]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/mmu.c
x86/KVM/VMX: Add L1D flush logic
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/pat.h>
46 #include <asm/cmpxchg.h>
47 #include <asm/io.h>
48 #include <asm/vmx.h>
49 #include <asm/kvm_page_track.h>
50 #include "trace.h"
51
52 /*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
59 bool tdp_enabled = false;
60
61 enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73 static bool dbg = 0;
74 module_param(dbg, bool, 0644);
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78 #define MMU_WARN_ON(x) WARN_ON(x)
79 #else
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82 #define MMU_WARN_ON(x) do { } while (0)
83 #endif
84
85 #define PTE_PREFETCH_NUM 8
86
87 #define PT_FIRST_AVAIL_BITS_SHIFT 10
88 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
90 #define PT64_LEVEL_BITS 9
91
92 #define PT64_LEVEL_SHIFT(level) \
93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
94
95 #define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
103
104 #define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
107
108 #define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
112 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
113 #define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
115 #define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK 1
133 #define ACC_WRITE_MASK PT_WRITABLE_MASK
134 #define ACC_USER_MASK PT_USER_MASK
135 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK 0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
153
154 /*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162 enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166 };
167
168 struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
171 };
172
173 struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
176 u64 *sptep;
177 int level;
178 unsigned index;
179 };
180
181 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
182 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
183 shadow_walk_okay(&(_walker)); \
184 shadow_walk_next(&(_walker)))
185
186 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
187 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
188 shadow_walk_okay(&(_walker)) && \
189 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
190 __shadow_walk_next(&(_walker), spte))
191
192 static struct kmem_cache *pte_list_desc_cache;
193 static struct kmem_cache *mmu_page_header_cache;
194 static struct percpu_counter kvm_total_used_mmu_pages;
195
196 static u64 __read_mostly shadow_nx_mask;
197 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
198 static u64 __read_mostly shadow_user_mask;
199 static u64 __read_mostly shadow_accessed_mask;
200 static u64 __read_mostly shadow_dirty_mask;
201 static u64 __read_mostly shadow_mmio_mask;
202 static u64 __read_mostly shadow_mmio_value;
203 static u64 __read_mostly shadow_present_mask;
204 static u64 __read_mostly shadow_me_mask;
205
206 /*
207 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
208 * Non-present SPTEs with shadow_acc_track_value set are in place for access
209 * tracking.
210 */
211 static u64 __read_mostly shadow_acc_track_mask;
212 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
213
214 /*
215 * The mask/shift to use for saving the original R/X bits when marking the PTE
216 * as not-present for access tracking purposes. We do not save the W bit as the
217 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
218 * restored only when a write is attempted to the page.
219 */
220 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
221 PT64_EPT_EXECUTABLE_MASK;
222 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
223
224 static void mmu_spte_set(u64 *sptep, u64 spte);
225 static void mmu_free_roots(struct kvm_vcpu *vcpu);
226
227 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
228 {
229 BUG_ON((mmio_mask & mmio_value) != mmio_value);
230 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
231 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
232 }
233 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
234
235 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
236 {
237 return sp->role.ad_disabled;
238 }
239
240 static inline bool spte_ad_enabled(u64 spte)
241 {
242 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
243 return !(spte & shadow_acc_track_value);
244 }
245
246 static inline u64 spte_shadow_accessed_mask(u64 spte)
247 {
248 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
249 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
250 }
251
252 static inline u64 spte_shadow_dirty_mask(u64 spte)
253 {
254 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
255 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
256 }
257
258 static inline bool is_access_track_spte(u64 spte)
259 {
260 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
261 }
262
263 /*
264 * the low bit of the generation number is always presumed to be zero.
265 * This disables mmio caching during memslot updates. The concept is
266 * similar to a seqcount but instead of retrying the access we just punt
267 * and ignore the cache.
268 *
269 * spte bits 3-11 are used as bits 1-9 of the generation number,
270 * the bits 52-61 are used as bits 10-19 of the generation number.
271 */
272 #define MMIO_SPTE_GEN_LOW_SHIFT 2
273 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
274
275 #define MMIO_GEN_SHIFT 20
276 #define MMIO_GEN_LOW_SHIFT 10
277 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
278 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
279
280 static u64 generation_mmio_spte_mask(unsigned int gen)
281 {
282 u64 mask;
283
284 WARN_ON(gen & ~MMIO_GEN_MASK);
285
286 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
287 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
288 return mask;
289 }
290
291 static unsigned int get_mmio_spte_generation(u64 spte)
292 {
293 unsigned int gen;
294
295 spte &= ~shadow_mmio_mask;
296
297 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
298 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
299 return gen;
300 }
301
302 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
303 {
304 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
305 }
306
307 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
308 unsigned access)
309 {
310 unsigned int gen = kvm_current_mmio_generation(vcpu);
311 u64 mask = generation_mmio_spte_mask(gen);
312
313 access &= ACC_WRITE_MASK | ACC_USER_MASK;
314 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
315
316 trace_mark_mmio_spte(sptep, gfn, access, gen);
317 mmu_spte_set(sptep, mask);
318 }
319
320 static bool is_mmio_spte(u64 spte)
321 {
322 return (spte & shadow_mmio_mask) == shadow_mmio_value;
323 }
324
325 static gfn_t get_mmio_spte_gfn(u64 spte)
326 {
327 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
328 return (spte & ~mask) >> PAGE_SHIFT;
329 }
330
331 static unsigned get_mmio_spte_access(u64 spte)
332 {
333 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
334 return (spte & ~mask) & ~PAGE_MASK;
335 }
336
337 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
338 kvm_pfn_t pfn, unsigned access)
339 {
340 if (unlikely(is_noslot_pfn(pfn))) {
341 mark_mmio_spte(vcpu, sptep, gfn, access);
342 return true;
343 }
344
345 return false;
346 }
347
348 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
349 {
350 unsigned int kvm_gen, spte_gen;
351
352 kvm_gen = kvm_current_mmio_generation(vcpu);
353 spte_gen = get_mmio_spte_generation(spte);
354
355 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
356 return likely(kvm_gen == spte_gen);
357 }
358
359 /*
360 * Sets the shadow PTE masks used by the MMU.
361 *
362 * Assumptions:
363 * - Setting either @accessed_mask or @dirty_mask requires setting both
364 * - At least one of @accessed_mask or @acc_track_mask must be set
365 */
366 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
367 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
368 u64 acc_track_mask, u64 me_mask)
369 {
370 BUG_ON(!dirty_mask != !accessed_mask);
371 BUG_ON(!accessed_mask && !acc_track_mask);
372 BUG_ON(acc_track_mask & shadow_acc_track_value);
373
374 shadow_user_mask = user_mask;
375 shadow_accessed_mask = accessed_mask;
376 shadow_dirty_mask = dirty_mask;
377 shadow_nx_mask = nx_mask;
378 shadow_x_mask = x_mask;
379 shadow_present_mask = p_mask;
380 shadow_acc_track_mask = acc_track_mask;
381 shadow_me_mask = me_mask;
382 }
383 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
384
385 void kvm_mmu_clear_all_pte_masks(void)
386 {
387 shadow_user_mask = 0;
388 shadow_accessed_mask = 0;
389 shadow_dirty_mask = 0;
390 shadow_nx_mask = 0;
391 shadow_x_mask = 0;
392 shadow_mmio_mask = 0;
393 shadow_present_mask = 0;
394 shadow_acc_track_mask = 0;
395 }
396
397 static int is_cpuid_PSE36(void)
398 {
399 return 1;
400 }
401
402 static int is_nx(struct kvm_vcpu *vcpu)
403 {
404 return vcpu->arch.efer & EFER_NX;
405 }
406
407 static int is_shadow_present_pte(u64 pte)
408 {
409 return (pte != 0) && !is_mmio_spte(pte);
410 }
411
412 static int is_large_pte(u64 pte)
413 {
414 return pte & PT_PAGE_SIZE_MASK;
415 }
416
417 static int is_last_spte(u64 pte, int level)
418 {
419 if (level == PT_PAGE_TABLE_LEVEL)
420 return 1;
421 if (is_large_pte(pte))
422 return 1;
423 return 0;
424 }
425
426 static bool is_executable_pte(u64 spte)
427 {
428 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
429 }
430
431 static kvm_pfn_t spte_to_pfn(u64 pte)
432 {
433 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
434 }
435
436 static gfn_t pse36_gfn_delta(u32 gpte)
437 {
438 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
439
440 return (gpte & PT32_DIR_PSE36_MASK) << shift;
441 }
442
443 #ifdef CONFIG_X86_64
444 static void __set_spte(u64 *sptep, u64 spte)
445 {
446 WRITE_ONCE(*sptep, spte);
447 }
448
449 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
450 {
451 WRITE_ONCE(*sptep, spte);
452 }
453
454 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
455 {
456 return xchg(sptep, spte);
457 }
458
459 static u64 __get_spte_lockless(u64 *sptep)
460 {
461 return READ_ONCE(*sptep);
462 }
463 #else
464 union split_spte {
465 struct {
466 u32 spte_low;
467 u32 spte_high;
468 };
469 u64 spte;
470 };
471
472 static void count_spte_clear(u64 *sptep, u64 spte)
473 {
474 struct kvm_mmu_page *sp = page_header(__pa(sptep));
475
476 if (is_shadow_present_pte(spte))
477 return;
478
479 /* Ensure the spte is completely set before we increase the count */
480 smp_wmb();
481 sp->clear_spte_count++;
482 }
483
484 static void __set_spte(u64 *sptep, u64 spte)
485 {
486 union split_spte *ssptep, sspte;
487
488 ssptep = (union split_spte *)sptep;
489 sspte = (union split_spte)spte;
490
491 ssptep->spte_high = sspte.spte_high;
492
493 /*
494 * If we map the spte from nonpresent to present, We should store
495 * the high bits firstly, then set present bit, so cpu can not
496 * fetch this spte while we are setting the spte.
497 */
498 smp_wmb();
499
500 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
501 }
502
503 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
504 {
505 union split_spte *ssptep, sspte;
506
507 ssptep = (union split_spte *)sptep;
508 sspte = (union split_spte)spte;
509
510 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
511
512 /*
513 * If we map the spte from present to nonpresent, we should clear
514 * present bit firstly to avoid vcpu fetch the old high bits.
515 */
516 smp_wmb();
517
518 ssptep->spte_high = sspte.spte_high;
519 count_spte_clear(sptep, spte);
520 }
521
522 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
523 {
524 union split_spte *ssptep, sspte, orig;
525
526 ssptep = (union split_spte *)sptep;
527 sspte = (union split_spte)spte;
528
529 /* xchg acts as a barrier before the setting of the high bits */
530 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
531 orig.spte_high = ssptep->spte_high;
532 ssptep->spte_high = sspte.spte_high;
533 count_spte_clear(sptep, spte);
534
535 return orig.spte;
536 }
537
538 /*
539 * The idea using the light way get the spte on x86_32 guest is from
540 * gup_get_pte(arch/x86/mm/gup.c).
541 *
542 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
543 * coalesces them and we are running out of the MMU lock. Therefore
544 * we need to protect against in-progress updates of the spte.
545 *
546 * Reading the spte while an update is in progress may get the old value
547 * for the high part of the spte. The race is fine for a present->non-present
548 * change (because the high part of the spte is ignored for non-present spte),
549 * but for a present->present change we must reread the spte.
550 *
551 * All such changes are done in two steps (present->non-present and
552 * non-present->present), hence it is enough to count the number of
553 * present->non-present updates: if it changed while reading the spte,
554 * we might have hit the race. This is done using clear_spte_count.
555 */
556 static u64 __get_spte_lockless(u64 *sptep)
557 {
558 struct kvm_mmu_page *sp = page_header(__pa(sptep));
559 union split_spte spte, *orig = (union split_spte *)sptep;
560 int count;
561
562 retry:
563 count = sp->clear_spte_count;
564 smp_rmb();
565
566 spte.spte_low = orig->spte_low;
567 smp_rmb();
568
569 spte.spte_high = orig->spte_high;
570 smp_rmb();
571
572 if (unlikely(spte.spte_low != orig->spte_low ||
573 count != sp->clear_spte_count))
574 goto retry;
575
576 return spte.spte;
577 }
578 #endif
579
580 static bool spte_can_locklessly_be_made_writable(u64 spte)
581 {
582 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
583 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
584 }
585
586 static bool spte_has_volatile_bits(u64 spte)
587 {
588 if (!is_shadow_present_pte(spte))
589 return false;
590
591 /*
592 * Always atomically update spte if it can be updated
593 * out of mmu-lock, it can ensure dirty bit is not lost,
594 * also, it can help us to get a stable is_writable_pte()
595 * to ensure tlb flush is not missed.
596 */
597 if (spte_can_locklessly_be_made_writable(spte) ||
598 is_access_track_spte(spte))
599 return true;
600
601 if (spte_ad_enabled(spte)) {
602 if ((spte & shadow_accessed_mask) == 0 ||
603 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
604 return true;
605 }
606
607 return false;
608 }
609
610 static bool is_accessed_spte(u64 spte)
611 {
612 u64 accessed_mask = spte_shadow_accessed_mask(spte);
613
614 return accessed_mask ? spte & accessed_mask
615 : !is_access_track_spte(spte);
616 }
617
618 static bool is_dirty_spte(u64 spte)
619 {
620 u64 dirty_mask = spte_shadow_dirty_mask(spte);
621
622 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
623 }
624
625 /* Rules for using mmu_spte_set:
626 * Set the sptep from nonpresent to present.
627 * Note: the sptep being assigned *must* be either not present
628 * or in a state where the hardware will not attempt to update
629 * the spte.
630 */
631 static void mmu_spte_set(u64 *sptep, u64 new_spte)
632 {
633 WARN_ON(is_shadow_present_pte(*sptep));
634 __set_spte(sptep, new_spte);
635 }
636
637 /*
638 * Update the SPTE (excluding the PFN), but do not track changes in its
639 * accessed/dirty status.
640 */
641 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
642 {
643 u64 old_spte = *sptep;
644
645 WARN_ON(!is_shadow_present_pte(new_spte));
646
647 if (!is_shadow_present_pte(old_spte)) {
648 mmu_spte_set(sptep, new_spte);
649 return old_spte;
650 }
651
652 if (!spte_has_volatile_bits(old_spte))
653 __update_clear_spte_fast(sptep, new_spte);
654 else
655 old_spte = __update_clear_spte_slow(sptep, new_spte);
656
657 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
658
659 return old_spte;
660 }
661
662 /* Rules for using mmu_spte_update:
663 * Update the state bits, it means the mapped pfn is not changed.
664 *
665 * Whenever we overwrite a writable spte with a read-only one we
666 * should flush remote TLBs. Otherwise rmap_write_protect
667 * will find a read-only spte, even though the writable spte
668 * might be cached on a CPU's TLB, the return value indicates this
669 * case.
670 *
671 * Returns true if the TLB needs to be flushed
672 */
673 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
674 {
675 bool flush = false;
676 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
677
678 if (!is_shadow_present_pte(old_spte))
679 return false;
680
681 /*
682 * For the spte updated out of mmu-lock is safe, since
683 * we always atomically update it, see the comments in
684 * spte_has_volatile_bits().
685 */
686 if (spte_can_locklessly_be_made_writable(old_spte) &&
687 !is_writable_pte(new_spte))
688 flush = true;
689
690 /*
691 * Flush TLB when accessed/dirty states are changed in the page tables,
692 * to guarantee consistency between TLB and page tables.
693 */
694
695 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
696 flush = true;
697 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
698 }
699
700 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
701 flush = true;
702 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
703 }
704
705 return flush;
706 }
707
708 /*
709 * Rules for using mmu_spte_clear_track_bits:
710 * It sets the sptep from present to nonpresent, and track the
711 * state bits, it is used to clear the last level sptep.
712 * Returns non-zero if the PTE was previously valid.
713 */
714 static int mmu_spte_clear_track_bits(u64 *sptep)
715 {
716 kvm_pfn_t pfn;
717 u64 old_spte = *sptep;
718
719 if (!spte_has_volatile_bits(old_spte))
720 __update_clear_spte_fast(sptep, 0ull);
721 else
722 old_spte = __update_clear_spte_slow(sptep, 0ull);
723
724 if (!is_shadow_present_pte(old_spte))
725 return 0;
726
727 pfn = spte_to_pfn(old_spte);
728
729 /*
730 * KVM does not hold the refcount of the page used by
731 * kvm mmu, before reclaiming the page, we should
732 * unmap it from mmu first.
733 */
734 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
735
736 if (is_accessed_spte(old_spte))
737 kvm_set_pfn_accessed(pfn);
738
739 if (is_dirty_spte(old_spte))
740 kvm_set_pfn_dirty(pfn);
741
742 return 1;
743 }
744
745 /*
746 * Rules for using mmu_spte_clear_no_track:
747 * Directly clear spte without caring the state bits of sptep,
748 * it is used to set the upper level spte.
749 */
750 static void mmu_spte_clear_no_track(u64 *sptep)
751 {
752 __update_clear_spte_fast(sptep, 0ull);
753 }
754
755 static u64 mmu_spte_get_lockless(u64 *sptep)
756 {
757 return __get_spte_lockless(sptep);
758 }
759
760 static u64 mark_spte_for_access_track(u64 spte)
761 {
762 if (spte_ad_enabled(spte))
763 return spte & ~shadow_accessed_mask;
764
765 if (is_access_track_spte(spte))
766 return spte;
767
768 /*
769 * Making an Access Tracking PTE will result in removal of write access
770 * from the PTE. So, verify that we will be able to restore the write
771 * access in the fast page fault path later on.
772 */
773 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
774 !spte_can_locklessly_be_made_writable(spte),
775 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
776
777 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
778 shadow_acc_track_saved_bits_shift),
779 "kvm: Access Tracking saved bit locations are not zero\n");
780
781 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
782 shadow_acc_track_saved_bits_shift;
783 spte &= ~shadow_acc_track_mask;
784
785 return spte;
786 }
787
788 /* Restore an acc-track PTE back to a regular PTE */
789 static u64 restore_acc_track_spte(u64 spte)
790 {
791 u64 new_spte = spte;
792 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
793 & shadow_acc_track_saved_bits_mask;
794
795 WARN_ON_ONCE(spte_ad_enabled(spte));
796 WARN_ON_ONCE(!is_access_track_spte(spte));
797
798 new_spte &= ~shadow_acc_track_mask;
799 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
800 shadow_acc_track_saved_bits_shift);
801 new_spte |= saved_bits;
802
803 return new_spte;
804 }
805
806 /* Returns the Accessed status of the PTE and resets it at the same time. */
807 static bool mmu_spte_age(u64 *sptep)
808 {
809 u64 spte = mmu_spte_get_lockless(sptep);
810
811 if (!is_accessed_spte(spte))
812 return false;
813
814 if (spte_ad_enabled(spte)) {
815 clear_bit((ffs(shadow_accessed_mask) - 1),
816 (unsigned long *)sptep);
817 } else {
818 /*
819 * Capture the dirty status of the page, so that it doesn't get
820 * lost when the SPTE is marked for access tracking.
821 */
822 if (is_writable_pte(spte))
823 kvm_set_pfn_dirty(spte_to_pfn(spte));
824
825 spte = mark_spte_for_access_track(spte);
826 mmu_spte_update_no_track(sptep, spte);
827 }
828
829 return true;
830 }
831
832 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
833 {
834 /*
835 * Prevent page table teardown by making any free-er wait during
836 * kvm_flush_remote_tlbs() IPI to all active vcpus.
837 */
838 local_irq_disable();
839
840 /*
841 * Make sure a following spte read is not reordered ahead of the write
842 * to vcpu->mode.
843 */
844 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
845 }
846
847 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
848 {
849 /*
850 * Make sure the write to vcpu->mode is not reordered in front of
851 * reads to sptes. If it does, kvm_commit_zap_page() can see us
852 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
853 */
854 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
855 local_irq_enable();
856 }
857
858 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
859 struct kmem_cache *base_cache, int min)
860 {
861 void *obj;
862
863 if (cache->nobjs >= min)
864 return 0;
865 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
866 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
867 if (!obj)
868 return -ENOMEM;
869 cache->objects[cache->nobjs++] = obj;
870 }
871 return 0;
872 }
873
874 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
875 {
876 return cache->nobjs;
877 }
878
879 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
880 struct kmem_cache *cache)
881 {
882 while (mc->nobjs)
883 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
884 }
885
886 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
887 int min)
888 {
889 void *page;
890
891 if (cache->nobjs >= min)
892 return 0;
893 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
894 page = (void *)__get_free_page(GFP_KERNEL);
895 if (!page)
896 return -ENOMEM;
897 cache->objects[cache->nobjs++] = page;
898 }
899 return 0;
900 }
901
902 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
903 {
904 while (mc->nobjs)
905 free_page((unsigned long)mc->objects[--mc->nobjs]);
906 }
907
908 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
909 {
910 int r;
911
912 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
913 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
914 if (r)
915 goto out;
916 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
917 if (r)
918 goto out;
919 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
920 mmu_page_header_cache, 4);
921 out:
922 return r;
923 }
924
925 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
926 {
927 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
928 pte_list_desc_cache);
929 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
930 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
931 mmu_page_header_cache);
932 }
933
934 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
935 {
936 void *p;
937
938 BUG_ON(!mc->nobjs);
939 p = mc->objects[--mc->nobjs];
940 return p;
941 }
942
943 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
944 {
945 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
946 }
947
948 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
949 {
950 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
951 }
952
953 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
954 {
955 if (!sp->role.direct)
956 return sp->gfns[index];
957
958 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
959 }
960
961 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
962 {
963 if (sp->role.direct)
964 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
965 else
966 sp->gfns[index] = gfn;
967 }
968
969 /*
970 * Return the pointer to the large page information for a given gfn,
971 * handling slots that are not large page aligned.
972 */
973 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
974 struct kvm_memory_slot *slot,
975 int level)
976 {
977 unsigned long idx;
978
979 idx = gfn_to_index(gfn, slot->base_gfn, level);
980 return &slot->arch.lpage_info[level - 2][idx];
981 }
982
983 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
984 gfn_t gfn, int count)
985 {
986 struct kvm_lpage_info *linfo;
987 int i;
988
989 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
990 linfo = lpage_info_slot(gfn, slot, i);
991 linfo->disallow_lpage += count;
992 WARN_ON(linfo->disallow_lpage < 0);
993 }
994 }
995
996 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
997 {
998 update_gfn_disallow_lpage_count(slot, gfn, 1);
999 }
1000
1001 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1002 {
1003 update_gfn_disallow_lpage_count(slot, gfn, -1);
1004 }
1005
1006 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1007 {
1008 struct kvm_memslots *slots;
1009 struct kvm_memory_slot *slot;
1010 gfn_t gfn;
1011
1012 kvm->arch.indirect_shadow_pages++;
1013 gfn = sp->gfn;
1014 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1015 slot = __gfn_to_memslot(slots, gfn);
1016
1017 /* the non-leaf shadow pages are keeping readonly. */
1018 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1019 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1020 KVM_PAGE_TRACK_WRITE);
1021
1022 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1023 }
1024
1025 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1026 {
1027 struct kvm_memslots *slots;
1028 struct kvm_memory_slot *slot;
1029 gfn_t gfn;
1030
1031 kvm->arch.indirect_shadow_pages--;
1032 gfn = sp->gfn;
1033 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1034 slot = __gfn_to_memslot(slots, gfn);
1035 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1036 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1037 KVM_PAGE_TRACK_WRITE);
1038
1039 kvm_mmu_gfn_allow_lpage(slot, gfn);
1040 }
1041
1042 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1043 struct kvm_memory_slot *slot)
1044 {
1045 struct kvm_lpage_info *linfo;
1046
1047 if (slot) {
1048 linfo = lpage_info_slot(gfn, slot, level);
1049 return !!linfo->disallow_lpage;
1050 }
1051
1052 return true;
1053 }
1054
1055 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1056 int level)
1057 {
1058 struct kvm_memory_slot *slot;
1059
1060 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1061 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1062 }
1063
1064 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1065 {
1066 unsigned long page_size;
1067 int i, ret = 0;
1068
1069 page_size = kvm_host_page_size(kvm, gfn);
1070
1071 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1072 if (page_size >= KVM_HPAGE_SIZE(i))
1073 ret = i;
1074 else
1075 break;
1076 }
1077
1078 return ret;
1079 }
1080
1081 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1082 bool no_dirty_log)
1083 {
1084 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1085 return false;
1086 if (no_dirty_log && slot->dirty_bitmap)
1087 return false;
1088
1089 return true;
1090 }
1091
1092 static struct kvm_memory_slot *
1093 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1094 bool no_dirty_log)
1095 {
1096 struct kvm_memory_slot *slot;
1097
1098 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1099 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1100 slot = NULL;
1101
1102 return slot;
1103 }
1104
1105 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1106 bool *force_pt_level)
1107 {
1108 int host_level, level, max_level;
1109 struct kvm_memory_slot *slot;
1110
1111 if (unlikely(*force_pt_level))
1112 return PT_PAGE_TABLE_LEVEL;
1113
1114 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1115 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1116 if (unlikely(*force_pt_level))
1117 return PT_PAGE_TABLE_LEVEL;
1118
1119 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1120
1121 if (host_level == PT_PAGE_TABLE_LEVEL)
1122 return host_level;
1123
1124 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1125
1126 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1127 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1128 break;
1129
1130 return level - 1;
1131 }
1132
1133 /*
1134 * About rmap_head encoding:
1135 *
1136 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1137 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1138 * pte_list_desc containing more mappings.
1139 */
1140
1141 /*
1142 * Returns the number of pointers in the rmap chain, not counting the new one.
1143 */
1144 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1145 struct kvm_rmap_head *rmap_head)
1146 {
1147 struct pte_list_desc *desc;
1148 int i, count = 0;
1149
1150 if (!rmap_head->val) {
1151 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1152 rmap_head->val = (unsigned long)spte;
1153 } else if (!(rmap_head->val & 1)) {
1154 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1155 desc = mmu_alloc_pte_list_desc(vcpu);
1156 desc->sptes[0] = (u64 *)rmap_head->val;
1157 desc->sptes[1] = spte;
1158 rmap_head->val = (unsigned long)desc | 1;
1159 ++count;
1160 } else {
1161 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1162 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1163 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1164 desc = desc->more;
1165 count += PTE_LIST_EXT;
1166 }
1167 if (desc->sptes[PTE_LIST_EXT-1]) {
1168 desc->more = mmu_alloc_pte_list_desc(vcpu);
1169 desc = desc->more;
1170 }
1171 for (i = 0; desc->sptes[i]; ++i)
1172 ++count;
1173 desc->sptes[i] = spte;
1174 }
1175 return count;
1176 }
1177
1178 static void
1179 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1180 struct pte_list_desc *desc, int i,
1181 struct pte_list_desc *prev_desc)
1182 {
1183 int j;
1184
1185 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1186 ;
1187 desc->sptes[i] = desc->sptes[j];
1188 desc->sptes[j] = NULL;
1189 if (j != 0)
1190 return;
1191 if (!prev_desc && !desc->more)
1192 rmap_head->val = (unsigned long)desc->sptes[0];
1193 else
1194 if (prev_desc)
1195 prev_desc->more = desc->more;
1196 else
1197 rmap_head->val = (unsigned long)desc->more | 1;
1198 mmu_free_pte_list_desc(desc);
1199 }
1200
1201 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1202 {
1203 struct pte_list_desc *desc;
1204 struct pte_list_desc *prev_desc;
1205 int i;
1206
1207 if (!rmap_head->val) {
1208 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1209 BUG();
1210 } else if (!(rmap_head->val & 1)) {
1211 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1212 if ((u64 *)rmap_head->val != spte) {
1213 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1214 BUG();
1215 }
1216 rmap_head->val = 0;
1217 } else {
1218 rmap_printk("pte_list_remove: %p many->many\n", spte);
1219 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1220 prev_desc = NULL;
1221 while (desc) {
1222 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1223 if (desc->sptes[i] == spte) {
1224 pte_list_desc_remove_entry(rmap_head,
1225 desc, i, prev_desc);
1226 return;
1227 }
1228 }
1229 prev_desc = desc;
1230 desc = desc->more;
1231 }
1232 pr_err("pte_list_remove: %p many->many\n", spte);
1233 BUG();
1234 }
1235 }
1236
1237 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1238 struct kvm_memory_slot *slot)
1239 {
1240 unsigned long idx;
1241
1242 idx = gfn_to_index(gfn, slot->base_gfn, level);
1243 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1244 }
1245
1246 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1247 struct kvm_mmu_page *sp)
1248 {
1249 struct kvm_memslots *slots;
1250 struct kvm_memory_slot *slot;
1251
1252 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1253 slot = __gfn_to_memslot(slots, gfn);
1254 return __gfn_to_rmap(gfn, sp->role.level, slot);
1255 }
1256
1257 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1258 {
1259 struct kvm_mmu_memory_cache *cache;
1260
1261 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1262 return mmu_memory_cache_free_objects(cache);
1263 }
1264
1265 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1266 {
1267 struct kvm_mmu_page *sp;
1268 struct kvm_rmap_head *rmap_head;
1269
1270 sp = page_header(__pa(spte));
1271 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1272 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1273 return pte_list_add(vcpu, spte, rmap_head);
1274 }
1275
1276 static void rmap_remove(struct kvm *kvm, u64 *spte)
1277 {
1278 struct kvm_mmu_page *sp;
1279 gfn_t gfn;
1280 struct kvm_rmap_head *rmap_head;
1281
1282 sp = page_header(__pa(spte));
1283 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1284 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1285 pte_list_remove(spte, rmap_head);
1286 }
1287
1288 /*
1289 * Used by the following functions to iterate through the sptes linked by a
1290 * rmap. All fields are private and not assumed to be used outside.
1291 */
1292 struct rmap_iterator {
1293 /* private fields */
1294 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1295 int pos; /* index of the sptep */
1296 };
1297
1298 /*
1299 * Iteration must be started by this function. This should also be used after
1300 * removing/dropping sptes from the rmap link because in such cases the
1301 * information in the itererator may not be valid.
1302 *
1303 * Returns sptep if found, NULL otherwise.
1304 */
1305 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1306 struct rmap_iterator *iter)
1307 {
1308 u64 *sptep;
1309
1310 if (!rmap_head->val)
1311 return NULL;
1312
1313 if (!(rmap_head->val & 1)) {
1314 iter->desc = NULL;
1315 sptep = (u64 *)rmap_head->val;
1316 goto out;
1317 }
1318
1319 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1320 iter->pos = 0;
1321 sptep = iter->desc->sptes[iter->pos];
1322 out:
1323 BUG_ON(!is_shadow_present_pte(*sptep));
1324 return sptep;
1325 }
1326
1327 /*
1328 * Must be used with a valid iterator: e.g. after rmap_get_first().
1329 *
1330 * Returns sptep if found, NULL otherwise.
1331 */
1332 static u64 *rmap_get_next(struct rmap_iterator *iter)
1333 {
1334 u64 *sptep;
1335
1336 if (iter->desc) {
1337 if (iter->pos < PTE_LIST_EXT - 1) {
1338 ++iter->pos;
1339 sptep = iter->desc->sptes[iter->pos];
1340 if (sptep)
1341 goto out;
1342 }
1343
1344 iter->desc = iter->desc->more;
1345
1346 if (iter->desc) {
1347 iter->pos = 0;
1348 /* desc->sptes[0] cannot be NULL */
1349 sptep = iter->desc->sptes[iter->pos];
1350 goto out;
1351 }
1352 }
1353
1354 return NULL;
1355 out:
1356 BUG_ON(!is_shadow_present_pte(*sptep));
1357 return sptep;
1358 }
1359
1360 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1361 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1362 _spte_; _spte_ = rmap_get_next(_iter_))
1363
1364 static void drop_spte(struct kvm *kvm, u64 *sptep)
1365 {
1366 if (mmu_spte_clear_track_bits(sptep))
1367 rmap_remove(kvm, sptep);
1368 }
1369
1370
1371 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1372 {
1373 if (is_large_pte(*sptep)) {
1374 WARN_ON(page_header(__pa(sptep))->role.level ==
1375 PT_PAGE_TABLE_LEVEL);
1376 drop_spte(kvm, sptep);
1377 --kvm->stat.lpages;
1378 return true;
1379 }
1380
1381 return false;
1382 }
1383
1384 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1385 {
1386 if (__drop_large_spte(vcpu->kvm, sptep))
1387 kvm_flush_remote_tlbs(vcpu->kvm);
1388 }
1389
1390 /*
1391 * Write-protect on the specified @sptep, @pt_protect indicates whether
1392 * spte write-protection is caused by protecting shadow page table.
1393 *
1394 * Note: write protection is difference between dirty logging and spte
1395 * protection:
1396 * - for dirty logging, the spte can be set to writable at anytime if
1397 * its dirty bitmap is properly set.
1398 * - for spte protection, the spte can be writable only after unsync-ing
1399 * shadow page.
1400 *
1401 * Return true if tlb need be flushed.
1402 */
1403 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1404 {
1405 u64 spte = *sptep;
1406
1407 if (!is_writable_pte(spte) &&
1408 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1409 return false;
1410
1411 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1412
1413 if (pt_protect)
1414 spte &= ~SPTE_MMU_WRITEABLE;
1415 spte = spte & ~PT_WRITABLE_MASK;
1416
1417 return mmu_spte_update(sptep, spte);
1418 }
1419
1420 static bool __rmap_write_protect(struct kvm *kvm,
1421 struct kvm_rmap_head *rmap_head,
1422 bool pt_protect)
1423 {
1424 u64 *sptep;
1425 struct rmap_iterator iter;
1426 bool flush = false;
1427
1428 for_each_rmap_spte(rmap_head, &iter, sptep)
1429 flush |= spte_write_protect(sptep, pt_protect);
1430
1431 return flush;
1432 }
1433
1434 static bool spte_clear_dirty(u64 *sptep)
1435 {
1436 u64 spte = *sptep;
1437
1438 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1439
1440 spte &= ~shadow_dirty_mask;
1441
1442 return mmu_spte_update(sptep, spte);
1443 }
1444
1445 static bool wrprot_ad_disabled_spte(u64 *sptep)
1446 {
1447 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1448 (unsigned long *)sptep);
1449 if (was_writable)
1450 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1451
1452 return was_writable;
1453 }
1454
1455 /*
1456 * Gets the GFN ready for another round of dirty logging by clearing the
1457 * - D bit on ad-enabled SPTEs, and
1458 * - W bit on ad-disabled SPTEs.
1459 * Returns true iff any D or W bits were cleared.
1460 */
1461 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1462 {
1463 u64 *sptep;
1464 struct rmap_iterator iter;
1465 bool flush = false;
1466
1467 for_each_rmap_spte(rmap_head, &iter, sptep)
1468 if (spte_ad_enabled(*sptep))
1469 flush |= spte_clear_dirty(sptep);
1470 else
1471 flush |= wrprot_ad_disabled_spte(sptep);
1472
1473 return flush;
1474 }
1475
1476 static bool spte_set_dirty(u64 *sptep)
1477 {
1478 u64 spte = *sptep;
1479
1480 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1481
1482 spte |= shadow_dirty_mask;
1483
1484 return mmu_spte_update(sptep, spte);
1485 }
1486
1487 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1488 {
1489 u64 *sptep;
1490 struct rmap_iterator iter;
1491 bool flush = false;
1492
1493 for_each_rmap_spte(rmap_head, &iter, sptep)
1494 if (spte_ad_enabled(*sptep))
1495 flush |= spte_set_dirty(sptep);
1496
1497 return flush;
1498 }
1499
1500 /**
1501 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1502 * @kvm: kvm instance
1503 * @slot: slot to protect
1504 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1505 * @mask: indicates which pages we should protect
1506 *
1507 * Used when we do not need to care about huge page mappings: e.g. during dirty
1508 * logging we do not have any such mappings.
1509 */
1510 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1511 struct kvm_memory_slot *slot,
1512 gfn_t gfn_offset, unsigned long mask)
1513 {
1514 struct kvm_rmap_head *rmap_head;
1515
1516 while (mask) {
1517 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1518 PT_PAGE_TABLE_LEVEL, slot);
1519 __rmap_write_protect(kvm, rmap_head, false);
1520
1521 /* clear the first set bit */
1522 mask &= mask - 1;
1523 }
1524 }
1525
1526 /**
1527 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1528 * protect the page if the D-bit isn't supported.
1529 * @kvm: kvm instance
1530 * @slot: slot to clear D-bit
1531 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1532 * @mask: indicates which pages we should clear D-bit
1533 *
1534 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1535 */
1536 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1537 struct kvm_memory_slot *slot,
1538 gfn_t gfn_offset, unsigned long mask)
1539 {
1540 struct kvm_rmap_head *rmap_head;
1541
1542 while (mask) {
1543 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1544 PT_PAGE_TABLE_LEVEL, slot);
1545 __rmap_clear_dirty(kvm, rmap_head);
1546
1547 /* clear the first set bit */
1548 mask &= mask - 1;
1549 }
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1552
1553 /**
1554 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1555 * PT level pages.
1556 *
1557 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1558 * enable dirty logging for them.
1559 *
1560 * Used when we do not need to care about huge page mappings: e.g. during dirty
1561 * logging we do not have any such mappings.
1562 */
1563 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1564 struct kvm_memory_slot *slot,
1565 gfn_t gfn_offset, unsigned long mask)
1566 {
1567 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1568 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1569 mask);
1570 else
1571 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1572 }
1573
1574 /**
1575 * kvm_arch_write_log_dirty - emulate dirty page logging
1576 * @vcpu: Guest mode vcpu
1577 *
1578 * Emulate arch specific page modification logging for the
1579 * nested hypervisor
1580 */
1581 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1582 {
1583 if (kvm_x86_ops->write_log_dirty)
1584 return kvm_x86_ops->write_log_dirty(vcpu);
1585
1586 return 0;
1587 }
1588
1589 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1590 struct kvm_memory_slot *slot, u64 gfn)
1591 {
1592 struct kvm_rmap_head *rmap_head;
1593 int i;
1594 bool write_protected = false;
1595
1596 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1597 rmap_head = __gfn_to_rmap(gfn, i, slot);
1598 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1599 }
1600
1601 return write_protected;
1602 }
1603
1604 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1605 {
1606 struct kvm_memory_slot *slot;
1607
1608 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1609 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1610 }
1611
1612 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1613 {
1614 u64 *sptep;
1615 struct rmap_iterator iter;
1616 bool flush = false;
1617
1618 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1619 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1620
1621 drop_spte(kvm, sptep);
1622 flush = true;
1623 }
1624
1625 return flush;
1626 }
1627
1628 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1629 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1630 unsigned long data)
1631 {
1632 return kvm_zap_rmapp(kvm, rmap_head);
1633 }
1634
1635 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1636 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1637 unsigned long data)
1638 {
1639 u64 *sptep;
1640 struct rmap_iterator iter;
1641 int need_flush = 0;
1642 u64 new_spte;
1643 pte_t *ptep = (pte_t *)data;
1644 kvm_pfn_t new_pfn;
1645
1646 WARN_ON(pte_huge(*ptep));
1647 new_pfn = pte_pfn(*ptep);
1648
1649 restart:
1650 for_each_rmap_spte(rmap_head, &iter, sptep) {
1651 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1652 sptep, *sptep, gfn, level);
1653
1654 need_flush = 1;
1655
1656 if (pte_write(*ptep)) {
1657 drop_spte(kvm, sptep);
1658 goto restart;
1659 } else {
1660 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1661 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1662
1663 new_spte &= ~PT_WRITABLE_MASK;
1664 new_spte &= ~SPTE_HOST_WRITEABLE;
1665
1666 new_spte = mark_spte_for_access_track(new_spte);
1667
1668 mmu_spte_clear_track_bits(sptep);
1669 mmu_spte_set(sptep, new_spte);
1670 }
1671 }
1672
1673 if (need_flush)
1674 kvm_flush_remote_tlbs(kvm);
1675
1676 return 0;
1677 }
1678
1679 struct slot_rmap_walk_iterator {
1680 /* input fields. */
1681 struct kvm_memory_slot *slot;
1682 gfn_t start_gfn;
1683 gfn_t end_gfn;
1684 int start_level;
1685 int end_level;
1686
1687 /* output fields. */
1688 gfn_t gfn;
1689 struct kvm_rmap_head *rmap;
1690 int level;
1691
1692 /* private field. */
1693 struct kvm_rmap_head *end_rmap;
1694 };
1695
1696 static void
1697 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1698 {
1699 iterator->level = level;
1700 iterator->gfn = iterator->start_gfn;
1701 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1702 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1703 iterator->slot);
1704 }
1705
1706 static void
1707 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1708 struct kvm_memory_slot *slot, int start_level,
1709 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1710 {
1711 iterator->slot = slot;
1712 iterator->start_level = start_level;
1713 iterator->end_level = end_level;
1714 iterator->start_gfn = start_gfn;
1715 iterator->end_gfn = end_gfn;
1716
1717 rmap_walk_init_level(iterator, iterator->start_level);
1718 }
1719
1720 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1721 {
1722 return !!iterator->rmap;
1723 }
1724
1725 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1726 {
1727 if (++iterator->rmap <= iterator->end_rmap) {
1728 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1729 return;
1730 }
1731
1732 if (++iterator->level > iterator->end_level) {
1733 iterator->rmap = NULL;
1734 return;
1735 }
1736
1737 rmap_walk_init_level(iterator, iterator->level);
1738 }
1739
1740 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1741 _start_gfn, _end_gfn, _iter_) \
1742 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1743 _end_level_, _start_gfn, _end_gfn); \
1744 slot_rmap_walk_okay(_iter_); \
1745 slot_rmap_walk_next(_iter_))
1746
1747 static int kvm_handle_hva_range(struct kvm *kvm,
1748 unsigned long start,
1749 unsigned long end,
1750 unsigned long data,
1751 int (*handler)(struct kvm *kvm,
1752 struct kvm_rmap_head *rmap_head,
1753 struct kvm_memory_slot *slot,
1754 gfn_t gfn,
1755 int level,
1756 unsigned long data))
1757 {
1758 struct kvm_memslots *slots;
1759 struct kvm_memory_slot *memslot;
1760 struct slot_rmap_walk_iterator iterator;
1761 int ret = 0;
1762 int i;
1763
1764 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1765 slots = __kvm_memslots(kvm, i);
1766 kvm_for_each_memslot(memslot, slots) {
1767 unsigned long hva_start, hva_end;
1768 gfn_t gfn_start, gfn_end;
1769
1770 hva_start = max(start, memslot->userspace_addr);
1771 hva_end = min(end, memslot->userspace_addr +
1772 (memslot->npages << PAGE_SHIFT));
1773 if (hva_start >= hva_end)
1774 continue;
1775 /*
1776 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1777 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1778 */
1779 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1780 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1781
1782 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1783 PT_MAX_HUGEPAGE_LEVEL,
1784 gfn_start, gfn_end - 1,
1785 &iterator)
1786 ret |= handler(kvm, iterator.rmap, memslot,
1787 iterator.gfn, iterator.level, data);
1788 }
1789 }
1790
1791 return ret;
1792 }
1793
1794 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1795 unsigned long data,
1796 int (*handler)(struct kvm *kvm,
1797 struct kvm_rmap_head *rmap_head,
1798 struct kvm_memory_slot *slot,
1799 gfn_t gfn, int level,
1800 unsigned long data))
1801 {
1802 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1803 }
1804
1805 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1806 {
1807 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1808 }
1809
1810 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1811 {
1812 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1813 }
1814
1815 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1816 {
1817 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1818 }
1819
1820 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1821 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1822 unsigned long data)
1823 {
1824 u64 *sptep;
1825 struct rmap_iterator uninitialized_var(iter);
1826 int young = 0;
1827
1828 for_each_rmap_spte(rmap_head, &iter, sptep)
1829 young |= mmu_spte_age(sptep);
1830
1831 trace_kvm_age_page(gfn, level, slot, young);
1832 return young;
1833 }
1834
1835 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1836 struct kvm_memory_slot *slot, gfn_t gfn,
1837 int level, unsigned long data)
1838 {
1839 u64 *sptep;
1840 struct rmap_iterator iter;
1841
1842 for_each_rmap_spte(rmap_head, &iter, sptep)
1843 if (is_accessed_spte(*sptep))
1844 return 1;
1845 return 0;
1846 }
1847
1848 #define RMAP_RECYCLE_THRESHOLD 1000
1849
1850 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1851 {
1852 struct kvm_rmap_head *rmap_head;
1853 struct kvm_mmu_page *sp;
1854
1855 sp = page_header(__pa(spte));
1856
1857 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1858
1859 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1860 kvm_flush_remote_tlbs(vcpu->kvm);
1861 }
1862
1863 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1864 {
1865 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1866 }
1867
1868 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1869 {
1870 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1871 }
1872
1873 #ifdef MMU_DEBUG
1874 static int is_empty_shadow_page(u64 *spt)
1875 {
1876 u64 *pos;
1877 u64 *end;
1878
1879 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1880 if (is_shadow_present_pte(*pos)) {
1881 printk(KERN_ERR "%s: %p %llx\n", __func__,
1882 pos, *pos);
1883 return 0;
1884 }
1885 return 1;
1886 }
1887 #endif
1888
1889 /*
1890 * This value is the sum of all of the kvm instances's
1891 * kvm->arch.n_used_mmu_pages values. We need a global,
1892 * aggregate version in order to make the slab shrinker
1893 * faster
1894 */
1895 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1896 {
1897 kvm->arch.n_used_mmu_pages += nr;
1898 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1899 }
1900
1901 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1902 {
1903 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1904 hlist_del(&sp->hash_link);
1905 list_del(&sp->link);
1906 free_page((unsigned long)sp->spt);
1907 if (!sp->role.direct)
1908 free_page((unsigned long)sp->gfns);
1909 kmem_cache_free(mmu_page_header_cache, sp);
1910 }
1911
1912 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1913 {
1914 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1915 }
1916
1917 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1918 struct kvm_mmu_page *sp, u64 *parent_pte)
1919 {
1920 if (!parent_pte)
1921 return;
1922
1923 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1924 }
1925
1926 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1927 u64 *parent_pte)
1928 {
1929 pte_list_remove(parent_pte, &sp->parent_ptes);
1930 }
1931
1932 static void drop_parent_pte(struct kvm_mmu_page *sp,
1933 u64 *parent_pte)
1934 {
1935 mmu_page_remove_parent_pte(sp, parent_pte);
1936 mmu_spte_clear_no_track(parent_pte);
1937 }
1938
1939 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1940 {
1941 struct kvm_mmu_page *sp;
1942
1943 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1944 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1945 if (!direct)
1946 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1947 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1948
1949 /*
1950 * The active_mmu_pages list is the FIFO list, do not move the
1951 * page until it is zapped. kvm_zap_obsolete_pages depends on
1952 * this feature. See the comments in kvm_zap_obsolete_pages().
1953 */
1954 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1955 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1956 return sp;
1957 }
1958
1959 static void mark_unsync(u64 *spte);
1960 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1961 {
1962 u64 *sptep;
1963 struct rmap_iterator iter;
1964
1965 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1966 mark_unsync(sptep);
1967 }
1968 }
1969
1970 static void mark_unsync(u64 *spte)
1971 {
1972 struct kvm_mmu_page *sp;
1973 unsigned int index;
1974
1975 sp = page_header(__pa(spte));
1976 index = spte - sp->spt;
1977 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1978 return;
1979 if (sp->unsync_children++)
1980 return;
1981 kvm_mmu_mark_parents_unsync(sp);
1982 }
1983
1984 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1985 struct kvm_mmu_page *sp)
1986 {
1987 return 0;
1988 }
1989
1990 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1991 {
1992 }
1993
1994 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1995 struct kvm_mmu_page *sp, u64 *spte,
1996 const void *pte)
1997 {
1998 WARN_ON(1);
1999 }
2000
2001 #define KVM_PAGE_ARRAY_NR 16
2002
2003 struct kvm_mmu_pages {
2004 struct mmu_page_and_offset {
2005 struct kvm_mmu_page *sp;
2006 unsigned int idx;
2007 } page[KVM_PAGE_ARRAY_NR];
2008 unsigned int nr;
2009 };
2010
2011 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2012 int idx)
2013 {
2014 int i;
2015
2016 if (sp->unsync)
2017 for (i=0; i < pvec->nr; i++)
2018 if (pvec->page[i].sp == sp)
2019 return 0;
2020
2021 pvec->page[pvec->nr].sp = sp;
2022 pvec->page[pvec->nr].idx = idx;
2023 pvec->nr++;
2024 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2025 }
2026
2027 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2028 {
2029 --sp->unsync_children;
2030 WARN_ON((int)sp->unsync_children < 0);
2031 __clear_bit(idx, sp->unsync_child_bitmap);
2032 }
2033
2034 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2035 struct kvm_mmu_pages *pvec)
2036 {
2037 int i, ret, nr_unsync_leaf = 0;
2038
2039 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2040 struct kvm_mmu_page *child;
2041 u64 ent = sp->spt[i];
2042
2043 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2044 clear_unsync_child_bit(sp, i);
2045 continue;
2046 }
2047
2048 child = page_header(ent & PT64_BASE_ADDR_MASK);
2049
2050 if (child->unsync_children) {
2051 if (mmu_pages_add(pvec, child, i))
2052 return -ENOSPC;
2053
2054 ret = __mmu_unsync_walk(child, pvec);
2055 if (!ret) {
2056 clear_unsync_child_bit(sp, i);
2057 continue;
2058 } else if (ret > 0) {
2059 nr_unsync_leaf += ret;
2060 } else
2061 return ret;
2062 } else if (child->unsync) {
2063 nr_unsync_leaf++;
2064 if (mmu_pages_add(pvec, child, i))
2065 return -ENOSPC;
2066 } else
2067 clear_unsync_child_bit(sp, i);
2068 }
2069
2070 return nr_unsync_leaf;
2071 }
2072
2073 #define INVALID_INDEX (-1)
2074
2075 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2076 struct kvm_mmu_pages *pvec)
2077 {
2078 pvec->nr = 0;
2079 if (!sp->unsync_children)
2080 return 0;
2081
2082 mmu_pages_add(pvec, sp, INVALID_INDEX);
2083 return __mmu_unsync_walk(sp, pvec);
2084 }
2085
2086 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2087 {
2088 WARN_ON(!sp->unsync);
2089 trace_kvm_mmu_sync_page(sp);
2090 sp->unsync = 0;
2091 --kvm->stat.mmu_unsync;
2092 }
2093
2094 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2095 struct list_head *invalid_list);
2096 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2097 struct list_head *invalid_list);
2098
2099 /*
2100 * NOTE: we should pay more attention on the zapped-obsolete page
2101 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2102 * since it has been deleted from active_mmu_pages but still can be found
2103 * at hast list.
2104 *
2105 * for_each_valid_sp() has skipped that kind of pages.
2106 */
2107 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2108 hlist_for_each_entry(_sp, \
2109 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2110 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2111 } else
2112
2113 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2114 for_each_valid_sp(_kvm, _sp, _gfn) \
2115 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2116
2117 /* @sp->gfn should be write-protected at the call site */
2118 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2119 struct list_head *invalid_list)
2120 {
2121 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2122 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2123 return false;
2124 }
2125
2126 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2127 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2128 return false;
2129 }
2130
2131 return true;
2132 }
2133
2134 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2135 struct list_head *invalid_list,
2136 bool remote_flush, bool local_flush)
2137 {
2138 if (!list_empty(invalid_list)) {
2139 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2140 return;
2141 }
2142
2143 if (remote_flush)
2144 kvm_flush_remote_tlbs(vcpu->kvm);
2145 else if (local_flush)
2146 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2147 }
2148
2149 #ifdef CONFIG_KVM_MMU_AUDIT
2150 #include "mmu_audit.c"
2151 #else
2152 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2153 static void mmu_audit_disable(void) { }
2154 #endif
2155
2156 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2157 {
2158 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2159 }
2160
2161 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2162 struct list_head *invalid_list)
2163 {
2164 kvm_unlink_unsync_page(vcpu->kvm, sp);
2165 return __kvm_sync_page(vcpu, sp, invalid_list);
2166 }
2167
2168 /* @gfn should be write-protected at the call site */
2169 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2170 struct list_head *invalid_list)
2171 {
2172 struct kvm_mmu_page *s;
2173 bool ret = false;
2174
2175 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2176 if (!s->unsync)
2177 continue;
2178
2179 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2180 ret |= kvm_sync_page(vcpu, s, invalid_list);
2181 }
2182
2183 return ret;
2184 }
2185
2186 struct mmu_page_path {
2187 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2188 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2189 };
2190
2191 #define for_each_sp(pvec, sp, parents, i) \
2192 for (i = mmu_pages_first(&pvec, &parents); \
2193 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2194 i = mmu_pages_next(&pvec, &parents, i))
2195
2196 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2197 struct mmu_page_path *parents,
2198 int i)
2199 {
2200 int n;
2201
2202 for (n = i+1; n < pvec->nr; n++) {
2203 struct kvm_mmu_page *sp = pvec->page[n].sp;
2204 unsigned idx = pvec->page[n].idx;
2205 int level = sp->role.level;
2206
2207 parents->idx[level-1] = idx;
2208 if (level == PT_PAGE_TABLE_LEVEL)
2209 break;
2210
2211 parents->parent[level-2] = sp;
2212 }
2213
2214 return n;
2215 }
2216
2217 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2218 struct mmu_page_path *parents)
2219 {
2220 struct kvm_mmu_page *sp;
2221 int level;
2222
2223 if (pvec->nr == 0)
2224 return 0;
2225
2226 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2227
2228 sp = pvec->page[0].sp;
2229 level = sp->role.level;
2230 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2231
2232 parents->parent[level-2] = sp;
2233
2234 /* Also set up a sentinel. Further entries in pvec are all
2235 * children of sp, so this element is never overwritten.
2236 */
2237 parents->parent[level-1] = NULL;
2238 return mmu_pages_next(pvec, parents, 0);
2239 }
2240
2241 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2242 {
2243 struct kvm_mmu_page *sp;
2244 unsigned int level = 0;
2245
2246 do {
2247 unsigned int idx = parents->idx[level];
2248 sp = parents->parent[level];
2249 if (!sp)
2250 return;
2251
2252 WARN_ON(idx == INVALID_INDEX);
2253 clear_unsync_child_bit(sp, idx);
2254 level++;
2255 } while (!sp->unsync_children);
2256 }
2257
2258 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2259 struct kvm_mmu_page *parent)
2260 {
2261 int i;
2262 struct kvm_mmu_page *sp;
2263 struct mmu_page_path parents;
2264 struct kvm_mmu_pages pages;
2265 LIST_HEAD(invalid_list);
2266 bool flush = false;
2267
2268 while (mmu_unsync_walk(parent, &pages)) {
2269 bool protected = false;
2270
2271 for_each_sp(pages, sp, parents, i)
2272 protected |= rmap_write_protect(vcpu, sp->gfn);
2273
2274 if (protected) {
2275 kvm_flush_remote_tlbs(vcpu->kvm);
2276 flush = false;
2277 }
2278
2279 for_each_sp(pages, sp, parents, i) {
2280 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2281 mmu_pages_clear_parents(&parents);
2282 }
2283 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2284 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2285 cond_resched_lock(&vcpu->kvm->mmu_lock);
2286 flush = false;
2287 }
2288 }
2289
2290 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2291 }
2292
2293 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2294 {
2295 atomic_set(&sp->write_flooding_count, 0);
2296 }
2297
2298 static void clear_sp_write_flooding_count(u64 *spte)
2299 {
2300 struct kvm_mmu_page *sp = page_header(__pa(spte));
2301
2302 __clear_sp_write_flooding_count(sp);
2303 }
2304
2305 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2306 gfn_t gfn,
2307 gva_t gaddr,
2308 unsigned level,
2309 int direct,
2310 unsigned access)
2311 {
2312 union kvm_mmu_page_role role;
2313 unsigned quadrant;
2314 struct kvm_mmu_page *sp;
2315 bool need_sync = false;
2316 bool flush = false;
2317 int collisions = 0;
2318 LIST_HEAD(invalid_list);
2319
2320 role = vcpu->arch.mmu.base_role;
2321 role.level = level;
2322 role.direct = direct;
2323 if (role.direct)
2324 role.cr4_pae = 0;
2325 role.access = access;
2326 if (!vcpu->arch.mmu.direct_map
2327 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2328 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2329 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2330 role.quadrant = quadrant;
2331 }
2332 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2333 if (sp->gfn != gfn) {
2334 collisions++;
2335 continue;
2336 }
2337
2338 if (!need_sync && sp->unsync)
2339 need_sync = true;
2340
2341 if (sp->role.word != role.word)
2342 continue;
2343
2344 if (sp->unsync) {
2345 /* The page is good, but __kvm_sync_page might still end
2346 * up zapping it. If so, break in order to rebuild it.
2347 */
2348 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2349 break;
2350
2351 WARN_ON(!list_empty(&invalid_list));
2352 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2353 }
2354
2355 if (sp->unsync_children)
2356 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2357
2358 __clear_sp_write_flooding_count(sp);
2359 trace_kvm_mmu_get_page(sp, false);
2360 goto out;
2361 }
2362
2363 ++vcpu->kvm->stat.mmu_cache_miss;
2364
2365 sp = kvm_mmu_alloc_page(vcpu, direct);
2366
2367 sp->gfn = gfn;
2368 sp->role = role;
2369 hlist_add_head(&sp->hash_link,
2370 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2371 if (!direct) {
2372 /*
2373 * we should do write protection before syncing pages
2374 * otherwise the content of the synced shadow page may
2375 * be inconsistent with guest page table.
2376 */
2377 account_shadowed(vcpu->kvm, sp);
2378 if (level == PT_PAGE_TABLE_LEVEL &&
2379 rmap_write_protect(vcpu, gfn))
2380 kvm_flush_remote_tlbs(vcpu->kvm);
2381
2382 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2383 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2384 }
2385 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2386 clear_page(sp->spt);
2387 trace_kvm_mmu_get_page(sp, true);
2388
2389 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2390 out:
2391 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2392 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2393 return sp;
2394 }
2395
2396 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2397 struct kvm_vcpu *vcpu, u64 addr)
2398 {
2399 iterator->addr = addr;
2400 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2401 iterator->level = vcpu->arch.mmu.shadow_root_level;
2402
2403 if (iterator->level == PT64_ROOT_4LEVEL &&
2404 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2405 !vcpu->arch.mmu.direct_map)
2406 --iterator->level;
2407
2408 if (iterator->level == PT32E_ROOT_LEVEL) {
2409 iterator->shadow_addr
2410 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2411 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2412 --iterator->level;
2413 if (!iterator->shadow_addr)
2414 iterator->level = 0;
2415 }
2416 }
2417
2418 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2419 {
2420 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2421 return false;
2422
2423 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2424 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2425 return true;
2426 }
2427
2428 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2429 u64 spte)
2430 {
2431 if (is_last_spte(spte, iterator->level)) {
2432 iterator->level = 0;
2433 return;
2434 }
2435
2436 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2437 --iterator->level;
2438 }
2439
2440 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2441 {
2442 __shadow_walk_next(iterator, *iterator->sptep);
2443 }
2444
2445 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2446 struct kvm_mmu_page *sp)
2447 {
2448 u64 spte;
2449
2450 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2451
2452 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2453 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2454
2455 if (sp_ad_disabled(sp))
2456 spte |= shadow_acc_track_value;
2457 else
2458 spte |= shadow_accessed_mask;
2459
2460 mmu_spte_set(sptep, spte);
2461
2462 mmu_page_add_parent_pte(vcpu, sp, sptep);
2463
2464 if (sp->unsync_children || sp->unsync)
2465 mark_unsync(sptep);
2466 }
2467
2468 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2469 unsigned direct_access)
2470 {
2471 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2472 struct kvm_mmu_page *child;
2473
2474 /*
2475 * For the direct sp, if the guest pte's dirty bit
2476 * changed form clean to dirty, it will corrupt the
2477 * sp's access: allow writable in the read-only sp,
2478 * so we should update the spte at this point to get
2479 * a new sp with the correct access.
2480 */
2481 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2482 if (child->role.access == direct_access)
2483 return;
2484
2485 drop_parent_pte(child, sptep);
2486 kvm_flush_remote_tlbs(vcpu->kvm);
2487 }
2488 }
2489
2490 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2491 u64 *spte)
2492 {
2493 u64 pte;
2494 struct kvm_mmu_page *child;
2495
2496 pte = *spte;
2497 if (is_shadow_present_pte(pte)) {
2498 if (is_last_spte(pte, sp->role.level)) {
2499 drop_spte(kvm, spte);
2500 if (is_large_pte(pte))
2501 --kvm->stat.lpages;
2502 } else {
2503 child = page_header(pte & PT64_BASE_ADDR_MASK);
2504 drop_parent_pte(child, spte);
2505 }
2506 return true;
2507 }
2508
2509 if (is_mmio_spte(pte))
2510 mmu_spte_clear_no_track(spte);
2511
2512 return false;
2513 }
2514
2515 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2516 struct kvm_mmu_page *sp)
2517 {
2518 unsigned i;
2519
2520 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2521 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2522 }
2523
2524 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2525 {
2526 u64 *sptep;
2527 struct rmap_iterator iter;
2528
2529 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2530 drop_parent_pte(sp, sptep);
2531 }
2532
2533 static int mmu_zap_unsync_children(struct kvm *kvm,
2534 struct kvm_mmu_page *parent,
2535 struct list_head *invalid_list)
2536 {
2537 int i, zapped = 0;
2538 struct mmu_page_path parents;
2539 struct kvm_mmu_pages pages;
2540
2541 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2542 return 0;
2543
2544 while (mmu_unsync_walk(parent, &pages)) {
2545 struct kvm_mmu_page *sp;
2546
2547 for_each_sp(pages, sp, parents, i) {
2548 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2549 mmu_pages_clear_parents(&parents);
2550 zapped++;
2551 }
2552 }
2553
2554 return zapped;
2555 }
2556
2557 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2558 struct list_head *invalid_list)
2559 {
2560 int ret;
2561
2562 trace_kvm_mmu_prepare_zap_page(sp);
2563 ++kvm->stat.mmu_shadow_zapped;
2564 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2565 kvm_mmu_page_unlink_children(kvm, sp);
2566 kvm_mmu_unlink_parents(kvm, sp);
2567
2568 if (!sp->role.invalid && !sp->role.direct)
2569 unaccount_shadowed(kvm, sp);
2570
2571 if (sp->unsync)
2572 kvm_unlink_unsync_page(kvm, sp);
2573 if (!sp->root_count) {
2574 /* Count self */
2575 ret++;
2576 list_move(&sp->link, invalid_list);
2577 kvm_mod_used_mmu_pages(kvm, -1);
2578 } else {
2579 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2580
2581 /*
2582 * The obsolete pages can not be used on any vcpus.
2583 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2584 */
2585 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2586 kvm_reload_remote_mmus(kvm);
2587 }
2588
2589 sp->role.invalid = 1;
2590 return ret;
2591 }
2592
2593 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2594 struct list_head *invalid_list)
2595 {
2596 struct kvm_mmu_page *sp, *nsp;
2597
2598 if (list_empty(invalid_list))
2599 return;
2600
2601 /*
2602 * We need to make sure everyone sees our modifications to
2603 * the page tables and see changes to vcpu->mode here. The barrier
2604 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2605 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2606 *
2607 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2608 * guest mode and/or lockless shadow page table walks.
2609 */
2610 kvm_flush_remote_tlbs(kvm);
2611
2612 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2613 WARN_ON(!sp->role.invalid || sp->root_count);
2614 kvm_mmu_free_page(sp);
2615 }
2616 }
2617
2618 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2619 struct list_head *invalid_list)
2620 {
2621 struct kvm_mmu_page *sp;
2622
2623 if (list_empty(&kvm->arch.active_mmu_pages))
2624 return false;
2625
2626 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2627 struct kvm_mmu_page, link);
2628 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2629 }
2630
2631 /*
2632 * Changing the number of mmu pages allocated to the vm
2633 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2634 */
2635 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2636 {
2637 LIST_HEAD(invalid_list);
2638
2639 spin_lock(&kvm->mmu_lock);
2640
2641 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2642 /* Need to free some mmu pages to achieve the goal. */
2643 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2644 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2645 break;
2646
2647 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2648 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2649 }
2650
2651 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2652
2653 spin_unlock(&kvm->mmu_lock);
2654 }
2655
2656 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2657 {
2658 struct kvm_mmu_page *sp;
2659 LIST_HEAD(invalid_list);
2660 int r;
2661
2662 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2663 r = 0;
2664 spin_lock(&kvm->mmu_lock);
2665 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2666 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2667 sp->role.word);
2668 r = 1;
2669 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2670 }
2671 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2672 spin_unlock(&kvm->mmu_lock);
2673
2674 return r;
2675 }
2676 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2677
2678 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2679 {
2680 trace_kvm_mmu_unsync_page(sp);
2681 ++vcpu->kvm->stat.mmu_unsync;
2682 sp->unsync = 1;
2683
2684 kvm_mmu_mark_parents_unsync(sp);
2685 }
2686
2687 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2688 bool can_unsync)
2689 {
2690 struct kvm_mmu_page *sp;
2691
2692 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2693 return true;
2694
2695 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2696 if (!can_unsync)
2697 return true;
2698
2699 if (sp->unsync)
2700 continue;
2701
2702 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2703 kvm_unsync_page(vcpu, sp);
2704 }
2705
2706 return false;
2707 }
2708
2709 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2710 {
2711 if (pfn_valid(pfn))
2712 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2713 /*
2714 * Some reserved pages, such as those from NVDIMM
2715 * DAX devices, are not for MMIO, and can be mapped
2716 * with cached memory type for better performance.
2717 * However, the above check misconceives those pages
2718 * as MMIO, and results in KVM mapping them with UC
2719 * memory type, which would hurt the performance.
2720 * Therefore, we check the host memory type in addition
2721 * and only treat UC/UC-/WC pages as MMIO.
2722 */
2723 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2724
2725 return true;
2726 }
2727
2728 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2729 unsigned pte_access, int level,
2730 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2731 bool can_unsync, bool host_writable)
2732 {
2733 u64 spte = 0;
2734 int ret = 0;
2735 struct kvm_mmu_page *sp;
2736
2737 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2738 return 0;
2739
2740 sp = page_header(__pa(sptep));
2741 if (sp_ad_disabled(sp))
2742 spte |= shadow_acc_track_value;
2743
2744 /*
2745 * For the EPT case, shadow_present_mask is 0 if hardware
2746 * supports exec-only page table entries. In that case,
2747 * ACC_USER_MASK and shadow_user_mask are used to represent
2748 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2749 */
2750 spte |= shadow_present_mask;
2751 if (!speculative)
2752 spte |= spte_shadow_accessed_mask(spte);
2753
2754 if (pte_access & ACC_EXEC_MASK)
2755 spte |= shadow_x_mask;
2756 else
2757 spte |= shadow_nx_mask;
2758
2759 if (pte_access & ACC_USER_MASK)
2760 spte |= shadow_user_mask;
2761
2762 if (level > PT_PAGE_TABLE_LEVEL)
2763 spte |= PT_PAGE_SIZE_MASK;
2764 if (tdp_enabled)
2765 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2766 kvm_is_mmio_pfn(pfn));
2767
2768 if (host_writable)
2769 spte |= SPTE_HOST_WRITEABLE;
2770 else
2771 pte_access &= ~ACC_WRITE_MASK;
2772
2773 if (!kvm_is_mmio_pfn(pfn))
2774 spte |= shadow_me_mask;
2775
2776 spte |= (u64)pfn << PAGE_SHIFT;
2777
2778 if (pte_access & ACC_WRITE_MASK) {
2779
2780 /*
2781 * Other vcpu creates new sp in the window between
2782 * mapping_level() and acquiring mmu-lock. We can
2783 * allow guest to retry the access, the mapping can
2784 * be fixed if guest refault.
2785 */
2786 if (level > PT_PAGE_TABLE_LEVEL &&
2787 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2788 goto done;
2789
2790 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2791
2792 /*
2793 * Optimization: for pte sync, if spte was writable the hash
2794 * lookup is unnecessary (and expensive). Write protection
2795 * is responsibility of mmu_get_page / kvm_sync_page.
2796 * Same reasoning can be applied to dirty page accounting.
2797 */
2798 if (!can_unsync && is_writable_pte(*sptep))
2799 goto set_pte;
2800
2801 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2802 pgprintk("%s: found shadow page for %llx, marking ro\n",
2803 __func__, gfn);
2804 ret = 1;
2805 pte_access &= ~ACC_WRITE_MASK;
2806 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2807 }
2808 }
2809
2810 if (pte_access & ACC_WRITE_MASK) {
2811 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2812 spte |= spte_shadow_dirty_mask(spte);
2813 }
2814
2815 if (speculative)
2816 spte = mark_spte_for_access_track(spte);
2817
2818 set_pte:
2819 if (mmu_spte_update(sptep, spte))
2820 kvm_flush_remote_tlbs(vcpu->kvm);
2821 done:
2822 return ret;
2823 }
2824
2825 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2826 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2827 bool speculative, bool host_writable)
2828 {
2829 int was_rmapped = 0;
2830 int rmap_count;
2831 int ret = RET_PF_RETRY;
2832
2833 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2834 *sptep, write_fault, gfn);
2835
2836 if (is_shadow_present_pte(*sptep)) {
2837 /*
2838 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2839 * the parent of the now unreachable PTE.
2840 */
2841 if (level > PT_PAGE_TABLE_LEVEL &&
2842 !is_large_pte(*sptep)) {
2843 struct kvm_mmu_page *child;
2844 u64 pte = *sptep;
2845
2846 child = page_header(pte & PT64_BASE_ADDR_MASK);
2847 drop_parent_pte(child, sptep);
2848 kvm_flush_remote_tlbs(vcpu->kvm);
2849 } else if (pfn != spte_to_pfn(*sptep)) {
2850 pgprintk("hfn old %llx new %llx\n",
2851 spte_to_pfn(*sptep), pfn);
2852 drop_spte(vcpu->kvm, sptep);
2853 kvm_flush_remote_tlbs(vcpu->kvm);
2854 } else
2855 was_rmapped = 1;
2856 }
2857
2858 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2859 true, host_writable)) {
2860 if (write_fault)
2861 ret = RET_PF_EMULATE;
2862 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2863 }
2864
2865 if (unlikely(is_mmio_spte(*sptep)))
2866 ret = RET_PF_EMULATE;
2867
2868 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2869 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2870 is_large_pte(*sptep)? "2MB" : "4kB",
2871 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2872 *sptep, sptep);
2873 if (!was_rmapped && is_large_pte(*sptep))
2874 ++vcpu->kvm->stat.lpages;
2875
2876 if (is_shadow_present_pte(*sptep)) {
2877 if (!was_rmapped) {
2878 rmap_count = rmap_add(vcpu, sptep, gfn);
2879 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2880 rmap_recycle(vcpu, sptep, gfn);
2881 }
2882 }
2883
2884 kvm_release_pfn_clean(pfn);
2885
2886 return ret;
2887 }
2888
2889 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2890 bool no_dirty_log)
2891 {
2892 struct kvm_memory_slot *slot;
2893
2894 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2895 if (!slot)
2896 return KVM_PFN_ERR_FAULT;
2897
2898 return gfn_to_pfn_memslot_atomic(slot, gfn);
2899 }
2900
2901 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2902 struct kvm_mmu_page *sp,
2903 u64 *start, u64 *end)
2904 {
2905 struct page *pages[PTE_PREFETCH_NUM];
2906 struct kvm_memory_slot *slot;
2907 unsigned access = sp->role.access;
2908 int i, ret;
2909 gfn_t gfn;
2910
2911 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2912 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2913 if (!slot)
2914 return -1;
2915
2916 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2917 if (ret <= 0)
2918 return -1;
2919
2920 for (i = 0; i < ret; i++, gfn++, start++)
2921 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2922 page_to_pfn(pages[i]), true, true);
2923
2924 return 0;
2925 }
2926
2927 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2928 struct kvm_mmu_page *sp, u64 *sptep)
2929 {
2930 u64 *spte, *start = NULL;
2931 int i;
2932
2933 WARN_ON(!sp->role.direct);
2934
2935 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2936 spte = sp->spt + i;
2937
2938 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2939 if (is_shadow_present_pte(*spte) || spte == sptep) {
2940 if (!start)
2941 continue;
2942 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2943 break;
2944 start = NULL;
2945 } else if (!start)
2946 start = spte;
2947 }
2948 }
2949
2950 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2951 {
2952 struct kvm_mmu_page *sp;
2953
2954 sp = page_header(__pa(sptep));
2955
2956 /*
2957 * Without accessed bits, there's no way to distinguish between
2958 * actually accessed translations and prefetched, so disable pte
2959 * prefetch if accessed bits aren't available.
2960 */
2961 if (sp_ad_disabled(sp))
2962 return;
2963
2964 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2965 return;
2966
2967 __direct_pte_prefetch(vcpu, sp, sptep);
2968 }
2969
2970 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2971 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2972 {
2973 struct kvm_shadow_walk_iterator iterator;
2974 struct kvm_mmu_page *sp;
2975 int emulate = 0;
2976 gfn_t pseudo_gfn;
2977
2978 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2979 return 0;
2980
2981 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2982 if (iterator.level == level) {
2983 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2984 write, level, gfn, pfn, prefault,
2985 map_writable);
2986 direct_pte_prefetch(vcpu, iterator.sptep);
2987 ++vcpu->stat.pf_fixed;
2988 break;
2989 }
2990
2991 drop_large_spte(vcpu, iterator.sptep);
2992 if (!is_shadow_present_pte(*iterator.sptep)) {
2993 u64 base_addr = iterator.addr;
2994
2995 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2996 pseudo_gfn = base_addr >> PAGE_SHIFT;
2997 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2998 iterator.level - 1, 1, ACC_ALL);
2999
3000 link_shadow_page(vcpu, iterator.sptep, sp);
3001 }
3002 }
3003 return emulate;
3004 }
3005
3006 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3007 {
3008 siginfo_t info;
3009
3010 info.si_signo = SIGBUS;
3011 info.si_errno = 0;
3012 info.si_code = BUS_MCEERR_AR;
3013 info.si_addr = (void __user *)address;
3014 info.si_addr_lsb = PAGE_SHIFT;
3015
3016 send_sig_info(SIGBUS, &info, tsk);
3017 }
3018
3019 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3020 {
3021 /*
3022 * Do not cache the mmio info caused by writing the readonly gfn
3023 * into the spte otherwise read access on readonly gfn also can
3024 * caused mmio page fault and treat it as mmio access.
3025 */
3026 if (pfn == KVM_PFN_ERR_RO_FAULT)
3027 return RET_PF_EMULATE;
3028
3029 if (pfn == KVM_PFN_ERR_HWPOISON) {
3030 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3031 return RET_PF_RETRY;
3032 }
3033
3034 return -EFAULT;
3035 }
3036
3037 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3038 gfn_t *gfnp, kvm_pfn_t *pfnp,
3039 int *levelp)
3040 {
3041 kvm_pfn_t pfn = *pfnp;
3042 gfn_t gfn = *gfnp;
3043 int level = *levelp;
3044
3045 /*
3046 * Check if it's a transparent hugepage. If this would be an
3047 * hugetlbfs page, level wouldn't be set to
3048 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3049 * here.
3050 */
3051 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3052 level == PT_PAGE_TABLE_LEVEL &&
3053 PageTransCompoundMap(pfn_to_page(pfn)) &&
3054 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3055 unsigned long mask;
3056 /*
3057 * mmu_notifier_retry was successful and we hold the
3058 * mmu_lock here, so the pmd can't become splitting
3059 * from under us, and in turn
3060 * __split_huge_page_refcount() can't run from under
3061 * us and we can safely transfer the refcount from
3062 * PG_tail to PG_head as we switch the pfn to tail to
3063 * head.
3064 */
3065 *levelp = level = PT_DIRECTORY_LEVEL;
3066 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3067 VM_BUG_ON((gfn & mask) != (pfn & mask));
3068 if (pfn & mask) {
3069 gfn &= ~mask;
3070 *gfnp = gfn;
3071 kvm_release_pfn_clean(pfn);
3072 pfn &= ~mask;
3073 kvm_get_pfn(pfn);
3074 *pfnp = pfn;
3075 }
3076 }
3077 }
3078
3079 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3080 kvm_pfn_t pfn, unsigned access, int *ret_val)
3081 {
3082 /* The pfn is invalid, report the error! */
3083 if (unlikely(is_error_pfn(pfn))) {
3084 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3085 return true;
3086 }
3087
3088 if (unlikely(is_noslot_pfn(pfn)))
3089 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3090
3091 return false;
3092 }
3093
3094 static bool page_fault_can_be_fast(u32 error_code)
3095 {
3096 /*
3097 * Do not fix the mmio spte with invalid generation number which
3098 * need to be updated by slow page fault path.
3099 */
3100 if (unlikely(error_code & PFERR_RSVD_MASK))
3101 return false;
3102
3103 /* See if the page fault is due to an NX violation */
3104 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3105 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3106 return false;
3107
3108 /*
3109 * #PF can be fast if:
3110 * 1. The shadow page table entry is not present, which could mean that
3111 * the fault is potentially caused by access tracking (if enabled).
3112 * 2. The shadow page table entry is present and the fault
3113 * is caused by write-protect, that means we just need change the W
3114 * bit of the spte which can be done out of mmu-lock.
3115 *
3116 * However, if access tracking is disabled we know that a non-present
3117 * page must be a genuine page fault where we have to create a new SPTE.
3118 * So, if access tracking is disabled, we return true only for write
3119 * accesses to a present page.
3120 */
3121
3122 return shadow_acc_track_mask != 0 ||
3123 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3124 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3125 }
3126
3127 /*
3128 * Returns true if the SPTE was fixed successfully. Otherwise,
3129 * someone else modified the SPTE from its original value.
3130 */
3131 static bool
3132 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3133 u64 *sptep, u64 old_spte, u64 new_spte)
3134 {
3135 gfn_t gfn;
3136
3137 WARN_ON(!sp->role.direct);
3138
3139 /*
3140 * Theoretically we could also set dirty bit (and flush TLB) here in
3141 * order to eliminate unnecessary PML logging. See comments in
3142 * set_spte. But fast_page_fault is very unlikely to happen with PML
3143 * enabled, so we do not do this. This might result in the same GPA
3144 * to be logged in PML buffer again when the write really happens, and
3145 * eventually to be called by mark_page_dirty twice. But it's also no
3146 * harm. This also avoids the TLB flush needed after setting dirty bit
3147 * so non-PML cases won't be impacted.
3148 *
3149 * Compare with set_spte where instead shadow_dirty_mask is set.
3150 */
3151 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3152 return false;
3153
3154 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3155 /*
3156 * The gfn of direct spte is stable since it is
3157 * calculated by sp->gfn.
3158 */
3159 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3160 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3161 }
3162
3163 return true;
3164 }
3165
3166 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3167 {
3168 if (fault_err_code & PFERR_FETCH_MASK)
3169 return is_executable_pte(spte);
3170
3171 if (fault_err_code & PFERR_WRITE_MASK)
3172 return is_writable_pte(spte);
3173
3174 /* Fault was on Read access */
3175 return spte & PT_PRESENT_MASK;
3176 }
3177
3178 /*
3179 * Return value:
3180 * - true: let the vcpu to access on the same address again.
3181 * - false: let the real page fault path to fix it.
3182 */
3183 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3184 u32 error_code)
3185 {
3186 struct kvm_shadow_walk_iterator iterator;
3187 struct kvm_mmu_page *sp;
3188 bool fault_handled = false;
3189 u64 spte = 0ull;
3190 uint retry_count = 0;
3191
3192 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3193 return false;
3194
3195 if (!page_fault_can_be_fast(error_code))
3196 return false;
3197
3198 walk_shadow_page_lockless_begin(vcpu);
3199
3200 do {
3201 u64 new_spte;
3202
3203 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3204 if (!is_shadow_present_pte(spte) ||
3205 iterator.level < level)
3206 break;
3207
3208 sp = page_header(__pa(iterator.sptep));
3209 if (!is_last_spte(spte, sp->role.level))
3210 break;
3211
3212 /*
3213 * Check whether the memory access that caused the fault would
3214 * still cause it if it were to be performed right now. If not,
3215 * then this is a spurious fault caused by TLB lazily flushed,
3216 * or some other CPU has already fixed the PTE after the
3217 * current CPU took the fault.
3218 *
3219 * Need not check the access of upper level table entries since
3220 * they are always ACC_ALL.
3221 */
3222 if (is_access_allowed(error_code, spte)) {
3223 fault_handled = true;
3224 break;
3225 }
3226
3227 new_spte = spte;
3228
3229 if (is_access_track_spte(spte))
3230 new_spte = restore_acc_track_spte(new_spte);
3231
3232 /*
3233 * Currently, to simplify the code, write-protection can
3234 * be removed in the fast path only if the SPTE was
3235 * write-protected for dirty-logging or access tracking.
3236 */
3237 if ((error_code & PFERR_WRITE_MASK) &&
3238 spte_can_locklessly_be_made_writable(spte))
3239 {
3240 new_spte |= PT_WRITABLE_MASK;
3241
3242 /*
3243 * Do not fix write-permission on the large spte. Since
3244 * we only dirty the first page into the dirty-bitmap in
3245 * fast_pf_fix_direct_spte(), other pages are missed
3246 * if its slot has dirty logging enabled.
3247 *
3248 * Instead, we let the slow page fault path create a
3249 * normal spte to fix the access.
3250 *
3251 * See the comments in kvm_arch_commit_memory_region().
3252 */
3253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3254 break;
3255 }
3256
3257 /* Verify that the fault can be handled in the fast path */
3258 if (new_spte == spte ||
3259 !is_access_allowed(error_code, new_spte))
3260 break;
3261
3262 /*
3263 * Currently, fast page fault only works for direct mapping
3264 * since the gfn is not stable for indirect shadow page. See
3265 * Documentation/virtual/kvm/locking.txt to get more detail.
3266 */
3267 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3268 iterator.sptep, spte,
3269 new_spte);
3270 if (fault_handled)
3271 break;
3272
3273 if (++retry_count > 4) {
3274 printk_once(KERN_WARNING
3275 "kvm: Fast #PF retrying more than 4 times.\n");
3276 break;
3277 }
3278
3279 } while (true);
3280
3281 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3282 spte, fault_handled);
3283 walk_shadow_page_lockless_end(vcpu);
3284
3285 return fault_handled;
3286 }
3287
3288 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3289 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3290 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3291
3292 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3293 gfn_t gfn, bool prefault)
3294 {
3295 int r;
3296 int level;
3297 bool force_pt_level = false;
3298 kvm_pfn_t pfn;
3299 unsigned long mmu_seq;
3300 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3301
3302 level = mapping_level(vcpu, gfn, &force_pt_level);
3303 if (likely(!force_pt_level)) {
3304 /*
3305 * This path builds a PAE pagetable - so we can map
3306 * 2mb pages at maximum. Therefore check if the level
3307 * is larger than that.
3308 */
3309 if (level > PT_DIRECTORY_LEVEL)
3310 level = PT_DIRECTORY_LEVEL;
3311
3312 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3313 }
3314
3315 if (fast_page_fault(vcpu, v, level, error_code))
3316 return RET_PF_RETRY;
3317
3318 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3319 smp_rmb();
3320
3321 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3322 return RET_PF_RETRY;
3323
3324 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3325 return r;
3326
3327 spin_lock(&vcpu->kvm->mmu_lock);
3328 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3329 goto out_unlock;
3330 if (make_mmu_pages_available(vcpu) < 0)
3331 goto out_unlock;
3332 if (likely(!force_pt_level))
3333 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3334 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3335 spin_unlock(&vcpu->kvm->mmu_lock);
3336
3337 return r;
3338
3339 out_unlock:
3340 spin_unlock(&vcpu->kvm->mmu_lock);
3341 kvm_release_pfn_clean(pfn);
3342 return RET_PF_RETRY;
3343 }
3344
3345
3346 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3347 {
3348 int i;
3349 struct kvm_mmu_page *sp;
3350 LIST_HEAD(invalid_list);
3351
3352 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3353 return;
3354
3355 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3356 (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3357 vcpu->arch.mmu.direct_map)) {
3358 hpa_t root = vcpu->arch.mmu.root_hpa;
3359
3360 spin_lock(&vcpu->kvm->mmu_lock);
3361 sp = page_header(root);
3362 --sp->root_count;
3363 if (!sp->root_count && sp->role.invalid) {
3364 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3365 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3366 }
3367 spin_unlock(&vcpu->kvm->mmu_lock);
3368 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3369 return;
3370 }
3371
3372 spin_lock(&vcpu->kvm->mmu_lock);
3373 for (i = 0; i < 4; ++i) {
3374 hpa_t root = vcpu->arch.mmu.pae_root[i];
3375
3376 if (root) {
3377 root &= PT64_BASE_ADDR_MASK;
3378 sp = page_header(root);
3379 --sp->root_count;
3380 if (!sp->root_count && sp->role.invalid)
3381 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3382 &invalid_list);
3383 }
3384 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3385 }
3386 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3387 spin_unlock(&vcpu->kvm->mmu_lock);
3388 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3389 }
3390
3391 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3392 {
3393 int ret = 0;
3394
3395 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3396 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3397 ret = 1;
3398 }
3399
3400 return ret;
3401 }
3402
3403 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3404 {
3405 struct kvm_mmu_page *sp;
3406 unsigned i;
3407
3408 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3409 spin_lock(&vcpu->kvm->mmu_lock);
3410 if(make_mmu_pages_available(vcpu) < 0) {
3411 spin_unlock(&vcpu->kvm->mmu_lock);
3412 return -ENOSPC;
3413 }
3414 sp = kvm_mmu_get_page(vcpu, 0, 0,
3415 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3416 ++sp->root_count;
3417 spin_unlock(&vcpu->kvm->mmu_lock);
3418 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3419 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3420 for (i = 0; i < 4; ++i) {
3421 hpa_t root = vcpu->arch.mmu.pae_root[i];
3422
3423 MMU_WARN_ON(VALID_PAGE(root));
3424 spin_lock(&vcpu->kvm->mmu_lock);
3425 if (make_mmu_pages_available(vcpu) < 0) {
3426 spin_unlock(&vcpu->kvm->mmu_lock);
3427 return -ENOSPC;
3428 }
3429 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3430 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3431 root = __pa(sp->spt);
3432 ++sp->root_count;
3433 spin_unlock(&vcpu->kvm->mmu_lock);
3434 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3435 }
3436 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3437 } else
3438 BUG();
3439
3440 return 0;
3441 }
3442
3443 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3444 {
3445 struct kvm_mmu_page *sp;
3446 u64 pdptr, pm_mask;
3447 gfn_t root_gfn;
3448 int i;
3449
3450 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3451
3452 if (mmu_check_root(vcpu, root_gfn))
3453 return 1;
3454
3455 /*
3456 * Do we shadow a long mode page table? If so we need to
3457 * write-protect the guests page table root.
3458 */
3459 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3460 hpa_t root = vcpu->arch.mmu.root_hpa;
3461
3462 MMU_WARN_ON(VALID_PAGE(root));
3463
3464 spin_lock(&vcpu->kvm->mmu_lock);
3465 if (make_mmu_pages_available(vcpu) < 0) {
3466 spin_unlock(&vcpu->kvm->mmu_lock);
3467 return -ENOSPC;
3468 }
3469 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3470 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3471 root = __pa(sp->spt);
3472 ++sp->root_count;
3473 spin_unlock(&vcpu->kvm->mmu_lock);
3474 vcpu->arch.mmu.root_hpa = root;
3475 return 0;
3476 }
3477
3478 /*
3479 * We shadow a 32 bit page table. This may be a legacy 2-level
3480 * or a PAE 3-level page table. In either case we need to be aware that
3481 * the shadow page table may be a PAE or a long mode page table.
3482 */
3483 pm_mask = PT_PRESENT_MASK;
3484 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3485 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3486
3487 for (i = 0; i < 4; ++i) {
3488 hpa_t root = vcpu->arch.mmu.pae_root[i];
3489
3490 MMU_WARN_ON(VALID_PAGE(root));
3491 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3492 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3493 if (!(pdptr & PT_PRESENT_MASK)) {
3494 vcpu->arch.mmu.pae_root[i] = 0;
3495 continue;
3496 }
3497 root_gfn = pdptr >> PAGE_SHIFT;
3498 if (mmu_check_root(vcpu, root_gfn))
3499 return 1;
3500 }
3501 spin_lock(&vcpu->kvm->mmu_lock);
3502 if (make_mmu_pages_available(vcpu) < 0) {
3503 spin_unlock(&vcpu->kvm->mmu_lock);
3504 return -ENOSPC;
3505 }
3506 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3507 0, ACC_ALL);
3508 root = __pa(sp->spt);
3509 ++sp->root_count;
3510 spin_unlock(&vcpu->kvm->mmu_lock);
3511
3512 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3513 }
3514 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3515
3516 /*
3517 * If we shadow a 32 bit page table with a long mode page
3518 * table we enter this path.
3519 */
3520 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3521 if (vcpu->arch.mmu.lm_root == NULL) {
3522 /*
3523 * The additional page necessary for this is only
3524 * allocated on demand.
3525 */
3526
3527 u64 *lm_root;
3528
3529 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3530 if (lm_root == NULL)
3531 return 1;
3532
3533 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3534
3535 vcpu->arch.mmu.lm_root = lm_root;
3536 }
3537
3538 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3539 }
3540
3541 return 0;
3542 }
3543
3544 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3545 {
3546 if (vcpu->arch.mmu.direct_map)
3547 return mmu_alloc_direct_roots(vcpu);
3548 else
3549 return mmu_alloc_shadow_roots(vcpu);
3550 }
3551
3552 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3553 {
3554 int i;
3555 struct kvm_mmu_page *sp;
3556
3557 if (vcpu->arch.mmu.direct_map)
3558 return;
3559
3560 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3561 return;
3562
3563 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3564 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3565 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3566 hpa_t root = vcpu->arch.mmu.root_hpa;
3567 sp = page_header(root);
3568 mmu_sync_children(vcpu, sp);
3569 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3570 return;
3571 }
3572 for (i = 0; i < 4; ++i) {
3573 hpa_t root = vcpu->arch.mmu.pae_root[i];
3574
3575 if (root && VALID_PAGE(root)) {
3576 root &= PT64_BASE_ADDR_MASK;
3577 sp = page_header(root);
3578 mmu_sync_children(vcpu, sp);
3579 }
3580 }
3581 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3582 }
3583
3584 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3585 {
3586 spin_lock(&vcpu->kvm->mmu_lock);
3587 mmu_sync_roots(vcpu);
3588 spin_unlock(&vcpu->kvm->mmu_lock);
3589 }
3590 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3591
3592 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3593 u32 access, struct x86_exception *exception)
3594 {
3595 if (exception)
3596 exception->error_code = 0;
3597 return vaddr;
3598 }
3599
3600 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3601 u32 access,
3602 struct x86_exception *exception)
3603 {
3604 if (exception)
3605 exception->error_code = 0;
3606 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3607 }
3608
3609 static bool
3610 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3611 {
3612 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3613
3614 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3615 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3616 }
3617
3618 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3619 {
3620 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3621 }
3622
3623 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3624 {
3625 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3626 }
3627
3628 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3629 {
3630 /*
3631 * A nested guest cannot use the MMIO cache if it is using nested
3632 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3633 */
3634 if (mmu_is_nested(vcpu))
3635 return false;
3636
3637 if (direct)
3638 return vcpu_match_mmio_gpa(vcpu, addr);
3639
3640 return vcpu_match_mmio_gva(vcpu, addr);
3641 }
3642
3643 /* return true if reserved bit is detected on spte. */
3644 static bool
3645 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3646 {
3647 struct kvm_shadow_walk_iterator iterator;
3648 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3649 int root, leaf;
3650 bool reserved = false;
3651
3652 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3653 goto exit;
3654
3655 walk_shadow_page_lockless_begin(vcpu);
3656
3657 for (shadow_walk_init(&iterator, vcpu, addr),
3658 leaf = root = iterator.level;
3659 shadow_walk_okay(&iterator);
3660 __shadow_walk_next(&iterator, spte)) {
3661 spte = mmu_spte_get_lockless(iterator.sptep);
3662
3663 sptes[leaf - 1] = spte;
3664 leaf--;
3665
3666 if (!is_shadow_present_pte(spte))
3667 break;
3668
3669 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3670 iterator.level);
3671 }
3672
3673 walk_shadow_page_lockless_end(vcpu);
3674
3675 if (reserved) {
3676 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3677 __func__, addr);
3678 while (root > leaf) {
3679 pr_err("------ spte 0x%llx level %d.\n",
3680 sptes[root - 1], root);
3681 root--;
3682 }
3683 }
3684 exit:
3685 *sptep = spte;
3686 return reserved;
3687 }
3688
3689 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3690 {
3691 u64 spte;
3692 bool reserved;
3693
3694 if (mmio_info_in_cache(vcpu, addr, direct))
3695 return RET_PF_EMULATE;
3696
3697 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3698 if (WARN_ON(reserved))
3699 return -EINVAL;
3700
3701 if (is_mmio_spte(spte)) {
3702 gfn_t gfn = get_mmio_spte_gfn(spte);
3703 unsigned access = get_mmio_spte_access(spte);
3704
3705 if (!check_mmio_spte(vcpu, spte))
3706 return RET_PF_INVALID;
3707
3708 if (direct)
3709 addr = 0;
3710
3711 trace_handle_mmio_page_fault(addr, gfn, access);
3712 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3713 return RET_PF_EMULATE;
3714 }
3715
3716 /*
3717 * If the page table is zapped by other cpus, let CPU fault again on
3718 * the address.
3719 */
3720 return RET_PF_RETRY;
3721 }
3722 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3723
3724 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3725 u32 error_code, gfn_t gfn)
3726 {
3727 if (unlikely(error_code & PFERR_RSVD_MASK))
3728 return false;
3729
3730 if (!(error_code & PFERR_PRESENT_MASK) ||
3731 !(error_code & PFERR_WRITE_MASK))
3732 return false;
3733
3734 /*
3735 * guest is writing the page which is write tracked which can
3736 * not be fixed by page fault handler.
3737 */
3738 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3739 return true;
3740
3741 return false;
3742 }
3743
3744 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3745 {
3746 struct kvm_shadow_walk_iterator iterator;
3747 u64 spte;
3748
3749 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3750 return;
3751
3752 walk_shadow_page_lockless_begin(vcpu);
3753 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3754 clear_sp_write_flooding_count(iterator.sptep);
3755 if (!is_shadow_present_pte(spte))
3756 break;
3757 }
3758 walk_shadow_page_lockless_end(vcpu);
3759 }
3760
3761 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3762 u32 error_code, bool prefault)
3763 {
3764 gfn_t gfn = gva >> PAGE_SHIFT;
3765 int r;
3766
3767 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3768
3769 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3770 return RET_PF_EMULATE;
3771
3772 r = mmu_topup_memory_caches(vcpu);
3773 if (r)
3774 return r;
3775
3776 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3777
3778
3779 return nonpaging_map(vcpu, gva & PAGE_MASK,
3780 error_code, gfn, prefault);
3781 }
3782
3783 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3784 {
3785 struct kvm_arch_async_pf arch;
3786
3787 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3788 arch.gfn = gfn;
3789 arch.direct_map = vcpu->arch.mmu.direct_map;
3790 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3791
3792 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3793 }
3794
3795 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3796 {
3797 if (unlikely(!lapic_in_kernel(vcpu) ||
3798 kvm_event_needs_reinjection(vcpu) ||
3799 vcpu->arch.exception.pending))
3800 return false;
3801
3802 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3803 return false;
3804
3805 return kvm_x86_ops->interrupt_allowed(vcpu);
3806 }
3807
3808 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3809 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3810 {
3811 struct kvm_memory_slot *slot;
3812 bool async;
3813
3814 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3815 async = false;
3816 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3817 if (!async)
3818 return false; /* *pfn has correct page already */
3819
3820 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3821 trace_kvm_try_async_get_page(gva, gfn);
3822 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3823 trace_kvm_async_pf_doublefault(gva, gfn);
3824 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3825 return true;
3826 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3827 return true;
3828 }
3829
3830 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3831 return false;
3832 }
3833
3834 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3835 u64 fault_address, char *insn, int insn_len)
3836 {
3837 int r = 1;
3838
3839 vcpu->arch.l1tf_flush_l1d = true;
3840 switch (vcpu->arch.apf.host_apf_reason) {
3841 default:
3842 trace_kvm_page_fault(fault_address, error_code);
3843
3844 if (kvm_event_needs_reinjection(vcpu))
3845 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3846 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3847 insn_len);
3848 break;
3849 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3850 vcpu->arch.apf.host_apf_reason = 0;
3851 local_irq_disable();
3852 kvm_async_pf_task_wait(fault_address, 0);
3853 local_irq_enable();
3854 break;
3855 case KVM_PV_REASON_PAGE_READY:
3856 vcpu->arch.apf.host_apf_reason = 0;
3857 local_irq_disable();
3858 kvm_async_pf_task_wake(fault_address);
3859 local_irq_enable();
3860 break;
3861 }
3862 return r;
3863 }
3864 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3865
3866 static bool
3867 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3868 {
3869 int page_num = KVM_PAGES_PER_HPAGE(level);
3870
3871 gfn &= ~(page_num - 1);
3872
3873 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3874 }
3875
3876 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3877 bool prefault)
3878 {
3879 kvm_pfn_t pfn;
3880 int r;
3881 int level;
3882 bool force_pt_level;
3883 gfn_t gfn = gpa >> PAGE_SHIFT;
3884 unsigned long mmu_seq;
3885 int write = error_code & PFERR_WRITE_MASK;
3886 bool map_writable;
3887
3888 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3889
3890 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3891 return RET_PF_EMULATE;
3892
3893 r = mmu_topup_memory_caches(vcpu);
3894 if (r)
3895 return r;
3896
3897 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3898 PT_DIRECTORY_LEVEL);
3899 level = mapping_level(vcpu, gfn, &force_pt_level);
3900 if (likely(!force_pt_level)) {
3901 if (level > PT_DIRECTORY_LEVEL &&
3902 !check_hugepage_cache_consistency(vcpu, gfn, level))
3903 level = PT_DIRECTORY_LEVEL;
3904 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3905 }
3906
3907 if (fast_page_fault(vcpu, gpa, level, error_code))
3908 return RET_PF_RETRY;
3909
3910 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3911 smp_rmb();
3912
3913 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3914 return RET_PF_RETRY;
3915
3916 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3917 return r;
3918
3919 spin_lock(&vcpu->kvm->mmu_lock);
3920 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3921 goto out_unlock;
3922 if (make_mmu_pages_available(vcpu) < 0)
3923 goto out_unlock;
3924 if (likely(!force_pt_level))
3925 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3926 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3927 spin_unlock(&vcpu->kvm->mmu_lock);
3928
3929 return r;
3930
3931 out_unlock:
3932 spin_unlock(&vcpu->kvm->mmu_lock);
3933 kvm_release_pfn_clean(pfn);
3934 return RET_PF_RETRY;
3935 }
3936
3937 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3938 struct kvm_mmu *context)
3939 {
3940 context->page_fault = nonpaging_page_fault;
3941 context->gva_to_gpa = nonpaging_gva_to_gpa;
3942 context->sync_page = nonpaging_sync_page;
3943 context->invlpg = nonpaging_invlpg;
3944 context->update_pte = nonpaging_update_pte;
3945 context->root_level = 0;
3946 context->shadow_root_level = PT32E_ROOT_LEVEL;
3947 context->root_hpa = INVALID_PAGE;
3948 context->direct_map = true;
3949 context->nx = false;
3950 }
3951
3952 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3953 {
3954 mmu_free_roots(vcpu);
3955 }
3956
3957 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3958 {
3959 return kvm_read_cr3(vcpu);
3960 }
3961
3962 static void inject_page_fault(struct kvm_vcpu *vcpu,
3963 struct x86_exception *fault)
3964 {
3965 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3966 }
3967
3968 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3969 unsigned access, int *nr_present)
3970 {
3971 if (unlikely(is_mmio_spte(*sptep))) {
3972 if (gfn != get_mmio_spte_gfn(*sptep)) {
3973 mmu_spte_clear_no_track(sptep);
3974 return true;
3975 }
3976
3977 (*nr_present)++;
3978 mark_mmio_spte(vcpu, sptep, gfn, access);
3979 return true;
3980 }
3981
3982 return false;
3983 }
3984
3985 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3986 unsigned level, unsigned gpte)
3987 {
3988 /*
3989 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3990 * If it is clear, there are no large pages at this level, so clear
3991 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3992 */
3993 gpte &= level - mmu->last_nonleaf_level;
3994
3995 /*
3996 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3997 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3998 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3999 */
4000 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4001
4002 return gpte & PT_PAGE_SIZE_MASK;
4003 }
4004
4005 #define PTTYPE_EPT 18 /* arbitrary */
4006 #define PTTYPE PTTYPE_EPT
4007 #include "paging_tmpl.h"
4008 #undef PTTYPE
4009
4010 #define PTTYPE 64
4011 #include "paging_tmpl.h"
4012 #undef PTTYPE
4013
4014 #define PTTYPE 32
4015 #include "paging_tmpl.h"
4016 #undef PTTYPE
4017
4018 static void
4019 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4020 struct rsvd_bits_validate *rsvd_check,
4021 int maxphyaddr, int level, bool nx, bool gbpages,
4022 bool pse, bool amd)
4023 {
4024 u64 exb_bit_rsvd = 0;
4025 u64 gbpages_bit_rsvd = 0;
4026 u64 nonleaf_bit8_rsvd = 0;
4027
4028 rsvd_check->bad_mt_xwr = 0;
4029
4030 if (!nx)
4031 exb_bit_rsvd = rsvd_bits(63, 63);
4032 if (!gbpages)
4033 gbpages_bit_rsvd = rsvd_bits(7, 7);
4034
4035 /*
4036 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4037 * leaf entries) on AMD CPUs only.
4038 */
4039 if (amd)
4040 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4041
4042 switch (level) {
4043 case PT32_ROOT_LEVEL:
4044 /* no rsvd bits for 2 level 4K page table entries */
4045 rsvd_check->rsvd_bits_mask[0][1] = 0;
4046 rsvd_check->rsvd_bits_mask[0][0] = 0;
4047 rsvd_check->rsvd_bits_mask[1][0] =
4048 rsvd_check->rsvd_bits_mask[0][0];
4049
4050 if (!pse) {
4051 rsvd_check->rsvd_bits_mask[1][1] = 0;
4052 break;
4053 }
4054
4055 if (is_cpuid_PSE36())
4056 /* 36bits PSE 4MB page */
4057 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4058 else
4059 /* 32 bits PSE 4MB page */
4060 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4061 break;
4062 case PT32E_ROOT_LEVEL:
4063 rsvd_check->rsvd_bits_mask[0][2] =
4064 rsvd_bits(maxphyaddr, 63) |
4065 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4066 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4067 rsvd_bits(maxphyaddr, 62); /* PDE */
4068 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4069 rsvd_bits(maxphyaddr, 62); /* PTE */
4070 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4071 rsvd_bits(maxphyaddr, 62) |
4072 rsvd_bits(13, 20); /* large page */
4073 rsvd_check->rsvd_bits_mask[1][0] =
4074 rsvd_check->rsvd_bits_mask[0][0];
4075 break;
4076 case PT64_ROOT_5LEVEL:
4077 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4078 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4079 rsvd_bits(maxphyaddr, 51);
4080 rsvd_check->rsvd_bits_mask[1][4] =
4081 rsvd_check->rsvd_bits_mask[0][4];
4082 case PT64_ROOT_4LEVEL:
4083 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4084 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4085 rsvd_bits(maxphyaddr, 51);
4086 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4087 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4088 rsvd_bits(maxphyaddr, 51);
4089 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4090 rsvd_bits(maxphyaddr, 51);
4091 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4092 rsvd_bits(maxphyaddr, 51);
4093 rsvd_check->rsvd_bits_mask[1][3] =
4094 rsvd_check->rsvd_bits_mask[0][3];
4095 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4096 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4097 rsvd_bits(13, 29);
4098 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4099 rsvd_bits(maxphyaddr, 51) |
4100 rsvd_bits(13, 20); /* large page */
4101 rsvd_check->rsvd_bits_mask[1][0] =
4102 rsvd_check->rsvd_bits_mask[0][0];
4103 break;
4104 }
4105 }
4106
4107 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4108 struct kvm_mmu *context)
4109 {
4110 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4111 cpuid_maxphyaddr(vcpu), context->root_level,
4112 context->nx,
4113 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4114 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4115 }
4116
4117 static void
4118 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4119 int maxphyaddr, bool execonly)
4120 {
4121 u64 bad_mt_xwr;
4122
4123 rsvd_check->rsvd_bits_mask[0][4] =
4124 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4125 rsvd_check->rsvd_bits_mask[0][3] =
4126 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4127 rsvd_check->rsvd_bits_mask[0][2] =
4128 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4129 rsvd_check->rsvd_bits_mask[0][1] =
4130 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4131 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4132
4133 /* large page */
4134 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4135 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4136 rsvd_check->rsvd_bits_mask[1][2] =
4137 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4138 rsvd_check->rsvd_bits_mask[1][1] =
4139 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4140 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4141
4142 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4143 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4144 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4145 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4146 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4147 if (!execonly) {
4148 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4149 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4150 }
4151 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4152 }
4153
4154 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4155 struct kvm_mmu *context, bool execonly)
4156 {
4157 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4158 cpuid_maxphyaddr(vcpu), execonly);
4159 }
4160
4161 /*
4162 * the page table on host is the shadow page table for the page
4163 * table in guest or amd nested guest, its mmu features completely
4164 * follow the features in guest.
4165 */
4166 void
4167 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4168 {
4169 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4170 struct rsvd_bits_validate *shadow_zero_check;
4171 int i;
4172
4173 /*
4174 * Passing "true" to the last argument is okay; it adds a check
4175 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4176 */
4177 shadow_zero_check = &context->shadow_zero_check;
4178 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4179 boot_cpu_data.x86_phys_bits,
4180 context->shadow_root_level, uses_nx,
4181 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4182 is_pse(vcpu), true);
4183
4184 if (!shadow_me_mask)
4185 return;
4186
4187 for (i = context->shadow_root_level; --i >= 0;) {
4188 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4189 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4190 }
4191
4192 }
4193 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4194
4195 static inline bool boot_cpu_is_amd(void)
4196 {
4197 WARN_ON_ONCE(!tdp_enabled);
4198 return shadow_x_mask == 0;
4199 }
4200
4201 /*
4202 * the direct page table on host, use as much mmu features as
4203 * possible, however, kvm currently does not do execution-protection.
4204 */
4205 static void
4206 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4207 struct kvm_mmu *context)
4208 {
4209 struct rsvd_bits_validate *shadow_zero_check;
4210 int i;
4211
4212 shadow_zero_check = &context->shadow_zero_check;
4213
4214 if (boot_cpu_is_amd())
4215 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4216 boot_cpu_data.x86_phys_bits,
4217 context->shadow_root_level, false,
4218 boot_cpu_has(X86_FEATURE_GBPAGES),
4219 true, true);
4220 else
4221 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4222 boot_cpu_data.x86_phys_bits,
4223 false);
4224
4225 if (!shadow_me_mask)
4226 return;
4227
4228 for (i = context->shadow_root_level; --i >= 0;) {
4229 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4230 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4231 }
4232 }
4233
4234 /*
4235 * as the comments in reset_shadow_zero_bits_mask() except it
4236 * is the shadow page table for intel nested guest.
4237 */
4238 static void
4239 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4240 struct kvm_mmu *context, bool execonly)
4241 {
4242 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4243 boot_cpu_data.x86_phys_bits, execonly);
4244 }
4245
4246 #define BYTE_MASK(access) \
4247 ((1 & (access) ? 2 : 0) | \
4248 (2 & (access) ? 4 : 0) | \
4249 (3 & (access) ? 8 : 0) | \
4250 (4 & (access) ? 16 : 0) | \
4251 (5 & (access) ? 32 : 0) | \
4252 (6 & (access) ? 64 : 0) | \
4253 (7 & (access) ? 128 : 0))
4254
4255
4256 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4257 struct kvm_mmu *mmu, bool ept)
4258 {
4259 unsigned byte;
4260
4261 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4262 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4263 const u8 u = BYTE_MASK(ACC_USER_MASK);
4264
4265 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4266 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4267 bool cr0_wp = is_write_protection(vcpu);
4268
4269 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4270 unsigned pfec = byte << 1;
4271
4272 /*
4273 * Each "*f" variable has a 1 bit for each UWX value
4274 * that causes a fault with the given PFEC.
4275 */
4276
4277 /* Faults from writes to non-writable pages */
4278 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4279 /* Faults from user mode accesses to supervisor pages */
4280 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4281 /* Faults from fetches of non-executable pages*/
4282 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4283 /* Faults from kernel mode fetches of user pages */
4284 u8 smepf = 0;
4285 /* Faults from kernel mode accesses of user pages */
4286 u8 smapf = 0;
4287
4288 if (!ept) {
4289 /* Faults from kernel mode accesses to user pages */
4290 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4291
4292 /* Not really needed: !nx will cause pte.nx to fault */
4293 if (!mmu->nx)
4294 ff = 0;
4295
4296 /* Allow supervisor writes if !cr0.wp */
4297 if (!cr0_wp)
4298 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4299
4300 /* Disallow supervisor fetches of user code if cr4.smep */
4301 if (cr4_smep)
4302 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4303
4304 /*
4305 * SMAP:kernel-mode data accesses from user-mode
4306 * mappings should fault. A fault is considered
4307 * as a SMAP violation if all of the following
4308 * conditions are ture:
4309 * - X86_CR4_SMAP is set in CR4
4310 * - A user page is accessed
4311 * - The access is not a fetch
4312 * - Page fault in kernel mode
4313 * - if CPL = 3 or X86_EFLAGS_AC is clear
4314 *
4315 * Here, we cover the first three conditions.
4316 * The fourth is computed dynamically in permission_fault();
4317 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4318 * *not* subject to SMAP restrictions.
4319 */
4320 if (cr4_smap)
4321 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4322 }
4323
4324 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4325 }
4326 }
4327
4328 /*
4329 * PKU is an additional mechanism by which the paging controls access to
4330 * user-mode addresses based on the value in the PKRU register. Protection
4331 * key violations are reported through a bit in the page fault error code.
4332 * Unlike other bits of the error code, the PK bit is not known at the
4333 * call site of e.g. gva_to_gpa; it must be computed directly in
4334 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4335 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4336 *
4337 * In particular the following conditions come from the error code, the
4338 * page tables and the machine state:
4339 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4340 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4341 * - PK is always zero if U=0 in the page tables
4342 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4343 *
4344 * The PKRU bitmask caches the result of these four conditions. The error
4345 * code (minus the P bit) and the page table's U bit form an index into the
4346 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4347 * with the two bits of the PKRU register corresponding to the protection key.
4348 * For the first three conditions above the bits will be 00, thus masking
4349 * away both AD and WD. For all reads or if the last condition holds, WD
4350 * only will be masked away.
4351 */
4352 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4353 bool ept)
4354 {
4355 unsigned bit;
4356 bool wp;
4357
4358 if (ept) {
4359 mmu->pkru_mask = 0;
4360 return;
4361 }
4362
4363 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4364 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4365 mmu->pkru_mask = 0;
4366 return;
4367 }
4368
4369 wp = is_write_protection(vcpu);
4370
4371 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4372 unsigned pfec, pkey_bits;
4373 bool check_pkey, check_write, ff, uf, wf, pte_user;
4374
4375 pfec = bit << 1;
4376 ff = pfec & PFERR_FETCH_MASK;
4377 uf = pfec & PFERR_USER_MASK;
4378 wf = pfec & PFERR_WRITE_MASK;
4379
4380 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4381 pte_user = pfec & PFERR_RSVD_MASK;
4382
4383 /*
4384 * Only need to check the access which is not an
4385 * instruction fetch and is to a user page.
4386 */
4387 check_pkey = (!ff && pte_user);
4388 /*
4389 * write access is controlled by PKRU if it is a
4390 * user access or CR0.WP = 1.
4391 */
4392 check_write = check_pkey && wf && (uf || wp);
4393
4394 /* PKRU.AD stops both read and write access. */
4395 pkey_bits = !!check_pkey;
4396 /* PKRU.WD stops write access. */
4397 pkey_bits |= (!!check_write) << 1;
4398
4399 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4400 }
4401 }
4402
4403 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4404 {
4405 unsigned root_level = mmu->root_level;
4406
4407 mmu->last_nonleaf_level = root_level;
4408 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4409 mmu->last_nonleaf_level++;
4410 }
4411
4412 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4413 struct kvm_mmu *context,
4414 int level)
4415 {
4416 context->nx = is_nx(vcpu);
4417 context->root_level = level;
4418
4419 reset_rsvds_bits_mask(vcpu, context);
4420 update_permission_bitmask(vcpu, context, false);
4421 update_pkru_bitmask(vcpu, context, false);
4422 update_last_nonleaf_level(vcpu, context);
4423
4424 MMU_WARN_ON(!is_pae(vcpu));
4425 context->page_fault = paging64_page_fault;
4426 context->gva_to_gpa = paging64_gva_to_gpa;
4427 context->sync_page = paging64_sync_page;
4428 context->invlpg = paging64_invlpg;
4429 context->update_pte = paging64_update_pte;
4430 context->shadow_root_level = level;
4431 context->root_hpa = INVALID_PAGE;
4432 context->direct_map = false;
4433 }
4434
4435 static void paging64_init_context(struct kvm_vcpu *vcpu,
4436 struct kvm_mmu *context)
4437 {
4438 int root_level = is_la57_mode(vcpu) ?
4439 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4440
4441 paging64_init_context_common(vcpu, context, root_level);
4442 }
4443
4444 static void paging32_init_context(struct kvm_vcpu *vcpu,
4445 struct kvm_mmu *context)
4446 {
4447 context->nx = false;
4448 context->root_level = PT32_ROOT_LEVEL;
4449
4450 reset_rsvds_bits_mask(vcpu, context);
4451 update_permission_bitmask(vcpu, context, false);
4452 update_pkru_bitmask(vcpu, context, false);
4453 update_last_nonleaf_level(vcpu, context);
4454
4455 context->page_fault = paging32_page_fault;
4456 context->gva_to_gpa = paging32_gva_to_gpa;
4457 context->sync_page = paging32_sync_page;
4458 context->invlpg = paging32_invlpg;
4459 context->update_pte = paging32_update_pte;
4460 context->shadow_root_level = PT32E_ROOT_LEVEL;
4461 context->root_hpa = INVALID_PAGE;
4462 context->direct_map = false;
4463 }
4464
4465 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4466 struct kvm_mmu *context)
4467 {
4468 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4469 }
4470
4471 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4472 {
4473 struct kvm_mmu *context = &vcpu->arch.mmu;
4474
4475 context->base_role.word = 0;
4476 context->base_role.smm = is_smm(vcpu);
4477 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4478 context->page_fault = tdp_page_fault;
4479 context->sync_page = nonpaging_sync_page;
4480 context->invlpg = nonpaging_invlpg;
4481 context->update_pte = nonpaging_update_pte;
4482 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4483 context->root_hpa = INVALID_PAGE;
4484 context->direct_map = true;
4485 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4486 context->get_cr3 = get_cr3;
4487 context->get_pdptr = kvm_pdptr_read;
4488 context->inject_page_fault = kvm_inject_page_fault;
4489
4490 if (!is_paging(vcpu)) {
4491 context->nx = false;
4492 context->gva_to_gpa = nonpaging_gva_to_gpa;
4493 context->root_level = 0;
4494 } else if (is_long_mode(vcpu)) {
4495 context->nx = is_nx(vcpu);
4496 context->root_level = is_la57_mode(vcpu) ?
4497 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4498 reset_rsvds_bits_mask(vcpu, context);
4499 context->gva_to_gpa = paging64_gva_to_gpa;
4500 } else if (is_pae(vcpu)) {
4501 context->nx = is_nx(vcpu);
4502 context->root_level = PT32E_ROOT_LEVEL;
4503 reset_rsvds_bits_mask(vcpu, context);
4504 context->gva_to_gpa = paging64_gva_to_gpa;
4505 } else {
4506 context->nx = false;
4507 context->root_level = PT32_ROOT_LEVEL;
4508 reset_rsvds_bits_mask(vcpu, context);
4509 context->gva_to_gpa = paging32_gva_to_gpa;
4510 }
4511
4512 update_permission_bitmask(vcpu, context, false);
4513 update_pkru_bitmask(vcpu, context, false);
4514 update_last_nonleaf_level(vcpu, context);
4515 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4516 }
4517
4518 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4519 {
4520 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4521 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4522 struct kvm_mmu *context = &vcpu->arch.mmu;
4523
4524 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4525
4526 if (!is_paging(vcpu))
4527 nonpaging_init_context(vcpu, context);
4528 else if (is_long_mode(vcpu))
4529 paging64_init_context(vcpu, context);
4530 else if (is_pae(vcpu))
4531 paging32E_init_context(vcpu, context);
4532 else
4533 paging32_init_context(vcpu, context);
4534
4535 context->base_role.nxe = is_nx(vcpu);
4536 context->base_role.cr4_pae = !!is_pae(vcpu);
4537 context->base_role.cr0_wp = is_write_protection(vcpu);
4538 context->base_role.smep_andnot_wp
4539 = smep && !is_write_protection(vcpu);
4540 context->base_role.smap_andnot_wp
4541 = smap && !is_write_protection(vcpu);
4542 context->base_role.smm = is_smm(vcpu);
4543 reset_shadow_zero_bits_mask(vcpu, context);
4544 }
4545 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4546
4547 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4548 bool accessed_dirty)
4549 {
4550 struct kvm_mmu *context = &vcpu->arch.mmu;
4551
4552 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4553
4554 context->shadow_root_level = PT64_ROOT_4LEVEL;
4555
4556 context->nx = true;
4557 context->ept_ad = accessed_dirty;
4558 context->page_fault = ept_page_fault;
4559 context->gva_to_gpa = ept_gva_to_gpa;
4560 context->sync_page = ept_sync_page;
4561 context->invlpg = ept_invlpg;
4562 context->update_pte = ept_update_pte;
4563 context->root_level = PT64_ROOT_4LEVEL;
4564 context->root_hpa = INVALID_PAGE;
4565 context->direct_map = false;
4566 context->base_role.ad_disabled = !accessed_dirty;
4567
4568 update_permission_bitmask(vcpu, context, true);
4569 update_pkru_bitmask(vcpu, context, true);
4570 update_last_nonleaf_level(vcpu, context);
4571 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4572 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4573 }
4574 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4575
4576 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4577 {
4578 struct kvm_mmu *context = &vcpu->arch.mmu;
4579
4580 kvm_init_shadow_mmu(vcpu);
4581 context->set_cr3 = kvm_x86_ops->set_cr3;
4582 context->get_cr3 = get_cr3;
4583 context->get_pdptr = kvm_pdptr_read;
4584 context->inject_page_fault = kvm_inject_page_fault;
4585 }
4586
4587 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4588 {
4589 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4590
4591 g_context->get_cr3 = get_cr3;
4592 g_context->get_pdptr = kvm_pdptr_read;
4593 g_context->inject_page_fault = kvm_inject_page_fault;
4594
4595 /*
4596 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4597 * L1's nested page tables (e.g. EPT12). The nested translation
4598 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4599 * L2's page tables as the first level of translation and L1's
4600 * nested page tables as the second level of translation. Basically
4601 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4602 */
4603 if (!is_paging(vcpu)) {
4604 g_context->nx = false;
4605 g_context->root_level = 0;
4606 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4607 } else if (is_long_mode(vcpu)) {
4608 g_context->nx = is_nx(vcpu);
4609 g_context->root_level = is_la57_mode(vcpu) ?
4610 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4611 reset_rsvds_bits_mask(vcpu, g_context);
4612 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4613 } else if (is_pae(vcpu)) {
4614 g_context->nx = is_nx(vcpu);
4615 g_context->root_level = PT32E_ROOT_LEVEL;
4616 reset_rsvds_bits_mask(vcpu, g_context);
4617 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4618 } else {
4619 g_context->nx = false;
4620 g_context->root_level = PT32_ROOT_LEVEL;
4621 reset_rsvds_bits_mask(vcpu, g_context);
4622 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4623 }
4624
4625 update_permission_bitmask(vcpu, g_context, false);
4626 update_pkru_bitmask(vcpu, g_context, false);
4627 update_last_nonleaf_level(vcpu, g_context);
4628 }
4629
4630 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4631 {
4632 if (mmu_is_nested(vcpu))
4633 init_kvm_nested_mmu(vcpu);
4634 else if (tdp_enabled)
4635 init_kvm_tdp_mmu(vcpu);
4636 else
4637 init_kvm_softmmu(vcpu);
4638 }
4639
4640 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4641 {
4642 kvm_mmu_unload(vcpu);
4643 init_kvm_mmu(vcpu);
4644 }
4645 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4646
4647 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4648 {
4649 int r;
4650
4651 r = mmu_topup_memory_caches(vcpu);
4652 if (r)
4653 goto out;
4654 r = mmu_alloc_roots(vcpu);
4655 kvm_mmu_sync_roots(vcpu);
4656 if (r)
4657 goto out;
4658 /* set_cr3() should ensure TLB has been flushed */
4659 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4660 out:
4661 return r;
4662 }
4663 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4664
4665 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4666 {
4667 mmu_free_roots(vcpu);
4668 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4669 }
4670 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4671
4672 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4673 struct kvm_mmu_page *sp, u64 *spte,
4674 const void *new)
4675 {
4676 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4677 ++vcpu->kvm->stat.mmu_pde_zapped;
4678 return;
4679 }
4680
4681 ++vcpu->kvm->stat.mmu_pte_updated;
4682 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4683 }
4684
4685 static bool need_remote_flush(u64 old, u64 new)
4686 {
4687 if (!is_shadow_present_pte(old))
4688 return false;
4689 if (!is_shadow_present_pte(new))
4690 return true;
4691 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4692 return true;
4693 old ^= shadow_nx_mask;
4694 new ^= shadow_nx_mask;
4695 return (old & ~new & PT64_PERM_MASK) != 0;
4696 }
4697
4698 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4699 const u8 *new, int *bytes)
4700 {
4701 u64 gentry;
4702 int r;
4703
4704 /*
4705 * Assume that the pte write on a page table of the same type
4706 * as the current vcpu paging mode since we update the sptes only
4707 * when they have the same mode.
4708 */
4709 if (is_pae(vcpu) && *bytes == 4) {
4710 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4711 *gpa &= ~(gpa_t)7;
4712 *bytes = 8;
4713 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4714 if (r)
4715 gentry = 0;
4716 new = (const u8 *)&gentry;
4717 }
4718
4719 switch (*bytes) {
4720 case 4:
4721 gentry = *(const u32 *)new;
4722 break;
4723 case 8:
4724 gentry = *(const u64 *)new;
4725 break;
4726 default:
4727 gentry = 0;
4728 break;
4729 }
4730
4731 return gentry;
4732 }
4733
4734 /*
4735 * If we're seeing too many writes to a page, it may no longer be a page table,
4736 * or we may be forking, in which case it is better to unmap the page.
4737 */
4738 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4739 {
4740 /*
4741 * Skip write-flooding detected for the sp whose level is 1, because
4742 * it can become unsync, then the guest page is not write-protected.
4743 */
4744 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4745 return false;
4746
4747 atomic_inc(&sp->write_flooding_count);
4748 return atomic_read(&sp->write_flooding_count) >= 3;
4749 }
4750
4751 /*
4752 * Misaligned accesses are too much trouble to fix up; also, they usually
4753 * indicate a page is not used as a page table.
4754 */
4755 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4756 int bytes)
4757 {
4758 unsigned offset, pte_size, misaligned;
4759
4760 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4761 gpa, bytes, sp->role.word);
4762
4763 offset = offset_in_page(gpa);
4764 pte_size = sp->role.cr4_pae ? 8 : 4;
4765
4766 /*
4767 * Sometimes, the OS only writes the last one bytes to update status
4768 * bits, for example, in linux, andb instruction is used in clear_bit().
4769 */
4770 if (!(offset & (pte_size - 1)) && bytes == 1)
4771 return false;
4772
4773 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4774 misaligned |= bytes < 4;
4775
4776 return misaligned;
4777 }
4778
4779 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4780 {
4781 unsigned page_offset, quadrant;
4782 u64 *spte;
4783 int level;
4784
4785 page_offset = offset_in_page(gpa);
4786 level = sp->role.level;
4787 *nspte = 1;
4788 if (!sp->role.cr4_pae) {
4789 page_offset <<= 1; /* 32->64 */
4790 /*
4791 * A 32-bit pde maps 4MB while the shadow pdes map
4792 * only 2MB. So we need to double the offset again
4793 * and zap two pdes instead of one.
4794 */
4795 if (level == PT32_ROOT_LEVEL) {
4796 page_offset &= ~7; /* kill rounding error */
4797 page_offset <<= 1;
4798 *nspte = 2;
4799 }
4800 quadrant = page_offset >> PAGE_SHIFT;
4801 page_offset &= ~PAGE_MASK;
4802 if (quadrant != sp->role.quadrant)
4803 return NULL;
4804 }
4805
4806 spte = &sp->spt[page_offset / sizeof(*spte)];
4807 return spte;
4808 }
4809
4810 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4811 const u8 *new, int bytes,
4812 struct kvm_page_track_notifier_node *node)
4813 {
4814 gfn_t gfn = gpa >> PAGE_SHIFT;
4815 struct kvm_mmu_page *sp;
4816 LIST_HEAD(invalid_list);
4817 u64 entry, gentry, *spte;
4818 int npte;
4819 bool remote_flush, local_flush;
4820 union kvm_mmu_page_role mask = { };
4821
4822 mask.cr0_wp = 1;
4823 mask.cr4_pae = 1;
4824 mask.nxe = 1;
4825 mask.smep_andnot_wp = 1;
4826 mask.smap_andnot_wp = 1;
4827 mask.smm = 1;
4828 mask.ad_disabled = 1;
4829
4830 /*
4831 * If we don't have indirect shadow pages, it means no page is
4832 * write-protected, so we can exit simply.
4833 */
4834 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4835 return;
4836
4837 remote_flush = local_flush = false;
4838
4839 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4840
4841 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4842
4843 /*
4844 * No need to care whether allocation memory is successful
4845 * or not since pte prefetch is skiped if it does not have
4846 * enough objects in the cache.
4847 */
4848 mmu_topup_memory_caches(vcpu);
4849
4850 spin_lock(&vcpu->kvm->mmu_lock);
4851 ++vcpu->kvm->stat.mmu_pte_write;
4852 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4853
4854 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4855 if (detect_write_misaligned(sp, gpa, bytes) ||
4856 detect_write_flooding(sp)) {
4857 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4858 ++vcpu->kvm->stat.mmu_flooded;
4859 continue;
4860 }
4861
4862 spte = get_written_sptes(sp, gpa, &npte);
4863 if (!spte)
4864 continue;
4865
4866 local_flush = true;
4867 while (npte--) {
4868 entry = *spte;
4869 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4870 if (gentry &&
4871 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4872 & mask.word) && rmap_can_add(vcpu))
4873 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4874 if (need_remote_flush(entry, *spte))
4875 remote_flush = true;
4876 ++spte;
4877 }
4878 }
4879 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4880 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4881 spin_unlock(&vcpu->kvm->mmu_lock);
4882 }
4883
4884 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4885 {
4886 gpa_t gpa;
4887 int r;
4888
4889 if (vcpu->arch.mmu.direct_map)
4890 return 0;
4891
4892 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4893
4894 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4895
4896 return r;
4897 }
4898 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4899
4900 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4901 {
4902 LIST_HEAD(invalid_list);
4903
4904 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4905 return 0;
4906
4907 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4908 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4909 break;
4910
4911 ++vcpu->kvm->stat.mmu_recycled;
4912 }
4913 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4914
4915 if (!kvm_mmu_available_pages(vcpu->kvm))
4916 return -ENOSPC;
4917 return 0;
4918 }
4919
4920 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4921 void *insn, int insn_len)
4922 {
4923 int r, emulation_type = EMULTYPE_RETRY;
4924 enum emulation_result er;
4925 bool direct = vcpu->arch.mmu.direct_map;
4926
4927 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4928 if (vcpu->arch.mmu.direct_map) {
4929 vcpu->arch.gpa_available = true;
4930 vcpu->arch.gpa_val = cr2;
4931 }
4932
4933 r = RET_PF_INVALID;
4934 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4935 r = handle_mmio_page_fault(vcpu, cr2, direct);
4936 if (r == RET_PF_EMULATE) {
4937 emulation_type = 0;
4938 goto emulate;
4939 }
4940 }
4941
4942 if (r == RET_PF_INVALID) {
4943 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4944 false);
4945 WARN_ON(r == RET_PF_INVALID);
4946 }
4947
4948 if (r == RET_PF_RETRY)
4949 return 1;
4950 if (r < 0)
4951 return r;
4952
4953 /*
4954 * Before emulating the instruction, check if the error code
4955 * was due to a RO violation while translating the guest page.
4956 * This can occur when using nested virtualization with nested
4957 * paging in both guests. If true, we simply unprotect the page
4958 * and resume the guest.
4959 */
4960 if (vcpu->arch.mmu.direct_map &&
4961 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4962 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4963 return 1;
4964 }
4965
4966 if (mmio_info_in_cache(vcpu, cr2, direct))
4967 emulation_type = 0;
4968 emulate:
4969 /*
4970 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
4971 * This can happen if a guest gets a page-fault on data access but the HW
4972 * table walker is not able to read the instruction page (e.g instruction
4973 * page is not present in memory). In those cases we simply restart the
4974 * guest.
4975 */
4976 if (unlikely(insn && !insn_len))
4977 return 1;
4978
4979 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4980
4981 switch (er) {
4982 case EMULATE_DONE:
4983 return 1;
4984 case EMULATE_USER_EXIT:
4985 ++vcpu->stat.mmio_exits;
4986 /* fall through */
4987 case EMULATE_FAIL:
4988 return 0;
4989 default:
4990 BUG();
4991 }
4992 }
4993 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4994
4995 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4996 {
4997 vcpu->arch.mmu.invlpg(vcpu, gva);
4998 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4999 ++vcpu->stat.invlpg;
5000 }
5001 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5002
5003 void kvm_enable_tdp(void)
5004 {
5005 tdp_enabled = true;
5006 }
5007 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5008
5009 void kvm_disable_tdp(void)
5010 {
5011 tdp_enabled = false;
5012 }
5013 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5014
5015 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5016 {
5017 free_page((unsigned long)vcpu->arch.mmu.pae_root);
5018 free_page((unsigned long)vcpu->arch.mmu.lm_root);
5019 }
5020
5021 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5022 {
5023 struct page *page;
5024 int i;
5025
5026 /*
5027 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5028 * Therefore we need to allocate shadow page tables in the first
5029 * 4GB of memory, which happens to fit the DMA32 zone.
5030 */
5031 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5032 if (!page)
5033 return -ENOMEM;
5034
5035 vcpu->arch.mmu.pae_root = page_address(page);
5036 for (i = 0; i < 4; ++i)
5037 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5038
5039 return 0;
5040 }
5041
5042 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5043 {
5044 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5045 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5046 vcpu->arch.mmu.translate_gpa = translate_gpa;
5047 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5048
5049 return alloc_mmu_pages(vcpu);
5050 }
5051
5052 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5053 {
5054 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5055
5056 init_kvm_mmu(vcpu);
5057 }
5058
5059 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5060 struct kvm_memory_slot *slot,
5061 struct kvm_page_track_notifier_node *node)
5062 {
5063 kvm_mmu_invalidate_zap_all_pages(kvm);
5064 }
5065
5066 void kvm_mmu_init_vm(struct kvm *kvm)
5067 {
5068 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5069
5070 node->track_write = kvm_mmu_pte_write;
5071 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5072 kvm_page_track_register_notifier(kvm, node);
5073 }
5074
5075 void kvm_mmu_uninit_vm(struct kvm *kvm)
5076 {
5077 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5078
5079 kvm_page_track_unregister_notifier(kvm, node);
5080 }
5081
5082 /* The return value indicates if tlb flush on all vcpus is needed. */
5083 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5084
5085 /* The caller should hold mmu-lock before calling this function. */
5086 static __always_inline bool
5087 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5088 slot_level_handler fn, int start_level, int end_level,
5089 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5090 {
5091 struct slot_rmap_walk_iterator iterator;
5092 bool flush = false;
5093
5094 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5095 end_gfn, &iterator) {
5096 if (iterator.rmap)
5097 flush |= fn(kvm, iterator.rmap);
5098
5099 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5100 if (flush && lock_flush_tlb) {
5101 kvm_flush_remote_tlbs(kvm);
5102 flush = false;
5103 }
5104 cond_resched_lock(&kvm->mmu_lock);
5105 }
5106 }
5107
5108 if (flush && lock_flush_tlb) {
5109 kvm_flush_remote_tlbs(kvm);
5110 flush = false;
5111 }
5112
5113 return flush;
5114 }
5115
5116 static __always_inline bool
5117 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5118 slot_level_handler fn, int start_level, int end_level,
5119 bool lock_flush_tlb)
5120 {
5121 return slot_handle_level_range(kvm, memslot, fn, start_level,
5122 end_level, memslot->base_gfn,
5123 memslot->base_gfn + memslot->npages - 1,
5124 lock_flush_tlb);
5125 }
5126
5127 static __always_inline bool
5128 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5129 slot_level_handler fn, bool lock_flush_tlb)
5130 {
5131 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5132 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5133 }
5134
5135 static __always_inline bool
5136 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5137 slot_level_handler fn, bool lock_flush_tlb)
5138 {
5139 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5140 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5141 }
5142
5143 static __always_inline bool
5144 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5145 slot_level_handler fn, bool lock_flush_tlb)
5146 {
5147 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5148 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5149 }
5150
5151 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5152 {
5153 struct kvm_memslots *slots;
5154 struct kvm_memory_slot *memslot;
5155 int i;
5156
5157 spin_lock(&kvm->mmu_lock);
5158 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5159 slots = __kvm_memslots(kvm, i);
5160 kvm_for_each_memslot(memslot, slots) {
5161 gfn_t start, end;
5162
5163 start = max(gfn_start, memslot->base_gfn);
5164 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5165 if (start >= end)
5166 continue;
5167
5168 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5169 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5170 start, end - 1, true);
5171 }
5172 }
5173
5174 spin_unlock(&kvm->mmu_lock);
5175 }
5176
5177 static bool slot_rmap_write_protect(struct kvm *kvm,
5178 struct kvm_rmap_head *rmap_head)
5179 {
5180 return __rmap_write_protect(kvm, rmap_head, false);
5181 }
5182
5183 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5184 struct kvm_memory_slot *memslot)
5185 {
5186 bool flush;
5187
5188 spin_lock(&kvm->mmu_lock);
5189 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5190 false);
5191 spin_unlock(&kvm->mmu_lock);
5192
5193 /*
5194 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5195 * which do tlb flush out of mmu-lock should be serialized by
5196 * kvm->slots_lock otherwise tlb flush would be missed.
5197 */
5198 lockdep_assert_held(&kvm->slots_lock);
5199
5200 /*
5201 * We can flush all the TLBs out of the mmu lock without TLB
5202 * corruption since we just change the spte from writable to
5203 * readonly so that we only need to care the case of changing
5204 * spte from present to present (changing the spte from present
5205 * to nonpresent will flush all the TLBs immediately), in other
5206 * words, the only case we care is mmu_spte_update() where we
5207 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5208 * instead of PT_WRITABLE_MASK, that means it does not depend
5209 * on PT_WRITABLE_MASK anymore.
5210 */
5211 if (flush)
5212 kvm_flush_remote_tlbs(kvm);
5213 }
5214
5215 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5216 struct kvm_rmap_head *rmap_head)
5217 {
5218 u64 *sptep;
5219 struct rmap_iterator iter;
5220 int need_tlb_flush = 0;
5221 kvm_pfn_t pfn;
5222 struct kvm_mmu_page *sp;
5223
5224 restart:
5225 for_each_rmap_spte(rmap_head, &iter, sptep) {
5226 sp = page_header(__pa(sptep));
5227 pfn = spte_to_pfn(*sptep);
5228
5229 /*
5230 * We cannot do huge page mapping for indirect shadow pages,
5231 * which are found on the last rmap (level = 1) when not using
5232 * tdp; such shadow pages are synced with the page table in
5233 * the guest, and the guest page table is using 4K page size
5234 * mapping if the indirect sp has level = 1.
5235 */
5236 if (sp->role.direct &&
5237 !kvm_is_reserved_pfn(pfn) &&
5238 PageTransCompoundMap(pfn_to_page(pfn))) {
5239 drop_spte(kvm, sptep);
5240 need_tlb_flush = 1;
5241 goto restart;
5242 }
5243 }
5244
5245 return need_tlb_flush;
5246 }
5247
5248 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5249 const struct kvm_memory_slot *memslot)
5250 {
5251 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5252 spin_lock(&kvm->mmu_lock);
5253 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5254 kvm_mmu_zap_collapsible_spte, true);
5255 spin_unlock(&kvm->mmu_lock);
5256 }
5257
5258 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5259 struct kvm_memory_slot *memslot)
5260 {
5261 bool flush;
5262
5263 spin_lock(&kvm->mmu_lock);
5264 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5265 spin_unlock(&kvm->mmu_lock);
5266
5267 lockdep_assert_held(&kvm->slots_lock);
5268
5269 /*
5270 * It's also safe to flush TLBs out of mmu lock here as currently this
5271 * function is only used for dirty logging, in which case flushing TLB
5272 * out of mmu lock also guarantees no dirty pages will be lost in
5273 * dirty_bitmap.
5274 */
5275 if (flush)
5276 kvm_flush_remote_tlbs(kvm);
5277 }
5278 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5279
5280 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5281 struct kvm_memory_slot *memslot)
5282 {
5283 bool flush;
5284
5285 spin_lock(&kvm->mmu_lock);
5286 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5287 false);
5288 spin_unlock(&kvm->mmu_lock);
5289
5290 /* see kvm_mmu_slot_remove_write_access */
5291 lockdep_assert_held(&kvm->slots_lock);
5292
5293 if (flush)
5294 kvm_flush_remote_tlbs(kvm);
5295 }
5296 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5297
5298 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5299 struct kvm_memory_slot *memslot)
5300 {
5301 bool flush;
5302
5303 spin_lock(&kvm->mmu_lock);
5304 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5305 spin_unlock(&kvm->mmu_lock);
5306
5307 lockdep_assert_held(&kvm->slots_lock);
5308
5309 /* see kvm_mmu_slot_leaf_clear_dirty */
5310 if (flush)
5311 kvm_flush_remote_tlbs(kvm);
5312 }
5313 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5314
5315 #define BATCH_ZAP_PAGES 10
5316 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5317 {
5318 struct kvm_mmu_page *sp, *node;
5319 int batch = 0;
5320
5321 restart:
5322 list_for_each_entry_safe_reverse(sp, node,
5323 &kvm->arch.active_mmu_pages, link) {
5324 int ret;
5325
5326 /*
5327 * No obsolete page exists before new created page since
5328 * active_mmu_pages is the FIFO list.
5329 */
5330 if (!is_obsolete_sp(kvm, sp))
5331 break;
5332
5333 /*
5334 * Since we are reversely walking the list and the invalid
5335 * list will be moved to the head, skip the invalid page
5336 * can help us to avoid the infinity list walking.
5337 */
5338 if (sp->role.invalid)
5339 continue;
5340
5341 /*
5342 * Need not flush tlb since we only zap the sp with invalid
5343 * generation number.
5344 */
5345 if (batch >= BATCH_ZAP_PAGES &&
5346 cond_resched_lock(&kvm->mmu_lock)) {
5347 batch = 0;
5348 goto restart;
5349 }
5350
5351 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5352 &kvm->arch.zapped_obsolete_pages);
5353 batch += ret;
5354
5355 if (ret)
5356 goto restart;
5357 }
5358
5359 /*
5360 * Should flush tlb before free page tables since lockless-walking
5361 * may use the pages.
5362 */
5363 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5364 }
5365
5366 /*
5367 * Fast invalidate all shadow pages and use lock-break technique
5368 * to zap obsolete pages.
5369 *
5370 * It's required when memslot is being deleted or VM is being
5371 * destroyed, in these cases, we should ensure that KVM MMU does
5372 * not use any resource of the being-deleted slot or all slots
5373 * after calling the function.
5374 */
5375 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5376 {
5377 spin_lock(&kvm->mmu_lock);
5378 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5379 kvm->arch.mmu_valid_gen++;
5380
5381 /*
5382 * Notify all vcpus to reload its shadow page table
5383 * and flush TLB. Then all vcpus will switch to new
5384 * shadow page table with the new mmu_valid_gen.
5385 *
5386 * Note: we should do this under the protection of
5387 * mmu-lock, otherwise, vcpu would purge shadow page
5388 * but miss tlb flush.
5389 */
5390 kvm_reload_remote_mmus(kvm);
5391
5392 kvm_zap_obsolete_pages(kvm);
5393 spin_unlock(&kvm->mmu_lock);
5394 }
5395
5396 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5397 {
5398 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5399 }
5400
5401 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5402 {
5403 /*
5404 * The very rare case: if the generation-number is round,
5405 * zap all shadow pages.
5406 */
5407 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5408 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5409 kvm_mmu_invalidate_zap_all_pages(kvm);
5410 }
5411 }
5412
5413 static unsigned long
5414 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5415 {
5416 struct kvm *kvm;
5417 int nr_to_scan = sc->nr_to_scan;
5418 unsigned long freed = 0;
5419
5420 spin_lock(&kvm_lock);
5421
5422 list_for_each_entry(kvm, &vm_list, vm_list) {
5423 int idx;
5424 LIST_HEAD(invalid_list);
5425
5426 /*
5427 * Never scan more than sc->nr_to_scan VM instances.
5428 * Will not hit this condition practically since we do not try
5429 * to shrink more than one VM and it is very unlikely to see
5430 * !n_used_mmu_pages so many times.
5431 */
5432 if (!nr_to_scan--)
5433 break;
5434 /*
5435 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5436 * here. We may skip a VM instance errorneosly, but we do not
5437 * want to shrink a VM that only started to populate its MMU
5438 * anyway.
5439 */
5440 if (!kvm->arch.n_used_mmu_pages &&
5441 !kvm_has_zapped_obsolete_pages(kvm))
5442 continue;
5443
5444 idx = srcu_read_lock(&kvm->srcu);
5445 spin_lock(&kvm->mmu_lock);
5446
5447 if (kvm_has_zapped_obsolete_pages(kvm)) {
5448 kvm_mmu_commit_zap_page(kvm,
5449 &kvm->arch.zapped_obsolete_pages);
5450 goto unlock;
5451 }
5452
5453 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5454 freed++;
5455 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5456
5457 unlock:
5458 spin_unlock(&kvm->mmu_lock);
5459 srcu_read_unlock(&kvm->srcu, idx);
5460
5461 /*
5462 * unfair on small ones
5463 * per-vm shrinkers cry out
5464 * sadness comes quickly
5465 */
5466 list_move_tail(&kvm->vm_list, &vm_list);
5467 break;
5468 }
5469
5470 spin_unlock(&kvm_lock);
5471 return freed;
5472 }
5473
5474 static unsigned long
5475 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5476 {
5477 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5478 }
5479
5480 static struct shrinker mmu_shrinker = {
5481 .count_objects = mmu_shrink_count,
5482 .scan_objects = mmu_shrink_scan,
5483 .seeks = DEFAULT_SEEKS * 10,
5484 };
5485
5486 static void mmu_destroy_caches(void)
5487 {
5488 kmem_cache_destroy(pte_list_desc_cache);
5489 kmem_cache_destroy(mmu_page_header_cache);
5490 }
5491
5492 int kvm_mmu_module_init(void)
5493 {
5494 int ret = -ENOMEM;
5495
5496 kvm_mmu_clear_all_pte_masks();
5497
5498 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5499 sizeof(struct pte_list_desc),
5500 0, SLAB_ACCOUNT, NULL);
5501 if (!pte_list_desc_cache)
5502 goto out;
5503
5504 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5505 sizeof(struct kvm_mmu_page),
5506 0, SLAB_ACCOUNT, NULL);
5507 if (!mmu_page_header_cache)
5508 goto out;
5509
5510 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5511 goto out;
5512
5513 ret = register_shrinker(&mmu_shrinker);
5514 if (ret)
5515 goto out;
5516
5517 return 0;
5518
5519 out:
5520 mmu_destroy_caches();
5521 return ret;
5522 }
5523
5524 /*
5525 * Caculate mmu pages needed for kvm.
5526 */
5527 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5528 {
5529 unsigned int nr_mmu_pages;
5530 unsigned int nr_pages = 0;
5531 struct kvm_memslots *slots;
5532 struct kvm_memory_slot *memslot;
5533 int i;
5534
5535 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5536 slots = __kvm_memslots(kvm, i);
5537
5538 kvm_for_each_memslot(memslot, slots)
5539 nr_pages += memslot->npages;
5540 }
5541
5542 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5543 nr_mmu_pages = max(nr_mmu_pages,
5544 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5545
5546 return nr_mmu_pages;
5547 }
5548
5549 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5550 {
5551 kvm_mmu_unload(vcpu);
5552 free_mmu_pages(vcpu);
5553 mmu_free_memory_caches(vcpu);
5554 }
5555
5556 void kvm_mmu_module_exit(void)
5557 {
5558 mmu_destroy_caches();
5559 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5560 unregister_shrinker(&mmu_shrinker);
5561 mmu_audit_disable();
5562 }