]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: x86: add a flag to disable KVM x2apic broadcast quirk
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
53 bool tdp_enabled = false;
54
55 enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM 8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK 1
127 #define ACC_WRITE_MASK PT_WRITABLE_MASK
128 #define ACC_USER_MASK PT_USER_MASK
129 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
152 u64 *sptep;
153 int level;
154 unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178 static u64 __read_mostly shadow_present_mask;
179
180 static void mmu_spte_set(u64 *sptep, u64 spte);
181 static void mmu_free_roots(struct kvm_vcpu *vcpu);
182
183 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
184 {
185 shadow_mmio_mask = mmio_mask;
186 }
187 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
188
189 /*
190 * the low bit of the generation number is always presumed to be zero.
191 * This disables mmio caching during memslot updates. The concept is
192 * similar to a seqcount but instead of retrying the access we just punt
193 * and ignore the cache.
194 *
195 * spte bits 3-11 are used as bits 1-9 of the generation number,
196 * the bits 52-61 are used as bits 10-19 of the generation number.
197 */
198 #define MMIO_SPTE_GEN_LOW_SHIFT 2
199 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
200
201 #define MMIO_GEN_SHIFT 20
202 #define MMIO_GEN_LOW_SHIFT 10
203 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
204 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
205
206 static u64 generation_mmio_spte_mask(unsigned int gen)
207 {
208 u64 mask;
209
210 WARN_ON(gen & ~MMIO_GEN_MASK);
211
212 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
213 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
214 return mask;
215 }
216
217 static unsigned int get_mmio_spte_generation(u64 spte)
218 {
219 unsigned int gen;
220
221 spte &= ~shadow_mmio_mask;
222
223 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
224 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
225 return gen;
226 }
227
228 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
229 {
230 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
231 }
232
233 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
234 unsigned access)
235 {
236 unsigned int gen = kvm_current_mmio_generation(vcpu);
237 u64 mask = generation_mmio_spte_mask(gen);
238
239 access &= ACC_WRITE_MASK | ACC_USER_MASK;
240 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
241
242 trace_mark_mmio_spte(sptep, gfn, access, gen);
243 mmu_spte_set(sptep, mask);
244 }
245
246 static bool is_mmio_spte(u64 spte)
247 {
248 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
249 }
250
251 static gfn_t get_mmio_spte_gfn(u64 spte)
252 {
253 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
254 return (spte & ~mask) >> PAGE_SHIFT;
255 }
256
257 static unsigned get_mmio_spte_access(u64 spte)
258 {
259 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
260 return (spte & ~mask) & ~PAGE_MASK;
261 }
262
263 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
264 kvm_pfn_t pfn, unsigned access)
265 {
266 if (unlikely(is_noslot_pfn(pfn))) {
267 mark_mmio_spte(vcpu, sptep, gfn, access);
268 return true;
269 }
270
271 return false;
272 }
273
274 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
275 {
276 unsigned int kvm_gen, spte_gen;
277
278 kvm_gen = kvm_current_mmio_generation(vcpu);
279 spte_gen = get_mmio_spte_generation(spte);
280
281 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
282 return likely(kvm_gen == spte_gen);
283 }
284
285 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
286 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
287 {
288 shadow_user_mask = user_mask;
289 shadow_accessed_mask = accessed_mask;
290 shadow_dirty_mask = dirty_mask;
291 shadow_nx_mask = nx_mask;
292 shadow_x_mask = x_mask;
293 shadow_present_mask = p_mask;
294 }
295 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
296
297 static int is_cpuid_PSE36(void)
298 {
299 return 1;
300 }
301
302 static int is_nx(struct kvm_vcpu *vcpu)
303 {
304 return vcpu->arch.efer & EFER_NX;
305 }
306
307 static int is_shadow_present_pte(u64 pte)
308 {
309 return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
310 }
311
312 static int is_large_pte(u64 pte)
313 {
314 return pte & PT_PAGE_SIZE_MASK;
315 }
316
317 static int is_last_spte(u64 pte, int level)
318 {
319 if (level == PT_PAGE_TABLE_LEVEL)
320 return 1;
321 if (is_large_pte(pte))
322 return 1;
323 return 0;
324 }
325
326 static kvm_pfn_t spte_to_pfn(u64 pte)
327 {
328 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
329 }
330
331 static gfn_t pse36_gfn_delta(u32 gpte)
332 {
333 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
334
335 return (gpte & PT32_DIR_PSE36_MASK) << shift;
336 }
337
338 #ifdef CONFIG_X86_64
339 static void __set_spte(u64 *sptep, u64 spte)
340 {
341 WRITE_ONCE(*sptep, spte);
342 }
343
344 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345 {
346 WRITE_ONCE(*sptep, spte);
347 }
348
349 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
350 {
351 return xchg(sptep, spte);
352 }
353
354 static u64 __get_spte_lockless(u64 *sptep)
355 {
356 return ACCESS_ONCE(*sptep);
357 }
358 #else
359 union split_spte {
360 struct {
361 u32 spte_low;
362 u32 spte_high;
363 };
364 u64 spte;
365 };
366
367 static void count_spte_clear(u64 *sptep, u64 spte)
368 {
369 struct kvm_mmu_page *sp = page_header(__pa(sptep));
370
371 if (is_shadow_present_pte(spte))
372 return;
373
374 /* Ensure the spte is completely set before we increase the count */
375 smp_wmb();
376 sp->clear_spte_count++;
377 }
378
379 static void __set_spte(u64 *sptep, u64 spte)
380 {
381 union split_spte *ssptep, sspte;
382
383 ssptep = (union split_spte *)sptep;
384 sspte = (union split_spte)spte;
385
386 ssptep->spte_high = sspte.spte_high;
387
388 /*
389 * If we map the spte from nonpresent to present, We should store
390 * the high bits firstly, then set present bit, so cpu can not
391 * fetch this spte while we are setting the spte.
392 */
393 smp_wmb();
394
395 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
396 }
397
398 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
399 {
400 union split_spte *ssptep, sspte;
401
402 ssptep = (union split_spte *)sptep;
403 sspte = (union split_spte)spte;
404
405 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
406
407 /*
408 * If we map the spte from present to nonpresent, we should clear
409 * present bit firstly to avoid vcpu fetch the old high bits.
410 */
411 smp_wmb();
412
413 ssptep->spte_high = sspte.spte_high;
414 count_spte_clear(sptep, spte);
415 }
416
417 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
418 {
419 union split_spte *ssptep, sspte, orig;
420
421 ssptep = (union split_spte *)sptep;
422 sspte = (union split_spte)spte;
423
424 /* xchg acts as a barrier before the setting of the high bits */
425 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
426 orig.spte_high = ssptep->spte_high;
427 ssptep->spte_high = sspte.spte_high;
428 count_spte_clear(sptep, spte);
429
430 return orig.spte;
431 }
432
433 /*
434 * The idea using the light way get the spte on x86_32 guest is from
435 * gup_get_pte(arch/x86/mm/gup.c).
436 *
437 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
438 * coalesces them and we are running out of the MMU lock. Therefore
439 * we need to protect against in-progress updates of the spte.
440 *
441 * Reading the spte while an update is in progress may get the old value
442 * for the high part of the spte. The race is fine for a present->non-present
443 * change (because the high part of the spte is ignored for non-present spte),
444 * but for a present->present change we must reread the spte.
445 *
446 * All such changes are done in two steps (present->non-present and
447 * non-present->present), hence it is enough to count the number of
448 * present->non-present updates: if it changed while reading the spte,
449 * we might have hit the race. This is done using clear_spte_count.
450 */
451 static u64 __get_spte_lockless(u64 *sptep)
452 {
453 struct kvm_mmu_page *sp = page_header(__pa(sptep));
454 union split_spte spte, *orig = (union split_spte *)sptep;
455 int count;
456
457 retry:
458 count = sp->clear_spte_count;
459 smp_rmb();
460
461 spte.spte_low = orig->spte_low;
462 smp_rmb();
463
464 spte.spte_high = orig->spte_high;
465 smp_rmb();
466
467 if (unlikely(spte.spte_low != orig->spte_low ||
468 count != sp->clear_spte_count))
469 goto retry;
470
471 return spte.spte;
472 }
473 #endif
474
475 static bool spte_is_locklessly_modifiable(u64 spte)
476 {
477 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
478 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
479 }
480
481 static bool spte_has_volatile_bits(u64 spte)
482 {
483 /*
484 * Always atomically update spte if it can be updated
485 * out of mmu-lock, it can ensure dirty bit is not lost,
486 * also, it can help us to get a stable is_writable_pte()
487 * to ensure tlb flush is not missed.
488 */
489 if (spte_is_locklessly_modifiable(spte))
490 return true;
491
492 if (!shadow_accessed_mask)
493 return false;
494
495 if (!is_shadow_present_pte(spte))
496 return false;
497
498 if ((spte & shadow_accessed_mask) &&
499 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
500 return false;
501
502 return true;
503 }
504
505 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
506 {
507 return (old_spte & bit_mask) && !(new_spte & bit_mask);
508 }
509
510 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
511 {
512 return (old_spte & bit_mask) != (new_spte & bit_mask);
513 }
514
515 /* Rules for using mmu_spte_set:
516 * Set the sptep from nonpresent to present.
517 * Note: the sptep being assigned *must* be either not present
518 * or in a state where the hardware will not attempt to update
519 * the spte.
520 */
521 static void mmu_spte_set(u64 *sptep, u64 new_spte)
522 {
523 WARN_ON(is_shadow_present_pte(*sptep));
524 __set_spte(sptep, new_spte);
525 }
526
527 /* Rules for using mmu_spte_update:
528 * Update the state bits, it means the mapped pfn is not changed.
529 *
530 * Whenever we overwrite a writable spte with a read-only one we
531 * should flush remote TLBs. Otherwise rmap_write_protect
532 * will find a read-only spte, even though the writable spte
533 * might be cached on a CPU's TLB, the return value indicates this
534 * case.
535 */
536 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
537 {
538 u64 old_spte = *sptep;
539 bool ret = false;
540
541 WARN_ON(!is_shadow_present_pte(new_spte));
542
543 if (!is_shadow_present_pte(old_spte)) {
544 mmu_spte_set(sptep, new_spte);
545 return ret;
546 }
547
548 if (!spte_has_volatile_bits(old_spte))
549 __update_clear_spte_fast(sptep, new_spte);
550 else
551 old_spte = __update_clear_spte_slow(sptep, new_spte);
552
553 /*
554 * For the spte updated out of mmu-lock is safe, since
555 * we always atomically update it, see the comments in
556 * spte_has_volatile_bits().
557 */
558 if (spte_is_locklessly_modifiable(old_spte) &&
559 !is_writable_pte(new_spte))
560 ret = true;
561
562 if (!shadow_accessed_mask) {
563 /*
564 * We don't set page dirty when dropping non-writable spte.
565 * So do it now if the new spte is becoming non-writable.
566 */
567 if (ret)
568 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
569 return ret;
570 }
571
572 /*
573 * Flush TLB when accessed/dirty bits are changed in the page tables,
574 * to guarantee consistency between TLB and page tables.
575 */
576 if (spte_is_bit_changed(old_spte, new_spte,
577 shadow_accessed_mask | shadow_dirty_mask))
578 ret = true;
579
580 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
581 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
582 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
583 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584
585 return ret;
586 }
587
588 /*
589 * Rules for using mmu_spte_clear_track_bits:
590 * It sets the sptep from present to nonpresent, and track the
591 * state bits, it is used to clear the last level sptep.
592 */
593 static int mmu_spte_clear_track_bits(u64 *sptep)
594 {
595 kvm_pfn_t pfn;
596 u64 old_spte = *sptep;
597
598 if (!spte_has_volatile_bits(old_spte))
599 __update_clear_spte_fast(sptep, 0ull);
600 else
601 old_spte = __update_clear_spte_slow(sptep, 0ull);
602
603 if (!is_shadow_present_pte(old_spte))
604 return 0;
605
606 pfn = spte_to_pfn(old_spte);
607
608 /*
609 * KVM does not hold the refcount of the page used by
610 * kvm mmu, before reclaiming the page, we should
611 * unmap it from mmu first.
612 */
613 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
614
615 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
616 kvm_set_pfn_accessed(pfn);
617 if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
618 PT_WRITABLE_MASK))
619 kvm_set_pfn_dirty(pfn);
620 return 1;
621 }
622
623 /*
624 * Rules for using mmu_spte_clear_no_track:
625 * Directly clear spte without caring the state bits of sptep,
626 * it is used to set the upper level spte.
627 */
628 static void mmu_spte_clear_no_track(u64 *sptep)
629 {
630 __update_clear_spte_fast(sptep, 0ull);
631 }
632
633 static u64 mmu_spte_get_lockless(u64 *sptep)
634 {
635 return __get_spte_lockless(sptep);
636 }
637
638 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
639 {
640 /*
641 * Prevent page table teardown by making any free-er wait during
642 * kvm_flush_remote_tlbs() IPI to all active vcpus.
643 */
644 local_irq_disable();
645
646 /*
647 * Make sure a following spte read is not reordered ahead of the write
648 * to vcpu->mode.
649 */
650 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
651 }
652
653 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
654 {
655 /*
656 * Make sure the write to vcpu->mode is not reordered in front of
657 * reads to sptes. If it does, kvm_commit_zap_page() can see us
658 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
659 */
660 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
661 local_irq_enable();
662 }
663
664 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
665 struct kmem_cache *base_cache, int min)
666 {
667 void *obj;
668
669 if (cache->nobjs >= min)
670 return 0;
671 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
672 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
673 if (!obj)
674 return -ENOMEM;
675 cache->objects[cache->nobjs++] = obj;
676 }
677 return 0;
678 }
679
680 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
681 {
682 return cache->nobjs;
683 }
684
685 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
686 struct kmem_cache *cache)
687 {
688 while (mc->nobjs)
689 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
690 }
691
692 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
693 int min)
694 {
695 void *page;
696
697 if (cache->nobjs >= min)
698 return 0;
699 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
700 page = (void *)__get_free_page(GFP_KERNEL);
701 if (!page)
702 return -ENOMEM;
703 cache->objects[cache->nobjs++] = page;
704 }
705 return 0;
706 }
707
708 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
709 {
710 while (mc->nobjs)
711 free_page((unsigned long)mc->objects[--mc->nobjs]);
712 }
713
714 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
715 {
716 int r;
717
718 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
719 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
720 if (r)
721 goto out;
722 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
723 if (r)
724 goto out;
725 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
726 mmu_page_header_cache, 4);
727 out:
728 return r;
729 }
730
731 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
732 {
733 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
734 pte_list_desc_cache);
735 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
736 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
737 mmu_page_header_cache);
738 }
739
740 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
741 {
742 void *p;
743
744 BUG_ON(!mc->nobjs);
745 p = mc->objects[--mc->nobjs];
746 return p;
747 }
748
749 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
750 {
751 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
752 }
753
754 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
755 {
756 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
757 }
758
759 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
760 {
761 if (!sp->role.direct)
762 return sp->gfns[index];
763
764 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
765 }
766
767 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
768 {
769 if (sp->role.direct)
770 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
771 else
772 sp->gfns[index] = gfn;
773 }
774
775 /*
776 * Return the pointer to the large page information for a given gfn,
777 * handling slots that are not large page aligned.
778 */
779 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
780 struct kvm_memory_slot *slot,
781 int level)
782 {
783 unsigned long idx;
784
785 idx = gfn_to_index(gfn, slot->base_gfn, level);
786 return &slot->arch.lpage_info[level - 2][idx];
787 }
788
789 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
790 gfn_t gfn, int count)
791 {
792 struct kvm_lpage_info *linfo;
793 int i;
794
795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->disallow_lpage += count;
798 WARN_ON(linfo->disallow_lpage < 0);
799 }
800 }
801
802 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
803 {
804 update_gfn_disallow_lpage_count(slot, gfn, 1);
805 }
806
807 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
808 {
809 update_gfn_disallow_lpage_count(slot, gfn, -1);
810 }
811
812 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
813 {
814 struct kvm_memslots *slots;
815 struct kvm_memory_slot *slot;
816 gfn_t gfn;
817
818 kvm->arch.indirect_shadow_pages++;
819 gfn = sp->gfn;
820 slots = kvm_memslots_for_spte_role(kvm, sp->role);
821 slot = __gfn_to_memslot(slots, gfn);
822
823 /* the non-leaf shadow pages are keeping readonly. */
824 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
825 return kvm_slot_page_track_add_page(kvm, slot, gfn,
826 KVM_PAGE_TRACK_WRITE);
827
828 kvm_mmu_gfn_disallow_lpage(slot, gfn);
829 }
830
831 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
832 {
833 struct kvm_memslots *slots;
834 struct kvm_memory_slot *slot;
835 gfn_t gfn;
836
837 kvm->arch.indirect_shadow_pages--;
838 gfn = sp->gfn;
839 slots = kvm_memslots_for_spte_role(kvm, sp->role);
840 slot = __gfn_to_memslot(slots, gfn);
841 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
842 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
843 KVM_PAGE_TRACK_WRITE);
844
845 kvm_mmu_gfn_allow_lpage(slot, gfn);
846 }
847
848 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
849 struct kvm_memory_slot *slot)
850 {
851 struct kvm_lpage_info *linfo;
852
853 if (slot) {
854 linfo = lpage_info_slot(gfn, slot, level);
855 return !!linfo->disallow_lpage;
856 }
857
858 return true;
859 }
860
861 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
862 int level)
863 {
864 struct kvm_memory_slot *slot;
865
866 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
867 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
868 }
869
870 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
871 {
872 unsigned long page_size;
873 int i, ret = 0;
874
875 page_size = kvm_host_page_size(kvm, gfn);
876
877 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
878 if (page_size >= KVM_HPAGE_SIZE(i))
879 ret = i;
880 else
881 break;
882 }
883
884 return ret;
885 }
886
887 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
888 bool no_dirty_log)
889 {
890 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
891 return false;
892 if (no_dirty_log && slot->dirty_bitmap)
893 return false;
894
895 return true;
896 }
897
898 static struct kvm_memory_slot *
899 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
900 bool no_dirty_log)
901 {
902 struct kvm_memory_slot *slot;
903
904 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
905 if (!memslot_valid_for_gpte(slot, no_dirty_log))
906 slot = NULL;
907
908 return slot;
909 }
910
911 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
912 bool *force_pt_level)
913 {
914 int host_level, level, max_level;
915 struct kvm_memory_slot *slot;
916
917 if (unlikely(*force_pt_level))
918 return PT_PAGE_TABLE_LEVEL;
919
920 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
921 *force_pt_level = !memslot_valid_for_gpte(slot, true);
922 if (unlikely(*force_pt_level))
923 return PT_PAGE_TABLE_LEVEL;
924
925 host_level = host_mapping_level(vcpu->kvm, large_gfn);
926
927 if (host_level == PT_PAGE_TABLE_LEVEL)
928 return host_level;
929
930 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
931
932 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
933 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
934 break;
935
936 return level - 1;
937 }
938
939 /*
940 * About rmap_head encoding:
941 *
942 * If the bit zero of rmap_head->val is clear, then it points to the only spte
943 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
944 * pte_list_desc containing more mappings.
945 */
946
947 /*
948 * Returns the number of pointers in the rmap chain, not counting the new one.
949 */
950 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
951 struct kvm_rmap_head *rmap_head)
952 {
953 struct pte_list_desc *desc;
954 int i, count = 0;
955
956 if (!rmap_head->val) {
957 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
958 rmap_head->val = (unsigned long)spte;
959 } else if (!(rmap_head->val & 1)) {
960 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
961 desc = mmu_alloc_pte_list_desc(vcpu);
962 desc->sptes[0] = (u64 *)rmap_head->val;
963 desc->sptes[1] = spte;
964 rmap_head->val = (unsigned long)desc | 1;
965 ++count;
966 } else {
967 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
968 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
969 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
970 desc = desc->more;
971 count += PTE_LIST_EXT;
972 }
973 if (desc->sptes[PTE_LIST_EXT-1]) {
974 desc->more = mmu_alloc_pte_list_desc(vcpu);
975 desc = desc->more;
976 }
977 for (i = 0; desc->sptes[i]; ++i)
978 ++count;
979 desc->sptes[i] = spte;
980 }
981 return count;
982 }
983
984 static void
985 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
986 struct pte_list_desc *desc, int i,
987 struct pte_list_desc *prev_desc)
988 {
989 int j;
990
991 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
992 ;
993 desc->sptes[i] = desc->sptes[j];
994 desc->sptes[j] = NULL;
995 if (j != 0)
996 return;
997 if (!prev_desc && !desc->more)
998 rmap_head->val = (unsigned long)desc->sptes[0];
999 else
1000 if (prev_desc)
1001 prev_desc->more = desc->more;
1002 else
1003 rmap_head->val = (unsigned long)desc->more | 1;
1004 mmu_free_pte_list_desc(desc);
1005 }
1006
1007 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1008 {
1009 struct pte_list_desc *desc;
1010 struct pte_list_desc *prev_desc;
1011 int i;
1012
1013 if (!rmap_head->val) {
1014 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1015 BUG();
1016 } else if (!(rmap_head->val & 1)) {
1017 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1018 if ((u64 *)rmap_head->val != spte) {
1019 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1020 BUG();
1021 }
1022 rmap_head->val = 0;
1023 } else {
1024 rmap_printk("pte_list_remove: %p many->many\n", spte);
1025 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1026 prev_desc = NULL;
1027 while (desc) {
1028 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1029 if (desc->sptes[i] == spte) {
1030 pte_list_desc_remove_entry(rmap_head,
1031 desc, i, prev_desc);
1032 return;
1033 }
1034 }
1035 prev_desc = desc;
1036 desc = desc->more;
1037 }
1038 pr_err("pte_list_remove: %p many->many\n", spte);
1039 BUG();
1040 }
1041 }
1042
1043 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1044 struct kvm_memory_slot *slot)
1045 {
1046 unsigned long idx;
1047
1048 idx = gfn_to_index(gfn, slot->base_gfn, level);
1049 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1050 }
1051
1052 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1053 struct kvm_mmu_page *sp)
1054 {
1055 struct kvm_memslots *slots;
1056 struct kvm_memory_slot *slot;
1057
1058 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1059 slot = __gfn_to_memslot(slots, gfn);
1060 return __gfn_to_rmap(gfn, sp->role.level, slot);
1061 }
1062
1063 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1064 {
1065 struct kvm_mmu_memory_cache *cache;
1066
1067 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1068 return mmu_memory_cache_free_objects(cache);
1069 }
1070
1071 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1072 {
1073 struct kvm_mmu_page *sp;
1074 struct kvm_rmap_head *rmap_head;
1075
1076 sp = page_header(__pa(spte));
1077 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1078 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1079 return pte_list_add(vcpu, spte, rmap_head);
1080 }
1081
1082 static void rmap_remove(struct kvm *kvm, u64 *spte)
1083 {
1084 struct kvm_mmu_page *sp;
1085 gfn_t gfn;
1086 struct kvm_rmap_head *rmap_head;
1087
1088 sp = page_header(__pa(spte));
1089 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1090 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1091 pte_list_remove(spte, rmap_head);
1092 }
1093
1094 /*
1095 * Used by the following functions to iterate through the sptes linked by a
1096 * rmap. All fields are private and not assumed to be used outside.
1097 */
1098 struct rmap_iterator {
1099 /* private fields */
1100 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1101 int pos; /* index of the sptep */
1102 };
1103
1104 /*
1105 * Iteration must be started by this function. This should also be used after
1106 * removing/dropping sptes from the rmap link because in such cases the
1107 * information in the itererator may not be valid.
1108 *
1109 * Returns sptep if found, NULL otherwise.
1110 */
1111 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1112 struct rmap_iterator *iter)
1113 {
1114 u64 *sptep;
1115
1116 if (!rmap_head->val)
1117 return NULL;
1118
1119 if (!(rmap_head->val & 1)) {
1120 iter->desc = NULL;
1121 sptep = (u64 *)rmap_head->val;
1122 goto out;
1123 }
1124
1125 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1126 iter->pos = 0;
1127 sptep = iter->desc->sptes[iter->pos];
1128 out:
1129 BUG_ON(!is_shadow_present_pte(*sptep));
1130 return sptep;
1131 }
1132
1133 /*
1134 * Must be used with a valid iterator: e.g. after rmap_get_first().
1135 *
1136 * Returns sptep if found, NULL otherwise.
1137 */
1138 static u64 *rmap_get_next(struct rmap_iterator *iter)
1139 {
1140 u64 *sptep;
1141
1142 if (iter->desc) {
1143 if (iter->pos < PTE_LIST_EXT - 1) {
1144 ++iter->pos;
1145 sptep = iter->desc->sptes[iter->pos];
1146 if (sptep)
1147 goto out;
1148 }
1149
1150 iter->desc = iter->desc->more;
1151
1152 if (iter->desc) {
1153 iter->pos = 0;
1154 /* desc->sptes[0] cannot be NULL */
1155 sptep = iter->desc->sptes[iter->pos];
1156 goto out;
1157 }
1158 }
1159
1160 return NULL;
1161 out:
1162 BUG_ON(!is_shadow_present_pte(*sptep));
1163 return sptep;
1164 }
1165
1166 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1167 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1168 _spte_; _spte_ = rmap_get_next(_iter_))
1169
1170 static void drop_spte(struct kvm *kvm, u64 *sptep)
1171 {
1172 if (mmu_spte_clear_track_bits(sptep))
1173 rmap_remove(kvm, sptep);
1174 }
1175
1176
1177 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1178 {
1179 if (is_large_pte(*sptep)) {
1180 WARN_ON(page_header(__pa(sptep))->role.level ==
1181 PT_PAGE_TABLE_LEVEL);
1182 drop_spte(kvm, sptep);
1183 --kvm->stat.lpages;
1184 return true;
1185 }
1186
1187 return false;
1188 }
1189
1190 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1191 {
1192 if (__drop_large_spte(vcpu->kvm, sptep))
1193 kvm_flush_remote_tlbs(vcpu->kvm);
1194 }
1195
1196 /*
1197 * Write-protect on the specified @sptep, @pt_protect indicates whether
1198 * spte write-protection is caused by protecting shadow page table.
1199 *
1200 * Note: write protection is difference between dirty logging and spte
1201 * protection:
1202 * - for dirty logging, the spte can be set to writable at anytime if
1203 * its dirty bitmap is properly set.
1204 * - for spte protection, the spte can be writable only after unsync-ing
1205 * shadow page.
1206 *
1207 * Return true if tlb need be flushed.
1208 */
1209 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1210 {
1211 u64 spte = *sptep;
1212
1213 if (!is_writable_pte(spte) &&
1214 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1215 return false;
1216
1217 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1218
1219 if (pt_protect)
1220 spte &= ~SPTE_MMU_WRITEABLE;
1221 spte = spte & ~PT_WRITABLE_MASK;
1222
1223 return mmu_spte_update(sptep, spte);
1224 }
1225
1226 static bool __rmap_write_protect(struct kvm *kvm,
1227 struct kvm_rmap_head *rmap_head,
1228 bool pt_protect)
1229 {
1230 u64 *sptep;
1231 struct rmap_iterator iter;
1232 bool flush = false;
1233
1234 for_each_rmap_spte(rmap_head, &iter, sptep)
1235 flush |= spte_write_protect(kvm, sptep, pt_protect);
1236
1237 return flush;
1238 }
1239
1240 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1241 {
1242 u64 spte = *sptep;
1243
1244 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1245
1246 spte &= ~shadow_dirty_mask;
1247
1248 return mmu_spte_update(sptep, spte);
1249 }
1250
1251 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1252 {
1253 u64 *sptep;
1254 struct rmap_iterator iter;
1255 bool flush = false;
1256
1257 for_each_rmap_spte(rmap_head, &iter, sptep)
1258 flush |= spte_clear_dirty(kvm, sptep);
1259
1260 return flush;
1261 }
1262
1263 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1264 {
1265 u64 spte = *sptep;
1266
1267 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1268
1269 spte |= shadow_dirty_mask;
1270
1271 return mmu_spte_update(sptep, spte);
1272 }
1273
1274 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1275 {
1276 u64 *sptep;
1277 struct rmap_iterator iter;
1278 bool flush = false;
1279
1280 for_each_rmap_spte(rmap_head, &iter, sptep)
1281 flush |= spte_set_dirty(kvm, sptep);
1282
1283 return flush;
1284 }
1285
1286 /**
1287 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1288 * @kvm: kvm instance
1289 * @slot: slot to protect
1290 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1291 * @mask: indicates which pages we should protect
1292 *
1293 * Used when we do not need to care about huge page mappings: e.g. during dirty
1294 * logging we do not have any such mappings.
1295 */
1296 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1297 struct kvm_memory_slot *slot,
1298 gfn_t gfn_offset, unsigned long mask)
1299 {
1300 struct kvm_rmap_head *rmap_head;
1301
1302 while (mask) {
1303 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1304 PT_PAGE_TABLE_LEVEL, slot);
1305 __rmap_write_protect(kvm, rmap_head, false);
1306
1307 /* clear the first set bit */
1308 mask &= mask - 1;
1309 }
1310 }
1311
1312 /**
1313 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1314 * @kvm: kvm instance
1315 * @slot: slot to clear D-bit
1316 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1317 * @mask: indicates which pages we should clear D-bit
1318 *
1319 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1320 */
1321 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1322 struct kvm_memory_slot *slot,
1323 gfn_t gfn_offset, unsigned long mask)
1324 {
1325 struct kvm_rmap_head *rmap_head;
1326
1327 while (mask) {
1328 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1329 PT_PAGE_TABLE_LEVEL, slot);
1330 __rmap_clear_dirty(kvm, rmap_head);
1331
1332 /* clear the first set bit */
1333 mask &= mask - 1;
1334 }
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1337
1338 /**
1339 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1340 * PT level pages.
1341 *
1342 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1343 * enable dirty logging for them.
1344 *
1345 * Used when we do not need to care about huge page mappings: e.g. during dirty
1346 * logging we do not have any such mappings.
1347 */
1348 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1349 struct kvm_memory_slot *slot,
1350 gfn_t gfn_offset, unsigned long mask)
1351 {
1352 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1353 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1354 mask);
1355 else
1356 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1357 }
1358
1359 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1360 struct kvm_memory_slot *slot, u64 gfn)
1361 {
1362 struct kvm_rmap_head *rmap_head;
1363 int i;
1364 bool write_protected = false;
1365
1366 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1367 rmap_head = __gfn_to_rmap(gfn, i, slot);
1368 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1369 }
1370
1371 return write_protected;
1372 }
1373
1374 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1375 {
1376 struct kvm_memory_slot *slot;
1377
1378 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1379 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1380 }
1381
1382 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1383 {
1384 u64 *sptep;
1385 struct rmap_iterator iter;
1386 bool flush = false;
1387
1388 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1389 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1390
1391 drop_spte(kvm, sptep);
1392 flush = true;
1393 }
1394
1395 return flush;
1396 }
1397
1398 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1399 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1400 unsigned long data)
1401 {
1402 return kvm_zap_rmapp(kvm, rmap_head);
1403 }
1404
1405 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1406 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1407 unsigned long data)
1408 {
1409 u64 *sptep;
1410 struct rmap_iterator iter;
1411 int need_flush = 0;
1412 u64 new_spte;
1413 pte_t *ptep = (pte_t *)data;
1414 kvm_pfn_t new_pfn;
1415
1416 WARN_ON(pte_huge(*ptep));
1417 new_pfn = pte_pfn(*ptep);
1418
1419 restart:
1420 for_each_rmap_spte(rmap_head, &iter, sptep) {
1421 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1422 sptep, *sptep, gfn, level);
1423
1424 need_flush = 1;
1425
1426 if (pte_write(*ptep)) {
1427 drop_spte(kvm, sptep);
1428 goto restart;
1429 } else {
1430 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1431 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1432
1433 new_spte &= ~PT_WRITABLE_MASK;
1434 new_spte &= ~SPTE_HOST_WRITEABLE;
1435 new_spte &= ~shadow_accessed_mask;
1436
1437 mmu_spte_clear_track_bits(sptep);
1438 mmu_spte_set(sptep, new_spte);
1439 }
1440 }
1441
1442 if (need_flush)
1443 kvm_flush_remote_tlbs(kvm);
1444
1445 return 0;
1446 }
1447
1448 struct slot_rmap_walk_iterator {
1449 /* input fields. */
1450 struct kvm_memory_slot *slot;
1451 gfn_t start_gfn;
1452 gfn_t end_gfn;
1453 int start_level;
1454 int end_level;
1455
1456 /* output fields. */
1457 gfn_t gfn;
1458 struct kvm_rmap_head *rmap;
1459 int level;
1460
1461 /* private field. */
1462 struct kvm_rmap_head *end_rmap;
1463 };
1464
1465 static void
1466 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1467 {
1468 iterator->level = level;
1469 iterator->gfn = iterator->start_gfn;
1470 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1471 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1472 iterator->slot);
1473 }
1474
1475 static void
1476 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1477 struct kvm_memory_slot *slot, int start_level,
1478 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1479 {
1480 iterator->slot = slot;
1481 iterator->start_level = start_level;
1482 iterator->end_level = end_level;
1483 iterator->start_gfn = start_gfn;
1484 iterator->end_gfn = end_gfn;
1485
1486 rmap_walk_init_level(iterator, iterator->start_level);
1487 }
1488
1489 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1490 {
1491 return !!iterator->rmap;
1492 }
1493
1494 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1495 {
1496 if (++iterator->rmap <= iterator->end_rmap) {
1497 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1498 return;
1499 }
1500
1501 if (++iterator->level > iterator->end_level) {
1502 iterator->rmap = NULL;
1503 return;
1504 }
1505
1506 rmap_walk_init_level(iterator, iterator->level);
1507 }
1508
1509 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1510 _start_gfn, _end_gfn, _iter_) \
1511 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1512 _end_level_, _start_gfn, _end_gfn); \
1513 slot_rmap_walk_okay(_iter_); \
1514 slot_rmap_walk_next(_iter_))
1515
1516 static int kvm_handle_hva_range(struct kvm *kvm,
1517 unsigned long start,
1518 unsigned long end,
1519 unsigned long data,
1520 int (*handler)(struct kvm *kvm,
1521 struct kvm_rmap_head *rmap_head,
1522 struct kvm_memory_slot *slot,
1523 gfn_t gfn,
1524 int level,
1525 unsigned long data))
1526 {
1527 struct kvm_memslots *slots;
1528 struct kvm_memory_slot *memslot;
1529 struct slot_rmap_walk_iterator iterator;
1530 int ret = 0;
1531 int i;
1532
1533 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1534 slots = __kvm_memslots(kvm, i);
1535 kvm_for_each_memslot(memslot, slots) {
1536 unsigned long hva_start, hva_end;
1537 gfn_t gfn_start, gfn_end;
1538
1539 hva_start = max(start, memslot->userspace_addr);
1540 hva_end = min(end, memslot->userspace_addr +
1541 (memslot->npages << PAGE_SHIFT));
1542 if (hva_start >= hva_end)
1543 continue;
1544 /*
1545 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1546 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1547 */
1548 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1549 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1550
1551 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1552 PT_MAX_HUGEPAGE_LEVEL,
1553 gfn_start, gfn_end - 1,
1554 &iterator)
1555 ret |= handler(kvm, iterator.rmap, memslot,
1556 iterator.gfn, iterator.level, data);
1557 }
1558 }
1559
1560 return ret;
1561 }
1562
1563 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1564 unsigned long data,
1565 int (*handler)(struct kvm *kvm,
1566 struct kvm_rmap_head *rmap_head,
1567 struct kvm_memory_slot *slot,
1568 gfn_t gfn, int level,
1569 unsigned long data))
1570 {
1571 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1572 }
1573
1574 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1575 {
1576 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1577 }
1578
1579 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1580 {
1581 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1582 }
1583
1584 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1585 {
1586 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1587 }
1588
1589 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1590 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1591 unsigned long data)
1592 {
1593 u64 *sptep;
1594 struct rmap_iterator uninitialized_var(iter);
1595 int young = 0;
1596
1597 BUG_ON(!shadow_accessed_mask);
1598
1599 for_each_rmap_spte(rmap_head, &iter, sptep) {
1600 if (*sptep & shadow_accessed_mask) {
1601 young = 1;
1602 clear_bit((ffs(shadow_accessed_mask) - 1),
1603 (unsigned long *)sptep);
1604 }
1605 }
1606
1607 trace_kvm_age_page(gfn, level, slot, young);
1608 return young;
1609 }
1610
1611 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1612 struct kvm_memory_slot *slot, gfn_t gfn,
1613 int level, unsigned long data)
1614 {
1615 u64 *sptep;
1616 struct rmap_iterator iter;
1617 int young = 0;
1618
1619 /*
1620 * If there's no access bit in the secondary pte set by the
1621 * hardware it's up to gup-fast/gup to set the access bit in
1622 * the primary pte or in the page structure.
1623 */
1624 if (!shadow_accessed_mask)
1625 goto out;
1626
1627 for_each_rmap_spte(rmap_head, &iter, sptep) {
1628 if (*sptep & shadow_accessed_mask) {
1629 young = 1;
1630 break;
1631 }
1632 }
1633 out:
1634 return young;
1635 }
1636
1637 #define RMAP_RECYCLE_THRESHOLD 1000
1638
1639 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1640 {
1641 struct kvm_rmap_head *rmap_head;
1642 struct kvm_mmu_page *sp;
1643
1644 sp = page_header(__pa(spte));
1645
1646 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1647
1648 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1649 kvm_flush_remote_tlbs(vcpu->kvm);
1650 }
1651
1652 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1653 {
1654 /*
1655 * In case of absence of EPT Access and Dirty Bits supports,
1656 * emulate the accessed bit for EPT, by checking if this page has
1657 * an EPT mapping, and clearing it if it does. On the next access,
1658 * a new EPT mapping will be established.
1659 * This has some overhead, but not as much as the cost of swapping
1660 * out actively used pages or breaking up actively used hugepages.
1661 */
1662 if (!shadow_accessed_mask) {
1663 /*
1664 * We are holding the kvm->mmu_lock, and we are blowing up
1665 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1666 * This is correct as long as we don't decouple the mmu_lock
1667 * protected regions (like invalidate_range_start|end does).
1668 */
1669 kvm->mmu_notifier_seq++;
1670 return kvm_handle_hva_range(kvm, start, end, 0,
1671 kvm_unmap_rmapp);
1672 }
1673
1674 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1675 }
1676
1677 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1678 {
1679 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1680 }
1681
1682 #ifdef MMU_DEBUG
1683 static int is_empty_shadow_page(u64 *spt)
1684 {
1685 u64 *pos;
1686 u64 *end;
1687
1688 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1689 if (is_shadow_present_pte(*pos)) {
1690 printk(KERN_ERR "%s: %p %llx\n", __func__,
1691 pos, *pos);
1692 return 0;
1693 }
1694 return 1;
1695 }
1696 #endif
1697
1698 /*
1699 * This value is the sum of all of the kvm instances's
1700 * kvm->arch.n_used_mmu_pages values. We need a global,
1701 * aggregate version in order to make the slab shrinker
1702 * faster
1703 */
1704 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1705 {
1706 kvm->arch.n_used_mmu_pages += nr;
1707 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1708 }
1709
1710 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1711 {
1712 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1713 hlist_del(&sp->hash_link);
1714 list_del(&sp->link);
1715 free_page((unsigned long)sp->spt);
1716 if (!sp->role.direct)
1717 free_page((unsigned long)sp->gfns);
1718 kmem_cache_free(mmu_page_header_cache, sp);
1719 }
1720
1721 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1722 {
1723 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1724 }
1725
1726 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1727 struct kvm_mmu_page *sp, u64 *parent_pte)
1728 {
1729 if (!parent_pte)
1730 return;
1731
1732 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1733 }
1734
1735 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1736 u64 *parent_pte)
1737 {
1738 pte_list_remove(parent_pte, &sp->parent_ptes);
1739 }
1740
1741 static void drop_parent_pte(struct kvm_mmu_page *sp,
1742 u64 *parent_pte)
1743 {
1744 mmu_page_remove_parent_pte(sp, parent_pte);
1745 mmu_spte_clear_no_track(parent_pte);
1746 }
1747
1748 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1749 {
1750 struct kvm_mmu_page *sp;
1751
1752 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1753 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1754 if (!direct)
1755 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1756 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1757
1758 /*
1759 * The active_mmu_pages list is the FIFO list, do not move the
1760 * page until it is zapped. kvm_zap_obsolete_pages depends on
1761 * this feature. See the comments in kvm_zap_obsolete_pages().
1762 */
1763 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1764 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1765 return sp;
1766 }
1767
1768 static void mark_unsync(u64 *spte);
1769 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1770 {
1771 u64 *sptep;
1772 struct rmap_iterator iter;
1773
1774 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1775 mark_unsync(sptep);
1776 }
1777 }
1778
1779 static void mark_unsync(u64 *spte)
1780 {
1781 struct kvm_mmu_page *sp;
1782 unsigned int index;
1783
1784 sp = page_header(__pa(spte));
1785 index = spte - sp->spt;
1786 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1787 return;
1788 if (sp->unsync_children++)
1789 return;
1790 kvm_mmu_mark_parents_unsync(sp);
1791 }
1792
1793 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1794 struct kvm_mmu_page *sp)
1795 {
1796 return 0;
1797 }
1798
1799 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1800 {
1801 }
1802
1803 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1804 struct kvm_mmu_page *sp, u64 *spte,
1805 const void *pte)
1806 {
1807 WARN_ON(1);
1808 }
1809
1810 #define KVM_PAGE_ARRAY_NR 16
1811
1812 struct kvm_mmu_pages {
1813 struct mmu_page_and_offset {
1814 struct kvm_mmu_page *sp;
1815 unsigned int idx;
1816 } page[KVM_PAGE_ARRAY_NR];
1817 unsigned int nr;
1818 };
1819
1820 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1821 int idx)
1822 {
1823 int i;
1824
1825 if (sp->unsync)
1826 for (i=0; i < pvec->nr; i++)
1827 if (pvec->page[i].sp == sp)
1828 return 0;
1829
1830 pvec->page[pvec->nr].sp = sp;
1831 pvec->page[pvec->nr].idx = idx;
1832 pvec->nr++;
1833 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1834 }
1835
1836 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1837 {
1838 --sp->unsync_children;
1839 WARN_ON((int)sp->unsync_children < 0);
1840 __clear_bit(idx, sp->unsync_child_bitmap);
1841 }
1842
1843 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1844 struct kvm_mmu_pages *pvec)
1845 {
1846 int i, ret, nr_unsync_leaf = 0;
1847
1848 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1849 struct kvm_mmu_page *child;
1850 u64 ent = sp->spt[i];
1851
1852 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1853 clear_unsync_child_bit(sp, i);
1854 continue;
1855 }
1856
1857 child = page_header(ent & PT64_BASE_ADDR_MASK);
1858
1859 if (child->unsync_children) {
1860 if (mmu_pages_add(pvec, child, i))
1861 return -ENOSPC;
1862
1863 ret = __mmu_unsync_walk(child, pvec);
1864 if (!ret) {
1865 clear_unsync_child_bit(sp, i);
1866 continue;
1867 } else if (ret > 0) {
1868 nr_unsync_leaf += ret;
1869 } else
1870 return ret;
1871 } else if (child->unsync) {
1872 nr_unsync_leaf++;
1873 if (mmu_pages_add(pvec, child, i))
1874 return -ENOSPC;
1875 } else
1876 clear_unsync_child_bit(sp, i);
1877 }
1878
1879 return nr_unsync_leaf;
1880 }
1881
1882 #define INVALID_INDEX (-1)
1883
1884 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1885 struct kvm_mmu_pages *pvec)
1886 {
1887 pvec->nr = 0;
1888 if (!sp->unsync_children)
1889 return 0;
1890
1891 mmu_pages_add(pvec, sp, INVALID_INDEX);
1892 return __mmu_unsync_walk(sp, pvec);
1893 }
1894
1895 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1896 {
1897 WARN_ON(!sp->unsync);
1898 trace_kvm_mmu_sync_page(sp);
1899 sp->unsync = 0;
1900 --kvm->stat.mmu_unsync;
1901 }
1902
1903 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1904 struct list_head *invalid_list);
1905 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1906 struct list_head *invalid_list);
1907
1908 /*
1909 * NOTE: we should pay more attention on the zapped-obsolete page
1910 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1911 * since it has been deleted from active_mmu_pages but still can be found
1912 * at hast list.
1913 *
1914 * for_each_gfn_valid_sp() has skipped that kind of pages.
1915 */
1916 #define for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1917 hlist_for_each_entry(_sp, \
1918 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1919 if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1920 || (_sp)->role.invalid) {} else
1921
1922 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1923 for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1924 if ((_sp)->role.direct) {} else
1925
1926 /* @sp->gfn should be write-protected at the call site */
1927 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1928 struct list_head *invalid_list)
1929 {
1930 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1931 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1932 return false;
1933 }
1934
1935 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1936 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1937 return false;
1938 }
1939
1940 return true;
1941 }
1942
1943 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1944 struct list_head *invalid_list,
1945 bool remote_flush, bool local_flush)
1946 {
1947 if (!list_empty(invalid_list)) {
1948 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1949 return;
1950 }
1951
1952 if (remote_flush)
1953 kvm_flush_remote_tlbs(vcpu->kvm);
1954 else if (local_flush)
1955 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1956 }
1957
1958 #ifdef CONFIG_KVM_MMU_AUDIT
1959 #include "mmu_audit.c"
1960 #else
1961 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1962 static void mmu_audit_disable(void) { }
1963 #endif
1964
1965 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1966 {
1967 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1968 }
1969
1970 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1971 struct list_head *invalid_list)
1972 {
1973 kvm_unlink_unsync_page(vcpu->kvm, sp);
1974 return __kvm_sync_page(vcpu, sp, invalid_list);
1975 }
1976
1977 /* @gfn should be write-protected at the call site */
1978 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1979 struct list_head *invalid_list)
1980 {
1981 struct kvm_mmu_page *s;
1982 bool ret = false;
1983
1984 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1985 if (!s->unsync)
1986 continue;
1987
1988 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1989 ret |= kvm_sync_page(vcpu, s, invalid_list);
1990 }
1991
1992 return ret;
1993 }
1994
1995 struct mmu_page_path {
1996 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1997 unsigned int idx[PT64_ROOT_LEVEL];
1998 };
1999
2000 #define for_each_sp(pvec, sp, parents, i) \
2001 for (i = mmu_pages_first(&pvec, &parents); \
2002 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2003 i = mmu_pages_next(&pvec, &parents, i))
2004
2005 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2006 struct mmu_page_path *parents,
2007 int i)
2008 {
2009 int n;
2010
2011 for (n = i+1; n < pvec->nr; n++) {
2012 struct kvm_mmu_page *sp = pvec->page[n].sp;
2013 unsigned idx = pvec->page[n].idx;
2014 int level = sp->role.level;
2015
2016 parents->idx[level-1] = idx;
2017 if (level == PT_PAGE_TABLE_LEVEL)
2018 break;
2019
2020 parents->parent[level-2] = sp;
2021 }
2022
2023 return n;
2024 }
2025
2026 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2027 struct mmu_page_path *parents)
2028 {
2029 struct kvm_mmu_page *sp;
2030 int level;
2031
2032 if (pvec->nr == 0)
2033 return 0;
2034
2035 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2036
2037 sp = pvec->page[0].sp;
2038 level = sp->role.level;
2039 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2040
2041 parents->parent[level-2] = sp;
2042
2043 /* Also set up a sentinel. Further entries in pvec are all
2044 * children of sp, so this element is never overwritten.
2045 */
2046 parents->parent[level-1] = NULL;
2047 return mmu_pages_next(pvec, parents, 0);
2048 }
2049
2050 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2051 {
2052 struct kvm_mmu_page *sp;
2053 unsigned int level = 0;
2054
2055 do {
2056 unsigned int idx = parents->idx[level];
2057 sp = parents->parent[level];
2058 if (!sp)
2059 return;
2060
2061 WARN_ON(idx == INVALID_INDEX);
2062 clear_unsync_child_bit(sp, idx);
2063 level++;
2064 } while (!sp->unsync_children);
2065 }
2066
2067 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2068 struct kvm_mmu_page *parent)
2069 {
2070 int i;
2071 struct kvm_mmu_page *sp;
2072 struct mmu_page_path parents;
2073 struct kvm_mmu_pages pages;
2074 LIST_HEAD(invalid_list);
2075 bool flush = false;
2076
2077 while (mmu_unsync_walk(parent, &pages)) {
2078 bool protected = false;
2079
2080 for_each_sp(pages, sp, parents, i)
2081 protected |= rmap_write_protect(vcpu, sp->gfn);
2082
2083 if (protected) {
2084 kvm_flush_remote_tlbs(vcpu->kvm);
2085 flush = false;
2086 }
2087
2088 for_each_sp(pages, sp, parents, i) {
2089 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2090 mmu_pages_clear_parents(&parents);
2091 }
2092 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2093 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2094 cond_resched_lock(&vcpu->kvm->mmu_lock);
2095 flush = false;
2096 }
2097 }
2098
2099 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2100 }
2101
2102 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2103 {
2104 atomic_set(&sp->write_flooding_count, 0);
2105 }
2106
2107 static void clear_sp_write_flooding_count(u64 *spte)
2108 {
2109 struct kvm_mmu_page *sp = page_header(__pa(spte));
2110
2111 __clear_sp_write_flooding_count(sp);
2112 }
2113
2114 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2115 gfn_t gfn,
2116 gva_t gaddr,
2117 unsigned level,
2118 int direct,
2119 unsigned access)
2120 {
2121 union kvm_mmu_page_role role;
2122 unsigned quadrant;
2123 struct kvm_mmu_page *sp;
2124 bool need_sync = false;
2125 bool flush = false;
2126 LIST_HEAD(invalid_list);
2127
2128 role = vcpu->arch.mmu.base_role;
2129 role.level = level;
2130 role.direct = direct;
2131 if (role.direct)
2132 role.cr4_pae = 0;
2133 role.access = access;
2134 if (!vcpu->arch.mmu.direct_map
2135 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2136 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2137 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2138 role.quadrant = quadrant;
2139 }
2140 for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2141 if (!need_sync && sp->unsync)
2142 need_sync = true;
2143
2144 if (sp->role.word != role.word)
2145 continue;
2146
2147 if (sp->unsync) {
2148 /* The page is good, but __kvm_sync_page might still end
2149 * up zapping it. If so, break in order to rebuild it.
2150 */
2151 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2152 break;
2153
2154 WARN_ON(!list_empty(&invalid_list));
2155 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2156 }
2157
2158 if (sp->unsync_children)
2159 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2160
2161 __clear_sp_write_flooding_count(sp);
2162 trace_kvm_mmu_get_page(sp, false);
2163 return sp;
2164 }
2165
2166 ++vcpu->kvm->stat.mmu_cache_miss;
2167
2168 sp = kvm_mmu_alloc_page(vcpu, direct);
2169
2170 sp->gfn = gfn;
2171 sp->role = role;
2172 hlist_add_head(&sp->hash_link,
2173 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2174 if (!direct) {
2175 /*
2176 * we should do write protection before syncing pages
2177 * otherwise the content of the synced shadow page may
2178 * be inconsistent with guest page table.
2179 */
2180 account_shadowed(vcpu->kvm, sp);
2181 if (level == PT_PAGE_TABLE_LEVEL &&
2182 rmap_write_protect(vcpu, gfn))
2183 kvm_flush_remote_tlbs(vcpu->kvm);
2184
2185 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2186 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2187 }
2188 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2189 clear_page(sp->spt);
2190 trace_kvm_mmu_get_page(sp, true);
2191
2192 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2193 return sp;
2194 }
2195
2196 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2197 struct kvm_vcpu *vcpu, u64 addr)
2198 {
2199 iterator->addr = addr;
2200 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2201 iterator->level = vcpu->arch.mmu.shadow_root_level;
2202
2203 if (iterator->level == PT64_ROOT_LEVEL &&
2204 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2205 !vcpu->arch.mmu.direct_map)
2206 --iterator->level;
2207
2208 if (iterator->level == PT32E_ROOT_LEVEL) {
2209 iterator->shadow_addr
2210 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2211 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2212 --iterator->level;
2213 if (!iterator->shadow_addr)
2214 iterator->level = 0;
2215 }
2216 }
2217
2218 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2219 {
2220 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2221 return false;
2222
2223 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2224 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2225 return true;
2226 }
2227
2228 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2229 u64 spte)
2230 {
2231 if (is_last_spte(spte, iterator->level)) {
2232 iterator->level = 0;
2233 return;
2234 }
2235
2236 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2237 --iterator->level;
2238 }
2239
2240 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2241 {
2242 return __shadow_walk_next(iterator, *iterator->sptep);
2243 }
2244
2245 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2246 struct kvm_mmu_page *sp)
2247 {
2248 u64 spte;
2249
2250 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2251
2252 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2253 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2254
2255 mmu_spte_set(sptep, spte);
2256
2257 mmu_page_add_parent_pte(vcpu, sp, sptep);
2258
2259 if (sp->unsync_children || sp->unsync)
2260 mark_unsync(sptep);
2261 }
2262
2263 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2264 unsigned direct_access)
2265 {
2266 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2267 struct kvm_mmu_page *child;
2268
2269 /*
2270 * For the direct sp, if the guest pte's dirty bit
2271 * changed form clean to dirty, it will corrupt the
2272 * sp's access: allow writable in the read-only sp,
2273 * so we should update the spte at this point to get
2274 * a new sp with the correct access.
2275 */
2276 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2277 if (child->role.access == direct_access)
2278 return;
2279
2280 drop_parent_pte(child, sptep);
2281 kvm_flush_remote_tlbs(vcpu->kvm);
2282 }
2283 }
2284
2285 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2286 u64 *spte)
2287 {
2288 u64 pte;
2289 struct kvm_mmu_page *child;
2290
2291 pte = *spte;
2292 if (is_shadow_present_pte(pte)) {
2293 if (is_last_spte(pte, sp->role.level)) {
2294 drop_spte(kvm, spte);
2295 if (is_large_pte(pte))
2296 --kvm->stat.lpages;
2297 } else {
2298 child = page_header(pte & PT64_BASE_ADDR_MASK);
2299 drop_parent_pte(child, spte);
2300 }
2301 return true;
2302 }
2303
2304 if (is_mmio_spte(pte))
2305 mmu_spte_clear_no_track(spte);
2306
2307 return false;
2308 }
2309
2310 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2311 struct kvm_mmu_page *sp)
2312 {
2313 unsigned i;
2314
2315 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2316 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2317 }
2318
2319 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2320 {
2321 u64 *sptep;
2322 struct rmap_iterator iter;
2323
2324 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2325 drop_parent_pte(sp, sptep);
2326 }
2327
2328 static int mmu_zap_unsync_children(struct kvm *kvm,
2329 struct kvm_mmu_page *parent,
2330 struct list_head *invalid_list)
2331 {
2332 int i, zapped = 0;
2333 struct mmu_page_path parents;
2334 struct kvm_mmu_pages pages;
2335
2336 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2337 return 0;
2338
2339 while (mmu_unsync_walk(parent, &pages)) {
2340 struct kvm_mmu_page *sp;
2341
2342 for_each_sp(pages, sp, parents, i) {
2343 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2344 mmu_pages_clear_parents(&parents);
2345 zapped++;
2346 }
2347 }
2348
2349 return zapped;
2350 }
2351
2352 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2353 struct list_head *invalid_list)
2354 {
2355 int ret;
2356
2357 trace_kvm_mmu_prepare_zap_page(sp);
2358 ++kvm->stat.mmu_shadow_zapped;
2359 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2360 kvm_mmu_page_unlink_children(kvm, sp);
2361 kvm_mmu_unlink_parents(kvm, sp);
2362
2363 if (!sp->role.invalid && !sp->role.direct)
2364 unaccount_shadowed(kvm, sp);
2365
2366 if (sp->unsync)
2367 kvm_unlink_unsync_page(kvm, sp);
2368 if (!sp->root_count) {
2369 /* Count self */
2370 ret++;
2371 list_move(&sp->link, invalid_list);
2372 kvm_mod_used_mmu_pages(kvm, -1);
2373 } else {
2374 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2375
2376 /*
2377 * The obsolete pages can not be used on any vcpus.
2378 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2379 */
2380 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2381 kvm_reload_remote_mmus(kvm);
2382 }
2383
2384 sp->role.invalid = 1;
2385 return ret;
2386 }
2387
2388 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2389 struct list_head *invalid_list)
2390 {
2391 struct kvm_mmu_page *sp, *nsp;
2392
2393 if (list_empty(invalid_list))
2394 return;
2395
2396 /*
2397 * We need to make sure everyone sees our modifications to
2398 * the page tables and see changes to vcpu->mode here. The barrier
2399 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2400 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2401 *
2402 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2403 * guest mode and/or lockless shadow page table walks.
2404 */
2405 kvm_flush_remote_tlbs(kvm);
2406
2407 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2408 WARN_ON(!sp->role.invalid || sp->root_count);
2409 kvm_mmu_free_page(sp);
2410 }
2411 }
2412
2413 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2414 struct list_head *invalid_list)
2415 {
2416 struct kvm_mmu_page *sp;
2417
2418 if (list_empty(&kvm->arch.active_mmu_pages))
2419 return false;
2420
2421 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2422 struct kvm_mmu_page, link);
2423 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2424
2425 return true;
2426 }
2427
2428 /*
2429 * Changing the number of mmu pages allocated to the vm
2430 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2431 */
2432 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2433 {
2434 LIST_HEAD(invalid_list);
2435
2436 spin_lock(&kvm->mmu_lock);
2437
2438 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2439 /* Need to free some mmu pages to achieve the goal. */
2440 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2441 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2442 break;
2443
2444 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2445 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2446 }
2447
2448 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2449
2450 spin_unlock(&kvm->mmu_lock);
2451 }
2452
2453 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2454 {
2455 struct kvm_mmu_page *sp;
2456 LIST_HEAD(invalid_list);
2457 int r;
2458
2459 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2460 r = 0;
2461 spin_lock(&kvm->mmu_lock);
2462 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2463 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2464 sp->role.word);
2465 r = 1;
2466 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2467 }
2468 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2469 spin_unlock(&kvm->mmu_lock);
2470
2471 return r;
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2474
2475 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2476 {
2477 trace_kvm_mmu_unsync_page(sp);
2478 ++vcpu->kvm->stat.mmu_unsync;
2479 sp->unsync = 1;
2480
2481 kvm_mmu_mark_parents_unsync(sp);
2482 }
2483
2484 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2485 bool can_unsync)
2486 {
2487 struct kvm_mmu_page *sp;
2488
2489 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2490 return true;
2491
2492 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2493 if (!can_unsync)
2494 return true;
2495
2496 if (sp->unsync)
2497 continue;
2498
2499 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2500 kvm_unsync_page(vcpu, sp);
2501 }
2502
2503 return false;
2504 }
2505
2506 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2507 {
2508 if (pfn_valid(pfn))
2509 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2510
2511 return true;
2512 }
2513
2514 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2515 unsigned pte_access, int level,
2516 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2517 bool can_unsync, bool host_writable)
2518 {
2519 u64 spte = 0;
2520 int ret = 0;
2521
2522 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2523 return 0;
2524
2525 /*
2526 * For the EPT case, shadow_present_mask is 0 if hardware
2527 * supports exec-only page table entries. In that case,
2528 * ACC_USER_MASK and shadow_user_mask are used to represent
2529 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2530 */
2531 spte |= shadow_present_mask;
2532 if (!speculative)
2533 spte |= shadow_accessed_mask;
2534
2535 if (pte_access & ACC_EXEC_MASK)
2536 spte |= shadow_x_mask;
2537 else
2538 spte |= shadow_nx_mask;
2539
2540 if (pte_access & ACC_USER_MASK)
2541 spte |= shadow_user_mask;
2542
2543 if (level > PT_PAGE_TABLE_LEVEL)
2544 spte |= PT_PAGE_SIZE_MASK;
2545 if (tdp_enabled)
2546 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2547 kvm_is_mmio_pfn(pfn));
2548
2549 if (host_writable)
2550 spte |= SPTE_HOST_WRITEABLE;
2551 else
2552 pte_access &= ~ACC_WRITE_MASK;
2553
2554 spte |= (u64)pfn << PAGE_SHIFT;
2555
2556 if (pte_access & ACC_WRITE_MASK) {
2557
2558 /*
2559 * Other vcpu creates new sp in the window between
2560 * mapping_level() and acquiring mmu-lock. We can
2561 * allow guest to retry the access, the mapping can
2562 * be fixed if guest refault.
2563 */
2564 if (level > PT_PAGE_TABLE_LEVEL &&
2565 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2566 goto done;
2567
2568 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2569
2570 /*
2571 * Optimization: for pte sync, if spte was writable the hash
2572 * lookup is unnecessary (and expensive). Write protection
2573 * is responsibility of mmu_get_page / kvm_sync_page.
2574 * Same reasoning can be applied to dirty page accounting.
2575 */
2576 if (!can_unsync && is_writable_pte(*sptep))
2577 goto set_pte;
2578
2579 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2580 pgprintk("%s: found shadow page for %llx, marking ro\n",
2581 __func__, gfn);
2582 ret = 1;
2583 pte_access &= ~ACC_WRITE_MASK;
2584 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2585 }
2586 }
2587
2588 if (pte_access & ACC_WRITE_MASK) {
2589 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2590 spte |= shadow_dirty_mask;
2591 }
2592
2593 set_pte:
2594 if (mmu_spte_update(sptep, spte))
2595 kvm_flush_remote_tlbs(vcpu->kvm);
2596 done:
2597 return ret;
2598 }
2599
2600 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2601 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2602 bool speculative, bool host_writable)
2603 {
2604 int was_rmapped = 0;
2605 int rmap_count;
2606 bool emulate = false;
2607
2608 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2609 *sptep, write_fault, gfn);
2610
2611 if (is_shadow_present_pte(*sptep)) {
2612 /*
2613 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2614 * the parent of the now unreachable PTE.
2615 */
2616 if (level > PT_PAGE_TABLE_LEVEL &&
2617 !is_large_pte(*sptep)) {
2618 struct kvm_mmu_page *child;
2619 u64 pte = *sptep;
2620
2621 child = page_header(pte & PT64_BASE_ADDR_MASK);
2622 drop_parent_pte(child, sptep);
2623 kvm_flush_remote_tlbs(vcpu->kvm);
2624 } else if (pfn != spte_to_pfn(*sptep)) {
2625 pgprintk("hfn old %llx new %llx\n",
2626 spte_to_pfn(*sptep), pfn);
2627 drop_spte(vcpu->kvm, sptep);
2628 kvm_flush_remote_tlbs(vcpu->kvm);
2629 } else
2630 was_rmapped = 1;
2631 }
2632
2633 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2634 true, host_writable)) {
2635 if (write_fault)
2636 emulate = true;
2637 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2638 }
2639
2640 if (unlikely(is_mmio_spte(*sptep)))
2641 emulate = true;
2642
2643 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2644 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2645 is_large_pte(*sptep)? "2MB" : "4kB",
2646 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2647 *sptep, sptep);
2648 if (!was_rmapped && is_large_pte(*sptep))
2649 ++vcpu->kvm->stat.lpages;
2650
2651 if (is_shadow_present_pte(*sptep)) {
2652 if (!was_rmapped) {
2653 rmap_count = rmap_add(vcpu, sptep, gfn);
2654 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2655 rmap_recycle(vcpu, sptep, gfn);
2656 }
2657 }
2658
2659 kvm_release_pfn_clean(pfn);
2660
2661 return emulate;
2662 }
2663
2664 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2665 bool no_dirty_log)
2666 {
2667 struct kvm_memory_slot *slot;
2668
2669 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2670 if (!slot)
2671 return KVM_PFN_ERR_FAULT;
2672
2673 return gfn_to_pfn_memslot_atomic(slot, gfn);
2674 }
2675
2676 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2677 struct kvm_mmu_page *sp,
2678 u64 *start, u64 *end)
2679 {
2680 struct page *pages[PTE_PREFETCH_NUM];
2681 struct kvm_memory_slot *slot;
2682 unsigned access = sp->role.access;
2683 int i, ret;
2684 gfn_t gfn;
2685
2686 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2687 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2688 if (!slot)
2689 return -1;
2690
2691 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2692 if (ret <= 0)
2693 return -1;
2694
2695 for (i = 0; i < ret; i++, gfn++, start++)
2696 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2697 page_to_pfn(pages[i]), true, true);
2698
2699 return 0;
2700 }
2701
2702 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2703 struct kvm_mmu_page *sp, u64 *sptep)
2704 {
2705 u64 *spte, *start = NULL;
2706 int i;
2707
2708 WARN_ON(!sp->role.direct);
2709
2710 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2711 spte = sp->spt + i;
2712
2713 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2714 if (is_shadow_present_pte(*spte) || spte == sptep) {
2715 if (!start)
2716 continue;
2717 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2718 break;
2719 start = NULL;
2720 } else if (!start)
2721 start = spte;
2722 }
2723 }
2724
2725 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2726 {
2727 struct kvm_mmu_page *sp;
2728
2729 /*
2730 * Since it's no accessed bit on EPT, it's no way to
2731 * distinguish between actually accessed translations
2732 * and prefetched, so disable pte prefetch if EPT is
2733 * enabled.
2734 */
2735 if (!shadow_accessed_mask)
2736 return;
2737
2738 sp = page_header(__pa(sptep));
2739 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2740 return;
2741
2742 __direct_pte_prefetch(vcpu, sp, sptep);
2743 }
2744
2745 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2746 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2747 {
2748 struct kvm_shadow_walk_iterator iterator;
2749 struct kvm_mmu_page *sp;
2750 int emulate = 0;
2751 gfn_t pseudo_gfn;
2752
2753 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2754 return 0;
2755
2756 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2757 if (iterator.level == level) {
2758 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2759 write, level, gfn, pfn, prefault,
2760 map_writable);
2761 direct_pte_prefetch(vcpu, iterator.sptep);
2762 ++vcpu->stat.pf_fixed;
2763 break;
2764 }
2765
2766 drop_large_spte(vcpu, iterator.sptep);
2767 if (!is_shadow_present_pte(*iterator.sptep)) {
2768 u64 base_addr = iterator.addr;
2769
2770 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2771 pseudo_gfn = base_addr >> PAGE_SHIFT;
2772 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2773 iterator.level - 1, 1, ACC_ALL);
2774
2775 link_shadow_page(vcpu, iterator.sptep, sp);
2776 }
2777 }
2778 return emulate;
2779 }
2780
2781 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2782 {
2783 siginfo_t info;
2784
2785 info.si_signo = SIGBUS;
2786 info.si_errno = 0;
2787 info.si_code = BUS_MCEERR_AR;
2788 info.si_addr = (void __user *)address;
2789 info.si_addr_lsb = PAGE_SHIFT;
2790
2791 send_sig_info(SIGBUS, &info, tsk);
2792 }
2793
2794 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2795 {
2796 /*
2797 * Do not cache the mmio info caused by writing the readonly gfn
2798 * into the spte otherwise read access on readonly gfn also can
2799 * caused mmio page fault and treat it as mmio access.
2800 * Return 1 to tell kvm to emulate it.
2801 */
2802 if (pfn == KVM_PFN_ERR_RO_FAULT)
2803 return 1;
2804
2805 if (pfn == KVM_PFN_ERR_HWPOISON) {
2806 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2807 return 0;
2808 }
2809
2810 return -EFAULT;
2811 }
2812
2813 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2814 gfn_t *gfnp, kvm_pfn_t *pfnp,
2815 int *levelp)
2816 {
2817 kvm_pfn_t pfn = *pfnp;
2818 gfn_t gfn = *gfnp;
2819 int level = *levelp;
2820
2821 /*
2822 * Check if it's a transparent hugepage. If this would be an
2823 * hugetlbfs page, level wouldn't be set to
2824 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2825 * here.
2826 */
2827 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2828 level == PT_PAGE_TABLE_LEVEL &&
2829 PageTransCompoundMap(pfn_to_page(pfn)) &&
2830 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2831 unsigned long mask;
2832 /*
2833 * mmu_notifier_retry was successful and we hold the
2834 * mmu_lock here, so the pmd can't become splitting
2835 * from under us, and in turn
2836 * __split_huge_page_refcount() can't run from under
2837 * us and we can safely transfer the refcount from
2838 * PG_tail to PG_head as we switch the pfn to tail to
2839 * head.
2840 */
2841 *levelp = level = PT_DIRECTORY_LEVEL;
2842 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2843 VM_BUG_ON((gfn & mask) != (pfn & mask));
2844 if (pfn & mask) {
2845 gfn &= ~mask;
2846 *gfnp = gfn;
2847 kvm_release_pfn_clean(pfn);
2848 pfn &= ~mask;
2849 kvm_get_pfn(pfn);
2850 *pfnp = pfn;
2851 }
2852 }
2853 }
2854
2855 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2856 kvm_pfn_t pfn, unsigned access, int *ret_val)
2857 {
2858 /* The pfn is invalid, report the error! */
2859 if (unlikely(is_error_pfn(pfn))) {
2860 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2861 return true;
2862 }
2863
2864 if (unlikely(is_noslot_pfn(pfn)))
2865 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2866
2867 return false;
2868 }
2869
2870 static bool page_fault_can_be_fast(u32 error_code)
2871 {
2872 /*
2873 * Do not fix the mmio spte with invalid generation number which
2874 * need to be updated by slow page fault path.
2875 */
2876 if (unlikely(error_code & PFERR_RSVD_MASK))
2877 return false;
2878
2879 /*
2880 * #PF can be fast only if the shadow page table is present and it
2881 * is caused by write-protect, that means we just need change the
2882 * W bit of the spte which can be done out of mmu-lock.
2883 */
2884 if (!(error_code & PFERR_PRESENT_MASK) ||
2885 !(error_code & PFERR_WRITE_MASK))
2886 return false;
2887
2888 return true;
2889 }
2890
2891 static bool
2892 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2893 u64 *sptep, u64 spte)
2894 {
2895 gfn_t gfn;
2896
2897 WARN_ON(!sp->role.direct);
2898
2899 /*
2900 * The gfn of direct spte is stable since it is calculated
2901 * by sp->gfn.
2902 */
2903 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2904
2905 /*
2906 * Theoretically we could also set dirty bit (and flush TLB) here in
2907 * order to eliminate unnecessary PML logging. See comments in
2908 * set_spte. But fast_page_fault is very unlikely to happen with PML
2909 * enabled, so we do not do this. This might result in the same GPA
2910 * to be logged in PML buffer again when the write really happens, and
2911 * eventually to be called by mark_page_dirty twice. But it's also no
2912 * harm. This also avoids the TLB flush needed after setting dirty bit
2913 * so non-PML cases won't be impacted.
2914 *
2915 * Compare with set_spte where instead shadow_dirty_mask is set.
2916 */
2917 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2918 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2919
2920 return true;
2921 }
2922
2923 /*
2924 * Return value:
2925 * - true: let the vcpu to access on the same address again.
2926 * - false: let the real page fault path to fix it.
2927 */
2928 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2929 u32 error_code)
2930 {
2931 struct kvm_shadow_walk_iterator iterator;
2932 struct kvm_mmu_page *sp;
2933 bool ret = false;
2934 u64 spte = 0ull;
2935
2936 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2937 return false;
2938
2939 if (!page_fault_can_be_fast(error_code))
2940 return false;
2941
2942 walk_shadow_page_lockless_begin(vcpu);
2943 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2944 if (!is_shadow_present_pte(spte) || iterator.level < level)
2945 break;
2946
2947 /*
2948 * If the mapping has been changed, let the vcpu fault on the
2949 * same address again.
2950 */
2951 if (!is_shadow_present_pte(spte)) {
2952 ret = true;
2953 goto exit;
2954 }
2955
2956 sp = page_header(__pa(iterator.sptep));
2957 if (!is_last_spte(spte, sp->role.level))
2958 goto exit;
2959
2960 /*
2961 * Check if it is a spurious fault caused by TLB lazily flushed.
2962 *
2963 * Need not check the access of upper level table entries since
2964 * they are always ACC_ALL.
2965 */
2966 if (is_writable_pte(spte)) {
2967 ret = true;
2968 goto exit;
2969 }
2970
2971 /*
2972 * Currently, to simplify the code, only the spte write-protected
2973 * by dirty-log can be fast fixed.
2974 */
2975 if (!spte_is_locklessly_modifiable(spte))
2976 goto exit;
2977
2978 /*
2979 * Do not fix write-permission on the large spte since we only dirty
2980 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2981 * that means other pages are missed if its slot is dirty-logged.
2982 *
2983 * Instead, we let the slow page fault path create a normal spte to
2984 * fix the access.
2985 *
2986 * See the comments in kvm_arch_commit_memory_region().
2987 */
2988 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2989 goto exit;
2990
2991 /*
2992 * Currently, fast page fault only works for direct mapping since
2993 * the gfn is not stable for indirect shadow page.
2994 * See Documentation/virtual/kvm/locking.txt to get more detail.
2995 */
2996 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2997 exit:
2998 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2999 spte, ret);
3000 walk_shadow_page_lockless_end(vcpu);
3001
3002 return ret;
3003 }
3004
3005 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3006 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3007 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3008
3009 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3010 gfn_t gfn, bool prefault)
3011 {
3012 int r;
3013 int level;
3014 bool force_pt_level = false;
3015 kvm_pfn_t pfn;
3016 unsigned long mmu_seq;
3017 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3018
3019 level = mapping_level(vcpu, gfn, &force_pt_level);
3020 if (likely(!force_pt_level)) {
3021 /*
3022 * This path builds a PAE pagetable - so we can map
3023 * 2mb pages at maximum. Therefore check if the level
3024 * is larger than that.
3025 */
3026 if (level > PT_DIRECTORY_LEVEL)
3027 level = PT_DIRECTORY_LEVEL;
3028
3029 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3030 }
3031
3032 if (fast_page_fault(vcpu, v, level, error_code))
3033 return 0;
3034
3035 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3036 smp_rmb();
3037
3038 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3039 return 0;
3040
3041 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3042 return r;
3043
3044 spin_lock(&vcpu->kvm->mmu_lock);
3045 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3046 goto out_unlock;
3047 make_mmu_pages_available(vcpu);
3048 if (likely(!force_pt_level))
3049 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3050 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3051 spin_unlock(&vcpu->kvm->mmu_lock);
3052
3053 return r;
3054
3055 out_unlock:
3056 spin_unlock(&vcpu->kvm->mmu_lock);
3057 kvm_release_pfn_clean(pfn);
3058 return 0;
3059 }
3060
3061
3062 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3063 {
3064 int i;
3065 struct kvm_mmu_page *sp;
3066 LIST_HEAD(invalid_list);
3067
3068 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3069 return;
3070
3071 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3072 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3073 vcpu->arch.mmu.direct_map)) {
3074 hpa_t root = vcpu->arch.mmu.root_hpa;
3075
3076 spin_lock(&vcpu->kvm->mmu_lock);
3077 sp = page_header(root);
3078 --sp->root_count;
3079 if (!sp->root_count && sp->role.invalid) {
3080 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3081 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3082 }
3083 spin_unlock(&vcpu->kvm->mmu_lock);
3084 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3085 return;
3086 }
3087
3088 spin_lock(&vcpu->kvm->mmu_lock);
3089 for (i = 0; i < 4; ++i) {
3090 hpa_t root = vcpu->arch.mmu.pae_root[i];
3091
3092 if (root) {
3093 root &= PT64_BASE_ADDR_MASK;
3094 sp = page_header(root);
3095 --sp->root_count;
3096 if (!sp->root_count && sp->role.invalid)
3097 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3098 &invalid_list);
3099 }
3100 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3101 }
3102 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3103 spin_unlock(&vcpu->kvm->mmu_lock);
3104 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3105 }
3106
3107 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3108 {
3109 int ret = 0;
3110
3111 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3112 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3113 ret = 1;
3114 }
3115
3116 return ret;
3117 }
3118
3119 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3120 {
3121 struct kvm_mmu_page *sp;
3122 unsigned i;
3123
3124 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3125 spin_lock(&vcpu->kvm->mmu_lock);
3126 make_mmu_pages_available(vcpu);
3127 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3128 ++sp->root_count;
3129 spin_unlock(&vcpu->kvm->mmu_lock);
3130 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3131 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3132 for (i = 0; i < 4; ++i) {
3133 hpa_t root = vcpu->arch.mmu.pae_root[i];
3134
3135 MMU_WARN_ON(VALID_PAGE(root));
3136 spin_lock(&vcpu->kvm->mmu_lock);
3137 make_mmu_pages_available(vcpu);
3138 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3139 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3140 root = __pa(sp->spt);
3141 ++sp->root_count;
3142 spin_unlock(&vcpu->kvm->mmu_lock);
3143 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3144 }
3145 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3146 } else
3147 BUG();
3148
3149 return 0;
3150 }
3151
3152 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3153 {
3154 struct kvm_mmu_page *sp;
3155 u64 pdptr, pm_mask;
3156 gfn_t root_gfn;
3157 int i;
3158
3159 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3160
3161 if (mmu_check_root(vcpu, root_gfn))
3162 return 1;
3163
3164 /*
3165 * Do we shadow a long mode page table? If so we need to
3166 * write-protect the guests page table root.
3167 */
3168 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3169 hpa_t root = vcpu->arch.mmu.root_hpa;
3170
3171 MMU_WARN_ON(VALID_PAGE(root));
3172
3173 spin_lock(&vcpu->kvm->mmu_lock);
3174 make_mmu_pages_available(vcpu);
3175 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3176 0, ACC_ALL);
3177 root = __pa(sp->spt);
3178 ++sp->root_count;
3179 spin_unlock(&vcpu->kvm->mmu_lock);
3180 vcpu->arch.mmu.root_hpa = root;
3181 return 0;
3182 }
3183
3184 /*
3185 * We shadow a 32 bit page table. This may be a legacy 2-level
3186 * or a PAE 3-level page table. In either case we need to be aware that
3187 * the shadow page table may be a PAE or a long mode page table.
3188 */
3189 pm_mask = PT_PRESENT_MASK;
3190 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3191 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3192
3193 for (i = 0; i < 4; ++i) {
3194 hpa_t root = vcpu->arch.mmu.pae_root[i];
3195
3196 MMU_WARN_ON(VALID_PAGE(root));
3197 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3198 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3199 if (!(pdptr & PT_PRESENT_MASK)) {
3200 vcpu->arch.mmu.pae_root[i] = 0;
3201 continue;
3202 }
3203 root_gfn = pdptr >> PAGE_SHIFT;
3204 if (mmu_check_root(vcpu, root_gfn))
3205 return 1;
3206 }
3207 spin_lock(&vcpu->kvm->mmu_lock);
3208 make_mmu_pages_available(vcpu);
3209 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3210 0, ACC_ALL);
3211 root = __pa(sp->spt);
3212 ++sp->root_count;
3213 spin_unlock(&vcpu->kvm->mmu_lock);
3214
3215 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3216 }
3217 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3218
3219 /*
3220 * If we shadow a 32 bit page table with a long mode page
3221 * table we enter this path.
3222 */
3223 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3224 if (vcpu->arch.mmu.lm_root == NULL) {
3225 /*
3226 * The additional page necessary for this is only
3227 * allocated on demand.
3228 */
3229
3230 u64 *lm_root;
3231
3232 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3233 if (lm_root == NULL)
3234 return 1;
3235
3236 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3237
3238 vcpu->arch.mmu.lm_root = lm_root;
3239 }
3240
3241 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3242 }
3243
3244 return 0;
3245 }
3246
3247 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3248 {
3249 if (vcpu->arch.mmu.direct_map)
3250 return mmu_alloc_direct_roots(vcpu);
3251 else
3252 return mmu_alloc_shadow_roots(vcpu);
3253 }
3254
3255 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3256 {
3257 int i;
3258 struct kvm_mmu_page *sp;
3259
3260 if (vcpu->arch.mmu.direct_map)
3261 return;
3262
3263 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3264 return;
3265
3266 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3267 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3268 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3269 hpa_t root = vcpu->arch.mmu.root_hpa;
3270 sp = page_header(root);
3271 mmu_sync_children(vcpu, sp);
3272 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3273 return;
3274 }
3275 for (i = 0; i < 4; ++i) {
3276 hpa_t root = vcpu->arch.mmu.pae_root[i];
3277
3278 if (root && VALID_PAGE(root)) {
3279 root &= PT64_BASE_ADDR_MASK;
3280 sp = page_header(root);
3281 mmu_sync_children(vcpu, sp);
3282 }
3283 }
3284 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3285 }
3286
3287 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3288 {
3289 spin_lock(&vcpu->kvm->mmu_lock);
3290 mmu_sync_roots(vcpu);
3291 spin_unlock(&vcpu->kvm->mmu_lock);
3292 }
3293 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3294
3295 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3296 u32 access, struct x86_exception *exception)
3297 {
3298 if (exception)
3299 exception->error_code = 0;
3300 return vaddr;
3301 }
3302
3303 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3304 u32 access,
3305 struct x86_exception *exception)
3306 {
3307 if (exception)
3308 exception->error_code = 0;
3309 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3310 }
3311
3312 static bool
3313 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3314 {
3315 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3316
3317 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3318 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3319 }
3320
3321 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3322 {
3323 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3324 }
3325
3326 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3327 {
3328 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3329 }
3330
3331 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3332 {
3333 if (direct)
3334 return vcpu_match_mmio_gpa(vcpu, addr);
3335
3336 return vcpu_match_mmio_gva(vcpu, addr);
3337 }
3338
3339 /* return true if reserved bit is detected on spte. */
3340 static bool
3341 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3342 {
3343 struct kvm_shadow_walk_iterator iterator;
3344 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3345 int root, leaf;
3346 bool reserved = false;
3347
3348 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3349 goto exit;
3350
3351 walk_shadow_page_lockless_begin(vcpu);
3352
3353 for (shadow_walk_init(&iterator, vcpu, addr),
3354 leaf = root = iterator.level;
3355 shadow_walk_okay(&iterator);
3356 __shadow_walk_next(&iterator, spte)) {
3357 spte = mmu_spte_get_lockless(iterator.sptep);
3358
3359 sptes[leaf - 1] = spte;
3360 leaf--;
3361
3362 if (!is_shadow_present_pte(spte))
3363 break;
3364
3365 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3366 iterator.level);
3367 }
3368
3369 walk_shadow_page_lockless_end(vcpu);
3370
3371 if (reserved) {
3372 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3373 __func__, addr);
3374 while (root > leaf) {
3375 pr_err("------ spte 0x%llx level %d.\n",
3376 sptes[root - 1], root);
3377 root--;
3378 }
3379 }
3380 exit:
3381 *sptep = spte;
3382 return reserved;
3383 }
3384
3385 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3386 {
3387 u64 spte;
3388 bool reserved;
3389
3390 if (mmio_info_in_cache(vcpu, addr, direct))
3391 return RET_MMIO_PF_EMULATE;
3392
3393 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3394 if (WARN_ON(reserved))
3395 return RET_MMIO_PF_BUG;
3396
3397 if (is_mmio_spte(spte)) {
3398 gfn_t gfn = get_mmio_spte_gfn(spte);
3399 unsigned access = get_mmio_spte_access(spte);
3400
3401 if (!check_mmio_spte(vcpu, spte))
3402 return RET_MMIO_PF_INVALID;
3403
3404 if (direct)
3405 addr = 0;
3406
3407 trace_handle_mmio_page_fault(addr, gfn, access);
3408 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3409 return RET_MMIO_PF_EMULATE;
3410 }
3411
3412 /*
3413 * If the page table is zapped by other cpus, let CPU fault again on
3414 * the address.
3415 */
3416 return RET_MMIO_PF_RETRY;
3417 }
3418 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3419
3420 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3421 u32 error_code, gfn_t gfn)
3422 {
3423 if (unlikely(error_code & PFERR_RSVD_MASK))
3424 return false;
3425
3426 if (!(error_code & PFERR_PRESENT_MASK) ||
3427 !(error_code & PFERR_WRITE_MASK))
3428 return false;
3429
3430 /*
3431 * guest is writing the page which is write tracked which can
3432 * not be fixed by page fault handler.
3433 */
3434 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3435 return true;
3436
3437 return false;
3438 }
3439
3440 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3441 {
3442 struct kvm_shadow_walk_iterator iterator;
3443 u64 spte;
3444
3445 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3446 return;
3447
3448 walk_shadow_page_lockless_begin(vcpu);
3449 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3450 clear_sp_write_flooding_count(iterator.sptep);
3451 if (!is_shadow_present_pte(spte))
3452 break;
3453 }
3454 walk_shadow_page_lockless_end(vcpu);
3455 }
3456
3457 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3458 u32 error_code, bool prefault)
3459 {
3460 gfn_t gfn = gva >> PAGE_SHIFT;
3461 int r;
3462
3463 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3464
3465 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3466 return 1;
3467
3468 r = mmu_topup_memory_caches(vcpu);
3469 if (r)
3470 return r;
3471
3472 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3473
3474
3475 return nonpaging_map(vcpu, gva & PAGE_MASK,
3476 error_code, gfn, prefault);
3477 }
3478
3479 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3480 {
3481 struct kvm_arch_async_pf arch;
3482
3483 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3484 arch.gfn = gfn;
3485 arch.direct_map = vcpu->arch.mmu.direct_map;
3486 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3487
3488 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3489 }
3490
3491 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3492 {
3493 if (unlikely(!lapic_in_kernel(vcpu) ||
3494 kvm_event_needs_reinjection(vcpu)))
3495 return false;
3496
3497 return kvm_x86_ops->interrupt_allowed(vcpu);
3498 }
3499
3500 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3501 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3502 {
3503 struct kvm_memory_slot *slot;
3504 bool async;
3505
3506 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3507 async = false;
3508 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3509 if (!async)
3510 return false; /* *pfn has correct page already */
3511
3512 if (!prefault && can_do_async_pf(vcpu)) {
3513 trace_kvm_try_async_get_page(gva, gfn);
3514 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3515 trace_kvm_async_pf_doublefault(gva, gfn);
3516 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3517 return true;
3518 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3519 return true;
3520 }
3521
3522 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3523 return false;
3524 }
3525
3526 static bool
3527 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3528 {
3529 int page_num = KVM_PAGES_PER_HPAGE(level);
3530
3531 gfn &= ~(page_num - 1);
3532
3533 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3534 }
3535
3536 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3537 bool prefault)
3538 {
3539 kvm_pfn_t pfn;
3540 int r;
3541 int level;
3542 bool force_pt_level;
3543 gfn_t gfn = gpa >> PAGE_SHIFT;
3544 unsigned long mmu_seq;
3545 int write = error_code & PFERR_WRITE_MASK;
3546 bool map_writable;
3547
3548 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3549
3550 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3551 return 1;
3552
3553 r = mmu_topup_memory_caches(vcpu);
3554 if (r)
3555 return r;
3556
3557 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3558 PT_DIRECTORY_LEVEL);
3559 level = mapping_level(vcpu, gfn, &force_pt_level);
3560 if (likely(!force_pt_level)) {
3561 if (level > PT_DIRECTORY_LEVEL &&
3562 !check_hugepage_cache_consistency(vcpu, gfn, level))
3563 level = PT_DIRECTORY_LEVEL;
3564 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3565 }
3566
3567 if (fast_page_fault(vcpu, gpa, level, error_code))
3568 return 0;
3569
3570 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3571 smp_rmb();
3572
3573 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3574 return 0;
3575
3576 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3577 return r;
3578
3579 spin_lock(&vcpu->kvm->mmu_lock);
3580 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3581 goto out_unlock;
3582 make_mmu_pages_available(vcpu);
3583 if (likely(!force_pt_level))
3584 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3585 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3586 spin_unlock(&vcpu->kvm->mmu_lock);
3587
3588 return r;
3589
3590 out_unlock:
3591 spin_unlock(&vcpu->kvm->mmu_lock);
3592 kvm_release_pfn_clean(pfn);
3593 return 0;
3594 }
3595
3596 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3597 struct kvm_mmu *context)
3598 {
3599 context->page_fault = nonpaging_page_fault;
3600 context->gva_to_gpa = nonpaging_gva_to_gpa;
3601 context->sync_page = nonpaging_sync_page;
3602 context->invlpg = nonpaging_invlpg;
3603 context->update_pte = nonpaging_update_pte;
3604 context->root_level = 0;
3605 context->shadow_root_level = PT32E_ROOT_LEVEL;
3606 context->root_hpa = INVALID_PAGE;
3607 context->direct_map = true;
3608 context->nx = false;
3609 }
3610
3611 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3612 {
3613 mmu_free_roots(vcpu);
3614 }
3615
3616 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3617 {
3618 return kvm_read_cr3(vcpu);
3619 }
3620
3621 static void inject_page_fault(struct kvm_vcpu *vcpu,
3622 struct x86_exception *fault)
3623 {
3624 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3625 }
3626
3627 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3628 unsigned access, int *nr_present)
3629 {
3630 if (unlikely(is_mmio_spte(*sptep))) {
3631 if (gfn != get_mmio_spte_gfn(*sptep)) {
3632 mmu_spte_clear_no_track(sptep);
3633 return true;
3634 }
3635
3636 (*nr_present)++;
3637 mark_mmio_spte(vcpu, sptep, gfn, access);
3638 return true;
3639 }
3640
3641 return false;
3642 }
3643
3644 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3645 unsigned level, unsigned gpte)
3646 {
3647 /*
3648 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3649 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3650 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3651 */
3652 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3653
3654 /*
3655 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3656 * If it is clear, there are no large pages at this level, so clear
3657 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3658 */
3659 gpte &= level - mmu->last_nonleaf_level;
3660
3661 return gpte & PT_PAGE_SIZE_MASK;
3662 }
3663
3664 #define PTTYPE_EPT 18 /* arbitrary */
3665 #define PTTYPE PTTYPE_EPT
3666 #include "paging_tmpl.h"
3667 #undef PTTYPE
3668
3669 #define PTTYPE 64
3670 #include "paging_tmpl.h"
3671 #undef PTTYPE
3672
3673 #define PTTYPE 32
3674 #include "paging_tmpl.h"
3675 #undef PTTYPE
3676
3677 static void
3678 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3679 struct rsvd_bits_validate *rsvd_check,
3680 int maxphyaddr, int level, bool nx, bool gbpages,
3681 bool pse, bool amd)
3682 {
3683 u64 exb_bit_rsvd = 0;
3684 u64 gbpages_bit_rsvd = 0;
3685 u64 nonleaf_bit8_rsvd = 0;
3686
3687 rsvd_check->bad_mt_xwr = 0;
3688
3689 if (!nx)
3690 exb_bit_rsvd = rsvd_bits(63, 63);
3691 if (!gbpages)
3692 gbpages_bit_rsvd = rsvd_bits(7, 7);
3693
3694 /*
3695 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3696 * leaf entries) on AMD CPUs only.
3697 */
3698 if (amd)
3699 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3700
3701 switch (level) {
3702 case PT32_ROOT_LEVEL:
3703 /* no rsvd bits for 2 level 4K page table entries */
3704 rsvd_check->rsvd_bits_mask[0][1] = 0;
3705 rsvd_check->rsvd_bits_mask[0][0] = 0;
3706 rsvd_check->rsvd_bits_mask[1][0] =
3707 rsvd_check->rsvd_bits_mask[0][0];
3708
3709 if (!pse) {
3710 rsvd_check->rsvd_bits_mask[1][1] = 0;
3711 break;
3712 }
3713
3714 if (is_cpuid_PSE36())
3715 /* 36bits PSE 4MB page */
3716 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3717 else
3718 /* 32 bits PSE 4MB page */
3719 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3720 break;
3721 case PT32E_ROOT_LEVEL:
3722 rsvd_check->rsvd_bits_mask[0][2] =
3723 rsvd_bits(maxphyaddr, 63) |
3724 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3725 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3726 rsvd_bits(maxphyaddr, 62); /* PDE */
3727 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3728 rsvd_bits(maxphyaddr, 62); /* PTE */
3729 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3730 rsvd_bits(maxphyaddr, 62) |
3731 rsvd_bits(13, 20); /* large page */
3732 rsvd_check->rsvd_bits_mask[1][0] =
3733 rsvd_check->rsvd_bits_mask[0][0];
3734 break;
3735 case PT64_ROOT_LEVEL:
3736 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3737 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3738 rsvd_bits(maxphyaddr, 51);
3739 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3740 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3741 rsvd_bits(maxphyaddr, 51);
3742 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3743 rsvd_bits(maxphyaddr, 51);
3744 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3745 rsvd_bits(maxphyaddr, 51);
3746 rsvd_check->rsvd_bits_mask[1][3] =
3747 rsvd_check->rsvd_bits_mask[0][3];
3748 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3749 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3750 rsvd_bits(13, 29);
3751 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3752 rsvd_bits(maxphyaddr, 51) |
3753 rsvd_bits(13, 20); /* large page */
3754 rsvd_check->rsvd_bits_mask[1][0] =
3755 rsvd_check->rsvd_bits_mask[0][0];
3756 break;
3757 }
3758 }
3759
3760 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3761 struct kvm_mmu *context)
3762 {
3763 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3764 cpuid_maxphyaddr(vcpu), context->root_level,
3765 context->nx, guest_cpuid_has_gbpages(vcpu),
3766 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3767 }
3768
3769 static void
3770 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3771 int maxphyaddr, bool execonly)
3772 {
3773 u64 bad_mt_xwr;
3774
3775 rsvd_check->rsvd_bits_mask[0][3] =
3776 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3777 rsvd_check->rsvd_bits_mask[0][2] =
3778 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3779 rsvd_check->rsvd_bits_mask[0][1] =
3780 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3781 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3782
3783 /* large page */
3784 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3785 rsvd_check->rsvd_bits_mask[1][2] =
3786 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3787 rsvd_check->rsvd_bits_mask[1][1] =
3788 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3789 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3790
3791 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3792 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3793 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3794 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3795 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3796 if (!execonly) {
3797 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3798 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3799 }
3800 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3801 }
3802
3803 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3804 struct kvm_mmu *context, bool execonly)
3805 {
3806 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3807 cpuid_maxphyaddr(vcpu), execonly);
3808 }
3809
3810 /*
3811 * the page table on host is the shadow page table for the page
3812 * table in guest or amd nested guest, its mmu features completely
3813 * follow the features in guest.
3814 */
3815 void
3816 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3817 {
3818 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3819
3820 /*
3821 * Passing "true" to the last argument is okay; it adds a check
3822 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3823 */
3824 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3825 boot_cpu_data.x86_phys_bits,
3826 context->shadow_root_level, uses_nx,
3827 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3828 true);
3829 }
3830 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3831
3832 static inline bool boot_cpu_is_amd(void)
3833 {
3834 WARN_ON_ONCE(!tdp_enabled);
3835 return shadow_x_mask == 0;
3836 }
3837
3838 /*
3839 * the direct page table on host, use as much mmu features as
3840 * possible, however, kvm currently does not do execution-protection.
3841 */
3842 static void
3843 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3844 struct kvm_mmu *context)
3845 {
3846 if (boot_cpu_is_amd())
3847 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3848 boot_cpu_data.x86_phys_bits,
3849 context->shadow_root_level, false,
3850 boot_cpu_has(X86_FEATURE_GBPAGES),
3851 true, true);
3852 else
3853 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3854 boot_cpu_data.x86_phys_bits,
3855 false);
3856
3857 }
3858
3859 /*
3860 * as the comments in reset_shadow_zero_bits_mask() except it
3861 * is the shadow page table for intel nested guest.
3862 */
3863 static void
3864 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3865 struct kvm_mmu *context, bool execonly)
3866 {
3867 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3868 boot_cpu_data.x86_phys_bits, execonly);
3869 }
3870
3871 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3872 struct kvm_mmu *mmu, bool ept)
3873 {
3874 unsigned bit, byte, pfec;
3875 u8 map;
3876 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3877
3878 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3879 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3880 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3881 pfec = byte << 1;
3882 map = 0;
3883 wf = pfec & PFERR_WRITE_MASK;
3884 uf = pfec & PFERR_USER_MASK;
3885 ff = pfec & PFERR_FETCH_MASK;
3886 /*
3887 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3888 * subject to SMAP restrictions, and cleared otherwise. The
3889 * bit is only meaningful if the SMAP bit is set in CR4.
3890 */
3891 smapf = !(pfec & PFERR_RSVD_MASK);
3892 for (bit = 0; bit < 8; ++bit) {
3893 x = bit & ACC_EXEC_MASK;
3894 w = bit & ACC_WRITE_MASK;
3895 u = bit & ACC_USER_MASK;
3896
3897 if (!ept) {
3898 /* Not really needed: !nx will cause pte.nx to fault */
3899 x |= !mmu->nx;
3900 /* Allow supervisor writes if !cr0.wp */
3901 w |= !is_write_protection(vcpu) && !uf;
3902 /* Disallow supervisor fetches of user code if cr4.smep */
3903 x &= !(cr4_smep && u && !uf);
3904
3905 /*
3906 * SMAP:kernel-mode data accesses from user-mode
3907 * mappings should fault. A fault is considered
3908 * as a SMAP violation if all of the following
3909 * conditions are ture:
3910 * - X86_CR4_SMAP is set in CR4
3911 * - An user page is accessed
3912 * - Page fault in kernel mode
3913 * - if CPL = 3 or X86_EFLAGS_AC is clear
3914 *
3915 * Here, we cover the first three conditions.
3916 * The fourth is computed dynamically in
3917 * permission_fault() and is in smapf.
3918 *
3919 * Also, SMAP does not affect instruction
3920 * fetches, add the !ff check here to make it
3921 * clearer.
3922 */
3923 smap = cr4_smap && u && !uf && !ff;
3924 }
3925
3926 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3927 (smapf && smap);
3928 map |= fault << bit;
3929 }
3930 mmu->permissions[byte] = map;
3931 }
3932 }
3933
3934 /*
3935 * PKU is an additional mechanism by which the paging controls access to
3936 * user-mode addresses based on the value in the PKRU register. Protection
3937 * key violations are reported through a bit in the page fault error code.
3938 * Unlike other bits of the error code, the PK bit is not known at the
3939 * call site of e.g. gva_to_gpa; it must be computed directly in
3940 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3941 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3942 *
3943 * In particular the following conditions come from the error code, the
3944 * page tables and the machine state:
3945 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3946 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3947 * - PK is always zero if U=0 in the page tables
3948 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3949 *
3950 * The PKRU bitmask caches the result of these four conditions. The error
3951 * code (minus the P bit) and the page table's U bit form an index into the
3952 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3953 * with the two bits of the PKRU register corresponding to the protection key.
3954 * For the first three conditions above the bits will be 00, thus masking
3955 * away both AD and WD. For all reads or if the last condition holds, WD
3956 * only will be masked away.
3957 */
3958 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3959 bool ept)
3960 {
3961 unsigned bit;
3962 bool wp;
3963
3964 if (ept) {
3965 mmu->pkru_mask = 0;
3966 return;
3967 }
3968
3969 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3970 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3971 mmu->pkru_mask = 0;
3972 return;
3973 }
3974
3975 wp = is_write_protection(vcpu);
3976
3977 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3978 unsigned pfec, pkey_bits;
3979 bool check_pkey, check_write, ff, uf, wf, pte_user;
3980
3981 pfec = bit << 1;
3982 ff = pfec & PFERR_FETCH_MASK;
3983 uf = pfec & PFERR_USER_MASK;
3984 wf = pfec & PFERR_WRITE_MASK;
3985
3986 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3987 pte_user = pfec & PFERR_RSVD_MASK;
3988
3989 /*
3990 * Only need to check the access which is not an
3991 * instruction fetch and is to a user page.
3992 */
3993 check_pkey = (!ff && pte_user);
3994 /*
3995 * write access is controlled by PKRU if it is a
3996 * user access or CR0.WP = 1.
3997 */
3998 check_write = check_pkey && wf && (uf || wp);
3999
4000 /* PKRU.AD stops both read and write access. */
4001 pkey_bits = !!check_pkey;
4002 /* PKRU.WD stops write access. */
4003 pkey_bits |= (!!check_write) << 1;
4004
4005 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4006 }
4007 }
4008
4009 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4010 {
4011 unsigned root_level = mmu->root_level;
4012
4013 mmu->last_nonleaf_level = root_level;
4014 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4015 mmu->last_nonleaf_level++;
4016 }
4017
4018 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4019 struct kvm_mmu *context,
4020 int level)
4021 {
4022 context->nx = is_nx(vcpu);
4023 context->root_level = level;
4024
4025 reset_rsvds_bits_mask(vcpu, context);
4026 update_permission_bitmask(vcpu, context, false);
4027 update_pkru_bitmask(vcpu, context, false);
4028 update_last_nonleaf_level(vcpu, context);
4029
4030 MMU_WARN_ON(!is_pae(vcpu));
4031 context->page_fault = paging64_page_fault;
4032 context->gva_to_gpa = paging64_gva_to_gpa;
4033 context->sync_page = paging64_sync_page;
4034 context->invlpg = paging64_invlpg;
4035 context->update_pte = paging64_update_pte;
4036 context->shadow_root_level = level;
4037 context->root_hpa = INVALID_PAGE;
4038 context->direct_map = false;
4039 }
4040
4041 static void paging64_init_context(struct kvm_vcpu *vcpu,
4042 struct kvm_mmu *context)
4043 {
4044 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4045 }
4046
4047 static void paging32_init_context(struct kvm_vcpu *vcpu,
4048 struct kvm_mmu *context)
4049 {
4050 context->nx = false;
4051 context->root_level = PT32_ROOT_LEVEL;
4052
4053 reset_rsvds_bits_mask(vcpu, context);
4054 update_permission_bitmask(vcpu, context, false);
4055 update_pkru_bitmask(vcpu, context, false);
4056 update_last_nonleaf_level(vcpu, context);
4057
4058 context->page_fault = paging32_page_fault;
4059 context->gva_to_gpa = paging32_gva_to_gpa;
4060 context->sync_page = paging32_sync_page;
4061 context->invlpg = paging32_invlpg;
4062 context->update_pte = paging32_update_pte;
4063 context->shadow_root_level = PT32E_ROOT_LEVEL;
4064 context->root_hpa = INVALID_PAGE;
4065 context->direct_map = false;
4066 }
4067
4068 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4069 struct kvm_mmu *context)
4070 {
4071 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4072 }
4073
4074 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4075 {
4076 struct kvm_mmu *context = &vcpu->arch.mmu;
4077
4078 context->base_role.word = 0;
4079 context->base_role.smm = is_smm(vcpu);
4080 context->page_fault = tdp_page_fault;
4081 context->sync_page = nonpaging_sync_page;
4082 context->invlpg = nonpaging_invlpg;
4083 context->update_pte = nonpaging_update_pte;
4084 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4085 context->root_hpa = INVALID_PAGE;
4086 context->direct_map = true;
4087 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4088 context->get_cr3 = get_cr3;
4089 context->get_pdptr = kvm_pdptr_read;
4090 context->inject_page_fault = kvm_inject_page_fault;
4091
4092 if (!is_paging(vcpu)) {
4093 context->nx = false;
4094 context->gva_to_gpa = nonpaging_gva_to_gpa;
4095 context->root_level = 0;
4096 } else if (is_long_mode(vcpu)) {
4097 context->nx = is_nx(vcpu);
4098 context->root_level = PT64_ROOT_LEVEL;
4099 reset_rsvds_bits_mask(vcpu, context);
4100 context->gva_to_gpa = paging64_gva_to_gpa;
4101 } else if (is_pae(vcpu)) {
4102 context->nx = is_nx(vcpu);
4103 context->root_level = PT32E_ROOT_LEVEL;
4104 reset_rsvds_bits_mask(vcpu, context);
4105 context->gva_to_gpa = paging64_gva_to_gpa;
4106 } else {
4107 context->nx = false;
4108 context->root_level = PT32_ROOT_LEVEL;
4109 reset_rsvds_bits_mask(vcpu, context);
4110 context->gva_to_gpa = paging32_gva_to_gpa;
4111 }
4112
4113 update_permission_bitmask(vcpu, context, false);
4114 update_pkru_bitmask(vcpu, context, false);
4115 update_last_nonleaf_level(vcpu, context);
4116 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4117 }
4118
4119 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4120 {
4121 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4122 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4123 struct kvm_mmu *context = &vcpu->arch.mmu;
4124
4125 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4126
4127 if (!is_paging(vcpu))
4128 nonpaging_init_context(vcpu, context);
4129 else if (is_long_mode(vcpu))
4130 paging64_init_context(vcpu, context);
4131 else if (is_pae(vcpu))
4132 paging32E_init_context(vcpu, context);
4133 else
4134 paging32_init_context(vcpu, context);
4135
4136 context->base_role.nxe = is_nx(vcpu);
4137 context->base_role.cr4_pae = !!is_pae(vcpu);
4138 context->base_role.cr0_wp = is_write_protection(vcpu);
4139 context->base_role.smep_andnot_wp
4140 = smep && !is_write_protection(vcpu);
4141 context->base_role.smap_andnot_wp
4142 = smap && !is_write_protection(vcpu);
4143 context->base_role.smm = is_smm(vcpu);
4144 reset_shadow_zero_bits_mask(vcpu, context);
4145 }
4146 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4147
4148 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4149 {
4150 struct kvm_mmu *context = &vcpu->arch.mmu;
4151
4152 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4153
4154 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4155
4156 context->nx = true;
4157 context->page_fault = ept_page_fault;
4158 context->gva_to_gpa = ept_gva_to_gpa;
4159 context->sync_page = ept_sync_page;
4160 context->invlpg = ept_invlpg;
4161 context->update_pte = ept_update_pte;
4162 context->root_level = context->shadow_root_level;
4163 context->root_hpa = INVALID_PAGE;
4164 context->direct_map = false;
4165
4166 update_permission_bitmask(vcpu, context, true);
4167 update_pkru_bitmask(vcpu, context, true);
4168 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4169 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4170 }
4171 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4172
4173 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4174 {
4175 struct kvm_mmu *context = &vcpu->arch.mmu;
4176
4177 kvm_init_shadow_mmu(vcpu);
4178 context->set_cr3 = kvm_x86_ops->set_cr3;
4179 context->get_cr3 = get_cr3;
4180 context->get_pdptr = kvm_pdptr_read;
4181 context->inject_page_fault = kvm_inject_page_fault;
4182 }
4183
4184 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4185 {
4186 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4187
4188 g_context->get_cr3 = get_cr3;
4189 g_context->get_pdptr = kvm_pdptr_read;
4190 g_context->inject_page_fault = kvm_inject_page_fault;
4191
4192 /*
4193 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4194 * L1's nested page tables (e.g. EPT12). The nested translation
4195 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4196 * L2's page tables as the first level of translation and L1's
4197 * nested page tables as the second level of translation. Basically
4198 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4199 */
4200 if (!is_paging(vcpu)) {
4201 g_context->nx = false;
4202 g_context->root_level = 0;
4203 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4204 } else if (is_long_mode(vcpu)) {
4205 g_context->nx = is_nx(vcpu);
4206 g_context->root_level = PT64_ROOT_LEVEL;
4207 reset_rsvds_bits_mask(vcpu, g_context);
4208 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4209 } else if (is_pae(vcpu)) {
4210 g_context->nx = is_nx(vcpu);
4211 g_context->root_level = PT32E_ROOT_LEVEL;
4212 reset_rsvds_bits_mask(vcpu, g_context);
4213 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4214 } else {
4215 g_context->nx = false;
4216 g_context->root_level = PT32_ROOT_LEVEL;
4217 reset_rsvds_bits_mask(vcpu, g_context);
4218 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4219 }
4220
4221 update_permission_bitmask(vcpu, g_context, false);
4222 update_pkru_bitmask(vcpu, g_context, false);
4223 update_last_nonleaf_level(vcpu, g_context);
4224 }
4225
4226 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4227 {
4228 if (mmu_is_nested(vcpu))
4229 init_kvm_nested_mmu(vcpu);
4230 else if (tdp_enabled)
4231 init_kvm_tdp_mmu(vcpu);
4232 else
4233 init_kvm_softmmu(vcpu);
4234 }
4235
4236 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4237 {
4238 kvm_mmu_unload(vcpu);
4239 init_kvm_mmu(vcpu);
4240 }
4241 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4242
4243 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4244 {
4245 int r;
4246
4247 r = mmu_topup_memory_caches(vcpu);
4248 if (r)
4249 goto out;
4250 r = mmu_alloc_roots(vcpu);
4251 kvm_mmu_sync_roots(vcpu);
4252 if (r)
4253 goto out;
4254 /* set_cr3() should ensure TLB has been flushed */
4255 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4256 out:
4257 return r;
4258 }
4259 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4260
4261 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4262 {
4263 mmu_free_roots(vcpu);
4264 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4265 }
4266 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4267
4268 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4269 struct kvm_mmu_page *sp, u64 *spte,
4270 const void *new)
4271 {
4272 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4273 ++vcpu->kvm->stat.mmu_pde_zapped;
4274 return;
4275 }
4276
4277 ++vcpu->kvm->stat.mmu_pte_updated;
4278 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4279 }
4280
4281 static bool need_remote_flush(u64 old, u64 new)
4282 {
4283 if (!is_shadow_present_pte(old))
4284 return false;
4285 if (!is_shadow_present_pte(new))
4286 return true;
4287 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4288 return true;
4289 old ^= shadow_nx_mask;
4290 new ^= shadow_nx_mask;
4291 return (old & ~new & PT64_PERM_MASK) != 0;
4292 }
4293
4294 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4295 const u8 *new, int *bytes)
4296 {
4297 u64 gentry;
4298 int r;
4299
4300 /*
4301 * Assume that the pte write on a page table of the same type
4302 * as the current vcpu paging mode since we update the sptes only
4303 * when they have the same mode.
4304 */
4305 if (is_pae(vcpu) && *bytes == 4) {
4306 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4307 *gpa &= ~(gpa_t)7;
4308 *bytes = 8;
4309 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4310 if (r)
4311 gentry = 0;
4312 new = (const u8 *)&gentry;
4313 }
4314
4315 switch (*bytes) {
4316 case 4:
4317 gentry = *(const u32 *)new;
4318 break;
4319 case 8:
4320 gentry = *(const u64 *)new;
4321 break;
4322 default:
4323 gentry = 0;
4324 break;
4325 }
4326
4327 return gentry;
4328 }
4329
4330 /*
4331 * If we're seeing too many writes to a page, it may no longer be a page table,
4332 * or we may be forking, in which case it is better to unmap the page.
4333 */
4334 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4335 {
4336 /*
4337 * Skip write-flooding detected for the sp whose level is 1, because
4338 * it can become unsync, then the guest page is not write-protected.
4339 */
4340 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4341 return false;
4342
4343 atomic_inc(&sp->write_flooding_count);
4344 return atomic_read(&sp->write_flooding_count) >= 3;
4345 }
4346
4347 /*
4348 * Misaligned accesses are too much trouble to fix up; also, they usually
4349 * indicate a page is not used as a page table.
4350 */
4351 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4352 int bytes)
4353 {
4354 unsigned offset, pte_size, misaligned;
4355
4356 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4357 gpa, bytes, sp->role.word);
4358
4359 offset = offset_in_page(gpa);
4360 pte_size = sp->role.cr4_pae ? 8 : 4;
4361
4362 /*
4363 * Sometimes, the OS only writes the last one bytes to update status
4364 * bits, for example, in linux, andb instruction is used in clear_bit().
4365 */
4366 if (!(offset & (pte_size - 1)) && bytes == 1)
4367 return false;
4368
4369 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4370 misaligned |= bytes < 4;
4371
4372 return misaligned;
4373 }
4374
4375 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4376 {
4377 unsigned page_offset, quadrant;
4378 u64 *spte;
4379 int level;
4380
4381 page_offset = offset_in_page(gpa);
4382 level = sp->role.level;
4383 *nspte = 1;
4384 if (!sp->role.cr4_pae) {
4385 page_offset <<= 1; /* 32->64 */
4386 /*
4387 * A 32-bit pde maps 4MB while the shadow pdes map
4388 * only 2MB. So we need to double the offset again
4389 * and zap two pdes instead of one.
4390 */
4391 if (level == PT32_ROOT_LEVEL) {
4392 page_offset &= ~7; /* kill rounding error */
4393 page_offset <<= 1;
4394 *nspte = 2;
4395 }
4396 quadrant = page_offset >> PAGE_SHIFT;
4397 page_offset &= ~PAGE_MASK;
4398 if (quadrant != sp->role.quadrant)
4399 return NULL;
4400 }
4401
4402 spte = &sp->spt[page_offset / sizeof(*spte)];
4403 return spte;
4404 }
4405
4406 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 const u8 *new, int bytes)
4408 {
4409 gfn_t gfn = gpa >> PAGE_SHIFT;
4410 struct kvm_mmu_page *sp;
4411 LIST_HEAD(invalid_list);
4412 u64 entry, gentry, *spte;
4413 int npte;
4414 bool remote_flush, local_flush;
4415 union kvm_mmu_page_role mask = { };
4416
4417 mask.cr0_wp = 1;
4418 mask.cr4_pae = 1;
4419 mask.nxe = 1;
4420 mask.smep_andnot_wp = 1;
4421 mask.smap_andnot_wp = 1;
4422 mask.smm = 1;
4423
4424 /*
4425 * If we don't have indirect shadow pages, it means no page is
4426 * write-protected, so we can exit simply.
4427 */
4428 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4429 return;
4430
4431 remote_flush = local_flush = false;
4432
4433 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4434
4435 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4436
4437 /*
4438 * No need to care whether allocation memory is successful
4439 * or not since pte prefetch is skiped if it does not have
4440 * enough objects in the cache.
4441 */
4442 mmu_topup_memory_caches(vcpu);
4443
4444 spin_lock(&vcpu->kvm->mmu_lock);
4445 ++vcpu->kvm->stat.mmu_pte_write;
4446 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4447
4448 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4449 if (detect_write_misaligned(sp, gpa, bytes) ||
4450 detect_write_flooding(sp)) {
4451 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4452 ++vcpu->kvm->stat.mmu_flooded;
4453 continue;
4454 }
4455
4456 spte = get_written_sptes(sp, gpa, &npte);
4457 if (!spte)
4458 continue;
4459
4460 local_flush = true;
4461 while (npte--) {
4462 entry = *spte;
4463 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4464 if (gentry &&
4465 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4466 & mask.word) && rmap_can_add(vcpu))
4467 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4468 if (need_remote_flush(entry, *spte))
4469 remote_flush = true;
4470 ++spte;
4471 }
4472 }
4473 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4474 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4475 spin_unlock(&vcpu->kvm->mmu_lock);
4476 }
4477
4478 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4479 {
4480 gpa_t gpa;
4481 int r;
4482
4483 if (vcpu->arch.mmu.direct_map)
4484 return 0;
4485
4486 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4487
4488 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4489
4490 return r;
4491 }
4492 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4493
4494 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4495 {
4496 LIST_HEAD(invalid_list);
4497
4498 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4499 return;
4500
4501 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4502 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4503 break;
4504
4505 ++vcpu->kvm->stat.mmu_recycled;
4506 }
4507 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4508 }
4509
4510 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4511 void *insn, int insn_len)
4512 {
4513 int r, emulation_type = EMULTYPE_RETRY;
4514 enum emulation_result er;
4515 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4516
4517 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4518 r = handle_mmio_page_fault(vcpu, cr2, direct);
4519 if (r == RET_MMIO_PF_EMULATE) {
4520 emulation_type = 0;
4521 goto emulate;
4522 }
4523 if (r == RET_MMIO_PF_RETRY)
4524 return 1;
4525 if (r < 0)
4526 return r;
4527 }
4528
4529 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4530 if (r < 0)
4531 return r;
4532 if (!r)
4533 return 1;
4534
4535 if (mmio_info_in_cache(vcpu, cr2, direct))
4536 emulation_type = 0;
4537 emulate:
4538 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4539
4540 switch (er) {
4541 case EMULATE_DONE:
4542 return 1;
4543 case EMULATE_USER_EXIT:
4544 ++vcpu->stat.mmio_exits;
4545 /* fall through */
4546 case EMULATE_FAIL:
4547 return 0;
4548 default:
4549 BUG();
4550 }
4551 }
4552 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4553
4554 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4555 {
4556 vcpu->arch.mmu.invlpg(vcpu, gva);
4557 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4558 ++vcpu->stat.invlpg;
4559 }
4560 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4561
4562 void kvm_enable_tdp(void)
4563 {
4564 tdp_enabled = true;
4565 }
4566 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4567
4568 void kvm_disable_tdp(void)
4569 {
4570 tdp_enabled = false;
4571 }
4572 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4573
4574 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4575 {
4576 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4577 if (vcpu->arch.mmu.lm_root != NULL)
4578 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4579 }
4580
4581 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4582 {
4583 struct page *page;
4584 int i;
4585
4586 /*
4587 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4588 * Therefore we need to allocate shadow page tables in the first
4589 * 4GB of memory, which happens to fit the DMA32 zone.
4590 */
4591 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4592 if (!page)
4593 return -ENOMEM;
4594
4595 vcpu->arch.mmu.pae_root = page_address(page);
4596 for (i = 0; i < 4; ++i)
4597 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4598
4599 return 0;
4600 }
4601
4602 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4603 {
4604 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4605 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4606 vcpu->arch.mmu.translate_gpa = translate_gpa;
4607 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4608
4609 return alloc_mmu_pages(vcpu);
4610 }
4611
4612 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4613 {
4614 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4615
4616 init_kvm_mmu(vcpu);
4617 }
4618
4619 void kvm_mmu_init_vm(struct kvm *kvm)
4620 {
4621 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4622
4623 node->track_write = kvm_mmu_pte_write;
4624 kvm_page_track_register_notifier(kvm, node);
4625 }
4626
4627 void kvm_mmu_uninit_vm(struct kvm *kvm)
4628 {
4629 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4630
4631 kvm_page_track_unregister_notifier(kvm, node);
4632 }
4633
4634 /* The return value indicates if tlb flush on all vcpus is needed. */
4635 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4636
4637 /* The caller should hold mmu-lock before calling this function. */
4638 static bool
4639 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4640 slot_level_handler fn, int start_level, int end_level,
4641 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4642 {
4643 struct slot_rmap_walk_iterator iterator;
4644 bool flush = false;
4645
4646 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4647 end_gfn, &iterator) {
4648 if (iterator.rmap)
4649 flush |= fn(kvm, iterator.rmap);
4650
4651 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4652 if (flush && lock_flush_tlb) {
4653 kvm_flush_remote_tlbs(kvm);
4654 flush = false;
4655 }
4656 cond_resched_lock(&kvm->mmu_lock);
4657 }
4658 }
4659
4660 if (flush && lock_flush_tlb) {
4661 kvm_flush_remote_tlbs(kvm);
4662 flush = false;
4663 }
4664
4665 return flush;
4666 }
4667
4668 static bool
4669 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4670 slot_level_handler fn, int start_level, int end_level,
4671 bool lock_flush_tlb)
4672 {
4673 return slot_handle_level_range(kvm, memslot, fn, start_level,
4674 end_level, memslot->base_gfn,
4675 memslot->base_gfn + memslot->npages - 1,
4676 lock_flush_tlb);
4677 }
4678
4679 static bool
4680 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4681 slot_level_handler fn, bool lock_flush_tlb)
4682 {
4683 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4684 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4685 }
4686
4687 static bool
4688 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4689 slot_level_handler fn, bool lock_flush_tlb)
4690 {
4691 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4692 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4693 }
4694
4695 static bool
4696 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4697 slot_level_handler fn, bool lock_flush_tlb)
4698 {
4699 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4700 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4701 }
4702
4703 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4704 {
4705 struct kvm_memslots *slots;
4706 struct kvm_memory_slot *memslot;
4707 int i;
4708
4709 spin_lock(&kvm->mmu_lock);
4710 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4711 slots = __kvm_memslots(kvm, i);
4712 kvm_for_each_memslot(memslot, slots) {
4713 gfn_t start, end;
4714
4715 start = max(gfn_start, memslot->base_gfn);
4716 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4717 if (start >= end)
4718 continue;
4719
4720 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4721 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4722 start, end - 1, true);
4723 }
4724 }
4725
4726 spin_unlock(&kvm->mmu_lock);
4727 }
4728
4729 static bool slot_rmap_write_protect(struct kvm *kvm,
4730 struct kvm_rmap_head *rmap_head)
4731 {
4732 return __rmap_write_protect(kvm, rmap_head, false);
4733 }
4734
4735 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4736 struct kvm_memory_slot *memslot)
4737 {
4738 bool flush;
4739
4740 spin_lock(&kvm->mmu_lock);
4741 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4742 false);
4743 spin_unlock(&kvm->mmu_lock);
4744
4745 /*
4746 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4747 * which do tlb flush out of mmu-lock should be serialized by
4748 * kvm->slots_lock otherwise tlb flush would be missed.
4749 */
4750 lockdep_assert_held(&kvm->slots_lock);
4751
4752 /*
4753 * We can flush all the TLBs out of the mmu lock without TLB
4754 * corruption since we just change the spte from writable to
4755 * readonly so that we only need to care the case of changing
4756 * spte from present to present (changing the spte from present
4757 * to nonpresent will flush all the TLBs immediately), in other
4758 * words, the only case we care is mmu_spte_update() where we
4759 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4760 * instead of PT_WRITABLE_MASK, that means it does not depend
4761 * on PT_WRITABLE_MASK anymore.
4762 */
4763 if (flush)
4764 kvm_flush_remote_tlbs(kvm);
4765 }
4766
4767 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4768 struct kvm_rmap_head *rmap_head)
4769 {
4770 u64 *sptep;
4771 struct rmap_iterator iter;
4772 int need_tlb_flush = 0;
4773 kvm_pfn_t pfn;
4774 struct kvm_mmu_page *sp;
4775
4776 restart:
4777 for_each_rmap_spte(rmap_head, &iter, sptep) {
4778 sp = page_header(__pa(sptep));
4779 pfn = spte_to_pfn(*sptep);
4780
4781 /*
4782 * We cannot do huge page mapping for indirect shadow pages,
4783 * which are found on the last rmap (level = 1) when not using
4784 * tdp; such shadow pages are synced with the page table in
4785 * the guest, and the guest page table is using 4K page size
4786 * mapping if the indirect sp has level = 1.
4787 */
4788 if (sp->role.direct &&
4789 !kvm_is_reserved_pfn(pfn) &&
4790 PageTransCompoundMap(pfn_to_page(pfn))) {
4791 drop_spte(kvm, sptep);
4792 need_tlb_flush = 1;
4793 goto restart;
4794 }
4795 }
4796
4797 return need_tlb_flush;
4798 }
4799
4800 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4801 const struct kvm_memory_slot *memslot)
4802 {
4803 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4804 spin_lock(&kvm->mmu_lock);
4805 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4806 kvm_mmu_zap_collapsible_spte, true);
4807 spin_unlock(&kvm->mmu_lock);
4808 }
4809
4810 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4811 struct kvm_memory_slot *memslot)
4812 {
4813 bool flush;
4814
4815 spin_lock(&kvm->mmu_lock);
4816 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4817 spin_unlock(&kvm->mmu_lock);
4818
4819 lockdep_assert_held(&kvm->slots_lock);
4820
4821 /*
4822 * It's also safe to flush TLBs out of mmu lock here as currently this
4823 * function is only used for dirty logging, in which case flushing TLB
4824 * out of mmu lock also guarantees no dirty pages will be lost in
4825 * dirty_bitmap.
4826 */
4827 if (flush)
4828 kvm_flush_remote_tlbs(kvm);
4829 }
4830 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4831
4832 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4833 struct kvm_memory_slot *memslot)
4834 {
4835 bool flush;
4836
4837 spin_lock(&kvm->mmu_lock);
4838 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4839 false);
4840 spin_unlock(&kvm->mmu_lock);
4841
4842 /* see kvm_mmu_slot_remove_write_access */
4843 lockdep_assert_held(&kvm->slots_lock);
4844
4845 if (flush)
4846 kvm_flush_remote_tlbs(kvm);
4847 }
4848 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4849
4850 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4851 struct kvm_memory_slot *memslot)
4852 {
4853 bool flush;
4854
4855 spin_lock(&kvm->mmu_lock);
4856 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4857 spin_unlock(&kvm->mmu_lock);
4858
4859 lockdep_assert_held(&kvm->slots_lock);
4860
4861 /* see kvm_mmu_slot_leaf_clear_dirty */
4862 if (flush)
4863 kvm_flush_remote_tlbs(kvm);
4864 }
4865 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4866
4867 #define BATCH_ZAP_PAGES 10
4868 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4869 {
4870 struct kvm_mmu_page *sp, *node;
4871 int batch = 0;
4872
4873 restart:
4874 list_for_each_entry_safe_reverse(sp, node,
4875 &kvm->arch.active_mmu_pages, link) {
4876 int ret;
4877
4878 /*
4879 * No obsolete page exists before new created page since
4880 * active_mmu_pages is the FIFO list.
4881 */
4882 if (!is_obsolete_sp(kvm, sp))
4883 break;
4884
4885 /*
4886 * Since we are reversely walking the list and the invalid
4887 * list will be moved to the head, skip the invalid page
4888 * can help us to avoid the infinity list walking.
4889 */
4890 if (sp->role.invalid)
4891 continue;
4892
4893 /*
4894 * Need not flush tlb since we only zap the sp with invalid
4895 * generation number.
4896 */
4897 if (batch >= BATCH_ZAP_PAGES &&
4898 cond_resched_lock(&kvm->mmu_lock)) {
4899 batch = 0;
4900 goto restart;
4901 }
4902
4903 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4904 &kvm->arch.zapped_obsolete_pages);
4905 batch += ret;
4906
4907 if (ret)
4908 goto restart;
4909 }
4910
4911 /*
4912 * Should flush tlb before free page tables since lockless-walking
4913 * may use the pages.
4914 */
4915 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4916 }
4917
4918 /*
4919 * Fast invalidate all shadow pages and use lock-break technique
4920 * to zap obsolete pages.
4921 *
4922 * It's required when memslot is being deleted or VM is being
4923 * destroyed, in these cases, we should ensure that KVM MMU does
4924 * not use any resource of the being-deleted slot or all slots
4925 * after calling the function.
4926 */
4927 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4928 {
4929 spin_lock(&kvm->mmu_lock);
4930 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4931 kvm->arch.mmu_valid_gen++;
4932
4933 /*
4934 * Notify all vcpus to reload its shadow page table
4935 * and flush TLB. Then all vcpus will switch to new
4936 * shadow page table with the new mmu_valid_gen.
4937 *
4938 * Note: we should do this under the protection of
4939 * mmu-lock, otherwise, vcpu would purge shadow page
4940 * but miss tlb flush.
4941 */
4942 kvm_reload_remote_mmus(kvm);
4943
4944 kvm_zap_obsolete_pages(kvm);
4945 spin_unlock(&kvm->mmu_lock);
4946 }
4947
4948 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4949 {
4950 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4951 }
4952
4953 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4954 {
4955 /*
4956 * The very rare case: if the generation-number is round,
4957 * zap all shadow pages.
4958 */
4959 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4960 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4961 kvm_mmu_invalidate_zap_all_pages(kvm);
4962 }
4963 }
4964
4965 static unsigned long
4966 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4967 {
4968 struct kvm *kvm;
4969 int nr_to_scan = sc->nr_to_scan;
4970 unsigned long freed = 0;
4971
4972 spin_lock(&kvm_lock);
4973
4974 list_for_each_entry(kvm, &vm_list, vm_list) {
4975 int idx;
4976 LIST_HEAD(invalid_list);
4977
4978 /*
4979 * Never scan more than sc->nr_to_scan VM instances.
4980 * Will not hit this condition practically since we do not try
4981 * to shrink more than one VM and it is very unlikely to see
4982 * !n_used_mmu_pages so many times.
4983 */
4984 if (!nr_to_scan--)
4985 break;
4986 /*
4987 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4988 * here. We may skip a VM instance errorneosly, but we do not
4989 * want to shrink a VM that only started to populate its MMU
4990 * anyway.
4991 */
4992 if (!kvm->arch.n_used_mmu_pages &&
4993 !kvm_has_zapped_obsolete_pages(kvm))
4994 continue;
4995
4996 idx = srcu_read_lock(&kvm->srcu);
4997 spin_lock(&kvm->mmu_lock);
4998
4999 if (kvm_has_zapped_obsolete_pages(kvm)) {
5000 kvm_mmu_commit_zap_page(kvm,
5001 &kvm->arch.zapped_obsolete_pages);
5002 goto unlock;
5003 }
5004
5005 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5006 freed++;
5007 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5008
5009 unlock:
5010 spin_unlock(&kvm->mmu_lock);
5011 srcu_read_unlock(&kvm->srcu, idx);
5012
5013 /*
5014 * unfair on small ones
5015 * per-vm shrinkers cry out
5016 * sadness comes quickly
5017 */
5018 list_move_tail(&kvm->vm_list, &vm_list);
5019 break;
5020 }
5021
5022 spin_unlock(&kvm_lock);
5023 return freed;
5024 }
5025
5026 static unsigned long
5027 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5028 {
5029 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5030 }
5031
5032 static struct shrinker mmu_shrinker = {
5033 .count_objects = mmu_shrink_count,
5034 .scan_objects = mmu_shrink_scan,
5035 .seeks = DEFAULT_SEEKS * 10,
5036 };
5037
5038 static void mmu_destroy_caches(void)
5039 {
5040 if (pte_list_desc_cache)
5041 kmem_cache_destroy(pte_list_desc_cache);
5042 if (mmu_page_header_cache)
5043 kmem_cache_destroy(mmu_page_header_cache);
5044 }
5045
5046 int kvm_mmu_module_init(void)
5047 {
5048 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5049 sizeof(struct pte_list_desc),
5050 0, 0, NULL);
5051 if (!pte_list_desc_cache)
5052 goto nomem;
5053
5054 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5055 sizeof(struct kvm_mmu_page),
5056 0, 0, NULL);
5057 if (!mmu_page_header_cache)
5058 goto nomem;
5059
5060 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5061 goto nomem;
5062
5063 register_shrinker(&mmu_shrinker);
5064
5065 return 0;
5066
5067 nomem:
5068 mmu_destroy_caches();
5069 return -ENOMEM;
5070 }
5071
5072 /*
5073 * Caculate mmu pages needed for kvm.
5074 */
5075 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5076 {
5077 unsigned int nr_mmu_pages;
5078 unsigned int nr_pages = 0;
5079 struct kvm_memslots *slots;
5080 struct kvm_memory_slot *memslot;
5081 int i;
5082
5083 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5084 slots = __kvm_memslots(kvm, i);
5085
5086 kvm_for_each_memslot(memslot, slots)
5087 nr_pages += memslot->npages;
5088 }
5089
5090 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5091 nr_mmu_pages = max(nr_mmu_pages,
5092 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5093
5094 return nr_mmu_pages;
5095 }
5096
5097 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5098 {
5099 kvm_mmu_unload(vcpu);
5100 free_mmu_pages(vcpu);
5101 mmu_free_memory_caches(vcpu);
5102 }
5103
5104 void kvm_mmu_module_exit(void)
5105 {
5106 mmu_destroy_caches();
5107 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5108 unregister_shrinker(&mmu_shrinker);
5109 mmu_audit_disable();
5110 }