;
1619 } else
1620 goto clear_child_bitmap;
1621
1622 continue;
1623
1624 clear_child_bitmap:
1625 __clear_bit(i, sp->unsync_child_bitmap);
1626 sp->unsync_children--;
1627 WARN_ON((int)sp->unsync_children < 0);
1628 }
1629
1630
1631 return nr_unsync_leaf;
1632 }
1633
1634 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1635 struct kvm_mmu_pages *pvec)
1636 {
1637 if (!sp->unsync_children)
1638 return 0;
1639
1640 mmu_pages_add(pvec, sp, 0);
1641 return __mmu_unsync_walk(sp, pvec);
1642 }
1643
1644 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1645 {
1646 WARN_ON(!sp->unsync);
1647 trace_kvm_mmu_sync_page(sp);
1648 sp->unsync = 0;
1649 --kvm->stat.mmu_unsync;
1650 }
1651
1652 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1653 struct list_head *invalid_list);
1654 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1655 struct list_head *invalid_list);
1656
1657 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1658 hlist_for_each_entry(_sp, \
1659 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1660 if ((_sp)->gfn != (_gfn)) {} else
1661
1662 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1663 for_each_gfn_sp(_kvm, _sp, _gfn) \
1664 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1665
1666 /* @sp->gfn should be write-protected at the call site */
1667 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1668 struct list_head *invalid_list, bool clear_unsync)
1669 {
1670 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1671 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1672 return 1;
1673 }
1674
1675 if (clear_unsync)
1676 kvm_unlink_unsync_page(vcpu->kvm, sp);
1677
1678 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1679 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1680 return 1;
1681 }
1682
1683 kvm_mmu_flush_tlb(vcpu);
1684 return 0;
1685 }
1686
1687 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1688 struct kvm_mmu_page *sp)
1689 {
1690 LIST_HEAD(invalid_list);
1691 int ret;
1692
1693 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1694 if (ret)
1695 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1696
1697 return ret;
1698 }
1699
1700 #ifdef CONFIG_KVM_MMU_AUDIT
1701 #include "mmu_audit.c"
1702 #else
1703 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1704 static void mmu_audit_disable(void) { }
1705 #endif
1706
1707 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1708 struct list_head *invalid_list)
1709 {
1710 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1711 }
1712
1713 /* @gfn should be write-protected at the call site */
1714 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1715 {
1716 struct kvm_mmu_page *s;
1717 LIST_HEAD(invalid_list);
1718 bool flush = false;
1719
1720 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1721 if (!s->unsync)
1722 continue;
1723
1724 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1725 kvm_unlink_unsync_page(vcpu->kvm, s);
1726 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1727 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1728 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1729 continue;
1730 }
1731 flush = true;
1732 }
1733
1734 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1735 if (flush)
1736 kvm_mmu_flush_tlb(vcpu);
1737 }
1738
1739 struct mmu_page_path {
1740 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1741 unsigned int idx[PT64_ROOT_LEVEL-1];
1742 };
1743
1744 #define for_each_sp(pvec, sp, parents, i) \
1745 for (i = mmu_pages_next(&pvec, &parents, -1), \
1746 sp = pvec.page[i].sp; \
1747 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1748 i = mmu_pages_next(&pvec, &parents, i))
1749
1750 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1751 struct mmu_page_path *parents,
1752 int i)
1753 {
1754 int n;
1755
1756 for (n = i+1; n < pvec->nr; n++) {
1757 struct kvm_mmu_page *sp = pvec->page[n].sp;
1758
1759 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1760 parents->idx[0] = pvec->page[n].idx;
1761 return n;
1762 }
1763
1764 parents->parent[sp->role.level-2] = sp;
1765 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1766 }
1767
1768 return n;
1769 }
1770
1771 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1772 {
1773 struct kvm_mmu_page *sp;
1774 unsigned int level = 0;
1775
1776 do {
1777 unsigned int idx = parents->idx[level];
1778
1779 sp = parents->parent[level];
1780 if (!sp)
1781 return;
1782
1783 --sp->unsync_children;
1784 WARN_ON((int)sp->unsync_children < 0);
1785 __clear_bit(idx, sp->unsync_child_bitmap);
1786 level++;
1787 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1788 }
1789
1790 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1791 struct mmu_page_path *parents,
1792 struct kvm_mmu_pages *pvec)
1793 {
1794 parents->parent[parent->role.level-1] = NULL;
1795 pvec->nr = 0;
1796 }
1797
1798 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1799 struct kvm_mmu_page *parent)
1800 {
1801 int i;
1802 struct kvm_mmu_page *sp;
1803 struct mmu_page_path parents;
1804 struct kvm_mmu_pages pages;
1805 LIST_HEAD(invalid_list);
1806
1807 kvm_mmu_pages_init(parent, &parents, &pages);
1808 while (mmu_unsync_walk(parent, &pages)) {
1809 bool protected = false;
1810
1811 for_each_sp(pages, sp, parents, i)
1812 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1813
1814 if (protected)
1815 kvm_flush_remote_tlbs(vcpu->kvm);
1816
1817 for_each_sp(pages, sp, parents, i) {
1818 kvm_sync_page(vcpu, sp, &invalid_list);
1819 mmu_pages_clear_parents(&parents);
1820 }
1821 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1822 cond_resched_lock(&vcpu->kvm->mmu_lock);
1823 kvm_mmu_pages_init(parent, &parents, &pages);
1824 }
1825 }
1826
1827 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1828 {
1829 int i;
1830
1831 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1832 sp->spt[i] = 0ull;
1833 }
1834
1835 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1836 {
1837 sp->write_flooding_count = 0;
1838 }
1839
1840 static void clear_sp_write_flooding_count(u64 *spte)
1841 {
1842 struct kvm_mmu_page *sp = page_header(__pa(spte));
1843
1844 __clear_sp_write_flooding_count(sp);
1845 }
1846
1847 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1848 {
1849 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1850 }
1851
1852 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1853 gfn_t gfn,
1854 gva_t gaddr,
1855 unsigned level,
1856 int direct,
1857 unsigned access,
1858 u64 *parent_pte)
1859 {
1860 union kvm_mmu_page_role role;
1861 unsigned quadrant;
1862 struct kvm_mmu_page *sp;
1863 bool need_sync = false;
1864
1865 role = vcpu->arch.mmu.base_role;
1866 role.level = level;
1867 role.direct = direct;
1868 if (role.direct)
1869 role.cr4_pae = 0;
1870 role.access = access;
1871 if (!vcpu->arch.mmu.direct_map
1872 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1873 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1874 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1875 role.quadrant = quadrant;
1876 }
1877 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1878 if (is_obsolete_sp(vcpu->kvm, sp))
1879 continue;
1880
1881 if (!need_sync && sp->unsync)
1882 need_sync = true;
1883
1884 if (sp->role.word != role.word)
1885 continue;
1886
1887 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1888 break;
1889
1890 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1891 if (sp->unsync_children) {
1892 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1893 kvm_mmu_mark_parents_unsync(sp);
1894 } else if (sp->unsync)
1895 kvm_mmu_mark_parents_unsync(sp);
1896
1897 __clear_sp_write_flooding_count(sp);
1898 trace_kvm_mmu_get_page(sp, false);
1899 return sp;
1900 }
1901 ++vcpu->kvm->stat.mmu_cache_miss;
1902 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1903 if (!sp)
1904 return sp;
1905 sp->gfn = gfn;
1906 sp->role = role;
1907 hlist_add_head(&sp->hash_link,
1908 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1909 if (!direct) {
1910 if (rmap_write_protect(vcpu->kvm, gfn))
1911 kvm_flush_remote_tlbs(vcpu->kvm);
1912 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1913 kvm_sync_pages(vcpu, gfn);
1914
1915 account_shadowed(vcpu->kvm, gfn);
1916 }
1917 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1918 init_shadow_page_table(sp);
1919 trace_kvm_mmu_get_page(sp, true);
1920 return sp;
1921 }
1922
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1925 {
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
1929
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1934
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1942 }
1943 }
1944
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946 {
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
1949
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1953 }
1954
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
1957 {
1958 if (is_last_spte(spte, iterator->level)) {
1959 iterator->level = 0;
1960 return;
1961 }
1962
1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964 --iterator->level;
1965 }
1966
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968 {
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1970 }
1971
1972 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973 {
1974 u64 spte;
1975
1976 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1977 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1978
1979 mmu_spte_set(sptep, spte);
1980 }
1981
1982 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1984 {
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1987
1988 /*
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1994 */
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1998
1999 drop_parent_pte(child, sptep);
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2001 }
2002 }
2003
2004 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005 u64 *spte)
2006 {
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2009
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
2012 if (is_last_spte(pte, sp->role.level)) {
2013 drop_spte(kvm, spte);
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
2018 drop_parent_pte(child, spte);
2019 }
2020 return true;
2021 }
2022
2023 if (is_mmio_spte(pte))
2024 mmu_spte_clear_no_track(spte);
2025
2026 return false;
2027 }
2028
2029 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030 struct kvm_mmu_page *sp)
2031 {
2032 unsigned i;
2033
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2036 }
2037
2038 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2039 {
2040 mmu_page_remove_parent_pte(sp, parent_pte);
2041 }
2042
2043 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2044 {
2045 u64 *sptep;
2046 struct rmap_iterator iter;
2047
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
2050 }
2051
2052 static int mmu_zap_unsync_children(struct kvm *kvm,
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
2055 {
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
2059
2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061 return 0;
2062
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2066
2067 for_each_sp(pages, sp, parents, i) {
2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069 mmu_pages_clear_parents(&parents);
2070 zapped++;
2071 }
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2073 }
2074
2075 return zapped;
2076 }
2077
2078 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
2080 {
2081 int ret;
2082
2083 trace_kvm_mmu_prepare_zap_page(sp);
2084 ++kvm->stat.mmu_shadow_zapped;
2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086 kvm_mmu_page_unlink_children(kvm, sp);
2087 kvm_mmu_unlink_parents(kvm, sp);
2088
2089 if (!sp->role.invalid && !sp->role.direct)
2090 unaccount_shadowed(kvm, sp->gfn);
2091
2092 if (sp->unsync)
2093 kvm_unlink_unsync_page(kvm, sp);
2094 if (!sp->root_count) {
2095 /* Count self */
2096 ret++;
2097 list_move(&sp->link, invalid_list);
2098 kvm_mod_used_mmu_pages(kvm, -1);
2099 } else {
2100 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2101 kvm_reload_remote_mmus(kvm);
2102 }
2103
2104 sp->role.invalid = 1;
2105 return ret;
2106 }
2107
2108 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2109 struct list_head *invalid_list)
2110 {
2111 struct kvm_mmu_page *sp, *nsp;
2112
2113 if (list_empty(invalid_list))
2114 return;
2115
2116 /*
2117 * wmb: make sure everyone sees our modifications to the page tables
2118 * rmb: make sure we see changes to vcpu->mode
2119 */
2120 smp_mb();
2121
2122 /*
2123 * Wait for all vcpus to exit guest mode and/or lockless shadow
2124 * page table walks.
2125 */
2126 kvm_flush_remote_tlbs(kvm);
2127
2128 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2129 WARN_ON(!sp->role.invalid || sp->root_count);
2130 kvm_mmu_free_page(sp);
2131 }
2132 }
2133
2134 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2135 struct list_head *invalid_list)
2136 {
2137 struct kvm_mmu_page *sp;
2138
2139 if (list_empty(&kvm->arch.active_mmu_pages))
2140 return false;
2141
2142 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2143 struct kvm_mmu_page, link);
2144 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2145
2146 return true;
2147 }
2148
2149 /*
2150 * Changing the number of mmu pages allocated to the vm
2151 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2152 */
2153 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2154 {
2155 LIST_HEAD(invalid_list);
2156
2157 spin_lock(&kvm->mmu_lock);
2158
2159 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2160 /* Need to free some mmu pages to achieve the goal. */
2161 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2162 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2163 break;
2164
2165 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2166 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2167 }
2168
2169 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2170
2171 spin_unlock(&kvm->mmu_lock);
2172 }
2173
2174 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2175 {
2176 struct kvm_mmu_page *sp;
2177 LIST_HEAD(invalid_list);
2178 int r;
2179
2180 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2181 r = 0;
2182 spin_lock(&kvm->mmu_lock);
2183 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2184 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2185 sp->role.word);
2186 r = 1;
2187 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2188 }
2189 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2190 spin_unlock(&kvm->mmu_lock);
2191
2192 return r;
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2195
2196 /*
2197 * The function is based on mtrr_type_lookup() in
2198 * arch/x86/kernel/cpu/mtrr/generic.c
2199 */
2200 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2201 u64 start, u64 end)
2202 {
2203 int i;
2204 u64 base, mask;
2205 u8 prev_match, curr_match;
2206 int num_var_ranges = KVM_NR_VAR_MTRR;
2207
2208 if (!mtrr_state->enabled)
2209 return 0xFF;
2210
2211 /* Make end inclusive end, instead of exclusive */
2212 end--;
2213
2214 /* Look in fixed ranges. Just return the type as per start */
2215 if (mtrr_state->have_fixed && (start < 0x100000)) {
2216 int idx;
2217
2218 if (start < 0x80000) {
2219 idx = 0;
2220 idx += (start >> 16);
2221 return mtrr_state->fixed_ranges[idx];
2222 } else if (start < 0xC0000) {
2223 idx = 1 * 8;
2224 idx += ((start - 0x80000) >> 14);
2225 return mtrr_state->fixed_ranges[idx];
2226 } else if (start < 0x1000000) {
2227 idx = 3 * 8;
2228 idx += ((start - 0xC0000) >> 12);
2229 return mtrr_state->fixed_ranges[idx];
2230 }
2231 }
2232
2233 /*
2234 * Look in variable ranges
2235 * Look of multiple ranges matching this address and pick type
2236 * as per MTRR precedence
2237 */
2238 if (!(mtrr_state->enabled & 2))
2239 return mtrr_state->def_type;
2240
2241 prev_match = 0xFF;
2242 for (i = 0; i < num_var_ranges; ++i) {
2243 unsigned short start_state, end_state;
2244
2245 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2246 continue;
2247
2248 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2249 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2250 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2251 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2252
2253 start_state = ((start & mask) == (base & mask));
2254 end_state = ((end & mask) == (base & mask));
2255 if (start_state != end_state)
2256 return 0xFE;
2257
2258 if ((start & mask) != (base & mask))
2259 continue;
2260
2261 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2262 if (prev_match == 0xFF) {
2263 prev_match = curr_match;
2264 continue;
2265 }
2266
2267 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2268 curr_match == MTRR_TYPE_UNCACHABLE)
2269 return MTRR_TYPE_UNCACHABLE;
2270
2271 if ((prev_match == MTRR_TYPE_WRBACK &&
2272 curr_match == MTRR_TYPE_WRTHROUGH) ||
2273 (prev_match == MTRR_TYPE_WRTHROUGH &&
2274 curr_match == MTRR_TYPE_WRBACK)) {
2275 prev_match = MTRR_TYPE_WRTHROUGH;
2276 curr_match = MTRR_TYPE_WRTHROUGH;
2277 }
2278
2279 if (prev_match != curr_match)
2280 return MTRR_TYPE_UNCACHABLE;
2281 }
2282
2283 if (prev_match != 0xFF)
2284 return prev_match;
2285
2286 return mtrr_state->def_type;
2287 }
2288
2289 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2290 {
2291 u8 mtrr;
2292
2293 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2294 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2295 if (mtrr == 0xfe || mtrr == 0xff)
2296 mtrr = MTRR_TYPE_WRBACK;
2297 return mtrr;
2298 }
2299 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2300
2301 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2302 {
2303 trace_kvm_mmu_unsync_page(sp);
2304 ++vcpu->kvm->stat.mmu_unsync;
2305 sp->unsync = 1;
2306
2307 kvm_mmu_mark_parents_unsync(sp);
2308 }
2309
2310 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2311 {
2312 struct kvm_mmu_page *s;
2313
2314 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2315 if (s->unsync)
2316 continue;
2317 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2318 __kvm_unsync_page(vcpu, s);
2319 }
2320 }
2321
2322 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2323 bool can_unsync)
2324 {
2325 struct kvm_mmu_page *s;
2326 bool need_unsync = false;
2327
2328 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2329 if (!can_unsync)
2330 return 1;
2331
2332 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2333 return 1;
2334
2335 if (!s->unsync)
2336 need_unsync = true;
2337 }
2338 if (need_unsync)
2339 kvm_unsync_pages(vcpu, gfn);
2340 return 0;
2341 }
2342
2343 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2344 unsigned pte_access, int level,
2345 gfn_t gfn, pfn_t pfn, bool speculative,
2346 bool can_unsync, bool host_writable)
2347 {
2348 u64 spte;
2349 int ret = 0;
2350
2351 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2352 return 0;
2353
2354 spte = PT_PRESENT_MASK;
2355 if (!speculative)
2356 spte |= shadow_accessed_mask;
2357
2358 if (pte_access & ACC_EXEC_MASK)
2359 spte |= shadow_x_mask;
2360 else
2361 spte |= shadow_nx_mask;
2362
2363 if (pte_access & ACC_USER_MASK)
2364 spte |= shadow_user_mask;
2365
2366 if (level > PT_PAGE_TABLE_LEVEL)
2367 spte |= PT_PAGE_SIZE_MASK;
2368 if (tdp_enabled)
2369 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2370 kvm_is_mmio_pfn(pfn));
2371
2372 if (host_writable)
2373 spte |= SPTE_HOST_WRITEABLE;
2374 else
2375 pte_access &= ~ACC_WRITE_MASK;
2376
2377 spte |= (u64)pfn << PAGE_SHIFT;
2378
2379 if (pte_access & ACC_WRITE_MASK) {
2380
2381 /*
2382 * Other vcpu creates new sp in the window between
2383 * mapping_level() and acquiring mmu-lock. We can
2384 * allow guest to retry the access, the mapping can
2385 * be fixed if guest refault.
2386 */
2387 if (level > PT_PAGE_TABLE_LEVEL &&
2388 has_wrprotected_page(vcpu->kvm, gfn, level))
2389 goto done;
2390
2391 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2392
2393 /*
2394 * Optimization: for pte sync, if spte was writable the hash
2395 * lookup is unnecessary (and expensive). Write protection
2396 * is responsibility of mmu_get_page / kvm_sync_page.
2397 * Same reasoning can be applied to dirty page accounting.
2398 */
2399 if (!can_unsync && is_writable_pte(*sptep))
2400 goto set_pte;
2401
2402 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2403 pgprintk("%s: found shadow page for %llx, marking ro\n",
2404 __func__, gfn);
2405 ret = 1;
2406 pte_access &= ~ACC_WRITE_MASK;
2407 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2408 }
2409 }
2410
2411 if (pte_access & ACC_WRITE_MASK)
2412 mark_page_dirty(vcpu->kvm, gfn);
2413
2414 set_pte:
2415 if (mmu_spte_update(sptep, spte))
2416 kvm_flush_remote_tlbs(vcpu->kvm);
2417 done:
2418 return ret;
2419 }
2420
2421 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2422 unsigned pte_access, int write_fault, int *emulate,
2423 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2424 bool host_writable)
2425 {
2426 int was_rmapped = 0;
2427 int rmap_count;
2428
2429 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2430 *sptep, write_fault, gfn);
2431
2432 if (is_rmap_spte(*sptep)) {
2433 /*
2434 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2435 * the parent of the now unreachable PTE.
2436 */
2437 if (level > PT_PAGE_TABLE_LEVEL &&
2438 !is_large_pte(*sptep)) {
2439 struct kvm_mmu_page *child;
2440 u64 pte = *sptep;
2441
2442 child = page_header(pte & PT64_BASE_ADDR_MASK);
2443 drop_parent_pte(child, sptep);
2444 kvm_flush_remote_tlbs(vcpu->kvm);
2445 } else if (pfn != spte_to_pfn(*sptep)) {
2446 pgprintk("hfn old %llx new %llx\n",
2447 spte_to_pfn(*sptep), pfn);
2448 drop_spte(vcpu->kvm, sptep);
2449 kvm_flush_remote_tlbs(vcpu->kvm);
2450 } else
2451 was_rmapped = 1;
2452 }
2453
2454 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2455 true, host_writable)) {
2456 if (write_fault)
2457 *emulate = 1;
2458 kvm_mmu_flush_tlb(vcpu);
2459 }
2460
2461 if (unlikely(is_mmio_spte(*sptep) && emulate))
2462 *emulate = 1;
2463
2464 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2465 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2466 is_large_pte(*sptep)? "2MB" : "4kB",
2467 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2468 *sptep, sptep);
2469 if (!was_rmapped && is_large_pte(*sptep))
2470 ++vcpu->kvm->stat.lpages;
2471
2472 if (is_shadow_present_pte(*sptep)) {
2473 if (!was_rmapped) {
2474 rmap_count = rmap_add(vcpu, sptep, gfn);
2475 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2476 rmap_recycle(vcpu, sptep, gfn);
2477 }
2478 }
2479
2480 kvm_release_pfn_clean(pfn);
2481 }
2482
2483 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2484 {
2485 mmu_free_roots(vcpu);
2486 }
2487
2488 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2489 {
2490 int bit7;
2491
2492 bit7 = (gpte >> 7) & 1;
2493 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2494 }
2495
2496 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2497 bool no_dirty_log)
2498 {
2499 struct kvm_memory_slot *slot;
2500
2501 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2502 if (!slot)
2503 return KVM_PFN_ERR_FAULT;
2504
2505 return gfn_to_pfn_memslot_atomic(slot, gfn);
2506 }
2507
2508 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2509 struct kvm_mmu_page *sp, u64 *spte,
2510 u64 gpte)
2511 {
2512 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2513 goto no_present;
2514
2515 if (!is_present_gpte(gpte))
2516 goto no_present;
2517
2518 if (!(gpte & PT_ACCESSED_MASK))
2519 goto no_present;
2520
2521 return false;
2522
2523 no_present:
2524 drop_spte(vcpu->kvm, spte);
2525 return true;
2526 }
2527
2528 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2529 struct kvm_mmu_page *sp,
2530 u64 *start, u64 *end)
2531 {
2532 struct page *pages[PTE_PREFETCH_NUM];
2533 unsigned access = sp->role.access;
2534 int i, ret;
2535 gfn_t gfn;
2536
2537 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2538 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2539 return -1;
2540
2541 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2542 if (ret <= 0)
2543 return -1;
2544
2545 for (i = 0; i < ret; i++, gfn++, start++)
2546 mmu_set_spte(vcpu, start, access, 0, NULL,
2547 sp->role.level, gfn, page_to_pfn(pages[i]),
2548 true, true);
2549
2550 return 0;
2551 }
2552
2553 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2554 struct kvm_mmu_page *sp, u64 *sptep)
2555 {
2556 u64 *spte, *start = NULL;
2557 int i;
2558
2559 WARN_ON(!sp->role.direct);
2560
2561 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2562 spte = sp->spt + i;
2563
2564 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2565 if (is_shadow_present_pte(*spte) || spte == sptep) {
2566 if (!start)
2567 continue;
2568 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2569 break;
2570 start = NULL;
2571 } else if (!start)
2572 start = spte;
2573 }
2574 }
2575
2576 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2577 {
2578 struct kvm_mmu_page *sp;
2579
2580 /*
2581 * Since it's no accessed bit on EPT, it's no way to
2582 * distinguish between actually accessed translations
2583 * and prefetched, so disable pte prefetch if EPT is
2584 * enabled.
2585 */
2586 if (!shadow_accessed_mask)
2587 return;
2588
2589 sp = page_header(__pa(sptep));
2590 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2591 return;
2592
2593 __direct_pte_prefetch(vcpu, sp, sptep);
2594 }
2595
2596 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2597 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2598 bool prefault)
2599 {
2600 struct kvm_shadow_walk_iterator iterator;
2601 struct kvm_mmu_page *sp;
2602 int emulate = 0;
2603 gfn_t pseudo_gfn;
2604
2605 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2606 if (iterator.level == level) {
2607 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2608 write, &emulate, level, gfn, pfn,
2609 prefault, map_writable);
2610 direct_pte_prefetch(vcpu, iterator.sptep);
2611 ++vcpu->stat.pf_fixed;
2612 break;
2613 }
2614
2615 if (!is_shadow_present_pte(*iterator.sptep)) {
2616 u64 base_addr = iterator.addr;
2617
2618 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2619 pseudo_gfn = base_addr >> PAGE_SHIFT;
2620 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2621 iterator.level - 1,
2622 1, ACC_ALL, iterator.sptep);
2623
2624 link_shadow_page(iterator.sptep, sp);
2625 }
2626 }
2627 return emulate;
2628 }
2629
2630 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2631 {
2632 siginfo_t info;
2633
2634 info.si_signo = SIGBUS;
2635 info.si_errno = 0;
2636 info.si_code = BUS_MCEERR_AR;
2637 info.si_addr = (void __user *)address;
2638 info.si_addr_lsb = PAGE_SHIFT;
2639
2640 send_sig_info(SIGBUS, &info, tsk);
2641 }
2642
2643 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2644 {
2645 /*
2646 * Do not cache the mmio info caused by writing the readonly gfn
2647 * into the spte otherwise read access on readonly gfn also can
2648 * caused mmio page fault and treat it as mmio access.
2649 * Return 1 to tell kvm to emulate it.
2650 */
2651 if (pfn == KVM_PFN_ERR_RO_FAULT)
2652 return 1;
2653
2654 if (pfn == KVM_PFN_ERR_HWPOISON) {
2655 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2656 return 0;
2657 }
2658
2659 return -EFAULT;
2660 }
2661
2662 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2663 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2664 {
2665 pfn_t pfn = *pfnp;
2666 gfn_t gfn = *gfnp;
2667 int level = *levelp;
2668
2669 /*
2670 * Check if it's a transparent hugepage. If this would be an
2671 * hugetlbfs page, level wouldn't be set to
2672 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2673 * here.
2674 */
2675 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2676 level == PT_PAGE_TABLE_LEVEL &&
2677 PageTransCompound(pfn_to_page(pfn)) &&
2678 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2679 unsigned long mask;
2680 /*
2681 * mmu_notifier_retry was successful and we hold the
2682 * mmu_lock here, so the pmd can't become splitting
2683 * from under us, and in turn
2684 * __split_huge_page_refcount() can't run from under
2685 * us and we can safely transfer the refcount from
2686 * PG_tail to PG_head as we switch the pfn to tail to
2687 * head.
2688 */
2689 *levelp = level = PT_DIRECTORY_LEVEL;
2690 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2691 VM_BUG_ON((gfn & mask) != (pfn & mask));
2692 if (pfn & mask) {
2693 gfn &= ~mask;
2694 *gfnp = gfn;
2695 kvm_release_pfn_clean(pfn);
2696 pfn &= ~mask;
2697 kvm_get_pfn(pfn);
2698 *pfnp = pfn;
2699 }
2700 }
2701 }
2702
2703 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2704 pfn_t pfn, unsigned access, int *ret_val)
2705 {
2706 bool ret = true;
2707
2708 /* The pfn is invalid, report the error! */
2709 if (unlikely(is_error_pfn(pfn))) {
2710 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2711 goto exit;
2712 }
2713
2714 if (unlikely(is_noslot_pfn(pfn)))
2715 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2716
2717 ret = false;
2718 exit:
2719 return ret;
2720 }
2721
2722 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2723 {
2724 /*
2725 * #PF can be fast only if the shadow page table is present and it
2726 * is caused by write-protect, that means we just need change the
2727 * W bit of the spte which can be done out of mmu-lock.
2728 */
2729 if (!(error_code & PFERR_PRESENT_MASK) ||
2730 !(error_code & PFERR_WRITE_MASK))
2731 return false;
2732
2733 return true;
2734 }
2735
2736 static bool
2737 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2738 {
2739 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2740 gfn_t gfn;
2741
2742 WARN_ON(!sp->role.direct);
2743
2744 /*
2745 * The gfn of direct spte is stable since it is calculated
2746 * by sp->gfn.
2747 */
2748 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2749
2750 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2751 mark_page_dirty(vcpu->kvm, gfn);
2752
2753 return true;
2754 }
2755
2756 /*
2757 * Return value:
2758 * - true: let the vcpu to access on the same address again.
2759 * - false: let the real page fault path to fix it.
2760 */
2761 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2762 u32 error_code)
2763 {
2764 struct kvm_shadow_walk_iterator iterator;
2765 bool ret = false;
2766 u64 spte = 0ull;
2767
2768 if (!page_fault_can_be_fast(vcpu, error_code))
2769 return false;
2770
2771 walk_shadow_page_lockless_begin(vcpu);
2772 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2773 if (!is_shadow_present_pte(spte) || iterator.level < level)
2774 break;
2775
2776 /*
2777 * If the mapping has been changed, let the vcpu fault on the
2778 * same address again.
2779 */
2780 if (!is_rmap_spte(spte)) {
2781 ret = true;
2782 goto exit;
2783 }
2784
2785 if (!is_last_spte(spte, level))
2786 goto exit;
2787
2788 /*
2789 * Check if it is a spurious fault caused by TLB lazily flushed.
2790 *
2791 * Need not check the access of upper level table entries since
2792 * they are always ACC_ALL.
2793 */
2794 if (is_writable_pte(spte)) {
2795 ret = true;
2796 goto exit;
2797 }
2798
2799 /*
2800 * Currently, to simplify the code, only the spte write-protected
2801 * by dirty-log can be fast fixed.
2802 */
2803 if (!spte_is_locklessly_modifiable(spte))
2804 goto exit;
2805
2806 /*
2807 * Currently, fast page fault only works for direct mapping since
2808 * the gfn is not stable for indirect shadow page.
2809 * See Documentation/virtual/kvm/locking.txt to get more detail.
2810 */
2811 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2812 exit:
2813 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2814 spte, ret);
2815 walk_shadow_page_lockless_end(vcpu);
2816
2817 return ret;
2818 }
2819
2820 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2821 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2822 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2823
2824 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2825 gfn_t gfn, bool prefault)
2826 {
2827 int r;
2828 int level;
2829 int force_pt_level;
2830 pfn_t pfn;
2831 unsigned long mmu_seq;
2832 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2833
2834 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2835 if (likely(!force_pt_level)) {
2836 level = mapping_level(vcpu, gfn);
2837 /*
2838 * This path builds a PAE pagetable - so we can map
2839 * 2mb pages at maximum. Therefore check if the level
2840 * is larger than that.
2841 */
2842 if (level > PT_DIRECTORY_LEVEL)
2843 level = PT_DIRECTORY_LEVEL;
2844
2845 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2846 } else
2847 level = PT_PAGE_TABLE_LEVEL;
2848
2849 if (fast_page_fault(vcpu, v, level, error_code))
2850 return 0;
2851
2852 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2853 smp_rmb();
2854
2855 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2856 return 0;
2857
2858 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2859 return r;
2860
2861 spin_lock(&vcpu->kvm->mmu_lock);
2862 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2863 goto out_unlock;
2864 make_mmu_pages_available(vcpu);
2865 if (likely(!force_pt_level))
2866 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2867 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2868 prefault);
2869 spin_unlock(&vcpu->kvm->mmu_lock);
2870
2871
2872 return r;
2873
2874 out_unlock:
2875 spin_unlock(&vcpu->kvm->mmu_lock);
2876 kvm_release_pfn_clean(pfn);
2877 return 0;
2878 }
2879
2880
2881 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2882 {
2883 int i;
2884 struct kvm_mmu_page *sp;
2885 LIST_HEAD(invalid_list);
2886
2887 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2888 return;
2889
2890 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2891 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2892 vcpu->arch.mmu.direct_map)) {
2893 hpa_t root = vcpu->arch.mmu.root_hpa;
2894
2895 spin_lock(&vcpu->kvm->mmu_lock);
2896 sp = page_header(root);
2897 --sp->root_count;
2898 if (!sp->root_count && sp->role.invalid) {
2899 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2900 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2901 }
2902 spin_unlock(&vcpu->kvm->mmu_lock);
2903 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2904 return;
2905 }
2906
2907 spin_lock(&vcpu->kvm->mmu_lock);
2908 for (i = 0; i < 4; ++i) {
2909 hpa_t root = vcpu->arch.mmu.pae_root[i];
2910
2911 if (root) {
2912 root &= PT64_BASE_ADDR_MASK;
2913 sp = page_header(root);
2914 --sp->root_count;
2915 if (!sp->root_count && sp->role.invalid)
2916 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2917 &invalid_list);
2918 }
2919 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2920 }
2921 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2922 spin_unlock(&vcpu->kvm->mmu_lock);
2923 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2924 }
2925
2926 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2927 {
2928 int ret = 0;
2929
2930 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2931 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2932 ret = 1;
2933 }
2934
2935 return ret;
2936 }
2937
2938 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2939 {
2940 struct kvm_mmu_page *sp;
2941 unsigned i;
2942
2943 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2944 spin_lock(&vcpu->kvm->mmu_lock);
2945 make_mmu_pages_available(vcpu);
2946 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2947 1, ACC_ALL, NULL);
2948 ++sp->root_count;
2949 spin_unlock(&vcpu->kvm->mmu_lock);
2950 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2951 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2952 for (i = 0; i < 4; ++i) {
2953 hpa_t root = vcpu->arch.mmu.pae_root[i];
2954
2955 ASSERT(!VALID_PAGE(root));
2956 spin_lock(&vcpu->kvm->mmu_lock);
2957 make_mmu_pages_available(vcpu);
2958 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2959 i << 30,
2960 PT32_ROOT_LEVEL, 1, ACC_ALL,
2961 NULL);
2962 root = __pa(sp->spt);
2963 ++sp->root_count;
2964 spin_unlock(&vcpu->kvm->mmu_lock);
2965 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2966 }
2967 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2968 } else
2969 BUG();
2970
2971 return 0;
2972 }
2973
2974 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2975 {
2976 struct kvm_mmu_page *sp;
2977 u64 pdptr, pm_mask;
2978 gfn_t root_gfn;
2979 int i;
2980
2981 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2982
2983 if (mmu_check_root(vcpu, root_gfn))
2984 return 1;
2985
2986 /*
2987 * Do we shadow a long mode page table? If so we need to
2988 * write-protect the guests page table root.
2989 */
2990 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2991 hpa_t root = vcpu->arch.mmu.root_hpa;
2992
2993 ASSERT(!VALID_PAGE(root));
2994
2995 spin_lock(&vcpu->kvm->mmu_lock);
2996 make_mmu_pages_available(vcpu);
2997 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2998 0, ACC_ALL, NULL);
2999 root = __pa(sp->spt);
3000 ++sp->root_count;
3001 spin_unlock(&vcpu->kvm->mmu_lock);
3002 vcpu->arch.mmu.root_hpa = root;
3003 return 0;
3004 }
3005
3006 /*
3007 * We shadow a 32 bit page table. This may be a legacy 2-level
3008 * or a PAE 3-level page table. In either case we need to be aware that
3009 * the shadow page table may be a PAE or a long mode page table.
3010 */
3011 pm_mask = PT_PRESENT_MASK;
3012 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3013 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3014
3015 for (i = 0; i < 4; ++i) {
3016 hpa_t root = vcpu->arch.mmu.pae_root[i];
3017
3018 ASSERT(!VALID_PAGE(root));
3019 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3020 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3021 if (!is_present_gpte(pdptr)) {
3022 vcpu->arch.mmu.pae_root[i] = 0;
3023 continue;
3024 }
3025 root_gfn = pdptr >> PAGE_SHIFT;
3026 if (mmu_check_root(vcpu, root_gfn))
3027 return 1;
3028 }
3029 spin_lock(&vcpu->kvm->mmu_lock);
3030 make_mmu_pages_available(vcpu);
3031 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3032 PT32_ROOT_LEVEL, 0,
3033 ACC_ALL, NULL);
3034 root = __pa(sp->spt);
3035 ++sp->root_count;
3036 spin_unlock(&vcpu->kvm->mmu_lock);
3037
3038 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3039 }
3040 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3041
3042 /*
3043 * If we shadow a 32 bit page table with a long mode page
3044 * table we enter this path.
3045 */
3046 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3047 if (vcpu->arch.mmu.lm_root == NULL) {
3048 /*
3049 * The additional page necessary for this is only
3050 * allocated on demand.
3051 */
3052
3053 u64 *lm_root;
3054
3055 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3056 if (lm_root == NULL)
3057 return 1;
3058
3059 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3060
3061 vcpu->arch.mmu.lm_root = lm_root;
3062 }
3063
3064 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3065 }
3066
3067 return 0;
3068 }
3069
3070 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3071 {
3072 if (vcpu->arch.mmu.direct_map)
3073 return mmu_alloc_direct_roots(vcpu);
3074 else
3075 return mmu_alloc_shadow_roots(vcpu);
3076 }
3077
3078 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3079 {
3080 int i;
3081 struct kvm_mmu_page *sp;
3082
3083 if (vcpu->arch.mmu.direct_map)
3084 return;
3085
3086 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3087 return;
3088
3089 vcpu_clear_mmio_info(vcpu, ~0ul);
3090 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3091 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3092 hpa_t root = vcpu->arch.mmu.root_hpa;
3093 sp = page_header(root);
3094 mmu_sync_children(vcpu, sp);
3095 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3096 return;
3097 }
3098 for (i = 0; i < 4; ++i) {
3099 hpa_t root = vcpu->arch.mmu.pae_root[i];
3100
3101 if (root && VALID_PAGE(root)) {
3102 root &= PT64_BASE_ADDR_MASK;
3103 sp = page_header(root);
3104 mmu_sync_children(vcpu, sp);
3105 }
3106 }
3107 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3108 }
3109
3110 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3111 {
3112 spin_lock(&vcpu->kvm->mmu_lock);
3113 mmu_sync_roots(vcpu);
3114 spin_unlock(&vcpu->kvm->mmu_lock);
3115 }
3116
3117 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3118 u32 access, struct x86_exception *exception)
3119 {
3120 if (exception)
3121 exception->error_code = 0;
3122 return vaddr;
3123 }
3124
3125 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3126 u32 access,
3127 struct x86_exception *exception)
3128 {
3129 if (exception)
3130 exception->error_code = 0;
3131 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3132 }
3133
3134 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3135 {
3136 if (direct)
3137 return vcpu_match_mmio_gpa(vcpu, addr);
3138
3139 return vcpu_match_mmio_gva(vcpu, addr);
3140 }
3141
3142
3143 /*
3144 * On direct hosts, the last spte is only allows two states
3145 * for mmio page fault:
3146 * - It is the mmio spte
3147 * - It is zapped or it is being zapped.
3148 *
3149 * This function completely checks the spte when the last spte
3150 * is not the mmio spte.
3151 */
3152 static bool check_direct_spte_mmio_pf(u64 spte)
3153 {
3154 return __check_direct_spte_mmio_pf(spte);
3155 }
3156
3157 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3158 {
3159 struct kvm_shadow_walk_iterator iterator;
3160 u64 spte = 0ull;
3161
3162 walk_shadow_page_lockless_begin(vcpu);
3163 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3164 if (!is_shadow_present_pte(spte))
3165 break;
3166 walk_shadow_page_lockless_end(vcpu);
3167
3168 return spte;
3169 }
3170
3171 /*
3172 * If it is a real mmio page fault, return 1 and emulat the instruction
3173 * directly, return 0 to let CPU fault again on the address, -1 is
3174 * returned if bug is detected.
3175 */
3176 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3177 {
3178 u64 spte;
3179
3180 if (quickly_check_mmio_pf(vcpu, addr, direct))
3181 return 1;
3182
3183 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3184
3185 if (is_mmio_spte(spte)) {
3186 gfn_t gfn = get_mmio_spte_gfn(spte);
3187 unsigned access = get_mmio_spte_access(spte);
3188
3189 if (direct)
3190 addr = 0;
3191
3192 trace_handle_mmio_page_fault(addr, gfn, access);
3193 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3194 return 1;
3195 }
3196
3197 /*
3198 * It's ok if the gva is remapped by other cpus on shadow guest,
3199 * it's a BUG if the gfn is not a mmio page.
3200 */
3201 if (direct && !check_direct_spte_mmio_pf(spte))
3202 return -1;
3203
3204 /*
3205 * If the page table is zapped by other cpus, let CPU fault again on
3206 * the address.
3207 */
3208 return 0;
3209 }
3210 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3211
3212 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3213 u32 error_code, bool direct)
3214 {
3215 int ret;
3216
3217 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3218 WARN_ON(ret < 0);
3219 return ret;
3220 }
3221
3222 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3223 u32 error_code, bool prefault)
3224 {
3225 gfn_t gfn;
3226 int r;
3227
3228 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3229
3230 if (unlikely(error_code & PFERR_RSVD_MASK))
3231 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3232
3233 r = mmu_topup_memory_caches(vcpu);
3234 if (r)
3235 return r;
3236
3237 ASSERT(vcpu);
3238 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3239
3240 gfn = gva >> PAGE_SHIFT;
3241
3242 return nonpaging_map(vcpu, gva & PAGE_MASK,
3243 error_code, gfn, prefault);
3244 }
3245
3246 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3247 {
3248 struct kvm_arch_async_pf arch;
3249
3250 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3251 arch.gfn = gfn;
3252 arch.direct_map = vcpu->arch.mmu.direct_map;
3253 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3254
3255 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3256 }
3257
3258 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3259 {
3260 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3261 kvm_event_needs_reinjection(vcpu)))
3262 return false;
3263
3264 return kvm_x86_ops->interrupt_allowed(vcpu);
3265 }
3266
3267 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3268 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3269 {
3270 bool async;
3271
3272 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3273
3274 if (!async)
3275 return false; /* *pfn has correct page already */
3276
3277 if (!prefault && can_do_async_pf(vcpu)) {
3278 trace_kvm_try_async_get_page(gva, gfn);
3279 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3280 trace_kvm_async_pf_doublefault(gva, gfn);
3281 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3282 return true;
3283 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3284 return true;
3285 }
3286
3287 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3288
3289 return false;
3290 }
3291
3292 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3293 bool prefault)
3294 {
3295 pfn_t pfn;
3296 int r;
3297 int level;
3298 int force_pt_level;
3299 gfn_t gfn = gpa >> PAGE_SHIFT;
3300 unsigned long mmu_seq;
3301 int write = error_code & PFERR_WRITE_MASK;
3302 bool map_writable;
3303
3304 ASSERT(vcpu);
3305 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3306
3307 if (unlikely(error_code & PFERR_RSVD_MASK))
3308 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3309
3310 r = mmu_topup_memory_caches(vcpu);
3311 if (r)
3312 return r;
3313
3314 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3315 if (likely(!force_pt_level)) {
3316 level = mapping_level(vcpu, gfn);
3317 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3318 } else
3319 level = PT_PAGE_TABLE_LEVEL;
3320
3321 if (fast_page_fault(vcpu, gpa, level, error_code))
3322 return 0;
3323
3324 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3325 smp_rmb();
3326
3327 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3328 return 0;
3329
3330 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3331 return r;
3332
3333 spin_lock(&vcpu->kvm->mmu_lock);
3334 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3335 goto out_unlock;
3336 make_mmu_pages_available(vcpu);
3337 if (likely(!force_pt_level))
3338 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3339 r = __direct_map(vcpu, gpa, write, map_writable,
3340 level, gfn, pfn, prefault);
3341 spin_unlock(&vcpu->kvm->mmu_lock);
3342
3343 return r;
3344
3345 out_unlock:
3346 spin_unlock(&vcpu->kvm->mmu_lock);
3347 kvm_release_pfn_clean(pfn);
3348 return 0;
3349 }
3350
3351 static void nonpaging_free(struct kvm_vcpu *vcpu)
3352 {
3353 mmu_free_roots(vcpu);
3354 }
3355
3356 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3357 struct kvm_mmu *context)
3358 {
3359 context->new_cr3 = nonpaging_new_cr3;
3360 context->page_fault = nonpaging_page_fault;
3361 context->gva_to_gpa = nonpaging_gva_to_gpa;
3362 context->free = nonpaging_free;
3363 context->sync_page = nonpaging_sync_page;
3364 context->invlpg = nonpaging_invlpg;
3365 context->update_pte = nonpaging_update_pte;
3366 context->root_level = 0;
3367 context->shadow_root_level = PT32E_ROOT_LEVEL;
3368 context->root_hpa = INVALID_PAGE;
3369 context->direct_map = true;
3370 context->nx = false;
3371 return 0;
3372 }
3373
3374 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3375 {
3376 ++vcpu->stat.tlb_flush;
3377 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3378 }
3379
3380 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3381 {
3382 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3383 mmu_free_roots(vcpu);
3384 }
3385
3386 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3387 {
3388 return kvm_read_cr3(vcpu);
3389 }
3390
3391 static void inject_page_fault(struct kvm_vcpu *vcpu,
3392 struct x86_exception *fault)
3393 {
3394 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3395 }
3396
3397 static void paging_free(struct kvm_vcpu *vcpu)
3398 {
3399 nonpaging_free(vcpu);
3400 }
3401
3402 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3403 {
3404 unsigned mask;
3405
3406 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3407
3408 mask = (unsigned)~ACC_WRITE_MASK;
3409 /* Allow write access to dirty gptes */
3410 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3411 *access &= mask;
3412 }
3413
3414 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3415 int *nr_present)
3416 {
3417 if (unlikely(is_mmio_spte(*sptep))) {
3418 if (gfn != get_mmio_spte_gfn(*sptep)) {
3419 mmu_spte_clear_no_track(sptep);
3420 return true;
3421 }
3422
3423 (*nr_present)++;
3424 mark_mmio_spte(sptep, gfn, access);
3425 return true;
3426 }
3427
3428 return false;
3429 }
3430
3431 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3432 {
3433 unsigned access;
3434
3435 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3436 access &= ~(gpte >> PT64_NX_SHIFT);
3437
3438 return access;
3439 }
3440
3441 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3442 {
3443 unsigned index;
3444
3445 index = level - 1;
3446 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3447 return mmu->last_pte_bitmap & (1 << index);
3448 }
3449
3450 #define PTTYPE 64
3451 #include "paging_tmpl.h"
3452 #undef PTTYPE
3453
3454 #define PTTYPE 32
3455 #include "paging_tmpl.h"
3456 #undef PTTYPE
3457
3458 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3459 struct kvm_mmu *context)
3460 {
3461 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3462 u64 exb_bit_rsvd = 0;
3463
3464 if (!context->nx)
3465 exb_bit_rsvd = rsvd_bits(63, 63);
3466 switch (context->root_level) {
3467 case PT32_ROOT_LEVEL:
3468 /* no rsvd bits for 2 level 4K page table entries */
3469 context->rsvd_bits_mask[0][1] = 0;
3470 context->rsvd_bits_mask[0][0] = 0;
3471 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3472
3473 if (!is_pse(vcpu)) {
3474 context->rsvd_bits_mask[1][1] = 0;
3475 break;
3476 }
3477
3478 if (is_cpuid_PSE36())
3479 /* 36bits PSE 4MB page */
3480 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3481 else
3482 /* 32 bits PSE 4MB page */
3483 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3484 break;
3485 case PT32E_ROOT_LEVEL:
3486 context->rsvd_bits_mask[0][2] =
3487 rsvd_bits(maxphyaddr, 63) |
3488 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3489 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3490 rsvd_bits(maxphyaddr, 62); /* PDE */
3491 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3492 rsvd_bits(maxphyaddr, 62); /* PTE */
3493 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3494 rsvd_bits(maxphyaddr, 62) |
3495 rsvd_bits(13, 20); /* large page */
3496 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3497 break;
3498 case PT64_ROOT_LEVEL:
3499 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3500 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3501 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3502 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3503 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3504 rsvd_bits(maxphyaddr, 51);
3505 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3506 rsvd_bits(maxphyaddr, 51);
3507 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3508 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3509 rsvd_bits(maxphyaddr, 51) |
3510 rsvd_bits(13, 29);
3511 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3512 rsvd_bits(maxphyaddr, 51) |
3513 rsvd_bits(13, 20); /* large page */
3514 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3515 break;
3516 }
3517 }
3518
3519 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3520 {
3521 unsigned bit, byte, pfec;
3522 u8 map;
3523 bool fault, x, w, u, wf, uf, ff, smep;
3524
3525 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3526 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3527 pfec = byte << 1;
3528 map = 0;
3529 wf = pfec & PFERR_WRITE_MASK;
3530 uf = pfec & PFERR_USER_MASK;
3531 ff = pfec & PFERR_FETCH_MASK;
3532 for (bit = 0; bit < 8; ++bit) {
3533 x = bit & ACC_EXEC_MASK;
3534 w = bit & ACC_WRITE_MASK;
3535 u = bit & ACC_USER_MASK;
3536
3537 /* Not really needed: !nx will cause pte.nx to fault */
3538 x |= !mmu->nx;
3539 /* Allow supervisor writes if !cr0.wp */
3540 w |= !is_write_protection(vcpu) && !uf;
3541 /* Disallow supervisor fetches of user code if cr4.smep */
3542 x &= !(smep && u && !uf);
3543
3544 fault = (ff && !x) || (uf && !u) || (wf && !w);
3545 map |= fault << bit;
3546 }
3547 mmu->permissions[byte] = map;
3548 }
3549 }
3550
3551 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3552 {
3553 u8 map;
3554 unsigned level, root_level = mmu->root_level;
3555 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3556
3557 if (root_level == PT32E_ROOT_LEVEL)
3558 --root_level;
3559 /* PT_PAGE_TABLE_LEVEL always terminates */
3560 map = 1 | (1 << ps_set_index);
3561 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3562 if (level <= PT_PDPE_LEVEL
3563 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3564 map |= 1 << (ps_set_index | (level - 1));
3565 }
3566 mmu->last_pte_bitmap = map;
3567 }
3568
3569 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3570 struct kvm_mmu *context,
3571 int level)
3572 {
3573 context->nx = is_nx(vcpu);
3574 context->root_level = level;
3575
3576 reset_rsvds_bits_mask(vcpu, context);
3577 update_permission_bitmask(vcpu, context);
3578 update_last_pte_bitmap(vcpu, context);
3579
3580 ASSERT(is_pae(vcpu));
3581 context->new_cr3 = paging_new_cr3;
3582 context->page_fault = paging64_page_fault;
3583 context->gva_to_gpa = paging64_gva_to_gpa;
3584 context->sync_page = paging64_sync_page;
3585 context->invlpg = paging64_invlpg;
3586 context->update_pte = paging64_update_pte;
3587 context->free = paging_free;
3588 context->shadow_root_level = level;
3589 context->root_hpa = INVALID_PAGE;
3590 context->direct_map = false;
3591 return 0;
3592 }
3593
3594 static int paging64_init_context(struct kvm_vcpu *vcpu,
3595 struct kvm_mmu *context)
3596 {
3597 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3598 }
3599
3600 static int paging32_init_context(struct kvm_vcpu *vcpu,
3601 struct kvm_mmu *context)
3602 {
3603 context->nx = false;
3604 context->root_level = PT32_ROOT_LEVEL;
3605
3606 reset_rsvds_bits_mask(vcpu, context);
3607 update_permission_bitmask(vcpu, context);
3608 update_last_pte_bitmap(vcpu, context);
3609
3610 context->new_cr3 = paging_new_cr3;
3611 context->page_fault = paging32_page_fault;
3612 context->gva_to_gpa = paging32_gva_to_gpa;
3613 context->free = paging_free;
3614 context->sync_page = paging32_sync_page;
3615 context->invlpg = paging32_invlpg;
3616 context->update_pte = paging32_update_pte;
3617 context->shadow_root_level = PT32E_ROOT_LEVEL;
3618 context->root_hpa = INVALID_PAGE;
3619 context->direct_map = false;
3620 return 0;
3621 }
3622
3623 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3624 struct kvm_mmu *context)
3625 {
3626 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3627 }
3628
3629 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3630 {
3631 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3632
3633 context->base_role.word = 0;
3634 context->new_cr3 = nonpaging_new_cr3;
3635 context->page_fault = tdp_page_fault;
3636 context->free = nonpaging_free;
3637 context->sync_page = nonpaging_sync_page;
3638 context->invlpg = nonpaging_invlpg;
3639 context->update_pte = nonpaging_update_pte;
3640 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3641 context->root_hpa = INVALID_PAGE;
3642 context->direct_map = true;
3643 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3644 context->get_cr3 = get_cr3;
3645 context->get_pdptr = kvm_pdptr_read;
3646 context->inject_page_fault = kvm_inject_page_fault;
3647
3648 if (!is_paging(vcpu)) {
3649 context->nx = false;
3650 context->gva_to_gpa = nonpaging_gva_to_gpa;
3651 context->root_level = 0;
3652 } else if (is_long_mode(vcpu)) {
3653 context->nx = is_nx(vcpu);
3654 context->root_level = PT64_ROOT_LEVEL;
3655 reset_rsvds_bits_mask(vcpu, context);
3656 context->gva_to_gpa = paging64_gva_to_gpa;
3657 } else if (is_pae(vcpu)) {
3658 context->nx = is_nx(vcpu);
3659 context->root_level = PT32E_ROOT_LEVEL;
3660 reset_rsvds_bits_mask(vcpu, context);
3661 context->gva_to_gpa = paging64_gva_to_gpa;
3662 } else {
3663 context->nx = false;
3664 context->root_level = PT32_ROOT_LEVEL;
3665 reset_rsvds_bits_mask(vcpu, context);
3666 context->gva_to_gpa = paging32_gva_to_gpa;
3667 }
3668
3669 update_permission_bitmask(vcpu, context);
3670 update_last_pte_bitmap(vcpu, context);
3671
3672 return 0;
3673 }
3674
3675 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3676 {
3677 int r;
3678 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3679 ASSERT(vcpu);
3680 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3681
3682 if (!is_paging(vcpu))
3683 r = nonpaging_init_context(vcpu, context);
3684 else if (is_long_mode(vcpu))
3685 r = paging64_init_context(vcpu, context);
3686 else if (is_pae(vcpu))
3687 r = paging32E_init_context(vcpu, context);
3688 else
3689 r = paging32_init_context(vcpu, context);
3690
3691 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3692 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3693 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3694 vcpu->arch.mmu.base_role.smep_andnot_wp
3695 = smep && !is_write_protection(vcpu);
3696
3697 return r;
3698 }
3699 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3700
3701 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3702 {
3703 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3704
3705 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3706 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3707 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3708 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3709
3710 return r;
3711 }
3712
3713 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3714 {
3715 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3716
3717 g_context->get_cr3 = get_cr3;
3718 g_context->get_pdptr = kvm_pdptr_read;
3719 g_context->inject_page_fault = kvm_inject_page_fault;
3720
3721 /*
3722 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3723 * translation of l2_gpa to l1_gpa addresses is done using the
3724 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3725 * functions between mmu and nested_mmu are swapped.
3726 */
3727 if (!is_paging(vcpu)) {
3728 g_context->nx = false;
3729 g_context->root_level = 0;
3730 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3731 } else if (is_long_mode(vcpu)) {
3732 g_context->nx = is_nx(vcpu);
3733 g_context->root_level = PT64_ROOT_LEVEL;
3734 reset_rsvds_bits_mask(vcpu, g_context);
3735 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3736 } else if (is_pae(vcpu)) {
3737 g_context->nx = is_nx(vcpu);
3738 g_context->root_level = PT32E_ROOT_LEVEL;
3739 reset_rsvds_bits_mask(vcpu, g_context);
3740 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3741 } else {
3742 g_context->nx = false;
3743 g_context->root_level = PT32_ROOT_LEVEL;
3744 reset_rsvds_bits_mask(vcpu, g_context);
3745 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3746 }
3747
3748 update_permission_bitmask(vcpu, g_context);
3749 update_last_pte_bitmap(vcpu, g_context);
3750
3751 return 0;
3752 }
3753
3754 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3755 {
3756 if (mmu_is_nested(vcpu))
3757 return init_kvm_nested_mmu(vcpu);
3758 else if (tdp_enabled)
3759 return init_kvm_tdp_mmu(vcpu);
3760 else
3761 return init_kvm_softmmu(vcpu);
3762 }
3763
3764 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3765 {
3766 ASSERT(vcpu);
3767 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3768 /* mmu.free() should set root_hpa = INVALID_PAGE */
3769 vcpu->arch.mmu.free(vcpu);
3770 }
3771
3772 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3773 {
3774 destroy_kvm_mmu(vcpu);
3775 return init_kvm_mmu(vcpu);
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3778
3779 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3780 {
3781 int r;
3782
3783 r = mmu_topup_memory_caches(vcpu);
3784 if (r)
3785 goto out;
3786 r = mmu_alloc_roots(vcpu);
3787 kvm_mmu_sync_roots(vcpu);
3788 if (r)
3789 goto out;
3790 /* set_cr3() should ensure TLB has been flushed */
3791 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3792 out:
3793 return r;
3794 }
3795 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3796
3797 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3798 {
3799 mmu_free_roots(vcpu);
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3802
3803 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3804 struct kvm_mmu_page *sp, u64 *spte,
3805 const void *new)
3806 {
3807 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3808 ++vcpu->kvm->stat.mmu_pde_zapped;
3809 return;
3810 }
3811
3812 ++vcpu->kvm->stat.mmu_pte_updated;
3813 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3814 }
3815
3816 static bool need_remote_flush(u64 old, u64 new)
3817 {
3818 if (!is_shadow_present_pte(old))
3819 return false;
3820 if (!is_shadow_present_pte(new))
3821 return true;
3822 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3823 return true;
3824 old ^= PT64_NX_MASK;
3825 new ^= PT64_NX_MASK;
3826 return (old & ~new & PT64_PERM_MASK) != 0;
3827 }
3828
3829 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3830 bool remote_flush, bool local_flush)
3831 {
3832 if (zap_page)
3833 return;
3834
3835 if (remote_flush)
3836 kvm_flush_remote_tlbs(vcpu->kvm);
3837 else if (local_flush)
3838 kvm_mmu_flush_tlb(vcpu);
3839 }
3840
3841 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3842 const u8 *new, int *bytes)
3843 {
3844 u64 gentry;
3845 int r;
3846
3847 /*
3848 * Assume that the pte write on a page table of the same type
3849 * as the current vcpu paging mode since we update the sptes only
3850 * when they have the same mode.
3851 */
3852 if (is_pae(vcpu) && *bytes == 4) {
3853 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3854 *gpa &= ~(gpa_t)7;
3855 *bytes = 8;
3856 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3857 if (r)
3858 gentry = 0;
3859 new = (const u8 *)&gentry;
3860 }
3861
3862 switch (*bytes) {
3863 case 4:
3864 gentry = *(const u32 *)new;
3865 break;
3866 case 8:
3867 gentry = *(const u64 *)new;
3868 break;
3869 default:
3870 gentry = 0;
3871 break;
3872 }
3873
3874 return gentry;
3875 }
3876
3877 /*
3878 * If we're seeing too many writes to a page, it may no longer be a page table,
3879 * or we may be forking, in which case it is better to unmap the page.
3880 */
3881 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3882 {
3883 /*
3884 * Skip write-flooding detected for the sp whose level is 1, because
3885 * it can become unsync, then the guest page is not write-protected.
3886 */
3887 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3888 return false;
3889
3890 return ++sp->write_flooding_count >= 3;
3891 }
3892
3893 /*
3894 * Misaligned accesses are too much trouble to fix up; also, they usually
3895 * indicate a page is not used as a page table.
3896 */
3897 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3898 int bytes)
3899 {
3900 unsigned offset, pte_size, misaligned;
3901
3902 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3903 gpa, bytes, sp->role.word);
3904
3905 offset = offset_in_page(gpa);
3906 pte_size = sp->role.cr4_pae ? 8 : 4;
3907
3908 /*
3909 * Sometimes, the OS only writes the last one bytes to update status
3910 * bits, for example, in linux, andb instruction is used in clear_bit().
3911 */
3912 if (!(offset & (pte_size - 1)) && bytes == 1)
3913 return false;
3914
3915 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3916 misaligned |= bytes < 4;
3917
3918 return misaligned;
3919 }
3920
3921 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3922 {
3923 unsigned page_offset, quadrant;
3924 u64 *spte;
3925 int level;
3926
3927 page_offset = offset_in_page(gpa);
3928 level = sp->role.level;
3929 *nspte = 1;
3930 if (!sp->role.cr4_pae) {
3931 page_offset <<= 1; /* 32->64 */
3932 /*
3933 * A 32-bit pde maps 4MB while the shadow pdes map
3934 * only 2MB. So we need to double the offset again
3935 * and zap two pdes instead of one.
3936 */
3937 if (level == PT32_ROOT_LEVEL) {
3938 page_offset &= ~7; /* kill rounding error */
3939 page_offset <<= 1;
3940 *nspte = 2;
3941 }
3942 quadrant = page_offset >> PAGE_SHIFT;
3943 page_offset &= ~PAGE_MASK;
3944 if (quadrant != sp->role.quadrant)
3945 return NULL;
3946 }
3947
3948 spte = &sp->spt[page_offset / sizeof(*spte)];
3949 return spte;
3950 }
3951
3952 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3953 const u8 *new, int bytes)
3954 {
3955 gfn_t gfn = gpa >> PAGE_SHIFT;
3956 union kvm_mmu_page_role mask = { .word = 0 };
3957 struct kvm_mmu_page *sp;
3958 LIST_HEAD(invalid_list);
3959 u64 entry, gentry, *spte;
3960 int npte;
3961 bool remote_flush, local_flush, zap_page;
3962
3963 /*
3964 * If we don't have indirect shadow pages, it means no page is
3965 * write-protected, so we can exit simply.
3966 */
3967 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3968 return;
3969
3970 zap_page = remote_flush = local_flush = false;
3971
3972 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3973
3974 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3975
3976 /*
3977 * No need to care whether allocation memory is successful
3978 * or not since pte prefetch is skiped if it does not have
3979 * enough objects in the cache.
3980 */
3981 mmu_topup_memory_caches(vcpu);
3982
3983 spin_lock(&vcpu->kvm->mmu_lock);
3984 ++vcpu->kvm->stat.mmu_pte_write;
3985 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3986
3987 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3988 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3989 if (detect_write_misaligned(sp, gpa, bytes) ||
3990 detect_write_flooding(sp)) {
3991 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3992 &invalid_list);
3993 ++vcpu->kvm->stat.mmu_flooded;
3994 continue;
3995 }
3996
3997 spte = get_written_sptes(sp, gpa, &npte);
3998 if (!spte)
3999 continue;
4000
4001 local_flush = true;
4002 while (npte--) {
4003 entry = *spte;
4004 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4005 if (gentry &&
4006 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4007 & mask.word) && rmap_can_add(vcpu))
4008 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4009 if (need_remote_flush(entry, *spte))
4010 remote_flush = true;
4011 ++spte;
4012 }
4013 }
4014 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4015 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4016 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4017 spin_unlock(&vcpu->kvm->mmu_lock);
4018 }
4019
4020 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4021 {
4022 gpa_t gpa;
4023 int r;
4024
4025 if (vcpu->arch.mmu.direct_map)
4026 return 0;
4027
4028 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4029
4030 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4031
4032 return r;
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4035
4036 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4037 {
4038 LIST_HEAD(invalid_list);
4039
4040 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4041 return;
4042
4043 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4044 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4045 break;
4046
4047 ++vcpu->kvm->stat.mmu_recycled;
4048 }
4049 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4050 }
4051
4052 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4053 {
4054 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4055 return vcpu_match_mmio_gpa(vcpu, addr);
4056
4057 return vcpu_match_mmio_gva(vcpu, addr);
4058 }
4059
4060 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4061 void *insn, int insn_len)
4062 {
4063 int r, emulation_type = EMULTYPE_RETRY;
4064 enum emulation_result er;
4065
4066 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4067 if (r < 0)
4068 goto out;
4069
4070 if (!r) {
4071 r = 1;
4072 goto out;
4073 }
4074
4075 if (is_mmio_page_fault(vcpu, cr2))
4076 emulation_type = 0;
4077
4078 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4079
4080 switch (er) {
4081 case EMULATE_DONE:
4082 return 1;
4083 case EMULATE_DO_MMIO:
4084 ++vcpu->stat.mmio_exits;
4085 /* fall through */
4086 case EMULATE_FAIL:
4087 return 0;
4088 default:
4089 BUG();
4090 }
4091 out:
4092 return r;
4093 }
4094 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4095
4096 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4097 {
4098 vcpu->arch.mmu.invlpg(vcpu, gva);
4099 kvm_mmu_flush_tlb(vcpu);
4100 ++vcpu->stat.invlpg;
4101 }
4102 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4103
4104 void kvm_enable_tdp(void)
4105 {
4106 tdp_enabled = true;
4107 }
4108 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4109
4110 void kvm_disable_tdp(void)
4111 {
4112 tdp_enabled = false;
4113 }
4114 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4115
4116 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4117 {
4118 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4119 if (vcpu->arch.mmu.lm_root != NULL)
4120 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4121 }
4122
4123 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4124 {
4125 struct page *page;
4126 int i;
4127
4128 ASSERT(vcpu);
4129
4130 /*
4131 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4132 * Therefore we need to allocate shadow page tables in the first
4133 * 4GB of memory, which happens to fit the DMA32 zone.
4134 */
4135 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4136 if (!page)
4137 return -ENOMEM;
4138
4139 vcpu->arch.mmu.pae_root = page_address(page);
4140 for (i = 0; i < 4; ++i)
4141 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4142
4143 return 0;
4144 }
4145
4146 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4147 {
4148 ASSERT(vcpu);
4149
4150 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4151 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4152 vcpu->arch.mmu.translate_gpa = translate_gpa;
4153 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4154
4155 return alloc_mmu_pages(vcpu);
4156 }
4157
4158 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4159 {
4160 ASSERT(vcpu);
4161 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4162
4163 return init_kvm_mmu(vcpu);
4164 }
4165
4166 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4167 {
4168 struct kvm_memory_slot *memslot;
4169 gfn_t last_gfn;
4170 int i;
4171
4172 memslot = id_to_memslot(kvm->memslots, slot);
4173 last_gfn = memslot->base_gfn + memslot->npages - 1;
4174
4175 spin_lock(&kvm->mmu_lock);
4176
4177 for (i = PT_PAGE_TABLE_LEVEL;
4178 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4179 unsigned long *rmapp;
4180 unsigned long last_index, index;
4181
4182 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4183 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4184
4185 for (index = 0; index <= last_index; ++index, ++rmapp) {
4186 if (*rmapp)
4187 __rmap_write_protect(kvm, rmapp, false);
4188
4189 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4190 kvm_flush_remote_tlbs(kvm);
4191 cond_resched_lock(&kvm->mmu_lock);
4192 }
4193 }
4194 }
4195
4196 kvm_flush_remote_tlbs(kvm);
4197 spin_unlock(&kvm->mmu_lock);
4198 }
4199
4200 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4201 {
4202 struct kvm_mmu_page *sp, *node;
4203 LIST_HEAD(invalid_list);
4204
4205 restart:
4206 list_for_each_entry_safe_reverse(sp, node,
4207 &kvm->arch.active_mmu_pages, link) {
4208 /*
4209 * No obsolete page exists before new created page since
4210 * active_mmu_pages is the FIFO list.
4211 */
4212 if (!is_obsolete_sp(kvm, sp))
4213 break;
4214
4215 /*
4216 * Do not repeatedly zap a root page to avoid unnecessary
4217 * KVM_REQ_MMU_RELOAD, otherwise we may not be able to
4218 * progress:
4219 * vcpu 0 vcpu 1
4220 * call vcpu_enter_guest():
4221 * 1): handle KVM_REQ_MMU_RELOAD
4222 * and require mmu-lock to
4223 * load mmu
4224 * repeat:
4225 * 1): zap root page and
4226 * send KVM_REQ_MMU_RELOAD
4227 *
4228 * 2): if (cond_resched_lock(mmu-lock))
4229 *
4230 * 2): hold mmu-lock and load mmu
4231 *
4232 * 3): see KVM_REQ_MMU_RELOAD bit
4233 * on vcpu->requests is set
4234 * then return 1 to call
4235 * vcpu_enter_guest() again.
4236 * goto repeat;
4237 *
4238 * Since we are reversely walking the list and the invalid
4239 * list will be moved to the head, skip the invalid page
4240 * can help us to avoid the infinity list walking.
4241 */
4242 if (sp->role.invalid)
4243 continue;
4244
4245 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4246 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4247 cond_resched_lock(&kvm->mmu_lock);
4248 goto restart;
4249 }
4250
4251 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4252 goto restart;
4253 }
4254
4255 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4256 }
4257
4258 /*
4259 * Fast invalidate all shadow pages and use lock-break technique
4260 * to zap obsolete pages.
4261 *
4262 * It's required when memslot is being deleted or VM is being
4263 * destroyed, in these cases, we should ensure that KVM MMU does
4264 * not use any resource of the being-deleted slot or all slots
4265 * after calling the function.
4266 */
4267 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4268 {
4269 spin_lock(&kvm->mmu_lock);
4270 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4271 kvm->arch.mmu_valid_gen++;
4272
4273 kvm_zap_obsolete_pages(kvm);
4274 spin_unlock(&kvm->mmu_lock);
4275 }
4276
4277 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4278 {
4279 struct kvm_mmu_page *sp, *node;
4280 LIST_HEAD(invalid_list);
4281
4282 spin_lock(&kvm->mmu_lock);
4283 restart:
4284 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4285 if (!sp->mmio_cached)
4286 continue;
4287 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4288 goto restart;
4289 }
4290
4291 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4292 spin_unlock(&kvm->mmu_lock);
4293 }
4294
4295 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4296 {
4297 struct kvm *kvm;
4298 int nr_to_scan = sc->nr_to_scan;
4299
4300 if (nr_to_scan == 0)
4301 goto out;
4302
4303 raw_spin_lock(&kvm_lock);
4304
4305 list_for_each_entry(kvm, &vm_list, vm_list) {
4306 int idx;
4307 LIST_HEAD(invalid_list);
4308
4309 /*
4310 * Never scan more than sc->nr_to_scan VM instances.
4311 * Will not hit this condition practically since we do not try
4312 * to shrink more than one VM and it is very unlikely to see
4313 * !n_used_mmu_pages so many times.
4314 */
4315 if (!nr_to_scan--)
4316 break;
4317 /*
4318 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4319 * here. We may skip a VM instance errorneosly, but we do not
4320 * want to shrink a VM that only started to populate its MMU
4321 * anyway.
4322 */
4323 if (!kvm->arch.n_used_mmu_pages)
4324 continue;
4325
4326 idx = srcu_read_lock(&kvm->srcu);
4327 spin_lock(&kvm->mmu_lock);
4328
4329 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4330 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4331
4332 spin_unlock(&kvm->mmu_lock);
4333 srcu_read_unlock(&kvm->srcu, idx);
4334
4335 list_move_tail(&kvm->vm_list, &vm_list);
4336 break;
4337 }
4338
4339 raw_spin_unlock(&kvm_lock);
4340
4341 out:
4342 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4343 }
4344
4345 static struct shrinker mmu_shrinker = {
4346 .shrink = mmu_shrink,
4347 .seeks = DEFAULT_SEEKS * 10,
4348 };
4349
4350 static void mmu_destroy_caches(void)
4351 {
4352 if (pte_list_desc_cache)
4353 kmem_cache_destroy(pte_list_desc_cache);
4354 if (mmu_page_header_cache)
4355 kmem_cache_destroy(mmu_page_header_cache);
4356 }
4357
4358 int kvm_mmu_module_init(void)
4359 {
4360 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4361 sizeof(struct pte_list_desc),
4362 0, 0, NULL);
4363 if (!pte_list_desc_cache)
4364 goto nomem;
4365
4366 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4367 sizeof(struct kvm_mmu_page),
4368 0, 0, NULL);
4369 if (!mmu_page_header_cache)
4370 goto nomem;
4371
4372 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4373 goto nomem;
4374
4375 register_shrinker(&mmu_shrinker);
4376
4377 return 0;
4378
4379 nomem:
4380 mmu_destroy_caches();
4381 return -ENOMEM;
4382 }
4383
4384 /*
4385 * Caculate mmu pages needed for kvm.
4386 */
4387 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4388 {
4389 unsigned int nr_mmu_pages;
4390 unsigned int nr_pages = 0;
4391 struct kvm_memslots *slots;
4392 struct kvm_memory_slot *memslot;
4393
4394 slots = kvm_memslots(kvm);
4395
4396 kvm_for_each_memslot(memslot, slots)
4397 nr_pages += memslot->npages;
4398
4399 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4400 nr_mmu_pages = max(nr_mmu_pages,
4401 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4402
4403 return nr_mmu_pages;
4404 }
4405
4406 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4407 {
4408 struct kvm_shadow_walk_iterator iterator;
4409 u64 spte;
4410 int nr_sptes = 0;
4411
4412 walk_shadow_page_lockless_begin(vcpu);
4413 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4414 sptes[iterator.level-1] = spte;
4415 nr_sptes++;
4416 if (!is_shadow_present_pte(spte))
4417 break;
4418 }
4419 walk_shadow_page_lockless_end(vcpu);
4420
4421 return nr_sptes;
4422 }
4423 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4424
4425 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4426 {
4427 ASSERT(vcpu);
4428
4429 destroy_kvm_mmu(vcpu);
4430 free_mmu_pages(vcpu);
4431 mmu_free_memory_caches(vcpu);
4432 }
4433
4434 void kvm_mmu_module_exit(void)
4435 {
4436 mmu_destroy_caches();
4437 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4438 unregister_shrinker(&mmu_shrinker);
4439 mmu_audit_disable();
4440 }