]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/mmu.c
kvm: svm: Add support for additional SVM NPF error codes
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/uaccess.h>
40
41 #include <asm/page.h>
42 #include <asm/cmpxchg.h>
43 #include <asm/io.h>
44 #include <asm/vmx.h>
45 #include <asm/kvm_page_track.h>
46
47 /*
48 * When setting this variable to true it enables Two-Dimensional-Paging
49 * where the hardware walks 2 page tables:
50 * 1. the guest-virtual to guest-physical
51 * 2. while doing 1. it walks guest-physical to host-physical
52 * If the hardware supports that we don't need to do shadow paging.
53 */
54 bool tdp_enabled = false;
55
56 enum {
57 AUDIT_PRE_PAGE_FAULT,
58 AUDIT_POST_PAGE_FAULT,
59 AUDIT_PRE_PTE_WRITE,
60 AUDIT_POST_PTE_WRITE,
61 AUDIT_PRE_SYNC,
62 AUDIT_POST_SYNC
63 };
64
65 #undef MMU_DEBUG
66
67 #ifdef MMU_DEBUG
68 static bool dbg = 0;
69 module_param(dbg, bool, 0644);
70
71 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
72 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
73 #define MMU_WARN_ON(x) WARN_ON(x)
74 #else
75 #define pgprintk(x...) do { } while (0)
76 #define rmap_printk(x...) do { } while (0)
77 #define MMU_WARN_ON(x) do { } while (0)
78 #endif
79
80 #define PTE_PREFETCH_NUM 8
81
82 #define PT_FIRST_AVAIL_BITS_SHIFT 10
83 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
84
85 #define PT64_LEVEL_BITS 9
86
87 #define PT64_LEVEL_SHIFT(level) \
88 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
89
90 #define PT64_INDEX(address, level)\
91 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
92
93
94 #define PT32_LEVEL_BITS 10
95
96 #define PT32_LEVEL_SHIFT(level) \
97 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
98
99 #define PT32_LVL_OFFSET_MASK(level) \
100 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
101 * PT32_LEVEL_BITS))) - 1))
102
103 #define PT32_INDEX(address, level)\
104 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
105
106
107 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
108 #define PT64_DIR_BASE_ADDR_MASK \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
110 #define PT64_LVL_ADDR_MASK(level) \
111 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT64_LEVEL_BITS))) - 1))
113 #define PT64_LVL_OFFSET_MASK(level) \
114 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 * PT64_LEVEL_BITS))) - 1))
116
117 #define PT32_BASE_ADDR_MASK PAGE_MASK
118 #define PT32_DIR_BASE_ADDR_MASK \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
120 #define PT32_LVL_ADDR_MASK(level) \
121 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
123
124 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
125 | shadow_x_mask | shadow_nx_mask)
126
127 #define ACC_EXEC_MASK 1
128 #define ACC_WRITE_MASK PT_WRITABLE_MASK
129 #define ACC_USER_MASK PT_USER_MASK
130 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
131
132 #include <trace/events/kvm.h>
133
134 #define CREATE_TRACE_POINTS
135 #include "mmutrace.h"
136
137 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
138 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
139
140 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
141
142 /* make pte_list_desc fit well in cache line */
143 #define PTE_LIST_EXT 3
144
145 struct pte_list_desc {
146 u64 *sptes[PTE_LIST_EXT];
147 struct pte_list_desc *more;
148 };
149
150 struct kvm_shadow_walk_iterator {
151 u64 addr;
152 hpa_t shadow_addr;
153 u64 *sptep;
154 int level;
155 unsigned index;
156 };
157
158 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
159 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
160 shadow_walk_okay(&(_walker)); \
161 shadow_walk_next(&(_walker)))
162
163 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
164 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
165 shadow_walk_okay(&(_walker)) && \
166 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
167 __shadow_walk_next(&(_walker), spte))
168
169 static struct kmem_cache *pte_list_desc_cache;
170 static struct kmem_cache *mmu_page_header_cache;
171 static struct percpu_counter kvm_total_used_mmu_pages;
172
173 static u64 __read_mostly shadow_nx_mask;
174 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
175 static u64 __read_mostly shadow_user_mask;
176 static u64 __read_mostly shadow_accessed_mask;
177 static u64 __read_mostly shadow_dirty_mask;
178 static u64 __read_mostly shadow_mmio_mask;
179 static u64 __read_mostly shadow_present_mask;
180
181 static void mmu_spte_set(u64 *sptep, u64 spte);
182 static void mmu_free_roots(struct kvm_vcpu *vcpu);
183
184 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
185 {
186 shadow_mmio_mask = mmio_mask;
187 }
188 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
189
190 /*
191 * the low bit of the generation number is always presumed to be zero.
192 * This disables mmio caching during memslot updates. The concept is
193 * similar to a seqcount but instead of retrying the access we just punt
194 * and ignore the cache.
195 *
196 * spte bits 3-11 are used as bits 1-9 of the generation number,
197 * the bits 52-61 are used as bits 10-19 of the generation number.
198 */
199 #define MMIO_SPTE_GEN_LOW_SHIFT 2
200 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
201
202 #define MMIO_GEN_SHIFT 20
203 #define MMIO_GEN_LOW_SHIFT 10
204 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
205 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
206
207 static u64 generation_mmio_spte_mask(unsigned int gen)
208 {
209 u64 mask;
210
211 WARN_ON(gen & ~MMIO_GEN_MASK);
212
213 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
214 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
215 return mask;
216 }
217
218 static unsigned int get_mmio_spte_generation(u64 spte)
219 {
220 unsigned int gen;
221
222 spte &= ~shadow_mmio_mask;
223
224 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
225 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
226 return gen;
227 }
228
229 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
230 {
231 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
232 }
233
234 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
235 unsigned access)
236 {
237 unsigned int gen = kvm_current_mmio_generation(vcpu);
238 u64 mask = generation_mmio_spte_mask(gen);
239
240 access &= ACC_WRITE_MASK | ACC_USER_MASK;
241 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
242
243 trace_mark_mmio_spte(sptep, gfn, access, gen);
244 mmu_spte_set(sptep, mask);
245 }
246
247 static bool is_mmio_spte(u64 spte)
248 {
249 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
250 }
251
252 static gfn_t get_mmio_spte_gfn(u64 spte)
253 {
254 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
255 return (spte & ~mask) >> PAGE_SHIFT;
256 }
257
258 static unsigned get_mmio_spte_access(u64 spte)
259 {
260 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
261 return (spte & ~mask) & ~PAGE_MASK;
262 }
263
264 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
265 kvm_pfn_t pfn, unsigned access)
266 {
267 if (unlikely(is_noslot_pfn(pfn))) {
268 mark_mmio_spte(vcpu, sptep, gfn, access);
269 return true;
270 }
271
272 return false;
273 }
274
275 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
276 {
277 unsigned int kvm_gen, spte_gen;
278
279 kvm_gen = kvm_current_mmio_generation(vcpu);
280 spte_gen = get_mmio_spte_generation(spte);
281
282 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
283 return likely(kvm_gen == spte_gen);
284 }
285
286 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
287 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
288 {
289 shadow_user_mask = user_mask;
290 shadow_accessed_mask = accessed_mask;
291 shadow_dirty_mask = dirty_mask;
292 shadow_nx_mask = nx_mask;
293 shadow_x_mask = x_mask;
294 shadow_present_mask = p_mask;
295 }
296 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
297
298 static int is_cpuid_PSE36(void)
299 {
300 return 1;
301 }
302
303 static int is_nx(struct kvm_vcpu *vcpu)
304 {
305 return vcpu->arch.efer & EFER_NX;
306 }
307
308 static int is_shadow_present_pte(u64 pte)
309 {
310 return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
311 }
312
313 static int is_large_pte(u64 pte)
314 {
315 return pte & PT_PAGE_SIZE_MASK;
316 }
317
318 static int is_last_spte(u64 pte, int level)
319 {
320 if (level == PT_PAGE_TABLE_LEVEL)
321 return 1;
322 if (is_large_pte(pte))
323 return 1;
324 return 0;
325 }
326
327 static kvm_pfn_t spte_to_pfn(u64 pte)
328 {
329 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
330 }
331
332 static gfn_t pse36_gfn_delta(u32 gpte)
333 {
334 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
335
336 return (gpte & PT32_DIR_PSE36_MASK) << shift;
337 }
338
339 #ifdef CONFIG_X86_64
340 static void __set_spte(u64 *sptep, u64 spte)
341 {
342 WRITE_ONCE(*sptep, spte);
343 }
344
345 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
346 {
347 WRITE_ONCE(*sptep, spte);
348 }
349
350 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
351 {
352 return xchg(sptep, spte);
353 }
354
355 static u64 __get_spte_lockless(u64 *sptep)
356 {
357 return ACCESS_ONCE(*sptep);
358 }
359 #else
360 union split_spte {
361 struct {
362 u32 spte_low;
363 u32 spte_high;
364 };
365 u64 spte;
366 };
367
368 static void count_spte_clear(u64 *sptep, u64 spte)
369 {
370 struct kvm_mmu_page *sp = page_header(__pa(sptep));
371
372 if (is_shadow_present_pte(spte))
373 return;
374
375 /* Ensure the spte is completely set before we increase the count */
376 smp_wmb();
377 sp->clear_spte_count++;
378 }
379
380 static void __set_spte(u64 *sptep, u64 spte)
381 {
382 union split_spte *ssptep, sspte;
383
384 ssptep = (union split_spte *)sptep;
385 sspte = (union split_spte)spte;
386
387 ssptep->spte_high = sspte.spte_high;
388
389 /*
390 * If we map the spte from nonpresent to present, We should store
391 * the high bits firstly, then set present bit, so cpu can not
392 * fetch this spte while we are setting the spte.
393 */
394 smp_wmb();
395
396 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
397 }
398
399 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
400 {
401 union split_spte *ssptep, sspte;
402
403 ssptep = (union split_spte *)sptep;
404 sspte = (union split_spte)spte;
405
406 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
407
408 /*
409 * If we map the spte from present to nonpresent, we should clear
410 * present bit firstly to avoid vcpu fetch the old high bits.
411 */
412 smp_wmb();
413
414 ssptep->spte_high = sspte.spte_high;
415 count_spte_clear(sptep, spte);
416 }
417
418 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
419 {
420 union split_spte *ssptep, sspte, orig;
421
422 ssptep = (union split_spte *)sptep;
423 sspte = (union split_spte)spte;
424
425 /* xchg acts as a barrier before the setting of the high bits */
426 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
427 orig.spte_high = ssptep->spte_high;
428 ssptep->spte_high = sspte.spte_high;
429 count_spte_clear(sptep, spte);
430
431 return orig.spte;
432 }
433
434 /*
435 * The idea using the light way get the spte on x86_32 guest is from
436 * gup_get_pte(arch/x86/mm/gup.c).
437 *
438 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
439 * coalesces them and we are running out of the MMU lock. Therefore
440 * we need to protect against in-progress updates of the spte.
441 *
442 * Reading the spte while an update is in progress may get the old value
443 * for the high part of the spte. The race is fine for a present->non-present
444 * change (because the high part of the spte is ignored for non-present spte),
445 * but for a present->present change we must reread the spte.
446 *
447 * All such changes are done in two steps (present->non-present and
448 * non-present->present), hence it is enough to count the number of
449 * present->non-present updates: if it changed while reading the spte,
450 * we might have hit the race. This is done using clear_spte_count.
451 */
452 static u64 __get_spte_lockless(u64 *sptep)
453 {
454 struct kvm_mmu_page *sp = page_header(__pa(sptep));
455 union split_spte spte, *orig = (union split_spte *)sptep;
456 int count;
457
458 retry:
459 count = sp->clear_spte_count;
460 smp_rmb();
461
462 spte.spte_low = orig->spte_low;
463 smp_rmb();
464
465 spte.spte_high = orig->spte_high;
466 smp_rmb();
467
468 if (unlikely(spte.spte_low != orig->spte_low ||
469 count != sp->clear_spte_count))
470 goto retry;
471
472 return spte.spte;
473 }
474 #endif
475
476 static bool spte_is_locklessly_modifiable(u64 spte)
477 {
478 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
479 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
480 }
481
482 static bool spte_has_volatile_bits(u64 spte)
483 {
484 /*
485 * Always atomically update spte if it can be updated
486 * out of mmu-lock, it can ensure dirty bit is not lost,
487 * also, it can help us to get a stable is_writable_pte()
488 * to ensure tlb flush is not missed.
489 */
490 if (spte_is_locklessly_modifiable(spte))
491 return true;
492
493 if (!shadow_accessed_mask)
494 return false;
495
496 if (!is_shadow_present_pte(spte))
497 return false;
498
499 if ((spte & shadow_accessed_mask) &&
500 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
501 return false;
502
503 return true;
504 }
505
506 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
507 {
508 return (old_spte & bit_mask) && !(new_spte & bit_mask);
509 }
510
511 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
512 {
513 return (old_spte & bit_mask) != (new_spte & bit_mask);
514 }
515
516 /* Rules for using mmu_spte_set:
517 * Set the sptep from nonpresent to present.
518 * Note: the sptep being assigned *must* be either not present
519 * or in a state where the hardware will not attempt to update
520 * the spte.
521 */
522 static void mmu_spte_set(u64 *sptep, u64 new_spte)
523 {
524 WARN_ON(is_shadow_present_pte(*sptep));
525 __set_spte(sptep, new_spte);
526 }
527
528 /* Rules for using mmu_spte_update:
529 * Update the state bits, it means the mapped pfn is not changed.
530 *
531 * Whenever we overwrite a writable spte with a read-only one we
532 * should flush remote TLBs. Otherwise rmap_write_protect
533 * will find a read-only spte, even though the writable spte
534 * might be cached on a CPU's TLB, the return value indicates this
535 * case.
536 */
537 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
538 {
539 u64 old_spte = *sptep;
540 bool ret = false;
541
542 WARN_ON(!is_shadow_present_pte(new_spte));
543
544 if (!is_shadow_present_pte(old_spte)) {
545 mmu_spte_set(sptep, new_spte);
546 return ret;
547 }
548
549 if (!spte_has_volatile_bits(old_spte))
550 __update_clear_spte_fast(sptep, new_spte);
551 else
552 old_spte = __update_clear_spte_slow(sptep, new_spte);
553
554 /*
555 * For the spte updated out of mmu-lock is safe, since
556 * we always atomically update it, see the comments in
557 * spte_has_volatile_bits().
558 */
559 if (spte_is_locklessly_modifiable(old_spte) &&
560 !is_writable_pte(new_spte))
561 ret = true;
562
563 if (!shadow_accessed_mask) {
564 /*
565 * We don't set page dirty when dropping non-writable spte.
566 * So do it now if the new spte is becoming non-writable.
567 */
568 if (ret)
569 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
570 return ret;
571 }
572
573 /*
574 * Flush TLB when accessed/dirty bits are changed in the page tables,
575 * to guarantee consistency between TLB and page tables.
576 */
577 if (spte_is_bit_changed(old_spte, new_spte,
578 shadow_accessed_mask | shadow_dirty_mask))
579 ret = true;
580
581 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
582 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
583 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
584 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
585
586 return ret;
587 }
588
589 /*
590 * Rules for using mmu_spte_clear_track_bits:
591 * It sets the sptep from present to nonpresent, and track the
592 * state bits, it is used to clear the last level sptep.
593 */
594 static int mmu_spte_clear_track_bits(u64 *sptep)
595 {
596 kvm_pfn_t pfn;
597 u64 old_spte = *sptep;
598
599 if (!spte_has_volatile_bits(old_spte))
600 __update_clear_spte_fast(sptep, 0ull);
601 else
602 old_spte = __update_clear_spte_slow(sptep, 0ull);
603
604 if (!is_shadow_present_pte(old_spte))
605 return 0;
606
607 pfn = spte_to_pfn(old_spte);
608
609 /*
610 * KVM does not hold the refcount of the page used by
611 * kvm mmu, before reclaiming the page, we should
612 * unmap it from mmu first.
613 */
614 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
615
616 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
617 kvm_set_pfn_accessed(pfn);
618 if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
619 PT_WRITABLE_MASK))
620 kvm_set_pfn_dirty(pfn);
621 return 1;
622 }
623
624 /*
625 * Rules for using mmu_spte_clear_no_track:
626 * Directly clear spte without caring the state bits of sptep,
627 * it is used to set the upper level spte.
628 */
629 static void mmu_spte_clear_no_track(u64 *sptep)
630 {
631 __update_clear_spte_fast(sptep, 0ull);
632 }
633
634 static u64 mmu_spte_get_lockless(u64 *sptep)
635 {
636 return __get_spte_lockless(sptep);
637 }
638
639 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
640 {
641 /*
642 * Prevent page table teardown by making any free-er wait during
643 * kvm_flush_remote_tlbs() IPI to all active vcpus.
644 */
645 local_irq_disable();
646
647 /*
648 * Make sure a following spte read is not reordered ahead of the write
649 * to vcpu->mode.
650 */
651 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
652 }
653
654 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
655 {
656 /*
657 * Make sure the write to vcpu->mode is not reordered in front of
658 * reads to sptes. If it does, kvm_commit_zap_page() can see us
659 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
660 */
661 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
662 local_irq_enable();
663 }
664
665 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
666 struct kmem_cache *base_cache, int min)
667 {
668 void *obj;
669
670 if (cache->nobjs >= min)
671 return 0;
672 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
673 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
674 if (!obj)
675 return -ENOMEM;
676 cache->objects[cache->nobjs++] = obj;
677 }
678 return 0;
679 }
680
681 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
682 {
683 return cache->nobjs;
684 }
685
686 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
687 struct kmem_cache *cache)
688 {
689 while (mc->nobjs)
690 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
691 }
692
693 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
694 int min)
695 {
696 void *page;
697
698 if (cache->nobjs >= min)
699 return 0;
700 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
701 page = (void *)__get_free_page(GFP_KERNEL);
702 if (!page)
703 return -ENOMEM;
704 cache->objects[cache->nobjs++] = page;
705 }
706 return 0;
707 }
708
709 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
710 {
711 while (mc->nobjs)
712 free_page((unsigned long)mc->objects[--mc->nobjs]);
713 }
714
715 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
716 {
717 int r;
718
719 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
720 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
721 if (r)
722 goto out;
723 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
724 if (r)
725 goto out;
726 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
727 mmu_page_header_cache, 4);
728 out:
729 return r;
730 }
731
732 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
733 {
734 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735 pte_list_desc_cache);
736 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
737 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
738 mmu_page_header_cache);
739 }
740
741 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
742 {
743 void *p;
744
745 BUG_ON(!mc->nobjs);
746 p = mc->objects[--mc->nobjs];
747 return p;
748 }
749
750 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
751 {
752 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
753 }
754
755 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
756 {
757 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
758 }
759
760 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
761 {
762 if (!sp->role.direct)
763 return sp->gfns[index];
764
765 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
766 }
767
768 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
769 {
770 if (sp->role.direct)
771 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
772 else
773 sp->gfns[index] = gfn;
774 }
775
776 /*
777 * Return the pointer to the large page information for a given gfn,
778 * handling slots that are not large page aligned.
779 */
780 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781 struct kvm_memory_slot *slot,
782 int level)
783 {
784 unsigned long idx;
785
786 idx = gfn_to_index(gfn, slot->base_gfn, level);
787 return &slot->arch.lpage_info[level - 2][idx];
788 }
789
790 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
791 gfn_t gfn, int count)
792 {
793 struct kvm_lpage_info *linfo;
794 int i;
795
796 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
797 linfo = lpage_info_slot(gfn, slot, i);
798 linfo->disallow_lpage += count;
799 WARN_ON(linfo->disallow_lpage < 0);
800 }
801 }
802
803 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
804 {
805 update_gfn_disallow_lpage_count(slot, gfn, 1);
806 }
807
808 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
809 {
810 update_gfn_disallow_lpage_count(slot, gfn, -1);
811 }
812
813 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
814 {
815 struct kvm_memslots *slots;
816 struct kvm_memory_slot *slot;
817 gfn_t gfn;
818
819 kvm->arch.indirect_shadow_pages++;
820 gfn = sp->gfn;
821 slots = kvm_memslots_for_spte_role(kvm, sp->role);
822 slot = __gfn_to_memslot(slots, gfn);
823
824 /* the non-leaf shadow pages are keeping readonly. */
825 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
826 return kvm_slot_page_track_add_page(kvm, slot, gfn,
827 KVM_PAGE_TRACK_WRITE);
828
829 kvm_mmu_gfn_disallow_lpage(slot, gfn);
830 }
831
832 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
833 {
834 struct kvm_memslots *slots;
835 struct kvm_memory_slot *slot;
836 gfn_t gfn;
837
838 kvm->arch.indirect_shadow_pages--;
839 gfn = sp->gfn;
840 slots = kvm_memslots_for_spte_role(kvm, sp->role);
841 slot = __gfn_to_memslot(slots, gfn);
842 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
843 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
844 KVM_PAGE_TRACK_WRITE);
845
846 kvm_mmu_gfn_allow_lpage(slot, gfn);
847 }
848
849 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
850 struct kvm_memory_slot *slot)
851 {
852 struct kvm_lpage_info *linfo;
853
854 if (slot) {
855 linfo = lpage_info_slot(gfn, slot, level);
856 return !!linfo->disallow_lpage;
857 }
858
859 return true;
860 }
861
862 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
863 int level)
864 {
865 struct kvm_memory_slot *slot;
866
867 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
868 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
869 }
870
871 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
872 {
873 unsigned long page_size;
874 int i, ret = 0;
875
876 page_size = kvm_host_page_size(kvm, gfn);
877
878 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
879 if (page_size >= KVM_HPAGE_SIZE(i))
880 ret = i;
881 else
882 break;
883 }
884
885 return ret;
886 }
887
888 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
889 bool no_dirty_log)
890 {
891 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
892 return false;
893 if (no_dirty_log && slot->dirty_bitmap)
894 return false;
895
896 return true;
897 }
898
899 static struct kvm_memory_slot *
900 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
901 bool no_dirty_log)
902 {
903 struct kvm_memory_slot *slot;
904
905 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
906 if (!memslot_valid_for_gpte(slot, no_dirty_log))
907 slot = NULL;
908
909 return slot;
910 }
911
912 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
913 bool *force_pt_level)
914 {
915 int host_level, level, max_level;
916 struct kvm_memory_slot *slot;
917
918 if (unlikely(*force_pt_level))
919 return PT_PAGE_TABLE_LEVEL;
920
921 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
922 *force_pt_level = !memslot_valid_for_gpte(slot, true);
923 if (unlikely(*force_pt_level))
924 return PT_PAGE_TABLE_LEVEL;
925
926 host_level = host_mapping_level(vcpu->kvm, large_gfn);
927
928 if (host_level == PT_PAGE_TABLE_LEVEL)
929 return host_level;
930
931 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
932
933 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
934 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
935 break;
936
937 return level - 1;
938 }
939
940 /*
941 * About rmap_head encoding:
942 *
943 * If the bit zero of rmap_head->val is clear, then it points to the only spte
944 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
945 * pte_list_desc containing more mappings.
946 */
947
948 /*
949 * Returns the number of pointers in the rmap chain, not counting the new one.
950 */
951 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
952 struct kvm_rmap_head *rmap_head)
953 {
954 struct pte_list_desc *desc;
955 int i, count = 0;
956
957 if (!rmap_head->val) {
958 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
959 rmap_head->val = (unsigned long)spte;
960 } else if (!(rmap_head->val & 1)) {
961 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
962 desc = mmu_alloc_pte_list_desc(vcpu);
963 desc->sptes[0] = (u64 *)rmap_head->val;
964 desc->sptes[1] = spte;
965 rmap_head->val = (unsigned long)desc | 1;
966 ++count;
967 } else {
968 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
969 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
971 desc = desc->more;
972 count += PTE_LIST_EXT;
973 }
974 if (desc->sptes[PTE_LIST_EXT-1]) {
975 desc->more = mmu_alloc_pte_list_desc(vcpu);
976 desc = desc->more;
977 }
978 for (i = 0; desc->sptes[i]; ++i)
979 ++count;
980 desc->sptes[i] = spte;
981 }
982 return count;
983 }
984
985 static void
986 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
987 struct pte_list_desc *desc, int i,
988 struct pte_list_desc *prev_desc)
989 {
990 int j;
991
992 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
993 ;
994 desc->sptes[i] = desc->sptes[j];
995 desc->sptes[j] = NULL;
996 if (j != 0)
997 return;
998 if (!prev_desc && !desc->more)
999 rmap_head->val = (unsigned long)desc->sptes[0];
1000 else
1001 if (prev_desc)
1002 prev_desc->more = desc->more;
1003 else
1004 rmap_head->val = (unsigned long)desc->more | 1;
1005 mmu_free_pte_list_desc(desc);
1006 }
1007
1008 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1009 {
1010 struct pte_list_desc *desc;
1011 struct pte_list_desc *prev_desc;
1012 int i;
1013
1014 if (!rmap_head->val) {
1015 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1016 BUG();
1017 } else if (!(rmap_head->val & 1)) {
1018 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1019 if ((u64 *)rmap_head->val != spte) {
1020 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1021 BUG();
1022 }
1023 rmap_head->val = 0;
1024 } else {
1025 rmap_printk("pte_list_remove: %p many->many\n", spte);
1026 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1027 prev_desc = NULL;
1028 while (desc) {
1029 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1030 if (desc->sptes[i] == spte) {
1031 pte_list_desc_remove_entry(rmap_head,
1032 desc, i, prev_desc);
1033 return;
1034 }
1035 }
1036 prev_desc = desc;
1037 desc = desc->more;
1038 }
1039 pr_err("pte_list_remove: %p many->many\n", spte);
1040 BUG();
1041 }
1042 }
1043
1044 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1045 struct kvm_memory_slot *slot)
1046 {
1047 unsigned long idx;
1048
1049 idx = gfn_to_index(gfn, slot->base_gfn, level);
1050 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1051 }
1052
1053 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1054 struct kvm_mmu_page *sp)
1055 {
1056 struct kvm_memslots *slots;
1057 struct kvm_memory_slot *slot;
1058
1059 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1060 slot = __gfn_to_memslot(slots, gfn);
1061 return __gfn_to_rmap(gfn, sp->role.level, slot);
1062 }
1063
1064 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1065 {
1066 struct kvm_mmu_memory_cache *cache;
1067
1068 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1069 return mmu_memory_cache_free_objects(cache);
1070 }
1071
1072 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1073 {
1074 struct kvm_mmu_page *sp;
1075 struct kvm_rmap_head *rmap_head;
1076
1077 sp = page_header(__pa(spte));
1078 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1079 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1080 return pte_list_add(vcpu, spte, rmap_head);
1081 }
1082
1083 static void rmap_remove(struct kvm *kvm, u64 *spte)
1084 {
1085 struct kvm_mmu_page *sp;
1086 gfn_t gfn;
1087 struct kvm_rmap_head *rmap_head;
1088
1089 sp = page_header(__pa(spte));
1090 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1091 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1092 pte_list_remove(spte, rmap_head);
1093 }
1094
1095 /*
1096 * Used by the following functions to iterate through the sptes linked by a
1097 * rmap. All fields are private and not assumed to be used outside.
1098 */
1099 struct rmap_iterator {
1100 /* private fields */
1101 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1102 int pos; /* index of the sptep */
1103 };
1104
1105 /*
1106 * Iteration must be started by this function. This should also be used after
1107 * removing/dropping sptes from the rmap link because in such cases the
1108 * information in the itererator may not be valid.
1109 *
1110 * Returns sptep if found, NULL otherwise.
1111 */
1112 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1113 struct rmap_iterator *iter)
1114 {
1115 u64 *sptep;
1116
1117 if (!rmap_head->val)
1118 return NULL;
1119
1120 if (!(rmap_head->val & 1)) {
1121 iter->desc = NULL;
1122 sptep = (u64 *)rmap_head->val;
1123 goto out;
1124 }
1125
1126 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1127 iter->pos = 0;
1128 sptep = iter->desc->sptes[iter->pos];
1129 out:
1130 BUG_ON(!is_shadow_present_pte(*sptep));
1131 return sptep;
1132 }
1133
1134 /*
1135 * Must be used with a valid iterator: e.g. after rmap_get_first().
1136 *
1137 * Returns sptep if found, NULL otherwise.
1138 */
1139 static u64 *rmap_get_next(struct rmap_iterator *iter)
1140 {
1141 u64 *sptep;
1142
1143 if (iter->desc) {
1144 if (iter->pos < PTE_LIST_EXT - 1) {
1145 ++iter->pos;
1146 sptep = iter->desc->sptes[iter->pos];
1147 if (sptep)
1148 goto out;
1149 }
1150
1151 iter->desc = iter->desc->more;
1152
1153 if (iter->desc) {
1154 iter->pos = 0;
1155 /* desc->sptes[0] cannot be NULL */
1156 sptep = iter->desc->sptes[iter->pos];
1157 goto out;
1158 }
1159 }
1160
1161 return NULL;
1162 out:
1163 BUG_ON(!is_shadow_present_pte(*sptep));
1164 return sptep;
1165 }
1166
1167 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1168 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1169 _spte_; _spte_ = rmap_get_next(_iter_))
1170
1171 static void drop_spte(struct kvm *kvm, u64 *sptep)
1172 {
1173 if (mmu_spte_clear_track_bits(sptep))
1174 rmap_remove(kvm, sptep);
1175 }
1176
1177
1178 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1179 {
1180 if (is_large_pte(*sptep)) {
1181 WARN_ON(page_header(__pa(sptep))->role.level ==
1182 PT_PAGE_TABLE_LEVEL);
1183 drop_spte(kvm, sptep);
1184 --kvm->stat.lpages;
1185 return true;
1186 }
1187
1188 return false;
1189 }
1190
1191 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1192 {
1193 if (__drop_large_spte(vcpu->kvm, sptep))
1194 kvm_flush_remote_tlbs(vcpu->kvm);
1195 }
1196
1197 /*
1198 * Write-protect on the specified @sptep, @pt_protect indicates whether
1199 * spte write-protection is caused by protecting shadow page table.
1200 *
1201 * Note: write protection is difference between dirty logging and spte
1202 * protection:
1203 * - for dirty logging, the spte can be set to writable at anytime if
1204 * its dirty bitmap is properly set.
1205 * - for spte protection, the spte can be writable only after unsync-ing
1206 * shadow page.
1207 *
1208 * Return true if tlb need be flushed.
1209 */
1210 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1211 {
1212 u64 spte = *sptep;
1213
1214 if (!is_writable_pte(spte) &&
1215 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1216 return false;
1217
1218 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1219
1220 if (pt_protect)
1221 spte &= ~SPTE_MMU_WRITEABLE;
1222 spte = spte & ~PT_WRITABLE_MASK;
1223
1224 return mmu_spte_update(sptep, spte);
1225 }
1226
1227 static bool __rmap_write_protect(struct kvm *kvm,
1228 struct kvm_rmap_head *rmap_head,
1229 bool pt_protect)
1230 {
1231 u64 *sptep;
1232 struct rmap_iterator iter;
1233 bool flush = false;
1234
1235 for_each_rmap_spte(rmap_head, &iter, sptep)
1236 flush |= spte_write_protect(sptep, pt_protect);
1237
1238 return flush;
1239 }
1240
1241 static bool spte_clear_dirty(u64 *sptep)
1242 {
1243 u64 spte = *sptep;
1244
1245 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1246
1247 spte &= ~shadow_dirty_mask;
1248
1249 return mmu_spte_update(sptep, spte);
1250 }
1251
1252 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1253 {
1254 u64 *sptep;
1255 struct rmap_iterator iter;
1256 bool flush = false;
1257
1258 for_each_rmap_spte(rmap_head, &iter, sptep)
1259 flush |= spte_clear_dirty(sptep);
1260
1261 return flush;
1262 }
1263
1264 static bool spte_set_dirty(u64 *sptep)
1265 {
1266 u64 spte = *sptep;
1267
1268 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1269
1270 spte |= shadow_dirty_mask;
1271
1272 return mmu_spte_update(sptep, spte);
1273 }
1274
1275 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1276 {
1277 u64 *sptep;
1278 struct rmap_iterator iter;
1279 bool flush = false;
1280
1281 for_each_rmap_spte(rmap_head, &iter, sptep)
1282 flush |= spte_set_dirty(sptep);
1283
1284 return flush;
1285 }
1286
1287 /**
1288 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1289 * @kvm: kvm instance
1290 * @slot: slot to protect
1291 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1292 * @mask: indicates which pages we should protect
1293 *
1294 * Used when we do not need to care about huge page mappings: e.g. during dirty
1295 * logging we do not have any such mappings.
1296 */
1297 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1298 struct kvm_memory_slot *slot,
1299 gfn_t gfn_offset, unsigned long mask)
1300 {
1301 struct kvm_rmap_head *rmap_head;
1302
1303 while (mask) {
1304 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1305 PT_PAGE_TABLE_LEVEL, slot);
1306 __rmap_write_protect(kvm, rmap_head, false);
1307
1308 /* clear the first set bit */
1309 mask &= mask - 1;
1310 }
1311 }
1312
1313 /**
1314 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1315 * @kvm: kvm instance
1316 * @slot: slot to clear D-bit
1317 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1318 * @mask: indicates which pages we should clear D-bit
1319 *
1320 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1321 */
1322 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1323 struct kvm_memory_slot *slot,
1324 gfn_t gfn_offset, unsigned long mask)
1325 {
1326 struct kvm_rmap_head *rmap_head;
1327
1328 while (mask) {
1329 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1330 PT_PAGE_TABLE_LEVEL, slot);
1331 __rmap_clear_dirty(kvm, rmap_head);
1332
1333 /* clear the first set bit */
1334 mask &= mask - 1;
1335 }
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1338
1339 /**
1340 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1341 * PT level pages.
1342 *
1343 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1344 * enable dirty logging for them.
1345 *
1346 * Used when we do not need to care about huge page mappings: e.g. during dirty
1347 * logging we do not have any such mappings.
1348 */
1349 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1350 struct kvm_memory_slot *slot,
1351 gfn_t gfn_offset, unsigned long mask)
1352 {
1353 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1354 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1355 mask);
1356 else
1357 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1358 }
1359
1360 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1361 struct kvm_memory_slot *slot, u64 gfn)
1362 {
1363 struct kvm_rmap_head *rmap_head;
1364 int i;
1365 bool write_protected = false;
1366
1367 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1368 rmap_head = __gfn_to_rmap(gfn, i, slot);
1369 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1370 }
1371
1372 return write_protected;
1373 }
1374
1375 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1376 {
1377 struct kvm_memory_slot *slot;
1378
1379 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1380 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1381 }
1382
1383 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1384 {
1385 u64 *sptep;
1386 struct rmap_iterator iter;
1387 bool flush = false;
1388
1389 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1390 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1391
1392 drop_spte(kvm, sptep);
1393 flush = true;
1394 }
1395
1396 return flush;
1397 }
1398
1399 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1400 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1401 unsigned long data)
1402 {
1403 return kvm_zap_rmapp(kvm, rmap_head);
1404 }
1405
1406 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1407 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1408 unsigned long data)
1409 {
1410 u64 *sptep;
1411 struct rmap_iterator iter;
1412 int need_flush = 0;
1413 u64 new_spte;
1414 pte_t *ptep = (pte_t *)data;
1415 kvm_pfn_t new_pfn;
1416
1417 WARN_ON(pte_huge(*ptep));
1418 new_pfn = pte_pfn(*ptep);
1419
1420 restart:
1421 for_each_rmap_spte(rmap_head, &iter, sptep) {
1422 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1423 sptep, *sptep, gfn, level);
1424
1425 need_flush = 1;
1426
1427 if (pte_write(*ptep)) {
1428 drop_spte(kvm, sptep);
1429 goto restart;
1430 } else {
1431 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1432 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1433
1434 new_spte &= ~PT_WRITABLE_MASK;
1435 new_spte &= ~SPTE_HOST_WRITEABLE;
1436 new_spte &= ~shadow_accessed_mask;
1437
1438 mmu_spte_clear_track_bits(sptep);
1439 mmu_spte_set(sptep, new_spte);
1440 }
1441 }
1442
1443 if (need_flush)
1444 kvm_flush_remote_tlbs(kvm);
1445
1446 return 0;
1447 }
1448
1449 struct slot_rmap_walk_iterator {
1450 /* input fields. */
1451 struct kvm_memory_slot *slot;
1452 gfn_t start_gfn;
1453 gfn_t end_gfn;
1454 int start_level;
1455 int end_level;
1456
1457 /* output fields. */
1458 gfn_t gfn;
1459 struct kvm_rmap_head *rmap;
1460 int level;
1461
1462 /* private field. */
1463 struct kvm_rmap_head *end_rmap;
1464 };
1465
1466 static void
1467 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1468 {
1469 iterator->level = level;
1470 iterator->gfn = iterator->start_gfn;
1471 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1472 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1473 iterator->slot);
1474 }
1475
1476 static void
1477 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1478 struct kvm_memory_slot *slot, int start_level,
1479 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1480 {
1481 iterator->slot = slot;
1482 iterator->start_level = start_level;
1483 iterator->end_level = end_level;
1484 iterator->start_gfn = start_gfn;
1485 iterator->end_gfn = end_gfn;
1486
1487 rmap_walk_init_level(iterator, iterator->start_level);
1488 }
1489
1490 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1491 {
1492 return !!iterator->rmap;
1493 }
1494
1495 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1496 {
1497 if (++iterator->rmap <= iterator->end_rmap) {
1498 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1499 return;
1500 }
1501
1502 if (++iterator->level > iterator->end_level) {
1503 iterator->rmap = NULL;
1504 return;
1505 }
1506
1507 rmap_walk_init_level(iterator, iterator->level);
1508 }
1509
1510 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1511 _start_gfn, _end_gfn, _iter_) \
1512 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1513 _end_level_, _start_gfn, _end_gfn); \
1514 slot_rmap_walk_okay(_iter_); \
1515 slot_rmap_walk_next(_iter_))
1516
1517 static int kvm_handle_hva_range(struct kvm *kvm,
1518 unsigned long start,
1519 unsigned long end,
1520 unsigned long data,
1521 int (*handler)(struct kvm *kvm,
1522 struct kvm_rmap_head *rmap_head,
1523 struct kvm_memory_slot *slot,
1524 gfn_t gfn,
1525 int level,
1526 unsigned long data))
1527 {
1528 struct kvm_memslots *slots;
1529 struct kvm_memory_slot *memslot;
1530 struct slot_rmap_walk_iterator iterator;
1531 int ret = 0;
1532 int i;
1533
1534 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1535 slots = __kvm_memslots(kvm, i);
1536 kvm_for_each_memslot(memslot, slots) {
1537 unsigned long hva_start, hva_end;
1538 gfn_t gfn_start, gfn_end;
1539
1540 hva_start = max(start, memslot->userspace_addr);
1541 hva_end = min(end, memslot->userspace_addr +
1542 (memslot->npages << PAGE_SHIFT));
1543 if (hva_start >= hva_end)
1544 continue;
1545 /*
1546 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1547 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1548 */
1549 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1550 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1551
1552 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1553 PT_MAX_HUGEPAGE_LEVEL,
1554 gfn_start, gfn_end - 1,
1555 &iterator)
1556 ret |= handler(kvm, iterator.rmap, memslot,
1557 iterator.gfn, iterator.level, data);
1558 }
1559 }
1560
1561 return ret;
1562 }
1563
1564 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1565 unsigned long data,
1566 int (*handler)(struct kvm *kvm,
1567 struct kvm_rmap_head *rmap_head,
1568 struct kvm_memory_slot *slot,
1569 gfn_t gfn, int level,
1570 unsigned long data))
1571 {
1572 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1573 }
1574
1575 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1576 {
1577 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1578 }
1579
1580 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1581 {
1582 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1583 }
1584
1585 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1586 {
1587 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1588 }
1589
1590 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1591 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1592 unsigned long data)
1593 {
1594 u64 *sptep;
1595 struct rmap_iterator uninitialized_var(iter);
1596 int young = 0;
1597
1598 BUG_ON(!shadow_accessed_mask);
1599
1600 for_each_rmap_spte(rmap_head, &iter, sptep) {
1601 if (*sptep & shadow_accessed_mask) {
1602 young = 1;
1603 clear_bit((ffs(shadow_accessed_mask) - 1),
1604 (unsigned long *)sptep);
1605 }
1606 }
1607
1608 trace_kvm_age_page(gfn, level, slot, young);
1609 return young;
1610 }
1611
1612 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1613 struct kvm_memory_slot *slot, gfn_t gfn,
1614 int level, unsigned long data)
1615 {
1616 u64 *sptep;
1617 struct rmap_iterator iter;
1618 int young = 0;
1619
1620 /*
1621 * If there's no access bit in the secondary pte set by the
1622 * hardware it's up to gup-fast/gup to set the access bit in
1623 * the primary pte or in the page structure.
1624 */
1625 if (!shadow_accessed_mask)
1626 goto out;
1627
1628 for_each_rmap_spte(rmap_head, &iter, sptep) {
1629 if (*sptep & shadow_accessed_mask) {
1630 young = 1;
1631 break;
1632 }
1633 }
1634 out:
1635 return young;
1636 }
1637
1638 #define RMAP_RECYCLE_THRESHOLD 1000
1639
1640 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1641 {
1642 struct kvm_rmap_head *rmap_head;
1643 struct kvm_mmu_page *sp;
1644
1645 sp = page_header(__pa(spte));
1646
1647 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1648
1649 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1650 kvm_flush_remote_tlbs(vcpu->kvm);
1651 }
1652
1653 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1654 {
1655 /*
1656 * In case of absence of EPT Access and Dirty Bits supports,
1657 * emulate the accessed bit for EPT, by checking if this page has
1658 * an EPT mapping, and clearing it if it does. On the next access,
1659 * a new EPT mapping will be established.
1660 * This has some overhead, but not as much as the cost of swapping
1661 * out actively used pages or breaking up actively used hugepages.
1662 */
1663 if (!shadow_accessed_mask)
1664 return kvm_handle_hva_range(kvm, start, end, 0,
1665 kvm_unmap_rmapp);
1666
1667 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1668 }
1669
1670 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1671 {
1672 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1673 }
1674
1675 #ifdef MMU_DEBUG
1676 static int is_empty_shadow_page(u64 *spt)
1677 {
1678 u64 *pos;
1679 u64 *end;
1680
1681 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1682 if (is_shadow_present_pte(*pos)) {
1683 printk(KERN_ERR "%s: %p %llx\n", __func__,
1684 pos, *pos);
1685 return 0;
1686 }
1687 return 1;
1688 }
1689 #endif
1690
1691 /*
1692 * This value is the sum of all of the kvm instances's
1693 * kvm->arch.n_used_mmu_pages values. We need a global,
1694 * aggregate version in order to make the slab shrinker
1695 * faster
1696 */
1697 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1698 {
1699 kvm->arch.n_used_mmu_pages += nr;
1700 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1701 }
1702
1703 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1704 {
1705 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1706 hlist_del(&sp->hash_link);
1707 list_del(&sp->link);
1708 free_page((unsigned long)sp->spt);
1709 if (!sp->role.direct)
1710 free_page((unsigned long)sp->gfns);
1711 kmem_cache_free(mmu_page_header_cache, sp);
1712 }
1713
1714 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1715 {
1716 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1717 }
1718
1719 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1720 struct kvm_mmu_page *sp, u64 *parent_pte)
1721 {
1722 if (!parent_pte)
1723 return;
1724
1725 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1726 }
1727
1728 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1729 u64 *parent_pte)
1730 {
1731 pte_list_remove(parent_pte, &sp->parent_ptes);
1732 }
1733
1734 static void drop_parent_pte(struct kvm_mmu_page *sp,
1735 u64 *parent_pte)
1736 {
1737 mmu_page_remove_parent_pte(sp, parent_pte);
1738 mmu_spte_clear_no_track(parent_pte);
1739 }
1740
1741 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1742 {
1743 struct kvm_mmu_page *sp;
1744
1745 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1746 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747 if (!direct)
1748 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1749 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1750
1751 /*
1752 * The active_mmu_pages list is the FIFO list, do not move the
1753 * page until it is zapped. kvm_zap_obsolete_pages depends on
1754 * this feature. See the comments in kvm_zap_obsolete_pages().
1755 */
1756 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1757 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1758 return sp;
1759 }
1760
1761 static void mark_unsync(u64 *spte);
1762 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1763 {
1764 u64 *sptep;
1765 struct rmap_iterator iter;
1766
1767 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1768 mark_unsync(sptep);
1769 }
1770 }
1771
1772 static void mark_unsync(u64 *spte)
1773 {
1774 struct kvm_mmu_page *sp;
1775 unsigned int index;
1776
1777 sp = page_header(__pa(spte));
1778 index = spte - sp->spt;
1779 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1780 return;
1781 if (sp->unsync_children++)
1782 return;
1783 kvm_mmu_mark_parents_unsync(sp);
1784 }
1785
1786 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1787 struct kvm_mmu_page *sp)
1788 {
1789 return 0;
1790 }
1791
1792 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1793 {
1794 }
1795
1796 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1797 struct kvm_mmu_page *sp, u64 *spte,
1798 const void *pte)
1799 {
1800 WARN_ON(1);
1801 }
1802
1803 #define KVM_PAGE_ARRAY_NR 16
1804
1805 struct kvm_mmu_pages {
1806 struct mmu_page_and_offset {
1807 struct kvm_mmu_page *sp;
1808 unsigned int idx;
1809 } page[KVM_PAGE_ARRAY_NR];
1810 unsigned int nr;
1811 };
1812
1813 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1814 int idx)
1815 {
1816 int i;
1817
1818 if (sp->unsync)
1819 for (i=0; i < pvec->nr; i++)
1820 if (pvec->page[i].sp == sp)
1821 return 0;
1822
1823 pvec->page[pvec->nr].sp = sp;
1824 pvec->page[pvec->nr].idx = idx;
1825 pvec->nr++;
1826 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1827 }
1828
1829 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1830 {
1831 --sp->unsync_children;
1832 WARN_ON((int)sp->unsync_children < 0);
1833 __clear_bit(idx, sp->unsync_child_bitmap);
1834 }
1835
1836 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1837 struct kvm_mmu_pages *pvec)
1838 {
1839 int i, ret, nr_unsync_leaf = 0;
1840
1841 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1842 struct kvm_mmu_page *child;
1843 u64 ent = sp->spt[i];
1844
1845 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1846 clear_unsync_child_bit(sp, i);
1847 continue;
1848 }
1849
1850 child = page_header(ent & PT64_BASE_ADDR_MASK);
1851
1852 if (child->unsync_children) {
1853 if (mmu_pages_add(pvec, child, i))
1854 return -ENOSPC;
1855
1856 ret = __mmu_unsync_walk(child, pvec);
1857 if (!ret) {
1858 clear_unsync_child_bit(sp, i);
1859 continue;
1860 } else if (ret > 0) {
1861 nr_unsync_leaf += ret;
1862 } else
1863 return ret;
1864 } else if (child->unsync) {
1865 nr_unsync_leaf++;
1866 if (mmu_pages_add(pvec, child, i))
1867 return -ENOSPC;
1868 } else
1869 clear_unsync_child_bit(sp, i);
1870 }
1871
1872 return nr_unsync_leaf;
1873 }
1874
1875 #define INVALID_INDEX (-1)
1876
1877 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1878 struct kvm_mmu_pages *pvec)
1879 {
1880 pvec->nr = 0;
1881 if (!sp->unsync_children)
1882 return 0;
1883
1884 mmu_pages_add(pvec, sp, INVALID_INDEX);
1885 return __mmu_unsync_walk(sp, pvec);
1886 }
1887
1888 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1889 {
1890 WARN_ON(!sp->unsync);
1891 trace_kvm_mmu_sync_page(sp);
1892 sp->unsync = 0;
1893 --kvm->stat.mmu_unsync;
1894 }
1895
1896 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1897 struct list_head *invalid_list);
1898 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1899 struct list_head *invalid_list);
1900
1901 /*
1902 * NOTE: we should pay more attention on the zapped-obsolete page
1903 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1904 * since it has been deleted from active_mmu_pages but still can be found
1905 * at hast list.
1906 *
1907 * for_each_gfn_valid_sp() has skipped that kind of pages.
1908 */
1909 #define for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1910 hlist_for_each_entry(_sp, \
1911 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912 if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
1913 || (_sp)->role.invalid) {} else
1914
1915 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1916 for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
1917 if ((_sp)->role.direct) {} else
1918
1919 /* @sp->gfn should be write-protected at the call site */
1920 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1921 struct list_head *invalid_list)
1922 {
1923 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1924 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1925 return false;
1926 }
1927
1928 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1929 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1930 return false;
1931 }
1932
1933 return true;
1934 }
1935
1936 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1937 struct list_head *invalid_list,
1938 bool remote_flush, bool local_flush)
1939 {
1940 if (!list_empty(invalid_list)) {
1941 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1942 return;
1943 }
1944
1945 if (remote_flush)
1946 kvm_flush_remote_tlbs(vcpu->kvm);
1947 else if (local_flush)
1948 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1949 }
1950
1951 #ifdef CONFIG_KVM_MMU_AUDIT
1952 #include "mmu_audit.c"
1953 #else
1954 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1955 static void mmu_audit_disable(void) { }
1956 #endif
1957
1958 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1959 {
1960 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1961 }
1962
1963 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1964 struct list_head *invalid_list)
1965 {
1966 kvm_unlink_unsync_page(vcpu->kvm, sp);
1967 return __kvm_sync_page(vcpu, sp, invalid_list);
1968 }
1969
1970 /* @gfn should be write-protected at the call site */
1971 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1972 struct list_head *invalid_list)
1973 {
1974 struct kvm_mmu_page *s;
1975 bool ret = false;
1976
1977 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1978 if (!s->unsync)
1979 continue;
1980
1981 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1982 ret |= kvm_sync_page(vcpu, s, invalid_list);
1983 }
1984
1985 return ret;
1986 }
1987
1988 struct mmu_page_path {
1989 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1990 unsigned int idx[PT64_ROOT_LEVEL];
1991 };
1992
1993 #define for_each_sp(pvec, sp, parents, i) \
1994 for (i = mmu_pages_first(&pvec, &parents); \
1995 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1996 i = mmu_pages_next(&pvec, &parents, i))
1997
1998 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1999 struct mmu_page_path *parents,
2000 int i)
2001 {
2002 int n;
2003
2004 for (n = i+1; n < pvec->nr; n++) {
2005 struct kvm_mmu_page *sp = pvec->page[n].sp;
2006 unsigned idx = pvec->page[n].idx;
2007 int level = sp->role.level;
2008
2009 parents->idx[level-1] = idx;
2010 if (level == PT_PAGE_TABLE_LEVEL)
2011 break;
2012
2013 parents->parent[level-2] = sp;
2014 }
2015
2016 return n;
2017 }
2018
2019 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2020 struct mmu_page_path *parents)
2021 {
2022 struct kvm_mmu_page *sp;
2023 int level;
2024
2025 if (pvec->nr == 0)
2026 return 0;
2027
2028 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2029
2030 sp = pvec->page[0].sp;
2031 level = sp->role.level;
2032 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2033
2034 parents->parent[level-2] = sp;
2035
2036 /* Also set up a sentinel. Further entries in pvec are all
2037 * children of sp, so this element is never overwritten.
2038 */
2039 parents->parent[level-1] = NULL;
2040 return mmu_pages_next(pvec, parents, 0);
2041 }
2042
2043 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2044 {
2045 struct kvm_mmu_page *sp;
2046 unsigned int level = 0;
2047
2048 do {
2049 unsigned int idx = parents->idx[level];
2050 sp = parents->parent[level];
2051 if (!sp)
2052 return;
2053
2054 WARN_ON(idx == INVALID_INDEX);
2055 clear_unsync_child_bit(sp, idx);
2056 level++;
2057 } while (!sp->unsync_children);
2058 }
2059
2060 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2061 struct kvm_mmu_page *parent)
2062 {
2063 int i;
2064 struct kvm_mmu_page *sp;
2065 struct mmu_page_path parents;
2066 struct kvm_mmu_pages pages;
2067 LIST_HEAD(invalid_list);
2068 bool flush = false;
2069
2070 while (mmu_unsync_walk(parent, &pages)) {
2071 bool protected = false;
2072
2073 for_each_sp(pages, sp, parents, i)
2074 protected |= rmap_write_protect(vcpu, sp->gfn);
2075
2076 if (protected) {
2077 kvm_flush_remote_tlbs(vcpu->kvm);
2078 flush = false;
2079 }
2080
2081 for_each_sp(pages, sp, parents, i) {
2082 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2083 mmu_pages_clear_parents(&parents);
2084 }
2085 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2086 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2087 cond_resched_lock(&vcpu->kvm->mmu_lock);
2088 flush = false;
2089 }
2090 }
2091
2092 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2093 }
2094
2095 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2096 {
2097 atomic_set(&sp->write_flooding_count, 0);
2098 }
2099
2100 static void clear_sp_write_flooding_count(u64 *spte)
2101 {
2102 struct kvm_mmu_page *sp = page_header(__pa(spte));
2103
2104 __clear_sp_write_flooding_count(sp);
2105 }
2106
2107 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2108 gfn_t gfn,
2109 gva_t gaddr,
2110 unsigned level,
2111 int direct,
2112 unsigned access)
2113 {
2114 union kvm_mmu_page_role role;
2115 unsigned quadrant;
2116 struct kvm_mmu_page *sp;
2117 bool need_sync = false;
2118 bool flush = false;
2119 LIST_HEAD(invalid_list);
2120
2121 role = vcpu->arch.mmu.base_role;
2122 role.level = level;
2123 role.direct = direct;
2124 if (role.direct)
2125 role.cr4_pae = 0;
2126 role.access = access;
2127 if (!vcpu->arch.mmu.direct_map
2128 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2129 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2130 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2131 role.quadrant = quadrant;
2132 }
2133 for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
2134 if (!need_sync && sp->unsync)
2135 need_sync = true;
2136
2137 if (sp->role.word != role.word)
2138 continue;
2139
2140 if (sp->unsync) {
2141 /* The page is good, but __kvm_sync_page might still end
2142 * up zapping it. If so, break in order to rebuild it.
2143 */
2144 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2145 break;
2146
2147 WARN_ON(!list_empty(&invalid_list));
2148 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2149 }
2150
2151 if (sp->unsync_children)
2152 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2153
2154 __clear_sp_write_flooding_count(sp);
2155 trace_kvm_mmu_get_page(sp, false);
2156 return sp;
2157 }
2158
2159 ++vcpu->kvm->stat.mmu_cache_miss;
2160
2161 sp = kvm_mmu_alloc_page(vcpu, direct);
2162
2163 sp->gfn = gfn;
2164 sp->role = role;
2165 hlist_add_head(&sp->hash_link,
2166 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2167 if (!direct) {
2168 /*
2169 * we should do write protection before syncing pages
2170 * otherwise the content of the synced shadow page may
2171 * be inconsistent with guest page table.
2172 */
2173 account_shadowed(vcpu->kvm, sp);
2174 if (level == PT_PAGE_TABLE_LEVEL &&
2175 rmap_write_protect(vcpu, gfn))
2176 kvm_flush_remote_tlbs(vcpu->kvm);
2177
2178 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2179 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2180 }
2181 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2182 clear_page(sp->spt);
2183 trace_kvm_mmu_get_page(sp, true);
2184
2185 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2186 return sp;
2187 }
2188
2189 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2190 struct kvm_vcpu *vcpu, u64 addr)
2191 {
2192 iterator->addr = addr;
2193 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2194 iterator->level = vcpu->arch.mmu.shadow_root_level;
2195
2196 if (iterator->level == PT64_ROOT_LEVEL &&
2197 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2198 !vcpu->arch.mmu.direct_map)
2199 --iterator->level;
2200
2201 if (iterator->level == PT32E_ROOT_LEVEL) {
2202 iterator->shadow_addr
2203 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2204 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2205 --iterator->level;
2206 if (!iterator->shadow_addr)
2207 iterator->level = 0;
2208 }
2209 }
2210
2211 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2212 {
2213 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2214 return false;
2215
2216 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2217 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2218 return true;
2219 }
2220
2221 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2222 u64 spte)
2223 {
2224 if (is_last_spte(spte, iterator->level)) {
2225 iterator->level = 0;
2226 return;
2227 }
2228
2229 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2230 --iterator->level;
2231 }
2232
2233 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2234 {
2235 return __shadow_walk_next(iterator, *iterator->sptep);
2236 }
2237
2238 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2239 struct kvm_mmu_page *sp)
2240 {
2241 u64 spte;
2242
2243 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2244
2245 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2246 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2247
2248 mmu_spte_set(sptep, spte);
2249
2250 mmu_page_add_parent_pte(vcpu, sp, sptep);
2251
2252 if (sp->unsync_children || sp->unsync)
2253 mark_unsync(sptep);
2254 }
2255
2256 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2257 unsigned direct_access)
2258 {
2259 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2260 struct kvm_mmu_page *child;
2261
2262 /*
2263 * For the direct sp, if the guest pte's dirty bit
2264 * changed form clean to dirty, it will corrupt the
2265 * sp's access: allow writable in the read-only sp,
2266 * so we should update the spte at this point to get
2267 * a new sp with the correct access.
2268 */
2269 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2270 if (child->role.access == direct_access)
2271 return;
2272
2273 drop_parent_pte(child, sptep);
2274 kvm_flush_remote_tlbs(vcpu->kvm);
2275 }
2276 }
2277
2278 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2279 u64 *spte)
2280 {
2281 u64 pte;
2282 struct kvm_mmu_page *child;
2283
2284 pte = *spte;
2285 if (is_shadow_present_pte(pte)) {
2286 if (is_last_spte(pte, sp->role.level)) {
2287 drop_spte(kvm, spte);
2288 if (is_large_pte(pte))
2289 --kvm->stat.lpages;
2290 } else {
2291 child = page_header(pte & PT64_BASE_ADDR_MASK);
2292 drop_parent_pte(child, spte);
2293 }
2294 return true;
2295 }
2296
2297 if (is_mmio_spte(pte))
2298 mmu_spte_clear_no_track(spte);
2299
2300 return false;
2301 }
2302
2303 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2304 struct kvm_mmu_page *sp)
2305 {
2306 unsigned i;
2307
2308 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2309 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2310 }
2311
2312 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2313 {
2314 u64 *sptep;
2315 struct rmap_iterator iter;
2316
2317 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2318 drop_parent_pte(sp, sptep);
2319 }
2320
2321 static int mmu_zap_unsync_children(struct kvm *kvm,
2322 struct kvm_mmu_page *parent,
2323 struct list_head *invalid_list)
2324 {
2325 int i, zapped = 0;
2326 struct mmu_page_path parents;
2327 struct kvm_mmu_pages pages;
2328
2329 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2330 return 0;
2331
2332 while (mmu_unsync_walk(parent, &pages)) {
2333 struct kvm_mmu_page *sp;
2334
2335 for_each_sp(pages, sp, parents, i) {
2336 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2337 mmu_pages_clear_parents(&parents);
2338 zapped++;
2339 }
2340 }
2341
2342 return zapped;
2343 }
2344
2345 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2346 struct list_head *invalid_list)
2347 {
2348 int ret;
2349
2350 trace_kvm_mmu_prepare_zap_page(sp);
2351 ++kvm->stat.mmu_shadow_zapped;
2352 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2353 kvm_mmu_page_unlink_children(kvm, sp);
2354 kvm_mmu_unlink_parents(kvm, sp);
2355
2356 if (!sp->role.invalid && !sp->role.direct)
2357 unaccount_shadowed(kvm, sp);
2358
2359 if (sp->unsync)
2360 kvm_unlink_unsync_page(kvm, sp);
2361 if (!sp->root_count) {
2362 /* Count self */
2363 ret++;
2364 list_move(&sp->link, invalid_list);
2365 kvm_mod_used_mmu_pages(kvm, -1);
2366 } else {
2367 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2368
2369 /*
2370 * The obsolete pages can not be used on any vcpus.
2371 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2372 */
2373 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2374 kvm_reload_remote_mmus(kvm);
2375 }
2376
2377 sp->role.invalid = 1;
2378 return ret;
2379 }
2380
2381 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2382 struct list_head *invalid_list)
2383 {
2384 struct kvm_mmu_page *sp, *nsp;
2385
2386 if (list_empty(invalid_list))
2387 return;
2388
2389 /*
2390 * We need to make sure everyone sees our modifications to
2391 * the page tables and see changes to vcpu->mode here. The barrier
2392 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2393 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2394 *
2395 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2396 * guest mode and/or lockless shadow page table walks.
2397 */
2398 kvm_flush_remote_tlbs(kvm);
2399
2400 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2401 WARN_ON(!sp->role.invalid || sp->root_count);
2402 kvm_mmu_free_page(sp);
2403 }
2404 }
2405
2406 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2407 struct list_head *invalid_list)
2408 {
2409 struct kvm_mmu_page *sp;
2410
2411 if (list_empty(&kvm->arch.active_mmu_pages))
2412 return false;
2413
2414 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2415 struct kvm_mmu_page, link);
2416 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2417
2418 return true;
2419 }
2420
2421 /*
2422 * Changing the number of mmu pages allocated to the vm
2423 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2424 */
2425 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2426 {
2427 LIST_HEAD(invalid_list);
2428
2429 spin_lock(&kvm->mmu_lock);
2430
2431 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2432 /* Need to free some mmu pages to achieve the goal. */
2433 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2434 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2435 break;
2436
2437 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2438 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2439 }
2440
2441 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2442
2443 spin_unlock(&kvm->mmu_lock);
2444 }
2445
2446 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2447 {
2448 struct kvm_mmu_page *sp;
2449 LIST_HEAD(invalid_list);
2450 int r;
2451
2452 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2453 r = 0;
2454 spin_lock(&kvm->mmu_lock);
2455 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2456 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2457 sp->role.word);
2458 r = 1;
2459 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2460 }
2461 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2462 spin_unlock(&kvm->mmu_lock);
2463
2464 return r;
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2467
2468 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2469 {
2470 trace_kvm_mmu_unsync_page(sp);
2471 ++vcpu->kvm->stat.mmu_unsync;
2472 sp->unsync = 1;
2473
2474 kvm_mmu_mark_parents_unsync(sp);
2475 }
2476
2477 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2478 bool can_unsync)
2479 {
2480 struct kvm_mmu_page *sp;
2481
2482 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2483 return true;
2484
2485 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2486 if (!can_unsync)
2487 return true;
2488
2489 if (sp->unsync)
2490 continue;
2491
2492 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2493 kvm_unsync_page(vcpu, sp);
2494 }
2495
2496 return false;
2497 }
2498
2499 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2500 {
2501 if (pfn_valid(pfn))
2502 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2503
2504 return true;
2505 }
2506
2507 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2508 unsigned pte_access, int level,
2509 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2510 bool can_unsync, bool host_writable)
2511 {
2512 u64 spte = 0;
2513 int ret = 0;
2514
2515 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2516 return 0;
2517
2518 /*
2519 * For the EPT case, shadow_present_mask is 0 if hardware
2520 * supports exec-only page table entries. In that case,
2521 * ACC_USER_MASK and shadow_user_mask are used to represent
2522 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2523 */
2524 spte |= shadow_present_mask;
2525 if (!speculative)
2526 spte |= shadow_accessed_mask;
2527
2528 if (pte_access & ACC_EXEC_MASK)
2529 spte |= shadow_x_mask;
2530 else
2531 spte |= shadow_nx_mask;
2532
2533 if (pte_access & ACC_USER_MASK)
2534 spte |= shadow_user_mask;
2535
2536 if (level > PT_PAGE_TABLE_LEVEL)
2537 spte |= PT_PAGE_SIZE_MASK;
2538 if (tdp_enabled)
2539 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2540 kvm_is_mmio_pfn(pfn));
2541
2542 if (host_writable)
2543 spte |= SPTE_HOST_WRITEABLE;
2544 else
2545 pte_access &= ~ACC_WRITE_MASK;
2546
2547 spte |= (u64)pfn << PAGE_SHIFT;
2548
2549 if (pte_access & ACC_WRITE_MASK) {
2550
2551 /*
2552 * Other vcpu creates new sp in the window between
2553 * mapping_level() and acquiring mmu-lock. We can
2554 * allow guest to retry the access, the mapping can
2555 * be fixed if guest refault.
2556 */
2557 if (level > PT_PAGE_TABLE_LEVEL &&
2558 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2559 goto done;
2560
2561 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2562
2563 /*
2564 * Optimization: for pte sync, if spte was writable the hash
2565 * lookup is unnecessary (and expensive). Write protection
2566 * is responsibility of mmu_get_page / kvm_sync_page.
2567 * Same reasoning can be applied to dirty page accounting.
2568 */
2569 if (!can_unsync && is_writable_pte(*sptep))
2570 goto set_pte;
2571
2572 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2573 pgprintk("%s: found shadow page for %llx, marking ro\n",
2574 __func__, gfn);
2575 ret = 1;
2576 pte_access &= ~ACC_WRITE_MASK;
2577 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2578 }
2579 }
2580
2581 if (pte_access & ACC_WRITE_MASK) {
2582 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2583 spte |= shadow_dirty_mask;
2584 }
2585
2586 set_pte:
2587 if (mmu_spte_update(sptep, spte))
2588 kvm_flush_remote_tlbs(vcpu->kvm);
2589 done:
2590 return ret;
2591 }
2592
2593 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2594 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2595 bool speculative, bool host_writable)
2596 {
2597 int was_rmapped = 0;
2598 int rmap_count;
2599 bool emulate = false;
2600
2601 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2602 *sptep, write_fault, gfn);
2603
2604 if (is_shadow_present_pte(*sptep)) {
2605 /*
2606 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2607 * the parent of the now unreachable PTE.
2608 */
2609 if (level > PT_PAGE_TABLE_LEVEL &&
2610 !is_large_pte(*sptep)) {
2611 struct kvm_mmu_page *child;
2612 u64 pte = *sptep;
2613
2614 child = page_header(pte & PT64_BASE_ADDR_MASK);
2615 drop_parent_pte(child, sptep);
2616 kvm_flush_remote_tlbs(vcpu->kvm);
2617 } else if (pfn != spte_to_pfn(*sptep)) {
2618 pgprintk("hfn old %llx new %llx\n",
2619 spte_to_pfn(*sptep), pfn);
2620 drop_spte(vcpu->kvm, sptep);
2621 kvm_flush_remote_tlbs(vcpu->kvm);
2622 } else
2623 was_rmapped = 1;
2624 }
2625
2626 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2627 true, host_writable)) {
2628 if (write_fault)
2629 emulate = true;
2630 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2631 }
2632
2633 if (unlikely(is_mmio_spte(*sptep)))
2634 emulate = true;
2635
2636 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2637 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2638 is_large_pte(*sptep)? "2MB" : "4kB",
2639 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2640 *sptep, sptep);
2641 if (!was_rmapped && is_large_pte(*sptep))
2642 ++vcpu->kvm->stat.lpages;
2643
2644 if (is_shadow_present_pte(*sptep)) {
2645 if (!was_rmapped) {
2646 rmap_count = rmap_add(vcpu, sptep, gfn);
2647 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648 rmap_recycle(vcpu, sptep, gfn);
2649 }
2650 }
2651
2652 kvm_release_pfn_clean(pfn);
2653
2654 return emulate;
2655 }
2656
2657 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2658 bool no_dirty_log)
2659 {
2660 struct kvm_memory_slot *slot;
2661
2662 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2663 if (!slot)
2664 return KVM_PFN_ERR_FAULT;
2665
2666 return gfn_to_pfn_memslot_atomic(slot, gfn);
2667 }
2668
2669 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2670 struct kvm_mmu_page *sp,
2671 u64 *start, u64 *end)
2672 {
2673 struct page *pages[PTE_PREFETCH_NUM];
2674 struct kvm_memory_slot *slot;
2675 unsigned access = sp->role.access;
2676 int i, ret;
2677 gfn_t gfn;
2678
2679 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2680 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2681 if (!slot)
2682 return -1;
2683
2684 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2685 if (ret <= 0)
2686 return -1;
2687
2688 for (i = 0; i < ret; i++, gfn++, start++)
2689 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2690 page_to_pfn(pages[i]), true, true);
2691
2692 return 0;
2693 }
2694
2695 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2696 struct kvm_mmu_page *sp, u64 *sptep)
2697 {
2698 u64 *spte, *start = NULL;
2699 int i;
2700
2701 WARN_ON(!sp->role.direct);
2702
2703 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2704 spte = sp->spt + i;
2705
2706 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2707 if (is_shadow_present_pte(*spte) || spte == sptep) {
2708 if (!start)
2709 continue;
2710 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2711 break;
2712 start = NULL;
2713 } else if (!start)
2714 start = spte;
2715 }
2716 }
2717
2718 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2719 {
2720 struct kvm_mmu_page *sp;
2721
2722 /*
2723 * Since it's no accessed bit on EPT, it's no way to
2724 * distinguish between actually accessed translations
2725 * and prefetched, so disable pte prefetch if EPT is
2726 * enabled.
2727 */
2728 if (!shadow_accessed_mask)
2729 return;
2730
2731 sp = page_header(__pa(sptep));
2732 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2733 return;
2734
2735 __direct_pte_prefetch(vcpu, sp, sptep);
2736 }
2737
2738 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2739 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2740 {
2741 struct kvm_shadow_walk_iterator iterator;
2742 struct kvm_mmu_page *sp;
2743 int emulate = 0;
2744 gfn_t pseudo_gfn;
2745
2746 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2747 return 0;
2748
2749 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2750 if (iterator.level == level) {
2751 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2752 write, level, gfn, pfn, prefault,
2753 map_writable);
2754 direct_pte_prefetch(vcpu, iterator.sptep);
2755 ++vcpu->stat.pf_fixed;
2756 break;
2757 }
2758
2759 drop_large_spte(vcpu, iterator.sptep);
2760 if (!is_shadow_present_pte(*iterator.sptep)) {
2761 u64 base_addr = iterator.addr;
2762
2763 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2764 pseudo_gfn = base_addr >> PAGE_SHIFT;
2765 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2766 iterator.level - 1, 1, ACC_ALL);
2767
2768 link_shadow_page(vcpu, iterator.sptep, sp);
2769 }
2770 }
2771 return emulate;
2772 }
2773
2774 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2775 {
2776 siginfo_t info;
2777
2778 info.si_signo = SIGBUS;
2779 info.si_errno = 0;
2780 info.si_code = BUS_MCEERR_AR;
2781 info.si_addr = (void __user *)address;
2782 info.si_addr_lsb = PAGE_SHIFT;
2783
2784 send_sig_info(SIGBUS, &info, tsk);
2785 }
2786
2787 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2788 {
2789 /*
2790 * Do not cache the mmio info caused by writing the readonly gfn
2791 * into the spte otherwise read access on readonly gfn also can
2792 * caused mmio page fault and treat it as mmio access.
2793 * Return 1 to tell kvm to emulate it.
2794 */
2795 if (pfn == KVM_PFN_ERR_RO_FAULT)
2796 return 1;
2797
2798 if (pfn == KVM_PFN_ERR_HWPOISON) {
2799 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2800 return 0;
2801 }
2802
2803 return -EFAULT;
2804 }
2805
2806 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2807 gfn_t *gfnp, kvm_pfn_t *pfnp,
2808 int *levelp)
2809 {
2810 kvm_pfn_t pfn = *pfnp;
2811 gfn_t gfn = *gfnp;
2812 int level = *levelp;
2813
2814 /*
2815 * Check if it's a transparent hugepage. If this would be an
2816 * hugetlbfs page, level wouldn't be set to
2817 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2818 * here.
2819 */
2820 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2821 level == PT_PAGE_TABLE_LEVEL &&
2822 PageTransCompoundMap(pfn_to_page(pfn)) &&
2823 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2824 unsigned long mask;
2825 /*
2826 * mmu_notifier_retry was successful and we hold the
2827 * mmu_lock here, so the pmd can't become splitting
2828 * from under us, and in turn
2829 * __split_huge_page_refcount() can't run from under
2830 * us and we can safely transfer the refcount from
2831 * PG_tail to PG_head as we switch the pfn to tail to
2832 * head.
2833 */
2834 *levelp = level = PT_DIRECTORY_LEVEL;
2835 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2836 VM_BUG_ON((gfn & mask) != (pfn & mask));
2837 if (pfn & mask) {
2838 gfn &= ~mask;
2839 *gfnp = gfn;
2840 kvm_release_pfn_clean(pfn);
2841 pfn &= ~mask;
2842 kvm_get_pfn(pfn);
2843 *pfnp = pfn;
2844 }
2845 }
2846 }
2847
2848 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2849 kvm_pfn_t pfn, unsigned access, int *ret_val)
2850 {
2851 /* The pfn is invalid, report the error! */
2852 if (unlikely(is_error_pfn(pfn))) {
2853 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2854 return true;
2855 }
2856
2857 if (unlikely(is_noslot_pfn(pfn)))
2858 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2859
2860 return false;
2861 }
2862
2863 static bool page_fault_can_be_fast(u32 error_code)
2864 {
2865 /*
2866 * Do not fix the mmio spte with invalid generation number which
2867 * need to be updated by slow page fault path.
2868 */
2869 if (unlikely(error_code & PFERR_RSVD_MASK))
2870 return false;
2871
2872 /*
2873 * #PF can be fast only if the shadow page table is present and it
2874 * is caused by write-protect, that means we just need change the
2875 * W bit of the spte which can be done out of mmu-lock.
2876 */
2877 if (!(error_code & PFERR_PRESENT_MASK) ||
2878 !(error_code & PFERR_WRITE_MASK))
2879 return false;
2880
2881 return true;
2882 }
2883
2884 static bool
2885 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2886 u64 *sptep, u64 spte)
2887 {
2888 gfn_t gfn;
2889
2890 WARN_ON(!sp->role.direct);
2891
2892 /*
2893 * The gfn of direct spte is stable since it is calculated
2894 * by sp->gfn.
2895 */
2896 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2897
2898 /*
2899 * Theoretically we could also set dirty bit (and flush TLB) here in
2900 * order to eliminate unnecessary PML logging. See comments in
2901 * set_spte. But fast_page_fault is very unlikely to happen with PML
2902 * enabled, so we do not do this. This might result in the same GPA
2903 * to be logged in PML buffer again when the write really happens, and
2904 * eventually to be called by mark_page_dirty twice. But it's also no
2905 * harm. This also avoids the TLB flush needed after setting dirty bit
2906 * so non-PML cases won't be impacted.
2907 *
2908 * Compare with set_spte where instead shadow_dirty_mask is set.
2909 */
2910 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2911 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2912
2913 return true;
2914 }
2915
2916 /*
2917 * Return value:
2918 * - true: let the vcpu to access on the same address again.
2919 * - false: let the real page fault path to fix it.
2920 */
2921 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2922 u32 error_code)
2923 {
2924 struct kvm_shadow_walk_iterator iterator;
2925 struct kvm_mmu_page *sp;
2926 bool ret = false;
2927 u64 spte = 0ull;
2928
2929 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2930 return false;
2931
2932 if (!page_fault_can_be_fast(error_code))
2933 return false;
2934
2935 walk_shadow_page_lockless_begin(vcpu);
2936 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2937 if (!is_shadow_present_pte(spte) || iterator.level < level)
2938 break;
2939
2940 /*
2941 * If the mapping has been changed, let the vcpu fault on the
2942 * same address again.
2943 */
2944 if (!is_shadow_present_pte(spte)) {
2945 ret = true;
2946 goto exit;
2947 }
2948
2949 sp = page_header(__pa(iterator.sptep));
2950 if (!is_last_spte(spte, sp->role.level))
2951 goto exit;
2952
2953 /*
2954 * Check if it is a spurious fault caused by TLB lazily flushed.
2955 *
2956 * Need not check the access of upper level table entries since
2957 * they are always ACC_ALL.
2958 */
2959 if (is_writable_pte(spte)) {
2960 ret = true;
2961 goto exit;
2962 }
2963
2964 /*
2965 * Currently, to simplify the code, only the spte write-protected
2966 * by dirty-log can be fast fixed.
2967 */
2968 if (!spte_is_locklessly_modifiable(spte))
2969 goto exit;
2970
2971 /*
2972 * Do not fix write-permission on the large spte since we only dirty
2973 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2974 * that means other pages are missed if its slot is dirty-logged.
2975 *
2976 * Instead, we let the slow page fault path create a normal spte to
2977 * fix the access.
2978 *
2979 * See the comments in kvm_arch_commit_memory_region().
2980 */
2981 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2982 goto exit;
2983
2984 /*
2985 * Currently, fast page fault only works for direct mapping since
2986 * the gfn is not stable for indirect shadow page.
2987 * See Documentation/virtual/kvm/locking.txt to get more detail.
2988 */
2989 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2990 exit:
2991 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2992 spte, ret);
2993 walk_shadow_page_lockless_end(vcpu);
2994
2995 return ret;
2996 }
2997
2998 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2999 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3000 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3001
3002 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3003 gfn_t gfn, bool prefault)
3004 {
3005 int r;
3006 int level;
3007 bool force_pt_level = false;
3008 kvm_pfn_t pfn;
3009 unsigned long mmu_seq;
3010 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3011
3012 level = mapping_level(vcpu, gfn, &force_pt_level);
3013 if (likely(!force_pt_level)) {
3014 /*
3015 * This path builds a PAE pagetable - so we can map
3016 * 2mb pages at maximum. Therefore check if the level
3017 * is larger than that.
3018 */
3019 if (level > PT_DIRECTORY_LEVEL)
3020 level = PT_DIRECTORY_LEVEL;
3021
3022 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3023 }
3024
3025 if (fast_page_fault(vcpu, v, level, error_code))
3026 return 0;
3027
3028 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3029 smp_rmb();
3030
3031 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3032 return 0;
3033
3034 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3035 return r;
3036
3037 spin_lock(&vcpu->kvm->mmu_lock);
3038 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3039 goto out_unlock;
3040 make_mmu_pages_available(vcpu);
3041 if (likely(!force_pt_level))
3042 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3043 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3044 spin_unlock(&vcpu->kvm->mmu_lock);
3045
3046 return r;
3047
3048 out_unlock:
3049 spin_unlock(&vcpu->kvm->mmu_lock);
3050 kvm_release_pfn_clean(pfn);
3051 return 0;
3052 }
3053
3054
3055 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3056 {
3057 int i;
3058 struct kvm_mmu_page *sp;
3059 LIST_HEAD(invalid_list);
3060
3061 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3062 return;
3063
3064 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3065 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3066 vcpu->arch.mmu.direct_map)) {
3067 hpa_t root = vcpu->arch.mmu.root_hpa;
3068
3069 spin_lock(&vcpu->kvm->mmu_lock);
3070 sp = page_header(root);
3071 --sp->root_count;
3072 if (!sp->root_count && sp->role.invalid) {
3073 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3074 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3075 }
3076 spin_unlock(&vcpu->kvm->mmu_lock);
3077 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078 return;
3079 }
3080
3081 spin_lock(&vcpu->kvm->mmu_lock);
3082 for (i = 0; i < 4; ++i) {
3083 hpa_t root = vcpu->arch.mmu.pae_root[i];
3084
3085 if (root) {
3086 root &= PT64_BASE_ADDR_MASK;
3087 sp = page_header(root);
3088 --sp->root_count;
3089 if (!sp->root_count && sp->role.invalid)
3090 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3091 &invalid_list);
3092 }
3093 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3094 }
3095 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3096 spin_unlock(&vcpu->kvm->mmu_lock);
3097 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3098 }
3099
3100 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3101 {
3102 int ret = 0;
3103
3104 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3105 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3106 ret = 1;
3107 }
3108
3109 return ret;
3110 }
3111
3112 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3113 {
3114 struct kvm_mmu_page *sp;
3115 unsigned i;
3116
3117 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3118 spin_lock(&vcpu->kvm->mmu_lock);
3119 make_mmu_pages_available(vcpu);
3120 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3121 ++sp->root_count;
3122 spin_unlock(&vcpu->kvm->mmu_lock);
3123 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3124 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3125 for (i = 0; i < 4; ++i) {
3126 hpa_t root = vcpu->arch.mmu.pae_root[i];
3127
3128 MMU_WARN_ON(VALID_PAGE(root));
3129 spin_lock(&vcpu->kvm->mmu_lock);
3130 make_mmu_pages_available(vcpu);
3131 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3132 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3133 root = __pa(sp->spt);
3134 ++sp->root_count;
3135 spin_unlock(&vcpu->kvm->mmu_lock);
3136 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3137 }
3138 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3139 } else
3140 BUG();
3141
3142 return 0;
3143 }
3144
3145 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3146 {
3147 struct kvm_mmu_page *sp;
3148 u64 pdptr, pm_mask;
3149 gfn_t root_gfn;
3150 int i;
3151
3152 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3153
3154 if (mmu_check_root(vcpu, root_gfn))
3155 return 1;
3156
3157 /*
3158 * Do we shadow a long mode page table? If so we need to
3159 * write-protect the guests page table root.
3160 */
3161 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3162 hpa_t root = vcpu->arch.mmu.root_hpa;
3163
3164 MMU_WARN_ON(VALID_PAGE(root));
3165
3166 spin_lock(&vcpu->kvm->mmu_lock);
3167 make_mmu_pages_available(vcpu);
3168 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3169 0, ACC_ALL);
3170 root = __pa(sp->spt);
3171 ++sp->root_count;
3172 spin_unlock(&vcpu->kvm->mmu_lock);
3173 vcpu->arch.mmu.root_hpa = root;
3174 return 0;
3175 }
3176
3177 /*
3178 * We shadow a 32 bit page table. This may be a legacy 2-level
3179 * or a PAE 3-level page table. In either case we need to be aware that
3180 * the shadow page table may be a PAE or a long mode page table.
3181 */
3182 pm_mask = PT_PRESENT_MASK;
3183 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3184 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3185
3186 for (i = 0; i < 4; ++i) {
3187 hpa_t root = vcpu->arch.mmu.pae_root[i];
3188
3189 MMU_WARN_ON(VALID_PAGE(root));
3190 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3191 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3192 if (!(pdptr & PT_PRESENT_MASK)) {
3193 vcpu->arch.mmu.pae_root[i] = 0;
3194 continue;
3195 }
3196 root_gfn = pdptr >> PAGE_SHIFT;
3197 if (mmu_check_root(vcpu, root_gfn))
3198 return 1;
3199 }
3200 spin_lock(&vcpu->kvm->mmu_lock);
3201 make_mmu_pages_available(vcpu);
3202 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3203 0, ACC_ALL);
3204 root = __pa(sp->spt);
3205 ++sp->root_count;
3206 spin_unlock(&vcpu->kvm->mmu_lock);
3207
3208 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3209 }
3210 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3211
3212 /*
3213 * If we shadow a 32 bit page table with a long mode page
3214 * table we enter this path.
3215 */
3216 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3217 if (vcpu->arch.mmu.lm_root == NULL) {
3218 /*
3219 * The additional page necessary for this is only
3220 * allocated on demand.
3221 */
3222
3223 u64 *lm_root;
3224
3225 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3226 if (lm_root == NULL)
3227 return 1;
3228
3229 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3230
3231 vcpu->arch.mmu.lm_root = lm_root;
3232 }
3233
3234 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3235 }
3236
3237 return 0;
3238 }
3239
3240 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3241 {
3242 if (vcpu->arch.mmu.direct_map)
3243 return mmu_alloc_direct_roots(vcpu);
3244 else
3245 return mmu_alloc_shadow_roots(vcpu);
3246 }
3247
3248 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3249 {
3250 int i;
3251 struct kvm_mmu_page *sp;
3252
3253 if (vcpu->arch.mmu.direct_map)
3254 return;
3255
3256 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3257 return;
3258
3259 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3260 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3261 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3262 hpa_t root = vcpu->arch.mmu.root_hpa;
3263 sp = page_header(root);
3264 mmu_sync_children(vcpu, sp);
3265 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3266 return;
3267 }
3268 for (i = 0; i < 4; ++i) {
3269 hpa_t root = vcpu->arch.mmu.pae_root[i];
3270
3271 if (root && VALID_PAGE(root)) {
3272 root &= PT64_BASE_ADDR_MASK;
3273 sp = page_header(root);
3274 mmu_sync_children(vcpu, sp);
3275 }
3276 }
3277 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3278 }
3279
3280 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3281 {
3282 spin_lock(&vcpu->kvm->mmu_lock);
3283 mmu_sync_roots(vcpu);
3284 spin_unlock(&vcpu->kvm->mmu_lock);
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3287
3288 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3289 u32 access, struct x86_exception *exception)
3290 {
3291 if (exception)
3292 exception->error_code = 0;
3293 return vaddr;
3294 }
3295
3296 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3297 u32 access,
3298 struct x86_exception *exception)
3299 {
3300 if (exception)
3301 exception->error_code = 0;
3302 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3303 }
3304
3305 static bool
3306 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3307 {
3308 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3309
3310 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3311 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3312 }
3313
3314 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3315 {
3316 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3317 }
3318
3319 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3320 {
3321 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3322 }
3323
3324 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3325 {
3326 if (direct)
3327 return vcpu_match_mmio_gpa(vcpu, addr);
3328
3329 return vcpu_match_mmio_gva(vcpu, addr);
3330 }
3331
3332 /* return true if reserved bit is detected on spte. */
3333 static bool
3334 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3335 {
3336 struct kvm_shadow_walk_iterator iterator;
3337 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3338 int root, leaf;
3339 bool reserved = false;
3340
3341 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3342 goto exit;
3343
3344 walk_shadow_page_lockless_begin(vcpu);
3345
3346 for (shadow_walk_init(&iterator, vcpu, addr),
3347 leaf = root = iterator.level;
3348 shadow_walk_okay(&iterator);
3349 __shadow_walk_next(&iterator, spte)) {
3350 spte = mmu_spte_get_lockless(iterator.sptep);
3351
3352 sptes[leaf - 1] = spte;
3353 leaf--;
3354
3355 if (!is_shadow_present_pte(spte))
3356 break;
3357
3358 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3359 iterator.level);
3360 }
3361
3362 walk_shadow_page_lockless_end(vcpu);
3363
3364 if (reserved) {
3365 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3366 __func__, addr);
3367 while (root > leaf) {
3368 pr_err("------ spte 0x%llx level %d.\n",
3369 sptes[root - 1], root);
3370 root--;
3371 }
3372 }
3373 exit:
3374 *sptep = spte;
3375 return reserved;
3376 }
3377
3378 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3379 {
3380 u64 spte;
3381 bool reserved;
3382
3383 if (mmio_info_in_cache(vcpu, addr, direct))
3384 return RET_MMIO_PF_EMULATE;
3385
3386 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3387 if (WARN_ON(reserved))
3388 return RET_MMIO_PF_BUG;
3389
3390 if (is_mmio_spte(spte)) {
3391 gfn_t gfn = get_mmio_spte_gfn(spte);
3392 unsigned access = get_mmio_spte_access(spte);
3393
3394 if (!check_mmio_spte(vcpu, spte))
3395 return RET_MMIO_PF_INVALID;
3396
3397 if (direct)
3398 addr = 0;
3399
3400 trace_handle_mmio_page_fault(addr, gfn, access);
3401 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3402 return RET_MMIO_PF_EMULATE;
3403 }
3404
3405 /*
3406 * If the page table is zapped by other cpus, let CPU fault again on
3407 * the address.
3408 */
3409 return RET_MMIO_PF_RETRY;
3410 }
3411 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3412
3413 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3414 u32 error_code, gfn_t gfn)
3415 {
3416 if (unlikely(error_code & PFERR_RSVD_MASK))
3417 return false;
3418
3419 if (!(error_code & PFERR_PRESENT_MASK) ||
3420 !(error_code & PFERR_WRITE_MASK))
3421 return false;
3422
3423 /*
3424 * guest is writing the page which is write tracked which can
3425 * not be fixed by page fault handler.
3426 */
3427 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3428 return true;
3429
3430 return false;
3431 }
3432
3433 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3434 {
3435 struct kvm_shadow_walk_iterator iterator;
3436 u64 spte;
3437
3438 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3439 return;
3440
3441 walk_shadow_page_lockless_begin(vcpu);
3442 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3443 clear_sp_write_flooding_count(iterator.sptep);
3444 if (!is_shadow_present_pte(spte))
3445 break;
3446 }
3447 walk_shadow_page_lockless_end(vcpu);
3448 }
3449
3450 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3451 u32 error_code, bool prefault)
3452 {
3453 gfn_t gfn = gva >> PAGE_SHIFT;
3454 int r;
3455
3456 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3457
3458 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3459 return 1;
3460
3461 r = mmu_topup_memory_caches(vcpu);
3462 if (r)
3463 return r;
3464
3465 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3466
3467
3468 return nonpaging_map(vcpu, gva & PAGE_MASK,
3469 error_code, gfn, prefault);
3470 }
3471
3472 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3473 {
3474 struct kvm_arch_async_pf arch;
3475
3476 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3477 arch.gfn = gfn;
3478 arch.direct_map = vcpu->arch.mmu.direct_map;
3479 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3480
3481 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3482 }
3483
3484 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3485 {
3486 if (unlikely(!lapic_in_kernel(vcpu) ||
3487 kvm_event_needs_reinjection(vcpu)))
3488 return false;
3489
3490 return kvm_x86_ops->interrupt_allowed(vcpu);
3491 }
3492
3493 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3494 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3495 {
3496 struct kvm_memory_slot *slot;
3497 bool async;
3498
3499 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3500 async = false;
3501 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3502 if (!async)
3503 return false; /* *pfn has correct page already */
3504
3505 if (!prefault && can_do_async_pf(vcpu)) {
3506 trace_kvm_try_async_get_page(gva, gfn);
3507 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3508 trace_kvm_async_pf_doublefault(gva, gfn);
3509 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3510 return true;
3511 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3512 return true;
3513 }
3514
3515 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3516 return false;
3517 }
3518
3519 static bool
3520 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3521 {
3522 int page_num = KVM_PAGES_PER_HPAGE(level);
3523
3524 gfn &= ~(page_num - 1);
3525
3526 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3527 }
3528
3529 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3530 bool prefault)
3531 {
3532 kvm_pfn_t pfn;
3533 int r;
3534 int level;
3535 bool force_pt_level;
3536 gfn_t gfn = gpa >> PAGE_SHIFT;
3537 unsigned long mmu_seq;
3538 int write = error_code & PFERR_WRITE_MASK;
3539 bool map_writable;
3540
3541 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3542
3543 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3544 return 1;
3545
3546 r = mmu_topup_memory_caches(vcpu);
3547 if (r)
3548 return r;
3549
3550 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3551 PT_DIRECTORY_LEVEL);
3552 level = mapping_level(vcpu, gfn, &force_pt_level);
3553 if (likely(!force_pt_level)) {
3554 if (level > PT_DIRECTORY_LEVEL &&
3555 !check_hugepage_cache_consistency(vcpu, gfn, level))
3556 level = PT_DIRECTORY_LEVEL;
3557 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3558 }
3559
3560 if (fast_page_fault(vcpu, gpa, level, error_code))
3561 return 0;
3562
3563 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3564 smp_rmb();
3565
3566 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3567 return 0;
3568
3569 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3570 return r;
3571
3572 spin_lock(&vcpu->kvm->mmu_lock);
3573 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3574 goto out_unlock;
3575 make_mmu_pages_available(vcpu);
3576 if (likely(!force_pt_level))
3577 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3578 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3579 spin_unlock(&vcpu->kvm->mmu_lock);
3580
3581 return r;
3582
3583 out_unlock:
3584 spin_unlock(&vcpu->kvm->mmu_lock);
3585 kvm_release_pfn_clean(pfn);
3586 return 0;
3587 }
3588
3589 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3590 struct kvm_mmu *context)
3591 {
3592 context->page_fault = nonpaging_page_fault;
3593 context->gva_to_gpa = nonpaging_gva_to_gpa;
3594 context->sync_page = nonpaging_sync_page;
3595 context->invlpg = nonpaging_invlpg;
3596 context->update_pte = nonpaging_update_pte;
3597 context->root_level = 0;
3598 context->shadow_root_level = PT32E_ROOT_LEVEL;
3599 context->root_hpa = INVALID_PAGE;
3600 context->direct_map = true;
3601 context->nx = false;
3602 }
3603
3604 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3605 {
3606 mmu_free_roots(vcpu);
3607 }
3608
3609 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3610 {
3611 return kvm_read_cr3(vcpu);
3612 }
3613
3614 static void inject_page_fault(struct kvm_vcpu *vcpu,
3615 struct x86_exception *fault)
3616 {
3617 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3618 }
3619
3620 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3621 unsigned access, int *nr_present)
3622 {
3623 if (unlikely(is_mmio_spte(*sptep))) {
3624 if (gfn != get_mmio_spte_gfn(*sptep)) {
3625 mmu_spte_clear_no_track(sptep);
3626 return true;
3627 }
3628
3629 (*nr_present)++;
3630 mark_mmio_spte(vcpu, sptep, gfn, access);
3631 return true;
3632 }
3633
3634 return false;
3635 }
3636
3637 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3638 unsigned level, unsigned gpte)
3639 {
3640 /*
3641 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3642 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3643 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3644 */
3645 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3646
3647 /*
3648 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3649 * If it is clear, there are no large pages at this level, so clear
3650 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3651 */
3652 gpte &= level - mmu->last_nonleaf_level;
3653
3654 return gpte & PT_PAGE_SIZE_MASK;
3655 }
3656
3657 #define PTTYPE_EPT 18 /* arbitrary */
3658 #define PTTYPE PTTYPE_EPT
3659 #include "paging_tmpl.h"
3660 #undef PTTYPE
3661
3662 #define PTTYPE 64
3663 #include "paging_tmpl.h"
3664 #undef PTTYPE
3665
3666 #define PTTYPE 32
3667 #include "paging_tmpl.h"
3668 #undef PTTYPE
3669
3670 static void
3671 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3672 struct rsvd_bits_validate *rsvd_check,
3673 int maxphyaddr, int level, bool nx, bool gbpages,
3674 bool pse, bool amd)
3675 {
3676 u64 exb_bit_rsvd = 0;
3677 u64 gbpages_bit_rsvd = 0;
3678 u64 nonleaf_bit8_rsvd = 0;
3679
3680 rsvd_check->bad_mt_xwr = 0;
3681
3682 if (!nx)
3683 exb_bit_rsvd = rsvd_bits(63, 63);
3684 if (!gbpages)
3685 gbpages_bit_rsvd = rsvd_bits(7, 7);
3686
3687 /*
3688 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3689 * leaf entries) on AMD CPUs only.
3690 */
3691 if (amd)
3692 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3693
3694 switch (level) {
3695 case PT32_ROOT_LEVEL:
3696 /* no rsvd bits for 2 level 4K page table entries */
3697 rsvd_check->rsvd_bits_mask[0][1] = 0;
3698 rsvd_check->rsvd_bits_mask[0][0] = 0;
3699 rsvd_check->rsvd_bits_mask[1][0] =
3700 rsvd_check->rsvd_bits_mask[0][0];
3701
3702 if (!pse) {
3703 rsvd_check->rsvd_bits_mask[1][1] = 0;
3704 break;
3705 }
3706
3707 if (is_cpuid_PSE36())
3708 /* 36bits PSE 4MB page */
3709 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3710 else
3711 /* 32 bits PSE 4MB page */
3712 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3713 break;
3714 case PT32E_ROOT_LEVEL:
3715 rsvd_check->rsvd_bits_mask[0][2] =
3716 rsvd_bits(maxphyaddr, 63) |
3717 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3718 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3719 rsvd_bits(maxphyaddr, 62); /* PDE */
3720 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3721 rsvd_bits(maxphyaddr, 62); /* PTE */
3722 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3723 rsvd_bits(maxphyaddr, 62) |
3724 rsvd_bits(13, 20); /* large page */
3725 rsvd_check->rsvd_bits_mask[1][0] =
3726 rsvd_check->rsvd_bits_mask[0][0];
3727 break;
3728 case PT64_ROOT_LEVEL:
3729 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3730 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3731 rsvd_bits(maxphyaddr, 51);
3732 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3733 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3734 rsvd_bits(maxphyaddr, 51);
3735 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3736 rsvd_bits(maxphyaddr, 51);
3737 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3738 rsvd_bits(maxphyaddr, 51);
3739 rsvd_check->rsvd_bits_mask[1][3] =
3740 rsvd_check->rsvd_bits_mask[0][3];
3741 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3742 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3743 rsvd_bits(13, 29);
3744 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3745 rsvd_bits(maxphyaddr, 51) |
3746 rsvd_bits(13, 20); /* large page */
3747 rsvd_check->rsvd_bits_mask[1][0] =
3748 rsvd_check->rsvd_bits_mask[0][0];
3749 break;
3750 }
3751 }
3752
3753 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3754 struct kvm_mmu *context)
3755 {
3756 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3757 cpuid_maxphyaddr(vcpu), context->root_level,
3758 context->nx, guest_cpuid_has_gbpages(vcpu),
3759 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3760 }
3761
3762 static void
3763 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3764 int maxphyaddr, bool execonly)
3765 {
3766 u64 bad_mt_xwr;
3767
3768 rsvd_check->rsvd_bits_mask[0][3] =
3769 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3770 rsvd_check->rsvd_bits_mask[0][2] =
3771 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3772 rsvd_check->rsvd_bits_mask[0][1] =
3773 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3774 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3775
3776 /* large page */
3777 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3778 rsvd_check->rsvd_bits_mask[1][2] =
3779 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3780 rsvd_check->rsvd_bits_mask[1][1] =
3781 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3782 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3783
3784 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3785 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3786 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3787 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3788 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3789 if (!execonly) {
3790 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3791 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3792 }
3793 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3794 }
3795
3796 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3797 struct kvm_mmu *context, bool execonly)
3798 {
3799 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3800 cpuid_maxphyaddr(vcpu), execonly);
3801 }
3802
3803 /*
3804 * the page table on host is the shadow page table for the page
3805 * table in guest or amd nested guest, its mmu features completely
3806 * follow the features in guest.
3807 */
3808 void
3809 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3810 {
3811 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3812
3813 /*
3814 * Passing "true" to the last argument is okay; it adds a check
3815 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3816 */
3817 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3818 boot_cpu_data.x86_phys_bits,
3819 context->shadow_root_level, uses_nx,
3820 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3821 true);
3822 }
3823 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3824
3825 static inline bool boot_cpu_is_amd(void)
3826 {
3827 WARN_ON_ONCE(!tdp_enabled);
3828 return shadow_x_mask == 0;
3829 }
3830
3831 /*
3832 * the direct page table on host, use as much mmu features as
3833 * possible, however, kvm currently does not do execution-protection.
3834 */
3835 static void
3836 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3837 struct kvm_mmu *context)
3838 {
3839 if (boot_cpu_is_amd())
3840 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3841 boot_cpu_data.x86_phys_bits,
3842 context->shadow_root_level, false,
3843 boot_cpu_has(X86_FEATURE_GBPAGES),
3844 true, true);
3845 else
3846 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3847 boot_cpu_data.x86_phys_bits,
3848 false);
3849
3850 }
3851
3852 /*
3853 * as the comments in reset_shadow_zero_bits_mask() except it
3854 * is the shadow page table for intel nested guest.
3855 */
3856 static void
3857 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3858 struct kvm_mmu *context, bool execonly)
3859 {
3860 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3861 boot_cpu_data.x86_phys_bits, execonly);
3862 }
3863
3864 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3865 struct kvm_mmu *mmu, bool ept)
3866 {
3867 unsigned bit, byte, pfec;
3868 u8 map;
3869 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3870
3871 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3872 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3873 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3874 pfec = byte << 1;
3875 map = 0;
3876 wf = pfec & PFERR_WRITE_MASK;
3877 uf = pfec & PFERR_USER_MASK;
3878 ff = pfec & PFERR_FETCH_MASK;
3879 /*
3880 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3881 * subject to SMAP restrictions, and cleared otherwise. The
3882 * bit is only meaningful if the SMAP bit is set in CR4.
3883 */
3884 smapf = !(pfec & PFERR_RSVD_MASK);
3885 for (bit = 0; bit < 8; ++bit) {
3886 x = bit & ACC_EXEC_MASK;
3887 w = bit & ACC_WRITE_MASK;
3888 u = bit & ACC_USER_MASK;
3889
3890 if (!ept) {
3891 /* Not really needed: !nx will cause pte.nx to fault */
3892 x |= !mmu->nx;
3893 /* Allow supervisor writes if !cr0.wp */
3894 w |= !is_write_protection(vcpu) && !uf;
3895 /* Disallow supervisor fetches of user code if cr4.smep */
3896 x &= !(cr4_smep && u && !uf);
3897
3898 /*
3899 * SMAP:kernel-mode data accesses from user-mode
3900 * mappings should fault. A fault is considered
3901 * as a SMAP violation if all of the following
3902 * conditions are ture:
3903 * - X86_CR4_SMAP is set in CR4
3904 * - An user page is accessed
3905 * - Page fault in kernel mode
3906 * - if CPL = 3 or X86_EFLAGS_AC is clear
3907 *
3908 * Here, we cover the first three conditions.
3909 * The fourth is computed dynamically in
3910 * permission_fault() and is in smapf.
3911 *
3912 * Also, SMAP does not affect instruction
3913 * fetches, add the !ff check here to make it
3914 * clearer.
3915 */
3916 smap = cr4_smap && u && !uf && !ff;
3917 }
3918
3919 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3920 (smapf && smap);
3921 map |= fault << bit;
3922 }
3923 mmu->permissions[byte] = map;
3924 }
3925 }
3926
3927 /*
3928 * PKU is an additional mechanism by which the paging controls access to
3929 * user-mode addresses based on the value in the PKRU register. Protection
3930 * key violations are reported through a bit in the page fault error code.
3931 * Unlike other bits of the error code, the PK bit is not known at the
3932 * call site of e.g. gva_to_gpa; it must be computed directly in
3933 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3934 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3935 *
3936 * In particular the following conditions come from the error code, the
3937 * page tables and the machine state:
3938 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3939 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3940 * - PK is always zero if U=0 in the page tables
3941 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3942 *
3943 * The PKRU bitmask caches the result of these four conditions. The error
3944 * code (minus the P bit) and the page table's U bit form an index into the
3945 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3946 * with the two bits of the PKRU register corresponding to the protection key.
3947 * For the first three conditions above the bits will be 00, thus masking
3948 * away both AD and WD. For all reads or if the last condition holds, WD
3949 * only will be masked away.
3950 */
3951 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3952 bool ept)
3953 {
3954 unsigned bit;
3955 bool wp;
3956
3957 if (ept) {
3958 mmu->pkru_mask = 0;
3959 return;
3960 }
3961
3962 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3963 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3964 mmu->pkru_mask = 0;
3965 return;
3966 }
3967
3968 wp = is_write_protection(vcpu);
3969
3970 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3971 unsigned pfec, pkey_bits;
3972 bool check_pkey, check_write, ff, uf, wf, pte_user;
3973
3974 pfec = bit << 1;
3975 ff = pfec & PFERR_FETCH_MASK;
3976 uf = pfec & PFERR_USER_MASK;
3977 wf = pfec & PFERR_WRITE_MASK;
3978
3979 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3980 pte_user = pfec & PFERR_RSVD_MASK;
3981
3982 /*
3983 * Only need to check the access which is not an
3984 * instruction fetch and is to a user page.
3985 */
3986 check_pkey = (!ff && pte_user);
3987 /*
3988 * write access is controlled by PKRU if it is a
3989 * user access or CR0.WP = 1.
3990 */
3991 check_write = check_pkey && wf && (uf || wp);
3992
3993 /* PKRU.AD stops both read and write access. */
3994 pkey_bits = !!check_pkey;
3995 /* PKRU.WD stops write access. */
3996 pkey_bits |= (!!check_write) << 1;
3997
3998 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
3999 }
4000 }
4001
4002 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4003 {
4004 unsigned root_level = mmu->root_level;
4005
4006 mmu->last_nonleaf_level = root_level;
4007 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4008 mmu->last_nonleaf_level++;
4009 }
4010
4011 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4012 struct kvm_mmu *context,
4013 int level)
4014 {
4015 context->nx = is_nx(vcpu);
4016 context->root_level = level;
4017
4018 reset_rsvds_bits_mask(vcpu, context);
4019 update_permission_bitmask(vcpu, context, false);
4020 update_pkru_bitmask(vcpu, context, false);
4021 update_last_nonleaf_level(vcpu, context);
4022
4023 MMU_WARN_ON(!is_pae(vcpu));
4024 context->page_fault = paging64_page_fault;
4025 context->gva_to_gpa = paging64_gva_to_gpa;
4026 context->sync_page = paging64_sync_page;
4027 context->invlpg = paging64_invlpg;
4028 context->update_pte = paging64_update_pte;
4029 context->shadow_root_level = level;
4030 context->root_hpa = INVALID_PAGE;
4031 context->direct_map = false;
4032 }
4033
4034 static void paging64_init_context(struct kvm_vcpu *vcpu,
4035 struct kvm_mmu *context)
4036 {
4037 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4038 }
4039
4040 static void paging32_init_context(struct kvm_vcpu *vcpu,
4041 struct kvm_mmu *context)
4042 {
4043 context->nx = false;
4044 context->root_level = PT32_ROOT_LEVEL;
4045
4046 reset_rsvds_bits_mask(vcpu, context);
4047 update_permission_bitmask(vcpu, context, false);
4048 update_pkru_bitmask(vcpu, context, false);
4049 update_last_nonleaf_level(vcpu, context);
4050
4051 context->page_fault = paging32_page_fault;
4052 context->gva_to_gpa = paging32_gva_to_gpa;
4053 context->sync_page = paging32_sync_page;
4054 context->invlpg = paging32_invlpg;
4055 context->update_pte = paging32_update_pte;
4056 context->shadow_root_level = PT32E_ROOT_LEVEL;
4057 context->root_hpa = INVALID_PAGE;
4058 context->direct_map = false;
4059 }
4060
4061 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4062 struct kvm_mmu *context)
4063 {
4064 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4065 }
4066
4067 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4068 {
4069 struct kvm_mmu *context = &vcpu->arch.mmu;
4070
4071 context->base_role.word = 0;
4072 context->base_role.smm = is_smm(vcpu);
4073 context->page_fault = tdp_page_fault;
4074 context->sync_page = nonpaging_sync_page;
4075 context->invlpg = nonpaging_invlpg;
4076 context->update_pte = nonpaging_update_pte;
4077 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4078 context->root_hpa = INVALID_PAGE;
4079 context->direct_map = true;
4080 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4081 context->get_cr3 = get_cr3;
4082 context->get_pdptr = kvm_pdptr_read;
4083 context->inject_page_fault = kvm_inject_page_fault;
4084
4085 if (!is_paging(vcpu)) {
4086 context->nx = false;
4087 context->gva_to_gpa = nonpaging_gva_to_gpa;
4088 context->root_level = 0;
4089 } else if (is_long_mode(vcpu)) {
4090 context->nx = is_nx(vcpu);
4091 context->root_level = PT64_ROOT_LEVEL;
4092 reset_rsvds_bits_mask(vcpu, context);
4093 context->gva_to_gpa = paging64_gva_to_gpa;
4094 } else if (is_pae(vcpu)) {
4095 context->nx = is_nx(vcpu);
4096 context->root_level = PT32E_ROOT_LEVEL;
4097 reset_rsvds_bits_mask(vcpu, context);
4098 context->gva_to_gpa = paging64_gva_to_gpa;
4099 } else {
4100 context->nx = false;
4101 context->root_level = PT32_ROOT_LEVEL;
4102 reset_rsvds_bits_mask(vcpu, context);
4103 context->gva_to_gpa = paging32_gva_to_gpa;
4104 }
4105
4106 update_permission_bitmask(vcpu, context, false);
4107 update_pkru_bitmask(vcpu, context, false);
4108 update_last_nonleaf_level(vcpu, context);
4109 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4110 }
4111
4112 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4113 {
4114 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4115 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4116 struct kvm_mmu *context = &vcpu->arch.mmu;
4117
4118 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4119
4120 if (!is_paging(vcpu))
4121 nonpaging_init_context(vcpu, context);
4122 else if (is_long_mode(vcpu))
4123 paging64_init_context(vcpu, context);
4124 else if (is_pae(vcpu))
4125 paging32E_init_context(vcpu, context);
4126 else
4127 paging32_init_context(vcpu, context);
4128
4129 context->base_role.nxe = is_nx(vcpu);
4130 context->base_role.cr4_pae = !!is_pae(vcpu);
4131 context->base_role.cr0_wp = is_write_protection(vcpu);
4132 context->base_role.smep_andnot_wp
4133 = smep && !is_write_protection(vcpu);
4134 context->base_role.smap_andnot_wp
4135 = smap && !is_write_protection(vcpu);
4136 context->base_role.smm = is_smm(vcpu);
4137 reset_shadow_zero_bits_mask(vcpu, context);
4138 }
4139 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4140
4141 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4142 {
4143 struct kvm_mmu *context = &vcpu->arch.mmu;
4144
4145 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4146
4147 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4148
4149 context->nx = true;
4150 context->page_fault = ept_page_fault;
4151 context->gva_to_gpa = ept_gva_to_gpa;
4152 context->sync_page = ept_sync_page;
4153 context->invlpg = ept_invlpg;
4154 context->update_pte = ept_update_pte;
4155 context->root_level = context->shadow_root_level;
4156 context->root_hpa = INVALID_PAGE;
4157 context->direct_map = false;
4158
4159 update_permission_bitmask(vcpu, context, true);
4160 update_pkru_bitmask(vcpu, context, true);
4161 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4162 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4163 }
4164 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4165
4166 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4167 {
4168 struct kvm_mmu *context = &vcpu->arch.mmu;
4169
4170 kvm_init_shadow_mmu(vcpu);
4171 context->set_cr3 = kvm_x86_ops->set_cr3;
4172 context->get_cr3 = get_cr3;
4173 context->get_pdptr = kvm_pdptr_read;
4174 context->inject_page_fault = kvm_inject_page_fault;
4175 }
4176
4177 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4178 {
4179 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4180
4181 g_context->get_cr3 = get_cr3;
4182 g_context->get_pdptr = kvm_pdptr_read;
4183 g_context->inject_page_fault = kvm_inject_page_fault;
4184
4185 /*
4186 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4187 * L1's nested page tables (e.g. EPT12). The nested translation
4188 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4189 * L2's page tables as the first level of translation and L1's
4190 * nested page tables as the second level of translation. Basically
4191 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4192 */
4193 if (!is_paging(vcpu)) {
4194 g_context->nx = false;
4195 g_context->root_level = 0;
4196 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4197 } else if (is_long_mode(vcpu)) {
4198 g_context->nx = is_nx(vcpu);
4199 g_context->root_level = PT64_ROOT_LEVEL;
4200 reset_rsvds_bits_mask(vcpu, g_context);
4201 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4202 } else if (is_pae(vcpu)) {
4203 g_context->nx = is_nx(vcpu);
4204 g_context->root_level = PT32E_ROOT_LEVEL;
4205 reset_rsvds_bits_mask(vcpu, g_context);
4206 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4207 } else {
4208 g_context->nx = false;
4209 g_context->root_level = PT32_ROOT_LEVEL;
4210 reset_rsvds_bits_mask(vcpu, g_context);
4211 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4212 }
4213
4214 update_permission_bitmask(vcpu, g_context, false);
4215 update_pkru_bitmask(vcpu, g_context, false);
4216 update_last_nonleaf_level(vcpu, g_context);
4217 }
4218
4219 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4220 {
4221 if (mmu_is_nested(vcpu))
4222 init_kvm_nested_mmu(vcpu);
4223 else if (tdp_enabled)
4224 init_kvm_tdp_mmu(vcpu);
4225 else
4226 init_kvm_softmmu(vcpu);
4227 }
4228
4229 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4230 {
4231 kvm_mmu_unload(vcpu);
4232 init_kvm_mmu(vcpu);
4233 }
4234 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4235
4236 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4237 {
4238 int r;
4239
4240 r = mmu_topup_memory_caches(vcpu);
4241 if (r)
4242 goto out;
4243 r = mmu_alloc_roots(vcpu);
4244 kvm_mmu_sync_roots(vcpu);
4245 if (r)
4246 goto out;
4247 /* set_cr3() should ensure TLB has been flushed */
4248 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4249 out:
4250 return r;
4251 }
4252 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4253
4254 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4255 {
4256 mmu_free_roots(vcpu);
4257 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4258 }
4259 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4260
4261 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4262 struct kvm_mmu_page *sp, u64 *spte,
4263 const void *new)
4264 {
4265 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4266 ++vcpu->kvm->stat.mmu_pde_zapped;
4267 return;
4268 }
4269
4270 ++vcpu->kvm->stat.mmu_pte_updated;
4271 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4272 }
4273
4274 static bool need_remote_flush(u64 old, u64 new)
4275 {
4276 if (!is_shadow_present_pte(old))
4277 return false;
4278 if (!is_shadow_present_pte(new))
4279 return true;
4280 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4281 return true;
4282 old ^= shadow_nx_mask;
4283 new ^= shadow_nx_mask;
4284 return (old & ~new & PT64_PERM_MASK) != 0;
4285 }
4286
4287 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4288 const u8 *new, int *bytes)
4289 {
4290 u64 gentry;
4291 int r;
4292
4293 /*
4294 * Assume that the pte write on a page table of the same type
4295 * as the current vcpu paging mode since we update the sptes only
4296 * when they have the same mode.
4297 */
4298 if (is_pae(vcpu) && *bytes == 4) {
4299 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4300 *gpa &= ~(gpa_t)7;
4301 *bytes = 8;
4302 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4303 if (r)
4304 gentry = 0;
4305 new = (const u8 *)&gentry;
4306 }
4307
4308 switch (*bytes) {
4309 case 4:
4310 gentry = *(const u32 *)new;
4311 break;
4312 case 8:
4313 gentry = *(const u64 *)new;
4314 break;
4315 default:
4316 gentry = 0;
4317 break;
4318 }
4319
4320 return gentry;
4321 }
4322
4323 /*
4324 * If we're seeing too many writes to a page, it may no longer be a page table,
4325 * or we may be forking, in which case it is better to unmap the page.
4326 */
4327 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4328 {
4329 /*
4330 * Skip write-flooding detected for the sp whose level is 1, because
4331 * it can become unsync, then the guest page is not write-protected.
4332 */
4333 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4334 return false;
4335
4336 atomic_inc(&sp->write_flooding_count);
4337 return atomic_read(&sp->write_flooding_count) >= 3;
4338 }
4339
4340 /*
4341 * Misaligned accesses are too much trouble to fix up; also, they usually
4342 * indicate a page is not used as a page table.
4343 */
4344 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4345 int bytes)
4346 {
4347 unsigned offset, pte_size, misaligned;
4348
4349 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4350 gpa, bytes, sp->role.word);
4351
4352 offset = offset_in_page(gpa);
4353 pte_size = sp->role.cr4_pae ? 8 : 4;
4354
4355 /*
4356 * Sometimes, the OS only writes the last one bytes to update status
4357 * bits, for example, in linux, andb instruction is used in clear_bit().
4358 */
4359 if (!(offset & (pte_size - 1)) && bytes == 1)
4360 return false;
4361
4362 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4363 misaligned |= bytes < 4;
4364
4365 return misaligned;
4366 }
4367
4368 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4369 {
4370 unsigned page_offset, quadrant;
4371 u64 *spte;
4372 int level;
4373
4374 page_offset = offset_in_page(gpa);
4375 level = sp->role.level;
4376 *nspte = 1;
4377 if (!sp->role.cr4_pae) {
4378 page_offset <<= 1; /* 32->64 */
4379 /*
4380 * A 32-bit pde maps 4MB while the shadow pdes map
4381 * only 2MB. So we need to double the offset again
4382 * and zap two pdes instead of one.
4383 */
4384 if (level == PT32_ROOT_LEVEL) {
4385 page_offset &= ~7; /* kill rounding error */
4386 page_offset <<= 1;
4387 *nspte = 2;
4388 }
4389 quadrant = page_offset >> PAGE_SHIFT;
4390 page_offset &= ~PAGE_MASK;
4391 if (quadrant != sp->role.quadrant)
4392 return NULL;
4393 }
4394
4395 spte = &sp->spt[page_offset / sizeof(*spte)];
4396 return spte;
4397 }
4398
4399 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4400 const u8 *new, int bytes,
4401 struct kvm_page_track_notifier_node *node)
4402 {
4403 gfn_t gfn = gpa >> PAGE_SHIFT;
4404 struct kvm_mmu_page *sp;
4405 LIST_HEAD(invalid_list);
4406 u64 entry, gentry, *spte;
4407 int npte;
4408 bool remote_flush, local_flush;
4409 union kvm_mmu_page_role mask = { };
4410
4411 mask.cr0_wp = 1;
4412 mask.cr4_pae = 1;
4413 mask.nxe = 1;
4414 mask.smep_andnot_wp = 1;
4415 mask.smap_andnot_wp = 1;
4416 mask.smm = 1;
4417
4418 /*
4419 * If we don't have indirect shadow pages, it means no page is
4420 * write-protected, so we can exit simply.
4421 */
4422 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4423 return;
4424
4425 remote_flush = local_flush = false;
4426
4427 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4428
4429 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4430
4431 /*
4432 * No need to care whether allocation memory is successful
4433 * or not since pte prefetch is skiped if it does not have
4434 * enough objects in the cache.
4435 */
4436 mmu_topup_memory_caches(vcpu);
4437
4438 spin_lock(&vcpu->kvm->mmu_lock);
4439 ++vcpu->kvm->stat.mmu_pte_write;
4440 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4441
4442 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4443 if (detect_write_misaligned(sp, gpa, bytes) ||
4444 detect_write_flooding(sp)) {
4445 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4446 ++vcpu->kvm->stat.mmu_flooded;
4447 continue;
4448 }
4449
4450 spte = get_written_sptes(sp, gpa, &npte);
4451 if (!spte)
4452 continue;
4453
4454 local_flush = true;
4455 while (npte--) {
4456 entry = *spte;
4457 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4458 if (gentry &&
4459 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4460 & mask.word) && rmap_can_add(vcpu))
4461 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4462 if (need_remote_flush(entry, *spte))
4463 remote_flush = true;
4464 ++spte;
4465 }
4466 }
4467 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4468 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4469 spin_unlock(&vcpu->kvm->mmu_lock);
4470 }
4471
4472 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4473 {
4474 gpa_t gpa;
4475 int r;
4476
4477 if (vcpu->arch.mmu.direct_map)
4478 return 0;
4479
4480 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4481
4482 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4483
4484 return r;
4485 }
4486 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4487
4488 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4489 {
4490 LIST_HEAD(invalid_list);
4491
4492 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4493 return;
4494
4495 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4496 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4497 break;
4498
4499 ++vcpu->kvm->stat.mmu_recycled;
4500 }
4501 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4502 }
4503
4504 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4505 void *insn, int insn_len)
4506 {
4507 int r, emulation_type = EMULTYPE_RETRY;
4508 enum emulation_result er;
4509 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4510
4511 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4512 r = handle_mmio_page_fault(vcpu, cr2, direct);
4513 if (r == RET_MMIO_PF_EMULATE) {
4514 emulation_type = 0;
4515 goto emulate;
4516 }
4517 if (r == RET_MMIO_PF_RETRY)
4518 return 1;
4519 if (r < 0)
4520 return r;
4521 }
4522
4523 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4524 false);
4525 if (r < 0)
4526 return r;
4527 if (!r)
4528 return 1;
4529
4530 /*
4531 * Before emulating the instruction, check if the error code
4532 * was due to a RO violation while translating the guest page.
4533 * This can occur when using nested virtualization with nested
4534 * paging in both guests. If true, we simply unprotect the page
4535 * and resume the guest.
4536 *
4537 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4538 * in PFERR_NEXT_GUEST_PAGE)
4539 */
4540 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4541 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4542 return 1;
4543 }
4544
4545 if (mmio_info_in_cache(vcpu, cr2, direct))
4546 emulation_type = 0;
4547 emulate:
4548 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4549
4550 switch (er) {
4551 case EMULATE_DONE:
4552 return 1;
4553 case EMULATE_USER_EXIT:
4554 ++vcpu->stat.mmio_exits;
4555 /* fall through */
4556 case EMULATE_FAIL:
4557 return 0;
4558 default:
4559 BUG();
4560 }
4561 }
4562 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4563
4564 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4565 {
4566 vcpu->arch.mmu.invlpg(vcpu, gva);
4567 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4568 ++vcpu->stat.invlpg;
4569 }
4570 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4571
4572 void kvm_enable_tdp(void)
4573 {
4574 tdp_enabled = true;
4575 }
4576 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4577
4578 void kvm_disable_tdp(void)
4579 {
4580 tdp_enabled = false;
4581 }
4582 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4583
4584 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4585 {
4586 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4587 if (vcpu->arch.mmu.lm_root != NULL)
4588 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4589 }
4590
4591 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4592 {
4593 struct page *page;
4594 int i;
4595
4596 /*
4597 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4598 * Therefore we need to allocate shadow page tables in the first
4599 * 4GB of memory, which happens to fit the DMA32 zone.
4600 */
4601 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4602 if (!page)
4603 return -ENOMEM;
4604
4605 vcpu->arch.mmu.pae_root = page_address(page);
4606 for (i = 0; i < 4; ++i)
4607 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4608
4609 return 0;
4610 }
4611
4612 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4613 {
4614 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4615 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4616 vcpu->arch.mmu.translate_gpa = translate_gpa;
4617 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4618
4619 return alloc_mmu_pages(vcpu);
4620 }
4621
4622 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4623 {
4624 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4625
4626 init_kvm_mmu(vcpu);
4627 }
4628
4629 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4630 struct kvm_memory_slot *slot,
4631 struct kvm_page_track_notifier_node *node)
4632 {
4633 kvm_mmu_invalidate_zap_all_pages(kvm);
4634 }
4635
4636 void kvm_mmu_init_vm(struct kvm *kvm)
4637 {
4638 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4639
4640 node->track_write = kvm_mmu_pte_write;
4641 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4642 kvm_page_track_register_notifier(kvm, node);
4643 }
4644
4645 void kvm_mmu_uninit_vm(struct kvm *kvm)
4646 {
4647 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4648
4649 kvm_page_track_unregister_notifier(kvm, node);
4650 }
4651
4652 /* The return value indicates if tlb flush on all vcpus is needed. */
4653 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4654
4655 /* The caller should hold mmu-lock before calling this function. */
4656 static bool
4657 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4658 slot_level_handler fn, int start_level, int end_level,
4659 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4660 {
4661 struct slot_rmap_walk_iterator iterator;
4662 bool flush = false;
4663
4664 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4665 end_gfn, &iterator) {
4666 if (iterator.rmap)
4667 flush |= fn(kvm, iterator.rmap);
4668
4669 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4670 if (flush && lock_flush_tlb) {
4671 kvm_flush_remote_tlbs(kvm);
4672 flush = false;
4673 }
4674 cond_resched_lock(&kvm->mmu_lock);
4675 }
4676 }
4677
4678 if (flush && lock_flush_tlb) {
4679 kvm_flush_remote_tlbs(kvm);
4680 flush = false;
4681 }
4682
4683 return flush;
4684 }
4685
4686 static bool
4687 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4688 slot_level_handler fn, int start_level, int end_level,
4689 bool lock_flush_tlb)
4690 {
4691 return slot_handle_level_range(kvm, memslot, fn, start_level,
4692 end_level, memslot->base_gfn,
4693 memslot->base_gfn + memslot->npages - 1,
4694 lock_flush_tlb);
4695 }
4696
4697 static bool
4698 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4699 slot_level_handler fn, bool lock_flush_tlb)
4700 {
4701 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4702 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4703 }
4704
4705 static bool
4706 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4707 slot_level_handler fn, bool lock_flush_tlb)
4708 {
4709 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4710 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4711 }
4712
4713 static bool
4714 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4715 slot_level_handler fn, bool lock_flush_tlb)
4716 {
4717 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4718 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4719 }
4720
4721 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4722 {
4723 struct kvm_memslots *slots;
4724 struct kvm_memory_slot *memslot;
4725 int i;
4726
4727 spin_lock(&kvm->mmu_lock);
4728 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4729 slots = __kvm_memslots(kvm, i);
4730 kvm_for_each_memslot(memslot, slots) {
4731 gfn_t start, end;
4732
4733 start = max(gfn_start, memslot->base_gfn);
4734 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4735 if (start >= end)
4736 continue;
4737
4738 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4739 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4740 start, end - 1, true);
4741 }
4742 }
4743
4744 spin_unlock(&kvm->mmu_lock);
4745 }
4746
4747 static bool slot_rmap_write_protect(struct kvm *kvm,
4748 struct kvm_rmap_head *rmap_head)
4749 {
4750 return __rmap_write_protect(kvm, rmap_head, false);
4751 }
4752
4753 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4754 struct kvm_memory_slot *memslot)
4755 {
4756 bool flush;
4757
4758 spin_lock(&kvm->mmu_lock);
4759 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4760 false);
4761 spin_unlock(&kvm->mmu_lock);
4762
4763 /*
4764 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4765 * which do tlb flush out of mmu-lock should be serialized by
4766 * kvm->slots_lock otherwise tlb flush would be missed.
4767 */
4768 lockdep_assert_held(&kvm->slots_lock);
4769
4770 /*
4771 * We can flush all the TLBs out of the mmu lock without TLB
4772 * corruption since we just change the spte from writable to
4773 * readonly so that we only need to care the case of changing
4774 * spte from present to present (changing the spte from present
4775 * to nonpresent will flush all the TLBs immediately), in other
4776 * words, the only case we care is mmu_spte_update() where we
4777 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4778 * instead of PT_WRITABLE_MASK, that means it does not depend
4779 * on PT_WRITABLE_MASK anymore.
4780 */
4781 if (flush)
4782 kvm_flush_remote_tlbs(kvm);
4783 }
4784
4785 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4786 struct kvm_rmap_head *rmap_head)
4787 {
4788 u64 *sptep;
4789 struct rmap_iterator iter;
4790 int need_tlb_flush = 0;
4791 kvm_pfn_t pfn;
4792 struct kvm_mmu_page *sp;
4793
4794 restart:
4795 for_each_rmap_spte(rmap_head, &iter, sptep) {
4796 sp = page_header(__pa(sptep));
4797 pfn = spte_to_pfn(*sptep);
4798
4799 /*
4800 * We cannot do huge page mapping for indirect shadow pages,
4801 * which are found on the last rmap (level = 1) when not using
4802 * tdp; such shadow pages are synced with the page table in
4803 * the guest, and the guest page table is using 4K page size
4804 * mapping if the indirect sp has level = 1.
4805 */
4806 if (sp->role.direct &&
4807 !kvm_is_reserved_pfn(pfn) &&
4808 PageTransCompoundMap(pfn_to_page(pfn))) {
4809 drop_spte(kvm, sptep);
4810 need_tlb_flush = 1;
4811 goto restart;
4812 }
4813 }
4814
4815 return need_tlb_flush;
4816 }
4817
4818 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4819 const struct kvm_memory_slot *memslot)
4820 {
4821 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4822 spin_lock(&kvm->mmu_lock);
4823 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4824 kvm_mmu_zap_collapsible_spte, true);
4825 spin_unlock(&kvm->mmu_lock);
4826 }
4827
4828 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4829 struct kvm_memory_slot *memslot)
4830 {
4831 bool flush;
4832
4833 spin_lock(&kvm->mmu_lock);
4834 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4835 spin_unlock(&kvm->mmu_lock);
4836
4837 lockdep_assert_held(&kvm->slots_lock);
4838
4839 /*
4840 * It's also safe to flush TLBs out of mmu lock here as currently this
4841 * function is only used for dirty logging, in which case flushing TLB
4842 * out of mmu lock also guarantees no dirty pages will be lost in
4843 * dirty_bitmap.
4844 */
4845 if (flush)
4846 kvm_flush_remote_tlbs(kvm);
4847 }
4848 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4849
4850 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4851 struct kvm_memory_slot *memslot)
4852 {
4853 bool flush;
4854
4855 spin_lock(&kvm->mmu_lock);
4856 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4857 false);
4858 spin_unlock(&kvm->mmu_lock);
4859
4860 /* see kvm_mmu_slot_remove_write_access */
4861 lockdep_assert_held(&kvm->slots_lock);
4862
4863 if (flush)
4864 kvm_flush_remote_tlbs(kvm);
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4867
4868 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4869 struct kvm_memory_slot *memslot)
4870 {
4871 bool flush;
4872
4873 spin_lock(&kvm->mmu_lock);
4874 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4875 spin_unlock(&kvm->mmu_lock);
4876
4877 lockdep_assert_held(&kvm->slots_lock);
4878
4879 /* see kvm_mmu_slot_leaf_clear_dirty */
4880 if (flush)
4881 kvm_flush_remote_tlbs(kvm);
4882 }
4883 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4884
4885 #define BATCH_ZAP_PAGES 10
4886 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4887 {
4888 struct kvm_mmu_page *sp, *node;
4889 int batch = 0;
4890
4891 restart:
4892 list_for_each_entry_safe_reverse(sp, node,
4893 &kvm->arch.active_mmu_pages, link) {
4894 int ret;
4895
4896 /*
4897 * No obsolete page exists before new created page since
4898 * active_mmu_pages is the FIFO list.
4899 */
4900 if (!is_obsolete_sp(kvm, sp))
4901 break;
4902
4903 /*
4904 * Since we are reversely walking the list and the invalid
4905 * list will be moved to the head, skip the invalid page
4906 * can help us to avoid the infinity list walking.
4907 */
4908 if (sp->role.invalid)
4909 continue;
4910
4911 /*
4912 * Need not flush tlb since we only zap the sp with invalid
4913 * generation number.
4914 */
4915 if (batch >= BATCH_ZAP_PAGES &&
4916 cond_resched_lock(&kvm->mmu_lock)) {
4917 batch = 0;
4918 goto restart;
4919 }
4920
4921 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4922 &kvm->arch.zapped_obsolete_pages);
4923 batch += ret;
4924
4925 if (ret)
4926 goto restart;
4927 }
4928
4929 /*
4930 * Should flush tlb before free page tables since lockless-walking
4931 * may use the pages.
4932 */
4933 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4934 }
4935
4936 /*
4937 * Fast invalidate all shadow pages and use lock-break technique
4938 * to zap obsolete pages.
4939 *
4940 * It's required when memslot is being deleted or VM is being
4941 * destroyed, in these cases, we should ensure that KVM MMU does
4942 * not use any resource of the being-deleted slot or all slots
4943 * after calling the function.
4944 */
4945 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4946 {
4947 spin_lock(&kvm->mmu_lock);
4948 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4949 kvm->arch.mmu_valid_gen++;
4950
4951 /*
4952 * Notify all vcpus to reload its shadow page table
4953 * and flush TLB. Then all vcpus will switch to new
4954 * shadow page table with the new mmu_valid_gen.
4955 *
4956 * Note: we should do this under the protection of
4957 * mmu-lock, otherwise, vcpu would purge shadow page
4958 * but miss tlb flush.
4959 */
4960 kvm_reload_remote_mmus(kvm);
4961
4962 kvm_zap_obsolete_pages(kvm);
4963 spin_unlock(&kvm->mmu_lock);
4964 }
4965
4966 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4967 {
4968 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4969 }
4970
4971 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4972 {
4973 /*
4974 * The very rare case: if the generation-number is round,
4975 * zap all shadow pages.
4976 */
4977 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4978 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
4979 kvm_mmu_invalidate_zap_all_pages(kvm);
4980 }
4981 }
4982
4983 static unsigned long
4984 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4985 {
4986 struct kvm *kvm;
4987 int nr_to_scan = sc->nr_to_scan;
4988 unsigned long freed = 0;
4989
4990 spin_lock(&kvm_lock);
4991
4992 list_for_each_entry(kvm, &vm_list, vm_list) {
4993 int idx;
4994 LIST_HEAD(invalid_list);
4995
4996 /*
4997 * Never scan more than sc->nr_to_scan VM instances.
4998 * Will not hit this condition practically since we do not try
4999 * to shrink more than one VM and it is very unlikely to see
5000 * !n_used_mmu_pages so many times.
5001 */
5002 if (!nr_to_scan--)
5003 break;
5004 /*
5005 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5006 * here. We may skip a VM instance errorneosly, but we do not
5007 * want to shrink a VM that only started to populate its MMU
5008 * anyway.
5009 */
5010 if (!kvm->arch.n_used_mmu_pages &&
5011 !kvm_has_zapped_obsolete_pages(kvm))
5012 continue;
5013
5014 idx = srcu_read_lock(&kvm->srcu);
5015 spin_lock(&kvm->mmu_lock);
5016
5017 if (kvm_has_zapped_obsolete_pages(kvm)) {
5018 kvm_mmu_commit_zap_page(kvm,
5019 &kvm->arch.zapped_obsolete_pages);
5020 goto unlock;
5021 }
5022
5023 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5024 freed++;
5025 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5026
5027 unlock:
5028 spin_unlock(&kvm->mmu_lock);
5029 srcu_read_unlock(&kvm->srcu, idx);
5030
5031 /*
5032 * unfair on small ones
5033 * per-vm shrinkers cry out
5034 * sadness comes quickly
5035 */
5036 list_move_tail(&kvm->vm_list, &vm_list);
5037 break;
5038 }
5039
5040 spin_unlock(&kvm_lock);
5041 return freed;
5042 }
5043
5044 static unsigned long
5045 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5046 {
5047 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5048 }
5049
5050 static struct shrinker mmu_shrinker = {
5051 .count_objects = mmu_shrink_count,
5052 .scan_objects = mmu_shrink_scan,
5053 .seeks = DEFAULT_SEEKS * 10,
5054 };
5055
5056 static void mmu_destroy_caches(void)
5057 {
5058 if (pte_list_desc_cache)
5059 kmem_cache_destroy(pte_list_desc_cache);
5060 if (mmu_page_header_cache)
5061 kmem_cache_destroy(mmu_page_header_cache);
5062 }
5063
5064 int kvm_mmu_module_init(void)
5065 {
5066 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5067 sizeof(struct pte_list_desc),
5068 0, 0, NULL);
5069 if (!pte_list_desc_cache)
5070 goto nomem;
5071
5072 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5073 sizeof(struct kvm_mmu_page),
5074 0, 0, NULL);
5075 if (!mmu_page_header_cache)
5076 goto nomem;
5077
5078 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5079 goto nomem;
5080
5081 register_shrinker(&mmu_shrinker);
5082
5083 return 0;
5084
5085 nomem:
5086 mmu_destroy_caches();
5087 return -ENOMEM;
5088 }
5089
5090 /*
5091 * Caculate mmu pages needed for kvm.
5092 */
5093 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5094 {
5095 unsigned int nr_mmu_pages;
5096 unsigned int nr_pages = 0;
5097 struct kvm_memslots *slots;
5098 struct kvm_memory_slot *memslot;
5099 int i;
5100
5101 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5102 slots = __kvm_memslots(kvm, i);
5103
5104 kvm_for_each_memslot(memslot, slots)
5105 nr_pages += memslot->npages;
5106 }
5107
5108 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5109 nr_mmu_pages = max(nr_mmu_pages,
5110 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5111
5112 return nr_mmu_pages;
5113 }
5114
5115 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5116 {
5117 kvm_mmu_unload(vcpu);
5118 free_mmu_pages(vcpu);
5119 mmu_free_memory_caches(vcpu);
5120 }
5121
5122 void kvm_mmu_module_exit(void)
5123 {
5124 mmu_destroy_caches();
5125 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5126 unregister_shrinker(&mmu_shrinker);
5127 mmu_audit_disable();
5128 }