]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: remove bypass_guest_pf
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102 #endif
103
104 #define PTE_PREFETCH_NUM 8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_INDEX(address, level)\
115 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132 #define PT64_DIR_BASE_ADDR_MASK \
133 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134 #define PT64_LVL_ADDR_MASK(level) \
135 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 * PT64_LEVEL_BITS))) - 1))
137 #define PT64_LVL_OFFSET_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
140
141 #define PT32_BASE_ADDR_MASK PAGE_MASK
142 #define PT32_DIR_BASE_ADDR_MASK \
143 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144 #define PT32_LVL_ADDR_MASK(level) \
145 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146 * PT32_LEVEL_BITS))) - 1))
147
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149 | PT64_NX_MASK)
150
151 #define PTE_LIST_EXT 4
152
153 #define ACC_EXEC_MASK 1
154 #define ACC_WRITE_MASK PT_WRITABLE_MASK
155 #define ACC_USER_MASK PT_USER_MASK
156 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157
158 #include <trace/events/kvm.h>
159
160 #define CREATE_TRACE_POINTS
161 #include "mmutrace.h"
162
163 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164
165 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166
167 struct pte_list_desc {
168 u64 *sptes[PTE_LIST_EXT];
169 struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173 u64 addr;
174 hpa_t shadow_addr;
175 int level;
176 u64 *sptep;
177 unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
181 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182 shadow_walk_okay(&(_walker)); \
183 shadow_walk_next(&(_walker)))
184
185 static struct kmem_cache *pte_list_desc_cache;
186 static struct kmem_cache *mmu_page_header_cache;
187 static struct percpu_counter kvm_total_used_mmu_pages;
188
189 static u64 __read_mostly shadow_nx_mask;
190 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
191 static u64 __read_mostly shadow_user_mask;
192 static u64 __read_mostly shadow_accessed_mask;
193 static u64 __read_mostly shadow_dirty_mask;
194
195 static inline u64 rsvd_bits(int s, int e)
196 {
197 return ((1ULL << (e - s + 1)) - 1) << s;
198 }
199
200 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
201 u64 dirty_mask, u64 nx_mask, u64 x_mask)
202 {
203 shadow_user_mask = user_mask;
204 shadow_accessed_mask = accessed_mask;
205 shadow_dirty_mask = dirty_mask;
206 shadow_nx_mask = nx_mask;
207 shadow_x_mask = x_mask;
208 }
209 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
210
211 static int is_cpuid_PSE36(void)
212 {
213 return 1;
214 }
215
216 static int is_nx(struct kvm_vcpu *vcpu)
217 {
218 return vcpu->arch.efer & EFER_NX;
219 }
220
221 static int is_shadow_present_pte(u64 pte)
222 {
223 return pte & PT_PRESENT_MASK;
224 }
225
226 static int is_large_pte(u64 pte)
227 {
228 return pte & PT_PAGE_SIZE_MASK;
229 }
230
231 static int is_dirty_gpte(unsigned long pte)
232 {
233 return pte & PT_DIRTY_MASK;
234 }
235
236 static int is_rmap_spte(u64 pte)
237 {
238 return is_shadow_present_pte(pte);
239 }
240
241 static int is_last_spte(u64 pte, int level)
242 {
243 if (level == PT_PAGE_TABLE_LEVEL)
244 return 1;
245 if (is_large_pte(pte))
246 return 1;
247 return 0;
248 }
249
250 static pfn_t spte_to_pfn(u64 pte)
251 {
252 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
253 }
254
255 static gfn_t pse36_gfn_delta(u32 gpte)
256 {
257 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
258
259 return (gpte & PT32_DIR_PSE36_MASK) << shift;
260 }
261
262 static void __set_spte(u64 *sptep, u64 spte)
263 {
264 set_64bit(sptep, spte);
265 }
266
267 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
268 {
269 #ifdef CONFIG_X86_64
270 return xchg(sptep, new_spte);
271 #else
272 u64 old_spte;
273
274 do {
275 old_spte = *sptep;
276 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
277
278 return old_spte;
279 #endif
280 }
281
282 static bool spte_has_volatile_bits(u64 spte)
283 {
284 if (!shadow_accessed_mask)
285 return false;
286
287 if (!is_shadow_present_pte(spte))
288 return false;
289
290 if ((spte & shadow_accessed_mask) &&
291 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
292 return false;
293
294 return true;
295 }
296
297 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
298 {
299 return (old_spte & bit_mask) && !(new_spte & bit_mask);
300 }
301
302 static void update_spte(u64 *sptep, u64 new_spte)
303 {
304 u64 mask, old_spte = *sptep;
305
306 WARN_ON(!is_rmap_spte(new_spte));
307
308 new_spte |= old_spte & shadow_dirty_mask;
309
310 mask = shadow_accessed_mask;
311 if (is_writable_pte(old_spte))
312 mask |= shadow_dirty_mask;
313
314 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
315 __set_spte(sptep, new_spte);
316 else
317 old_spte = __xchg_spte(sptep, new_spte);
318
319 if (!shadow_accessed_mask)
320 return;
321
322 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
323 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
324 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
325 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
326 }
327
328 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
329 struct kmem_cache *base_cache, int min)
330 {
331 void *obj;
332
333 if (cache->nobjs >= min)
334 return 0;
335 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
336 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
337 if (!obj)
338 return -ENOMEM;
339 cache->objects[cache->nobjs++] = obj;
340 }
341 return 0;
342 }
343
344 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
345 struct kmem_cache *cache)
346 {
347 while (mc->nobjs)
348 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
349 }
350
351 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
352 int min)
353 {
354 void *page;
355
356 if (cache->nobjs >= min)
357 return 0;
358 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
359 page = (void *)__get_free_page(GFP_KERNEL);
360 if (!page)
361 return -ENOMEM;
362 cache->objects[cache->nobjs++] = page;
363 }
364 return 0;
365 }
366
367 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
368 {
369 while (mc->nobjs)
370 free_page((unsigned long)mc->objects[--mc->nobjs]);
371 }
372
373 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
374 {
375 int r;
376
377 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
378 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
379 if (r)
380 goto out;
381 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
382 if (r)
383 goto out;
384 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
385 mmu_page_header_cache, 4);
386 out:
387 return r;
388 }
389
390 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
391 {
392 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
393 pte_list_desc_cache);
394 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
395 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
396 mmu_page_header_cache);
397 }
398
399 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
400 size_t size)
401 {
402 void *p;
403
404 BUG_ON(!mc->nobjs);
405 p = mc->objects[--mc->nobjs];
406 return p;
407 }
408
409 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
410 {
411 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
412 sizeof(struct pte_list_desc));
413 }
414
415 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
416 {
417 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
418 }
419
420 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
421 {
422 if (!sp->role.direct)
423 return sp->gfns[index];
424
425 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
426 }
427
428 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
429 {
430 if (sp->role.direct)
431 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
432 else
433 sp->gfns[index] = gfn;
434 }
435
436 /*
437 * Return the pointer to the large page information for a given gfn,
438 * handling slots that are not large page aligned.
439 */
440 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
441 struct kvm_memory_slot *slot,
442 int level)
443 {
444 unsigned long idx;
445
446 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
447 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
448 return &slot->lpage_info[level - 2][idx];
449 }
450
451 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
452 {
453 struct kvm_memory_slot *slot;
454 struct kvm_lpage_info *linfo;
455 int i;
456
457 slot = gfn_to_memslot(kvm, gfn);
458 for (i = PT_DIRECTORY_LEVEL;
459 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
460 linfo = lpage_info_slot(gfn, slot, i);
461 linfo->write_count += 1;
462 }
463 kvm->arch.indirect_shadow_pages++;
464 }
465
466 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
467 {
468 struct kvm_memory_slot *slot;
469 struct kvm_lpage_info *linfo;
470 int i;
471
472 slot = gfn_to_memslot(kvm, gfn);
473 for (i = PT_DIRECTORY_LEVEL;
474 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
475 linfo = lpage_info_slot(gfn, slot, i);
476 linfo->write_count -= 1;
477 WARN_ON(linfo->write_count < 0);
478 }
479 kvm->arch.indirect_shadow_pages--;
480 }
481
482 static int has_wrprotected_page(struct kvm *kvm,
483 gfn_t gfn,
484 int level)
485 {
486 struct kvm_memory_slot *slot;
487 struct kvm_lpage_info *linfo;
488
489 slot = gfn_to_memslot(kvm, gfn);
490 if (slot) {
491 linfo = lpage_info_slot(gfn, slot, level);
492 return linfo->write_count;
493 }
494
495 return 1;
496 }
497
498 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
499 {
500 unsigned long page_size;
501 int i, ret = 0;
502
503 page_size = kvm_host_page_size(kvm, gfn);
504
505 for (i = PT_PAGE_TABLE_LEVEL;
506 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
507 if (page_size >= KVM_HPAGE_SIZE(i))
508 ret = i;
509 else
510 break;
511 }
512
513 return ret;
514 }
515
516 static struct kvm_memory_slot *
517 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
518 bool no_dirty_log)
519 {
520 struct kvm_memory_slot *slot;
521
522 slot = gfn_to_memslot(vcpu->kvm, gfn);
523 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
524 (no_dirty_log && slot->dirty_bitmap))
525 slot = NULL;
526
527 return slot;
528 }
529
530 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
531 {
532 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
533 }
534
535 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
536 {
537 int host_level, level, max_level;
538
539 host_level = host_mapping_level(vcpu->kvm, large_gfn);
540
541 if (host_level == PT_PAGE_TABLE_LEVEL)
542 return host_level;
543
544 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
545 kvm_x86_ops->get_lpage_level() : host_level;
546
547 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
548 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
549 break;
550
551 return level - 1;
552 }
553
554 /*
555 * Pte mapping structures:
556 *
557 * If pte_list bit zero is zero, then pte_list point to the spte.
558 *
559 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
560 * pte_list_desc containing more mappings.
561 *
562 * Returns the number of pte entries before the spte was added or zero if
563 * the spte was not added.
564 *
565 */
566 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
567 unsigned long *pte_list)
568 {
569 struct pte_list_desc *desc;
570 int i, count = 0;
571
572 if (!*pte_list) {
573 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
574 *pte_list = (unsigned long)spte;
575 } else if (!(*pte_list & 1)) {
576 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
577 desc = mmu_alloc_pte_list_desc(vcpu);
578 desc->sptes[0] = (u64 *)*pte_list;
579 desc->sptes[1] = spte;
580 *pte_list = (unsigned long)desc | 1;
581 ++count;
582 } else {
583 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
584 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
585 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
586 desc = desc->more;
587 count += PTE_LIST_EXT;
588 }
589 if (desc->sptes[PTE_LIST_EXT-1]) {
590 desc->more = mmu_alloc_pte_list_desc(vcpu);
591 desc = desc->more;
592 }
593 for (i = 0; desc->sptes[i]; ++i)
594 ++count;
595 desc->sptes[i] = spte;
596 }
597 return count;
598 }
599
600 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
601 {
602 struct pte_list_desc *desc;
603 u64 *prev_spte;
604 int i;
605
606 if (!*pte_list)
607 return NULL;
608 else if (!(*pte_list & 1)) {
609 if (!spte)
610 return (u64 *)*pte_list;
611 return NULL;
612 }
613 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
614 prev_spte = NULL;
615 while (desc) {
616 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
617 if (prev_spte == spte)
618 return desc->sptes[i];
619 prev_spte = desc->sptes[i];
620 }
621 desc = desc->more;
622 }
623 return NULL;
624 }
625
626 static void
627 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
628 int i, struct pte_list_desc *prev_desc)
629 {
630 int j;
631
632 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
633 ;
634 desc->sptes[i] = desc->sptes[j];
635 desc->sptes[j] = NULL;
636 if (j != 0)
637 return;
638 if (!prev_desc && !desc->more)
639 *pte_list = (unsigned long)desc->sptes[0];
640 else
641 if (prev_desc)
642 prev_desc->more = desc->more;
643 else
644 *pte_list = (unsigned long)desc->more | 1;
645 mmu_free_pte_list_desc(desc);
646 }
647
648 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
649 {
650 struct pte_list_desc *desc;
651 struct pte_list_desc *prev_desc;
652 int i;
653
654 if (!*pte_list) {
655 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
656 BUG();
657 } else if (!(*pte_list & 1)) {
658 rmap_printk("pte_list_remove: %p 1->0\n", spte);
659 if ((u64 *)*pte_list != spte) {
660 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
661 BUG();
662 }
663 *pte_list = 0;
664 } else {
665 rmap_printk("pte_list_remove: %p many->many\n", spte);
666 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
667 prev_desc = NULL;
668 while (desc) {
669 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
670 if (desc->sptes[i] == spte) {
671 pte_list_desc_remove_entry(pte_list,
672 desc, i,
673 prev_desc);
674 return;
675 }
676 prev_desc = desc;
677 desc = desc->more;
678 }
679 pr_err("pte_list_remove: %p many->many\n", spte);
680 BUG();
681 }
682 }
683
684 typedef void (*pte_list_walk_fn) (u64 *spte);
685 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
686 {
687 struct pte_list_desc *desc;
688 int i;
689
690 if (!*pte_list)
691 return;
692
693 if (!(*pte_list & 1))
694 return fn((u64 *)*pte_list);
695
696 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
697 while (desc) {
698 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
699 fn(desc->sptes[i]);
700 desc = desc->more;
701 }
702 }
703
704 /*
705 * Take gfn and return the reverse mapping to it.
706 */
707 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
708 {
709 struct kvm_memory_slot *slot;
710 struct kvm_lpage_info *linfo;
711
712 slot = gfn_to_memslot(kvm, gfn);
713 if (likely(level == PT_PAGE_TABLE_LEVEL))
714 return &slot->rmap[gfn - slot->base_gfn];
715
716 linfo = lpage_info_slot(gfn, slot, level);
717
718 return &linfo->rmap_pde;
719 }
720
721 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
722 {
723 struct kvm_mmu_page *sp;
724 unsigned long *rmapp;
725
726 sp = page_header(__pa(spte));
727 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
728 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
729 return pte_list_add(vcpu, spte, rmapp);
730 }
731
732 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
733 {
734 return pte_list_next(rmapp, spte);
735 }
736
737 static void rmap_remove(struct kvm *kvm, u64 *spte)
738 {
739 struct kvm_mmu_page *sp;
740 gfn_t gfn;
741 unsigned long *rmapp;
742
743 sp = page_header(__pa(spte));
744 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
745 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
746 pte_list_remove(spte, rmapp);
747 }
748
749 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
750 {
751 pfn_t pfn;
752 u64 old_spte = *sptep;
753
754 if (!spte_has_volatile_bits(old_spte))
755 __set_spte(sptep, new_spte);
756 else
757 old_spte = __xchg_spte(sptep, new_spte);
758
759 if (!is_rmap_spte(old_spte))
760 return 0;
761
762 pfn = spte_to_pfn(old_spte);
763 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
764 kvm_set_pfn_accessed(pfn);
765 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
766 kvm_set_pfn_dirty(pfn);
767 return 1;
768 }
769
770 static void drop_spte(struct kvm *kvm, u64 *sptep)
771 {
772 if (set_spte_track_bits(sptep, 0ull))
773 rmap_remove(kvm, sptep);
774 }
775
776 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
777 {
778 unsigned long *rmapp;
779 u64 *spte;
780 int i, write_protected = 0;
781
782 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
783
784 spte = rmap_next(kvm, rmapp, NULL);
785 while (spte) {
786 BUG_ON(!spte);
787 BUG_ON(!(*spte & PT_PRESENT_MASK));
788 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
789 if (is_writable_pte(*spte)) {
790 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
791 write_protected = 1;
792 }
793 spte = rmap_next(kvm, rmapp, spte);
794 }
795
796 /* check for huge page mappings */
797 for (i = PT_DIRECTORY_LEVEL;
798 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
799 rmapp = gfn_to_rmap(kvm, gfn, i);
800 spte = rmap_next(kvm, rmapp, NULL);
801 while (spte) {
802 BUG_ON(!spte);
803 BUG_ON(!(*spte & PT_PRESENT_MASK));
804 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
805 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
806 if (is_writable_pte(*spte)) {
807 drop_spte(kvm, spte);
808 --kvm->stat.lpages;
809 spte = NULL;
810 write_protected = 1;
811 }
812 spte = rmap_next(kvm, rmapp, spte);
813 }
814 }
815
816 return write_protected;
817 }
818
819 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
820 unsigned long data)
821 {
822 u64 *spte;
823 int need_tlb_flush = 0;
824
825 while ((spte = rmap_next(kvm, rmapp, NULL))) {
826 BUG_ON(!(*spte & PT_PRESENT_MASK));
827 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
828 drop_spte(kvm, spte);
829 need_tlb_flush = 1;
830 }
831 return need_tlb_flush;
832 }
833
834 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
835 unsigned long data)
836 {
837 int need_flush = 0;
838 u64 *spte, new_spte;
839 pte_t *ptep = (pte_t *)data;
840 pfn_t new_pfn;
841
842 WARN_ON(pte_huge(*ptep));
843 new_pfn = pte_pfn(*ptep);
844 spte = rmap_next(kvm, rmapp, NULL);
845 while (spte) {
846 BUG_ON(!is_shadow_present_pte(*spte));
847 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
848 need_flush = 1;
849 if (pte_write(*ptep)) {
850 drop_spte(kvm, spte);
851 spte = rmap_next(kvm, rmapp, NULL);
852 } else {
853 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
854 new_spte |= (u64)new_pfn << PAGE_SHIFT;
855
856 new_spte &= ~PT_WRITABLE_MASK;
857 new_spte &= ~SPTE_HOST_WRITEABLE;
858 new_spte &= ~shadow_accessed_mask;
859 set_spte_track_bits(spte, new_spte);
860 spte = rmap_next(kvm, rmapp, spte);
861 }
862 }
863 if (need_flush)
864 kvm_flush_remote_tlbs(kvm);
865
866 return 0;
867 }
868
869 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
870 unsigned long data,
871 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
872 unsigned long data))
873 {
874 int i, j;
875 int ret;
876 int retval = 0;
877 struct kvm_memslots *slots;
878
879 slots = kvm_memslots(kvm);
880
881 for (i = 0; i < slots->nmemslots; i++) {
882 struct kvm_memory_slot *memslot = &slots->memslots[i];
883 unsigned long start = memslot->userspace_addr;
884 unsigned long end;
885
886 end = start + (memslot->npages << PAGE_SHIFT);
887 if (hva >= start && hva < end) {
888 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
889 gfn_t gfn = memslot->base_gfn + gfn_offset;
890
891 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
892
893 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
894 struct kvm_lpage_info *linfo;
895
896 linfo = lpage_info_slot(gfn, memslot,
897 PT_DIRECTORY_LEVEL + j);
898 ret |= handler(kvm, &linfo->rmap_pde, data);
899 }
900 trace_kvm_age_page(hva, memslot, ret);
901 retval |= ret;
902 }
903 }
904
905 return retval;
906 }
907
908 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
909 {
910 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
911 }
912
913 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
914 {
915 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
916 }
917
918 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
919 unsigned long data)
920 {
921 u64 *spte;
922 int young = 0;
923
924 /*
925 * Emulate the accessed bit for EPT, by checking if this page has
926 * an EPT mapping, and clearing it if it does. On the next access,
927 * a new EPT mapping will be established.
928 * This has some overhead, but not as much as the cost of swapping
929 * out actively used pages or breaking up actively used hugepages.
930 */
931 if (!shadow_accessed_mask)
932 return kvm_unmap_rmapp(kvm, rmapp, data);
933
934 spte = rmap_next(kvm, rmapp, NULL);
935 while (spte) {
936 int _young;
937 u64 _spte = *spte;
938 BUG_ON(!(_spte & PT_PRESENT_MASK));
939 _young = _spte & PT_ACCESSED_MASK;
940 if (_young) {
941 young = 1;
942 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
943 }
944 spte = rmap_next(kvm, rmapp, spte);
945 }
946 return young;
947 }
948
949 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
950 unsigned long data)
951 {
952 u64 *spte;
953 int young = 0;
954
955 /*
956 * If there's no access bit in the secondary pte set by the
957 * hardware it's up to gup-fast/gup to set the access bit in
958 * the primary pte or in the page structure.
959 */
960 if (!shadow_accessed_mask)
961 goto out;
962
963 spte = rmap_next(kvm, rmapp, NULL);
964 while (spte) {
965 u64 _spte = *spte;
966 BUG_ON(!(_spte & PT_PRESENT_MASK));
967 young = _spte & PT_ACCESSED_MASK;
968 if (young) {
969 young = 1;
970 break;
971 }
972 spte = rmap_next(kvm, rmapp, spte);
973 }
974 out:
975 return young;
976 }
977
978 #define RMAP_RECYCLE_THRESHOLD 1000
979
980 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981 {
982 unsigned long *rmapp;
983 struct kvm_mmu_page *sp;
984
985 sp = page_header(__pa(spte));
986
987 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
988
989 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
990 kvm_flush_remote_tlbs(vcpu->kvm);
991 }
992
993 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
994 {
995 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
996 }
997
998 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
999 {
1000 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1001 }
1002
1003 #ifdef MMU_DEBUG
1004 static int is_empty_shadow_page(u64 *spt)
1005 {
1006 u64 *pos;
1007 u64 *end;
1008
1009 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1010 if (is_shadow_present_pte(*pos)) {
1011 printk(KERN_ERR "%s: %p %llx\n", __func__,
1012 pos, *pos);
1013 return 0;
1014 }
1015 return 1;
1016 }
1017 #endif
1018
1019 /*
1020 * This value is the sum of all of the kvm instances's
1021 * kvm->arch.n_used_mmu_pages values. We need a global,
1022 * aggregate version in order to make the slab shrinker
1023 * faster
1024 */
1025 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1026 {
1027 kvm->arch.n_used_mmu_pages += nr;
1028 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1029 }
1030
1031 /*
1032 * Remove the sp from shadow page cache, after call it,
1033 * we can not find this sp from the cache, and the shadow
1034 * page table is still valid.
1035 * It should be under the protection of mmu lock.
1036 */
1037 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1038 {
1039 ASSERT(is_empty_shadow_page(sp->spt));
1040 hlist_del(&sp->hash_link);
1041 if (!sp->role.direct)
1042 free_page((unsigned long)sp->gfns);
1043 }
1044
1045 /*
1046 * Free the shadow page table and the sp, we can do it
1047 * out of the protection of mmu lock.
1048 */
1049 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1050 {
1051 list_del(&sp->link);
1052 free_page((unsigned long)sp->spt);
1053 kmem_cache_free(mmu_page_header_cache, sp);
1054 }
1055
1056 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1057 {
1058 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1059 }
1060
1061 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1062 struct kvm_mmu_page *sp, u64 *parent_pte)
1063 {
1064 if (!parent_pte)
1065 return;
1066
1067 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1068 }
1069
1070 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1071 u64 *parent_pte)
1072 {
1073 pte_list_remove(parent_pte, &sp->parent_ptes);
1074 }
1075
1076 static void drop_parent_pte(struct kvm_mmu_page *sp,
1077 u64 *parent_pte)
1078 {
1079 mmu_page_remove_parent_pte(sp, parent_pte);
1080 __set_spte(parent_pte, 0ull);
1081 }
1082
1083 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1084 u64 *parent_pte, int direct)
1085 {
1086 struct kvm_mmu_page *sp;
1087 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1088 sizeof *sp);
1089 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1090 if (!direct)
1091 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1092 PAGE_SIZE);
1093 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1094 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1095 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1096 sp->parent_ptes = 0;
1097 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1098 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1099 return sp;
1100 }
1101
1102 static void mark_unsync(u64 *spte);
1103 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1104 {
1105 pte_list_walk(&sp->parent_ptes, mark_unsync);
1106 }
1107
1108 static void mark_unsync(u64 *spte)
1109 {
1110 struct kvm_mmu_page *sp;
1111 unsigned int index;
1112
1113 sp = page_header(__pa(spte));
1114 index = spte - sp->spt;
1115 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1116 return;
1117 if (sp->unsync_children++)
1118 return;
1119 kvm_mmu_mark_parents_unsync(sp);
1120 }
1121
1122 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1123 struct kvm_mmu_page *sp)
1124 {
1125 return 1;
1126 }
1127
1128 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1129 {
1130 }
1131
1132 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1133 struct kvm_mmu_page *sp, u64 *spte,
1134 const void *pte)
1135 {
1136 WARN_ON(1);
1137 }
1138
1139 #define KVM_PAGE_ARRAY_NR 16
1140
1141 struct kvm_mmu_pages {
1142 struct mmu_page_and_offset {
1143 struct kvm_mmu_page *sp;
1144 unsigned int idx;
1145 } page[KVM_PAGE_ARRAY_NR];
1146 unsigned int nr;
1147 };
1148
1149 #define for_each_unsync_children(bitmap, idx) \
1150 for (idx = find_first_bit(bitmap, 512); \
1151 idx < 512; \
1152 idx = find_next_bit(bitmap, 512, idx+1))
1153
1154 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1155 int idx)
1156 {
1157 int i;
1158
1159 if (sp->unsync)
1160 for (i=0; i < pvec->nr; i++)
1161 if (pvec->page[i].sp == sp)
1162 return 0;
1163
1164 pvec->page[pvec->nr].sp = sp;
1165 pvec->page[pvec->nr].idx = idx;
1166 pvec->nr++;
1167 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1168 }
1169
1170 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1171 struct kvm_mmu_pages *pvec)
1172 {
1173 int i, ret, nr_unsync_leaf = 0;
1174
1175 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1176 struct kvm_mmu_page *child;
1177 u64 ent = sp->spt[i];
1178
1179 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1180 goto clear_child_bitmap;
1181
1182 child = page_header(ent & PT64_BASE_ADDR_MASK);
1183
1184 if (child->unsync_children) {
1185 if (mmu_pages_add(pvec, child, i))
1186 return -ENOSPC;
1187
1188 ret = __mmu_unsync_walk(child, pvec);
1189 if (!ret)
1190 goto clear_child_bitmap;
1191 else if (ret > 0)
1192 nr_unsync_leaf += ret;
1193 else
1194 return ret;
1195 } else if (child->unsync) {
1196 nr_unsync_leaf++;
1197 if (mmu_pages_add(pvec, child, i))
1198 return -ENOSPC;
1199 } else
1200 goto clear_child_bitmap;
1201
1202 continue;
1203
1204 clear_child_bitmap:
1205 __clear_bit(i, sp->unsync_child_bitmap);
1206 sp->unsync_children--;
1207 WARN_ON((int)sp->unsync_children < 0);
1208 }
1209
1210
1211 return nr_unsync_leaf;
1212 }
1213
1214 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1215 struct kvm_mmu_pages *pvec)
1216 {
1217 if (!sp->unsync_children)
1218 return 0;
1219
1220 mmu_pages_add(pvec, sp, 0);
1221 return __mmu_unsync_walk(sp, pvec);
1222 }
1223
1224 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1225 {
1226 WARN_ON(!sp->unsync);
1227 trace_kvm_mmu_sync_page(sp);
1228 sp->unsync = 0;
1229 --kvm->stat.mmu_unsync;
1230 }
1231
1232 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1233 struct list_head *invalid_list);
1234 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1235 struct list_head *invalid_list);
1236
1237 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1238 hlist_for_each_entry(sp, pos, \
1239 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1240 if ((sp)->gfn != (gfn)) {} else
1241
1242 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1243 hlist_for_each_entry(sp, pos, \
1244 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1245 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1246 (sp)->role.invalid) {} else
1247
1248 /* @sp->gfn should be write-protected at the call site */
1249 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1250 struct list_head *invalid_list, bool clear_unsync)
1251 {
1252 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1253 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1254 return 1;
1255 }
1256
1257 if (clear_unsync)
1258 kvm_unlink_unsync_page(vcpu->kvm, sp);
1259
1260 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1261 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1262 return 1;
1263 }
1264
1265 kvm_mmu_flush_tlb(vcpu);
1266 return 0;
1267 }
1268
1269 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1270 struct kvm_mmu_page *sp)
1271 {
1272 LIST_HEAD(invalid_list);
1273 int ret;
1274
1275 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1276 if (ret)
1277 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1278
1279 return ret;
1280 }
1281
1282 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1283 struct list_head *invalid_list)
1284 {
1285 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1286 }
1287
1288 /* @gfn should be write-protected at the call site */
1289 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1290 {
1291 struct kvm_mmu_page *s;
1292 struct hlist_node *node;
1293 LIST_HEAD(invalid_list);
1294 bool flush = false;
1295
1296 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1297 if (!s->unsync)
1298 continue;
1299
1300 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1301 kvm_unlink_unsync_page(vcpu->kvm, s);
1302 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1303 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1304 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1305 continue;
1306 }
1307 flush = true;
1308 }
1309
1310 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1311 if (flush)
1312 kvm_mmu_flush_tlb(vcpu);
1313 }
1314
1315 struct mmu_page_path {
1316 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1317 unsigned int idx[PT64_ROOT_LEVEL-1];
1318 };
1319
1320 #define for_each_sp(pvec, sp, parents, i) \
1321 for (i = mmu_pages_next(&pvec, &parents, -1), \
1322 sp = pvec.page[i].sp; \
1323 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1324 i = mmu_pages_next(&pvec, &parents, i))
1325
1326 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1327 struct mmu_page_path *parents,
1328 int i)
1329 {
1330 int n;
1331
1332 for (n = i+1; n < pvec->nr; n++) {
1333 struct kvm_mmu_page *sp = pvec->page[n].sp;
1334
1335 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1336 parents->idx[0] = pvec->page[n].idx;
1337 return n;
1338 }
1339
1340 parents->parent[sp->role.level-2] = sp;
1341 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1342 }
1343
1344 return n;
1345 }
1346
1347 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1348 {
1349 struct kvm_mmu_page *sp;
1350 unsigned int level = 0;
1351
1352 do {
1353 unsigned int idx = parents->idx[level];
1354
1355 sp = parents->parent[level];
1356 if (!sp)
1357 return;
1358
1359 --sp->unsync_children;
1360 WARN_ON((int)sp->unsync_children < 0);
1361 __clear_bit(idx, sp->unsync_child_bitmap);
1362 level++;
1363 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1364 }
1365
1366 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1367 struct mmu_page_path *parents,
1368 struct kvm_mmu_pages *pvec)
1369 {
1370 parents->parent[parent->role.level-1] = NULL;
1371 pvec->nr = 0;
1372 }
1373
1374 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1375 struct kvm_mmu_page *parent)
1376 {
1377 int i;
1378 struct kvm_mmu_page *sp;
1379 struct mmu_page_path parents;
1380 struct kvm_mmu_pages pages;
1381 LIST_HEAD(invalid_list);
1382
1383 kvm_mmu_pages_init(parent, &parents, &pages);
1384 while (mmu_unsync_walk(parent, &pages)) {
1385 int protected = 0;
1386
1387 for_each_sp(pages, sp, parents, i)
1388 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1389
1390 if (protected)
1391 kvm_flush_remote_tlbs(vcpu->kvm);
1392
1393 for_each_sp(pages, sp, parents, i) {
1394 kvm_sync_page(vcpu, sp, &invalid_list);
1395 mmu_pages_clear_parents(&parents);
1396 }
1397 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1398 cond_resched_lock(&vcpu->kvm->mmu_lock);
1399 kvm_mmu_pages_init(parent, &parents, &pages);
1400 }
1401 }
1402
1403 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1404 {
1405 int i;
1406
1407 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1408 sp->spt[i] = 0ull;
1409 }
1410
1411 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1412 gfn_t gfn,
1413 gva_t gaddr,
1414 unsigned level,
1415 int direct,
1416 unsigned access,
1417 u64 *parent_pte)
1418 {
1419 union kvm_mmu_page_role role;
1420 unsigned quadrant;
1421 struct kvm_mmu_page *sp;
1422 struct hlist_node *node;
1423 bool need_sync = false;
1424
1425 role = vcpu->arch.mmu.base_role;
1426 role.level = level;
1427 role.direct = direct;
1428 if (role.direct)
1429 role.cr4_pae = 0;
1430 role.access = access;
1431 if (!vcpu->arch.mmu.direct_map
1432 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1433 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1434 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1435 role.quadrant = quadrant;
1436 }
1437 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1438 if (!need_sync && sp->unsync)
1439 need_sync = true;
1440
1441 if (sp->role.word != role.word)
1442 continue;
1443
1444 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1445 break;
1446
1447 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1448 if (sp->unsync_children) {
1449 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1450 kvm_mmu_mark_parents_unsync(sp);
1451 } else if (sp->unsync)
1452 kvm_mmu_mark_parents_unsync(sp);
1453
1454 trace_kvm_mmu_get_page(sp, false);
1455 return sp;
1456 }
1457 ++vcpu->kvm->stat.mmu_cache_miss;
1458 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1459 if (!sp)
1460 return sp;
1461 sp->gfn = gfn;
1462 sp->role = role;
1463 hlist_add_head(&sp->hash_link,
1464 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1465 if (!direct) {
1466 if (rmap_write_protect(vcpu->kvm, gfn))
1467 kvm_flush_remote_tlbs(vcpu->kvm);
1468 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1469 kvm_sync_pages(vcpu, gfn);
1470
1471 account_shadowed(vcpu->kvm, gfn);
1472 }
1473 init_shadow_page_table(sp);
1474 trace_kvm_mmu_get_page(sp, true);
1475 return sp;
1476 }
1477
1478 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1479 struct kvm_vcpu *vcpu, u64 addr)
1480 {
1481 iterator->addr = addr;
1482 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1483 iterator->level = vcpu->arch.mmu.shadow_root_level;
1484
1485 if (iterator->level == PT64_ROOT_LEVEL &&
1486 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1487 !vcpu->arch.mmu.direct_map)
1488 --iterator->level;
1489
1490 if (iterator->level == PT32E_ROOT_LEVEL) {
1491 iterator->shadow_addr
1492 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1493 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1494 --iterator->level;
1495 if (!iterator->shadow_addr)
1496 iterator->level = 0;
1497 }
1498 }
1499
1500 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1501 {
1502 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1503 return false;
1504
1505 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1506 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1507 return true;
1508 }
1509
1510 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1511 {
1512 if (is_last_spte(*iterator->sptep, iterator->level)) {
1513 iterator->level = 0;
1514 return;
1515 }
1516
1517 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1518 --iterator->level;
1519 }
1520
1521 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1522 {
1523 u64 spte;
1524
1525 spte = __pa(sp->spt)
1526 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1527 | PT_WRITABLE_MASK | PT_USER_MASK;
1528 __set_spte(sptep, spte);
1529 }
1530
1531 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1532 {
1533 if (is_large_pte(*sptep)) {
1534 drop_spte(vcpu->kvm, sptep);
1535 kvm_flush_remote_tlbs(vcpu->kvm);
1536 }
1537 }
1538
1539 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1540 unsigned direct_access)
1541 {
1542 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1543 struct kvm_mmu_page *child;
1544
1545 /*
1546 * For the direct sp, if the guest pte's dirty bit
1547 * changed form clean to dirty, it will corrupt the
1548 * sp's access: allow writable in the read-only sp,
1549 * so we should update the spte at this point to get
1550 * a new sp with the correct access.
1551 */
1552 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1553 if (child->role.access == direct_access)
1554 return;
1555
1556 drop_parent_pte(child, sptep);
1557 kvm_flush_remote_tlbs(vcpu->kvm);
1558 }
1559 }
1560
1561 static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1562 u64 *spte)
1563 {
1564 u64 pte;
1565 struct kvm_mmu_page *child;
1566
1567 pte = *spte;
1568 if (is_shadow_present_pte(pte)) {
1569 if (is_last_spte(pte, sp->role.level))
1570 drop_spte(kvm, spte);
1571 else {
1572 child = page_header(pte & PT64_BASE_ADDR_MASK);
1573 drop_parent_pte(child, spte);
1574 }
1575 }
1576
1577 if (is_large_pte(pte))
1578 --kvm->stat.lpages;
1579 }
1580
1581 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1582 struct kvm_mmu_page *sp)
1583 {
1584 unsigned i;
1585
1586 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1587 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1588 }
1589
1590 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1591 {
1592 mmu_page_remove_parent_pte(sp, parent_pte);
1593 }
1594
1595 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1596 {
1597 int i;
1598 struct kvm_vcpu *vcpu;
1599
1600 kvm_for_each_vcpu(i, vcpu, kvm)
1601 vcpu->arch.last_pte_updated = NULL;
1602 }
1603
1604 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1605 {
1606 u64 *parent_pte;
1607
1608 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1609 drop_parent_pte(sp, parent_pte);
1610 }
1611
1612 static int mmu_zap_unsync_children(struct kvm *kvm,
1613 struct kvm_mmu_page *parent,
1614 struct list_head *invalid_list)
1615 {
1616 int i, zapped = 0;
1617 struct mmu_page_path parents;
1618 struct kvm_mmu_pages pages;
1619
1620 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1621 return 0;
1622
1623 kvm_mmu_pages_init(parent, &parents, &pages);
1624 while (mmu_unsync_walk(parent, &pages)) {
1625 struct kvm_mmu_page *sp;
1626
1627 for_each_sp(pages, sp, parents, i) {
1628 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1629 mmu_pages_clear_parents(&parents);
1630 zapped++;
1631 }
1632 kvm_mmu_pages_init(parent, &parents, &pages);
1633 }
1634
1635 return zapped;
1636 }
1637
1638 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1639 struct list_head *invalid_list)
1640 {
1641 int ret;
1642
1643 trace_kvm_mmu_prepare_zap_page(sp);
1644 ++kvm->stat.mmu_shadow_zapped;
1645 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1646 kvm_mmu_page_unlink_children(kvm, sp);
1647 kvm_mmu_unlink_parents(kvm, sp);
1648 if (!sp->role.invalid && !sp->role.direct)
1649 unaccount_shadowed(kvm, sp->gfn);
1650 if (sp->unsync)
1651 kvm_unlink_unsync_page(kvm, sp);
1652 if (!sp->root_count) {
1653 /* Count self */
1654 ret++;
1655 list_move(&sp->link, invalid_list);
1656 kvm_mod_used_mmu_pages(kvm, -1);
1657 } else {
1658 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1659 kvm_reload_remote_mmus(kvm);
1660 }
1661
1662 sp->role.invalid = 1;
1663 kvm_mmu_reset_last_pte_updated(kvm);
1664 return ret;
1665 }
1666
1667 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1668 struct list_head *invalid_list)
1669 {
1670 struct kvm_mmu_page *sp;
1671
1672 if (list_empty(invalid_list))
1673 return;
1674
1675 kvm_flush_remote_tlbs(kvm);
1676
1677 do {
1678 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1679 WARN_ON(!sp->role.invalid || sp->root_count);
1680 kvm_mmu_isolate_page(sp);
1681 kvm_mmu_free_page(sp);
1682 } while (!list_empty(invalid_list));
1683
1684 }
1685
1686 /*
1687 * Changing the number of mmu pages allocated to the vm
1688 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1689 */
1690 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1691 {
1692 LIST_HEAD(invalid_list);
1693 /*
1694 * If we set the number of mmu pages to be smaller be than the
1695 * number of actived pages , we must to free some mmu pages before we
1696 * change the value
1697 */
1698
1699 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1700 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1701 !list_empty(&kvm->arch.active_mmu_pages)) {
1702 struct kvm_mmu_page *page;
1703
1704 page = container_of(kvm->arch.active_mmu_pages.prev,
1705 struct kvm_mmu_page, link);
1706 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1707 }
1708 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1709 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1710 }
1711
1712 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1713 }
1714
1715 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1716 {
1717 struct kvm_mmu_page *sp;
1718 struct hlist_node *node;
1719 LIST_HEAD(invalid_list);
1720 int r;
1721
1722 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1723 r = 0;
1724
1725 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1726 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1727 sp->role.word);
1728 r = 1;
1729 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1730 }
1731 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1732 return r;
1733 }
1734
1735 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1736 {
1737 struct kvm_mmu_page *sp;
1738 struct hlist_node *node;
1739 LIST_HEAD(invalid_list);
1740
1741 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1742 pgprintk("%s: zap %llx %x\n",
1743 __func__, gfn, sp->role.word);
1744 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1745 }
1746 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1747 }
1748
1749 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1750 {
1751 int slot = memslot_id(kvm, gfn);
1752 struct kvm_mmu_page *sp = page_header(__pa(pte));
1753
1754 __set_bit(slot, sp->slot_bitmap);
1755 }
1756
1757 /*
1758 * The function is based on mtrr_type_lookup() in
1759 * arch/x86/kernel/cpu/mtrr/generic.c
1760 */
1761 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1762 u64 start, u64 end)
1763 {
1764 int i;
1765 u64 base, mask;
1766 u8 prev_match, curr_match;
1767 int num_var_ranges = KVM_NR_VAR_MTRR;
1768
1769 if (!mtrr_state->enabled)
1770 return 0xFF;
1771
1772 /* Make end inclusive end, instead of exclusive */
1773 end--;
1774
1775 /* Look in fixed ranges. Just return the type as per start */
1776 if (mtrr_state->have_fixed && (start < 0x100000)) {
1777 int idx;
1778
1779 if (start < 0x80000) {
1780 idx = 0;
1781 idx += (start >> 16);
1782 return mtrr_state->fixed_ranges[idx];
1783 } else if (start < 0xC0000) {
1784 idx = 1 * 8;
1785 idx += ((start - 0x80000) >> 14);
1786 return mtrr_state->fixed_ranges[idx];
1787 } else if (start < 0x1000000) {
1788 idx = 3 * 8;
1789 idx += ((start - 0xC0000) >> 12);
1790 return mtrr_state->fixed_ranges[idx];
1791 }
1792 }
1793
1794 /*
1795 * Look in variable ranges
1796 * Look of multiple ranges matching this address and pick type
1797 * as per MTRR precedence
1798 */
1799 if (!(mtrr_state->enabled & 2))
1800 return mtrr_state->def_type;
1801
1802 prev_match = 0xFF;
1803 for (i = 0; i < num_var_ranges; ++i) {
1804 unsigned short start_state, end_state;
1805
1806 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1807 continue;
1808
1809 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1810 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1811 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1812 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1813
1814 start_state = ((start & mask) == (base & mask));
1815 end_state = ((end & mask) == (base & mask));
1816 if (start_state != end_state)
1817 return 0xFE;
1818
1819 if ((start & mask) != (base & mask))
1820 continue;
1821
1822 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1823 if (prev_match == 0xFF) {
1824 prev_match = curr_match;
1825 continue;
1826 }
1827
1828 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1829 curr_match == MTRR_TYPE_UNCACHABLE)
1830 return MTRR_TYPE_UNCACHABLE;
1831
1832 if ((prev_match == MTRR_TYPE_WRBACK &&
1833 curr_match == MTRR_TYPE_WRTHROUGH) ||
1834 (prev_match == MTRR_TYPE_WRTHROUGH &&
1835 curr_match == MTRR_TYPE_WRBACK)) {
1836 prev_match = MTRR_TYPE_WRTHROUGH;
1837 curr_match = MTRR_TYPE_WRTHROUGH;
1838 }
1839
1840 if (prev_match != curr_match)
1841 return MTRR_TYPE_UNCACHABLE;
1842 }
1843
1844 if (prev_match != 0xFF)
1845 return prev_match;
1846
1847 return mtrr_state->def_type;
1848 }
1849
1850 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1851 {
1852 u8 mtrr;
1853
1854 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1855 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1856 if (mtrr == 0xfe || mtrr == 0xff)
1857 mtrr = MTRR_TYPE_WRBACK;
1858 return mtrr;
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1861
1862 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1863 {
1864 trace_kvm_mmu_unsync_page(sp);
1865 ++vcpu->kvm->stat.mmu_unsync;
1866 sp->unsync = 1;
1867
1868 kvm_mmu_mark_parents_unsync(sp);
1869 }
1870
1871 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1872 {
1873 struct kvm_mmu_page *s;
1874 struct hlist_node *node;
1875
1876 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1877 if (s->unsync)
1878 continue;
1879 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1880 __kvm_unsync_page(vcpu, s);
1881 }
1882 }
1883
1884 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1885 bool can_unsync)
1886 {
1887 struct kvm_mmu_page *s;
1888 struct hlist_node *node;
1889 bool need_unsync = false;
1890
1891 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1892 if (!can_unsync)
1893 return 1;
1894
1895 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1896 return 1;
1897
1898 if (!need_unsync && !s->unsync) {
1899 if (!oos_shadow)
1900 return 1;
1901 need_unsync = true;
1902 }
1903 }
1904 if (need_unsync)
1905 kvm_unsync_pages(vcpu, gfn);
1906 return 0;
1907 }
1908
1909 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1910 unsigned pte_access, int user_fault,
1911 int write_fault, int level,
1912 gfn_t gfn, pfn_t pfn, bool speculative,
1913 bool can_unsync, bool host_writable)
1914 {
1915 u64 spte, entry = *sptep;
1916 int ret = 0;
1917
1918 /*
1919 * We don't set the accessed bit, since we sometimes want to see
1920 * whether the guest actually used the pte (in order to detect
1921 * demand paging).
1922 */
1923 spte = PT_PRESENT_MASK;
1924 if (!speculative)
1925 spte |= shadow_accessed_mask;
1926
1927 if (pte_access & ACC_EXEC_MASK)
1928 spte |= shadow_x_mask;
1929 else
1930 spte |= shadow_nx_mask;
1931 if (pte_access & ACC_USER_MASK)
1932 spte |= shadow_user_mask;
1933 if (level > PT_PAGE_TABLE_LEVEL)
1934 spte |= PT_PAGE_SIZE_MASK;
1935 if (tdp_enabled)
1936 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1937 kvm_is_mmio_pfn(pfn));
1938
1939 if (host_writable)
1940 spte |= SPTE_HOST_WRITEABLE;
1941 else
1942 pte_access &= ~ACC_WRITE_MASK;
1943
1944 spte |= (u64)pfn << PAGE_SHIFT;
1945
1946 if ((pte_access & ACC_WRITE_MASK)
1947 || (!vcpu->arch.mmu.direct_map && write_fault
1948 && !is_write_protection(vcpu) && !user_fault)) {
1949
1950 if (level > PT_PAGE_TABLE_LEVEL &&
1951 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1952 ret = 1;
1953 drop_spte(vcpu->kvm, sptep);
1954 goto done;
1955 }
1956
1957 spte |= PT_WRITABLE_MASK;
1958
1959 if (!vcpu->arch.mmu.direct_map
1960 && !(pte_access & ACC_WRITE_MASK)) {
1961 spte &= ~PT_USER_MASK;
1962 /*
1963 * If we converted a user page to a kernel page,
1964 * so that the kernel can write to it when cr0.wp=0,
1965 * then we should prevent the kernel from executing it
1966 * if SMEP is enabled.
1967 */
1968 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
1969 spte |= PT64_NX_MASK;
1970 }
1971
1972 /*
1973 * Optimization: for pte sync, if spte was writable the hash
1974 * lookup is unnecessary (and expensive). Write protection
1975 * is responsibility of mmu_get_page / kvm_sync_page.
1976 * Same reasoning can be applied to dirty page accounting.
1977 */
1978 if (!can_unsync && is_writable_pte(*sptep))
1979 goto set_pte;
1980
1981 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1982 pgprintk("%s: found shadow page for %llx, marking ro\n",
1983 __func__, gfn);
1984 ret = 1;
1985 pte_access &= ~ACC_WRITE_MASK;
1986 if (is_writable_pte(spte))
1987 spte &= ~PT_WRITABLE_MASK;
1988 }
1989 }
1990
1991 if (pte_access & ACC_WRITE_MASK)
1992 mark_page_dirty(vcpu->kvm, gfn);
1993
1994 set_pte:
1995 update_spte(sptep, spte);
1996 /*
1997 * If we overwrite a writable spte with a read-only one we
1998 * should flush remote TLBs. Otherwise rmap_write_protect
1999 * will find a read-only spte, even though the writable spte
2000 * might be cached on a CPU's TLB.
2001 */
2002 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2003 kvm_flush_remote_tlbs(vcpu->kvm);
2004 done:
2005 return ret;
2006 }
2007
2008 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2009 unsigned pt_access, unsigned pte_access,
2010 int user_fault, int write_fault,
2011 int *emulate, int level, gfn_t gfn,
2012 pfn_t pfn, bool speculative,
2013 bool host_writable)
2014 {
2015 int was_rmapped = 0;
2016 int rmap_count;
2017
2018 pgprintk("%s: spte %llx access %x write_fault %d"
2019 " user_fault %d gfn %llx\n",
2020 __func__, *sptep, pt_access,
2021 write_fault, user_fault, gfn);
2022
2023 if (is_rmap_spte(*sptep)) {
2024 /*
2025 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2026 * the parent of the now unreachable PTE.
2027 */
2028 if (level > PT_PAGE_TABLE_LEVEL &&
2029 !is_large_pte(*sptep)) {
2030 struct kvm_mmu_page *child;
2031 u64 pte = *sptep;
2032
2033 child = page_header(pte & PT64_BASE_ADDR_MASK);
2034 drop_parent_pte(child, sptep);
2035 kvm_flush_remote_tlbs(vcpu->kvm);
2036 } else if (pfn != spte_to_pfn(*sptep)) {
2037 pgprintk("hfn old %llx new %llx\n",
2038 spte_to_pfn(*sptep), pfn);
2039 drop_spte(vcpu->kvm, sptep);
2040 kvm_flush_remote_tlbs(vcpu->kvm);
2041 } else
2042 was_rmapped = 1;
2043 }
2044
2045 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2046 level, gfn, pfn, speculative, true,
2047 host_writable)) {
2048 if (write_fault)
2049 *emulate = 1;
2050 kvm_mmu_flush_tlb(vcpu);
2051 }
2052
2053 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2054 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2055 is_large_pte(*sptep)? "2MB" : "4kB",
2056 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2057 *sptep, sptep);
2058 if (!was_rmapped && is_large_pte(*sptep))
2059 ++vcpu->kvm->stat.lpages;
2060
2061 if (is_shadow_present_pte(*sptep)) {
2062 page_header_update_slot(vcpu->kvm, sptep, gfn);
2063 if (!was_rmapped) {
2064 rmap_count = rmap_add(vcpu, sptep, gfn);
2065 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2066 rmap_recycle(vcpu, sptep, gfn);
2067 }
2068 }
2069 kvm_release_pfn_clean(pfn);
2070 if (speculative) {
2071 vcpu->arch.last_pte_updated = sptep;
2072 vcpu->arch.last_pte_gfn = gfn;
2073 }
2074 }
2075
2076 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2077 {
2078 }
2079
2080 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2081 bool no_dirty_log)
2082 {
2083 struct kvm_memory_slot *slot;
2084 unsigned long hva;
2085
2086 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2087 if (!slot) {
2088 get_page(bad_page);
2089 return page_to_pfn(bad_page);
2090 }
2091
2092 hva = gfn_to_hva_memslot(slot, gfn);
2093
2094 return hva_to_pfn_atomic(vcpu->kvm, hva);
2095 }
2096
2097 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2098 struct kvm_mmu_page *sp,
2099 u64 *start, u64 *end)
2100 {
2101 struct page *pages[PTE_PREFETCH_NUM];
2102 unsigned access = sp->role.access;
2103 int i, ret;
2104 gfn_t gfn;
2105
2106 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2107 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2108 return -1;
2109
2110 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2111 if (ret <= 0)
2112 return -1;
2113
2114 for (i = 0; i < ret; i++, gfn++, start++)
2115 mmu_set_spte(vcpu, start, ACC_ALL,
2116 access, 0, 0, NULL,
2117 sp->role.level, gfn,
2118 page_to_pfn(pages[i]), true, true);
2119
2120 return 0;
2121 }
2122
2123 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2124 struct kvm_mmu_page *sp, u64 *sptep)
2125 {
2126 u64 *spte, *start = NULL;
2127 int i;
2128
2129 WARN_ON(!sp->role.direct);
2130
2131 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2132 spte = sp->spt + i;
2133
2134 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2135 if (is_shadow_present_pte(*spte) || spte == sptep) {
2136 if (!start)
2137 continue;
2138 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2139 break;
2140 start = NULL;
2141 } else if (!start)
2142 start = spte;
2143 }
2144 }
2145
2146 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2147 {
2148 struct kvm_mmu_page *sp;
2149
2150 /*
2151 * Since it's no accessed bit on EPT, it's no way to
2152 * distinguish between actually accessed translations
2153 * and prefetched, so disable pte prefetch if EPT is
2154 * enabled.
2155 */
2156 if (!shadow_accessed_mask)
2157 return;
2158
2159 sp = page_header(__pa(sptep));
2160 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2161 return;
2162
2163 __direct_pte_prefetch(vcpu, sp, sptep);
2164 }
2165
2166 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2167 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2168 bool prefault)
2169 {
2170 struct kvm_shadow_walk_iterator iterator;
2171 struct kvm_mmu_page *sp;
2172 int emulate = 0;
2173 gfn_t pseudo_gfn;
2174
2175 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2176 if (iterator.level == level) {
2177 unsigned pte_access = ACC_ALL;
2178
2179 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2180 0, write, &emulate,
2181 level, gfn, pfn, prefault, map_writable);
2182 direct_pte_prefetch(vcpu, iterator.sptep);
2183 ++vcpu->stat.pf_fixed;
2184 break;
2185 }
2186
2187 if (!is_shadow_present_pte(*iterator.sptep)) {
2188 u64 base_addr = iterator.addr;
2189
2190 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2191 pseudo_gfn = base_addr >> PAGE_SHIFT;
2192 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2193 iterator.level - 1,
2194 1, ACC_ALL, iterator.sptep);
2195 if (!sp) {
2196 pgprintk("nonpaging_map: ENOMEM\n");
2197 kvm_release_pfn_clean(pfn);
2198 return -ENOMEM;
2199 }
2200
2201 __set_spte(iterator.sptep,
2202 __pa(sp->spt)
2203 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2204 | shadow_user_mask | shadow_x_mask
2205 | shadow_accessed_mask);
2206 }
2207 }
2208 return emulate;
2209 }
2210
2211 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2212 {
2213 siginfo_t info;
2214
2215 info.si_signo = SIGBUS;
2216 info.si_errno = 0;
2217 info.si_code = BUS_MCEERR_AR;
2218 info.si_addr = (void __user *)address;
2219 info.si_addr_lsb = PAGE_SHIFT;
2220
2221 send_sig_info(SIGBUS, &info, tsk);
2222 }
2223
2224 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gva_t gva,
2225 unsigned access, gfn_t gfn, pfn_t pfn)
2226 {
2227 kvm_release_pfn_clean(pfn);
2228 if (is_hwpoison_pfn(pfn)) {
2229 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2230 return 0;
2231 } else if (is_fault_pfn(pfn))
2232 return -EFAULT;
2233
2234 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2235 return 1;
2236 }
2237
2238 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2239 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2240 {
2241 pfn_t pfn = *pfnp;
2242 gfn_t gfn = *gfnp;
2243 int level = *levelp;
2244
2245 /*
2246 * Check if it's a transparent hugepage. If this would be an
2247 * hugetlbfs page, level wouldn't be set to
2248 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2249 * here.
2250 */
2251 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2252 level == PT_PAGE_TABLE_LEVEL &&
2253 PageTransCompound(pfn_to_page(pfn)) &&
2254 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2255 unsigned long mask;
2256 /*
2257 * mmu_notifier_retry was successful and we hold the
2258 * mmu_lock here, so the pmd can't become splitting
2259 * from under us, and in turn
2260 * __split_huge_page_refcount() can't run from under
2261 * us and we can safely transfer the refcount from
2262 * PG_tail to PG_head as we switch the pfn to tail to
2263 * head.
2264 */
2265 *levelp = level = PT_DIRECTORY_LEVEL;
2266 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2267 VM_BUG_ON((gfn & mask) != (pfn & mask));
2268 if (pfn & mask) {
2269 gfn &= ~mask;
2270 *gfnp = gfn;
2271 kvm_release_pfn_clean(pfn);
2272 pfn &= ~mask;
2273 if (!get_page_unless_zero(pfn_to_page(pfn)))
2274 BUG();
2275 *pfnp = pfn;
2276 }
2277 }
2278 }
2279
2280 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2281 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2282
2283 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2284 bool prefault)
2285 {
2286 int r;
2287 int level;
2288 int force_pt_level;
2289 pfn_t pfn;
2290 unsigned long mmu_seq;
2291 bool map_writable;
2292
2293 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2294 if (likely(!force_pt_level)) {
2295 level = mapping_level(vcpu, gfn);
2296 /*
2297 * This path builds a PAE pagetable - so we can map
2298 * 2mb pages at maximum. Therefore check if the level
2299 * is larger than that.
2300 */
2301 if (level > PT_DIRECTORY_LEVEL)
2302 level = PT_DIRECTORY_LEVEL;
2303
2304 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2305 } else
2306 level = PT_PAGE_TABLE_LEVEL;
2307
2308 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2309 smp_rmb();
2310
2311 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2312 return 0;
2313
2314 /* mmio */
2315 if (is_error_pfn(pfn))
2316 return kvm_handle_bad_page(vcpu, v, ACC_ALL, gfn, pfn);
2317
2318 spin_lock(&vcpu->kvm->mmu_lock);
2319 if (mmu_notifier_retry(vcpu, mmu_seq))
2320 goto out_unlock;
2321 kvm_mmu_free_some_pages(vcpu);
2322 if (likely(!force_pt_level))
2323 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2324 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2325 prefault);
2326 spin_unlock(&vcpu->kvm->mmu_lock);
2327
2328
2329 return r;
2330
2331 out_unlock:
2332 spin_unlock(&vcpu->kvm->mmu_lock);
2333 kvm_release_pfn_clean(pfn);
2334 return 0;
2335 }
2336
2337
2338 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2339 {
2340 int i;
2341 struct kvm_mmu_page *sp;
2342 LIST_HEAD(invalid_list);
2343
2344 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2345 return;
2346 spin_lock(&vcpu->kvm->mmu_lock);
2347 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2348 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2349 vcpu->arch.mmu.direct_map)) {
2350 hpa_t root = vcpu->arch.mmu.root_hpa;
2351
2352 sp = page_header(root);
2353 --sp->root_count;
2354 if (!sp->root_count && sp->role.invalid) {
2355 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2356 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2357 }
2358 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2359 spin_unlock(&vcpu->kvm->mmu_lock);
2360 return;
2361 }
2362 for (i = 0; i < 4; ++i) {
2363 hpa_t root = vcpu->arch.mmu.pae_root[i];
2364
2365 if (root) {
2366 root &= PT64_BASE_ADDR_MASK;
2367 sp = page_header(root);
2368 --sp->root_count;
2369 if (!sp->root_count && sp->role.invalid)
2370 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2371 &invalid_list);
2372 }
2373 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2374 }
2375 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2376 spin_unlock(&vcpu->kvm->mmu_lock);
2377 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2378 }
2379
2380 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2381 {
2382 int ret = 0;
2383
2384 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2385 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2386 ret = 1;
2387 }
2388
2389 return ret;
2390 }
2391
2392 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2393 {
2394 struct kvm_mmu_page *sp;
2395 unsigned i;
2396
2397 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2398 spin_lock(&vcpu->kvm->mmu_lock);
2399 kvm_mmu_free_some_pages(vcpu);
2400 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2401 1, ACC_ALL, NULL);
2402 ++sp->root_count;
2403 spin_unlock(&vcpu->kvm->mmu_lock);
2404 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2405 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2406 for (i = 0; i < 4; ++i) {
2407 hpa_t root = vcpu->arch.mmu.pae_root[i];
2408
2409 ASSERT(!VALID_PAGE(root));
2410 spin_lock(&vcpu->kvm->mmu_lock);
2411 kvm_mmu_free_some_pages(vcpu);
2412 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2413 i << 30,
2414 PT32_ROOT_LEVEL, 1, ACC_ALL,
2415 NULL);
2416 root = __pa(sp->spt);
2417 ++sp->root_count;
2418 spin_unlock(&vcpu->kvm->mmu_lock);
2419 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2420 }
2421 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2422 } else
2423 BUG();
2424
2425 return 0;
2426 }
2427
2428 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2429 {
2430 struct kvm_mmu_page *sp;
2431 u64 pdptr, pm_mask;
2432 gfn_t root_gfn;
2433 int i;
2434
2435 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2436
2437 if (mmu_check_root(vcpu, root_gfn))
2438 return 1;
2439
2440 /*
2441 * Do we shadow a long mode page table? If so we need to
2442 * write-protect the guests page table root.
2443 */
2444 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2445 hpa_t root = vcpu->arch.mmu.root_hpa;
2446
2447 ASSERT(!VALID_PAGE(root));
2448
2449 spin_lock(&vcpu->kvm->mmu_lock);
2450 kvm_mmu_free_some_pages(vcpu);
2451 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2452 0, ACC_ALL, NULL);
2453 root = __pa(sp->spt);
2454 ++sp->root_count;
2455 spin_unlock(&vcpu->kvm->mmu_lock);
2456 vcpu->arch.mmu.root_hpa = root;
2457 return 0;
2458 }
2459
2460 /*
2461 * We shadow a 32 bit page table. This may be a legacy 2-level
2462 * or a PAE 3-level page table. In either case we need to be aware that
2463 * the shadow page table may be a PAE or a long mode page table.
2464 */
2465 pm_mask = PT_PRESENT_MASK;
2466 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2467 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2468
2469 for (i = 0; i < 4; ++i) {
2470 hpa_t root = vcpu->arch.mmu.pae_root[i];
2471
2472 ASSERT(!VALID_PAGE(root));
2473 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2474 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2475 if (!is_present_gpte(pdptr)) {
2476 vcpu->arch.mmu.pae_root[i] = 0;
2477 continue;
2478 }
2479 root_gfn = pdptr >> PAGE_SHIFT;
2480 if (mmu_check_root(vcpu, root_gfn))
2481 return 1;
2482 }
2483 spin_lock(&vcpu->kvm->mmu_lock);
2484 kvm_mmu_free_some_pages(vcpu);
2485 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2486 PT32_ROOT_LEVEL, 0,
2487 ACC_ALL, NULL);
2488 root = __pa(sp->spt);
2489 ++sp->root_count;
2490 spin_unlock(&vcpu->kvm->mmu_lock);
2491
2492 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2493 }
2494 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2495
2496 /*
2497 * If we shadow a 32 bit page table with a long mode page
2498 * table we enter this path.
2499 */
2500 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2501 if (vcpu->arch.mmu.lm_root == NULL) {
2502 /*
2503 * The additional page necessary for this is only
2504 * allocated on demand.
2505 */
2506
2507 u64 *lm_root;
2508
2509 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2510 if (lm_root == NULL)
2511 return 1;
2512
2513 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2514
2515 vcpu->arch.mmu.lm_root = lm_root;
2516 }
2517
2518 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2519 }
2520
2521 return 0;
2522 }
2523
2524 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2525 {
2526 if (vcpu->arch.mmu.direct_map)
2527 return mmu_alloc_direct_roots(vcpu);
2528 else
2529 return mmu_alloc_shadow_roots(vcpu);
2530 }
2531
2532 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2533 {
2534 int i;
2535 struct kvm_mmu_page *sp;
2536
2537 if (vcpu->arch.mmu.direct_map)
2538 return;
2539
2540 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2541 return;
2542
2543 vcpu_clear_mmio_info(vcpu, ~0ul);
2544 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2545 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2546 hpa_t root = vcpu->arch.mmu.root_hpa;
2547 sp = page_header(root);
2548 mmu_sync_children(vcpu, sp);
2549 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2550 return;
2551 }
2552 for (i = 0; i < 4; ++i) {
2553 hpa_t root = vcpu->arch.mmu.pae_root[i];
2554
2555 if (root && VALID_PAGE(root)) {
2556 root &= PT64_BASE_ADDR_MASK;
2557 sp = page_header(root);
2558 mmu_sync_children(vcpu, sp);
2559 }
2560 }
2561 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2562 }
2563
2564 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2565 {
2566 spin_lock(&vcpu->kvm->mmu_lock);
2567 mmu_sync_roots(vcpu);
2568 spin_unlock(&vcpu->kvm->mmu_lock);
2569 }
2570
2571 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2572 u32 access, struct x86_exception *exception)
2573 {
2574 if (exception)
2575 exception->error_code = 0;
2576 return vaddr;
2577 }
2578
2579 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2580 u32 access,
2581 struct x86_exception *exception)
2582 {
2583 if (exception)
2584 exception->error_code = 0;
2585 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2586 }
2587
2588 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2589 u32 error_code, bool prefault)
2590 {
2591 gfn_t gfn;
2592 int r;
2593
2594 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2595 r = mmu_topup_memory_caches(vcpu);
2596 if (r)
2597 return r;
2598
2599 ASSERT(vcpu);
2600 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2601
2602 gfn = gva >> PAGE_SHIFT;
2603
2604 return nonpaging_map(vcpu, gva & PAGE_MASK,
2605 error_code & PFERR_WRITE_MASK, gfn, prefault);
2606 }
2607
2608 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2609 {
2610 struct kvm_arch_async_pf arch;
2611
2612 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2613 arch.gfn = gfn;
2614 arch.direct_map = vcpu->arch.mmu.direct_map;
2615 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2616
2617 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2618 }
2619
2620 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2621 {
2622 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2623 kvm_event_needs_reinjection(vcpu)))
2624 return false;
2625
2626 return kvm_x86_ops->interrupt_allowed(vcpu);
2627 }
2628
2629 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2630 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2631 {
2632 bool async;
2633
2634 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2635
2636 if (!async)
2637 return false; /* *pfn has correct page already */
2638
2639 put_page(pfn_to_page(*pfn));
2640
2641 if (!prefault && can_do_async_pf(vcpu)) {
2642 trace_kvm_try_async_get_page(gva, gfn);
2643 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2644 trace_kvm_async_pf_doublefault(gva, gfn);
2645 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2646 return true;
2647 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2648 return true;
2649 }
2650
2651 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2652
2653 return false;
2654 }
2655
2656 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2657 bool prefault)
2658 {
2659 pfn_t pfn;
2660 int r;
2661 int level;
2662 int force_pt_level;
2663 gfn_t gfn = gpa >> PAGE_SHIFT;
2664 unsigned long mmu_seq;
2665 int write = error_code & PFERR_WRITE_MASK;
2666 bool map_writable;
2667
2668 ASSERT(vcpu);
2669 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2670
2671 r = mmu_topup_memory_caches(vcpu);
2672 if (r)
2673 return r;
2674
2675 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2676 if (likely(!force_pt_level)) {
2677 level = mapping_level(vcpu, gfn);
2678 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2679 } else
2680 level = PT_PAGE_TABLE_LEVEL;
2681
2682 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2683 smp_rmb();
2684
2685 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2686 return 0;
2687
2688 /* mmio */
2689 if (is_error_pfn(pfn))
2690 return kvm_handle_bad_page(vcpu, 0, 0, gfn, pfn);
2691 spin_lock(&vcpu->kvm->mmu_lock);
2692 if (mmu_notifier_retry(vcpu, mmu_seq))
2693 goto out_unlock;
2694 kvm_mmu_free_some_pages(vcpu);
2695 if (likely(!force_pt_level))
2696 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2697 r = __direct_map(vcpu, gpa, write, map_writable,
2698 level, gfn, pfn, prefault);
2699 spin_unlock(&vcpu->kvm->mmu_lock);
2700
2701 return r;
2702
2703 out_unlock:
2704 spin_unlock(&vcpu->kvm->mmu_lock);
2705 kvm_release_pfn_clean(pfn);
2706 return 0;
2707 }
2708
2709 static void nonpaging_free(struct kvm_vcpu *vcpu)
2710 {
2711 mmu_free_roots(vcpu);
2712 }
2713
2714 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2715 struct kvm_mmu *context)
2716 {
2717 context->new_cr3 = nonpaging_new_cr3;
2718 context->page_fault = nonpaging_page_fault;
2719 context->gva_to_gpa = nonpaging_gva_to_gpa;
2720 context->free = nonpaging_free;
2721 context->sync_page = nonpaging_sync_page;
2722 context->invlpg = nonpaging_invlpg;
2723 context->update_pte = nonpaging_update_pte;
2724 context->root_level = 0;
2725 context->shadow_root_level = PT32E_ROOT_LEVEL;
2726 context->root_hpa = INVALID_PAGE;
2727 context->direct_map = true;
2728 context->nx = false;
2729 return 0;
2730 }
2731
2732 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2733 {
2734 ++vcpu->stat.tlb_flush;
2735 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2736 }
2737
2738 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2739 {
2740 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2741 mmu_free_roots(vcpu);
2742 }
2743
2744 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2745 {
2746 return kvm_read_cr3(vcpu);
2747 }
2748
2749 static void inject_page_fault(struct kvm_vcpu *vcpu,
2750 struct x86_exception *fault)
2751 {
2752 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2753 }
2754
2755 static void paging_free(struct kvm_vcpu *vcpu)
2756 {
2757 nonpaging_free(vcpu);
2758 }
2759
2760 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2761 {
2762 int bit7;
2763
2764 bit7 = (gpte >> 7) & 1;
2765 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2766 }
2767
2768 #define PTTYPE 64
2769 #include "paging_tmpl.h"
2770 #undef PTTYPE
2771
2772 #define PTTYPE 32
2773 #include "paging_tmpl.h"
2774 #undef PTTYPE
2775
2776 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2777 struct kvm_mmu *context,
2778 int level)
2779 {
2780 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2781 u64 exb_bit_rsvd = 0;
2782
2783 if (!context->nx)
2784 exb_bit_rsvd = rsvd_bits(63, 63);
2785 switch (level) {
2786 case PT32_ROOT_LEVEL:
2787 /* no rsvd bits for 2 level 4K page table entries */
2788 context->rsvd_bits_mask[0][1] = 0;
2789 context->rsvd_bits_mask[0][0] = 0;
2790 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2791
2792 if (!is_pse(vcpu)) {
2793 context->rsvd_bits_mask[1][1] = 0;
2794 break;
2795 }
2796
2797 if (is_cpuid_PSE36())
2798 /* 36bits PSE 4MB page */
2799 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2800 else
2801 /* 32 bits PSE 4MB page */
2802 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2803 break;
2804 case PT32E_ROOT_LEVEL:
2805 context->rsvd_bits_mask[0][2] =
2806 rsvd_bits(maxphyaddr, 63) |
2807 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2808 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2809 rsvd_bits(maxphyaddr, 62); /* PDE */
2810 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2811 rsvd_bits(maxphyaddr, 62); /* PTE */
2812 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2813 rsvd_bits(maxphyaddr, 62) |
2814 rsvd_bits(13, 20); /* large page */
2815 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2816 break;
2817 case PT64_ROOT_LEVEL:
2818 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2819 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2820 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2821 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2822 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2823 rsvd_bits(maxphyaddr, 51);
2824 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2825 rsvd_bits(maxphyaddr, 51);
2826 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2827 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2828 rsvd_bits(maxphyaddr, 51) |
2829 rsvd_bits(13, 29);
2830 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2831 rsvd_bits(maxphyaddr, 51) |
2832 rsvd_bits(13, 20); /* large page */
2833 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2834 break;
2835 }
2836 }
2837
2838 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2839 struct kvm_mmu *context,
2840 int level)
2841 {
2842 context->nx = is_nx(vcpu);
2843
2844 reset_rsvds_bits_mask(vcpu, context, level);
2845
2846 ASSERT(is_pae(vcpu));
2847 context->new_cr3 = paging_new_cr3;
2848 context->page_fault = paging64_page_fault;
2849 context->gva_to_gpa = paging64_gva_to_gpa;
2850 context->sync_page = paging64_sync_page;
2851 context->invlpg = paging64_invlpg;
2852 context->update_pte = paging64_update_pte;
2853 context->free = paging_free;
2854 context->root_level = level;
2855 context->shadow_root_level = level;
2856 context->root_hpa = INVALID_PAGE;
2857 context->direct_map = false;
2858 return 0;
2859 }
2860
2861 static int paging64_init_context(struct kvm_vcpu *vcpu,
2862 struct kvm_mmu *context)
2863 {
2864 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2865 }
2866
2867 static int paging32_init_context(struct kvm_vcpu *vcpu,
2868 struct kvm_mmu *context)
2869 {
2870 context->nx = false;
2871
2872 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2873
2874 context->new_cr3 = paging_new_cr3;
2875 context->page_fault = paging32_page_fault;
2876 context->gva_to_gpa = paging32_gva_to_gpa;
2877 context->free = paging_free;
2878 context->sync_page = paging32_sync_page;
2879 context->invlpg = paging32_invlpg;
2880 context->update_pte = paging32_update_pte;
2881 context->root_level = PT32_ROOT_LEVEL;
2882 context->shadow_root_level = PT32E_ROOT_LEVEL;
2883 context->root_hpa = INVALID_PAGE;
2884 context->direct_map = false;
2885 return 0;
2886 }
2887
2888 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2889 struct kvm_mmu *context)
2890 {
2891 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2892 }
2893
2894 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2895 {
2896 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2897
2898 context->base_role.word = 0;
2899 context->new_cr3 = nonpaging_new_cr3;
2900 context->page_fault = tdp_page_fault;
2901 context->free = nonpaging_free;
2902 context->sync_page = nonpaging_sync_page;
2903 context->invlpg = nonpaging_invlpg;
2904 context->update_pte = nonpaging_update_pte;
2905 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2906 context->root_hpa = INVALID_PAGE;
2907 context->direct_map = true;
2908 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2909 context->get_cr3 = get_cr3;
2910 context->inject_page_fault = kvm_inject_page_fault;
2911 context->nx = is_nx(vcpu);
2912
2913 if (!is_paging(vcpu)) {
2914 context->nx = false;
2915 context->gva_to_gpa = nonpaging_gva_to_gpa;
2916 context->root_level = 0;
2917 } else if (is_long_mode(vcpu)) {
2918 context->nx = is_nx(vcpu);
2919 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2920 context->gva_to_gpa = paging64_gva_to_gpa;
2921 context->root_level = PT64_ROOT_LEVEL;
2922 } else if (is_pae(vcpu)) {
2923 context->nx = is_nx(vcpu);
2924 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2925 context->gva_to_gpa = paging64_gva_to_gpa;
2926 context->root_level = PT32E_ROOT_LEVEL;
2927 } else {
2928 context->nx = false;
2929 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2930 context->gva_to_gpa = paging32_gva_to_gpa;
2931 context->root_level = PT32_ROOT_LEVEL;
2932 }
2933
2934 return 0;
2935 }
2936
2937 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2938 {
2939 int r;
2940 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
2941 ASSERT(vcpu);
2942 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2943
2944 if (!is_paging(vcpu))
2945 r = nonpaging_init_context(vcpu, context);
2946 else if (is_long_mode(vcpu))
2947 r = paging64_init_context(vcpu, context);
2948 else if (is_pae(vcpu))
2949 r = paging32E_init_context(vcpu, context);
2950 else
2951 r = paging32_init_context(vcpu, context);
2952
2953 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2954 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2955 vcpu->arch.mmu.base_role.smep_andnot_wp
2956 = smep && !is_write_protection(vcpu);
2957
2958 return r;
2959 }
2960 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2961
2962 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2963 {
2964 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2965
2966 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
2967 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
2968 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2969
2970 return r;
2971 }
2972
2973 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2974 {
2975 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2976
2977 g_context->get_cr3 = get_cr3;
2978 g_context->inject_page_fault = kvm_inject_page_fault;
2979
2980 /*
2981 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2982 * translation of l2_gpa to l1_gpa addresses is done using the
2983 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2984 * functions between mmu and nested_mmu are swapped.
2985 */
2986 if (!is_paging(vcpu)) {
2987 g_context->nx = false;
2988 g_context->root_level = 0;
2989 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
2990 } else if (is_long_mode(vcpu)) {
2991 g_context->nx = is_nx(vcpu);
2992 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
2993 g_context->root_level = PT64_ROOT_LEVEL;
2994 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2995 } else if (is_pae(vcpu)) {
2996 g_context->nx = is_nx(vcpu);
2997 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
2998 g_context->root_level = PT32E_ROOT_LEVEL;
2999 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3000 } else {
3001 g_context->nx = false;
3002 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3003 g_context->root_level = PT32_ROOT_LEVEL;
3004 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3005 }
3006
3007 return 0;
3008 }
3009
3010 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3011 {
3012 if (mmu_is_nested(vcpu))
3013 return init_kvm_nested_mmu(vcpu);
3014 else if (tdp_enabled)
3015 return init_kvm_tdp_mmu(vcpu);
3016 else
3017 return init_kvm_softmmu(vcpu);
3018 }
3019
3020 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3021 {
3022 ASSERT(vcpu);
3023 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3024 /* mmu.free() should set root_hpa = INVALID_PAGE */
3025 vcpu->arch.mmu.free(vcpu);
3026 }
3027
3028 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3029 {
3030 destroy_kvm_mmu(vcpu);
3031 return init_kvm_mmu(vcpu);
3032 }
3033 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3034
3035 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3036 {
3037 int r;
3038
3039 r = mmu_topup_memory_caches(vcpu);
3040 if (r)
3041 goto out;
3042 r = mmu_alloc_roots(vcpu);
3043 spin_lock(&vcpu->kvm->mmu_lock);
3044 mmu_sync_roots(vcpu);
3045 spin_unlock(&vcpu->kvm->mmu_lock);
3046 if (r)
3047 goto out;
3048 /* set_cr3() should ensure TLB has been flushed */
3049 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3050 out:
3051 return r;
3052 }
3053 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3054
3055 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3056 {
3057 mmu_free_roots(vcpu);
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3060
3061 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3062 struct kvm_mmu_page *sp, u64 *spte,
3063 const void *new)
3064 {
3065 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3066 ++vcpu->kvm->stat.mmu_pde_zapped;
3067 return;
3068 }
3069
3070 ++vcpu->kvm->stat.mmu_pte_updated;
3071 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3072 }
3073
3074 static bool need_remote_flush(u64 old, u64 new)
3075 {
3076 if (!is_shadow_present_pte(old))
3077 return false;
3078 if (!is_shadow_present_pte(new))
3079 return true;
3080 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3081 return true;
3082 old ^= PT64_NX_MASK;
3083 new ^= PT64_NX_MASK;
3084 return (old & ~new & PT64_PERM_MASK) != 0;
3085 }
3086
3087 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3088 bool remote_flush, bool local_flush)
3089 {
3090 if (zap_page)
3091 return;
3092
3093 if (remote_flush)
3094 kvm_flush_remote_tlbs(vcpu->kvm);
3095 else if (local_flush)
3096 kvm_mmu_flush_tlb(vcpu);
3097 }
3098
3099 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3100 {
3101 u64 *spte = vcpu->arch.last_pte_updated;
3102
3103 return !!(spte && (*spte & shadow_accessed_mask));
3104 }
3105
3106 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3107 {
3108 u64 *spte = vcpu->arch.last_pte_updated;
3109
3110 if (spte
3111 && vcpu->arch.last_pte_gfn == gfn
3112 && shadow_accessed_mask
3113 && !(*spte & shadow_accessed_mask)
3114 && is_shadow_present_pte(*spte))
3115 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3116 }
3117
3118 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3119 const u8 *new, int bytes,
3120 bool guest_initiated)
3121 {
3122 gfn_t gfn = gpa >> PAGE_SHIFT;
3123 union kvm_mmu_page_role mask = { .word = 0 };
3124 struct kvm_mmu_page *sp;
3125 struct hlist_node *node;
3126 LIST_HEAD(invalid_list);
3127 u64 entry, gentry, *spte;
3128 unsigned pte_size, page_offset, misaligned, quadrant, offset;
3129 int level, npte, invlpg_counter, r, flooded = 0;
3130 bool remote_flush, local_flush, zap_page;
3131
3132 /*
3133 * If we don't have indirect shadow pages, it means no page is
3134 * write-protected, so we can exit simply.
3135 */
3136 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3137 return;
3138
3139 zap_page = remote_flush = local_flush = false;
3140 offset = offset_in_page(gpa);
3141
3142 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3143
3144 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3145
3146 /*
3147 * Assume that the pte write on a page table of the same type
3148 * as the current vcpu paging mode since we update the sptes only
3149 * when they have the same mode.
3150 */
3151 if ((is_pae(vcpu) && bytes == 4) || !new) {
3152 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3153 if (is_pae(vcpu)) {
3154 gpa &= ~(gpa_t)7;
3155 bytes = 8;
3156 }
3157 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3158 if (r)
3159 gentry = 0;
3160 new = (const u8 *)&gentry;
3161 }
3162
3163 switch (bytes) {
3164 case 4:
3165 gentry = *(const u32 *)new;
3166 break;
3167 case 8:
3168 gentry = *(const u64 *)new;
3169 break;
3170 default:
3171 gentry = 0;
3172 break;
3173 }
3174
3175 spin_lock(&vcpu->kvm->mmu_lock);
3176 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3177 gentry = 0;
3178 kvm_mmu_free_some_pages(vcpu);
3179 ++vcpu->kvm->stat.mmu_pte_write;
3180 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3181 if (guest_initiated) {
3182 kvm_mmu_access_page(vcpu, gfn);
3183 if (gfn == vcpu->arch.last_pt_write_gfn
3184 && !last_updated_pte_accessed(vcpu)) {
3185 ++vcpu->arch.last_pt_write_count;
3186 if (vcpu->arch.last_pt_write_count >= 3)
3187 flooded = 1;
3188 } else {
3189 vcpu->arch.last_pt_write_gfn = gfn;
3190 vcpu->arch.last_pt_write_count = 1;
3191 vcpu->arch.last_pte_updated = NULL;
3192 }
3193 }
3194
3195 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3196 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3197 pte_size = sp->role.cr4_pae ? 8 : 4;
3198 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3199 misaligned |= bytes < 4;
3200 if (misaligned || flooded) {
3201 /*
3202 * Misaligned accesses are too much trouble to fix
3203 * up; also, they usually indicate a page is not used
3204 * as a page table.
3205 *
3206 * If we're seeing too many writes to a page,
3207 * it may no longer be a page table, or we may be
3208 * forking, in which case it is better to unmap the
3209 * page.
3210 */
3211 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3212 gpa, bytes, sp->role.word);
3213 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3214 &invalid_list);
3215 ++vcpu->kvm->stat.mmu_flooded;
3216 continue;
3217 }
3218 page_offset = offset;
3219 level = sp->role.level;
3220 npte = 1;
3221 if (!sp->role.cr4_pae) {
3222 page_offset <<= 1; /* 32->64 */
3223 /*
3224 * A 32-bit pde maps 4MB while the shadow pdes map
3225 * only 2MB. So we need to double the offset again
3226 * and zap two pdes instead of one.
3227 */
3228 if (level == PT32_ROOT_LEVEL) {
3229 page_offset &= ~7; /* kill rounding error */
3230 page_offset <<= 1;
3231 npte = 2;
3232 }
3233 quadrant = page_offset >> PAGE_SHIFT;
3234 page_offset &= ~PAGE_MASK;
3235 if (quadrant != sp->role.quadrant)
3236 continue;
3237 }
3238 local_flush = true;
3239 spte = &sp->spt[page_offset / sizeof(*spte)];
3240 while (npte--) {
3241 entry = *spte;
3242 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3243 if (gentry &&
3244 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3245 & mask.word))
3246 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3247 if (!remote_flush && need_remote_flush(entry, *spte))
3248 remote_flush = true;
3249 ++spte;
3250 }
3251 }
3252 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3253 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3254 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3255 spin_unlock(&vcpu->kvm->mmu_lock);
3256 }
3257
3258 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3259 {
3260 gpa_t gpa;
3261 int r;
3262
3263 if (vcpu->arch.mmu.direct_map)
3264 return 0;
3265
3266 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3267
3268 spin_lock(&vcpu->kvm->mmu_lock);
3269 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3270 spin_unlock(&vcpu->kvm->mmu_lock);
3271 return r;
3272 }
3273 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3274
3275 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3276 {
3277 LIST_HEAD(invalid_list);
3278
3279 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3280 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3281 struct kvm_mmu_page *sp;
3282
3283 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3284 struct kvm_mmu_page, link);
3285 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3286 ++vcpu->kvm->stat.mmu_recycled;
3287 }
3288 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3289 }
3290
3291 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3292 void *insn, int insn_len)
3293 {
3294 int r;
3295 enum emulation_result er;
3296
3297 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3298 if (r < 0)
3299 goto out;
3300
3301 if (!r) {
3302 r = 1;
3303 goto out;
3304 }
3305
3306 r = mmu_topup_memory_caches(vcpu);
3307 if (r)
3308 goto out;
3309
3310 er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3311
3312 switch (er) {
3313 case EMULATE_DONE:
3314 return 1;
3315 case EMULATE_DO_MMIO:
3316 ++vcpu->stat.mmio_exits;
3317 /* fall through */
3318 case EMULATE_FAIL:
3319 return 0;
3320 default:
3321 BUG();
3322 }
3323 out:
3324 return r;
3325 }
3326 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3327
3328 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3329 {
3330 vcpu->arch.mmu.invlpg(vcpu, gva);
3331 kvm_mmu_flush_tlb(vcpu);
3332 ++vcpu->stat.invlpg;
3333 }
3334 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3335
3336 void kvm_enable_tdp(void)
3337 {
3338 tdp_enabled = true;
3339 }
3340 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3341
3342 void kvm_disable_tdp(void)
3343 {
3344 tdp_enabled = false;
3345 }
3346 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3347
3348 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3349 {
3350 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3351 if (vcpu->arch.mmu.lm_root != NULL)
3352 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3353 }
3354
3355 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3356 {
3357 struct page *page;
3358 int i;
3359
3360 ASSERT(vcpu);
3361
3362 /*
3363 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3364 * Therefore we need to allocate shadow page tables in the first
3365 * 4GB of memory, which happens to fit the DMA32 zone.
3366 */
3367 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3368 if (!page)
3369 return -ENOMEM;
3370
3371 vcpu->arch.mmu.pae_root = page_address(page);
3372 for (i = 0; i < 4; ++i)
3373 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3374
3375 return 0;
3376 }
3377
3378 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3379 {
3380 ASSERT(vcpu);
3381 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3382
3383 return alloc_mmu_pages(vcpu);
3384 }
3385
3386 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3387 {
3388 ASSERT(vcpu);
3389 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3390
3391 return init_kvm_mmu(vcpu);
3392 }
3393
3394 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3395 {
3396 struct kvm_mmu_page *sp;
3397
3398 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3399 int i;
3400 u64 *pt;
3401
3402 if (!test_bit(slot, sp->slot_bitmap))
3403 continue;
3404
3405 pt = sp->spt;
3406 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3407 if (!is_shadow_present_pte(pt[i]) ||
3408 !is_last_spte(pt[i], sp->role.level))
3409 continue;
3410
3411 if (is_large_pte(pt[i])) {
3412 drop_spte(kvm, &pt[i]);
3413 --kvm->stat.lpages;
3414 continue;
3415 }
3416
3417 /* avoid RMW */
3418 if (is_writable_pte(pt[i]))
3419 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3420 }
3421 }
3422 kvm_flush_remote_tlbs(kvm);
3423 }
3424
3425 void kvm_mmu_zap_all(struct kvm *kvm)
3426 {
3427 struct kvm_mmu_page *sp, *node;
3428 LIST_HEAD(invalid_list);
3429
3430 spin_lock(&kvm->mmu_lock);
3431 restart:
3432 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3433 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3434 goto restart;
3435
3436 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3437 spin_unlock(&kvm->mmu_lock);
3438 }
3439
3440 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3441 struct list_head *invalid_list)
3442 {
3443 struct kvm_mmu_page *page;
3444
3445 page = container_of(kvm->arch.active_mmu_pages.prev,
3446 struct kvm_mmu_page, link);
3447 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3448 }
3449
3450 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3451 {
3452 struct kvm *kvm;
3453 struct kvm *kvm_freed = NULL;
3454 int nr_to_scan = sc->nr_to_scan;
3455
3456 if (nr_to_scan == 0)
3457 goto out;
3458
3459 raw_spin_lock(&kvm_lock);
3460
3461 list_for_each_entry(kvm, &vm_list, vm_list) {
3462 int idx, freed_pages;
3463 LIST_HEAD(invalid_list);
3464
3465 idx = srcu_read_lock(&kvm->srcu);
3466 spin_lock(&kvm->mmu_lock);
3467 if (!kvm_freed && nr_to_scan > 0 &&
3468 kvm->arch.n_used_mmu_pages > 0) {
3469 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3470 &invalid_list);
3471 kvm_freed = kvm;
3472 }
3473 nr_to_scan--;
3474
3475 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3476 spin_unlock(&kvm->mmu_lock);
3477 srcu_read_unlock(&kvm->srcu, idx);
3478 }
3479 if (kvm_freed)
3480 list_move_tail(&kvm_freed->vm_list, &vm_list);
3481
3482 raw_spin_unlock(&kvm_lock);
3483
3484 out:
3485 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3486 }
3487
3488 static struct shrinker mmu_shrinker = {
3489 .shrink = mmu_shrink,
3490 .seeks = DEFAULT_SEEKS * 10,
3491 };
3492
3493 static void mmu_destroy_caches(void)
3494 {
3495 if (pte_list_desc_cache)
3496 kmem_cache_destroy(pte_list_desc_cache);
3497 if (mmu_page_header_cache)
3498 kmem_cache_destroy(mmu_page_header_cache);
3499 }
3500
3501 int kvm_mmu_module_init(void)
3502 {
3503 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3504 sizeof(struct pte_list_desc),
3505 0, 0, NULL);
3506 if (!pte_list_desc_cache)
3507 goto nomem;
3508
3509 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3510 sizeof(struct kvm_mmu_page),
3511 0, 0, NULL);
3512 if (!mmu_page_header_cache)
3513 goto nomem;
3514
3515 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3516 goto nomem;
3517
3518 register_shrinker(&mmu_shrinker);
3519
3520 return 0;
3521
3522 nomem:
3523 mmu_destroy_caches();
3524 return -ENOMEM;
3525 }
3526
3527 /*
3528 * Caculate mmu pages needed for kvm.
3529 */
3530 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3531 {
3532 int i;
3533 unsigned int nr_mmu_pages;
3534 unsigned int nr_pages = 0;
3535 struct kvm_memslots *slots;
3536
3537 slots = kvm_memslots(kvm);
3538
3539 for (i = 0; i < slots->nmemslots; i++)
3540 nr_pages += slots->memslots[i].npages;
3541
3542 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3543 nr_mmu_pages = max(nr_mmu_pages,
3544 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3545
3546 return nr_mmu_pages;
3547 }
3548
3549 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3550 unsigned len)
3551 {
3552 if (len > buffer->len)
3553 return NULL;
3554 return buffer->ptr;
3555 }
3556
3557 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3558 unsigned len)
3559 {
3560 void *ret;
3561
3562 ret = pv_mmu_peek_buffer(buffer, len);
3563 if (!ret)
3564 return ret;
3565 buffer->ptr += len;
3566 buffer->len -= len;
3567 buffer->processed += len;
3568 return ret;
3569 }
3570
3571 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3572 gpa_t addr, gpa_t value)
3573 {
3574 int bytes = 8;
3575 int r;
3576
3577 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3578 bytes = 4;
3579
3580 r = mmu_topup_memory_caches(vcpu);
3581 if (r)
3582 return r;
3583
3584 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3585 return -EFAULT;
3586
3587 return 1;
3588 }
3589
3590 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3591 {
3592 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3593 return 1;
3594 }
3595
3596 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3597 {
3598 spin_lock(&vcpu->kvm->mmu_lock);
3599 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3600 spin_unlock(&vcpu->kvm->mmu_lock);
3601 return 1;
3602 }
3603
3604 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3605 struct kvm_pv_mmu_op_buffer *buffer)
3606 {
3607 struct kvm_mmu_op_header *header;
3608
3609 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3610 if (!header)
3611 return 0;
3612 switch (header->op) {
3613 case KVM_MMU_OP_WRITE_PTE: {
3614 struct kvm_mmu_op_write_pte *wpte;
3615
3616 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3617 if (!wpte)
3618 return 0;
3619 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3620 wpte->pte_val);
3621 }
3622 case KVM_MMU_OP_FLUSH_TLB: {
3623 struct kvm_mmu_op_flush_tlb *ftlb;
3624
3625 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3626 if (!ftlb)
3627 return 0;
3628 return kvm_pv_mmu_flush_tlb(vcpu);
3629 }
3630 case KVM_MMU_OP_RELEASE_PT: {
3631 struct kvm_mmu_op_release_pt *rpt;
3632
3633 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3634 if (!rpt)
3635 return 0;
3636 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3637 }
3638 default: return 0;
3639 }
3640 }
3641
3642 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3643 gpa_t addr, unsigned long *ret)
3644 {
3645 int r;
3646 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3647
3648 buffer->ptr = buffer->buf;
3649 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3650 buffer->processed = 0;
3651
3652 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3653 if (r)
3654 goto out;
3655
3656 while (buffer->len) {
3657 r = kvm_pv_mmu_op_one(vcpu, buffer);
3658 if (r < 0)
3659 goto out;
3660 if (r == 0)
3661 break;
3662 }
3663
3664 r = 1;
3665 out:
3666 *ret = buffer->processed;
3667 return r;
3668 }
3669
3670 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3671 {
3672 struct kvm_shadow_walk_iterator iterator;
3673 int nr_sptes = 0;
3674
3675 spin_lock(&vcpu->kvm->mmu_lock);
3676 for_each_shadow_entry(vcpu, addr, iterator) {
3677 sptes[iterator.level-1] = *iterator.sptep;
3678 nr_sptes++;
3679 if (!is_shadow_present_pte(*iterator.sptep))
3680 break;
3681 }
3682 spin_unlock(&vcpu->kvm->mmu_lock);
3683
3684 return nr_sptes;
3685 }
3686 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3687
3688 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3689 {
3690 ASSERT(vcpu);
3691
3692 destroy_kvm_mmu(vcpu);
3693 free_mmu_pages(vcpu);
3694 mmu_free_memory_caches(vcpu);
3695 }
3696
3697 #ifdef CONFIG_KVM_MMU_AUDIT
3698 #include "mmu_audit.c"
3699 #else
3700 static void mmu_audit_disable(void) { }
3701 #endif
3702
3703 void kvm_mmu_module_exit(void)
3704 {
3705 mmu_destroy_caches();
3706 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3707 unregister_shrinker(&mmu_shrinker);
3708 mmu_audit_disable();
3709 }