]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: replace remaining __FUNCTION__ occurances
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31
32 #include <asm/page.h>
33 #include <asm/cmpxchg.h>
34 #include <asm/io.h>
35
36 /*
37 * When setting this variable to true it enables Two-Dimensional-Paging
38 * where the hardware walks 2 page tables:
39 * 1. the guest-virtual to guest-physical
40 * 2. while doing 1. it walks guest-physical to host-physical
41 * If the hardware supports that we don't need to do shadow paging.
42 */
43 static bool tdp_enabled = false;
44
45 #undef MMU_DEBUG
46
47 #undef AUDIT
48
49 #ifdef AUDIT
50 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
51 #else
52 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
53 #endif
54
55 #ifdef MMU_DEBUG
56
57 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
58 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
59
60 #else
61
62 #define pgprintk(x...) do { } while (0)
63 #define rmap_printk(x...) do { } while (0)
64
65 #endif
66
67 #if defined(MMU_DEBUG) || defined(AUDIT)
68 static int dbg = 1;
69 #endif
70
71 #ifndef MMU_DEBUG
72 #define ASSERT(x) do { } while (0)
73 #else
74 #define ASSERT(x) \
75 if (!(x)) { \
76 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
77 __FILE__, __LINE__, #x); \
78 }
79 #endif
80
81 #define PT64_PT_BITS 9
82 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
83 #define PT32_PT_BITS 10
84 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
85
86 #define PT_WRITABLE_SHIFT 1
87
88 #define PT_PRESENT_MASK (1ULL << 0)
89 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
90 #define PT_USER_MASK (1ULL << 2)
91 #define PT_PWT_MASK (1ULL << 3)
92 #define PT_PCD_MASK (1ULL << 4)
93 #define PT_ACCESSED_MASK (1ULL << 5)
94 #define PT_DIRTY_MASK (1ULL << 6)
95 #define PT_PAGE_SIZE_MASK (1ULL << 7)
96 #define PT_PAT_MASK (1ULL << 7)
97 #define PT_GLOBAL_MASK (1ULL << 8)
98 #define PT64_NX_SHIFT 63
99 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
100
101 #define PT_PAT_SHIFT 7
102 #define PT_DIR_PAT_SHIFT 12
103 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
104
105 #define PT32_DIR_PSE36_SIZE 4
106 #define PT32_DIR_PSE36_SHIFT 13
107 #define PT32_DIR_PSE36_MASK \
108 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
109
110
111 #define PT_FIRST_AVAIL_BITS_SHIFT 9
112 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
113
114 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
115
116 #define PT64_LEVEL_BITS 9
117
118 #define PT64_LEVEL_SHIFT(level) \
119 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
120
121 #define PT64_LEVEL_MASK(level) \
122 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
123
124 #define PT64_INDEX(address, level)\
125 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
126
127
128 #define PT32_LEVEL_BITS 10
129
130 #define PT32_LEVEL_SHIFT(level) \
131 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
132
133 #define PT32_LEVEL_MASK(level) \
134 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
135
136 #define PT32_INDEX(address, level)\
137 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
138
139
140 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
141 #define PT64_DIR_BASE_ADDR_MASK \
142 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
143
144 #define PT32_BASE_ADDR_MASK PAGE_MASK
145 #define PT32_DIR_BASE_ADDR_MASK \
146 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
147
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149 | PT64_NX_MASK)
150
151 #define PFERR_PRESENT_MASK (1U << 0)
152 #define PFERR_WRITE_MASK (1U << 1)
153 #define PFERR_USER_MASK (1U << 2)
154 #define PFERR_FETCH_MASK (1U << 4)
155
156 #define PT64_ROOT_LEVEL 4
157 #define PT32_ROOT_LEVEL 2
158 #define PT32E_ROOT_LEVEL 3
159
160 #define PT_DIRECTORY_LEVEL 2
161 #define PT_PAGE_TABLE_LEVEL 1
162
163 #define RMAP_EXT 4
164
165 #define ACC_EXEC_MASK 1
166 #define ACC_WRITE_MASK PT_WRITABLE_MASK
167 #define ACC_USER_MASK PT_USER_MASK
168 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
169
170 struct kvm_rmap_desc {
171 u64 *shadow_ptes[RMAP_EXT];
172 struct kvm_rmap_desc *more;
173 };
174
175 static struct kmem_cache *pte_chain_cache;
176 static struct kmem_cache *rmap_desc_cache;
177 static struct kmem_cache *mmu_page_header_cache;
178
179 static u64 __read_mostly shadow_trap_nonpresent_pte;
180 static u64 __read_mostly shadow_notrap_nonpresent_pte;
181
182 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
183 {
184 shadow_trap_nonpresent_pte = trap_pte;
185 shadow_notrap_nonpresent_pte = notrap_pte;
186 }
187 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
188
189 static int is_write_protection(struct kvm_vcpu *vcpu)
190 {
191 return vcpu->arch.cr0 & X86_CR0_WP;
192 }
193
194 static int is_cpuid_PSE36(void)
195 {
196 return 1;
197 }
198
199 static int is_nx(struct kvm_vcpu *vcpu)
200 {
201 return vcpu->arch.shadow_efer & EFER_NX;
202 }
203
204 static int is_present_pte(unsigned long pte)
205 {
206 return pte & PT_PRESENT_MASK;
207 }
208
209 static int is_shadow_present_pte(u64 pte)
210 {
211 return pte != shadow_trap_nonpresent_pte
212 && pte != shadow_notrap_nonpresent_pte;
213 }
214
215 static int is_large_pte(u64 pte)
216 {
217 return pte & PT_PAGE_SIZE_MASK;
218 }
219
220 static int is_writeble_pte(unsigned long pte)
221 {
222 return pte & PT_WRITABLE_MASK;
223 }
224
225 static int is_dirty_pte(unsigned long pte)
226 {
227 return pte & PT_DIRTY_MASK;
228 }
229
230 static int is_rmap_pte(u64 pte)
231 {
232 return is_shadow_present_pte(pte);
233 }
234
235 static gfn_t pse36_gfn_delta(u32 gpte)
236 {
237 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
238
239 return (gpte & PT32_DIR_PSE36_MASK) << shift;
240 }
241
242 static void set_shadow_pte(u64 *sptep, u64 spte)
243 {
244 #ifdef CONFIG_X86_64
245 set_64bit((unsigned long *)sptep, spte);
246 #else
247 set_64bit((unsigned long long *)sptep, spte);
248 #endif
249 }
250
251 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
252 struct kmem_cache *base_cache, int min)
253 {
254 void *obj;
255
256 if (cache->nobjs >= min)
257 return 0;
258 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
259 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
260 if (!obj)
261 return -ENOMEM;
262 cache->objects[cache->nobjs++] = obj;
263 }
264 return 0;
265 }
266
267 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
268 {
269 while (mc->nobjs)
270 kfree(mc->objects[--mc->nobjs]);
271 }
272
273 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
274 int min)
275 {
276 struct page *page;
277
278 if (cache->nobjs >= min)
279 return 0;
280 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
281 page = alloc_page(GFP_KERNEL);
282 if (!page)
283 return -ENOMEM;
284 set_page_private(page, 0);
285 cache->objects[cache->nobjs++] = page_address(page);
286 }
287 return 0;
288 }
289
290 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
291 {
292 while (mc->nobjs)
293 free_page((unsigned long)mc->objects[--mc->nobjs]);
294 }
295
296 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
297 {
298 int r;
299
300 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
301 pte_chain_cache, 4);
302 if (r)
303 goto out;
304 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
305 rmap_desc_cache, 1);
306 if (r)
307 goto out;
308 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
309 if (r)
310 goto out;
311 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
312 mmu_page_header_cache, 4);
313 out:
314 return r;
315 }
316
317 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
318 {
319 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
320 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
321 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
322 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
323 }
324
325 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
326 size_t size)
327 {
328 void *p;
329
330 BUG_ON(!mc->nobjs);
331 p = mc->objects[--mc->nobjs];
332 memset(p, 0, size);
333 return p;
334 }
335
336 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
337 {
338 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
339 sizeof(struct kvm_pte_chain));
340 }
341
342 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
343 {
344 kfree(pc);
345 }
346
347 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
348 {
349 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
350 sizeof(struct kvm_rmap_desc));
351 }
352
353 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
354 {
355 kfree(rd);
356 }
357
358 /*
359 * Return the pointer to the largepage write count for a given
360 * gfn, handling slots that are not large page aligned.
361 */
362 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
363 {
364 unsigned long idx;
365
366 idx = (gfn / KVM_PAGES_PER_HPAGE) -
367 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
368 return &slot->lpage_info[idx].write_count;
369 }
370
371 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
372 {
373 int *write_count;
374
375 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
376 *write_count += 1;
377 WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
378 }
379
380 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
381 {
382 int *write_count;
383
384 write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
385 *write_count -= 1;
386 WARN_ON(*write_count < 0);
387 }
388
389 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
390 {
391 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
392 int *largepage_idx;
393
394 if (slot) {
395 largepage_idx = slot_largepage_idx(gfn, slot);
396 return *largepage_idx;
397 }
398
399 return 1;
400 }
401
402 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
403 {
404 struct vm_area_struct *vma;
405 unsigned long addr;
406
407 addr = gfn_to_hva(kvm, gfn);
408 if (kvm_is_error_hva(addr))
409 return 0;
410
411 vma = find_vma(current->mm, addr);
412 if (vma && is_vm_hugetlb_page(vma))
413 return 1;
414
415 return 0;
416 }
417
418 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
419 {
420 struct kvm_memory_slot *slot;
421
422 if (has_wrprotected_page(vcpu->kvm, large_gfn))
423 return 0;
424
425 if (!host_largepage_backed(vcpu->kvm, large_gfn))
426 return 0;
427
428 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
429 if (slot && slot->dirty_bitmap)
430 return 0;
431
432 return 1;
433 }
434
435 /*
436 * Take gfn and return the reverse mapping to it.
437 * Note: gfn must be unaliased before this function get called
438 */
439
440 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
441 {
442 struct kvm_memory_slot *slot;
443 unsigned long idx;
444
445 slot = gfn_to_memslot(kvm, gfn);
446 if (!lpage)
447 return &slot->rmap[gfn - slot->base_gfn];
448
449 idx = (gfn / KVM_PAGES_PER_HPAGE) -
450 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
451
452 return &slot->lpage_info[idx].rmap_pde;
453 }
454
455 /*
456 * Reverse mapping data structures:
457 *
458 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
459 * that points to page_address(page).
460 *
461 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
462 * containing more mappings.
463 */
464 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
465 {
466 struct kvm_mmu_page *sp;
467 struct kvm_rmap_desc *desc;
468 unsigned long *rmapp;
469 int i;
470
471 if (!is_rmap_pte(*spte))
472 return;
473 gfn = unalias_gfn(vcpu->kvm, gfn);
474 sp = page_header(__pa(spte));
475 sp->gfns[spte - sp->spt] = gfn;
476 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
477 if (!*rmapp) {
478 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
479 *rmapp = (unsigned long)spte;
480 } else if (!(*rmapp & 1)) {
481 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
482 desc = mmu_alloc_rmap_desc(vcpu);
483 desc->shadow_ptes[0] = (u64 *)*rmapp;
484 desc->shadow_ptes[1] = spte;
485 *rmapp = (unsigned long)desc | 1;
486 } else {
487 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
488 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
489 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
490 desc = desc->more;
491 if (desc->shadow_ptes[RMAP_EXT-1]) {
492 desc->more = mmu_alloc_rmap_desc(vcpu);
493 desc = desc->more;
494 }
495 for (i = 0; desc->shadow_ptes[i]; ++i)
496 ;
497 desc->shadow_ptes[i] = spte;
498 }
499 }
500
501 static void rmap_desc_remove_entry(unsigned long *rmapp,
502 struct kvm_rmap_desc *desc,
503 int i,
504 struct kvm_rmap_desc *prev_desc)
505 {
506 int j;
507
508 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
509 ;
510 desc->shadow_ptes[i] = desc->shadow_ptes[j];
511 desc->shadow_ptes[j] = NULL;
512 if (j != 0)
513 return;
514 if (!prev_desc && !desc->more)
515 *rmapp = (unsigned long)desc->shadow_ptes[0];
516 else
517 if (prev_desc)
518 prev_desc->more = desc->more;
519 else
520 *rmapp = (unsigned long)desc->more | 1;
521 mmu_free_rmap_desc(desc);
522 }
523
524 static void rmap_remove(struct kvm *kvm, u64 *spte)
525 {
526 struct kvm_rmap_desc *desc;
527 struct kvm_rmap_desc *prev_desc;
528 struct kvm_mmu_page *sp;
529 struct page *page;
530 unsigned long *rmapp;
531 int i;
532
533 if (!is_rmap_pte(*spte))
534 return;
535 sp = page_header(__pa(spte));
536 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
537 mark_page_accessed(page);
538 if (is_writeble_pte(*spte))
539 kvm_release_page_dirty(page);
540 else
541 kvm_release_page_clean(page);
542 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
543 if (!*rmapp) {
544 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
545 BUG();
546 } else if (!(*rmapp & 1)) {
547 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
548 if ((u64 *)*rmapp != spte) {
549 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
550 spte, *spte);
551 BUG();
552 }
553 *rmapp = 0;
554 } else {
555 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
556 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
557 prev_desc = NULL;
558 while (desc) {
559 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
560 if (desc->shadow_ptes[i] == spte) {
561 rmap_desc_remove_entry(rmapp,
562 desc, i,
563 prev_desc);
564 return;
565 }
566 prev_desc = desc;
567 desc = desc->more;
568 }
569 BUG();
570 }
571 }
572
573 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
574 {
575 struct kvm_rmap_desc *desc;
576 struct kvm_rmap_desc *prev_desc;
577 u64 *prev_spte;
578 int i;
579
580 if (!*rmapp)
581 return NULL;
582 else if (!(*rmapp & 1)) {
583 if (!spte)
584 return (u64 *)*rmapp;
585 return NULL;
586 }
587 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
588 prev_desc = NULL;
589 prev_spte = NULL;
590 while (desc) {
591 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
592 if (prev_spte == spte)
593 return desc->shadow_ptes[i];
594 prev_spte = desc->shadow_ptes[i];
595 }
596 desc = desc->more;
597 }
598 return NULL;
599 }
600
601 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
602 {
603 unsigned long *rmapp;
604 u64 *spte;
605 int write_protected = 0;
606
607 gfn = unalias_gfn(kvm, gfn);
608 rmapp = gfn_to_rmap(kvm, gfn, 0);
609
610 spte = rmap_next(kvm, rmapp, NULL);
611 while (spte) {
612 BUG_ON(!spte);
613 BUG_ON(!(*spte & PT_PRESENT_MASK));
614 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
615 if (is_writeble_pte(*spte)) {
616 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
617 write_protected = 1;
618 }
619 spte = rmap_next(kvm, rmapp, spte);
620 }
621 /* check for huge page mappings */
622 rmapp = gfn_to_rmap(kvm, gfn, 1);
623 spte = rmap_next(kvm, rmapp, NULL);
624 while (spte) {
625 BUG_ON(!spte);
626 BUG_ON(!(*spte & PT_PRESENT_MASK));
627 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
628 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
629 if (is_writeble_pte(*spte)) {
630 rmap_remove(kvm, spte);
631 --kvm->stat.lpages;
632 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
633 write_protected = 1;
634 }
635 spte = rmap_next(kvm, rmapp, spte);
636 }
637
638 if (write_protected)
639 kvm_flush_remote_tlbs(kvm);
640
641 account_shadowed(kvm, gfn);
642 }
643
644 #ifdef MMU_DEBUG
645 static int is_empty_shadow_page(u64 *spt)
646 {
647 u64 *pos;
648 u64 *end;
649
650 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
651 if (*pos != shadow_trap_nonpresent_pte) {
652 printk(KERN_ERR "%s: %p %llx\n", __func__,
653 pos, *pos);
654 return 0;
655 }
656 return 1;
657 }
658 #endif
659
660 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
661 {
662 ASSERT(is_empty_shadow_page(sp->spt));
663 list_del(&sp->link);
664 __free_page(virt_to_page(sp->spt));
665 __free_page(virt_to_page(sp->gfns));
666 kfree(sp);
667 ++kvm->arch.n_free_mmu_pages;
668 }
669
670 static unsigned kvm_page_table_hashfn(gfn_t gfn)
671 {
672 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
673 }
674
675 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
676 u64 *parent_pte)
677 {
678 struct kvm_mmu_page *sp;
679
680 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
681 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
682 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
683 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
684 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
685 ASSERT(is_empty_shadow_page(sp->spt));
686 sp->slot_bitmap = 0;
687 sp->multimapped = 0;
688 sp->parent_pte = parent_pte;
689 --vcpu->kvm->arch.n_free_mmu_pages;
690 return sp;
691 }
692
693 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
694 struct kvm_mmu_page *sp, u64 *parent_pte)
695 {
696 struct kvm_pte_chain *pte_chain;
697 struct hlist_node *node;
698 int i;
699
700 if (!parent_pte)
701 return;
702 if (!sp->multimapped) {
703 u64 *old = sp->parent_pte;
704
705 if (!old) {
706 sp->parent_pte = parent_pte;
707 return;
708 }
709 sp->multimapped = 1;
710 pte_chain = mmu_alloc_pte_chain(vcpu);
711 INIT_HLIST_HEAD(&sp->parent_ptes);
712 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
713 pte_chain->parent_ptes[0] = old;
714 }
715 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
716 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
717 continue;
718 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
719 if (!pte_chain->parent_ptes[i]) {
720 pte_chain->parent_ptes[i] = parent_pte;
721 return;
722 }
723 }
724 pte_chain = mmu_alloc_pte_chain(vcpu);
725 BUG_ON(!pte_chain);
726 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
727 pte_chain->parent_ptes[0] = parent_pte;
728 }
729
730 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
731 u64 *parent_pte)
732 {
733 struct kvm_pte_chain *pte_chain;
734 struct hlist_node *node;
735 int i;
736
737 if (!sp->multimapped) {
738 BUG_ON(sp->parent_pte != parent_pte);
739 sp->parent_pte = NULL;
740 return;
741 }
742 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
743 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
744 if (!pte_chain->parent_ptes[i])
745 break;
746 if (pte_chain->parent_ptes[i] != parent_pte)
747 continue;
748 while (i + 1 < NR_PTE_CHAIN_ENTRIES
749 && pte_chain->parent_ptes[i + 1]) {
750 pte_chain->parent_ptes[i]
751 = pte_chain->parent_ptes[i + 1];
752 ++i;
753 }
754 pte_chain->parent_ptes[i] = NULL;
755 if (i == 0) {
756 hlist_del(&pte_chain->link);
757 mmu_free_pte_chain(pte_chain);
758 if (hlist_empty(&sp->parent_ptes)) {
759 sp->multimapped = 0;
760 sp->parent_pte = NULL;
761 }
762 }
763 return;
764 }
765 BUG();
766 }
767
768 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
769 {
770 unsigned index;
771 struct hlist_head *bucket;
772 struct kvm_mmu_page *sp;
773 struct hlist_node *node;
774
775 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
776 index = kvm_page_table_hashfn(gfn);
777 bucket = &kvm->arch.mmu_page_hash[index];
778 hlist_for_each_entry(sp, node, bucket, hash_link)
779 if (sp->gfn == gfn && !sp->role.metaphysical
780 && !sp->role.invalid) {
781 pgprintk("%s: found role %x\n",
782 __func__, sp->role.word);
783 return sp;
784 }
785 return NULL;
786 }
787
788 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
789 gfn_t gfn,
790 gva_t gaddr,
791 unsigned level,
792 int metaphysical,
793 unsigned access,
794 u64 *parent_pte)
795 {
796 union kvm_mmu_page_role role;
797 unsigned index;
798 unsigned quadrant;
799 struct hlist_head *bucket;
800 struct kvm_mmu_page *sp;
801 struct hlist_node *node;
802
803 role.word = 0;
804 role.glevels = vcpu->arch.mmu.root_level;
805 role.level = level;
806 role.metaphysical = metaphysical;
807 role.access = access;
808 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
809 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
810 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
811 role.quadrant = quadrant;
812 }
813 pgprintk("%s: looking gfn %lx role %x\n", __func__,
814 gfn, role.word);
815 index = kvm_page_table_hashfn(gfn);
816 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
817 hlist_for_each_entry(sp, node, bucket, hash_link)
818 if (sp->gfn == gfn && sp->role.word == role.word) {
819 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
820 pgprintk("%s: found\n", __func__);
821 return sp;
822 }
823 ++vcpu->kvm->stat.mmu_cache_miss;
824 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
825 if (!sp)
826 return sp;
827 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
828 sp->gfn = gfn;
829 sp->role = role;
830 hlist_add_head(&sp->hash_link, bucket);
831 vcpu->arch.mmu.prefetch_page(vcpu, sp);
832 if (!metaphysical)
833 rmap_write_protect(vcpu->kvm, gfn);
834 return sp;
835 }
836
837 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
838 struct kvm_mmu_page *sp)
839 {
840 unsigned i;
841 u64 *pt;
842 u64 ent;
843
844 pt = sp->spt;
845
846 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
847 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
848 if (is_shadow_present_pte(pt[i]))
849 rmap_remove(kvm, &pt[i]);
850 pt[i] = shadow_trap_nonpresent_pte;
851 }
852 kvm_flush_remote_tlbs(kvm);
853 return;
854 }
855
856 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
857 ent = pt[i];
858
859 if (is_shadow_present_pte(ent)) {
860 if (!is_large_pte(ent)) {
861 ent &= PT64_BASE_ADDR_MASK;
862 mmu_page_remove_parent_pte(page_header(ent),
863 &pt[i]);
864 } else {
865 --kvm->stat.lpages;
866 rmap_remove(kvm, &pt[i]);
867 }
868 }
869 pt[i] = shadow_trap_nonpresent_pte;
870 }
871 kvm_flush_remote_tlbs(kvm);
872 }
873
874 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
875 {
876 mmu_page_remove_parent_pte(sp, parent_pte);
877 }
878
879 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
880 {
881 int i;
882
883 for (i = 0; i < KVM_MAX_VCPUS; ++i)
884 if (kvm->vcpus[i])
885 kvm->vcpus[i]->arch.last_pte_updated = NULL;
886 }
887
888 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
889 {
890 u64 *parent_pte;
891
892 ++kvm->stat.mmu_shadow_zapped;
893 while (sp->multimapped || sp->parent_pte) {
894 if (!sp->multimapped)
895 parent_pte = sp->parent_pte;
896 else {
897 struct kvm_pte_chain *chain;
898
899 chain = container_of(sp->parent_ptes.first,
900 struct kvm_pte_chain, link);
901 parent_pte = chain->parent_ptes[0];
902 }
903 BUG_ON(!parent_pte);
904 kvm_mmu_put_page(sp, parent_pte);
905 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
906 }
907 kvm_mmu_page_unlink_children(kvm, sp);
908 if (!sp->root_count) {
909 if (!sp->role.metaphysical)
910 unaccount_shadowed(kvm, sp->gfn);
911 hlist_del(&sp->hash_link);
912 kvm_mmu_free_page(kvm, sp);
913 } else {
914 list_move(&sp->link, &kvm->arch.active_mmu_pages);
915 sp->role.invalid = 1;
916 kvm_reload_remote_mmus(kvm);
917 }
918 kvm_mmu_reset_last_pte_updated(kvm);
919 }
920
921 /*
922 * Changing the number of mmu pages allocated to the vm
923 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
924 */
925 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
926 {
927 /*
928 * If we set the number of mmu pages to be smaller be than the
929 * number of actived pages , we must to free some mmu pages before we
930 * change the value
931 */
932
933 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
934 kvm_nr_mmu_pages) {
935 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
936 - kvm->arch.n_free_mmu_pages;
937
938 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
939 struct kvm_mmu_page *page;
940
941 page = container_of(kvm->arch.active_mmu_pages.prev,
942 struct kvm_mmu_page, link);
943 kvm_mmu_zap_page(kvm, page);
944 n_used_mmu_pages--;
945 }
946 kvm->arch.n_free_mmu_pages = 0;
947 }
948 else
949 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
950 - kvm->arch.n_alloc_mmu_pages;
951
952 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
953 }
954
955 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
956 {
957 unsigned index;
958 struct hlist_head *bucket;
959 struct kvm_mmu_page *sp;
960 struct hlist_node *node, *n;
961 int r;
962
963 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
964 r = 0;
965 index = kvm_page_table_hashfn(gfn);
966 bucket = &kvm->arch.mmu_page_hash[index];
967 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
968 if (sp->gfn == gfn && !sp->role.metaphysical) {
969 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
970 sp->role.word);
971 kvm_mmu_zap_page(kvm, sp);
972 r = 1;
973 }
974 return r;
975 }
976
977 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
978 {
979 struct kvm_mmu_page *sp;
980
981 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
982 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
983 kvm_mmu_zap_page(kvm, sp);
984 }
985 }
986
987 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
988 {
989 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
990 struct kvm_mmu_page *sp = page_header(__pa(pte));
991
992 __set_bit(slot, &sp->slot_bitmap);
993 }
994
995 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
996 {
997 struct page *page;
998
999 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1000
1001 if (gpa == UNMAPPED_GVA)
1002 return NULL;
1003
1004 down_read(&current->mm->mmap_sem);
1005 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1006 up_read(&current->mm->mmap_sem);
1007
1008 return page;
1009 }
1010
1011 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1012 unsigned pt_access, unsigned pte_access,
1013 int user_fault, int write_fault, int dirty,
1014 int *ptwrite, int largepage, gfn_t gfn,
1015 struct page *page)
1016 {
1017 u64 spte;
1018 int was_rmapped = 0;
1019 int was_writeble = is_writeble_pte(*shadow_pte);
1020 hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1021
1022 pgprintk("%s: spte %llx access %x write_fault %d"
1023 " user_fault %d gfn %lx\n",
1024 __func__, *shadow_pte, pt_access,
1025 write_fault, user_fault, gfn);
1026
1027 if (is_rmap_pte(*shadow_pte)) {
1028 /*
1029 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1030 * the parent of the now unreachable PTE.
1031 */
1032 if (largepage && !is_large_pte(*shadow_pte)) {
1033 struct kvm_mmu_page *child;
1034 u64 pte = *shadow_pte;
1035
1036 child = page_header(pte & PT64_BASE_ADDR_MASK);
1037 mmu_page_remove_parent_pte(child, shadow_pte);
1038 } else if (host_pfn != page_to_pfn(page)) {
1039 pgprintk("hfn old %lx new %lx\n",
1040 host_pfn, page_to_pfn(page));
1041 rmap_remove(vcpu->kvm, shadow_pte);
1042 } else {
1043 if (largepage)
1044 was_rmapped = is_large_pte(*shadow_pte);
1045 else
1046 was_rmapped = 1;
1047 }
1048 }
1049
1050 /*
1051 * We don't set the accessed bit, since we sometimes want to see
1052 * whether the guest actually used the pte (in order to detect
1053 * demand paging).
1054 */
1055 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
1056 if (!dirty)
1057 pte_access &= ~ACC_WRITE_MASK;
1058 if (!(pte_access & ACC_EXEC_MASK))
1059 spte |= PT64_NX_MASK;
1060
1061 spte |= PT_PRESENT_MASK;
1062 if (pte_access & ACC_USER_MASK)
1063 spte |= PT_USER_MASK;
1064 if (largepage)
1065 spte |= PT_PAGE_SIZE_MASK;
1066
1067 spte |= page_to_phys(page);
1068
1069 if ((pte_access & ACC_WRITE_MASK)
1070 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1071 struct kvm_mmu_page *shadow;
1072
1073 spte |= PT_WRITABLE_MASK;
1074 if (user_fault) {
1075 mmu_unshadow(vcpu->kvm, gfn);
1076 goto unshadowed;
1077 }
1078
1079 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1080 if (shadow ||
1081 (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1082 pgprintk("%s: found shadow page for %lx, marking ro\n",
1083 __func__, gfn);
1084 pte_access &= ~ACC_WRITE_MASK;
1085 if (is_writeble_pte(spte)) {
1086 spte &= ~PT_WRITABLE_MASK;
1087 kvm_x86_ops->tlb_flush(vcpu);
1088 }
1089 if (write_fault)
1090 *ptwrite = 1;
1091 }
1092 }
1093
1094 unshadowed:
1095
1096 if (pte_access & ACC_WRITE_MASK)
1097 mark_page_dirty(vcpu->kvm, gfn);
1098
1099 pgprintk("%s: setting spte %llx\n", __func__, spte);
1100 pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1101 (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1102 (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1103 set_shadow_pte(shadow_pte, spte);
1104 if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1105 && (spte & PT_PRESENT_MASK))
1106 ++vcpu->kvm->stat.lpages;
1107
1108 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1109 if (!was_rmapped) {
1110 rmap_add(vcpu, shadow_pte, gfn, largepage);
1111 if (!is_rmap_pte(*shadow_pte))
1112 kvm_release_page_clean(page);
1113 } else {
1114 if (was_writeble)
1115 kvm_release_page_dirty(page);
1116 else
1117 kvm_release_page_clean(page);
1118 }
1119 if (!ptwrite || !*ptwrite)
1120 vcpu->arch.last_pte_updated = shadow_pte;
1121 }
1122
1123 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1124 {
1125 }
1126
1127 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1128 int largepage, gfn_t gfn, struct page *page,
1129 int level)
1130 {
1131 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1132 int pt_write = 0;
1133
1134 for (; ; level--) {
1135 u32 index = PT64_INDEX(v, level);
1136 u64 *table;
1137
1138 ASSERT(VALID_PAGE(table_addr));
1139 table = __va(table_addr);
1140
1141 if (level == 1) {
1142 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1143 0, write, 1, &pt_write, 0, gfn, page);
1144 return pt_write;
1145 }
1146
1147 if (largepage && level == 2) {
1148 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1149 0, write, 1, &pt_write, 1, gfn, page);
1150 return pt_write;
1151 }
1152
1153 if (table[index] == shadow_trap_nonpresent_pte) {
1154 struct kvm_mmu_page *new_table;
1155 gfn_t pseudo_gfn;
1156
1157 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1158 >> PAGE_SHIFT;
1159 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1160 v, level - 1,
1161 1, ACC_ALL, &table[index]);
1162 if (!new_table) {
1163 pgprintk("nonpaging_map: ENOMEM\n");
1164 kvm_release_page_clean(page);
1165 return -ENOMEM;
1166 }
1167
1168 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1169 | PT_WRITABLE_MASK | PT_USER_MASK;
1170 }
1171 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1172 }
1173 }
1174
1175 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1176 {
1177 int r;
1178 int largepage = 0;
1179
1180 struct page *page;
1181
1182 down_read(&vcpu->kvm->slots_lock);
1183
1184 down_read(&current->mm->mmap_sem);
1185 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1186 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1187 largepage = 1;
1188 }
1189
1190 page = gfn_to_page(vcpu->kvm, gfn);
1191 up_read(&current->mm->mmap_sem);
1192
1193 /* mmio */
1194 if (is_error_page(page)) {
1195 kvm_release_page_clean(page);
1196 up_read(&vcpu->kvm->slots_lock);
1197 return 1;
1198 }
1199
1200 spin_lock(&vcpu->kvm->mmu_lock);
1201 kvm_mmu_free_some_pages(vcpu);
1202 r = __direct_map(vcpu, v, write, largepage, gfn, page,
1203 PT32E_ROOT_LEVEL);
1204 spin_unlock(&vcpu->kvm->mmu_lock);
1205
1206 up_read(&vcpu->kvm->slots_lock);
1207
1208 return r;
1209 }
1210
1211
1212 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1213 struct kvm_mmu_page *sp)
1214 {
1215 int i;
1216
1217 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1218 sp->spt[i] = shadow_trap_nonpresent_pte;
1219 }
1220
1221 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1222 {
1223 int i;
1224 struct kvm_mmu_page *sp;
1225
1226 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1227 return;
1228 spin_lock(&vcpu->kvm->mmu_lock);
1229 #ifdef CONFIG_X86_64
1230 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1231 hpa_t root = vcpu->arch.mmu.root_hpa;
1232
1233 sp = page_header(root);
1234 --sp->root_count;
1235 if (!sp->root_count && sp->role.invalid)
1236 kvm_mmu_zap_page(vcpu->kvm, sp);
1237 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1238 spin_unlock(&vcpu->kvm->mmu_lock);
1239 return;
1240 }
1241 #endif
1242 for (i = 0; i < 4; ++i) {
1243 hpa_t root = vcpu->arch.mmu.pae_root[i];
1244
1245 if (root) {
1246 root &= PT64_BASE_ADDR_MASK;
1247 sp = page_header(root);
1248 --sp->root_count;
1249 if (!sp->root_count && sp->role.invalid)
1250 kvm_mmu_zap_page(vcpu->kvm, sp);
1251 }
1252 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1253 }
1254 spin_unlock(&vcpu->kvm->mmu_lock);
1255 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1256 }
1257
1258 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1259 {
1260 int i;
1261 gfn_t root_gfn;
1262 struct kvm_mmu_page *sp;
1263 int metaphysical = 0;
1264
1265 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1266
1267 #ifdef CONFIG_X86_64
1268 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1269 hpa_t root = vcpu->arch.mmu.root_hpa;
1270
1271 ASSERT(!VALID_PAGE(root));
1272 if (tdp_enabled)
1273 metaphysical = 1;
1274 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1275 PT64_ROOT_LEVEL, metaphysical,
1276 ACC_ALL, NULL);
1277 root = __pa(sp->spt);
1278 ++sp->root_count;
1279 vcpu->arch.mmu.root_hpa = root;
1280 return;
1281 }
1282 #endif
1283 metaphysical = !is_paging(vcpu);
1284 if (tdp_enabled)
1285 metaphysical = 1;
1286 for (i = 0; i < 4; ++i) {
1287 hpa_t root = vcpu->arch.mmu.pae_root[i];
1288
1289 ASSERT(!VALID_PAGE(root));
1290 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1291 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1292 vcpu->arch.mmu.pae_root[i] = 0;
1293 continue;
1294 }
1295 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1296 } else if (vcpu->arch.mmu.root_level == 0)
1297 root_gfn = 0;
1298 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1299 PT32_ROOT_LEVEL, metaphysical,
1300 ACC_ALL, NULL);
1301 root = __pa(sp->spt);
1302 ++sp->root_count;
1303 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1304 }
1305 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1306 }
1307
1308 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1309 {
1310 return vaddr;
1311 }
1312
1313 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1314 u32 error_code)
1315 {
1316 gfn_t gfn;
1317 int r;
1318
1319 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1320 r = mmu_topup_memory_caches(vcpu);
1321 if (r)
1322 return r;
1323
1324 ASSERT(vcpu);
1325 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1326
1327 gfn = gva >> PAGE_SHIFT;
1328
1329 return nonpaging_map(vcpu, gva & PAGE_MASK,
1330 error_code & PFERR_WRITE_MASK, gfn);
1331 }
1332
1333 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1334 u32 error_code)
1335 {
1336 struct page *page;
1337 int r;
1338 int largepage = 0;
1339 gfn_t gfn = gpa >> PAGE_SHIFT;
1340
1341 ASSERT(vcpu);
1342 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1343
1344 r = mmu_topup_memory_caches(vcpu);
1345 if (r)
1346 return r;
1347
1348 down_read(&current->mm->mmap_sem);
1349 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1350 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1351 largepage = 1;
1352 }
1353 page = gfn_to_page(vcpu->kvm, gfn);
1354 if (is_error_page(page)) {
1355 kvm_release_page_clean(page);
1356 up_read(&current->mm->mmap_sem);
1357 return 1;
1358 }
1359 spin_lock(&vcpu->kvm->mmu_lock);
1360 kvm_mmu_free_some_pages(vcpu);
1361 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1362 largepage, gfn, page, TDP_ROOT_LEVEL);
1363 spin_unlock(&vcpu->kvm->mmu_lock);
1364 up_read(&current->mm->mmap_sem);
1365
1366 return r;
1367 }
1368
1369 static void nonpaging_free(struct kvm_vcpu *vcpu)
1370 {
1371 mmu_free_roots(vcpu);
1372 }
1373
1374 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1375 {
1376 struct kvm_mmu *context = &vcpu->arch.mmu;
1377
1378 context->new_cr3 = nonpaging_new_cr3;
1379 context->page_fault = nonpaging_page_fault;
1380 context->gva_to_gpa = nonpaging_gva_to_gpa;
1381 context->free = nonpaging_free;
1382 context->prefetch_page = nonpaging_prefetch_page;
1383 context->root_level = 0;
1384 context->shadow_root_level = PT32E_ROOT_LEVEL;
1385 context->root_hpa = INVALID_PAGE;
1386 return 0;
1387 }
1388
1389 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1390 {
1391 ++vcpu->stat.tlb_flush;
1392 kvm_x86_ops->tlb_flush(vcpu);
1393 }
1394
1395 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1396 {
1397 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1398 mmu_free_roots(vcpu);
1399 }
1400
1401 static void inject_page_fault(struct kvm_vcpu *vcpu,
1402 u64 addr,
1403 u32 err_code)
1404 {
1405 kvm_inject_page_fault(vcpu, addr, err_code);
1406 }
1407
1408 static void paging_free(struct kvm_vcpu *vcpu)
1409 {
1410 nonpaging_free(vcpu);
1411 }
1412
1413 #define PTTYPE 64
1414 #include "paging_tmpl.h"
1415 #undef PTTYPE
1416
1417 #define PTTYPE 32
1418 #include "paging_tmpl.h"
1419 #undef PTTYPE
1420
1421 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1422 {
1423 struct kvm_mmu *context = &vcpu->arch.mmu;
1424
1425 ASSERT(is_pae(vcpu));
1426 context->new_cr3 = paging_new_cr3;
1427 context->page_fault = paging64_page_fault;
1428 context->gva_to_gpa = paging64_gva_to_gpa;
1429 context->prefetch_page = paging64_prefetch_page;
1430 context->free = paging_free;
1431 context->root_level = level;
1432 context->shadow_root_level = level;
1433 context->root_hpa = INVALID_PAGE;
1434 return 0;
1435 }
1436
1437 static int paging64_init_context(struct kvm_vcpu *vcpu)
1438 {
1439 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1440 }
1441
1442 static int paging32_init_context(struct kvm_vcpu *vcpu)
1443 {
1444 struct kvm_mmu *context = &vcpu->arch.mmu;
1445
1446 context->new_cr3 = paging_new_cr3;
1447 context->page_fault = paging32_page_fault;
1448 context->gva_to_gpa = paging32_gva_to_gpa;
1449 context->free = paging_free;
1450 context->prefetch_page = paging32_prefetch_page;
1451 context->root_level = PT32_ROOT_LEVEL;
1452 context->shadow_root_level = PT32E_ROOT_LEVEL;
1453 context->root_hpa = INVALID_PAGE;
1454 return 0;
1455 }
1456
1457 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1458 {
1459 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1460 }
1461
1462 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1463 {
1464 struct kvm_mmu *context = &vcpu->arch.mmu;
1465
1466 context->new_cr3 = nonpaging_new_cr3;
1467 context->page_fault = tdp_page_fault;
1468 context->free = nonpaging_free;
1469 context->prefetch_page = nonpaging_prefetch_page;
1470 context->shadow_root_level = TDP_ROOT_LEVEL;
1471 context->root_hpa = INVALID_PAGE;
1472
1473 if (!is_paging(vcpu)) {
1474 context->gva_to_gpa = nonpaging_gva_to_gpa;
1475 context->root_level = 0;
1476 } else if (is_long_mode(vcpu)) {
1477 context->gva_to_gpa = paging64_gva_to_gpa;
1478 context->root_level = PT64_ROOT_LEVEL;
1479 } else if (is_pae(vcpu)) {
1480 context->gva_to_gpa = paging64_gva_to_gpa;
1481 context->root_level = PT32E_ROOT_LEVEL;
1482 } else {
1483 context->gva_to_gpa = paging32_gva_to_gpa;
1484 context->root_level = PT32_ROOT_LEVEL;
1485 }
1486
1487 return 0;
1488 }
1489
1490 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1491 {
1492 ASSERT(vcpu);
1493 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1494
1495 if (!is_paging(vcpu))
1496 return nonpaging_init_context(vcpu);
1497 else if (is_long_mode(vcpu))
1498 return paging64_init_context(vcpu);
1499 else if (is_pae(vcpu))
1500 return paging32E_init_context(vcpu);
1501 else
1502 return paging32_init_context(vcpu);
1503 }
1504
1505 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1506 {
1507 if (tdp_enabled)
1508 return init_kvm_tdp_mmu(vcpu);
1509 else
1510 return init_kvm_softmmu(vcpu);
1511 }
1512
1513 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1514 {
1515 ASSERT(vcpu);
1516 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1517 vcpu->arch.mmu.free(vcpu);
1518 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1519 }
1520 }
1521
1522 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1523 {
1524 destroy_kvm_mmu(vcpu);
1525 return init_kvm_mmu(vcpu);
1526 }
1527 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1528
1529 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1530 {
1531 int r;
1532
1533 r = mmu_topup_memory_caches(vcpu);
1534 if (r)
1535 goto out;
1536 spin_lock(&vcpu->kvm->mmu_lock);
1537 kvm_mmu_free_some_pages(vcpu);
1538 mmu_alloc_roots(vcpu);
1539 spin_unlock(&vcpu->kvm->mmu_lock);
1540 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1541 kvm_mmu_flush_tlb(vcpu);
1542 out:
1543 return r;
1544 }
1545 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1546
1547 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1548 {
1549 mmu_free_roots(vcpu);
1550 }
1551
1552 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1553 struct kvm_mmu_page *sp,
1554 u64 *spte)
1555 {
1556 u64 pte;
1557 struct kvm_mmu_page *child;
1558
1559 pte = *spte;
1560 if (is_shadow_present_pte(pte)) {
1561 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1562 is_large_pte(pte))
1563 rmap_remove(vcpu->kvm, spte);
1564 else {
1565 child = page_header(pte & PT64_BASE_ADDR_MASK);
1566 mmu_page_remove_parent_pte(child, spte);
1567 }
1568 }
1569 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1570 if (is_large_pte(pte))
1571 --vcpu->kvm->stat.lpages;
1572 }
1573
1574 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1575 struct kvm_mmu_page *sp,
1576 u64 *spte,
1577 const void *new)
1578 {
1579 if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
1580 && !vcpu->arch.update_pte.largepage) {
1581 ++vcpu->kvm->stat.mmu_pde_zapped;
1582 return;
1583 }
1584
1585 ++vcpu->kvm->stat.mmu_pte_updated;
1586 if (sp->role.glevels == PT32_ROOT_LEVEL)
1587 paging32_update_pte(vcpu, sp, spte, new);
1588 else
1589 paging64_update_pte(vcpu, sp, spte, new);
1590 }
1591
1592 static bool need_remote_flush(u64 old, u64 new)
1593 {
1594 if (!is_shadow_present_pte(old))
1595 return false;
1596 if (!is_shadow_present_pte(new))
1597 return true;
1598 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1599 return true;
1600 old ^= PT64_NX_MASK;
1601 new ^= PT64_NX_MASK;
1602 return (old & ~new & PT64_PERM_MASK) != 0;
1603 }
1604
1605 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1606 {
1607 if (need_remote_flush(old, new))
1608 kvm_flush_remote_tlbs(vcpu->kvm);
1609 else
1610 kvm_mmu_flush_tlb(vcpu);
1611 }
1612
1613 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1614 {
1615 u64 *spte = vcpu->arch.last_pte_updated;
1616
1617 return !!(spte && (*spte & PT_ACCESSED_MASK));
1618 }
1619
1620 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1621 const u8 *new, int bytes)
1622 {
1623 gfn_t gfn;
1624 int r;
1625 u64 gpte = 0;
1626 struct page *page;
1627
1628 vcpu->arch.update_pte.largepage = 0;
1629
1630 if (bytes != 4 && bytes != 8)
1631 return;
1632
1633 /*
1634 * Assume that the pte write on a page table of the same type
1635 * as the current vcpu paging mode. This is nearly always true
1636 * (might be false while changing modes). Note it is verified later
1637 * by update_pte().
1638 */
1639 if (is_pae(vcpu)) {
1640 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1641 if ((bytes == 4) && (gpa % 4 == 0)) {
1642 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1643 if (r)
1644 return;
1645 memcpy((void *)&gpte + (gpa % 8), new, 4);
1646 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1647 memcpy((void *)&gpte, new, 8);
1648 }
1649 } else {
1650 if ((bytes == 4) && (gpa % 4 == 0))
1651 memcpy((void *)&gpte, new, 4);
1652 }
1653 if (!is_present_pte(gpte))
1654 return;
1655 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1656
1657 down_read(&current->mm->mmap_sem);
1658 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1659 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1660 vcpu->arch.update_pte.largepage = 1;
1661 }
1662 page = gfn_to_page(vcpu->kvm, gfn);
1663 up_read(&current->mm->mmap_sem);
1664
1665 if (is_error_page(page)) {
1666 kvm_release_page_clean(page);
1667 return;
1668 }
1669 vcpu->arch.update_pte.gfn = gfn;
1670 vcpu->arch.update_pte.page = page;
1671 }
1672
1673 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1674 const u8 *new, int bytes)
1675 {
1676 gfn_t gfn = gpa >> PAGE_SHIFT;
1677 struct kvm_mmu_page *sp;
1678 struct hlist_node *node, *n;
1679 struct hlist_head *bucket;
1680 unsigned index;
1681 u64 entry, gentry;
1682 u64 *spte;
1683 unsigned offset = offset_in_page(gpa);
1684 unsigned pte_size;
1685 unsigned page_offset;
1686 unsigned misaligned;
1687 unsigned quadrant;
1688 int level;
1689 int flooded = 0;
1690 int npte;
1691 int r;
1692
1693 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1694 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1695 spin_lock(&vcpu->kvm->mmu_lock);
1696 kvm_mmu_free_some_pages(vcpu);
1697 ++vcpu->kvm->stat.mmu_pte_write;
1698 kvm_mmu_audit(vcpu, "pre pte write");
1699 if (gfn == vcpu->arch.last_pt_write_gfn
1700 && !last_updated_pte_accessed(vcpu)) {
1701 ++vcpu->arch.last_pt_write_count;
1702 if (vcpu->arch.last_pt_write_count >= 3)
1703 flooded = 1;
1704 } else {
1705 vcpu->arch.last_pt_write_gfn = gfn;
1706 vcpu->arch.last_pt_write_count = 1;
1707 vcpu->arch.last_pte_updated = NULL;
1708 }
1709 index = kvm_page_table_hashfn(gfn);
1710 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1711 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1712 if (sp->gfn != gfn || sp->role.metaphysical)
1713 continue;
1714 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1715 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1716 misaligned |= bytes < 4;
1717 if (misaligned || flooded) {
1718 /*
1719 * Misaligned accesses are too much trouble to fix
1720 * up; also, they usually indicate a page is not used
1721 * as a page table.
1722 *
1723 * If we're seeing too many writes to a page,
1724 * it may no longer be a page table, or we may be
1725 * forking, in which case it is better to unmap the
1726 * page.
1727 */
1728 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1729 gpa, bytes, sp->role.word);
1730 kvm_mmu_zap_page(vcpu->kvm, sp);
1731 ++vcpu->kvm->stat.mmu_flooded;
1732 continue;
1733 }
1734 page_offset = offset;
1735 level = sp->role.level;
1736 npte = 1;
1737 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1738 page_offset <<= 1; /* 32->64 */
1739 /*
1740 * A 32-bit pde maps 4MB while the shadow pdes map
1741 * only 2MB. So we need to double the offset again
1742 * and zap two pdes instead of one.
1743 */
1744 if (level == PT32_ROOT_LEVEL) {
1745 page_offset &= ~7; /* kill rounding error */
1746 page_offset <<= 1;
1747 npte = 2;
1748 }
1749 quadrant = page_offset >> PAGE_SHIFT;
1750 page_offset &= ~PAGE_MASK;
1751 if (quadrant != sp->role.quadrant)
1752 continue;
1753 }
1754 spte = &sp->spt[page_offset / sizeof(*spte)];
1755 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1756 gentry = 0;
1757 r = kvm_read_guest_atomic(vcpu->kvm,
1758 gpa & ~(u64)(pte_size - 1),
1759 &gentry, pte_size);
1760 new = (const void *)&gentry;
1761 if (r < 0)
1762 new = NULL;
1763 }
1764 while (npte--) {
1765 entry = *spte;
1766 mmu_pte_write_zap_pte(vcpu, sp, spte);
1767 if (new)
1768 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1769 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1770 ++spte;
1771 }
1772 }
1773 kvm_mmu_audit(vcpu, "post pte write");
1774 spin_unlock(&vcpu->kvm->mmu_lock);
1775 if (vcpu->arch.update_pte.page) {
1776 kvm_release_page_clean(vcpu->arch.update_pte.page);
1777 vcpu->arch.update_pte.page = NULL;
1778 }
1779 }
1780
1781 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1782 {
1783 gpa_t gpa;
1784 int r;
1785
1786 down_read(&vcpu->kvm->slots_lock);
1787 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1788 up_read(&vcpu->kvm->slots_lock);
1789
1790 spin_lock(&vcpu->kvm->mmu_lock);
1791 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1792 spin_unlock(&vcpu->kvm->mmu_lock);
1793 return r;
1794 }
1795
1796 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1797 {
1798 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1799 struct kvm_mmu_page *sp;
1800
1801 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1802 struct kvm_mmu_page, link);
1803 kvm_mmu_zap_page(vcpu->kvm, sp);
1804 ++vcpu->kvm->stat.mmu_recycled;
1805 }
1806 }
1807
1808 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1809 {
1810 int r;
1811 enum emulation_result er;
1812
1813 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1814 if (r < 0)
1815 goto out;
1816
1817 if (!r) {
1818 r = 1;
1819 goto out;
1820 }
1821
1822 r = mmu_topup_memory_caches(vcpu);
1823 if (r)
1824 goto out;
1825
1826 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1827
1828 switch (er) {
1829 case EMULATE_DONE:
1830 return 1;
1831 case EMULATE_DO_MMIO:
1832 ++vcpu->stat.mmio_exits;
1833 return 0;
1834 case EMULATE_FAIL:
1835 kvm_report_emulation_failure(vcpu, "pagetable");
1836 return 1;
1837 default:
1838 BUG();
1839 }
1840 out:
1841 return r;
1842 }
1843 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1844
1845 void kvm_enable_tdp(void)
1846 {
1847 tdp_enabled = true;
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1850
1851 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1852 {
1853 struct kvm_mmu_page *sp;
1854
1855 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1856 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1857 struct kvm_mmu_page, link);
1858 kvm_mmu_zap_page(vcpu->kvm, sp);
1859 }
1860 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1861 }
1862
1863 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1864 {
1865 struct page *page;
1866 int i;
1867
1868 ASSERT(vcpu);
1869
1870 if (vcpu->kvm->arch.n_requested_mmu_pages)
1871 vcpu->kvm->arch.n_free_mmu_pages =
1872 vcpu->kvm->arch.n_requested_mmu_pages;
1873 else
1874 vcpu->kvm->arch.n_free_mmu_pages =
1875 vcpu->kvm->arch.n_alloc_mmu_pages;
1876 /*
1877 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1878 * Therefore we need to allocate shadow page tables in the first
1879 * 4GB of memory, which happens to fit the DMA32 zone.
1880 */
1881 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1882 if (!page)
1883 goto error_1;
1884 vcpu->arch.mmu.pae_root = page_address(page);
1885 for (i = 0; i < 4; ++i)
1886 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1887
1888 return 0;
1889
1890 error_1:
1891 free_mmu_pages(vcpu);
1892 return -ENOMEM;
1893 }
1894
1895 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1896 {
1897 ASSERT(vcpu);
1898 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1899
1900 return alloc_mmu_pages(vcpu);
1901 }
1902
1903 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1904 {
1905 ASSERT(vcpu);
1906 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1907
1908 return init_kvm_mmu(vcpu);
1909 }
1910
1911 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1912 {
1913 ASSERT(vcpu);
1914
1915 destroy_kvm_mmu(vcpu);
1916 free_mmu_pages(vcpu);
1917 mmu_free_memory_caches(vcpu);
1918 }
1919
1920 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1921 {
1922 struct kvm_mmu_page *sp;
1923
1924 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1925 int i;
1926 u64 *pt;
1927
1928 if (!test_bit(slot, &sp->slot_bitmap))
1929 continue;
1930
1931 pt = sp->spt;
1932 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1933 /* avoid RMW */
1934 if (pt[i] & PT_WRITABLE_MASK)
1935 pt[i] &= ~PT_WRITABLE_MASK;
1936 }
1937 }
1938
1939 void kvm_mmu_zap_all(struct kvm *kvm)
1940 {
1941 struct kvm_mmu_page *sp, *node;
1942
1943 spin_lock(&kvm->mmu_lock);
1944 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1945 kvm_mmu_zap_page(kvm, sp);
1946 spin_unlock(&kvm->mmu_lock);
1947
1948 kvm_flush_remote_tlbs(kvm);
1949 }
1950
1951 void kvm_mmu_module_exit(void)
1952 {
1953 if (pte_chain_cache)
1954 kmem_cache_destroy(pte_chain_cache);
1955 if (rmap_desc_cache)
1956 kmem_cache_destroy(rmap_desc_cache);
1957 if (mmu_page_header_cache)
1958 kmem_cache_destroy(mmu_page_header_cache);
1959 }
1960
1961 int kvm_mmu_module_init(void)
1962 {
1963 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1964 sizeof(struct kvm_pte_chain),
1965 0, 0, NULL);
1966 if (!pte_chain_cache)
1967 goto nomem;
1968 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1969 sizeof(struct kvm_rmap_desc),
1970 0, 0, NULL);
1971 if (!rmap_desc_cache)
1972 goto nomem;
1973
1974 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1975 sizeof(struct kvm_mmu_page),
1976 0, 0, NULL);
1977 if (!mmu_page_header_cache)
1978 goto nomem;
1979
1980 return 0;
1981
1982 nomem:
1983 kvm_mmu_module_exit();
1984 return -ENOMEM;
1985 }
1986
1987 /*
1988 * Caculate mmu pages needed for kvm.
1989 */
1990 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1991 {
1992 int i;
1993 unsigned int nr_mmu_pages;
1994 unsigned int nr_pages = 0;
1995
1996 for (i = 0; i < kvm->nmemslots; i++)
1997 nr_pages += kvm->memslots[i].npages;
1998
1999 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2000 nr_mmu_pages = max(nr_mmu_pages,
2001 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2002
2003 return nr_mmu_pages;
2004 }
2005
2006 #ifdef AUDIT
2007
2008 static const char *audit_msg;
2009
2010 static gva_t canonicalize(gva_t gva)
2011 {
2012 #ifdef CONFIG_X86_64
2013 gva = (long long)(gva << 16) >> 16;
2014 #endif
2015 return gva;
2016 }
2017
2018 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2019 gva_t va, int level)
2020 {
2021 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2022 int i;
2023 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2024
2025 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2026 u64 ent = pt[i];
2027
2028 if (ent == shadow_trap_nonpresent_pte)
2029 continue;
2030
2031 va = canonicalize(va);
2032 if (level > 1) {
2033 if (ent == shadow_notrap_nonpresent_pte)
2034 printk(KERN_ERR "audit: (%s) nontrapping pte"
2035 " in nonleaf level: levels %d gva %lx"
2036 " level %d pte %llx\n", audit_msg,
2037 vcpu->arch.mmu.root_level, va, level, ent);
2038
2039 audit_mappings_page(vcpu, ent, va, level - 1);
2040 } else {
2041 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2042 struct page *page = gpa_to_page(vcpu, gpa);
2043 hpa_t hpa = page_to_phys(page);
2044
2045 if (is_shadow_present_pte(ent)
2046 && (ent & PT64_BASE_ADDR_MASK) != hpa)
2047 printk(KERN_ERR "xx audit error: (%s) levels %d"
2048 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2049 audit_msg, vcpu->arch.mmu.root_level,
2050 va, gpa, hpa, ent,
2051 is_shadow_present_pte(ent));
2052 else if (ent == shadow_notrap_nonpresent_pte
2053 && !is_error_hpa(hpa))
2054 printk(KERN_ERR "audit: (%s) notrap shadow,"
2055 " valid guest gva %lx\n", audit_msg, va);
2056 kvm_release_page_clean(page);
2057
2058 }
2059 }
2060 }
2061
2062 static void audit_mappings(struct kvm_vcpu *vcpu)
2063 {
2064 unsigned i;
2065
2066 if (vcpu->arch.mmu.root_level == 4)
2067 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2068 else
2069 for (i = 0; i < 4; ++i)
2070 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2071 audit_mappings_page(vcpu,
2072 vcpu->arch.mmu.pae_root[i],
2073 i << 30,
2074 2);
2075 }
2076
2077 static int count_rmaps(struct kvm_vcpu *vcpu)
2078 {
2079 int nmaps = 0;
2080 int i, j, k;
2081
2082 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2083 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2084 struct kvm_rmap_desc *d;
2085
2086 for (j = 0; j < m->npages; ++j) {
2087 unsigned long *rmapp = &m->rmap[j];
2088
2089 if (!*rmapp)
2090 continue;
2091 if (!(*rmapp & 1)) {
2092 ++nmaps;
2093 continue;
2094 }
2095 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2096 while (d) {
2097 for (k = 0; k < RMAP_EXT; ++k)
2098 if (d->shadow_ptes[k])
2099 ++nmaps;
2100 else
2101 break;
2102 d = d->more;
2103 }
2104 }
2105 }
2106 return nmaps;
2107 }
2108
2109 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2110 {
2111 int nmaps = 0;
2112 struct kvm_mmu_page *sp;
2113 int i;
2114
2115 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2116 u64 *pt = sp->spt;
2117
2118 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2119 continue;
2120
2121 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2122 u64 ent = pt[i];
2123
2124 if (!(ent & PT_PRESENT_MASK))
2125 continue;
2126 if (!(ent & PT_WRITABLE_MASK))
2127 continue;
2128 ++nmaps;
2129 }
2130 }
2131 return nmaps;
2132 }
2133
2134 static void audit_rmap(struct kvm_vcpu *vcpu)
2135 {
2136 int n_rmap = count_rmaps(vcpu);
2137 int n_actual = count_writable_mappings(vcpu);
2138
2139 if (n_rmap != n_actual)
2140 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2141 __func__, audit_msg, n_rmap, n_actual);
2142 }
2143
2144 static void audit_write_protection(struct kvm_vcpu *vcpu)
2145 {
2146 struct kvm_mmu_page *sp;
2147 struct kvm_memory_slot *slot;
2148 unsigned long *rmapp;
2149 gfn_t gfn;
2150
2151 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2152 if (sp->role.metaphysical)
2153 continue;
2154
2155 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2156 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2157 rmapp = &slot->rmap[gfn - slot->base_gfn];
2158 if (*rmapp)
2159 printk(KERN_ERR "%s: (%s) shadow page has writable"
2160 " mappings: gfn %lx role %x\n",
2161 __func__, audit_msg, sp->gfn,
2162 sp->role.word);
2163 }
2164 }
2165
2166 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2167 {
2168 int olddbg = dbg;
2169
2170 dbg = 0;
2171 audit_msg = msg;
2172 audit_rmap(vcpu);
2173 audit_write_protection(vcpu);
2174 audit_mappings(vcpu);
2175 dbg = olddbg;
2176 }
2177
2178 #endif