]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kvm/mmu.c
4ed3edbe06bd84218beda76ba2deb58efbf2383f
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235 return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251 return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266 return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271 return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276 return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303 *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308 *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313 return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318 return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325 }
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399 }
400
401 /*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
453 }
454
455 static bool spte_has_volatile_bits(u64 spte)
456 {
457 /*
458 * Always atomicly update spte if it can be updated
459 * out of mmu-lock, it can ensure dirty bit is not lost,
460 * also, it can help us to get a stable is_writable_pte()
461 * to ensure tlb flush is not missed.
462 */
463 if (spte_is_locklessly_modifiable(spte))
464 return true;
465
466 if (!shadow_accessed_mask)
467 return false;
468
469 if (!is_shadow_present_pte(spte))
470 return false;
471
472 if ((spte & shadow_accessed_mask) &&
473 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
474 return false;
475
476 return true;
477 }
478
479 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480 {
481 return (old_spte & bit_mask) && !(new_spte & bit_mask);
482 }
483
484 /* Rules for using mmu_spte_set:
485 * Set the sptep from nonpresent to present.
486 * Note: the sptep being assigned *must* be either not present
487 * or in a state where the hardware will not attempt to update
488 * the spte.
489 */
490 static void mmu_spte_set(u64 *sptep, u64 new_spte)
491 {
492 WARN_ON(is_shadow_present_pte(*sptep));
493 __set_spte(sptep, new_spte);
494 }
495
496 /* Rules for using mmu_spte_update:
497 * Update the state bits, it means the mapped pfn is not changged.
498 *
499 * Whenever we overwrite a writable spte with a read-only one we
500 * should flush remote TLBs. Otherwise rmap_write_protect
501 * will find a read-only spte, even though the writable spte
502 * might be cached on a CPU's TLB, the return value indicates this
503 * case.
504 */
505 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
506 {
507 u64 old_spte = *sptep;
508 bool ret = false;
509
510 WARN_ON(!is_rmap_spte(new_spte));
511
512 if (!is_shadow_present_pte(old_spte)) {
513 mmu_spte_set(sptep, new_spte);
514 return ret;
515 }
516
517 if (!spte_has_volatile_bits(old_spte))
518 __update_clear_spte_fast(sptep, new_spte);
519 else
520 old_spte = __update_clear_spte_slow(sptep, new_spte);
521
522 /*
523 * For the spte updated out of mmu-lock is safe, since
524 * we always atomicly update it, see the comments in
525 * spte_has_volatile_bits().
526 */
527 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528 ret = true;
529
530 if (!shadow_accessed_mask)
531 return ret;
532
533 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
537
538 return ret;
539 }
540
541 /*
542 * Rules for using mmu_spte_clear_track_bits:
543 * It sets the sptep from present to nonpresent, and track the
544 * state bits, it is used to clear the last level sptep.
545 */
546 static int mmu_spte_clear_track_bits(u64 *sptep)
547 {
548 pfn_t pfn;
549 u64 old_spte = *sptep;
550
551 if (!spte_has_volatile_bits(old_spte))
552 __update_clear_spte_fast(sptep, 0ull);
553 else
554 old_spte = __update_clear_spte_slow(sptep, 0ull);
555
556 if (!is_rmap_spte(old_spte))
557 return 0;
558
559 pfn = spte_to_pfn(old_spte);
560
561 /*
562 * KVM does not hold the refcount of the page used by
563 * kvm mmu, before reclaiming the page, we should
564 * unmap it from mmu first.
565 */
566 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
568 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 kvm_set_pfn_accessed(pfn);
570 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571 kvm_set_pfn_dirty(pfn);
572 return 1;
573 }
574
575 /*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582 __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587 return __get_spte_lockless(sptep);
588 }
589
590 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591 {
592 /*
593 * Prevent page table teardown by making any free-er wait during
594 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 */
596 local_irq_disable();
597 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 /*
599 * Make sure a following spte read is not reordered ahead of the write
600 * to vcpu->mode.
601 */
602 smp_mb();
603 }
604
605 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606 {
607 /*
608 * Make sure the write to vcpu->mode is not reordered in front of
609 * reads to sptes. If it does, kvm_commit_zap_page() can see us
610 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 */
612 smp_mb();
613 vcpu->mode = OUTSIDE_GUEST_MODE;
614 local_irq_enable();
615 }
616
617 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
618 struct kmem_cache *base_cache, int min)
619 {
620 void *obj;
621
622 if (cache->nobjs >= min)
623 return 0;
624 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
625 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
626 if (!obj)
627 return -ENOMEM;
628 cache->objects[cache->nobjs++] = obj;
629 }
630 return 0;
631 }
632
633 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634 {
635 return cache->nobjs;
636 }
637
638 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639 struct kmem_cache *cache)
640 {
641 while (mc->nobjs)
642 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
643 }
644
645 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
646 int min)
647 {
648 void *page;
649
650 if (cache->nobjs >= min)
651 return 0;
652 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
653 page = (void *)__get_free_page(GFP_KERNEL);
654 if (!page)
655 return -ENOMEM;
656 cache->objects[cache->nobjs++] = page;
657 }
658 return 0;
659 }
660
661 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662 {
663 while (mc->nobjs)
664 free_page((unsigned long)mc->objects[--mc->nobjs]);
665 }
666
667 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
668 {
669 int r;
670
671 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
672 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
673 if (r)
674 goto out;
675 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
676 if (r)
677 goto out;
678 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
679 mmu_page_header_cache, 4);
680 out:
681 return r;
682 }
683
684 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685 {
686 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687 pte_list_desc_cache);
688 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
689 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690 mmu_page_header_cache);
691 }
692
693 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
694 {
695 void *p;
696
697 BUG_ON(!mc->nobjs);
698 p = mc->objects[--mc->nobjs];
699 return p;
700 }
701
702 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
703 {
704 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
705 }
706
707 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
708 {
709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
710 }
711
712 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713 {
714 if (!sp->role.direct)
715 return sp->gfns[index];
716
717 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718 }
719
720 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721 {
722 if (sp->role.direct)
723 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724 else
725 sp->gfns[index] = gfn;
726 }
727
728 /*
729 * Return the pointer to the large page information for a given gfn,
730 * handling slots that are not large page aligned.
731 */
732 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733 struct kvm_memory_slot *slot,
734 int level)
735 {
736 unsigned long idx;
737
738 idx = gfn_to_index(gfn, slot->base_gfn, level);
739 return &slot->arch.lpage_info[level - 2][idx];
740 }
741
742 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743 {
744 struct kvm_memory_slot *slot;
745 struct kvm_lpage_info *linfo;
746 int i;
747
748 slot = gfn_to_memslot(kvm, gfn);
749 for (i = PT_DIRECTORY_LEVEL;
750 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
751 linfo = lpage_info_slot(gfn, slot, i);
752 linfo->write_count += 1;
753 }
754 kvm->arch.indirect_shadow_pages++;
755 }
756
757 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758 {
759 struct kvm_memory_slot *slot;
760 struct kvm_lpage_info *linfo;
761 int i;
762
763 slot = gfn_to_memslot(kvm, gfn);
764 for (i = PT_DIRECTORY_LEVEL;
765 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
766 linfo = lpage_info_slot(gfn, slot, i);
767 linfo->write_count -= 1;
768 WARN_ON(linfo->write_count < 0);
769 }
770 kvm->arch.indirect_shadow_pages--;
771 }
772
773 static int has_wrprotected_page(struct kvm *kvm,
774 gfn_t gfn,
775 int level)
776 {
777 struct kvm_memory_slot *slot;
778 struct kvm_lpage_info *linfo;
779
780 slot = gfn_to_memslot(kvm, gfn);
781 if (slot) {
782 linfo = lpage_info_slot(gfn, slot, level);
783 return linfo->write_count;
784 }
785
786 return 1;
787 }
788
789 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
790 {
791 unsigned long page_size;
792 int i, ret = 0;
793
794 page_size = kvm_host_page_size(kvm, gfn);
795
796 for (i = PT_PAGE_TABLE_LEVEL;
797 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798 if (page_size >= KVM_HPAGE_SIZE(i))
799 ret = i;
800 else
801 break;
802 }
803
804 return ret;
805 }
806
807 static struct kvm_memory_slot *
808 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809 bool no_dirty_log)
810 {
811 struct kvm_memory_slot *slot;
812
813 slot = gfn_to_memslot(vcpu->kvm, gfn);
814 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815 (no_dirty_log && slot->dirty_bitmap))
816 slot = NULL;
817
818 return slot;
819 }
820
821 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822 {
823 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
824 }
825
826 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827 {
828 int host_level, level, max_level;
829
830 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832 if (host_level == PT_PAGE_TABLE_LEVEL)
833 return host_level;
834
835 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
840
841 return level - 1;
842 }
843
844 /*
845 * Pte mapping structures:
846 *
847 * If pte_list bit zero is zero, then pte_list point to the spte.
848 *
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
851 *
852 * Returns the number of pte entries before the spte was added or zero if
853 * the spte was not added.
854 *
855 */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
858 {
859 struct pte_list_desc *desc;
860 int i, count = 0;
861
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
869 desc->sptes[1] = spte;
870 *pte_list = (unsigned long)desc | 1;
871 ++count;
872 } else {
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876 desc = desc->more;
877 count += PTE_LIST_EXT;
878 }
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
881 desc = desc->more;
882 }
883 for (i = 0; desc->sptes[i]; ++i)
884 ++count;
885 desc->sptes[i] = spte;
886 }
887 return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
893 {
894 int j;
895
896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897 ;
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
903 *pte_list = (unsigned long)desc->sptes[0];
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
916 int i;
917
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920 BUG();
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
925 BUG();
926 }
927 *pte_list = 0;
928 } else {
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931 prev_desc = NULL;
932 while (desc) {
933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934 if (desc->sptes[i] == spte) {
935 pte_list_desc_remove_entry(pte_list,
936 desc, i,
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
943 pr_err("pte_list_remove: %p many->many\n", spte);
944 BUG();
945 }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969 struct kvm_memory_slot *slot)
970 {
971 unsigned long idx;
972
973 idx = gfn_to_index(gfn, slot->base_gfn, level);
974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 }
976
977 /*
978 * Take gfn and return the reverse mapping to it.
979 */
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981 {
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
985 return __gfn_to_rmap(gfn, level, slot);
986 }
987
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
989 {
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994 }
995
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997 {
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005 }
1006
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1008 {
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017 }
1018
1019 /*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023 struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027 };
1028
1029 /*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037 {
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049 }
1050
1051 /*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1057 {
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078 }
1079
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1081 {
1082 if (mmu_spte_clear_track_bits(sptep))
1083 rmap_remove(kvm, sptep);
1084 }
1085
1086
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088 {
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098 }
1099
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101 {
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104 }
1105
1106 /*
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
1117 *
1118 * Return true if the spte is dropped.
1119 */
1120 static bool
1121 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122 {
1123 u64 spte = *sptep;
1124
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1134 }
1135
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
1138 spte = spte & ~PT_WRITABLE_MASK;
1139
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
1142 }
1143
1144 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145 bool pt_protect)
1146 {
1147 u64 *sptep;
1148 struct rmap_iterator iter;
1149 bool flush = false;
1150
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1156 }
1157
1158 sptep = rmap_get_next(&iter);
1159 }
1160
1161 return flush;
1162 }
1163
1164 /**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
1177 {
1178 unsigned long *rmapp;
1179
1180 while (mask) {
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
1183 __rmap_write_protect(kvm, rmapp, false);
1184
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
1188 }
1189
1190 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191 {
1192 struct kvm_memory_slot *slot;
1193 unsigned long *rmapp;
1194 int i;
1195 bool write_protected = false;
1196
1197 slot = gfn_to_memslot(kvm, gfn);
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
1202 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1203 }
1204
1205 return write_protected;
1206 }
1207
1208 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209 struct kvm_memory_slot *slot, unsigned long data)
1210 {
1211 u64 *sptep;
1212 struct rmap_iterator iter;
1213 int need_tlb_flush = 0;
1214
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
1220 need_tlb_flush = 1;
1221 }
1222
1223 return need_tlb_flush;
1224 }
1225
1226 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227 struct kvm_memory_slot *slot, unsigned long data)
1228 {
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 int need_flush = 0;
1232 u64 new_spte;
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
1243 need_flush = 1;
1244
1245 if (pte_write(*ptep)) {
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
1248 } else {
1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
1254 new_spte &= ~shadow_accessed_mask;
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
1259 }
1260 }
1261
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266 }
1267
1268 static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
1274 struct kvm_memory_slot *slot,
1275 unsigned long data))
1276 {
1277 int j;
1278 int ret = 0;
1279 struct kvm_memslots *slots;
1280 struct kvm_memory_slot *memslot;
1281
1282 slots = kvm_memslots(kvm);
1283
1284 kvm_for_each_memslot(memslot, slots) {
1285 unsigned long hva_start, hva_end;
1286 gfn_t gfn_start, gfn_end;
1287
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296 */
1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
1304
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311
1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
1316 }
1317 }
1318
1319 return ret;
1320 }
1321
1322 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325 struct kvm_memory_slot *slot,
1326 unsigned long data))
1327 {
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329 }
1330
1331 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332 {
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334 }
1335
1336 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337 {
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339 }
1340
1341 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342 {
1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344 }
1345
1346 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347 struct kvm_memory_slot *slot, unsigned long data)
1348 {
1349 u64 *sptep;
1350 struct rmap_iterator uninitialized_var(iter);
1351 int young = 0;
1352
1353 /*
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
1365
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep));
1369
1370 if (*sptep & shadow_accessed_mask) {
1371 young = 1;
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
1374 }
1375 }
1376 out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
1379 return young;
1380 }
1381
1382 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383 struct kvm_memory_slot *slot, unsigned long data)
1384 {
1385 u64 *sptep;
1386 struct rmap_iterator iter;
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep));
1400
1401 if (*sptep & shadow_accessed_mask) {
1402 young = 1;
1403 break;
1404 }
1405 }
1406 out:
1407 return young;
1408 }
1409
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1411
1412 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413 {
1414 unsigned long *rmapp;
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
1418
1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420
1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423 }
1424
1425 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426 {
1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428 }
1429
1430 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431 {
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433 }
1434
1435 #ifdef MMU_DEBUG
1436 static int is_empty_shadow_page(u64 *spt)
1437 {
1438 u64 *pos;
1439 u64 *end;
1440
1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442 if (is_shadow_present_pte(*pos)) {
1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
1444 pos, *pos);
1445 return 0;
1446 }
1447 return 1;
1448 }
1449 #endif
1450
1451 /*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458 {
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461 }
1462
1463 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1464 {
1465 ASSERT(is_empty_shadow_page(sp->spt));
1466 hlist_del(&sp->hash_link);
1467 list_del(&sp->link);
1468 free_page((unsigned long)sp->spt);
1469 if (!sp->role.direct)
1470 free_page((unsigned long)sp->gfns);
1471 kmem_cache_free(mmu_page_header_cache, sp);
1472 }
1473
1474 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1475 {
1476 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1477 }
1478
1479 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1480 struct kvm_mmu_page *sp, u64 *parent_pte)
1481 {
1482 if (!parent_pte)
1483 return;
1484
1485 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1486 }
1487
1488 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1489 u64 *parent_pte)
1490 {
1491 pte_list_remove(parent_pte, &sp->parent_ptes);
1492 }
1493
1494 static void drop_parent_pte(struct kvm_mmu_page *sp,
1495 u64 *parent_pte)
1496 {
1497 mmu_page_remove_parent_pte(sp, parent_pte);
1498 mmu_spte_clear_no_track(parent_pte);
1499 }
1500
1501 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1502 u64 *parent_pte, int direct)
1503 {
1504 struct kvm_mmu_page *sp;
1505 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1506 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1507 if (!direct)
1508 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1509 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1510 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1511 sp->parent_ptes = 0;
1512 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1513 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1514 return sp;
1515 }
1516
1517 static void mark_unsync(u64 *spte);
1518 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1519 {
1520 pte_list_walk(&sp->parent_ptes, mark_unsync);
1521 }
1522
1523 static void mark_unsync(u64 *spte)
1524 {
1525 struct kvm_mmu_page *sp;
1526 unsigned int index;
1527
1528 sp = page_header(__pa(spte));
1529 index = spte - sp->spt;
1530 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1531 return;
1532 if (sp->unsync_children++)
1533 return;
1534 kvm_mmu_mark_parents_unsync(sp);
1535 }
1536
1537 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1538 struct kvm_mmu_page *sp)
1539 {
1540 return 1;
1541 }
1542
1543 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1544 {
1545 }
1546
1547 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1548 struct kvm_mmu_page *sp, u64 *spte,
1549 const void *pte)
1550 {
1551 WARN_ON(1);
1552 }
1553
1554 #define KVM_PAGE_ARRAY_NR 16
1555
1556 struct kvm_mmu_pages {
1557 struct mmu_page_and_offset {
1558 struct kvm_mmu_page *sp;
1559 unsigned int idx;
1560 } page[KVM_PAGE_ARRAY_NR];
1561 unsigned int nr;
1562 };
1563
1564 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1565 int idx)
1566 {
1567 int i;
1568
1569 if (sp->unsync)
1570 for (i=0; i < pvec->nr; i++)
1571 if (pvec->page[i].sp == sp)
1572 return 0;
1573
1574 pvec->page[pvec->nr].sp = sp;
1575 pvec->page[pvec->nr].idx = idx;
1576 pvec->nr++;
1577 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1578 }
1579
1580 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1581 struct kvm_mmu_pages *pvec)
1582 {
1583 int i, ret, nr_unsync_leaf = 0;
1584
1585 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1586 struct kvm_mmu_page *child;
1587 u64 ent = sp->spt[i];
1588
1589 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1590 goto clear_child_bitmap;
1591
1592 child = page_header(ent & PT64_BASE_ADDR_MASK);
1593
1594 if (child->unsync_children) {
1595 if (mmu_pages_add(pvec, child, i))
1596 return -ENOSPC;
1597
1598 ret = __mmu_unsync_walk(child, pvec);
1599 if (!ret)
1600 goto clear_child_bitmap;
1601 else if (ret > 0)
1602 nr_unsync_leaf += ret;
1603 else
1604 return ret;
1605 } else if (child->unsync) {
1606 nr_unsync_leaf++;
1607 if (mmu_pages_add(pvec, child, i))
1608 return -ENOSPC;
1609 } else
1610 goto clear_child_bitmap;
1611
1612 continue;
1613
1614 clear_child_bitmap:
1615 __clear_bit(i, sp->unsync_child_bitmap);
1616 sp->unsync_children--;
1617 WARN_ON((int)sp->unsync_children < 0);
1618 }
1619
1620
1621 return nr_unsync_leaf;
1622 }
1623
1624 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1625 struct kvm_mmu_pages *pvec)
1626 {
1627 if (!sp->unsync_children)
1628 return 0;
1629
1630 mmu_pages_add(pvec, sp, 0);
1631 return __mmu_unsync_walk(sp, pvec);
1632 }
1633
1634 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1635 {
1636 WARN_ON(!sp->unsync);
1637 trace_kvm_mmu_sync_page(sp);
1638 sp->unsync = 0;
1639 --kvm->stat.mmu_unsync;
1640 }
1641
1642 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1643 struct list_head *invalid_list);
1644 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1645 struct list_head *invalid_list);
1646
1647 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1648 hlist_for_each_entry(sp, pos, \
1649 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1650 if ((sp)->gfn != (gfn)) {} else
1651
1652 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1653 hlist_for_each_entry(sp, pos, \
1654 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1655 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1656 (sp)->role.invalid) {} else
1657
1658 /* @sp->gfn should be write-protected at the call site */
1659 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1660 struct list_head *invalid_list, bool clear_unsync)
1661 {
1662 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1663 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1664 return 1;
1665 }
1666
1667 if (clear_unsync)
1668 kvm_unlink_unsync_page(vcpu->kvm, sp);
1669
1670 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1671 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1672 return 1;
1673 }
1674
1675 kvm_mmu_flush_tlb(vcpu);
1676 return 0;
1677 }
1678
1679 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1680 struct kvm_mmu_page *sp)
1681 {
1682 LIST_HEAD(invalid_list);
1683 int ret;
1684
1685 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1686 if (ret)
1687 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1688
1689 return ret;
1690 }
1691
1692 #ifdef CONFIG_KVM_MMU_AUDIT
1693 #include "mmu_audit.c"
1694 #else
1695 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1696 static void mmu_audit_disable(void) { }
1697 #endif
1698
1699 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1700 struct list_head *invalid_list)
1701 {
1702 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1703 }
1704
1705 /* @gfn should be write-protected at the call site */
1706 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1707 {
1708 struct kvm_mmu_page *s;
1709 struct hlist_node *node;
1710 LIST_HEAD(invalid_list);
1711 bool flush = false;
1712
1713 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1714 if (!s->unsync)
1715 continue;
1716
1717 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1718 kvm_unlink_unsync_page(vcpu->kvm, s);
1719 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1720 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1721 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1722 continue;
1723 }
1724 flush = true;
1725 }
1726
1727 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1728 if (flush)
1729 kvm_mmu_flush_tlb(vcpu);
1730 }
1731
1732 struct mmu_page_path {
1733 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1734 unsigned int idx[PT64_ROOT_LEVEL-1];
1735 };
1736
1737 #define for_each_sp(pvec, sp, parents, i) \
1738 for (i = mmu_pages_next(&pvec, &parents, -1), \
1739 sp = pvec.page[i].sp; \
1740 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1741 i = mmu_pages_next(&pvec, &parents, i))
1742
1743 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1744 struct mmu_page_path *parents,
1745 int i)
1746 {
1747 int n;
1748
1749 for (n = i+1; n < pvec->nr; n++) {
1750 struct kvm_mmu_page *sp = pvec->page[n].sp;
1751
1752 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1753 parents->idx[0] = pvec->page[n].idx;
1754 return n;
1755 }
1756
1757 parents->parent[sp->role.level-2] = sp;
1758 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1759 }
1760
1761 return n;
1762 }
1763
1764 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1765 {
1766 struct kvm_mmu_page *sp;
1767 unsigned int level = 0;
1768
1769 do {
1770 unsigned int idx = parents->idx[level];
1771
1772 sp = parents->parent[level];
1773 if (!sp)
1774 return;
1775
1776 --sp->unsync_children;
1777 WARN_ON((int)sp->unsync_children < 0);
1778 __clear_bit(idx, sp->unsync_child_bitmap);
1779 level++;
1780 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1781 }
1782
1783 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1784 struct mmu_page_path *parents,
1785 struct kvm_mmu_pages *pvec)
1786 {
1787 parents->parent[parent->role.level-1] = NULL;
1788 pvec->nr = 0;
1789 }
1790
1791 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1792 struct kvm_mmu_page *parent)
1793 {
1794 int i;
1795 struct kvm_mmu_page *sp;
1796 struct mmu_page_path parents;
1797 struct kvm_mmu_pages pages;
1798 LIST_HEAD(invalid_list);
1799
1800 kvm_mmu_pages_init(parent, &parents, &pages);
1801 while (mmu_unsync_walk(parent, &pages)) {
1802 bool protected = false;
1803
1804 for_each_sp(pages, sp, parents, i)
1805 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1806
1807 if (protected)
1808 kvm_flush_remote_tlbs(vcpu->kvm);
1809
1810 for_each_sp(pages, sp, parents, i) {
1811 kvm_sync_page(vcpu, sp, &invalid_list);
1812 mmu_pages_clear_parents(&parents);
1813 }
1814 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1815 cond_resched_lock(&vcpu->kvm->mmu_lock);
1816 kvm_mmu_pages_init(parent, &parents, &pages);
1817 }
1818 }
1819
1820 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1821 {
1822 int i;
1823
1824 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1825 sp->spt[i] = 0ull;
1826 }
1827
1828 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1829 {
1830 sp->write_flooding_count = 0;
1831 }
1832
1833 static void clear_sp_write_flooding_count(u64 *spte)
1834 {
1835 struct kvm_mmu_page *sp = page_header(__pa(spte));
1836
1837 __clear_sp_write_flooding_count(sp);
1838 }
1839
1840 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1841 gfn_t gfn,
1842 gva_t gaddr,
1843 unsigned level,
1844 int direct,
1845 unsigned access,
1846 u64 *parent_pte)
1847 {
1848 union kvm_mmu_page_role role;
1849 unsigned quadrant;
1850 struct kvm_mmu_page *sp;
1851 struct hlist_node *node;
1852 bool need_sync = false;
1853
1854 role = vcpu->arch.mmu.base_role;
1855 role.level = level;
1856 role.direct = direct;
1857 if (role.direct)
1858 role.cr4_pae = 0;
1859 role.access = access;
1860 if (!vcpu->arch.mmu.direct_map
1861 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1862 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1863 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1864 role.quadrant = quadrant;
1865 }
1866 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1867 if (!need_sync && sp->unsync)
1868 need_sync = true;
1869
1870 if (sp->role.word != role.word)
1871 continue;
1872
1873 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1874 break;
1875
1876 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1877 if (sp->unsync_children) {
1878 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1879 kvm_mmu_mark_parents_unsync(sp);
1880 } else if (sp->unsync)
1881 kvm_mmu_mark_parents_unsync(sp);
1882
1883 __clear_sp_write_flooding_count(sp);
1884 trace_kvm_mmu_get_page(sp, false);
1885 return sp;
1886 }
1887 ++vcpu->kvm->stat.mmu_cache_miss;
1888 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1889 if (!sp)
1890 return sp;
1891 sp->gfn = gfn;
1892 sp->role = role;
1893 hlist_add_head(&sp->hash_link,
1894 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1895 if (!direct) {
1896 if (rmap_write_protect(vcpu->kvm, gfn))
1897 kvm_flush_remote_tlbs(vcpu->kvm);
1898 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1899 kvm_sync_pages(vcpu, gfn);
1900
1901 account_shadowed(vcpu->kvm, gfn);
1902 }
1903 init_shadow_page_table(sp);
1904 trace_kvm_mmu_get_page(sp, true);
1905 return sp;
1906 }
1907
1908 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1909 struct kvm_vcpu *vcpu, u64 addr)
1910 {
1911 iterator->addr = addr;
1912 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1913 iterator->level = vcpu->arch.mmu.shadow_root_level;
1914
1915 if (iterator->level == PT64_ROOT_LEVEL &&
1916 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1917 !vcpu->arch.mmu.direct_map)
1918 --iterator->level;
1919
1920 if (iterator->level == PT32E_ROOT_LEVEL) {
1921 iterator->shadow_addr
1922 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1923 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1924 --iterator->level;
1925 if (!iterator->shadow_addr)
1926 iterator->level = 0;
1927 }
1928 }
1929
1930 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1931 {
1932 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1933 return false;
1934
1935 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1936 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1937 return true;
1938 }
1939
1940 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1941 u64 spte)
1942 {
1943 if (is_last_spte(spte, iterator->level)) {
1944 iterator->level = 0;
1945 return;
1946 }
1947
1948 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1949 --iterator->level;
1950 }
1951
1952 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1953 {
1954 return __shadow_walk_next(iterator, *iterator->sptep);
1955 }
1956
1957 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1958 {
1959 u64 spte;
1960
1961 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1962 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1963
1964 mmu_spte_set(sptep, spte);
1965 }
1966
1967 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1968 unsigned direct_access)
1969 {
1970 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1971 struct kvm_mmu_page *child;
1972
1973 /*
1974 * For the direct sp, if the guest pte's dirty bit
1975 * changed form clean to dirty, it will corrupt the
1976 * sp's access: allow writable in the read-only sp,
1977 * so we should update the spte at this point to get
1978 * a new sp with the correct access.
1979 */
1980 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1981 if (child->role.access == direct_access)
1982 return;
1983
1984 drop_parent_pte(child, sptep);
1985 kvm_flush_remote_tlbs(vcpu->kvm);
1986 }
1987 }
1988
1989 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1990 u64 *spte)
1991 {
1992 u64 pte;
1993 struct kvm_mmu_page *child;
1994
1995 pte = *spte;
1996 if (is_shadow_present_pte(pte)) {
1997 if (is_last_spte(pte, sp->role.level)) {
1998 drop_spte(kvm, spte);
1999 if (is_large_pte(pte))
2000 --kvm->stat.lpages;
2001 } else {
2002 child = page_header(pte & PT64_BASE_ADDR_MASK);
2003 drop_parent_pte(child, spte);
2004 }
2005 return true;
2006 }
2007
2008 if (is_mmio_spte(pte))
2009 mmu_spte_clear_no_track(spte);
2010
2011 return false;
2012 }
2013
2014 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2015 struct kvm_mmu_page *sp)
2016 {
2017 unsigned i;
2018
2019 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2020 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2021 }
2022
2023 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2024 {
2025 mmu_page_remove_parent_pte(sp, parent_pte);
2026 }
2027
2028 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2029 {
2030 u64 *sptep;
2031 struct rmap_iterator iter;
2032
2033 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2034 drop_parent_pte(sp, sptep);
2035 }
2036
2037 static int mmu_zap_unsync_children(struct kvm *kvm,
2038 struct kvm_mmu_page *parent,
2039 struct list_head *invalid_list)
2040 {
2041 int i, zapped = 0;
2042 struct mmu_page_path parents;
2043 struct kvm_mmu_pages pages;
2044
2045 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2046 return 0;
2047
2048 kvm_mmu_pages_init(parent, &parents, &pages);
2049 while (mmu_unsync_walk(parent, &pages)) {
2050 struct kvm_mmu_page *sp;
2051
2052 for_each_sp(pages, sp, parents, i) {
2053 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2054 mmu_pages_clear_parents(&parents);
2055 zapped++;
2056 }
2057 kvm_mmu_pages_init(parent, &parents, &pages);
2058 }
2059
2060 return zapped;
2061 }
2062
2063 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2064 struct list_head *invalid_list)
2065 {
2066 int ret;
2067
2068 trace_kvm_mmu_prepare_zap_page(sp);
2069 ++kvm->stat.mmu_shadow_zapped;
2070 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2071 kvm_mmu_page_unlink_children(kvm, sp);
2072 kvm_mmu_unlink_parents(kvm, sp);
2073 if (!sp->role.invalid && !sp->role.direct)
2074 unaccount_shadowed(kvm, sp->gfn);
2075 if (sp->unsync)
2076 kvm_unlink_unsync_page(kvm, sp);
2077 if (!sp->root_count) {
2078 /* Count self */
2079 ret++;
2080 list_move(&sp->link, invalid_list);
2081 kvm_mod_used_mmu_pages(kvm, -1);
2082 } else {
2083 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2084 kvm_reload_remote_mmus(kvm);
2085 }
2086
2087 sp->role.invalid = 1;
2088 return ret;
2089 }
2090
2091 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2092 struct list_head *invalid_list)
2093 {
2094 struct kvm_mmu_page *sp;
2095
2096 if (list_empty(invalid_list))
2097 return;
2098
2099 /*
2100 * wmb: make sure everyone sees our modifications to the page tables
2101 * rmb: make sure we see changes to vcpu->mode
2102 */
2103 smp_mb();
2104
2105 /*
2106 * Wait for all vcpus to exit guest mode and/or lockless shadow
2107 * page table walks.
2108 */
2109 kvm_flush_remote_tlbs(kvm);
2110
2111 do {
2112 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2113 WARN_ON(!sp->role.invalid || sp->root_count);
2114 kvm_mmu_free_page(sp);
2115 } while (!list_empty(invalid_list));
2116 }
2117
2118 /*
2119 * Changing the number of mmu pages allocated to the vm
2120 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2121 */
2122 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2123 {
2124 LIST_HEAD(invalid_list);
2125 /*
2126 * If we set the number of mmu pages to be smaller be than the
2127 * number of actived pages , we must to free some mmu pages before we
2128 * change the value
2129 */
2130
2131 spin_lock(&kvm->mmu_lock);
2132
2133 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2134 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2135 !list_empty(&kvm->arch.active_mmu_pages)) {
2136 struct kvm_mmu_page *page;
2137
2138 page = container_of(kvm->arch.active_mmu_pages.prev,
2139 struct kvm_mmu_page, link);
2140 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2141 }
2142 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2143 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2144 }
2145
2146 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2147
2148 spin_unlock(&kvm->mmu_lock);
2149 }
2150
2151 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2152 {
2153 struct kvm_mmu_page *sp;
2154 struct hlist_node *node;
2155 LIST_HEAD(invalid_list);
2156 int r;
2157
2158 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2159 r = 0;
2160 spin_lock(&kvm->mmu_lock);
2161 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2162 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2163 sp->role.word);
2164 r = 1;
2165 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2166 }
2167 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2168 spin_unlock(&kvm->mmu_lock);
2169
2170 return r;
2171 }
2172 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2173
2174 /*
2175 * The function is based on mtrr_type_lookup() in
2176 * arch/x86/kernel/cpu/mtrr/generic.c
2177 */
2178 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2179 u64 start, u64 end)
2180 {
2181 int i;
2182 u64 base, mask;
2183 u8 prev_match, curr_match;
2184 int num_var_ranges = KVM_NR_VAR_MTRR;
2185
2186 if (!mtrr_state->enabled)
2187 return 0xFF;
2188
2189 /* Make end inclusive end, instead of exclusive */
2190 end--;
2191
2192 /* Look in fixed ranges. Just return the type as per start */
2193 if (mtrr_state->have_fixed && (start < 0x100000)) {
2194 int idx;
2195
2196 if (start < 0x80000) {
2197 idx = 0;
2198 idx += (start >> 16);
2199 return mtrr_state->fixed_ranges[idx];
2200 } else if (start < 0xC0000) {
2201 idx = 1 * 8;
2202 idx += ((start - 0x80000) >> 14);
2203 return mtrr_state->fixed_ranges[idx];
2204 } else if (start < 0x1000000) {
2205 idx = 3 * 8;
2206 idx += ((start - 0xC0000) >> 12);
2207 return mtrr_state->fixed_ranges[idx];
2208 }
2209 }
2210
2211 /*
2212 * Look in variable ranges
2213 * Look of multiple ranges matching this address and pick type
2214 * as per MTRR precedence
2215 */
2216 if (!(mtrr_state->enabled & 2))
2217 return mtrr_state->def_type;
2218
2219 prev_match = 0xFF;
2220 for (i = 0; i < num_var_ranges; ++i) {
2221 unsigned short start_state, end_state;
2222
2223 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2224 continue;
2225
2226 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2227 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2228 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2229 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2230
2231 start_state = ((start & mask) == (base & mask));
2232 end_state = ((end & mask) == (base & mask));
2233 if (start_state != end_state)
2234 return 0xFE;
2235
2236 if ((start & mask) != (base & mask))
2237 continue;
2238
2239 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2240 if (prev_match == 0xFF) {
2241 prev_match = curr_match;
2242 continue;
2243 }
2244
2245 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2246 curr_match == MTRR_TYPE_UNCACHABLE)
2247 return MTRR_TYPE_UNCACHABLE;
2248
2249 if ((prev_match == MTRR_TYPE_WRBACK &&
2250 curr_match == MTRR_TYPE_WRTHROUGH) ||
2251 (prev_match == MTRR_TYPE_WRTHROUGH &&
2252 curr_match == MTRR_TYPE_WRBACK)) {
2253 prev_match = MTRR_TYPE_WRTHROUGH;
2254 curr_match = MTRR_TYPE_WRTHROUGH;
2255 }
2256
2257 if (prev_match != curr_match)
2258 return MTRR_TYPE_UNCACHABLE;
2259 }
2260
2261 if (prev_match != 0xFF)
2262 return prev_match;
2263
2264 return mtrr_state->def_type;
2265 }
2266
2267 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2268 {
2269 u8 mtrr;
2270
2271 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2272 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2273 if (mtrr == 0xfe || mtrr == 0xff)
2274 mtrr = MTRR_TYPE_WRBACK;
2275 return mtrr;
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2278
2279 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2280 {
2281 trace_kvm_mmu_unsync_page(sp);
2282 ++vcpu->kvm->stat.mmu_unsync;
2283 sp->unsync = 1;
2284
2285 kvm_mmu_mark_parents_unsync(sp);
2286 }
2287
2288 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2289 {
2290 struct kvm_mmu_page *s;
2291 struct hlist_node *node;
2292
2293 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2294 if (s->unsync)
2295 continue;
2296 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2297 __kvm_unsync_page(vcpu, s);
2298 }
2299 }
2300
2301 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2302 bool can_unsync)
2303 {
2304 struct kvm_mmu_page *s;
2305 struct hlist_node *node;
2306 bool need_unsync = false;
2307
2308 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2309 if (!can_unsync)
2310 return 1;
2311
2312 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2313 return 1;
2314
2315 if (!s->unsync)
2316 need_unsync = true;
2317 }
2318 if (need_unsync)
2319 kvm_unsync_pages(vcpu, gfn);
2320 return 0;
2321 }
2322
2323 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2324 unsigned pte_access, int level,
2325 gfn_t gfn, pfn_t pfn, bool speculative,
2326 bool can_unsync, bool host_writable)
2327 {
2328 u64 spte;
2329 int ret = 0;
2330
2331 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2332 return 0;
2333
2334 spte = PT_PRESENT_MASK;
2335 if (!speculative)
2336 spte |= shadow_accessed_mask;
2337
2338 if (pte_access & ACC_EXEC_MASK)
2339 spte |= shadow_x_mask;
2340 else
2341 spte |= shadow_nx_mask;
2342
2343 if (pte_access & ACC_USER_MASK)
2344 spte |= shadow_user_mask;
2345
2346 if (level > PT_PAGE_TABLE_LEVEL)
2347 spte |= PT_PAGE_SIZE_MASK;
2348 if (tdp_enabled)
2349 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2350 kvm_is_mmio_pfn(pfn));
2351
2352 if (host_writable)
2353 spte |= SPTE_HOST_WRITEABLE;
2354 else
2355 pte_access &= ~ACC_WRITE_MASK;
2356
2357 spte |= (u64)pfn << PAGE_SHIFT;
2358
2359 if (pte_access & ACC_WRITE_MASK) {
2360
2361 /*
2362 * Other vcpu creates new sp in the window between
2363 * mapping_level() and acquiring mmu-lock. We can
2364 * allow guest to retry the access, the mapping can
2365 * be fixed if guest refault.
2366 */
2367 if (level > PT_PAGE_TABLE_LEVEL &&
2368 has_wrprotected_page(vcpu->kvm, gfn, level))
2369 goto done;
2370
2371 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2372
2373 /*
2374 * Optimization: for pte sync, if spte was writable the hash
2375 * lookup is unnecessary (and expensive). Write protection
2376 * is responsibility of mmu_get_page / kvm_sync_page.
2377 * Same reasoning can be applied to dirty page accounting.
2378 */
2379 if (!can_unsync && is_writable_pte(*sptep))
2380 goto set_pte;
2381
2382 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2383 pgprintk("%s: found shadow page for %llx, marking ro\n",
2384 __func__, gfn);
2385 ret = 1;
2386 pte_access &= ~ACC_WRITE_MASK;
2387 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2388 }
2389 }
2390
2391 if (pte_access & ACC_WRITE_MASK)
2392 mark_page_dirty(vcpu->kvm, gfn);
2393
2394 set_pte:
2395 if (mmu_spte_update(sptep, spte))
2396 kvm_flush_remote_tlbs(vcpu->kvm);
2397 done:
2398 return ret;
2399 }
2400
2401 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2402 unsigned pte_access, int write_fault, int *emulate,
2403 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2404 bool host_writable)
2405 {
2406 int was_rmapped = 0;
2407 int rmap_count;
2408
2409 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2410 *sptep, write_fault, gfn);
2411
2412 if (is_rmap_spte(*sptep)) {
2413 /*
2414 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2415 * the parent of the now unreachable PTE.
2416 */
2417 if (level > PT_PAGE_TABLE_LEVEL &&
2418 !is_large_pte(*sptep)) {
2419 struct kvm_mmu_page *child;
2420 u64 pte = *sptep;
2421
2422 child = page_header(pte & PT64_BASE_ADDR_MASK);
2423 drop_parent_pte(child, sptep);
2424 kvm_flush_remote_tlbs(vcpu->kvm);
2425 } else if (pfn != spte_to_pfn(*sptep)) {
2426 pgprintk("hfn old %llx new %llx\n",
2427 spte_to_pfn(*sptep), pfn);
2428 drop_spte(vcpu->kvm, sptep);
2429 kvm_flush_remote_tlbs(vcpu->kvm);
2430 } else
2431 was_rmapped = 1;
2432 }
2433
2434 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2435 true, host_writable)) {
2436 if (write_fault)
2437 *emulate = 1;
2438 kvm_mmu_flush_tlb(vcpu);
2439 }
2440
2441 if (unlikely(is_mmio_spte(*sptep) && emulate))
2442 *emulate = 1;
2443
2444 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2445 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2446 is_large_pte(*sptep)? "2MB" : "4kB",
2447 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2448 *sptep, sptep);
2449 if (!was_rmapped && is_large_pte(*sptep))
2450 ++vcpu->kvm->stat.lpages;
2451
2452 if (is_shadow_present_pte(*sptep)) {
2453 if (!was_rmapped) {
2454 rmap_count = rmap_add(vcpu, sptep, gfn);
2455 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2456 rmap_recycle(vcpu, sptep, gfn);
2457 }
2458 }
2459
2460 kvm_release_pfn_clean(pfn);
2461 }
2462
2463 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2464 {
2465 mmu_free_roots(vcpu);
2466 }
2467
2468 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2469 {
2470 int bit7;
2471
2472 bit7 = (gpte >> 7) & 1;
2473 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2474 }
2475
2476 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2477 bool no_dirty_log)
2478 {
2479 struct kvm_memory_slot *slot;
2480
2481 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2482 if (!slot)
2483 return KVM_PFN_ERR_FAULT;
2484
2485 return gfn_to_pfn_memslot_atomic(slot, gfn);
2486 }
2487
2488 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2489 struct kvm_mmu_page *sp, u64 *spte,
2490 u64 gpte)
2491 {
2492 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2493 goto no_present;
2494
2495 if (!is_present_gpte(gpte))
2496 goto no_present;
2497
2498 if (!(gpte & PT_ACCESSED_MASK))
2499 goto no_present;
2500
2501 return false;
2502
2503 no_present:
2504 drop_spte(vcpu->kvm, spte);
2505 return true;
2506 }
2507
2508 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2509 struct kvm_mmu_page *sp,
2510 u64 *start, u64 *end)
2511 {
2512 struct page *pages[PTE_PREFETCH_NUM];
2513 unsigned access = sp->role.access;
2514 int i, ret;
2515 gfn_t gfn;
2516
2517 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2518 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2519 return -1;
2520
2521 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2522 if (ret <= 0)
2523 return -1;
2524
2525 for (i = 0; i < ret; i++, gfn++, start++)
2526 mmu_set_spte(vcpu, start, access, 0, NULL,
2527 sp->role.level, gfn, page_to_pfn(pages[i]),
2528 true, true);
2529
2530 return 0;
2531 }
2532
2533 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2534 struct kvm_mmu_page *sp, u64 *sptep)
2535 {
2536 u64 *spte, *start = NULL;
2537 int i;
2538
2539 WARN_ON(!sp->role.direct);
2540
2541 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2542 spte = sp->spt + i;
2543
2544 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2545 if (is_shadow_present_pte(*spte) || spte == sptep) {
2546 if (!start)
2547 continue;
2548 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2549 break;
2550 start = NULL;
2551 } else if (!start)
2552 start = spte;
2553 }
2554 }
2555
2556 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2557 {
2558 struct kvm_mmu_page *sp;
2559
2560 /*
2561 * Since it's no accessed bit on EPT, it's no way to
2562 * distinguish between actually accessed translations
2563 * and prefetched, so disable pte prefetch if EPT is
2564 * enabled.
2565 */
2566 if (!shadow_accessed_mask)
2567 return;
2568
2569 sp = page_header(__pa(sptep));
2570 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2571 return;
2572
2573 __direct_pte_prefetch(vcpu, sp, sptep);
2574 }
2575
2576 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2577 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2578 bool prefault)
2579 {
2580 struct kvm_shadow_walk_iterator iterator;
2581 struct kvm_mmu_page *sp;
2582 int emulate = 0;
2583 gfn_t pseudo_gfn;
2584
2585 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2586 if (iterator.level == level) {
2587 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2588 write, &emulate, level, gfn, pfn,
2589 prefault, map_writable);
2590 direct_pte_prefetch(vcpu, iterator.sptep);
2591 ++vcpu->stat.pf_fixed;
2592 break;
2593 }
2594
2595 if (!is_shadow_present_pte(*iterator.sptep)) {
2596 u64 base_addr = iterator.addr;
2597
2598 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2599 pseudo_gfn = base_addr >> PAGE_SHIFT;
2600 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2601 iterator.level - 1,
2602 1, ACC_ALL, iterator.sptep);
2603
2604 link_shadow_page(iterator.sptep, sp);
2605 }
2606 }
2607 return emulate;
2608 }
2609
2610 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2611 {
2612 siginfo_t info;
2613
2614 info.si_signo = SIGBUS;
2615 info.si_errno = 0;
2616 info.si_code = BUS_MCEERR_AR;
2617 info.si_addr = (void __user *)address;
2618 info.si_addr_lsb = PAGE_SHIFT;
2619
2620 send_sig_info(SIGBUS, &info, tsk);
2621 }
2622
2623 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2624 {
2625 /*
2626 * Do not cache the mmio info caused by writing the readonly gfn
2627 * into the spte otherwise read access on readonly gfn also can
2628 * caused mmio page fault and treat it as mmio access.
2629 * Return 1 to tell kvm to emulate it.
2630 */
2631 if (pfn == KVM_PFN_ERR_RO_FAULT)
2632 return 1;
2633
2634 if (pfn == KVM_PFN_ERR_HWPOISON) {
2635 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2636 return 0;
2637 }
2638
2639 return -EFAULT;
2640 }
2641
2642 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2643 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2644 {
2645 pfn_t pfn = *pfnp;
2646 gfn_t gfn = *gfnp;
2647 int level = *levelp;
2648
2649 /*
2650 * Check if it's a transparent hugepage. If this would be an
2651 * hugetlbfs page, level wouldn't be set to
2652 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2653 * here.
2654 */
2655 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2656 level == PT_PAGE_TABLE_LEVEL &&
2657 PageTransCompound(pfn_to_page(pfn)) &&
2658 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2659 unsigned long mask;
2660 /*
2661 * mmu_notifier_retry was successful and we hold the
2662 * mmu_lock here, so the pmd can't become splitting
2663 * from under us, and in turn
2664 * __split_huge_page_refcount() can't run from under
2665 * us and we can safely transfer the refcount from
2666 * PG_tail to PG_head as we switch the pfn to tail to
2667 * head.
2668 */
2669 *levelp = level = PT_DIRECTORY_LEVEL;
2670 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2671 VM_BUG_ON((gfn & mask) != (pfn & mask));
2672 if (pfn & mask) {
2673 gfn &= ~mask;
2674 *gfnp = gfn;
2675 kvm_release_pfn_clean(pfn);
2676 pfn &= ~mask;
2677 kvm_get_pfn(pfn);
2678 *pfnp = pfn;
2679 }
2680 }
2681 }
2682
2683 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2684 pfn_t pfn, unsigned access, int *ret_val)
2685 {
2686 bool ret = true;
2687
2688 /* The pfn is invalid, report the error! */
2689 if (unlikely(is_error_pfn(pfn))) {
2690 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2691 goto exit;
2692 }
2693
2694 if (unlikely(is_noslot_pfn(pfn)))
2695 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2696
2697 ret = false;
2698 exit:
2699 return ret;
2700 }
2701
2702 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2703 {
2704 /*
2705 * #PF can be fast only if the shadow page table is present and it
2706 * is caused by write-protect, that means we just need change the
2707 * W bit of the spte which can be done out of mmu-lock.
2708 */
2709 if (!(error_code & PFERR_PRESENT_MASK) ||
2710 !(error_code & PFERR_WRITE_MASK))
2711 return false;
2712
2713 return true;
2714 }
2715
2716 static bool
2717 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2718 {
2719 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2720 gfn_t gfn;
2721
2722 WARN_ON(!sp->role.direct);
2723
2724 /*
2725 * The gfn of direct spte is stable since it is calculated
2726 * by sp->gfn.
2727 */
2728 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2729
2730 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2731 mark_page_dirty(vcpu->kvm, gfn);
2732
2733 return true;
2734 }
2735
2736 /*
2737 * Return value:
2738 * - true: let the vcpu to access on the same address again.
2739 * - false: let the real page fault path to fix it.
2740 */
2741 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2742 u32 error_code)
2743 {
2744 struct kvm_shadow_walk_iterator iterator;
2745 bool ret = false;
2746 u64 spte = 0ull;
2747
2748 if (!page_fault_can_be_fast(vcpu, error_code))
2749 return false;
2750
2751 walk_shadow_page_lockless_begin(vcpu);
2752 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2753 if (!is_shadow_present_pte(spte) || iterator.level < level)
2754 break;
2755
2756 /*
2757 * If the mapping has been changed, let the vcpu fault on the
2758 * same address again.
2759 */
2760 if (!is_rmap_spte(spte)) {
2761 ret = true;
2762 goto exit;
2763 }
2764
2765 if (!is_last_spte(spte, level))
2766 goto exit;
2767
2768 /*
2769 * Check if it is a spurious fault caused by TLB lazily flushed.
2770 *
2771 * Need not check the access of upper level table entries since
2772 * they are always ACC_ALL.
2773 */
2774 if (is_writable_pte(spte)) {
2775 ret = true;
2776 goto exit;
2777 }
2778
2779 /*
2780 * Currently, to simplify the code, only the spte write-protected
2781 * by dirty-log can be fast fixed.
2782 */
2783 if (!spte_is_locklessly_modifiable(spte))
2784 goto exit;
2785
2786 /*
2787 * Currently, fast page fault only works for direct mapping since
2788 * the gfn is not stable for indirect shadow page.
2789 * See Documentation/virtual/kvm/locking.txt to get more detail.
2790 */
2791 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2792 exit:
2793 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2794 spte, ret);
2795 walk_shadow_page_lockless_end(vcpu);
2796
2797 return ret;
2798 }
2799
2800 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2801 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2802
2803 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2804 gfn_t gfn, bool prefault)
2805 {
2806 int r;
2807 int level;
2808 int force_pt_level;
2809 pfn_t pfn;
2810 unsigned long mmu_seq;
2811 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2812
2813 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2814 if (likely(!force_pt_level)) {
2815 level = mapping_level(vcpu, gfn);
2816 /*
2817 * This path builds a PAE pagetable - so we can map
2818 * 2mb pages at maximum. Therefore check if the level
2819 * is larger than that.
2820 */
2821 if (level > PT_DIRECTORY_LEVEL)
2822 level = PT_DIRECTORY_LEVEL;
2823
2824 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2825 } else
2826 level = PT_PAGE_TABLE_LEVEL;
2827
2828 if (fast_page_fault(vcpu, v, level, error_code))
2829 return 0;
2830
2831 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2832 smp_rmb();
2833
2834 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2835 return 0;
2836
2837 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2838 return r;
2839
2840 spin_lock(&vcpu->kvm->mmu_lock);
2841 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2842 goto out_unlock;
2843 kvm_mmu_free_some_pages(vcpu);
2844 if (likely(!force_pt_level))
2845 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2846 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2847 prefault);
2848 spin_unlock(&vcpu->kvm->mmu_lock);
2849
2850
2851 return r;
2852
2853 out_unlock:
2854 spin_unlock(&vcpu->kvm->mmu_lock);
2855 kvm_release_pfn_clean(pfn);
2856 return 0;
2857 }
2858
2859
2860 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2861 {
2862 int i;
2863 struct kvm_mmu_page *sp;
2864 LIST_HEAD(invalid_list);
2865
2866 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2867 return;
2868 spin_lock(&vcpu->kvm->mmu_lock);
2869 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2870 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2871 vcpu->arch.mmu.direct_map)) {
2872 hpa_t root = vcpu->arch.mmu.root_hpa;
2873
2874 sp = page_header(root);
2875 --sp->root_count;
2876 if (!sp->root_count && sp->role.invalid) {
2877 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2878 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2879 }
2880 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2881 spin_unlock(&vcpu->kvm->mmu_lock);
2882 return;
2883 }
2884 for (i = 0; i < 4; ++i) {
2885 hpa_t root = vcpu->arch.mmu.pae_root[i];
2886
2887 if (root) {
2888 root &= PT64_BASE_ADDR_MASK;
2889 sp = page_header(root);
2890 --sp->root_count;
2891 if (!sp->root_count && sp->role.invalid)
2892 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2893 &invalid_list);
2894 }
2895 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2896 }
2897 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2898 spin_unlock(&vcpu->kvm->mmu_lock);
2899 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2900 }
2901
2902 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2903 {
2904 int ret = 0;
2905
2906 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2907 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2908 ret = 1;
2909 }
2910
2911 return ret;
2912 }
2913
2914 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2915 {
2916 struct kvm_mmu_page *sp;
2917 unsigned i;
2918
2919 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2920 spin_lock(&vcpu->kvm->mmu_lock);
2921 kvm_mmu_free_some_pages(vcpu);
2922 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2923 1, ACC_ALL, NULL);
2924 ++sp->root_count;
2925 spin_unlock(&vcpu->kvm->mmu_lock);
2926 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2927 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2928 for (i = 0; i < 4; ++i) {
2929 hpa_t root = vcpu->arch.mmu.pae_root[i];
2930
2931 ASSERT(!VALID_PAGE(root));
2932 spin_lock(&vcpu->kvm->mmu_lock);
2933 kvm_mmu_free_some_pages(vcpu);
2934 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2935 i << 30,
2936 PT32_ROOT_LEVEL, 1, ACC_ALL,
2937 NULL);
2938 root = __pa(sp->spt);
2939 ++sp->root_count;
2940 spin_unlock(&vcpu->kvm->mmu_lock);
2941 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2942 }
2943 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2944 } else
2945 BUG();
2946
2947 return 0;
2948 }
2949
2950 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2951 {
2952 struct kvm_mmu_page *sp;
2953 u64 pdptr, pm_mask;
2954 gfn_t root_gfn;
2955 int i;
2956
2957 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2958
2959 if (mmu_check_root(vcpu, root_gfn))
2960 return 1;
2961
2962 /*
2963 * Do we shadow a long mode page table? If so we need to
2964 * write-protect the guests page table root.
2965 */
2966 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2967 hpa_t root = vcpu->arch.mmu.root_hpa;
2968
2969 ASSERT(!VALID_PAGE(root));
2970
2971 spin_lock(&vcpu->kvm->mmu_lock);
2972 kvm_mmu_free_some_pages(vcpu);
2973 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2974 0, ACC_ALL, NULL);
2975 root = __pa(sp->spt);
2976 ++sp->root_count;
2977 spin_unlock(&vcpu->kvm->mmu_lock);
2978 vcpu->arch.mmu.root_hpa = root;
2979 return 0;
2980 }
2981
2982 /*
2983 * We shadow a 32 bit page table. This may be a legacy 2-level
2984 * or a PAE 3-level page table. In either case we need to be aware that
2985 * the shadow page table may be a PAE or a long mode page table.
2986 */
2987 pm_mask = PT_PRESENT_MASK;
2988 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2989 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2990
2991 for (i = 0; i < 4; ++i) {
2992 hpa_t root = vcpu->arch.mmu.pae_root[i];
2993
2994 ASSERT(!VALID_PAGE(root));
2995 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2996 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2997 if (!is_present_gpte(pdptr)) {
2998 vcpu->arch.mmu.pae_root[i] = 0;
2999 continue;
3000 }
3001 root_gfn = pdptr >> PAGE_SHIFT;
3002 if (mmu_check_root(vcpu, root_gfn))
3003 return 1;
3004 }
3005 spin_lock(&vcpu->kvm->mmu_lock);
3006 kvm_mmu_free_some_pages(vcpu);
3007 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3008 PT32_ROOT_LEVEL, 0,
3009 ACC_ALL, NULL);
3010 root = __pa(sp->spt);
3011 ++sp->root_count;
3012 spin_unlock(&vcpu->kvm->mmu_lock);
3013
3014 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3015 }
3016 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3017
3018 /*
3019 * If we shadow a 32 bit page table with a long mode page
3020 * table we enter this path.
3021 */
3022 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3023 if (vcpu->arch.mmu.lm_root == NULL) {
3024 /*
3025 * The additional page necessary for this is only
3026 * allocated on demand.
3027 */
3028
3029 u64 *lm_root;
3030
3031 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3032 if (lm_root == NULL)
3033 return 1;
3034
3035 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3036
3037 vcpu->arch.mmu.lm_root = lm_root;
3038 }
3039
3040 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3041 }
3042
3043 return 0;
3044 }
3045
3046 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3047 {
3048 if (vcpu->arch.mmu.direct_map)
3049 return mmu_alloc_direct_roots(vcpu);
3050 else
3051 return mmu_alloc_shadow_roots(vcpu);
3052 }
3053
3054 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3055 {
3056 int i;
3057 struct kvm_mmu_page *sp;
3058
3059 if (vcpu->arch.mmu.direct_map)
3060 return;
3061
3062 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3063 return;
3064
3065 vcpu_clear_mmio_info(vcpu, ~0ul);
3066 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3067 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3068 hpa_t root = vcpu->arch.mmu.root_hpa;
3069 sp = page_header(root);
3070 mmu_sync_children(vcpu, sp);
3071 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3072 return;
3073 }
3074 for (i = 0; i < 4; ++i) {
3075 hpa_t root = vcpu->arch.mmu.pae_root[i];
3076
3077 if (root && VALID_PAGE(root)) {
3078 root &= PT64_BASE_ADDR_MASK;
3079 sp = page_header(root);
3080 mmu_sync_children(vcpu, sp);
3081 }
3082 }
3083 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3084 }
3085
3086 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3087 {
3088 spin_lock(&vcpu->kvm->mmu_lock);
3089 mmu_sync_roots(vcpu);
3090 spin_unlock(&vcpu->kvm->mmu_lock);
3091 }
3092
3093 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3094 u32 access, struct x86_exception *exception)
3095 {
3096 if (exception)
3097 exception->error_code = 0;
3098 return vaddr;
3099 }
3100
3101 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3102 u32 access,
3103 struct x86_exception *exception)
3104 {
3105 if (exception)
3106 exception->error_code = 0;
3107 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3108 }
3109
3110 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3111 {
3112 if (direct)
3113 return vcpu_match_mmio_gpa(vcpu, addr);
3114
3115 return vcpu_match_mmio_gva(vcpu, addr);
3116 }
3117
3118
3119 /*
3120 * On direct hosts, the last spte is only allows two states
3121 * for mmio page fault:
3122 * - It is the mmio spte
3123 * - It is zapped or it is being zapped.
3124 *
3125 * This function completely checks the spte when the last spte
3126 * is not the mmio spte.
3127 */
3128 static bool check_direct_spte_mmio_pf(u64 spte)
3129 {
3130 return __check_direct_spte_mmio_pf(spte);
3131 }
3132
3133 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3134 {
3135 struct kvm_shadow_walk_iterator iterator;
3136 u64 spte = 0ull;
3137
3138 walk_shadow_page_lockless_begin(vcpu);
3139 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3140 if (!is_shadow_present_pte(spte))
3141 break;
3142 walk_shadow_page_lockless_end(vcpu);
3143
3144 return spte;
3145 }
3146
3147 /*
3148 * If it is a real mmio page fault, return 1 and emulat the instruction
3149 * directly, return 0 to let CPU fault again on the address, -1 is
3150 * returned if bug is detected.
3151 */
3152 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3153 {
3154 u64 spte;
3155
3156 if (quickly_check_mmio_pf(vcpu, addr, direct))
3157 return 1;
3158
3159 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3160
3161 if (is_mmio_spte(spte)) {
3162 gfn_t gfn = get_mmio_spte_gfn(spte);
3163 unsigned access = get_mmio_spte_access(spte);
3164
3165 if (direct)
3166 addr = 0;
3167
3168 trace_handle_mmio_page_fault(addr, gfn, access);
3169 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3170 return 1;
3171 }
3172
3173 /*
3174 * It's ok if the gva is remapped by other cpus on shadow guest,
3175 * it's a BUG if the gfn is not a mmio page.
3176 */
3177 if (direct && !check_direct_spte_mmio_pf(spte))
3178 return -1;
3179
3180 /*
3181 * If the page table is zapped by other cpus, let CPU fault again on
3182 * the address.
3183 */
3184 return 0;
3185 }
3186 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3187
3188 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3189 u32 error_code, bool direct)
3190 {
3191 int ret;
3192
3193 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3194 WARN_ON(ret < 0);
3195 return ret;
3196 }
3197
3198 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3199 u32 error_code, bool prefault)
3200 {
3201 gfn_t gfn;
3202 int r;
3203
3204 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3205
3206 if (unlikely(error_code & PFERR_RSVD_MASK))
3207 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3208
3209 r = mmu_topup_memory_caches(vcpu);
3210 if (r)
3211 return r;
3212
3213 ASSERT(vcpu);
3214 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3215
3216 gfn = gva >> PAGE_SHIFT;
3217
3218 return nonpaging_map(vcpu, gva & PAGE_MASK,
3219 error_code, gfn, prefault);
3220 }
3221
3222 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3223 {
3224 struct kvm_arch_async_pf arch;
3225
3226 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3227 arch.gfn = gfn;
3228 arch.direct_map = vcpu->arch.mmu.direct_map;
3229 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3230
3231 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3232 }
3233
3234 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3235 {
3236 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3237 kvm_event_needs_reinjection(vcpu)))
3238 return false;
3239
3240 return kvm_x86_ops->interrupt_allowed(vcpu);
3241 }
3242
3243 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3244 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3245 {
3246 bool async;
3247
3248 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3249
3250 if (!async)
3251 return false; /* *pfn has correct page already */
3252
3253 if (!prefault && can_do_async_pf(vcpu)) {
3254 trace_kvm_try_async_get_page(gva, gfn);
3255 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3256 trace_kvm_async_pf_doublefault(gva, gfn);
3257 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3258 return true;
3259 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3260 return true;
3261 }
3262
3263 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3264
3265 return false;
3266 }
3267
3268 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3269 bool prefault)
3270 {
3271 pfn_t pfn;
3272 int r;
3273 int level;
3274 int force_pt_level;
3275 gfn_t gfn = gpa >> PAGE_SHIFT;
3276 unsigned long mmu_seq;
3277 int write = error_code & PFERR_WRITE_MASK;
3278 bool map_writable;
3279
3280 ASSERT(vcpu);
3281 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3282
3283 if (unlikely(error_code & PFERR_RSVD_MASK))
3284 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3285
3286 r = mmu_topup_memory_caches(vcpu);
3287 if (r)
3288 return r;
3289
3290 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3291 if (likely(!force_pt_level)) {
3292 level = mapping_level(vcpu, gfn);
3293 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3294 } else
3295 level = PT_PAGE_TABLE_LEVEL;
3296
3297 if (fast_page_fault(vcpu, gpa, level, error_code))
3298 return 0;
3299
3300 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3301 smp_rmb();
3302
3303 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3304 return 0;
3305
3306 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3307 return r;
3308
3309 spin_lock(&vcpu->kvm->mmu_lock);
3310 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3311 goto out_unlock;
3312 kvm_mmu_free_some_pages(vcpu);
3313 if (likely(!force_pt_level))
3314 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3315 r = __direct_map(vcpu, gpa, write, map_writable,
3316 level, gfn, pfn, prefault);
3317 spin_unlock(&vcpu->kvm->mmu_lock);
3318
3319 return r;
3320
3321 out_unlock:
3322 spin_unlock(&vcpu->kvm->mmu_lock);
3323 kvm_release_pfn_clean(pfn);
3324 return 0;
3325 }
3326
3327 static void nonpaging_free(struct kvm_vcpu *vcpu)
3328 {
3329 mmu_free_roots(vcpu);
3330 }
3331
3332 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3333 struct kvm_mmu *context)
3334 {
3335 context->new_cr3 = nonpaging_new_cr3;
3336 context->page_fault = nonpaging_page_fault;
3337 context->gva_to_gpa = nonpaging_gva_to_gpa;
3338 context->free = nonpaging_free;
3339 context->sync_page = nonpaging_sync_page;
3340 context->invlpg = nonpaging_invlpg;
3341 context->update_pte = nonpaging_update_pte;
3342 context->root_level = 0;
3343 context->shadow_root_level = PT32E_ROOT_LEVEL;
3344 context->root_hpa = INVALID_PAGE;
3345 context->direct_map = true;
3346 context->nx = false;
3347 return 0;
3348 }
3349
3350 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3351 {
3352 ++vcpu->stat.tlb_flush;
3353 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3354 }
3355
3356 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3357 {
3358 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3359 mmu_free_roots(vcpu);
3360 }
3361
3362 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3363 {
3364 return kvm_read_cr3(vcpu);
3365 }
3366
3367 static void inject_page_fault(struct kvm_vcpu *vcpu,
3368 struct x86_exception *fault)
3369 {
3370 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3371 }
3372
3373 static void paging_free(struct kvm_vcpu *vcpu)
3374 {
3375 nonpaging_free(vcpu);
3376 }
3377
3378 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3379 {
3380 unsigned mask;
3381
3382 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3383
3384 mask = (unsigned)~ACC_WRITE_MASK;
3385 /* Allow write access to dirty gptes */
3386 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3387 *access &= mask;
3388 }
3389
3390 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3391 int *nr_present)
3392 {
3393 if (unlikely(is_mmio_spte(*sptep))) {
3394 if (gfn != get_mmio_spte_gfn(*sptep)) {
3395 mmu_spte_clear_no_track(sptep);
3396 return true;
3397 }
3398
3399 (*nr_present)++;
3400 mark_mmio_spte(sptep, gfn, access);
3401 return true;
3402 }
3403
3404 return false;
3405 }
3406
3407 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3408 {
3409 unsigned access;
3410
3411 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3412 access &= ~(gpte >> PT64_NX_SHIFT);
3413
3414 return access;
3415 }
3416
3417 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3418 {
3419 unsigned index;
3420
3421 index = level - 1;
3422 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3423 return mmu->last_pte_bitmap & (1 << index);
3424 }
3425
3426 #define PTTYPE 64
3427 #include "paging_tmpl.h"
3428 #undef PTTYPE
3429
3430 #define PTTYPE 32
3431 #include "paging_tmpl.h"
3432 #undef PTTYPE
3433
3434 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3435 struct kvm_mmu *context)
3436 {
3437 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3438 u64 exb_bit_rsvd = 0;
3439
3440 if (!context->nx)
3441 exb_bit_rsvd = rsvd_bits(63, 63);
3442 switch (context->root_level) {
3443 case PT32_ROOT_LEVEL:
3444 /* no rsvd bits for 2 level 4K page table entries */
3445 context->rsvd_bits_mask[0][1] = 0;
3446 context->rsvd_bits_mask[0][0] = 0;
3447 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3448
3449 if (!is_pse(vcpu)) {
3450 context->rsvd_bits_mask[1][1] = 0;
3451 break;
3452 }
3453
3454 if (is_cpuid_PSE36())
3455 /* 36bits PSE 4MB page */
3456 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3457 else
3458 /* 32 bits PSE 4MB page */
3459 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3460 break;
3461 case PT32E_ROOT_LEVEL:
3462 context->rsvd_bits_mask[0][2] =
3463 rsvd_bits(maxphyaddr, 63) |
3464 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3465 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3466 rsvd_bits(maxphyaddr, 62); /* PDE */
3467 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3468 rsvd_bits(maxphyaddr, 62); /* PTE */
3469 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3470 rsvd_bits(maxphyaddr, 62) |
3471 rsvd_bits(13, 20); /* large page */
3472 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3473 break;
3474 case PT64_ROOT_LEVEL:
3475 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3476 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3477 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3478 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3479 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3480 rsvd_bits(maxphyaddr, 51);
3481 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3482 rsvd_bits(maxphyaddr, 51);
3483 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3484 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3485 rsvd_bits(maxphyaddr, 51) |
3486 rsvd_bits(13, 29);
3487 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3488 rsvd_bits(maxphyaddr, 51) |
3489 rsvd_bits(13, 20); /* large page */
3490 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3491 break;
3492 }
3493 }
3494
3495 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3496 {
3497 unsigned bit, byte, pfec;
3498 u8 map;
3499 bool fault, x, w, u, wf, uf, ff, smep;
3500
3501 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3502 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3503 pfec = byte << 1;
3504 map = 0;
3505 wf = pfec & PFERR_WRITE_MASK;
3506 uf = pfec & PFERR_USER_MASK;
3507 ff = pfec & PFERR_FETCH_MASK;
3508 for (bit = 0; bit < 8; ++bit) {
3509 x = bit & ACC_EXEC_MASK;
3510 w = bit & ACC_WRITE_MASK;
3511 u = bit & ACC_USER_MASK;
3512
3513 /* Not really needed: !nx will cause pte.nx to fault */
3514 x |= !mmu->nx;
3515 /* Allow supervisor writes if !cr0.wp */
3516 w |= !is_write_protection(vcpu) && !uf;
3517 /* Disallow supervisor fetches of user code if cr4.smep */
3518 x &= !(smep && u && !uf);
3519
3520 fault = (ff && !x) || (uf && !u) || (wf && !w);
3521 map |= fault << bit;
3522 }
3523 mmu->permissions[byte] = map;
3524 }
3525 }
3526
3527 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3528 {
3529 u8 map;
3530 unsigned level, root_level = mmu->root_level;
3531 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3532
3533 if (root_level == PT32E_ROOT_LEVEL)
3534 --root_level;
3535 /* PT_PAGE_TABLE_LEVEL always terminates */
3536 map = 1 | (1 << ps_set_index);
3537 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3538 if (level <= PT_PDPE_LEVEL
3539 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3540 map |= 1 << (ps_set_index | (level - 1));
3541 }
3542 mmu->last_pte_bitmap = map;
3543 }
3544
3545 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3546 struct kvm_mmu *context,
3547 int level)
3548 {
3549 context->nx = is_nx(vcpu);
3550 context->root_level = level;
3551
3552 reset_rsvds_bits_mask(vcpu, context);
3553 update_permission_bitmask(vcpu, context);
3554 update_last_pte_bitmap(vcpu, context);
3555
3556 ASSERT(is_pae(vcpu));
3557 context->new_cr3 = paging_new_cr3;
3558 context->page_fault = paging64_page_fault;
3559 context->gva_to_gpa = paging64_gva_to_gpa;
3560 context->sync_page = paging64_sync_page;
3561 context->invlpg = paging64_invlpg;
3562 context->update_pte = paging64_update_pte;
3563 context->free = paging_free;
3564 context->shadow_root_level = level;
3565 context->root_hpa = INVALID_PAGE;
3566 context->direct_map = false;
3567 return 0;
3568 }
3569
3570 static int paging64_init_context(struct kvm_vcpu *vcpu,
3571 struct kvm_mmu *context)
3572 {
3573 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3574 }
3575
3576 static int paging32_init_context(struct kvm_vcpu *vcpu,
3577 struct kvm_mmu *context)
3578 {
3579 context->nx = false;
3580 context->root_level = PT32_ROOT_LEVEL;
3581
3582 reset_rsvds_bits_mask(vcpu, context);
3583 update_permission_bitmask(vcpu, context);
3584 update_last_pte_bitmap(vcpu, context);
3585
3586 context->new_cr3 = paging_new_cr3;
3587 context->page_fault = paging32_page_fault;
3588 context->gva_to_gpa = paging32_gva_to_gpa;
3589 context->free = paging_free;
3590 context->sync_page = paging32_sync_page;
3591 context->invlpg = paging32_invlpg;
3592 context->update_pte = paging32_update_pte;
3593 context->shadow_root_level = PT32E_ROOT_LEVEL;
3594 context->root_hpa = INVALID_PAGE;
3595 context->direct_map = false;
3596 return 0;
3597 }
3598
3599 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3600 struct kvm_mmu *context)
3601 {
3602 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3603 }
3604
3605 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3606 {
3607 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3608
3609 context->base_role.word = 0;
3610 context->new_cr3 = nonpaging_new_cr3;
3611 context->page_fault = tdp_page_fault;
3612 context->free = nonpaging_free;
3613 context->sync_page = nonpaging_sync_page;
3614 context->invlpg = nonpaging_invlpg;
3615 context->update_pte = nonpaging_update_pte;
3616 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3617 context->root_hpa = INVALID_PAGE;
3618 context->direct_map = true;
3619 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3620 context->get_cr3 = get_cr3;
3621 context->get_pdptr = kvm_pdptr_read;
3622 context->inject_page_fault = kvm_inject_page_fault;
3623
3624 if (!is_paging(vcpu)) {
3625 context->nx = false;
3626 context->gva_to_gpa = nonpaging_gva_to_gpa;
3627 context->root_level = 0;
3628 } else if (is_long_mode(vcpu)) {
3629 context->nx = is_nx(vcpu);
3630 context->root_level = PT64_ROOT_LEVEL;
3631 reset_rsvds_bits_mask(vcpu, context);
3632 context->gva_to_gpa = paging64_gva_to_gpa;
3633 } else if (is_pae(vcpu)) {
3634 context->nx = is_nx(vcpu);
3635 context->root_level = PT32E_ROOT_LEVEL;
3636 reset_rsvds_bits_mask(vcpu, context);
3637 context->gva_to_gpa = paging64_gva_to_gpa;
3638 } else {
3639 context->nx = false;
3640 context->root_level = PT32_ROOT_LEVEL;
3641 reset_rsvds_bits_mask(vcpu, context);
3642 context->gva_to_gpa = paging32_gva_to_gpa;
3643 }
3644
3645 update_permission_bitmask(vcpu, context);
3646 update_last_pte_bitmap(vcpu, context);
3647
3648 return 0;
3649 }
3650
3651 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3652 {
3653 int r;
3654 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3655 ASSERT(vcpu);
3656 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3657
3658 if (!is_paging(vcpu))
3659 r = nonpaging_init_context(vcpu, context);
3660 else if (is_long_mode(vcpu))
3661 r = paging64_init_context(vcpu, context);
3662 else if (is_pae(vcpu))
3663 r = paging32E_init_context(vcpu, context);
3664 else
3665 r = paging32_init_context(vcpu, context);
3666
3667 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3668 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3669 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3670 vcpu->arch.mmu.base_role.smep_andnot_wp
3671 = smep && !is_write_protection(vcpu);
3672
3673 return r;
3674 }
3675 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3676
3677 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3678 {
3679 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3680
3681 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3682 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3683 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3684 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3685
3686 return r;
3687 }
3688
3689 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3690 {
3691 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3692
3693 g_context->get_cr3 = get_cr3;
3694 g_context->get_pdptr = kvm_pdptr_read;
3695 g_context->inject_page_fault = kvm_inject_page_fault;
3696
3697 /*
3698 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3699 * translation of l2_gpa to l1_gpa addresses is done using the
3700 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3701 * functions between mmu and nested_mmu are swapped.
3702 */
3703 if (!is_paging(vcpu)) {
3704 g_context->nx = false;
3705 g_context->root_level = 0;
3706 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3707 } else if (is_long_mode(vcpu)) {
3708 g_context->nx = is_nx(vcpu);
3709 g_context->root_level = PT64_ROOT_LEVEL;
3710 reset_rsvds_bits_mask(vcpu, g_context);
3711 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3712 } else if (is_pae(vcpu)) {
3713 g_context->nx = is_nx(vcpu);
3714 g_context->root_level = PT32E_ROOT_LEVEL;
3715 reset_rsvds_bits_mask(vcpu, g_context);
3716 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3717 } else {
3718 g_context->nx = false;
3719 g_context->root_level = PT32_ROOT_LEVEL;
3720 reset_rsvds_bits_mask(vcpu, g_context);
3721 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3722 }
3723
3724 update_permission_bitmask(vcpu, g_context);
3725 update_last_pte_bitmap(vcpu, g_context);
3726
3727 return 0;
3728 }
3729
3730 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3731 {
3732 if (mmu_is_nested(vcpu))
3733 return init_kvm_nested_mmu(vcpu);
3734 else if (tdp_enabled)
3735 return init_kvm_tdp_mmu(vcpu);
3736 else
3737 return init_kvm_softmmu(vcpu);
3738 }
3739
3740 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3741 {
3742 ASSERT(vcpu);
3743 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3744 /* mmu.free() should set root_hpa = INVALID_PAGE */
3745 vcpu->arch.mmu.free(vcpu);
3746 }
3747
3748 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3749 {
3750 destroy_kvm_mmu(vcpu);
3751 return init_kvm_mmu(vcpu);
3752 }
3753 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3754
3755 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3756 {
3757 int r;
3758
3759 r = mmu_topup_memory_caches(vcpu);
3760 if (r)
3761 goto out;
3762 r = mmu_alloc_roots(vcpu);
3763 spin_lock(&vcpu->kvm->mmu_lock);
3764 mmu_sync_roots(vcpu);
3765 spin_unlock(&vcpu->kvm->mmu_lock);
3766 if (r)
3767 goto out;
3768 /* set_cr3() should ensure TLB has been flushed */
3769 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3770 out:
3771 return r;
3772 }
3773 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3774
3775 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3776 {
3777 mmu_free_roots(vcpu);
3778 }
3779 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3780
3781 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3782 struct kvm_mmu_page *sp, u64 *spte,
3783 const void *new)
3784 {
3785 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3786 ++vcpu->kvm->stat.mmu_pde_zapped;
3787 return;
3788 }
3789
3790 ++vcpu->kvm->stat.mmu_pte_updated;
3791 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3792 }
3793
3794 static bool need_remote_flush(u64 old, u64 new)
3795 {
3796 if (!is_shadow_present_pte(old))
3797 return false;
3798 if (!is_shadow_present_pte(new))
3799 return true;
3800 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3801 return true;
3802 old ^= PT64_NX_MASK;
3803 new ^= PT64_NX_MASK;
3804 return (old & ~new & PT64_PERM_MASK) != 0;
3805 }
3806
3807 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3808 bool remote_flush, bool local_flush)
3809 {
3810 if (zap_page)
3811 return;
3812
3813 if (remote_flush)
3814 kvm_flush_remote_tlbs(vcpu->kvm);
3815 else if (local_flush)
3816 kvm_mmu_flush_tlb(vcpu);
3817 }
3818
3819 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3820 const u8 *new, int *bytes)
3821 {
3822 u64 gentry;
3823 int r;
3824
3825 /*
3826 * Assume that the pte write on a page table of the same type
3827 * as the current vcpu paging mode since we update the sptes only
3828 * when they have the same mode.
3829 */
3830 if (is_pae(vcpu) && *bytes == 4) {
3831 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3832 *gpa &= ~(gpa_t)7;
3833 *bytes = 8;
3834 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3835 if (r)
3836 gentry = 0;
3837 new = (const u8 *)&gentry;
3838 }
3839
3840 switch (*bytes) {
3841 case 4:
3842 gentry = *(const u32 *)new;
3843 break;
3844 case 8:
3845 gentry = *(const u64 *)new;
3846 break;
3847 default:
3848 gentry = 0;
3849 break;
3850 }
3851
3852 return gentry;
3853 }
3854
3855 /*
3856 * If we're seeing too many writes to a page, it may no longer be a page table,
3857 * or we may be forking, in which case it is better to unmap the page.
3858 */
3859 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3860 {
3861 /*
3862 * Skip write-flooding detected for the sp whose level is 1, because
3863 * it can become unsync, then the guest page is not write-protected.
3864 */
3865 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3866 return false;
3867
3868 return ++sp->write_flooding_count >= 3;
3869 }
3870
3871 /*
3872 * Misaligned accesses are too much trouble to fix up; also, they usually
3873 * indicate a page is not used as a page table.
3874 */
3875 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3876 int bytes)
3877 {
3878 unsigned offset, pte_size, misaligned;
3879
3880 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3881 gpa, bytes, sp->role.word);
3882
3883 offset = offset_in_page(gpa);
3884 pte_size = sp->role.cr4_pae ? 8 : 4;
3885
3886 /*
3887 * Sometimes, the OS only writes the last one bytes to update status
3888 * bits, for example, in linux, andb instruction is used in clear_bit().
3889 */
3890 if (!(offset & (pte_size - 1)) && bytes == 1)
3891 return false;
3892
3893 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3894 misaligned |= bytes < 4;
3895
3896 return misaligned;
3897 }
3898
3899 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3900 {
3901 unsigned page_offset, quadrant;
3902 u64 *spte;
3903 int level;
3904
3905 page_offset = offset_in_page(gpa);
3906 level = sp->role.level;
3907 *nspte = 1;
3908 if (!sp->role.cr4_pae) {
3909 page_offset <<= 1; /* 32->64 */
3910 /*
3911 * A 32-bit pde maps 4MB while the shadow pdes map
3912 * only 2MB. So we need to double the offset again
3913 * and zap two pdes instead of one.
3914 */
3915 if (level == PT32_ROOT_LEVEL) {
3916 page_offset &= ~7; /* kill rounding error */
3917 page_offset <<= 1;
3918 *nspte = 2;
3919 }
3920 quadrant = page_offset >> PAGE_SHIFT;
3921 page_offset &= ~PAGE_MASK;
3922 if (quadrant != sp->role.quadrant)
3923 return NULL;
3924 }
3925
3926 spte = &sp->spt[page_offset / sizeof(*spte)];
3927 return spte;
3928 }
3929
3930 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3931 const u8 *new, int bytes)
3932 {
3933 gfn_t gfn = gpa >> PAGE_SHIFT;
3934 union kvm_mmu_page_role mask = { .word = 0 };
3935 struct kvm_mmu_page *sp;
3936 struct hlist_node *node;
3937 LIST_HEAD(invalid_list);
3938 u64 entry, gentry, *spte;
3939 int npte;
3940 bool remote_flush, local_flush, zap_page;
3941
3942 /*
3943 * If we don't have indirect shadow pages, it means no page is
3944 * write-protected, so we can exit simply.
3945 */
3946 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3947 return;
3948
3949 zap_page = remote_flush = local_flush = false;
3950
3951 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3952
3953 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3954
3955 /*
3956 * No need to care whether allocation memory is successful
3957 * or not since pte prefetch is skiped if it does not have
3958 * enough objects in the cache.
3959 */
3960 mmu_topup_memory_caches(vcpu);
3961
3962 spin_lock(&vcpu->kvm->mmu_lock);
3963 ++vcpu->kvm->stat.mmu_pte_write;
3964 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3965
3966 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3967 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3968 if (detect_write_misaligned(sp, gpa, bytes) ||
3969 detect_write_flooding(sp)) {
3970 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3971 &invalid_list);
3972 ++vcpu->kvm->stat.mmu_flooded;
3973 continue;
3974 }
3975
3976 spte = get_written_sptes(sp, gpa, &npte);
3977 if (!spte)
3978 continue;
3979
3980 local_flush = true;
3981 while (npte--) {
3982 entry = *spte;
3983 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3984 if (gentry &&
3985 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3986 & mask.word) && rmap_can_add(vcpu))
3987 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3988 if (need_remote_flush(entry, *spte))
3989 remote_flush = true;
3990 ++spte;
3991 }
3992 }
3993 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3994 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3995 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3996 spin_unlock(&vcpu->kvm->mmu_lock);
3997 }
3998
3999 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4000 {
4001 gpa_t gpa;
4002 int r;
4003
4004 if (vcpu->arch.mmu.direct_map)
4005 return 0;
4006
4007 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4008
4009 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4010
4011 return r;
4012 }
4013 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4014
4015 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4016 {
4017 LIST_HEAD(invalid_list);
4018
4019 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4020 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4021 struct kvm_mmu_page *sp;
4022
4023 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4024 struct kvm_mmu_page, link);
4025 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4026 ++vcpu->kvm->stat.mmu_recycled;
4027 }
4028 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4029 }
4030
4031 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4032 {
4033 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4034 return vcpu_match_mmio_gpa(vcpu, addr);
4035
4036 return vcpu_match_mmio_gva(vcpu, addr);
4037 }
4038
4039 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4040 void *insn, int insn_len)
4041 {
4042 int r, emulation_type = EMULTYPE_RETRY;
4043 enum emulation_result er;
4044
4045 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4046 if (r < 0)
4047 goto out;
4048
4049 if (!r) {
4050 r = 1;
4051 goto out;
4052 }
4053
4054 if (is_mmio_page_fault(vcpu, cr2))
4055 emulation_type = 0;
4056
4057 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4058
4059 switch (er) {
4060 case EMULATE_DONE:
4061 return 1;
4062 case EMULATE_DO_MMIO:
4063 ++vcpu->stat.mmio_exits;
4064 /* fall through */
4065 case EMULATE_FAIL:
4066 return 0;
4067 default:
4068 BUG();
4069 }
4070 out:
4071 return r;
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4074
4075 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4076 {
4077 vcpu->arch.mmu.invlpg(vcpu, gva);
4078 kvm_mmu_flush_tlb(vcpu);
4079 ++vcpu->stat.invlpg;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4082
4083 void kvm_enable_tdp(void)
4084 {
4085 tdp_enabled = true;
4086 }
4087 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4088
4089 void kvm_disable_tdp(void)
4090 {
4091 tdp_enabled = false;
4092 }
4093 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4094
4095 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4096 {
4097 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4098 if (vcpu->arch.mmu.lm_root != NULL)
4099 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4100 }
4101
4102 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4103 {
4104 struct page *page;
4105 int i;
4106
4107 ASSERT(vcpu);
4108
4109 /*
4110 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4111 * Therefore we need to allocate shadow page tables in the first
4112 * 4GB of memory, which happens to fit the DMA32 zone.
4113 */
4114 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4115 if (!page)
4116 return -ENOMEM;
4117
4118 vcpu->arch.mmu.pae_root = page_address(page);
4119 for (i = 0; i < 4; ++i)
4120 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4121
4122 return 0;
4123 }
4124
4125 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4126 {
4127 ASSERT(vcpu);
4128
4129 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4130 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4131 vcpu->arch.mmu.translate_gpa = translate_gpa;
4132 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4133
4134 return alloc_mmu_pages(vcpu);
4135 }
4136
4137 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4138 {
4139 ASSERT(vcpu);
4140 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4141
4142 return init_kvm_mmu(vcpu);
4143 }
4144
4145 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4146 {
4147 struct kvm_memory_slot *memslot;
4148 gfn_t last_gfn;
4149 int i;
4150
4151 memslot = id_to_memslot(kvm->memslots, slot);
4152 last_gfn = memslot->base_gfn + memslot->npages - 1;
4153
4154 spin_lock(&kvm->mmu_lock);
4155
4156 for (i = PT_PAGE_TABLE_LEVEL;
4157 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4158 unsigned long *rmapp;
4159 unsigned long last_index, index;
4160
4161 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4162 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4163
4164 for (index = 0; index <= last_index; ++index, ++rmapp) {
4165 if (*rmapp)
4166 __rmap_write_protect(kvm, rmapp, false);
4167
4168 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4169 kvm_flush_remote_tlbs(kvm);
4170 cond_resched_lock(&kvm->mmu_lock);
4171 }
4172 }
4173 }
4174
4175 kvm_flush_remote_tlbs(kvm);
4176 spin_unlock(&kvm->mmu_lock);
4177 }
4178
4179 void kvm_mmu_zap_all(struct kvm *kvm)
4180 {
4181 struct kvm_mmu_page *sp, *node;
4182 LIST_HEAD(invalid_list);
4183
4184 spin_lock(&kvm->mmu_lock);
4185 restart:
4186 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4187 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4188 goto restart;
4189
4190 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4191 spin_unlock(&kvm->mmu_lock);
4192 }
4193
4194 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4195 struct list_head *invalid_list)
4196 {
4197 struct kvm_mmu_page *page;
4198
4199 if (list_empty(&kvm->arch.active_mmu_pages))
4200 return;
4201
4202 page = container_of(kvm->arch.active_mmu_pages.prev,
4203 struct kvm_mmu_page, link);
4204 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4205 }
4206
4207 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4208 {
4209 struct kvm *kvm;
4210 int nr_to_scan = sc->nr_to_scan;
4211
4212 if (nr_to_scan == 0)
4213 goto out;
4214
4215 raw_spin_lock(&kvm_lock);
4216
4217 list_for_each_entry(kvm, &vm_list, vm_list) {
4218 int idx;
4219 LIST_HEAD(invalid_list);
4220
4221 /*
4222 * Never scan more than sc->nr_to_scan VM instances.
4223 * Will not hit this condition practically since we do not try
4224 * to shrink more than one VM and it is very unlikely to see
4225 * !n_used_mmu_pages so many times.
4226 */
4227 if (!nr_to_scan--)
4228 break;
4229 /*
4230 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4231 * here. We may skip a VM instance errorneosly, but we do not
4232 * want to shrink a VM that only started to populate its MMU
4233 * anyway.
4234 */
4235 if (!kvm->arch.n_used_mmu_pages)
4236 continue;
4237
4238 idx = srcu_read_lock(&kvm->srcu);
4239 spin_lock(&kvm->mmu_lock);
4240
4241 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4242 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4243
4244 spin_unlock(&kvm->mmu_lock);
4245 srcu_read_unlock(&kvm->srcu, idx);
4246
4247 list_move_tail(&kvm->vm_list, &vm_list);
4248 break;
4249 }
4250
4251 raw_spin_unlock(&kvm_lock);
4252
4253 out:
4254 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4255 }
4256
4257 static struct shrinker mmu_shrinker = {
4258 .shrink = mmu_shrink,
4259 .seeks = DEFAULT_SEEKS * 10,
4260 };
4261
4262 static void mmu_destroy_caches(void)
4263 {
4264 if (pte_list_desc_cache)
4265 kmem_cache_destroy(pte_list_desc_cache);
4266 if (mmu_page_header_cache)
4267 kmem_cache_destroy(mmu_page_header_cache);
4268 }
4269
4270 int kvm_mmu_module_init(void)
4271 {
4272 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4273 sizeof(struct pte_list_desc),
4274 0, 0, NULL);
4275 if (!pte_list_desc_cache)
4276 goto nomem;
4277
4278 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4279 sizeof(struct kvm_mmu_page),
4280 0, 0, NULL);
4281 if (!mmu_page_header_cache)
4282 goto nomem;
4283
4284 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4285 goto nomem;
4286
4287 register_shrinker(&mmu_shrinker);
4288
4289 return 0;
4290
4291 nomem:
4292 mmu_destroy_caches();
4293 return -ENOMEM;
4294 }
4295
4296 /*
4297 * Caculate mmu pages needed for kvm.
4298 */
4299 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4300 {
4301 unsigned int nr_mmu_pages;
4302 unsigned int nr_pages = 0;
4303 struct kvm_memslots *slots;
4304 struct kvm_memory_slot *memslot;
4305
4306 slots = kvm_memslots(kvm);
4307
4308 kvm_for_each_memslot(memslot, slots)
4309 nr_pages += memslot->npages;
4310
4311 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4312 nr_mmu_pages = max(nr_mmu_pages,
4313 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4314
4315 return nr_mmu_pages;
4316 }
4317
4318 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4319 {
4320 struct kvm_shadow_walk_iterator iterator;
4321 u64 spte;
4322 int nr_sptes = 0;
4323
4324 walk_shadow_page_lockless_begin(vcpu);
4325 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4326 sptes[iterator.level-1] = spte;
4327 nr_sptes++;
4328 if (!is_shadow_present_pte(spte))
4329 break;
4330 }
4331 walk_shadow_page_lockless_end(vcpu);
4332
4333 return nr_sptes;
4334 }
4335 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4336
4337 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4338 {
4339 ASSERT(vcpu);
4340
4341 destroy_kvm_mmu(vcpu);
4342 free_mmu_pages(vcpu);
4343 mmu_free_memory_caches(vcpu);
4344 }
4345
4346 void kvm_mmu_module_exit(void)
4347 {
4348 mmu_destroy_caches();
4349 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4350 unregister_shrinker(&mmu_shrinker);
4351 mmu_audit_disable();
4352 }