]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: Add kvm_x86_ops get_tdp_level()
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36
37 /*
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
43 */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 1;
70 #endif
71
72 #ifndef MMU_DEBUG
73 #define ASSERT(x) do { } while (0)
74 #else
75 #define ASSERT(x) \
76 if (!(x)) { \
77 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
78 __FILE__, __LINE__, #x); \
79 }
80 #endif
81
82 #define PT_FIRST_AVAIL_BITS_SHIFT 9
83 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
84
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87 #define PT64_LEVEL_BITS 9
88
89 #define PT64_LEVEL_SHIFT(level) \
90 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
91
92 #define PT64_LEVEL_MASK(level) \
93 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95 #define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LEVEL_MASK(level) \
105 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
120 | PT64_NX_MASK)
121
122 #define PFERR_PRESENT_MASK (1U << 0)
123 #define PFERR_WRITE_MASK (1U << 1)
124 #define PFERR_USER_MASK (1U << 2)
125 #define PFERR_FETCH_MASK (1U << 4)
126
127 #define PT_DIRECTORY_LEVEL 2
128 #define PT_PAGE_TABLE_LEVEL 1
129
130 #define RMAP_EXT 4
131
132 #define ACC_EXEC_MASK 1
133 #define ACC_WRITE_MASK PT_WRITABLE_MASK
134 #define ACC_USER_MASK PT_USER_MASK
135 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 struct kvm_pv_mmu_op_buffer {
138 void *ptr;
139 unsigned len;
140 unsigned processed;
141 char buf[512] __aligned(sizeof(long));
142 };
143
144 struct kvm_rmap_desc {
145 u64 *shadow_ptes[RMAP_EXT];
146 struct kvm_rmap_desc *more;
147 };
148
149 static struct kmem_cache *pte_chain_cache;
150 static struct kmem_cache *rmap_desc_cache;
151 static struct kmem_cache *mmu_page_header_cache;
152
153 static u64 __read_mostly shadow_trap_nonpresent_pte;
154 static u64 __read_mostly shadow_notrap_nonpresent_pte;
155
156 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
157 {
158 shadow_trap_nonpresent_pte = trap_pte;
159 shadow_notrap_nonpresent_pte = notrap_pte;
160 }
161 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
162
163 static int is_write_protection(struct kvm_vcpu *vcpu)
164 {
165 return vcpu->arch.cr0 & X86_CR0_WP;
166 }
167
168 static int is_cpuid_PSE36(void)
169 {
170 return 1;
171 }
172
173 static int is_nx(struct kvm_vcpu *vcpu)
174 {
175 return vcpu->arch.shadow_efer & EFER_NX;
176 }
177
178 static int is_present_pte(unsigned long pte)
179 {
180 return pte & PT_PRESENT_MASK;
181 }
182
183 static int is_shadow_present_pte(u64 pte)
184 {
185 return pte != shadow_trap_nonpresent_pte
186 && pte != shadow_notrap_nonpresent_pte;
187 }
188
189 static int is_large_pte(u64 pte)
190 {
191 return pte & PT_PAGE_SIZE_MASK;
192 }
193
194 static int is_writeble_pte(unsigned long pte)
195 {
196 return pte & PT_WRITABLE_MASK;
197 }
198
199 static int is_dirty_pte(unsigned long pte)
200 {
201 return pte & PT_DIRTY_MASK;
202 }
203
204 static int is_rmap_pte(u64 pte)
205 {
206 return is_shadow_present_pte(pte);
207 }
208
209 static pfn_t spte_to_pfn(u64 pte)
210 {
211 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
212 }
213
214 static gfn_t pse36_gfn_delta(u32 gpte)
215 {
216 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
217
218 return (gpte & PT32_DIR_PSE36_MASK) << shift;
219 }
220
221 static void set_shadow_pte(u64 *sptep, u64 spte)
222 {
223 #ifdef CONFIG_X86_64
224 set_64bit((unsigned long *)sptep, spte);
225 #else
226 set_64bit((unsigned long long *)sptep, spte);
227 #endif
228 }
229
230 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
231 struct kmem_cache *base_cache, int min)
232 {
233 void *obj;
234
235 if (cache->nobjs >= min)
236 return 0;
237 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
238 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
239 if (!obj)
240 return -ENOMEM;
241 cache->objects[cache->nobjs++] = obj;
242 }
243 return 0;
244 }
245
246 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
247 {
248 while (mc->nobjs)
249 kfree(mc->objects[--mc->nobjs]);
250 }
251
252 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
253 int min)
254 {
255 struct page *page;
256
257 if (cache->nobjs >= min)
258 return 0;
259 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
260 page = alloc_page(GFP_KERNEL);
261 if (!page)
262 return -ENOMEM;
263 set_page_private(page, 0);
264 cache->objects[cache->nobjs++] = page_address(page);
265 }
266 return 0;
267 }
268
269 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
270 {
271 while (mc->nobjs)
272 free_page((unsigned long)mc->objects[--mc->nobjs]);
273 }
274
275 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
276 {
277 int r;
278
279 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
280 pte_chain_cache, 4);
281 if (r)
282 goto out;
283 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
284 rmap_desc_cache, 1);
285 if (r)
286 goto out;
287 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
288 if (r)
289 goto out;
290 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
291 mmu_page_header_cache, 4);
292 out:
293 return r;
294 }
295
296 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
297 {
298 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
299 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
300 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
301 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
302 }
303
304 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
305 size_t size)
306 {
307 void *p;
308
309 BUG_ON(!mc->nobjs);
310 p = mc->objects[--mc->nobjs];
311 memset(p, 0, size);
312 return p;
313 }
314
315 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
316 {
317 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
318 sizeof(struct kvm_pte_chain));
319 }
320
321 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
322 {
323 kfree(pc);
324 }
325
326 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
327 {
328 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
329 sizeof(struct kvm_rmap_desc));
330 }
331
332 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
333 {
334 kfree(rd);
335 }
336
337 /*
338 * Return the pointer to the largepage write count for a given
339 * gfn, handling slots that are not large page aligned.
340 */
341 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
342 {
343 unsigned long idx;
344
345 idx = (gfn / KVM_PAGES_PER_HPAGE) -
346 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
347 return &slot->lpage_info[idx].write_count;
348 }
349
350 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
351 {
352 int *write_count;
353
354 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
355 *write_count += 1;
356 WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
357 }
358
359 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
360 {
361 int *write_count;
362
363 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
364 *write_count -= 1;
365 WARN_ON(*write_count < 0);
366 }
367
368 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
369 {
370 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
371 int *largepage_idx;
372
373 if (slot) {
374 largepage_idx = slot_largepage_idx(gfn, slot);
375 return *largepage_idx;
376 }
377
378 return 1;
379 }
380
381 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
382 {
383 struct vm_area_struct *vma;
384 unsigned long addr;
385
386 addr = gfn_to_hva(kvm, gfn);
387 if (kvm_is_error_hva(addr))
388 return 0;
389
390 vma = find_vma(current->mm, addr);
391 if (vma && is_vm_hugetlb_page(vma))
392 return 1;
393
394 return 0;
395 }
396
397 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
398 {
399 struct kvm_memory_slot *slot;
400
401 if (has_wrprotected_page(vcpu->kvm, large_gfn))
402 return 0;
403
404 if (!host_largepage_backed(vcpu->kvm, large_gfn))
405 return 0;
406
407 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
408 if (slot && slot->dirty_bitmap)
409 return 0;
410
411 return 1;
412 }
413
414 /*
415 * Take gfn and return the reverse mapping to it.
416 * Note: gfn must be unaliased before this function get called
417 */
418
419 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
420 {
421 struct kvm_memory_slot *slot;
422 unsigned long idx;
423
424 slot = gfn_to_memslot(kvm, gfn);
425 if (!lpage)
426 return &slot->rmap[gfn - slot->base_gfn];
427
428 idx = (gfn / KVM_PAGES_PER_HPAGE) -
429 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
430
431 return &slot->lpage_info[idx].rmap_pde;
432 }
433
434 /*
435 * Reverse mapping data structures:
436 *
437 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
438 * that points to page_address(page).
439 *
440 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
441 * containing more mappings.
442 */
443 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
444 {
445 struct kvm_mmu_page *sp;
446 struct kvm_rmap_desc *desc;
447 unsigned long *rmapp;
448 int i;
449
450 if (!is_rmap_pte(*spte))
451 return;
452 gfn = unalias_gfn(vcpu->kvm, gfn);
453 sp = page_header(__pa(spte));
454 sp->gfns[spte - sp->spt] = gfn;
455 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
456 if (!*rmapp) {
457 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
458 *rmapp = (unsigned long)spte;
459 } else if (!(*rmapp & 1)) {
460 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
461 desc = mmu_alloc_rmap_desc(vcpu);
462 desc->shadow_ptes[0] = (u64 *)*rmapp;
463 desc->shadow_ptes[1] = spte;
464 *rmapp = (unsigned long)desc | 1;
465 } else {
466 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
467 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
468 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
469 desc = desc->more;
470 if (desc->shadow_ptes[RMAP_EXT-1]) {
471 desc->more = mmu_alloc_rmap_desc(vcpu);
472 desc = desc->more;
473 }
474 for (i = 0; desc->shadow_ptes[i]; ++i)
475 ;
476 desc->shadow_ptes[i] = spte;
477 }
478 }
479
480 static void rmap_desc_remove_entry(unsigned long *rmapp,
481 struct kvm_rmap_desc *desc,
482 int i,
483 struct kvm_rmap_desc *prev_desc)
484 {
485 int j;
486
487 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
488 ;
489 desc->shadow_ptes[i] = desc->shadow_ptes[j];
490 desc->shadow_ptes[j] = NULL;
491 if (j != 0)
492 return;
493 if (!prev_desc && !desc->more)
494 *rmapp = (unsigned long)desc->shadow_ptes[0];
495 else
496 if (prev_desc)
497 prev_desc->more = desc->more;
498 else
499 *rmapp = (unsigned long)desc->more | 1;
500 mmu_free_rmap_desc(desc);
501 }
502
503 static void rmap_remove(struct kvm *kvm, u64 *spte)
504 {
505 struct kvm_rmap_desc *desc;
506 struct kvm_rmap_desc *prev_desc;
507 struct kvm_mmu_page *sp;
508 pfn_t pfn;
509 unsigned long *rmapp;
510 int i;
511
512 if (!is_rmap_pte(*spte))
513 return;
514 sp = page_header(__pa(spte));
515 pfn = spte_to_pfn(*spte);
516 if (*spte & PT_ACCESSED_MASK)
517 kvm_set_pfn_accessed(pfn);
518 if (is_writeble_pte(*spte))
519 kvm_release_pfn_dirty(pfn);
520 else
521 kvm_release_pfn_clean(pfn);
522 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
523 if (!*rmapp) {
524 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
525 BUG();
526 } else if (!(*rmapp & 1)) {
527 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
528 if ((u64 *)*rmapp != spte) {
529 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
530 spte, *spte);
531 BUG();
532 }
533 *rmapp = 0;
534 } else {
535 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
536 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
537 prev_desc = NULL;
538 while (desc) {
539 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
540 if (desc->shadow_ptes[i] == spte) {
541 rmap_desc_remove_entry(rmapp,
542 desc, i,
543 prev_desc);
544 return;
545 }
546 prev_desc = desc;
547 desc = desc->more;
548 }
549 BUG();
550 }
551 }
552
553 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
554 {
555 struct kvm_rmap_desc *desc;
556 struct kvm_rmap_desc *prev_desc;
557 u64 *prev_spte;
558 int i;
559
560 if (!*rmapp)
561 return NULL;
562 else if (!(*rmapp & 1)) {
563 if (!spte)
564 return (u64 *)*rmapp;
565 return NULL;
566 }
567 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
568 prev_desc = NULL;
569 prev_spte = NULL;
570 while (desc) {
571 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
572 if (prev_spte == spte)
573 return desc->shadow_ptes[i];
574 prev_spte = desc->shadow_ptes[i];
575 }
576 desc = desc->more;
577 }
578 return NULL;
579 }
580
581 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
582 {
583 unsigned long *rmapp;
584 u64 *spte;
585 int write_protected = 0;
586
587 gfn = unalias_gfn(kvm, gfn);
588 rmapp = gfn_to_rmap(kvm, gfn, 0);
589
590 spte = rmap_next(kvm, rmapp, NULL);
591 while (spte) {
592 BUG_ON(!spte);
593 BUG_ON(!(*spte & PT_PRESENT_MASK));
594 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
595 if (is_writeble_pte(*spte)) {
596 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
597 write_protected = 1;
598 }
599 spte = rmap_next(kvm, rmapp, spte);
600 }
601 if (write_protected) {
602 pfn_t pfn;
603
604 spte = rmap_next(kvm, rmapp, NULL);
605 pfn = spte_to_pfn(*spte);
606 kvm_set_pfn_dirty(pfn);
607 }
608
609 /* check for huge page mappings */
610 rmapp = gfn_to_rmap(kvm, gfn, 1);
611 spte = rmap_next(kvm, rmapp, NULL);
612 while (spte) {
613 BUG_ON(!spte);
614 BUG_ON(!(*spte & PT_PRESENT_MASK));
615 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
616 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
617 if (is_writeble_pte(*spte)) {
618 rmap_remove(kvm, spte);
619 --kvm->stat.lpages;
620 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
621 write_protected = 1;
622 }
623 spte = rmap_next(kvm, rmapp, spte);
624 }
625
626 if (write_protected)
627 kvm_flush_remote_tlbs(kvm);
628
629 account_shadowed(kvm, gfn);
630 }
631
632 #ifdef MMU_DEBUG
633 static int is_empty_shadow_page(u64 *spt)
634 {
635 u64 *pos;
636 u64 *end;
637
638 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
639 if (*pos != shadow_trap_nonpresent_pte) {
640 printk(KERN_ERR "%s: %p %llx\n", __func__,
641 pos, *pos);
642 return 0;
643 }
644 return 1;
645 }
646 #endif
647
648 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
649 {
650 ASSERT(is_empty_shadow_page(sp->spt));
651 list_del(&sp->link);
652 __free_page(virt_to_page(sp->spt));
653 __free_page(virt_to_page(sp->gfns));
654 kfree(sp);
655 ++kvm->arch.n_free_mmu_pages;
656 }
657
658 static unsigned kvm_page_table_hashfn(gfn_t gfn)
659 {
660 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
661 }
662
663 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
664 u64 *parent_pte)
665 {
666 struct kvm_mmu_page *sp;
667
668 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
669 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
670 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
671 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
672 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
673 ASSERT(is_empty_shadow_page(sp->spt));
674 sp->slot_bitmap = 0;
675 sp->multimapped = 0;
676 sp->parent_pte = parent_pte;
677 --vcpu->kvm->arch.n_free_mmu_pages;
678 return sp;
679 }
680
681 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
682 struct kvm_mmu_page *sp, u64 *parent_pte)
683 {
684 struct kvm_pte_chain *pte_chain;
685 struct hlist_node *node;
686 int i;
687
688 if (!parent_pte)
689 return;
690 if (!sp->multimapped) {
691 u64 *old = sp->parent_pte;
692
693 if (!old) {
694 sp->parent_pte = parent_pte;
695 return;
696 }
697 sp->multimapped = 1;
698 pte_chain = mmu_alloc_pte_chain(vcpu);
699 INIT_HLIST_HEAD(&sp->parent_ptes);
700 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
701 pte_chain->parent_ptes[0] = old;
702 }
703 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
704 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
705 continue;
706 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
707 if (!pte_chain->parent_ptes[i]) {
708 pte_chain->parent_ptes[i] = parent_pte;
709 return;
710 }
711 }
712 pte_chain = mmu_alloc_pte_chain(vcpu);
713 BUG_ON(!pte_chain);
714 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
715 pte_chain->parent_ptes[0] = parent_pte;
716 }
717
718 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
719 u64 *parent_pte)
720 {
721 struct kvm_pte_chain *pte_chain;
722 struct hlist_node *node;
723 int i;
724
725 if (!sp->multimapped) {
726 BUG_ON(sp->parent_pte != parent_pte);
727 sp->parent_pte = NULL;
728 return;
729 }
730 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
731 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
732 if (!pte_chain->parent_ptes[i])
733 break;
734 if (pte_chain->parent_ptes[i] != parent_pte)
735 continue;
736 while (i + 1 < NR_PTE_CHAIN_ENTRIES
737 && pte_chain->parent_ptes[i + 1]) {
738 pte_chain->parent_ptes[i]
739 = pte_chain->parent_ptes[i + 1];
740 ++i;
741 }
742 pte_chain->parent_ptes[i] = NULL;
743 if (i == 0) {
744 hlist_del(&pte_chain->link);
745 mmu_free_pte_chain(pte_chain);
746 if (hlist_empty(&sp->parent_ptes)) {
747 sp->multimapped = 0;
748 sp->parent_pte = NULL;
749 }
750 }
751 return;
752 }
753 BUG();
754 }
755
756 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
757 {
758 unsigned index;
759 struct hlist_head *bucket;
760 struct kvm_mmu_page *sp;
761 struct hlist_node *node;
762
763 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
764 index = kvm_page_table_hashfn(gfn);
765 bucket = &kvm->arch.mmu_page_hash[index];
766 hlist_for_each_entry(sp, node, bucket, hash_link)
767 if (sp->gfn == gfn && !sp->role.metaphysical
768 && !sp->role.invalid) {
769 pgprintk("%s: found role %x\n",
770 __func__, sp->role.word);
771 return sp;
772 }
773 return NULL;
774 }
775
776 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
777 gfn_t gfn,
778 gva_t gaddr,
779 unsigned level,
780 int metaphysical,
781 unsigned access,
782 u64 *parent_pte)
783 {
784 union kvm_mmu_page_role role;
785 unsigned index;
786 unsigned quadrant;
787 struct hlist_head *bucket;
788 struct kvm_mmu_page *sp;
789 struct hlist_node *node;
790
791 role.word = 0;
792 role.glevels = vcpu->arch.mmu.root_level;
793 role.level = level;
794 role.metaphysical = metaphysical;
795 role.access = access;
796 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
797 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
798 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
799 role.quadrant = quadrant;
800 }
801 pgprintk("%s: looking gfn %lx role %x\n", __func__,
802 gfn, role.word);
803 index = kvm_page_table_hashfn(gfn);
804 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
805 hlist_for_each_entry(sp, node, bucket, hash_link)
806 if (sp->gfn == gfn && sp->role.word == role.word) {
807 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
808 pgprintk("%s: found\n", __func__);
809 return sp;
810 }
811 ++vcpu->kvm->stat.mmu_cache_miss;
812 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
813 if (!sp)
814 return sp;
815 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
816 sp->gfn = gfn;
817 sp->role = role;
818 hlist_add_head(&sp->hash_link, bucket);
819 if (!metaphysical)
820 rmap_write_protect(vcpu->kvm, gfn);
821 vcpu->arch.mmu.prefetch_page(vcpu, sp);
822 return sp;
823 }
824
825 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
826 struct kvm_mmu_page *sp)
827 {
828 unsigned i;
829 u64 *pt;
830 u64 ent;
831
832 pt = sp->spt;
833
834 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
835 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
836 if (is_shadow_present_pte(pt[i]))
837 rmap_remove(kvm, &pt[i]);
838 pt[i] = shadow_trap_nonpresent_pte;
839 }
840 kvm_flush_remote_tlbs(kvm);
841 return;
842 }
843
844 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
845 ent = pt[i];
846
847 if (is_shadow_present_pte(ent)) {
848 if (!is_large_pte(ent)) {
849 ent &= PT64_BASE_ADDR_MASK;
850 mmu_page_remove_parent_pte(page_header(ent),
851 &pt[i]);
852 } else {
853 --kvm->stat.lpages;
854 rmap_remove(kvm, &pt[i]);
855 }
856 }
857 pt[i] = shadow_trap_nonpresent_pte;
858 }
859 kvm_flush_remote_tlbs(kvm);
860 }
861
862 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
863 {
864 mmu_page_remove_parent_pte(sp, parent_pte);
865 }
866
867 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
868 {
869 int i;
870
871 for (i = 0; i < KVM_MAX_VCPUS; ++i)
872 if (kvm->vcpus[i])
873 kvm->vcpus[i]->arch.last_pte_updated = NULL;
874 }
875
876 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
877 {
878 u64 *parent_pte;
879
880 ++kvm->stat.mmu_shadow_zapped;
881 while (sp->multimapped || sp->parent_pte) {
882 if (!sp->multimapped)
883 parent_pte = sp->parent_pte;
884 else {
885 struct kvm_pte_chain *chain;
886
887 chain = container_of(sp->parent_ptes.first,
888 struct kvm_pte_chain, link);
889 parent_pte = chain->parent_ptes[0];
890 }
891 BUG_ON(!parent_pte);
892 kvm_mmu_put_page(sp, parent_pte);
893 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
894 }
895 kvm_mmu_page_unlink_children(kvm, sp);
896 if (!sp->root_count) {
897 if (!sp->role.metaphysical)
898 unaccount_shadowed(kvm, sp->gfn);
899 hlist_del(&sp->hash_link);
900 kvm_mmu_free_page(kvm, sp);
901 } else {
902 list_move(&sp->link, &kvm->arch.active_mmu_pages);
903 sp->role.invalid = 1;
904 kvm_reload_remote_mmus(kvm);
905 }
906 kvm_mmu_reset_last_pte_updated(kvm);
907 }
908
909 /*
910 * Changing the number of mmu pages allocated to the vm
911 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
912 */
913 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
914 {
915 /*
916 * If we set the number of mmu pages to be smaller be than the
917 * number of actived pages , we must to free some mmu pages before we
918 * change the value
919 */
920
921 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
922 kvm_nr_mmu_pages) {
923 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
924 - kvm->arch.n_free_mmu_pages;
925
926 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
927 struct kvm_mmu_page *page;
928
929 page = container_of(kvm->arch.active_mmu_pages.prev,
930 struct kvm_mmu_page, link);
931 kvm_mmu_zap_page(kvm, page);
932 n_used_mmu_pages--;
933 }
934 kvm->arch.n_free_mmu_pages = 0;
935 }
936 else
937 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
938 - kvm->arch.n_alloc_mmu_pages;
939
940 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
941 }
942
943 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
944 {
945 unsigned index;
946 struct hlist_head *bucket;
947 struct kvm_mmu_page *sp;
948 struct hlist_node *node, *n;
949 int r;
950
951 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
952 r = 0;
953 index = kvm_page_table_hashfn(gfn);
954 bucket = &kvm->arch.mmu_page_hash[index];
955 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
956 if (sp->gfn == gfn && !sp->role.metaphysical) {
957 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
958 sp->role.word);
959 kvm_mmu_zap_page(kvm, sp);
960 r = 1;
961 }
962 return r;
963 }
964
965 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
966 {
967 struct kvm_mmu_page *sp;
968
969 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
970 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
971 kvm_mmu_zap_page(kvm, sp);
972 }
973 }
974
975 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
976 {
977 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
978 struct kvm_mmu_page *sp = page_header(__pa(pte));
979
980 __set_bit(slot, &sp->slot_bitmap);
981 }
982
983 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
984 {
985 struct page *page;
986
987 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
988
989 if (gpa == UNMAPPED_GVA)
990 return NULL;
991
992 down_read(&current->mm->mmap_sem);
993 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
994 up_read(&current->mm->mmap_sem);
995
996 return page;
997 }
998
999 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1000 unsigned pt_access, unsigned pte_access,
1001 int user_fault, int write_fault, int dirty,
1002 int *ptwrite, int largepage, gfn_t gfn,
1003 pfn_t pfn, bool speculative)
1004 {
1005 u64 spte;
1006 int was_rmapped = 0;
1007 int was_writeble = is_writeble_pte(*shadow_pte);
1008
1009 pgprintk("%s: spte %llx access %x write_fault %d"
1010 " user_fault %d gfn %lx\n",
1011 __func__, *shadow_pte, pt_access,
1012 write_fault, user_fault, gfn);
1013
1014 if (is_rmap_pte(*shadow_pte)) {
1015 /*
1016 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1017 * the parent of the now unreachable PTE.
1018 */
1019 if (largepage && !is_large_pte(*shadow_pte)) {
1020 struct kvm_mmu_page *child;
1021 u64 pte = *shadow_pte;
1022
1023 child = page_header(pte & PT64_BASE_ADDR_MASK);
1024 mmu_page_remove_parent_pte(child, shadow_pte);
1025 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1026 pgprintk("hfn old %lx new %lx\n",
1027 spte_to_pfn(*shadow_pte), pfn);
1028 rmap_remove(vcpu->kvm, shadow_pte);
1029 } else {
1030 if (largepage)
1031 was_rmapped = is_large_pte(*shadow_pte);
1032 else
1033 was_rmapped = 1;
1034 }
1035 }
1036
1037 /*
1038 * We don't set the accessed bit, since we sometimes want to see
1039 * whether the guest actually used the pte (in order to detect
1040 * demand paging).
1041 */
1042 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
1043 if (!speculative)
1044 pte_access |= PT_ACCESSED_MASK;
1045 if (!dirty)
1046 pte_access &= ~ACC_WRITE_MASK;
1047 if (!(pte_access & ACC_EXEC_MASK))
1048 spte |= PT64_NX_MASK;
1049
1050 spte |= PT_PRESENT_MASK;
1051 if (pte_access & ACC_USER_MASK)
1052 spte |= PT_USER_MASK;
1053 if (largepage)
1054 spte |= PT_PAGE_SIZE_MASK;
1055
1056 spte |= (u64)pfn << PAGE_SHIFT;
1057
1058 if ((pte_access & ACC_WRITE_MASK)
1059 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1060 struct kvm_mmu_page *shadow;
1061
1062 spte |= PT_WRITABLE_MASK;
1063 if (user_fault) {
1064 mmu_unshadow(vcpu->kvm, gfn);
1065 goto unshadowed;
1066 }
1067
1068 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1069 if (shadow ||
1070 (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1071 pgprintk("%s: found shadow page for %lx, marking ro\n",
1072 __func__, gfn);
1073 pte_access &= ~ACC_WRITE_MASK;
1074 if (is_writeble_pte(spte)) {
1075 spte &= ~PT_WRITABLE_MASK;
1076 kvm_x86_ops->tlb_flush(vcpu);
1077 }
1078 if (write_fault)
1079 *ptwrite = 1;
1080 }
1081 }
1082
1083 unshadowed:
1084
1085 if (pte_access & ACC_WRITE_MASK)
1086 mark_page_dirty(vcpu->kvm, gfn);
1087
1088 pgprintk("%s: setting spte %llx\n", __func__, spte);
1089 pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1090 (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1091 (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1092 set_shadow_pte(shadow_pte, spte);
1093 if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1094 && (spte & PT_PRESENT_MASK))
1095 ++vcpu->kvm->stat.lpages;
1096
1097 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1098 if (!was_rmapped) {
1099 rmap_add(vcpu, shadow_pte, gfn, largepage);
1100 if (!is_rmap_pte(*shadow_pte))
1101 kvm_release_pfn_clean(pfn);
1102 } else {
1103 if (was_writeble)
1104 kvm_release_pfn_dirty(pfn);
1105 else
1106 kvm_release_pfn_clean(pfn);
1107 }
1108 if (!ptwrite || !*ptwrite)
1109 vcpu->arch.last_pte_updated = shadow_pte;
1110 }
1111
1112 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1113 {
1114 }
1115
1116 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1117 int largepage, gfn_t gfn, pfn_t pfn,
1118 int level)
1119 {
1120 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1121 int pt_write = 0;
1122
1123 for (; ; level--) {
1124 u32 index = PT64_INDEX(v, level);
1125 u64 *table;
1126
1127 ASSERT(VALID_PAGE(table_addr));
1128 table = __va(table_addr);
1129
1130 if (level == 1) {
1131 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1132 0, write, 1, &pt_write, 0, gfn, pfn, false);
1133 return pt_write;
1134 }
1135
1136 if (largepage && level == 2) {
1137 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1138 0, write, 1, &pt_write, 1, gfn, pfn, false);
1139 return pt_write;
1140 }
1141
1142 if (table[index] == shadow_trap_nonpresent_pte) {
1143 struct kvm_mmu_page *new_table;
1144 gfn_t pseudo_gfn;
1145
1146 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1147 >> PAGE_SHIFT;
1148 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1149 v, level - 1,
1150 1, ACC_ALL, &table[index]);
1151 if (!new_table) {
1152 pgprintk("nonpaging_map: ENOMEM\n");
1153 kvm_release_pfn_clean(pfn);
1154 return -ENOMEM;
1155 }
1156
1157 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1158 | PT_WRITABLE_MASK | PT_USER_MASK;
1159 }
1160 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1161 }
1162 }
1163
1164 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1165 {
1166 int r;
1167 int largepage = 0;
1168 pfn_t pfn;
1169
1170 down_read(&current->mm->mmap_sem);
1171 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1172 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1173 largepage = 1;
1174 }
1175
1176 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1177 up_read(&current->mm->mmap_sem);
1178
1179 /* mmio */
1180 if (is_error_pfn(pfn)) {
1181 kvm_release_pfn_clean(pfn);
1182 return 1;
1183 }
1184
1185 spin_lock(&vcpu->kvm->mmu_lock);
1186 kvm_mmu_free_some_pages(vcpu);
1187 r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
1188 PT32E_ROOT_LEVEL);
1189 spin_unlock(&vcpu->kvm->mmu_lock);
1190
1191
1192 return r;
1193 }
1194
1195
1196 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1197 struct kvm_mmu_page *sp)
1198 {
1199 int i;
1200
1201 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1202 sp->spt[i] = shadow_trap_nonpresent_pte;
1203 }
1204
1205 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1206 {
1207 int i;
1208 struct kvm_mmu_page *sp;
1209
1210 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1211 return;
1212 spin_lock(&vcpu->kvm->mmu_lock);
1213 #ifdef CONFIG_X86_64
1214 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1215 hpa_t root = vcpu->arch.mmu.root_hpa;
1216
1217 sp = page_header(root);
1218 --sp->root_count;
1219 if (!sp->root_count && sp->role.invalid)
1220 kvm_mmu_zap_page(vcpu->kvm, sp);
1221 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1222 spin_unlock(&vcpu->kvm->mmu_lock);
1223 return;
1224 }
1225 #endif
1226 for (i = 0; i < 4; ++i) {
1227 hpa_t root = vcpu->arch.mmu.pae_root[i];
1228
1229 if (root) {
1230 root &= PT64_BASE_ADDR_MASK;
1231 sp = page_header(root);
1232 --sp->root_count;
1233 if (!sp->root_count && sp->role.invalid)
1234 kvm_mmu_zap_page(vcpu->kvm, sp);
1235 }
1236 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1237 }
1238 spin_unlock(&vcpu->kvm->mmu_lock);
1239 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1240 }
1241
1242 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1243 {
1244 int i;
1245 gfn_t root_gfn;
1246 struct kvm_mmu_page *sp;
1247 int metaphysical = 0;
1248
1249 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1250
1251 #ifdef CONFIG_X86_64
1252 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1253 hpa_t root = vcpu->arch.mmu.root_hpa;
1254
1255 ASSERT(!VALID_PAGE(root));
1256 if (tdp_enabled)
1257 metaphysical = 1;
1258 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1259 PT64_ROOT_LEVEL, metaphysical,
1260 ACC_ALL, NULL);
1261 root = __pa(sp->spt);
1262 ++sp->root_count;
1263 vcpu->arch.mmu.root_hpa = root;
1264 return;
1265 }
1266 #endif
1267 metaphysical = !is_paging(vcpu);
1268 if (tdp_enabled)
1269 metaphysical = 1;
1270 for (i = 0; i < 4; ++i) {
1271 hpa_t root = vcpu->arch.mmu.pae_root[i];
1272
1273 ASSERT(!VALID_PAGE(root));
1274 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1275 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1276 vcpu->arch.mmu.pae_root[i] = 0;
1277 continue;
1278 }
1279 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1280 } else if (vcpu->arch.mmu.root_level == 0)
1281 root_gfn = 0;
1282 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1283 PT32_ROOT_LEVEL, metaphysical,
1284 ACC_ALL, NULL);
1285 root = __pa(sp->spt);
1286 ++sp->root_count;
1287 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1288 }
1289 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1290 }
1291
1292 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1293 {
1294 return vaddr;
1295 }
1296
1297 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1298 u32 error_code)
1299 {
1300 gfn_t gfn;
1301 int r;
1302
1303 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1304 r = mmu_topup_memory_caches(vcpu);
1305 if (r)
1306 return r;
1307
1308 ASSERT(vcpu);
1309 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1310
1311 gfn = gva >> PAGE_SHIFT;
1312
1313 return nonpaging_map(vcpu, gva & PAGE_MASK,
1314 error_code & PFERR_WRITE_MASK, gfn);
1315 }
1316
1317 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1318 u32 error_code)
1319 {
1320 pfn_t pfn;
1321 int r;
1322 int largepage = 0;
1323 gfn_t gfn = gpa >> PAGE_SHIFT;
1324
1325 ASSERT(vcpu);
1326 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1327
1328 r = mmu_topup_memory_caches(vcpu);
1329 if (r)
1330 return r;
1331
1332 down_read(&current->mm->mmap_sem);
1333 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1334 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1335 largepage = 1;
1336 }
1337 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1338 up_read(&current->mm->mmap_sem);
1339 if (is_error_pfn(pfn)) {
1340 kvm_release_pfn_clean(pfn);
1341 return 1;
1342 }
1343 spin_lock(&vcpu->kvm->mmu_lock);
1344 kvm_mmu_free_some_pages(vcpu);
1345 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1346 largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
1347 spin_unlock(&vcpu->kvm->mmu_lock);
1348
1349 return r;
1350 }
1351
1352 static void nonpaging_free(struct kvm_vcpu *vcpu)
1353 {
1354 mmu_free_roots(vcpu);
1355 }
1356
1357 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1358 {
1359 struct kvm_mmu *context = &vcpu->arch.mmu;
1360
1361 context->new_cr3 = nonpaging_new_cr3;
1362 context->page_fault = nonpaging_page_fault;
1363 context->gva_to_gpa = nonpaging_gva_to_gpa;
1364 context->free = nonpaging_free;
1365 context->prefetch_page = nonpaging_prefetch_page;
1366 context->root_level = 0;
1367 context->shadow_root_level = PT32E_ROOT_LEVEL;
1368 context->root_hpa = INVALID_PAGE;
1369 return 0;
1370 }
1371
1372 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1373 {
1374 ++vcpu->stat.tlb_flush;
1375 kvm_x86_ops->tlb_flush(vcpu);
1376 }
1377
1378 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1379 {
1380 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1381 mmu_free_roots(vcpu);
1382 }
1383
1384 static void inject_page_fault(struct kvm_vcpu *vcpu,
1385 u64 addr,
1386 u32 err_code)
1387 {
1388 kvm_inject_page_fault(vcpu, addr, err_code);
1389 }
1390
1391 static void paging_free(struct kvm_vcpu *vcpu)
1392 {
1393 nonpaging_free(vcpu);
1394 }
1395
1396 #define PTTYPE 64
1397 #include "paging_tmpl.h"
1398 #undef PTTYPE
1399
1400 #define PTTYPE 32
1401 #include "paging_tmpl.h"
1402 #undef PTTYPE
1403
1404 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1405 {
1406 struct kvm_mmu *context = &vcpu->arch.mmu;
1407
1408 ASSERT(is_pae(vcpu));
1409 context->new_cr3 = paging_new_cr3;
1410 context->page_fault = paging64_page_fault;
1411 context->gva_to_gpa = paging64_gva_to_gpa;
1412 context->prefetch_page = paging64_prefetch_page;
1413 context->free = paging_free;
1414 context->root_level = level;
1415 context->shadow_root_level = level;
1416 context->root_hpa = INVALID_PAGE;
1417 return 0;
1418 }
1419
1420 static int paging64_init_context(struct kvm_vcpu *vcpu)
1421 {
1422 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1423 }
1424
1425 static int paging32_init_context(struct kvm_vcpu *vcpu)
1426 {
1427 struct kvm_mmu *context = &vcpu->arch.mmu;
1428
1429 context->new_cr3 = paging_new_cr3;
1430 context->page_fault = paging32_page_fault;
1431 context->gva_to_gpa = paging32_gva_to_gpa;
1432 context->free = paging_free;
1433 context->prefetch_page = paging32_prefetch_page;
1434 context->root_level = PT32_ROOT_LEVEL;
1435 context->shadow_root_level = PT32E_ROOT_LEVEL;
1436 context->root_hpa = INVALID_PAGE;
1437 return 0;
1438 }
1439
1440 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1441 {
1442 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1443 }
1444
1445 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1446 {
1447 struct kvm_mmu *context = &vcpu->arch.mmu;
1448
1449 context->new_cr3 = nonpaging_new_cr3;
1450 context->page_fault = tdp_page_fault;
1451 context->free = nonpaging_free;
1452 context->prefetch_page = nonpaging_prefetch_page;
1453 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
1454 context->root_hpa = INVALID_PAGE;
1455
1456 if (!is_paging(vcpu)) {
1457 context->gva_to_gpa = nonpaging_gva_to_gpa;
1458 context->root_level = 0;
1459 } else if (is_long_mode(vcpu)) {
1460 context->gva_to_gpa = paging64_gva_to_gpa;
1461 context->root_level = PT64_ROOT_LEVEL;
1462 } else if (is_pae(vcpu)) {
1463 context->gva_to_gpa = paging64_gva_to_gpa;
1464 context->root_level = PT32E_ROOT_LEVEL;
1465 } else {
1466 context->gva_to_gpa = paging32_gva_to_gpa;
1467 context->root_level = PT32_ROOT_LEVEL;
1468 }
1469
1470 return 0;
1471 }
1472
1473 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1474 {
1475 ASSERT(vcpu);
1476 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1477
1478 if (!is_paging(vcpu))
1479 return nonpaging_init_context(vcpu);
1480 else if (is_long_mode(vcpu))
1481 return paging64_init_context(vcpu);
1482 else if (is_pae(vcpu))
1483 return paging32E_init_context(vcpu);
1484 else
1485 return paging32_init_context(vcpu);
1486 }
1487
1488 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1489 {
1490 vcpu->arch.update_pte.pfn = bad_pfn;
1491
1492 if (tdp_enabled)
1493 return init_kvm_tdp_mmu(vcpu);
1494 else
1495 return init_kvm_softmmu(vcpu);
1496 }
1497
1498 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1499 {
1500 ASSERT(vcpu);
1501 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1502 vcpu->arch.mmu.free(vcpu);
1503 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1504 }
1505 }
1506
1507 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1508 {
1509 destroy_kvm_mmu(vcpu);
1510 return init_kvm_mmu(vcpu);
1511 }
1512 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1513
1514 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1515 {
1516 int r;
1517
1518 r = mmu_topup_memory_caches(vcpu);
1519 if (r)
1520 goto out;
1521 spin_lock(&vcpu->kvm->mmu_lock);
1522 kvm_mmu_free_some_pages(vcpu);
1523 mmu_alloc_roots(vcpu);
1524 spin_unlock(&vcpu->kvm->mmu_lock);
1525 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1526 kvm_mmu_flush_tlb(vcpu);
1527 out:
1528 return r;
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1531
1532 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1533 {
1534 mmu_free_roots(vcpu);
1535 }
1536
1537 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1538 struct kvm_mmu_page *sp,
1539 u64 *spte)
1540 {
1541 u64 pte;
1542 struct kvm_mmu_page *child;
1543
1544 pte = *spte;
1545 if (is_shadow_present_pte(pte)) {
1546 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1547 is_large_pte(pte))
1548 rmap_remove(vcpu->kvm, spte);
1549 else {
1550 child = page_header(pte & PT64_BASE_ADDR_MASK);
1551 mmu_page_remove_parent_pte(child, spte);
1552 }
1553 }
1554 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1555 if (is_large_pte(pte))
1556 --vcpu->kvm->stat.lpages;
1557 }
1558
1559 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1560 struct kvm_mmu_page *sp,
1561 u64 *spte,
1562 const void *new)
1563 {
1564 if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
1565 && !vcpu->arch.update_pte.largepage) {
1566 ++vcpu->kvm->stat.mmu_pde_zapped;
1567 return;
1568 }
1569
1570 ++vcpu->kvm->stat.mmu_pte_updated;
1571 if (sp->role.glevels == PT32_ROOT_LEVEL)
1572 paging32_update_pte(vcpu, sp, spte, new);
1573 else
1574 paging64_update_pte(vcpu, sp, spte, new);
1575 }
1576
1577 static bool need_remote_flush(u64 old, u64 new)
1578 {
1579 if (!is_shadow_present_pte(old))
1580 return false;
1581 if (!is_shadow_present_pte(new))
1582 return true;
1583 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1584 return true;
1585 old ^= PT64_NX_MASK;
1586 new ^= PT64_NX_MASK;
1587 return (old & ~new & PT64_PERM_MASK) != 0;
1588 }
1589
1590 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1591 {
1592 if (need_remote_flush(old, new))
1593 kvm_flush_remote_tlbs(vcpu->kvm);
1594 else
1595 kvm_mmu_flush_tlb(vcpu);
1596 }
1597
1598 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1599 {
1600 u64 *spte = vcpu->arch.last_pte_updated;
1601
1602 return !!(spte && (*spte & PT_ACCESSED_MASK));
1603 }
1604
1605 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1606 const u8 *new, int bytes)
1607 {
1608 gfn_t gfn;
1609 int r;
1610 u64 gpte = 0;
1611 pfn_t pfn;
1612
1613 vcpu->arch.update_pte.largepage = 0;
1614
1615 if (bytes != 4 && bytes != 8)
1616 return;
1617
1618 /*
1619 * Assume that the pte write on a page table of the same type
1620 * as the current vcpu paging mode. This is nearly always true
1621 * (might be false while changing modes). Note it is verified later
1622 * by update_pte().
1623 */
1624 if (is_pae(vcpu)) {
1625 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1626 if ((bytes == 4) && (gpa % 4 == 0)) {
1627 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1628 if (r)
1629 return;
1630 memcpy((void *)&gpte + (gpa % 8), new, 4);
1631 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1632 memcpy((void *)&gpte, new, 8);
1633 }
1634 } else {
1635 if ((bytes == 4) && (gpa % 4 == 0))
1636 memcpy((void *)&gpte, new, 4);
1637 }
1638 if (!is_present_pte(gpte))
1639 return;
1640 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1641
1642 down_read(&current->mm->mmap_sem);
1643 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1644 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1645 vcpu->arch.update_pte.largepage = 1;
1646 }
1647 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1648 up_read(&current->mm->mmap_sem);
1649
1650 if (is_error_pfn(pfn)) {
1651 kvm_release_pfn_clean(pfn);
1652 return;
1653 }
1654 vcpu->arch.update_pte.gfn = gfn;
1655 vcpu->arch.update_pte.pfn = pfn;
1656 }
1657
1658 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1659 const u8 *new, int bytes)
1660 {
1661 gfn_t gfn = gpa >> PAGE_SHIFT;
1662 struct kvm_mmu_page *sp;
1663 struct hlist_node *node, *n;
1664 struct hlist_head *bucket;
1665 unsigned index;
1666 u64 entry, gentry;
1667 u64 *spte;
1668 unsigned offset = offset_in_page(gpa);
1669 unsigned pte_size;
1670 unsigned page_offset;
1671 unsigned misaligned;
1672 unsigned quadrant;
1673 int level;
1674 int flooded = 0;
1675 int npte;
1676 int r;
1677
1678 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1679 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1680 spin_lock(&vcpu->kvm->mmu_lock);
1681 kvm_mmu_free_some_pages(vcpu);
1682 ++vcpu->kvm->stat.mmu_pte_write;
1683 kvm_mmu_audit(vcpu, "pre pte write");
1684 if (gfn == vcpu->arch.last_pt_write_gfn
1685 && !last_updated_pte_accessed(vcpu)) {
1686 ++vcpu->arch.last_pt_write_count;
1687 if (vcpu->arch.last_pt_write_count >= 3)
1688 flooded = 1;
1689 } else {
1690 vcpu->arch.last_pt_write_gfn = gfn;
1691 vcpu->arch.last_pt_write_count = 1;
1692 vcpu->arch.last_pte_updated = NULL;
1693 }
1694 index = kvm_page_table_hashfn(gfn);
1695 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1696 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1697 if (sp->gfn != gfn || sp->role.metaphysical)
1698 continue;
1699 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1700 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1701 misaligned |= bytes < 4;
1702 if (misaligned || flooded) {
1703 /*
1704 * Misaligned accesses are too much trouble to fix
1705 * up; also, they usually indicate a page is not used
1706 * as a page table.
1707 *
1708 * If we're seeing too many writes to a page,
1709 * it may no longer be a page table, or we may be
1710 * forking, in which case it is better to unmap the
1711 * page.
1712 */
1713 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1714 gpa, bytes, sp->role.word);
1715 kvm_mmu_zap_page(vcpu->kvm, sp);
1716 ++vcpu->kvm->stat.mmu_flooded;
1717 continue;
1718 }
1719 page_offset = offset;
1720 level = sp->role.level;
1721 npte = 1;
1722 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1723 page_offset <<= 1; /* 32->64 */
1724 /*
1725 * A 32-bit pde maps 4MB while the shadow pdes map
1726 * only 2MB. So we need to double the offset again
1727 * and zap two pdes instead of one.
1728 */
1729 if (level == PT32_ROOT_LEVEL) {
1730 page_offset &= ~7; /* kill rounding error */
1731 page_offset <<= 1;
1732 npte = 2;
1733 }
1734 quadrant = page_offset >> PAGE_SHIFT;
1735 page_offset &= ~PAGE_MASK;
1736 if (quadrant != sp->role.quadrant)
1737 continue;
1738 }
1739 spte = &sp->spt[page_offset / sizeof(*spte)];
1740 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1741 gentry = 0;
1742 r = kvm_read_guest_atomic(vcpu->kvm,
1743 gpa & ~(u64)(pte_size - 1),
1744 &gentry, pte_size);
1745 new = (const void *)&gentry;
1746 if (r < 0)
1747 new = NULL;
1748 }
1749 while (npte--) {
1750 entry = *spte;
1751 mmu_pte_write_zap_pte(vcpu, sp, spte);
1752 if (new)
1753 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1754 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1755 ++spte;
1756 }
1757 }
1758 kvm_mmu_audit(vcpu, "post pte write");
1759 spin_unlock(&vcpu->kvm->mmu_lock);
1760 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
1761 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
1762 vcpu->arch.update_pte.pfn = bad_pfn;
1763 }
1764 }
1765
1766 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1767 {
1768 gpa_t gpa;
1769 int r;
1770
1771 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1772
1773 spin_lock(&vcpu->kvm->mmu_lock);
1774 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1775 spin_unlock(&vcpu->kvm->mmu_lock);
1776 return r;
1777 }
1778
1779 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1780 {
1781 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1782 struct kvm_mmu_page *sp;
1783
1784 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1785 struct kvm_mmu_page, link);
1786 kvm_mmu_zap_page(vcpu->kvm, sp);
1787 ++vcpu->kvm->stat.mmu_recycled;
1788 }
1789 }
1790
1791 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1792 {
1793 int r;
1794 enum emulation_result er;
1795
1796 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1797 if (r < 0)
1798 goto out;
1799
1800 if (!r) {
1801 r = 1;
1802 goto out;
1803 }
1804
1805 r = mmu_topup_memory_caches(vcpu);
1806 if (r)
1807 goto out;
1808
1809 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1810
1811 switch (er) {
1812 case EMULATE_DONE:
1813 return 1;
1814 case EMULATE_DO_MMIO:
1815 ++vcpu->stat.mmio_exits;
1816 return 0;
1817 case EMULATE_FAIL:
1818 kvm_report_emulation_failure(vcpu, "pagetable");
1819 return 1;
1820 default:
1821 BUG();
1822 }
1823 out:
1824 return r;
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1827
1828 void kvm_enable_tdp(void)
1829 {
1830 tdp_enabled = true;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1833
1834 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1835 {
1836 struct kvm_mmu_page *sp;
1837
1838 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1839 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1840 struct kvm_mmu_page, link);
1841 kvm_mmu_zap_page(vcpu->kvm, sp);
1842 }
1843 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1844 }
1845
1846 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1847 {
1848 struct page *page;
1849 int i;
1850
1851 ASSERT(vcpu);
1852
1853 if (vcpu->kvm->arch.n_requested_mmu_pages)
1854 vcpu->kvm->arch.n_free_mmu_pages =
1855 vcpu->kvm->arch.n_requested_mmu_pages;
1856 else
1857 vcpu->kvm->arch.n_free_mmu_pages =
1858 vcpu->kvm->arch.n_alloc_mmu_pages;
1859 /*
1860 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1861 * Therefore we need to allocate shadow page tables in the first
1862 * 4GB of memory, which happens to fit the DMA32 zone.
1863 */
1864 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1865 if (!page)
1866 goto error_1;
1867 vcpu->arch.mmu.pae_root = page_address(page);
1868 for (i = 0; i < 4; ++i)
1869 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1870
1871 return 0;
1872
1873 error_1:
1874 free_mmu_pages(vcpu);
1875 return -ENOMEM;
1876 }
1877
1878 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1879 {
1880 ASSERT(vcpu);
1881 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1882
1883 return alloc_mmu_pages(vcpu);
1884 }
1885
1886 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1887 {
1888 ASSERT(vcpu);
1889 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1890
1891 return init_kvm_mmu(vcpu);
1892 }
1893
1894 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1895 {
1896 ASSERT(vcpu);
1897
1898 destroy_kvm_mmu(vcpu);
1899 free_mmu_pages(vcpu);
1900 mmu_free_memory_caches(vcpu);
1901 }
1902
1903 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1904 {
1905 struct kvm_mmu_page *sp;
1906
1907 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1908 int i;
1909 u64 *pt;
1910
1911 if (!test_bit(slot, &sp->slot_bitmap))
1912 continue;
1913
1914 pt = sp->spt;
1915 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1916 /* avoid RMW */
1917 if (pt[i] & PT_WRITABLE_MASK)
1918 pt[i] &= ~PT_WRITABLE_MASK;
1919 }
1920 }
1921
1922 void kvm_mmu_zap_all(struct kvm *kvm)
1923 {
1924 struct kvm_mmu_page *sp, *node;
1925
1926 spin_lock(&kvm->mmu_lock);
1927 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1928 kvm_mmu_zap_page(kvm, sp);
1929 spin_unlock(&kvm->mmu_lock);
1930
1931 kvm_flush_remote_tlbs(kvm);
1932 }
1933
1934 void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
1935 {
1936 struct kvm_mmu_page *page;
1937
1938 page = container_of(kvm->arch.active_mmu_pages.prev,
1939 struct kvm_mmu_page, link);
1940 kvm_mmu_zap_page(kvm, page);
1941 }
1942
1943 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
1944 {
1945 struct kvm *kvm;
1946 struct kvm *kvm_freed = NULL;
1947 int cache_count = 0;
1948
1949 spin_lock(&kvm_lock);
1950
1951 list_for_each_entry(kvm, &vm_list, vm_list) {
1952 int npages;
1953
1954 spin_lock(&kvm->mmu_lock);
1955 npages = kvm->arch.n_alloc_mmu_pages -
1956 kvm->arch.n_free_mmu_pages;
1957 cache_count += npages;
1958 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
1959 kvm_mmu_remove_one_alloc_mmu_page(kvm);
1960 cache_count--;
1961 kvm_freed = kvm;
1962 }
1963 nr_to_scan--;
1964
1965 spin_unlock(&kvm->mmu_lock);
1966 }
1967 if (kvm_freed)
1968 list_move_tail(&kvm_freed->vm_list, &vm_list);
1969
1970 spin_unlock(&kvm_lock);
1971
1972 return cache_count;
1973 }
1974
1975 static struct shrinker mmu_shrinker = {
1976 .shrink = mmu_shrink,
1977 .seeks = DEFAULT_SEEKS * 10,
1978 };
1979
1980 void mmu_destroy_caches(void)
1981 {
1982 if (pte_chain_cache)
1983 kmem_cache_destroy(pte_chain_cache);
1984 if (rmap_desc_cache)
1985 kmem_cache_destroy(rmap_desc_cache);
1986 if (mmu_page_header_cache)
1987 kmem_cache_destroy(mmu_page_header_cache);
1988 }
1989
1990 void kvm_mmu_module_exit(void)
1991 {
1992 mmu_destroy_caches();
1993 unregister_shrinker(&mmu_shrinker);
1994 }
1995
1996 int kvm_mmu_module_init(void)
1997 {
1998 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1999 sizeof(struct kvm_pte_chain),
2000 0, 0, NULL);
2001 if (!pte_chain_cache)
2002 goto nomem;
2003 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2004 sizeof(struct kvm_rmap_desc),
2005 0, 0, NULL);
2006 if (!rmap_desc_cache)
2007 goto nomem;
2008
2009 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2010 sizeof(struct kvm_mmu_page),
2011 0, 0, NULL);
2012 if (!mmu_page_header_cache)
2013 goto nomem;
2014
2015 register_shrinker(&mmu_shrinker);
2016
2017 return 0;
2018
2019 nomem:
2020 mmu_destroy_caches();
2021 return -ENOMEM;
2022 }
2023
2024 /*
2025 * Caculate mmu pages needed for kvm.
2026 */
2027 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2028 {
2029 int i;
2030 unsigned int nr_mmu_pages;
2031 unsigned int nr_pages = 0;
2032
2033 for (i = 0; i < kvm->nmemslots; i++)
2034 nr_pages += kvm->memslots[i].npages;
2035
2036 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2037 nr_mmu_pages = max(nr_mmu_pages,
2038 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2039
2040 return nr_mmu_pages;
2041 }
2042
2043 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2044 unsigned len)
2045 {
2046 if (len > buffer->len)
2047 return NULL;
2048 return buffer->ptr;
2049 }
2050
2051 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2052 unsigned len)
2053 {
2054 void *ret;
2055
2056 ret = pv_mmu_peek_buffer(buffer, len);
2057 if (!ret)
2058 return ret;
2059 buffer->ptr += len;
2060 buffer->len -= len;
2061 buffer->processed += len;
2062 return ret;
2063 }
2064
2065 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2066 gpa_t addr, gpa_t value)
2067 {
2068 int bytes = 8;
2069 int r;
2070
2071 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2072 bytes = 4;
2073
2074 r = mmu_topup_memory_caches(vcpu);
2075 if (r)
2076 return r;
2077
2078 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2079 return -EFAULT;
2080
2081 return 1;
2082 }
2083
2084 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2085 {
2086 kvm_x86_ops->tlb_flush(vcpu);
2087 return 1;
2088 }
2089
2090 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2091 {
2092 spin_lock(&vcpu->kvm->mmu_lock);
2093 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2094 spin_unlock(&vcpu->kvm->mmu_lock);
2095 return 1;
2096 }
2097
2098 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2099 struct kvm_pv_mmu_op_buffer *buffer)
2100 {
2101 struct kvm_mmu_op_header *header;
2102
2103 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2104 if (!header)
2105 return 0;
2106 switch (header->op) {
2107 case KVM_MMU_OP_WRITE_PTE: {
2108 struct kvm_mmu_op_write_pte *wpte;
2109
2110 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2111 if (!wpte)
2112 return 0;
2113 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2114 wpte->pte_val);
2115 }
2116 case KVM_MMU_OP_FLUSH_TLB: {
2117 struct kvm_mmu_op_flush_tlb *ftlb;
2118
2119 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2120 if (!ftlb)
2121 return 0;
2122 return kvm_pv_mmu_flush_tlb(vcpu);
2123 }
2124 case KVM_MMU_OP_RELEASE_PT: {
2125 struct kvm_mmu_op_release_pt *rpt;
2126
2127 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2128 if (!rpt)
2129 return 0;
2130 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2131 }
2132 default: return 0;
2133 }
2134 }
2135
2136 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2137 gpa_t addr, unsigned long *ret)
2138 {
2139 int r;
2140 struct kvm_pv_mmu_op_buffer buffer;
2141
2142 buffer.ptr = buffer.buf;
2143 buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
2144 buffer.processed = 0;
2145
2146 r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
2147 if (r)
2148 goto out;
2149
2150 while (buffer.len) {
2151 r = kvm_pv_mmu_op_one(vcpu, &buffer);
2152 if (r < 0)
2153 goto out;
2154 if (r == 0)
2155 break;
2156 }
2157
2158 r = 1;
2159 out:
2160 *ret = buffer.processed;
2161 return r;
2162 }
2163
2164 #ifdef AUDIT
2165
2166 static const char *audit_msg;
2167
2168 static gva_t canonicalize(gva_t gva)
2169 {
2170 #ifdef CONFIG_X86_64
2171 gva = (long long)(gva << 16) >> 16;
2172 #endif
2173 return gva;
2174 }
2175
2176 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2177 gva_t va, int level)
2178 {
2179 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2180 int i;
2181 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2182
2183 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2184 u64 ent = pt[i];
2185
2186 if (ent == shadow_trap_nonpresent_pte)
2187 continue;
2188
2189 va = canonicalize(va);
2190 if (level > 1) {
2191 if (ent == shadow_notrap_nonpresent_pte)
2192 printk(KERN_ERR "audit: (%s) nontrapping pte"
2193 " in nonleaf level: levels %d gva %lx"
2194 " level %d pte %llx\n", audit_msg,
2195 vcpu->arch.mmu.root_level, va, level, ent);
2196
2197 audit_mappings_page(vcpu, ent, va, level - 1);
2198 } else {
2199 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2200 hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
2201
2202 if (is_shadow_present_pte(ent)
2203 && (ent & PT64_BASE_ADDR_MASK) != hpa)
2204 printk(KERN_ERR "xx audit error: (%s) levels %d"
2205 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2206 audit_msg, vcpu->arch.mmu.root_level,
2207 va, gpa, hpa, ent,
2208 is_shadow_present_pte(ent));
2209 else if (ent == shadow_notrap_nonpresent_pte
2210 && !is_error_hpa(hpa))
2211 printk(KERN_ERR "audit: (%s) notrap shadow,"
2212 " valid guest gva %lx\n", audit_msg, va);
2213 kvm_release_pfn_clean(pfn);
2214
2215 }
2216 }
2217 }
2218
2219 static void audit_mappings(struct kvm_vcpu *vcpu)
2220 {
2221 unsigned i;
2222
2223 if (vcpu->arch.mmu.root_level == 4)
2224 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2225 else
2226 for (i = 0; i < 4; ++i)
2227 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2228 audit_mappings_page(vcpu,
2229 vcpu->arch.mmu.pae_root[i],
2230 i << 30,
2231 2);
2232 }
2233
2234 static int count_rmaps(struct kvm_vcpu *vcpu)
2235 {
2236 int nmaps = 0;
2237 int i, j, k;
2238
2239 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2240 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2241 struct kvm_rmap_desc *d;
2242
2243 for (j = 0; j < m->npages; ++j) {
2244 unsigned long *rmapp = &m->rmap[j];
2245
2246 if (!*rmapp)
2247 continue;
2248 if (!(*rmapp & 1)) {
2249 ++nmaps;
2250 continue;
2251 }
2252 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2253 while (d) {
2254 for (k = 0; k < RMAP_EXT; ++k)
2255 if (d->shadow_ptes[k])
2256 ++nmaps;
2257 else
2258 break;
2259 d = d->more;
2260 }
2261 }
2262 }
2263 return nmaps;
2264 }
2265
2266 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2267 {
2268 int nmaps = 0;
2269 struct kvm_mmu_page *sp;
2270 int i;
2271
2272 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2273 u64 *pt = sp->spt;
2274
2275 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2276 continue;
2277
2278 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2279 u64 ent = pt[i];
2280
2281 if (!(ent & PT_PRESENT_MASK))
2282 continue;
2283 if (!(ent & PT_WRITABLE_MASK))
2284 continue;
2285 ++nmaps;
2286 }
2287 }
2288 return nmaps;
2289 }
2290
2291 static void audit_rmap(struct kvm_vcpu *vcpu)
2292 {
2293 int n_rmap = count_rmaps(vcpu);
2294 int n_actual = count_writable_mappings(vcpu);
2295
2296 if (n_rmap != n_actual)
2297 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2298 __func__, audit_msg, n_rmap, n_actual);
2299 }
2300
2301 static void audit_write_protection(struct kvm_vcpu *vcpu)
2302 {
2303 struct kvm_mmu_page *sp;
2304 struct kvm_memory_slot *slot;
2305 unsigned long *rmapp;
2306 gfn_t gfn;
2307
2308 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2309 if (sp->role.metaphysical)
2310 continue;
2311
2312 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2313 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2314 rmapp = &slot->rmap[gfn - slot->base_gfn];
2315 if (*rmapp)
2316 printk(KERN_ERR "%s: (%s) shadow page has writable"
2317 " mappings: gfn %lx role %x\n",
2318 __func__, audit_msg, sp->gfn,
2319 sp->role.word);
2320 }
2321 }
2322
2323 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2324 {
2325 int olddbg = dbg;
2326
2327 dbg = 0;
2328 audit_msg = msg;
2329 audit_rmap(vcpu);
2330 audit_write_protection(vcpu);
2331 audit_mappings(vcpu);
2332 dbg = olddbg;
2333 }
2334
2335 #endif