]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: reclaim the zapped-obsolete page first
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 struct kvm_mmu_page *sp = page_header(__pa(sptep));
203
204 access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
206 sp->mmio_cached = true;
207 trace_mark_mmio_spte(sptep, gfn, access);
208 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210
211 static bool is_mmio_spte(u64 spte)
212 {
213 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215
216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220
221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225
226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228 if (unlikely(is_noslot_pfn(pfn))) {
229 mark_mmio_spte(sptep, gfn, access);
230 return true;
231 }
232
233 return false;
234 }
235
236 static inline u64 rsvd_bits(int s, int e)
237 {
238 return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240
241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242 u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244 shadow_user_mask = user_mask;
245 shadow_accessed_mask = accessed_mask;
246 shadow_dirty_mask = dirty_mask;
247 shadow_nx_mask = nx_mask;
248 shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
252 static int is_cpuid_PSE36(void)
253 {
254 return 1;
255 }
256
257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259 return vcpu->arch.efer & EFER_NX;
260 }
261
262 static int is_shadow_present_pte(u64 pte)
263 {
264 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266
267 static int is_large_pte(u64 pte)
268 {
269 return pte & PT_PAGE_SIZE_MASK;
270 }
271
272 static int is_dirty_gpte(unsigned long pte)
273 {
274 return pte & PT_DIRTY_MASK;
275 }
276
277 static int is_rmap_spte(u64 pte)
278 {
279 return is_shadow_present_pte(pte);
280 }
281
282 static int is_last_spte(u64 pte, int level)
283 {
284 if (level == PT_PAGE_TABLE_LEVEL)
285 return 1;
286 if (is_large_pte(pte))
287 return 1;
288 return 0;
289 }
290
291 static pfn_t spte_to_pfn(u64 pte)
292 {
293 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295
296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300 return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302
303 #ifdef CONFIG_X86_64
304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306 *sptep = spte;
307 }
308
309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311 *sptep = spte;
312 }
313
314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316 return xchg(sptep, spte);
317 }
318
319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321 return ACCESS_ONCE(*sptep);
322 }
323
324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326 /* It is valid if the spte is zapped. */
327 return spte == 0ull;
328 }
329 #else
330 union split_spte {
331 struct {
332 u32 spte_low;
333 u32 spte_high;
334 };
335 u64 spte;
336 };
337
338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340 struct kvm_mmu_page *sp = page_header(__pa(sptep));
341
342 if (is_shadow_present_pte(spte))
343 return;
344
345 /* Ensure the spte is completely set before we increase the count */
346 smp_wmb();
347 sp->clear_spte_count++;
348 }
349
350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352 union split_spte *ssptep, sspte;
353
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 ssptep->spte_high = sspte.spte_high;
358
359 /*
360 * If we map the spte from nonpresent to present, We should store
361 * the high bits firstly, then set present bit, so cpu can not
362 * fetch this spte while we are setting the spte.
363 */
364 smp_wmb();
365
366 ssptep->spte_low = sspte.spte_low;
367 }
368
369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371 union split_spte *ssptep, sspte;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 ssptep->spte_low = sspte.spte_low;
377
378 /*
379 * If we map the spte from present to nonpresent, we should clear
380 * present bit firstly to avoid vcpu fetch the old high bits.
381 */
382 smp_wmb();
383
384 ssptep->spte_high = sspte.spte_high;
385 count_spte_clear(sptep, spte);
386 }
387
388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390 union split_spte *ssptep, sspte, orig;
391
392 ssptep = (union split_spte *)sptep;
393 sspte = (union split_spte)spte;
394
395 /* xchg acts as a barrier before the setting of the high bits */
396 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397 orig.spte_high = ssptep->spte_high;
398 ssptep->spte_high = sspte.spte_high;
399 count_spte_clear(sptep, spte);
400
401 return orig.spte;
402 }
403
404 /*
405 * The idea using the light way get the spte on x86_32 guest is from
406 * gup_get_pte(arch/x86/mm/gup.c).
407 * The difference is we can not catch the spte tlb flush if we leave
408 * guest mode, so we emulate it by increase clear_spte_count when spte
409 * is cleared.
410 */
411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413 struct kvm_mmu_page *sp = page_header(__pa(sptep));
414 union split_spte spte, *orig = (union split_spte *)sptep;
415 int count;
416
417 retry:
418 count = sp->clear_spte_count;
419 smp_rmb();
420
421 spte.spte_low = orig->spte_low;
422 smp_rmb();
423
424 spte.spte_high = orig->spte_high;
425 smp_rmb();
426
427 if (unlikely(spte.spte_low != orig->spte_low ||
428 count != sp->clear_spte_count))
429 goto retry;
430
431 return spte.spte;
432 }
433
434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436 union split_spte sspte = (union split_spte)spte;
437 u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439 /* It is valid if the spte is zapped. */
440 if (spte == 0ull)
441 return true;
442
443 /* It is valid if the spte is being zapped. */
444 if (sspte.spte_low == 0ull &&
445 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 return true;
447
448 return false;
449 }
450 #endif
451
452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457
458 static bool spte_has_volatile_bits(u64 spte)
459 {
460 /*
461 * Always atomicly update spte if it can be updated
462 * out of mmu-lock, it can ensure dirty bit is not lost,
463 * also, it can help us to get a stable is_writable_pte()
464 * to ensure tlb flush is not missed.
465 */
466 if (spte_is_locklessly_modifiable(spte))
467 return true;
468
469 if (!shadow_accessed_mask)
470 return false;
471
472 if (!is_shadow_present_pte(spte))
473 return false;
474
475 if ((spte & shadow_accessed_mask) &&
476 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477 return false;
478
479 return true;
480 }
481
482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484 return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486
487 /* Rules for using mmu_spte_set:
488 * Set the sptep from nonpresent to present.
489 * Note: the sptep being assigned *must* be either not present
490 * or in a state where the hardware will not attempt to update
491 * the spte.
492 */
493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495 WARN_ON(is_shadow_present_pte(*sptep));
496 __set_spte(sptep, new_spte);
497 }
498
499 /* Rules for using mmu_spte_update:
500 * Update the state bits, it means the mapped pfn is not changged.
501 *
502 * Whenever we overwrite a writable spte with a read-only one we
503 * should flush remote TLBs. Otherwise rmap_write_protect
504 * will find a read-only spte, even though the writable spte
505 * might be cached on a CPU's TLB, the return value indicates this
506 * case.
507 */
508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510 u64 old_spte = *sptep;
511 bool ret = false;
512
513 WARN_ON(!is_rmap_spte(new_spte));
514
515 if (!is_shadow_present_pte(old_spte)) {
516 mmu_spte_set(sptep, new_spte);
517 return ret;
518 }
519
520 if (!spte_has_volatile_bits(old_spte))
521 __update_clear_spte_fast(sptep, new_spte);
522 else
523 old_spte = __update_clear_spte_slow(sptep, new_spte);
524
525 /*
526 * For the spte updated out of mmu-lock is safe, since
527 * we always atomicly update it, see the comments in
528 * spte_has_volatile_bits().
529 */
530 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 ret = true;
532
533 if (!shadow_accessed_mask)
534 return ret;
535
536 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540
541 return ret;
542 }
543
544 /*
545 * Rules for using mmu_spte_clear_track_bits:
546 * It sets the sptep from present to nonpresent, and track the
547 * state bits, it is used to clear the last level sptep.
548 */
549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551 pfn_t pfn;
552 u64 old_spte = *sptep;
553
554 if (!spte_has_volatile_bits(old_spte))
555 __update_clear_spte_fast(sptep, 0ull);
556 else
557 old_spte = __update_clear_spte_slow(sptep, 0ull);
558
559 if (!is_rmap_spte(old_spte))
560 return 0;
561
562 pfn = spte_to_pfn(old_spte);
563
564 /*
565 * KVM does not hold the refcount of the page used by
566 * kvm mmu, before reclaiming the page, we should
567 * unmap it from mmu first.
568 */
569 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
571 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 kvm_set_pfn_accessed(pfn);
573 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 kvm_set_pfn_dirty(pfn);
575 return 1;
576 }
577
578 /*
579 * Rules for using mmu_spte_clear_no_track:
580 * Directly clear spte without caring the state bits of sptep,
581 * it is used to set the upper level spte.
582 */
583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585 __update_clear_spte_fast(sptep, 0ull);
586 }
587
588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590 return __get_spte_lockless(sptep);
591 }
592
593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595 /*
596 * Prevent page table teardown by making any free-er wait during
597 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 */
599 local_irq_disable();
600 vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 /*
602 * Make sure a following spte read is not reordered ahead of the write
603 * to vcpu->mode.
604 */
605 smp_mb();
606 }
607
608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610 /*
611 * Make sure the write to vcpu->mode is not reordered in front of
612 * reads to sptes. If it does, kvm_commit_zap_page() can see us
613 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 */
615 smp_mb();
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 local_irq_enable();
618 }
619
620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621 struct kmem_cache *base_cache, int min)
622 {
623 void *obj;
624
625 if (cache->nobjs >= min)
626 return 0;
627 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629 if (!obj)
630 return -ENOMEM;
631 cache->objects[cache->nobjs++] = obj;
632 }
633 return 0;
634 }
635
636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638 return cache->nobjs;
639 }
640
641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 struct kmem_cache *cache)
643 {
644 while (mc->nobjs)
645 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647
648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649 int min)
650 {
651 void *page;
652
653 if (cache->nobjs >= min)
654 return 0;
655 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656 page = (void *)__get_free_page(GFP_KERNEL);
657 if (!page)
658 return -ENOMEM;
659 cache->objects[cache->nobjs++] = page;
660 }
661 return 0;
662 }
663
664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666 while (mc->nobjs)
667 free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669
670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672 int r;
673
674 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676 if (r)
677 goto out;
678 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679 if (r)
680 goto out;
681 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682 mmu_page_header_cache, 4);
683 out:
684 return r;
685 }
686
687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 pte_list_desc_cache);
691 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 mmu_page_header_cache);
694 }
695
696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698 void *p;
699
700 BUG_ON(!mc->nobjs);
701 p = mc->objects[--mc->nobjs];
702 return p;
703 }
704
705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725 if (sp->role.direct)
726 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 else
728 sp->gfns[index] = gfn;
729 }
730
731 /*
732 * Return the pointer to the large page information for a given gfn,
733 * handling slots that are not large page aligned.
734 */
735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 struct kvm_memory_slot *slot,
737 int level)
738 {
739 unsigned long idx;
740
741 idx = gfn_to_index(gfn, slot->base_gfn, level);
742 return &slot->arch.lpage_info[level - 2][idx];
743 }
744
745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747 struct kvm_memory_slot *slot;
748 struct kvm_lpage_info *linfo;
749 int i;
750
751 slot = gfn_to_memslot(kvm, gfn);
752 for (i = PT_DIRECTORY_LEVEL;
753 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754 linfo = lpage_info_slot(gfn, slot, i);
755 linfo->write_count += 1;
756 }
757 kvm->arch.indirect_shadow_pages++;
758 }
759
760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762 struct kvm_memory_slot *slot;
763 struct kvm_lpage_info *linfo;
764 int i;
765
766 slot = gfn_to_memslot(kvm, gfn);
767 for (i = PT_DIRECTORY_LEVEL;
768 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769 linfo = lpage_info_slot(gfn, slot, i);
770 linfo->write_count -= 1;
771 WARN_ON(linfo->write_count < 0);
772 }
773 kvm->arch.indirect_shadow_pages--;
774 }
775
776 static int has_wrprotected_page(struct kvm *kvm,
777 gfn_t gfn,
778 int level)
779 {
780 struct kvm_memory_slot *slot;
781 struct kvm_lpage_info *linfo;
782
783 slot = gfn_to_memslot(kvm, gfn);
784 if (slot) {
785 linfo = lpage_info_slot(gfn, slot, level);
786 return linfo->write_count;
787 }
788
789 return 1;
790 }
791
792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794 unsigned long page_size;
795 int i, ret = 0;
796
797 page_size = kvm_host_page_size(kvm, gfn);
798
799 for (i = PT_PAGE_TABLE_LEVEL;
800 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 if (page_size >= KVM_HPAGE_SIZE(i))
802 ret = i;
803 else
804 break;
805 }
806
807 return ret;
808 }
809
810 static struct kvm_memory_slot *
811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
813 {
814 struct kvm_memory_slot *slot;
815
816 slot = gfn_to_memslot(vcpu->kvm, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 (no_dirty_log && slot->dirty_bitmap))
819 slot = NULL;
820
821 return slot;
822 }
823
824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828
829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831 int host_level, level, max_level;
832
833 host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835 if (host_level == PT_PAGE_TABLE_LEVEL)
836 return host_level;
837
838 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839
840 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 break;
843
844 return level - 1;
845 }
846
847 /*
848 * Pte mapping structures:
849 *
850 * If pte_list bit zero is zero, then pte_list point to the spte.
851 *
852 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853 * pte_list_desc containing more mappings.
854 *
855 * Returns the number of pte entries before the spte was added or zero if
856 * the spte was not added.
857 *
858 */
859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 unsigned long *pte_list)
861 {
862 struct pte_list_desc *desc;
863 int i, count = 0;
864
865 if (!*pte_list) {
866 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 *pte_list = (unsigned long)spte;
868 } else if (!(*pte_list & 1)) {
869 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 desc = mmu_alloc_pte_list_desc(vcpu);
871 desc->sptes[0] = (u64 *)*pte_list;
872 desc->sptes[1] = spte;
873 *pte_list = (unsigned long)desc | 1;
874 ++count;
875 } else {
876 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879 desc = desc->more;
880 count += PTE_LIST_EXT;
881 }
882 if (desc->sptes[PTE_LIST_EXT-1]) {
883 desc->more = mmu_alloc_pte_list_desc(vcpu);
884 desc = desc->more;
885 }
886 for (i = 0; desc->sptes[i]; ++i)
887 ++count;
888 desc->sptes[i] = spte;
889 }
890 return count;
891 }
892
893 static void
894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 int i, struct pte_list_desc *prev_desc)
896 {
897 int j;
898
899 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900 ;
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
903 if (j != 0)
904 return;
905 if (!prev_desc && !desc->more)
906 *pte_list = (unsigned long)desc->sptes[0];
907 else
908 if (prev_desc)
909 prev_desc->more = desc->more;
910 else
911 *pte_list = (unsigned long)desc->more | 1;
912 mmu_free_pte_list_desc(desc);
913 }
914
915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917 struct pte_list_desc *desc;
918 struct pte_list_desc *prev_desc;
919 int i;
920
921 if (!*pte_list) {
922 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923 BUG();
924 } else if (!(*pte_list & 1)) {
925 rmap_printk("pte_list_remove: %p 1->0\n", spte);
926 if ((u64 *)*pte_list != spte) {
927 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
928 BUG();
929 }
930 *pte_list = 0;
931 } else {
932 rmap_printk("pte_list_remove: %p many->many\n", spte);
933 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934 prev_desc = NULL;
935 while (desc) {
936 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937 if (desc->sptes[i] == spte) {
938 pte_list_desc_remove_entry(pte_list,
939 desc, i,
940 prev_desc);
941 return;
942 }
943 prev_desc = desc;
944 desc = desc->more;
945 }
946 pr_err("pte_list_remove: %p many->many\n", spte);
947 BUG();
948 }
949 }
950
951 typedef void (*pte_list_walk_fn) (u64 *spte);
952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954 struct pte_list_desc *desc;
955 int i;
956
957 if (!*pte_list)
958 return;
959
960 if (!(*pte_list & 1))
961 return fn((u64 *)*pte_list);
962
963 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 while (desc) {
965 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 fn(desc->sptes[i]);
967 desc = desc->more;
968 }
969 }
970
971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972 struct kvm_memory_slot *slot)
973 {
974 unsigned long idx;
975
976 idx = gfn_to_index(gfn, slot->base_gfn, level);
977 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979
980 /*
981 * Take gfn and return the reverse mapping to it.
982 */
983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
988 return __gfn_to_rmap(gfn, level, slot);
989 }
990
991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997 }
998
999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026 struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030 };
1031
1032 /*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081 }
1082
1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085 if (mmu_spte_clear_track_bits(sptep))
1086 rmap_remove(kvm, sptep);
1087 }
1088
1089
1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101 }
1102
1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
1120 *
1121 * Return true if the spte is dropped.
1122 */
1123 static bool
1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126 u64 spte = *sptep;
1127
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
1136 return true;
1137 }
1138
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
1141 spte = spte & ~PT_WRITABLE_MASK;
1142
1143 *flush |= mmu_spte_update(sptep, spte);
1144 return false;
1145 }
1146
1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148 bool pt_protect)
1149 {
1150 u64 *sptep;
1151 struct rmap_iterator iter;
1152 bool flush = false;
1153
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 sptep = rmap_get_first(*rmapp, &iter);
1158 continue;
1159 }
1160
1161 sptep = rmap_get_next(&iter);
1162 }
1163
1164 return flush;
1165 }
1166
1167 /**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
1180 {
1181 unsigned long *rmapp;
1182
1183 while (mask) {
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
1186 __rmap_write_protect(kvm, rmapp, false);
1187
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
1191 }
1192
1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195 struct kvm_memory_slot *slot;
1196 unsigned long *rmapp;
1197 int i;
1198 bool write_protected = false;
1199
1200 slot = gfn_to_memslot(kvm, gfn);
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
1205 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206 }
1207
1208 return write_protected;
1209 }
1210
1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212 struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214 u64 *sptep;
1215 struct rmap_iterator iter;
1216 int need_tlb_flush = 0;
1217
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
1223 need_tlb_flush = 1;
1224 }
1225
1226 return need_tlb_flush;
1227 }
1228
1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230 struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232 u64 *sptep;
1233 struct rmap_iterator iter;
1234 int need_flush = 0;
1235 u64 new_spte;
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
1246 need_flush = 1;
1247
1248 if (pte_write(*ptep)) {
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
1251 } else {
1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
1257 new_spte &= ~shadow_accessed_mask;
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
1262 }
1263 }
1264
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269 }
1270
1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
1277 struct kvm_memory_slot *slot,
1278 unsigned long data))
1279 {
1280 int j;
1281 int ret = 0;
1282 struct kvm_memslots *slots;
1283 struct kvm_memory_slot *memslot;
1284
1285 slots = kvm_memslots(kvm);
1286
1287 kvm_for_each_memslot(memslot, slots) {
1288 unsigned long hva_start, hva_end;
1289 gfn_t gfn_start, gfn_end;
1290
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299 */
1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
1307
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314
1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
1319 }
1320 }
1321
1322 return ret;
1323 }
1324
1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328 struct kvm_memory_slot *slot,
1329 unsigned long data))
1330 {
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333
1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338
1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343
1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348
1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350 struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352 u64 *sptep;
1353 struct rmap_iterator uninitialized_var(iter);
1354 int young = 0;
1355
1356 /*
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
1368
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
1371 BUG_ON(!is_shadow_present_pte(*sptep));
1372
1373 if (*sptep & shadow_accessed_mask) {
1374 young = 1;
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
1377 }
1378 }
1379 out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
1382 return young;
1383 }
1384
1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386 struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388 u64 *sptep;
1389 struct rmap_iterator iter;
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
1402 BUG_ON(!is_shadow_present_pte(*sptep));
1403
1404 if (*sptep & shadow_accessed_mask) {
1405 young = 1;
1406 break;
1407 }
1408 }
1409 out:
1410 return young;
1411 }
1412
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414
1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417 unsigned long *rmapp;
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
1421
1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423
1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427
1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432
1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437
1438 #ifdef MMU_DEBUG
1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441 u64 *pos;
1442 u64 *end;
1443
1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445 if (is_shadow_present_pte(*pos)) {
1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
1447 pos, *pos);
1448 return 0;
1449 }
1450 return 1;
1451 }
1452 #endif
1453
1454 /*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465
1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468 ASSERT(is_empty_shadow_page(sp->spt));
1469 hlist_del(&sp->hash_link);
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
1472 if (!sp->role.direct)
1473 free_page((unsigned long)sp->gfns);
1474 kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476
1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481
1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483 struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485 if (!parent_pte)
1486 return;
1487
1488 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490
1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492 u64 *parent_pte)
1493 {
1494 pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496
1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 u64 *parent_pte)
1499 {
1500 mmu_page_remove_parent_pte(sp, parent_pte);
1501 mmu_spte_clear_no_track(parent_pte);
1502 }
1503
1504 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 u64 *parent_pte, int direct)
1506 {
1507 struct kvm_mmu_page *sp;
1508
1509 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1511 if (!direct)
1512 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1513 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514
1515 /*
1516 * The active_mmu_pages list is the FIFO list, do not move the
1517 * page until it is zapped. kvm_zap_obsolete_pages depends on
1518 * this feature. See the comments in kvm_zap_obsolete_pages().
1519 */
1520 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1521 sp->parent_ptes = 0;
1522 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1523 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1524 return sp;
1525 }
1526
1527 static void mark_unsync(u64 *spte);
1528 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1529 {
1530 pte_list_walk(&sp->parent_ptes, mark_unsync);
1531 }
1532
1533 static void mark_unsync(u64 *spte)
1534 {
1535 struct kvm_mmu_page *sp;
1536 unsigned int index;
1537
1538 sp = page_header(__pa(spte));
1539 index = spte - sp->spt;
1540 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1541 return;
1542 if (sp->unsync_children++)
1543 return;
1544 kvm_mmu_mark_parents_unsync(sp);
1545 }
1546
1547 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1548 struct kvm_mmu_page *sp)
1549 {
1550 return 1;
1551 }
1552
1553 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1554 {
1555 }
1556
1557 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1558 struct kvm_mmu_page *sp, u64 *spte,
1559 const void *pte)
1560 {
1561 WARN_ON(1);
1562 }
1563
1564 #define KVM_PAGE_ARRAY_NR 16
1565
1566 struct kvm_mmu_pages {
1567 struct mmu_page_and_offset {
1568 struct kvm_mmu_page *sp;
1569 unsigned int idx;
1570 } page[KVM_PAGE_ARRAY_NR];
1571 unsigned int nr;
1572 };
1573
1574 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1575 int idx)
1576 {
1577 int i;
1578
1579 if (sp->unsync)
1580 for (i=0; i < pvec->nr; i++)
1581 if (pvec->page[i].sp == sp)
1582 return 0;
1583
1584 pvec->page[pvec->nr].sp = sp;
1585 pvec->page[pvec->nr].idx = idx;
1586 pvec->nr++;
1587 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1588 }
1589
1590 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1591 struct kvm_mmu_pages *pvec)
1592 {
1593 int i, ret, nr_unsync_leaf = 0;
1594
1595 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1596 struct kvm_mmu_page *child;
1597 u64 ent = sp->spt[i];
1598
1599 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1600 goto clear_child_bitmap;
1601
1602 child = page_header(ent & PT64_BASE_ADDR_MASK);
1603
1604 if (child->unsync_children) {
1605 if (mmu_pages_add(pvec, child, i))
1606 return -ENOSPC;
1607
1608 ret = __mmu_unsync_walk(child, pvec);
1609 if (!ret)
1610 goto clear_child_bitmap;
1611 else if (ret > 0)
1612 nr_unsync_leaf += ret;
1613 else
1614 return ret;
1615 } else if (child->unsync) {
1616 nr_unsync_leaf++;
1617 if (mmu_pages_add(pvec, child, i))
1618 return -ENOSPC;
1619 } else
1620 goto clear_child_bitmap;
1621
1622 continue;
1623
1624 clear_child_bitmap:
1625 __clear_bit(i, sp->unsync_child_bitmap);
1626 sp->unsync_children--;
1627 WARN_ON((int)sp->unsync_children < 0);
1628 }
1629
1630
1631 return nr_unsync_leaf;
1632 }
1633
1634 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1635 struct kvm_mmu_pages *pvec)
1636 {
1637 if (!sp->unsync_children)
1638 return 0;
1639
1640 mmu_pages_add(pvec, sp, 0);
1641 return __mmu_unsync_walk(sp, pvec);
1642 }
1643
1644 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1645 {
1646 WARN_ON(!sp->unsync);
1647 trace_kvm_mmu_sync_page(sp);
1648 sp->unsync = 0;
1649 --kvm->stat.mmu_unsync;
1650 }
1651
1652 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1653 struct list_head *invalid_list);
1654 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1655 struct list_head *invalid_list);
1656
1657 /*
1658 * NOTE: we should pay more attention on the zapped-obsolete page
1659 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1660 * since it has been deleted from active_mmu_pages but still can be found
1661 * at hast list.
1662 *
1663 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1664 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1665 * all the obsolete pages.
1666 */
1667 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1668 hlist_for_each_entry(_sp, \
1669 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1670 if ((_sp)->gfn != (_gfn)) {} else
1671
1672 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1673 for_each_gfn_sp(_kvm, _sp, _gfn) \
1674 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1675
1676 /* @sp->gfn should be write-protected at the call site */
1677 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1678 struct list_head *invalid_list, bool clear_unsync)
1679 {
1680 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1681 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1682 return 1;
1683 }
1684
1685 if (clear_unsync)
1686 kvm_unlink_unsync_page(vcpu->kvm, sp);
1687
1688 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1689 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1690 return 1;
1691 }
1692
1693 kvm_mmu_flush_tlb(vcpu);
1694 return 0;
1695 }
1696
1697 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1698 struct kvm_mmu_page *sp)
1699 {
1700 LIST_HEAD(invalid_list);
1701 int ret;
1702
1703 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1704 if (ret)
1705 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1706
1707 return ret;
1708 }
1709
1710 #ifdef CONFIG_KVM_MMU_AUDIT
1711 #include "mmu_audit.c"
1712 #else
1713 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1714 static void mmu_audit_disable(void) { }
1715 #endif
1716
1717 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1718 struct list_head *invalid_list)
1719 {
1720 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1721 }
1722
1723 /* @gfn should be write-protected at the call site */
1724 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1725 {
1726 struct kvm_mmu_page *s;
1727 LIST_HEAD(invalid_list);
1728 bool flush = false;
1729
1730 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1731 if (!s->unsync)
1732 continue;
1733
1734 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1735 kvm_unlink_unsync_page(vcpu->kvm, s);
1736 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1737 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1738 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1739 continue;
1740 }
1741 flush = true;
1742 }
1743
1744 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1745 if (flush)
1746 kvm_mmu_flush_tlb(vcpu);
1747 }
1748
1749 struct mmu_page_path {
1750 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1751 unsigned int idx[PT64_ROOT_LEVEL-1];
1752 };
1753
1754 #define for_each_sp(pvec, sp, parents, i) \
1755 for (i = mmu_pages_next(&pvec, &parents, -1), \
1756 sp = pvec.page[i].sp; \
1757 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1758 i = mmu_pages_next(&pvec, &parents, i))
1759
1760 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1761 struct mmu_page_path *parents,
1762 int i)
1763 {
1764 int n;
1765
1766 for (n = i+1; n < pvec->nr; n++) {
1767 struct kvm_mmu_page *sp = pvec->page[n].sp;
1768
1769 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1770 parents->idx[0] = pvec->page[n].idx;
1771 return n;
1772 }
1773
1774 parents->parent[sp->role.level-2] = sp;
1775 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1776 }
1777
1778 return n;
1779 }
1780
1781 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1782 {
1783 struct kvm_mmu_page *sp;
1784 unsigned int level = 0;
1785
1786 do {
1787 unsigned int idx = parents->idx[level];
1788
1789 sp = parents->parent[level];
1790 if (!sp)
1791 return;
1792
1793 --sp->unsync_children;
1794 WARN_ON((int)sp->unsync_children < 0);
1795 __clear_bit(idx, sp->unsync_child_bitmap);
1796 level++;
1797 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1798 }
1799
1800 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1801 struct mmu_page_path *parents,
1802 struct kvm_mmu_pages *pvec)
1803 {
1804 parents->parent[parent->role.level-1] = NULL;
1805 pvec->nr = 0;
1806 }
1807
1808 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1809 struct kvm_mmu_page *parent)
1810 {
1811 int i;
1812 struct kvm_mmu_page *sp;
1813 struct mmu_page_path parents;
1814 struct kvm_mmu_pages pages;
1815 LIST_HEAD(invalid_list);
1816
1817 kvm_mmu_pages_init(parent, &parents, &pages);
1818 while (mmu_unsync_walk(parent, &pages)) {
1819 bool protected = false;
1820
1821 for_each_sp(pages, sp, parents, i)
1822 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1823
1824 if (protected)
1825 kvm_flush_remote_tlbs(vcpu->kvm);
1826
1827 for_each_sp(pages, sp, parents, i) {
1828 kvm_sync_page(vcpu, sp, &invalid_list);
1829 mmu_pages_clear_parents(&parents);
1830 }
1831 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1832 cond_resched_lock(&vcpu->kvm->mmu_lock);
1833 kvm_mmu_pages_init(parent, &parents, &pages);
1834 }
1835 }
1836
1837 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1838 {
1839 int i;
1840
1841 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1842 sp->spt[i] = 0ull;
1843 }
1844
1845 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1846 {
1847 sp->write_flooding_count = 0;
1848 }
1849
1850 static void clear_sp_write_flooding_count(u64 *spte)
1851 {
1852 struct kvm_mmu_page *sp = page_header(__pa(spte));
1853
1854 __clear_sp_write_flooding_count(sp);
1855 }
1856
1857 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1858 {
1859 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1860 }
1861
1862 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1863 gfn_t gfn,
1864 gva_t gaddr,
1865 unsigned level,
1866 int direct,
1867 unsigned access,
1868 u64 *parent_pte)
1869 {
1870 union kvm_mmu_page_role role;
1871 unsigned quadrant;
1872 struct kvm_mmu_page *sp;
1873 bool need_sync = false;
1874
1875 role = vcpu->arch.mmu.base_role;
1876 role.level = level;
1877 role.direct = direct;
1878 if (role.direct)
1879 role.cr4_pae = 0;
1880 role.access = access;
1881 if (!vcpu->arch.mmu.direct_map
1882 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1883 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1884 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1885 role.quadrant = quadrant;
1886 }
1887 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1888 if (is_obsolete_sp(vcpu->kvm, sp))
1889 continue;
1890
1891 if (!need_sync && sp->unsync)
1892 need_sync = true;
1893
1894 if (sp->role.word != role.word)
1895 continue;
1896
1897 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1898 break;
1899
1900 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1901 if (sp->unsync_children) {
1902 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1903 kvm_mmu_mark_parents_unsync(sp);
1904 } else if (sp->unsync)
1905 kvm_mmu_mark_parents_unsync(sp);
1906
1907 __clear_sp_write_flooding_count(sp);
1908 trace_kvm_mmu_get_page(sp, false);
1909 return sp;
1910 }
1911 ++vcpu->kvm->stat.mmu_cache_miss;
1912 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1913 if (!sp)
1914 return sp;
1915 sp->gfn = gfn;
1916 sp->role = role;
1917 hlist_add_head(&sp->hash_link,
1918 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1919 if (!direct) {
1920 if (rmap_write_protect(vcpu->kvm, gfn))
1921 kvm_flush_remote_tlbs(vcpu->kvm);
1922 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1923 kvm_sync_pages(vcpu, gfn);
1924
1925 account_shadowed(vcpu->kvm, gfn);
1926 }
1927 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1928 init_shadow_page_table(sp);
1929 trace_kvm_mmu_get_page(sp, true);
1930 return sp;
1931 }
1932
1933 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1934 struct kvm_vcpu *vcpu, u64 addr)
1935 {
1936 iterator->addr = addr;
1937 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1938 iterator->level = vcpu->arch.mmu.shadow_root_level;
1939
1940 if (iterator->level == PT64_ROOT_LEVEL &&
1941 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1942 !vcpu->arch.mmu.direct_map)
1943 --iterator->level;
1944
1945 if (iterator->level == PT32E_ROOT_LEVEL) {
1946 iterator->shadow_addr
1947 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1948 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1949 --iterator->level;
1950 if (!iterator->shadow_addr)
1951 iterator->level = 0;
1952 }
1953 }
1954
1955 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1956 {
1957 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1958 return false;
1959
1960 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1961 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1962 return true;
1963 }
1964
1965 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1966 u64 spte)
1967 {
1968 if (is_last_spte(spte, iterator->level)) {
1969 iterator->level = 0;
1970 return;
1971 }
1972
1973 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1974 --iterator->level;
1975 }
1976
1977 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1978 {
1979 return __shadow_walk_next(iterator, *iterator->sptep);
1980 }
1981
1982 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1983 {
1984 u64 spte;
1985
1986 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1987 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1988
1989 mmu_spte_set(sptep, spte);
1990 }
1991
1992 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1993 unsigned direct_access)
1994 {
1995 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1996 struct kvm_mmu_page *child;
1997
1998 /*
1999 * For the direct sp, if the guest pte's dirty bit
2000 * changed form clean to dirty, it will corrupt the
2001 * sp's access: allow writable in the read-only sp,
2002 * so we should update the spte at this point to get
2003 * a new sp with the correct access.
2004 */
2005 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2006 if (child->role.access == direct_access)
2007 return;
2008
2009 drop_parent_pte(child, sptep);
2010 kvm_flush_remote_tlbs(vcpu->kvm);
2011 }
2012 }
2013
2014 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2015 u64 *spte)
2016 {
2017 u64 pte;
2018 struct kvm_mmu_page *child;
2019
2020 pte = *spte;
2021 if (is_shadow_present_pte(pte)) {
2022 if (is_last_spte(pte, sp->role.level)) {
2023 drop_spte(kvm, spte);
2024 if (is_large_pte(pte))
2025 --kvm->stat.lpages;
2026 } else {
2027 child = page_header(pte & PT64_BASE_ADDR_MASK);
2028 drop_parent_pte(child, spte);
2029 }
2030 return true;
2031 }
2032
2033 if (is_mmio_spte(pte))
2034 mmu_spte_clear_no_track(spte);
2035
2036 return false;
2037 }
2038
2039 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2040 struct kvm_mmu_page *sp)
2041 {
2042 unsigned i;
2043
2044 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2045 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2046 }
2047
2048 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2049 {
2050 mmu_page_remove_parent_pte(sp, parent_pte);
2051 }
2052
2053 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2054 {
2055 u64 *sptep;
2056 struct rmap_iterator iter;
2057
2058 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2059 drop_parent_pte(sp, sptep);
2060 }
2061
2062 static int mmu_zap_unsync_children(struct kvm *kvm,
2063 struct kvm_mmu_page *parent,
2064 struct list_head *invalid_list)
2065 {
2066 int i, zapped = 0;
2067 struct mmu_page_path parents;
2068 struct kvm_mmu_pages pages;
2069
2070 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2071 return 0;
2072
2073 kvm_mmu_pages_init(parent, &parents, &pages);
2074 while (mmu_unsync_walk(parent, &pages)) {
2075 struct kvm_mmu_page *sp;
2076
2077 for_each_sp(pages, sp, parents, i) {
2078 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2079 mmu_pages_clear_parents(&parents);
2080 zapped++;
2081 }
2082 kvm_mmu_pages_init(parent, &parents, &pages);
2083 }
2084
2085 return zapped;
2086 }
2087
2088 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2089 struct list_head *invalid_list)
2090 {
2091 int ret;
2092
2093 trace_kvm_mmu_prepare_zap_page(sp);
2094 ++kvm->stat.mmu_shadow_zapped;
2095 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2096 kvm_mmu_page_unlink_children(kvm, sp);
2097 kvm_mmu_unlink_parents(kvm, sp);
2098
2099 if (!sp->role.invalid && !sp->role.direct)
2100 unaccount_shadowed(kvm, sp->gfn);
2101
2102 if (sp->unsync)
2103 kvm_unlink_unsync_page(kvm, sp);
2104 if (!sp->root_count) {
2105 /* Count self */
2106 ret++;
2107 list_move(&sp->link, invalid_list);
2108 kvm_mod_used_mmu_pages(kvm, -1);
2109 } else {
2110 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2111 kvm_reload_remote_mmus(kvm);
2112 }
2113
2114 sp->role.invalid = 1;
2115 return ret;
2116 }
2117
2118 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2119 struct list_head *invalid_list)
2120 {
2121 struct kvm_mmu_page *sp, *nsp;
2122
2123 if (list_empty(invalid_list))
2124 return;
2125
2126 /*
2127 * wmb: make sure everyone sees our modifications to the page tables
2128 * rmb: make sure we see changes to vcpu->mode
2129 */
2130 smp_mb();
2131
2132 /*
2133 * Wait for all vcpus to exit guest mode and/or lockless shadow
2134 * page table walks.
2135 */
2136 kvm_flush_remote_tlbs(kvm);
2137
2138 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2139 WARN_ON(!sp->role.invalid || sp->root_count);
2140 kvm_mmu_free_page(sp);
2141 }
2142 }
2143
2144 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2145 struct list_head *invalid_list)
2146 {
2147 struct kvm_mmu_page *sp;
2148
2149 if (list_empty(&kvm->arch.active_mmu_pages))
2150 return false;
2151
2152 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2153 struct kvm_mmu_page, link);
2154 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2155
2156 return true;
2157 }
2158
2159 /*
2160 * Changing the number of mmu pages allocated to the vm
2161 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2162 */
2163 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2164 {
2165 LIST_HEAD(invalid_list);
2166
2167 spin_lock(&kvm->mmu_lock);
2168
2169 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2170 /* Need to free some mmu pages to achieve the goal. */
2171 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2172 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2173 break;
2174
2175 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2176 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2177 }
2178
2179 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2180
2181 spin_unlock(&kvm->mmu_lock);
2182 }
2183
2184 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2185 {
2186 struct kvm_mmu_page *sp;
2187 LIST_HEAD(invalid_list);
2188 int r;
2189
2190 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2191 r = 0;
2192 spin_lock(&kvm->mmu_lock);
2193 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2194 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2195 sp->role.word);
2196 r = 1;
2197 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2198 }
2199 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2200 spin_unlock(&kvm->mmu_lock);
2201
2202 return r;
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2205
2206 /*
2207 * The function is based on mtrr_type_lookup() in
2208 * arch/x86/kernel/cpu/mtrr/generic.c
2209 */
2210 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2211 u64 start, u64 end)
2212 {
2213 int i;
2214 u64 base, mask;
2215 u8 prev_match, curr_match;
2216 int num_var_ranges = KVM_NR_VAR_MTRR;
2217
2218 if (!mtrr_state->enabled)
2219 return 0xFF;
2220
2221 /* Make end inclusive end, instead of exclusive */
2222 end--;
2223
2224 /* Look in fixed ranges. Just return the type as per start */
2225 if (mtrr_state->have_fixed && (start < 0x100000)) {
2226 int idx;
2227
2228 if (start < 0x80000) {
2229 idx = 0;
2230 idx += (start >> 16);
2231 return mtrr_state->fixed_ranges[idx];
2232 } else if (start < 0xC0000) {
2233 idx = 1 * 8;
2234 idx += ((start - 0x80000) >> 14);
2235 return mtrr_state->fixed_ranges[idx];
2236 } else if (start < 0x1000000) {
2237 idx = 3 * 8;
2238 idx += ((start - 0xC0000) >> 12);
2239 return mtrr_state->fixed_ranges[idx];
2240 }
2241 }
2242
2243 /*
2244 * Look in variable ranges
2245 * Look of multiple ranges matching this address and pick type
2246 * as per MTRR precedence
2247 */
2248 if (!(mtrr_state->enabled & 2))
2249 return mtrr_state->def_type;
2250
2251 prev_match = 0xFF;
2252 for (i = 0; i < num_var_ranges; ++i) {
2253 unsigned short start_state, end_state;
2254
2255 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2256 continue;
2257
2258 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2259 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2260 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2261 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2262
2263 start_state = ((start & mask) == (base & mask));
2264 end_state = ((end & mask) == (base & mask));
2265 if (start_state != end_state)
2266 return 0xFE;
2267
2268 if ((start & mask) != (base & mask))
2269 continue;
2270
2271 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2272 if (prev_match == 0xFF) {
2273 prev_match = curr_match;
2274 continue;
2275 }
2276
2277 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2278 curr_match == MTRR_TYPE_UNCACHABLE)
2279 return MTRR_TYPE_UNCACHABLE;
2280
2281 if ((prev_match == MTRR_TYPE_WRBACK &&
2282 curr_match == MTRR_TYPE_WRTHROUGH) ||
2283 (prev_match == MTRR_TYPE_WRTHROUGH &&
2284 curr_match == MTRR_TYPE_WRBACK)) {
2285 prev_match = MTRR_TYPE_WRTHROUGH;
2286 curr_match = MTRR_TYPE_WRTHROUGH;
2287 }
2288
2289 if (prev_match != curr_match)
2290 return MTRR_TYPE_UNCACHABLE;
2291 }
2292
2293 if (prev_match != 0xFF)
2294 return prev_match;
2295
2296 return mtrr_state->def_type;
2297 }
2298
2299 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2300 {
2301 u8 mtrr;
2302
2303 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2304 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2305 if (mtrr == 0xfe || mtrr == 0xff)
2306 mtrr = MTRR_TYPE_WRBACK;
2307 return mtrr;
2308 }
2309 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2310
2311 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2312 {
2313 trace_kvm_mmu_unsync_page(sp);
2314 ++vcpu->kvm->stat.mmu_unsync;
2315 sp->unsync = 1;
2316
2317 kvm_mmu_mark_parents_unsync(sp);
2318 }
2319
2320 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2321 {
2322 struct kvm_mmu_page *s;
2323
2324 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2325 if (s->unsync)
2326 continue;
2327 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2328 __kvm_unsync_page(vcpu, s);
2329 }
2330 }
2331
2332 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2333 bool can_unsync)
2334 {
2335 struct kvm_mmu_page *s;
2336 bool need_unsync = false;
2337
2338 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2339 if (!can_unsync)
2340 return 1;
2341
2342 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2343 return 1;
2344
2345 if (!s->unsync)
2346 need_unsync = true;
2347 }
2348 if (need_unsync)
2349 kvm_unsync_pages(vcpu, gfn);
2350 return 0;
2351 }
2352
2353 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2354 unsigned pte_access, int level,
2355 gfn_t gfn, pfn_t pfn, bool speculative,
2356 bool can_unsync, bool host_writable)
2357 {
2358 u64 spte;
2359 int ret = 0;
2360
2361 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2362 return 0;
2363
2364 spte = PT_PRESENT_MASK;
2365 if (!speculative)
2366 spte |= shadow_accessed_mask;
2367
2368 if (pte_access & ACC_EXEC_MASK)
2369 spte |= shadow_x_mask;
2370 else
2371 spte |= shadow_nx_mask;
2372
2373 if (pte_access & ACC_USER_MASK)
2374 spte |= shadow_user_mask;
2375
2376 if (level > PT_PAGE_TABLE_LEVEL)
2377 spte |= PT_PAGE_SIZE_MASK;
2378 if (tdp_enabled)
2379 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2380 kvm_is_mmio_pfn(pfn));
2381
2382 if (host_writable)
2383 spte |= SPTE_HOST_WRITEABLE;
2384 else
2385 pte_access &= ~ACC_WRITE_MASK;
2386
2387 spte |= (u64)pfn << PAGE_SHIFT;
2388
2389 if (pte_access & ACC_WRITE_MASK) {
2390
2391 /*
2392 * Other vcpu creates new sp in the window between
2393 * mapping_level() and acquiring mmu-lock. We can
2394 * allow guest to retry the access, the mapping can
2395 * be fixed if guest refault.
2396 */
2397 if (level > PT_PAGE_TABLE_LEVEL &&
2398 has_wrprotected_page(vcpu->kvm, gfn, level))
2399 goto done;
2400
2401 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2402
2403 /*
2404 * Optimization: for pte sync, if spte was writable the hash
2405 * lookup is unnecessary (and expensive). Write protection
2406 * is responsibility of mmu_get_page / kvm_sync_page.
2407 * Same reasoning can be applied to dirty page accounting.
2408 */
2409 if (!can_unsync && is_writable_pte(*sptep))
2410 goto set_pte;
2411
2412 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2413 pgprintk("%s: found shadow page for %llx, marking ro\n",
2414 __func__, gfn);
2415 ret = 1;
2416 pte_access &= ~ACC_WRITE_MASK;
2417 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2418 }
2419 }
2420
2421 if (pte_access & ACC_WRITE_MASK)
2422 mark_page_dirty(vcpu->kvm, gfn);
2423
2424 set_pte:
2425 if (mmu_spte_update(sptep, spte))
2426 kvm_flush_remote_tlbs(vcpu->kvm);
2427 done:
2428 return ret;
2429 }
2430
2431 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2432 unsigned pte_access, int write_fault, int *emulate,
2433 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2434 bool host_writable)
2435 {
2436 int was_rmapped = 0;
2437 int rmap_count;
2438
2439 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2440 *sptep, write_fault, gfn);
2441
2442 if (is_rmap_spte(*sptep)) {
2443 /*
2444 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2445 * the parent of the now unreachable PTE.
2446 */
2447 if (level > PT_PAGE_TABLE_LEVEL &&
2448 !is_large_pte(*sptep)) {
2449 struct kvm_mmu_page *child;
2450 u64 pte = *sptep;
2451
2452 child = page_header(pte & PT64_BASE_ADDR_MASK);
2453 drop_parent_pte(child, sptep);
2454 kvm_flush_remote_tlbs(vcpu->kvm);
2455 } else if (pfn != spte_to_pfn(*sptep)) {
2456 pgprintk("hfn old %llx new %llx\n",
2457 spte_to_pfn(*sptep), pfn);
2458 drop_spte(vcpu->kvm, sptep);
2459 kvm_flush_remote_tlbs(vcpu->kvm);
2460 } else
2461 was_rmapped = 1;
2462 }
2463
2464 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2465 true, host_writable)) {
2466 if (write_fault)
2467 *emulate = 1;
2468 kvm_mmu_flush_tlb(vcpu);
2469 }
2470
2471 if (unlikely(is_mmio_spte(*sptep) && emulate))
2472 *emulate = 1;
2473
2474 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2475 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2476 is_large_pte(*sptep)? "2MB" : "4kB",
2477 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2478 *sptep, sptep);
2479 if (!was_rmapped && is_large_pte(*sptep))
2480 ++vcpu->kvm->stat.lpages;
2481
2482 if (is_shadow_present_pte(*sptep)) {
2483 if (!was_rmapped) {
2484 rmap_count = rmap_add(vcpu, sptep, gfn);
2485 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2486 rmap_recycle(vcpu, sptep, gfn);
2487 }
2488 }
2489
2490 kvm_release_pfn_clean(pfn);
2491 }
2492
2493 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2494 {
2495 mmu_free_roots(vcpu);
2496 }
2497
2498 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2499 {
2500 int bit7;
2501
2502 bit7 = (gpte >> 7) & 1;
2503 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2504 }
2505
2506 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2507 bool no_dirty_log)
2508 {
2509 struct kvm_memory_slot *slot;
2510
2511 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2512 if (!slot)
2513 return KVM_PFN_ERR_FAULT;
2514
2515 return gfn_to_pfn_memslot_atomic(slot, gfn);
2516 }
2517
2518 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2519 struct kvm_mmu_page *sp, u64 *spte,
2520 u64 gpte)
2521 {
2522 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2523 goto no_present;
2524
2525 if (!is_present_gpte(gpte))
2526 goto no_present;
2527
2528 if (!(gpte & PT_ACCESSED_MASK))
2529 goto no_present;
2530
2531 return false;
2532
2533 no_present:
2534 drop_spte(vcpu->kvm, spte);
2535 return true;
2536 }
2537
2538 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2539 struct kvm_mmu_page *sp,
2540 u64 *start, u64 *end)
2541 {
2542 struct page *pages[PTE_PREFETCH_NUM];
2543 unsigned access = sp->role.access;
2544 int i, ret;
2545 gfn_t gfn;
2546
2547 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2548 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2549 return -1;
2550
2551 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2552 if (ret <= 0)
2553 return -1;
2554
2555 for (i = 0; i < ret; i++, gfn++, start++)
2556 mmu_set_spte(vcpu, start, access, 0, NULL,
2557 sp->role.level, gfn, page_to_pfn(pages[i]),
2558 true, true);
2559
2560 return 0;
2561 }
2562
2563 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2564 struct kvm_mmu_page *sp, u64 *sptep)
2565 {
2566 u64 *spte, *start = NULL;
2567 int i;
2568
2569 WARN_ON(!sp->role.direct);
2570
2571 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2572 spte = sp->spt + i;
2573
2574 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2575 if (is_shadow_present_pte(*spte) || spte == sptep) {
2576 if (!start)
2577 continue;
2578 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2579 break;
2580 start = NULL;
2581 } else if (!start)
2582 start = spte;
2583 }
2584 }
2585
2586 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2587 {
2588 struct kvm_mmu_page *sp;
2589
2590 /*
2591 * Since it's no accessed bit on EPT, it's no way to
2592 * distinguish between actually accessed translations
2593 * and prefetched, so disable pte prefetch if EPT is
2594 * enabled.
2595 */
2596 if (!shadow_accessed_mask)
2597 return;
2598
2599 sp = page_header(__pa(sptep));
2600 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2601 return;
2602
2603 __direct_pte_prefetch(vcpu, sp, sptep);
2604 }
2605
2606 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2607 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2608 bool prefault)
2609 {
2610 struct kvm_shadow_walk_iterator iterator;
2611 struct kvm_mmu_page *sp;
2612 int emulate = 0;
2613 gfn_t pseudo_gfn;
2614
2615 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2616 if (iterator.level == level) {
2617 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2618 write, &emulate, level, gfn, pfn,
2619 prefault, map_writable);
2620 direct_pte_prefetch(vcpu, iterator.sptep);
2621 ++vcpu->stat.pf_fixed;
2622 break;
2623 }
2624
2625 if (!is_shadow_present_pte(*iterator.sptep)) {
2626 u64 base_addr = iterator.addr;
2627
2628 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2629 pseudo_gfn = base_addr >> PAGE_SHIFT;
2630 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2631 iterator.level - 1,
2632 1, ACC_ALL, iterator.sptep);
2633
2634 link_shadow_page(iterator.sptep, sp);
2635 }
2636 }
2637 return emulate;
2638 }
2639
2640 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2641 {
2642 siginfo_t info;
2643
2644 info.si_signo = SIGBUS;
2645 info.si_errno = 0;
2646 info.si_code = BUS_MCEERR_AR;
2647 info.si_addr = (void __user *)address;
2648 info.si_addr_lsb = PAGE_SHIFT;
2649
2650 send_sig_info(SIGBUS, &info, tsk);
2651 }
2652
2653 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2654 {
2655 /*
2656 * Do not cache the mmio info caused by writing the readonly gfn
2657 * into the spte otherwise read access on readonly gfn also can
2658 * caused mmio page fault and treat it as mmio access.
2659 * Return 1 to tell kvm to emulate it.
2660 */
2661 if (pfn == KVM_PFN_ERR_RO_FAULT)
2662 return 1;
2663
2664 if (pfn == KVM_PFN_ERR_HWPOISON) {
2665 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2666 return 0;
2667 }
2668
2669 return -EFAULT;
2670 }
2671
2672 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2673 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2674 {
2675 pfn_t pfn = *pfnp;
2676 gfn_t gfn = *gfnp;
2677 int level = *levelp;
2678
2679 /*
2680 * Check if it's a transparent hugepage. If this would be an
2681 * hugetlbfs page, level wouldn't be set to
2682 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2683 * here.
2684 */
2685 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2686 level == PT_PAGE_TABLE_LEVEL &&
2687 PageTransCompound(pfn_to_page(pfn)) &&
2688 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2689 unsigned long mask;
2690 /*
2691 * mmu_notifier_retry was successful and we hold the
2692 * mmu_lock here, so the pmd can't become splitting
2693 * from under us, and in turn
2694 * __split_huge_page_refcount() can't run from under
2695 * us and we can safely transfer the refcount from
2696 * PG_tail to PG_head as we switch the pfn to tail to
2697 * head.
2698 */
2699 *levelp = level = PT_DIRECTORY_LEVEL;
2700 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2701 VM_BUG_ON((gfn & mask) != (pfn & mask));
2702 if (pfn & mask) {
2703 gfn &= ~mask;
2704 *gfnp = gfn;
2705 kvm_release_pfn_clean(pfn);
2706 pfn &= ~mask;
2707 kvm_get_pfn(pfn);
2708 *pfnp = pfn;
2709 }
2710 }
2711 }
2712
2713 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2714 pfn_t pfn, unsigned access, int *ret_val)
2715 {
2716 bool ret = true;
2717
2718 /* The pfn is invalid, report the error! */
2719 if (unlikely(is_error_pfn(pfn))) {
2720 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2721 goto exit;
2722 }
2723
2724 if (unlikely(is_noslot_pfn(pfn)))
2725 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2726
2727 ret = false;
2728 exit:
2729 return ret;
2730 }
2731
2732 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2733 {
2734 /*
2735 * #PF can be fast only if the shadow page table is present and it
2736 * is caused by write-protect, that means we just need change the
2737 * W bit of the spte which can be done out of mmu-lock.
2738 */
2739 if (!(error_code & PFERR_PRESENT_MASK) ||
2740 !(error_code & PFERR_WRITE_MASK))
2741 return false;
2742
2743 return true;
2744 }
2745
2746 static bool
2747 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2748 {
2749 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2750 gfn_t gfn;
2751
2752 WARN_ON(!sp->role.direct);
2753
2754 /*
2755 * The gfn of direct spte is stable since it is calculated
2756 * by sp->gfn.
2757 */
2758 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2759
2760 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2761 mark_page_dirty(vcpu->kvm, gfn);
2762
2763 return true;
2764 }
2765
2766 /*
2767 * Return value:
2768 * - true: let the vcpu to access on the same address again.
2769 * - false: let the real page fault path to fix it.
2770 */
2771 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2772 u32 error_code)
2773 {
2774 struct kvm_shadow_walk_iterator iterator;
2775 bool ret = false;
2776 u64 spte = 0ull;
2777
2778 if (!page_fault_can_be_fast(vcpu, error_code))
2779 return false;
2780
2781 walk_shadow_page_lockless_begin(vcpu);
2782 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2783 if (!is_shadow_present_pte(spte) || iterator.level < level)
2784 break;
2785
2786 /*
2787 * If the mapping has been changed, let the vcpu fault on the
2788 * same address again.
2789 */
2790 if (!is_rmap_spte(spte)) {
2791 ret = true;
2792 goto exit;
2793 }
2794
2795 if (!is_last_spte(spte, level))
2796 goto exit;
2797
2798 /*
2799 * Check if it is a spurious fault caused by TLB lazily flushed.
2800 *
2801 * Need not check the access of upper level table entries since
2802 * they are always ACC_ALL.
2803 */
2804 if (is_writable_pte(spte)) {
2805 ret = true;
2806 goto exit;
2807 }
2808
2809 /*
2810 * Currently, to simplify the code, only the spte write-protected
2811 * by dirty-log can be fast fixed.
2812 */
2813 if (!spte_is_locklessly_modifiable(spte))
2814 goto exit;
2815
2816 /*
2817 * Currently, fast page fault only works for direct mapping since
2818 * the gfn is not stable for indirect shadow page.
2819 * See Documentation/virtual/kvm/locking.txt to get more detail.
2820 */
2821 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2822 exit:
2823 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2824 spte, ret);
2825 walk_shadow_page_lockless_end(vcpu);
2826
2827 return ret;
2828 }
2829
2830 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2831 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2832 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2833
2834 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2835 gfn_t gfn, bool prefault)
2836 {
2837 int r;
2838 int level;
2839 int force_pt_level;
2840 pfn_t pfn;
2841 unsigned long mmu_seq;
2842 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2843
2844 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2845 if (likely(!force_pt_level)) {
2846 level = mapping_level(vcpu, gfn);
2847 /*
2848 * This path builds a PAE pagetable - so we can map
2849 * 2mb pages at maximum. Therefore check if the level
2850 * is larger than that.
2851 */
2852 if (level > PT_DIRECTORY_LEVEL)
2853 level = PT_DIRECTORY_LEVEL;
2854
2855 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2856 } else
2857 level = PT_PAGE_TABLE_LEVEL;
2858
2859 if (fast_page_fault(vcpu, v, level, error_code))
2860 return 0;
2861
2862 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2863 smp_rmb();
2864
2865 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2866 return 0;
2867
2868 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2869 return r;
2870
2871 spin_lock(&vcpu->kvm->mmu_lock);
2872 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2873 goto out_unlock;
2874 make_mmu_pages_available(vcpu);
2875 if (likely(!force_pt_level))
2876 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2877 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2878 prefault);
2879 spin_unlock(&vcpu->kvm->mmu_lock);
2880
2881
2882 return r;
2883
2884 out_unlock:
2885 spin_unlock(&vcpu->kvm->mmu_lock);
2886 kvm_release_pfn_clean(pfn);
2887 return 0;
2888 }
2889
2890
2891 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2892 {
2893 int i;
2894 struct kvm_mmu_page *sp;
2895 LIST_HEAD(invalid_list);
2896
2897 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2898 return;
2899
2900 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2901 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2902 vcpu->arch.mmu.direct_map)) {
2903 hpa_t root = vcpu->arch.mmu.root_hpa;
2904
2905 spin_lock(&vcpu->kvm->mmu_lock);
2906 sp = page_header(root);
2907 --sp->root_count;
2908 if (!sp->root_count && sp->role.invalid) {
2909 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2910 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2911 }
2912 spin_unlock(&vcpu->kvm->mmu_lock);
2913 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2914 return;
2915 }
2916
2917 spin_lock(&vcpu->kvm->mmu_lock);
2918 for (i = 0; i < 4; ++i) {
2919 hpa_t root = vcpu->arch.mmu.pae_root[i];
2920
2921 if (root) {
2922 root &= PT64_BASE_ADDR_MASK;
2923 sp = page_header(root);
2924 --sp->root_count;
2925 if (!sp->root_count && sp->role.invalid)
2926 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2927 &invalid_list);
2928 }
2929 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2930 }
2931 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2932 spin_unlock(&vcpu->kvm->mmu_lock);
2933 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2934 }
2935
2936 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2937 {
2938 int ret = 0;
2939
2940 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2941 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2942 ret = 1;
2943 }
2944
2945 return ret;
2946 }
2947
2948 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2949 {
2950 struct kvm_mmu_page *sp;
2951 unsigned i;
2952
2953 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2954 spin_lock(&vcpu->kvm->mmu_lock);
2955 make_mmu_pages_available(vcpu);
2956 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2957 1, ACC_ALL, NULL);
2958 ++sp->root_count;
2959 spin_unlock(&vcpu->kvm->mmu_lock);
2960 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2961 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2962 for (i = 0; i < 4; ++i) {
2963 hpa_t root = vcpu->arch.mmu.pae_root[i];
2964
2965 ASSERT(!VALID_PAGE(root));
2966 spin_lock(&vcpu->kvm->mmu_lock);
2967 make_mmu_pages_available(vcpu);
2968 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2969 i << 30,
2970 PT32_ROOT_LEVEL, 1, ACC_ALL,
2971 NULL);
2972 root = __pa(sp->spt);
2973 ++sp->root_count;
2974 spin_unlock(&vcpu->kvm->mmu_lock);
2975 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2976 }
2977 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2978 } else
2979 BUG();
2980
2981 return 0;
2982 }
2983
2984 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2985 {
2986 struct kvm_mmu_page *sp;
2987 u64 pdptr, pm_mask;
2988 gfn_t root_gfn;
2989 int i;
2990
2991 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2992
2993 if (mmu_check_root(vcpu, root_gfn))
2994 return 1;
2995
2996 /*
2997 * Do we shadow a long mode page table? If so we need to
2998 * write-protect the guests page table root.
2999 */
3000 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3001 hpa_t root = vcpu->arch.mmu.root_hpa;
3002
3003 ASSERT(!VALID_PAGE(root));
3004
3005 spin_lock(&vcpu->kvm->mmu_lock);
3006 make_mmu_pages_available(vcpu);
3007 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3008 0, ACC_ALL, NULL);
3009 root = __pa(sp->spt);
3010 ++sp->root_count;
3011 spin_unlock(&vcpu->kvm->mmu_lock);
3012 vcpu->arch.mmu.root_hpa = root;
3013 return 0;
3014 }
3015
3016 /*
3017 * We shadow a 32 bit page table. This may be a legacy 2-level
3018 * or a PAE 3-level page table. In either case we need to be aware that
3019 * the shadow page table may be a PAE or a long mode page table.
3020 */
3021 pm_mask = PT_PRESENT_MASK;
3022 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3023 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3024
3025 for (i = 0; i < 4; ++i) {
3026 hpa_t root = vcpu->arch.mmu.pae_root[i];
3027
3028 ASSERT(!VALID_PAGE(root));
3029 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3030 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3031 if (!is_present_gpte(pdptr)) {
3032 vcpu->arch.mmu.pae_root[i] = 0;
3033 continue;
3034 }
3035 root_gfn = pdptr >> PAGE_SHIFT;
3036 if (mmu_check_root(vcpu, root_gfn))
3037 return 1;
3038 }
3039 spin_lock(&vcpu->kvm->mmu_lock);
3040 make_mmu_pages_available(vcpu);
3041 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3042 PT32_ROOT_LEVEL, 0,
3043 ACC_ALL, NULL);
3044 root = __pa(sp->spt);
3045 ++sp->root_count;
3046 spin_unlock(&vcpu->kvm->mmu_lock);
3047
3048 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3049 }
3050 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3051
3052 /*
3053 * If we shadow a 32 bit page table with a long mode page
3054 * table we enter this path.
3055 */
3056 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3057 if (vcpu->arch.mmu.lm_root == NULL) {
3058 /*
3059 * The additional page necessary for this is only
3060 * allocated on demand.
3061 */
3062
3063 u64 *lm_root;
3064
3065 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3066 if (lm_root == NULL)
3067 return 1;
3068
3069 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3070
3071 vcpu->arch.mmu.lm_root = lm_root;
3072 }
3073
3074 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3075 }
3076
3077 return 0;
3078 }
3079
3080 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3081 {
3082 if (vcpu->arch.mmu.direct_map)
3083 return mmu_alloc_direct_roots(vcpu);
3084 else
3085 return mmu_alloc_shadow_roots(vcpu);
3086 }
3087
3088 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3089 {
3090 int i;
3091 struct kvm_mmu_page *sp;
3092
3093 if (vcpu->arch.mmu.direct_map)
3094 return;
3095
3096 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3097 return;
3098
3099 vcpu_clear_mmio_info(vcpu, ~0ul);
3100 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3101 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3102 hpa_t root = vcpu->arch.mmu.root_hpa;
3103 sp = page_header(root);
3104 mmu_sync_children(vcpu, sp);
3105 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3106 return;
3107 }
3108 for (i = 0; i < 4; ++i) {
3109 hpa_t root = vcpu->arch.mmu.pae_root[i];
3110
3111 if (root && VALID_PAGE(root)) {
3112 root &= PT64_BASE_ADDR_MASK;
3113 sp = page_header(root);
3114 mmu_sync_children(vcpu, sp);
3115 }
3116 }
3117 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3118 }
3119
3120 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3121 {
3122 spin_lock(&vcpu->kvm->mmu_lock);
3123 mmu_sync_roots(vcpu);
3124 spin_unlock(&vcpu->kvm->mmu_lock);
3125 }
3126
3127 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3128 u32 access, struct x86_exception *exception)
3129 {
3130 if (exception)
3131 exception->error_code = 0;
3132 return vaddr;
3133 }
3134
3135 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3136 u32 access,
3137 struct x86_exception *exception)
3138 {
3139 if (exception)
3140 exception->error_code = 0;
3141 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3142 }
3143
3144 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3145 {
3146 if (direct)
3147 return vcpu_match_mmio_gpa(vcpu, addr);
3148
3149 return vcpu_match_mmio_gva(vcpu, addr);
3150 }
3151
3152
3153 /*
3154 * On direct hosts, the last spte is only allows two states
3155 * for mmio page fault:
3156 * - It is the mmio spte
3157 * - It is zapped or it is being zapped.
3158 *
3159 * This function completely checks the spte when the last spte
3160 * is not the mmio spte.
3161 */
3162 static bool check_direct_spte_mmio_pf(u64 spte)
3163 {
3164 return __check_direct_spte_mmio_pf(spte);
3165 }
3166
3167 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3168 {
3169 struct kvm_shadow_walk_iterator iterator;
3170 u64 spte = 0ull;
3171
3172 walk_shadow_page_lockless_begin(vcpu);
3173 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3174 if (!is_shadow_present_pte(spte))
3175 break;
3176 walk_shadow_page_lockless_end(vcpu);
3177
3178 return spte;
3179 }
3180
3181 /*
3182 * If it is a real mmio page fault, return 1 and emulat the instruction
3183 * directly, return 0 to let CPU fault again on the address, -1 is
3184 * returned if bug is detected.
3185 */
3186 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3187 {
3188 u64 spte;
3189
3190 if (quickly_check_mmio_pf(vcpu, addr, direct))
3191 return 1;
3192
3193 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3194
3195 if (is_mmio_spte(spte)) {
3196 gfn_t gfn = get_mmio_spte_gfn(spte);
3197 unsigned access = get_mmio_spte_access(spte);
3198
3199 if (direct)
3200 addr = 0;
3201
3202 trace_handle_mmio_page_fault(addr, gfn, access);
3203 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3204 return 1;
3205 }
3206
3207 /*
3208 * It's ok if the gva is remapped by other cpus on shadow guest,
3209 * it's a BUG if the gfn is not a mmio page.
3210 */
3211 if (direct && !check_direct_spte_mmio_pf(spte))
3212 return -1;
3213
3214 /*
3215 * If the page table is zapped by other cpus, let CPU fault again on
3216 * the address.
3217 */
3218 return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3221
3222 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3223 u32 error_code, bool direct)
3224 {
3225 int ret;
3226
3227 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3228 WARN_ON(ret < 0);
3229 return ret;
3230 }
3231
3232 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3233 u32 error_code, bool prefault)
3234 {
3235 gfn_t gfn;
3236 int r;
3237
3238 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3239
3240 if (unlikely(error_code & PFERR_RSVD_MASK))
3241 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3242
3243 r = mmu_topup_memory_caches(vcpu);
3244 if (r)
3245 return r;
3246
3247 ASSERT(vcpu);
3248 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3249
3250 gfn = gva >> PAGE_SHIFT;
3251
3252 return nonpaging_map(vcpu, gva & PAGE_MASK,
3253 error_code, gfn, prefault);
3254 }
3255
3256 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3257 {
3258 struct kvm_arch_async_pf arch;
3259
3260 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3261 arch.gfn = gfn;
3262 arch.direct_map = vcpu->arch.mmu.direct_map;
3263 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3264
3265 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3266 }
3267
3268 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3269 {
3270 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3271 kvm_event_needs_reinjection(vcpu)))
3272 return false;
3273
3274 return kvm_x86_ops->interrupt_allowed(vcpu);
3275 }
3276
3277 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3278 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3279 {
3280 bool async;
3281
3282 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3283
3284 if (!async)
3285 return false; /* *pfn has correct page already */
3286
3287 if (!prefault && can_do_async_pf(vcpu)) {
3288 trace_kvm_try_async_get_page(gva, gfn);
3289 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3290 trace_kvm_async_pf_doublefault(gva, gfn);
3291 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3292 return true;
3293 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3294 return true;
3295 }
3296
3297 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3298
3299 return false;
3300 }
3301
3302 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3303 bool prefault)
3304 {
3305 pfn_t pfn;
3306 int r;
3307 int level;
3308 int force_pt_level;
3309 gfn_t gfn = gpa >> PAGE_SHIFT;
3310 unsigned long mmu_seq;
3311 int write = error_code & PFERR_WRITE_MASK;
3312 bool map_writable;
3313
3314 ASSERT(vcpu);
3315 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3316
3317 if (unlikely(error_code & PFERR_RSVD_MASK))
3318 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3319
3320 r = mmu_topup_memory_caches(vcpu);
3321 if (r)
3322 return r;
3323
3324 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3325 if (likely(!force_pt_level)) {
3326 level = mapping_level(vcpu, gfn);
3327 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3328 } else
3329 level = PT_PAGE_TABLE_LEVEL;
3330
3331 if (fast_page_fault(vcpu, gpa, level, error_code))
3332 return 0;
3333
3334 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3335 smp_rmb();
3336
3337 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3338 return 0;
3339
3340 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3341 return r;
3342
3343 spin_lock(&vcpu->kvm->mmu_lock);
3344 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3345 goto out_unlock;
3346 make_mmu_pages_available(vcpu);
3347 if (likely(!force_pt_level))
3348 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3349 r = __direct_map(vcpu, gpa, write, map_writable,
3350 level, gfn, pfn, prefault);
3351 spin_unlock(&vcpu->kvm->mmu_lock);
3352
3353 return r;
3354
3355 out_unlock:
3356 spin_unlock(&vcpu->kvm->mmu_lock);
3357 kvm_release_pfn_clean(pfn);
3358 return 0;
3359 }
3360
3361 static void nonpaging_free(struct kvm_vcpu *vcpu)
3362 {
3363 mmu_free_roots(vcpu);
3364 }
3365
3366 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3367 struct kvm_mmu *context)
3368 {
3369 context->new_cr3 = nonpaging_new_cr3;
3370 context->page_fault = nonpaging_page_fault;
3371 context->gva_to_gpa = nonpaging_gva_to_gpa;
3372 context->free = nonpaging_free;
3373 context->sync_page = nonpaging_sync_page;
3374 context->invlpg = nonpaging_invlpg;
3375 context->update_pte = nonpaging_update_pte;
3376 context->root_level = 0;
3377 context->shadow_root_level = PT32E_ROOT_LEVEL;
3378 context->root_hpa = INVALID_PAGE;
3379 context->direct_map = true;
3380 context->nx = false;
3381 return 0;
3382 }
3383
3384 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3385 {
3386 ++vcpu->stat.tlb_flush;
3387 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3388 }
3389
3390 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3391 {
3392 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3393 mmu_free_roots(vcpu);
3394 }
3395
3396 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3397 {
3398 return kvm_read_cr3(vcpu);
3399 }
3400
3401 static void inject_page_fault(struct kvm_vcpu *vcpu,
3402 struct x86_exception *fault)
3403 {
3404 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3405 }
3406
3407 static void paging_free(struct kvm_vcpu *vcpu)
3408 {
3409 nonpaging_free(vcpu);
3410 }
3411
3412 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3413 {
3414 unsigned mask;
3415
3416 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3417
3418 mask = (unsigned)~ACC_WRITE_MASK;
3419 /* Allow write access to dirty gptes */
3420 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3421 *access &= mask;
3422 }
3423
3424 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3425 int *nr_present)
3426 {
3427 if (unlikely(is_mmio_spte(*sptep))) {
3428 if (gfn != get_mmio_spte_gfn(*sptep)) {
3429 mmu_spte_clear_no_track(sptep);
3430 return true;
3431 }
3432
3433 (*nr_present)++;
3434 mark_mmio_spte(sptep, gfn, access);
3435 return true;
3436 }
3437
3438 return false;
3439 }
3440
3441 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3442 {
3443 unsigned access;
3444
3445 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3446 access &= ~(gpte >> PT64_NX_SHIFT);
3447
3448 return access;
3449 }
3450
3451 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3452 {
3453 unsigned index;
3454
3455 index = level - 1;
3456 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3457 return mmu->last_pte_bitmap & (1 << index);
3458 }
3459
3460 #define PTTYPE 64
3461 #include "paging_tmpl.h"
3462 #undef PTTYPE
3463
3464 #define PTTYPE 32
3465 #include "paging_tmpl.h"
3466 #undef PTTYPE
3467
3468 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3469 struct kvm_mmu *context)
3470 {
3471 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3472 u64 exb_bit_rsvd = 0;
3473
3474 if (!context->nx)
3475 exb_bit_rsvd = rsvd_bits(63, 63);
3476 switch (context->root_level) {
3477 case PT32_ROOT_LEVEL:
3478 /* no rsvd bits for 2 level 4K page table entries */
3479 context->rsvd_bits_mask[0][1] = 0;
3480 context->rsvd_bits_mask[0][0] = 0;
3481 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3482
3483 if (!is_pse(vcpu)) {
3484 context->rsvd_bits_mask[1][1] = 0;
3485 break;
3486 }
3487
3488 if (is_cpuid_PSE36())
3489 /* 36bits PSE 4MB page */
3490 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3491 else
3492 /* 32 bits PSE 4MB page */
3493 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3494 break;
3495 case PT32E_ROOT_LEVEL:
3496 context->rsvd_bits_mask[0][2] =
3497 rsvd_bits(maxphyaddr, 63) |
3498 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3499 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3500 rsvd_bits(maxphyaddr, 62); /* PDE */
3501 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3502 rsvd_bits(maxphyaddr, 62); /* PTE */
3503 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3504 rsvd_bits(maxphyaddr, 62) |
3505 rsvd_bits(13, 20); /* large page */
3506 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3507 break;
3508 case PT64_ROOT_LEVEL:
3509 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3510 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3511 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3512 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3513 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3514 rsvd_bits(maxphyaddr, 51);
3515 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3516 rsvd_bits(maxphyaddr, 51);
3517 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3518 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3519 rsvd_bits(maxphyaddr, 51) |
3520 rsvd_bits(13, 29);
3521 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3522 rsvd_bits(maxphyaddr, 51) |
3523 rsvd_bits(13, 20); /* large page */
3524 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3525 break;
3526 }
3527 }
3528
3529 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3530 {
3531 unsigned bit, byte, pfec;
3532 u8 map;
3533 bool fault, x, w, u, wf, uf, ff, smep;
3534
3535 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3536 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3537 pfec = byte << 1;
3538 map = 0;
3539 wf = pfec & PFERR_WRITE_MASK;
3540 uf = pfec & PFERR_USER_MASK;
3541 ff = pfec & PFERR_FETCH_MASK;
3542 for (bit = 0; bit < 8; ++bit) {
3543 x = bit & ACC_EXEC_MASK;
3544 w = bit & ACC_WRITE_MASK;
3545 u = bit & ACC_USER_MASK;
3546
3547 /* Not really needed: !nx will cause pte.nx to fault */
3548 x |= !mmu->nx;
3549 /* Allow supervisor writes if !cr0.wp */
3550 w |= !is_write_protection(vcpu) && !uf;
3551 /* Disallow supervisor fetches of user code if cr4.smep */
3552 x &= !(smep && u && !uf);
3553
3554 fault = (ff && !x) || (uf && !u) || (wf && !w);
3555 map |= fault << bit;
3556 }
3557 mmu->permissions[byte] = map;
3558 }
3559 }
3560
3561 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3562 {
3563 u8 map;
3564 unsigned level, root_level = mmu->root_level;
3565 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3566
3567 if (root_level == PT32E_ROOT_LEVEL)
3568 --root_level;
3569 /* PT_PAGE_TABLE_LEVEL always terminates */
3570 map = 1 | (1 << ps_set_index);
3571 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3572 if (level <= PT_PDPE_LEVEL
3573 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3574 map |= 1 << (ps_set_index | (level - 1));
3575 }
3576 mmu->last_pte_bitmap = map;
3577 }
3578
3579 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3580 struct kvm_mmu *context,
3581 int level)
3582 {
3583 context->nx = is_nx(vcpu);
3584 context->root_level = level;
3585
3586 reset_rsvds_bits_mask(vcpu, context);
3587 update_permission_bitmask(vcpu, context);
3588 update_last_pte_bitmap(vcpu, context);
3589
3590 ASSERT(is_pae(vcpu));
3591 context->new_cr3 = paging_new_cr3;
3592 context->page_fault = paging64_page_fault;
3593 context->gva_to_gpa = paging64_gva_to_gpa;
3594 context->sync_page = paging64_sync_page;
3595 context->invlpg = paging64_invlpg;
3596 context->update_pte = paging64_update_pte;
3597 context->free = paging_free;
3598 context->shadow_root_level = level;
3599 context->root_hpa = INVALID_PAGE;
3600 context->direct_map = false;
3601 return 0;
3602 }
3603
3604 static int paging64_init_context(struct kvm_vcpu *vcpu,
3605 struct kvm_mmu *context)
3606 {
3607 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3608 }
3609
3610 static int paging32_init_context(struct kvm_vcpu *vcpu,
3611 struct kvm_mmu *context)
3612 {
3613 context->nx = false;
3614 context->root_level = PT32_ROOT_LEVEL;
3615
3616 reset_rsvds_bits_mask(vcpu, context);
3617 update_permission_bitmask(vcpu, context);
3618 update_last_pte_bitmap(vcpu, context);
3619
3620 context->new_cr3 = paging_new_cr3;
3621 context->page_fault = paging32_page_fault;
3622 context->gva_to_gpa = paging32_gva_to_gpa;
3623 context->free = paging_free;
3624 context->sync_page = paging32_sync_page;
3625 context->invlpg = paging32_invlpg;
3626 context->update_pte = paging32_update_pte;
3627 context->shadow_root_level = PT32E_ROOT_LEVEL;
3628 context->root_hpa = INVALID_PAGE;
3629 context->direct_map = false;
3630 return 0;
3631 }
3632
3633 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3634 struct kvm_mmu *context)
3635 {
3636 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3637 }
3638
3639 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3640 {
3641 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3642
3643 context->base_role.word = 0;
3644 context->new_cr3 = nonpaging_new_cr3;
3645 context->page_fault = tdp_page_fault;
3646 context->free = nonpaging_free;
3647 context->sync_page = nonpaging_sync_page;
3648 context->invlpg = nonpaging_invlpg;
3649 context->update_pte = nonpaging_update_pte;
3650 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3651 context->root_hpa = INVALID_PAGE;
3652 context->direct_map = true;
3653 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3654 context->get_cr3 = get_cr3;
3655 context->get_pdptr = kvm_pdptr_read;
3656 context->inject_page_fault = kvm_inject_page_fault;
3657
3658 if (!is_paging(vcpu)) {
3659 context->nx = false;
3660 context->gva_to_gpa = nonpaging_gva_to_gpa;
3661 context->root_level = 0;
3662 } else if (is_long_mode(vcpu)) {
3663 context->nx = is_nx(vcpu);
3664 context->root_level = PT64_ROOT_LEVEL;
3665 reset_rsvds_bits_mask(vcpu, context);
3666 context->gva_to_gpa = paging64_gva_to_gpa;
3667 } else if (is_pae(vcpu)) {
3668 context->nx = is_nx(vcpu);
3669 context->root_level = PT32E_ROOT_LEVEL;
3670 reset_rsvds_bits_mask(vcpu, context);
3671 context->gva_to_gpa = paging64_gva_to_gpa;
3672 } else {
3673 context->nx = false;
3674 context->root_level = PT32_ROOT_LEVEL;
3675 reset_rsvds_bits_mask(vcpu, context);
3676 context->gva_to_gpa = paging32_gva_to_gpa;
3677 }
3678
3679 update_permission_bitmask(vcpu, context);
3680 update_last_pte_bitmap(vcpu, context);
3681
3682 return 0;
3683 }
3684
3685 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3686 {
3687 int r;
3688 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3689 ASSERT(vcpu);
3690 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3691
3692 if (!is_paging(vcpu))
3693 r = nonpaging_init_context(vcpu, context);
3694 else if (is_long_mode(vcpu))
3695 r = paging64_init_context(vcpu, context);
3696 else if (is_pae(vcpu))
3697 r = paging32E_init_context(vcpu, context);
3698 else
3699 r = paging32_init_context(vcpu, context);
3700
3701 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3702 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3703 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3704 vcpu->arch.mmu.base_role.smep_andnot_wp
3705 = smep && !is_write_protection(vcpu);
3706
3707 return r;
3708 }
3709 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3710
3711 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3712 {
3713 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3714
3715 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3716 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3717 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3718 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3719
3720 return r;
3721 }
3722
3723 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3724 {
3725 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3726
3727 g_context->get_cr3 = get_cr3;
3728 g_context->get_pdptr = kvm_pdptr_read;
3729 g_context->inject_page_fault = kvm_inject_page_fault;
3730
3731 /*
3732 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3733 * translation of l2_gpa to l1_gpa addresses is done using the
3734 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3735 * functions between mmu and nested_mmu are swapped.
3736 */
3737 if (!is_paging(vcpu)) {
3738 g_context->nx = false;
3739 g_context->root_level = 0;
3740 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3741 } else if (is_long_mode(vcpu)) {
3742 g_context->nx = is_nx(vcpu);
3743 g_context->root_level = PT64_ROOT_LEVEL;
3744 reset_rsvds_bits_mask(vcpu, g_context);
3745 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3746 } else if (is_pae(vcpu)) {
3747 g_context->nx = is_nx(vcpu);
3748 g_context->root_level = PT32E_ROOT_LEVEL;
3749 reset_rsvds_bits_mask(vcpu, g_context);
3750 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3751 } else {
3752 g_context->nx = false;
3753 g_context->root_level = PT32_ROOT_LEVEL;
3754 reset_rsvds_bits_mask(vcpu, g_context);
3755 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3756 }
3757
3758 update_permission_bitmask(vcpu, g_context);
3759 update_last_pte_bitmap(vcpu, g_context);
3760
3761 return 0;
3762 }
3763
3764 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3765 {
3766 if (mmu_is_nested(vcpu))
3767 return init_kvm_nested_mmu(vcpu);
3768 else if (tdp_enabled)
3769 return init_kvm_tdp_mmu(vcpu);
3770 else
3771 return init_kvm_softmmu(vcpu);
3772 }
3773
3774 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3775 {
3776 ASSERT(vcpu);
3777 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3778 /* mmu.free() should set root_hpa = INVALID_PAGE */
3779 vcpu->arch.mmu.free(vcpu);
3780 }
3781
3782 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3783 {
3784 destroy_kvm_mmu(vcpu);
3785 return init_kvm_mmu(vcpu);
3786 }
3787 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3788
3789 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3790 {
3791 int r;
3792
3793 r = mmu_topup_memory_caches(vcpu);
3794 if (r)
3795 goto out;
3796 r = mmu_alloc_roots(vcpu);
3797 kvm_mmu_sync_roots(vcpu);
3798 if (r)
3799 goto out;
3800 /* set_cr3() should ensure TLB has been flushed */
3801 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3802 out:
3803 return r;
3804 }
3805 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3806
3807 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3808 {
3809 mmu_free_roots(vcpu);
3810 }
3811 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3812
3813 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3814 struct kvm_mmu_page *sp, u64 *spte,
3815 const void *new)
3816 {
3817 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3818 ++vcpu->kvm->stat.mmu_pde_zapped;
3819 return;
3820 }
3821
3822 ++vcpu->kvm->stat.mmu_pte_updated;
3823 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3824 }
3825
3826 static bool need_remote_flush(u64 old, u64 new)
3827 {
3828 if (!is_shadow_present_pte(old))
3829 return false;
3830 if (!is_shadow_present_pte(new))
3831 return true;
3832 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3833 return true;
3834 old ^= PT64_NX_MASK;
3835 new ^= PT64_NX_MASK;
3836 return (old & ~new & PT64_PERM_MASK) != 0;
3837 }
3838
3839 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3840 bool remote_flush, bool local_flush)
3841 {
3842 if (zap_page)
3843 return;
3844
3845 if (remote_flush)
3846 kvm_flush_remote_tlbs(vcpu->kvm);
3847 else if (local_flush)
3848 kvm_mmu_flush_tlb(vcpu);
3849 }
3850
3851 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3852 const u8 *new, int *bytes)
3853 {
3854 u64 gentry;
3855 int r;
3856
3857 /*
3858 * Assume that the pte write on a page table of the same type
3859 * as the current vcpu paging mode since we update the sptes only
3860 * when they have the same mode.
3861 */
3862 if (is_pae(vcpu) && *bytes == 4) {
3863 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3864 *gpa &= ~(gpa_t)7;
3865 *bytes = 8;
3866 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3867 if (r)
3868 gentry = 0;
3869 new = (const u8 *)&gentry;
3870 }
3871
3872 switch (*bytes) {
3873 case 4:
3874 gentry = *(const u32 *)new;
3875 break;
3876 case 8:
3877 gentry = *(const u64 *)new;
3878 break;
3879 default:
3880 gentry = 0;
3881 break;
3882 }
3883
3884 return gentry;
3885 }
3886
3887 /*
3888 * If we're seeing too many writes to a page, it may no longer be a page table,
3889 * or we may be forking, in which case it is better to unmap the page.
3890 */
3891 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3892 {
3893 /*
3894 * Skip write-flooding detected for the sp whose level is 1, because
3895 * it can become unsync, then the guest page is not write-protected.
3896 */
3897 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3898 return false;
3899
3900 return ++sp->write_flooding_count >= 3;
3901 }
3902
3903 /*
3904 * Misaligned accesses are too much trouble to fix up; also, they usually
3905 * indicate a page is not used as a page table.
3906 */
3907 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3908 int bytes)
3909 {
3910 unsigned offset, pte_size, misaligned;
3911
3912 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3913 gpa, bytes, sp->role.word);
3914
3915 offset = offset_in_page(gpa);
3916 pte_size = sp->role.cr4_pae ? 8 : 4;
3917
3918 /*
3919 * Sometimes, the OS only writes the last one bytes to update status
3920 * bits, for example, in linux, andb instruction is used in clear_bit().
3921 */
3922 if (!(offset & (pte_size - 1)) && bytes == 1)
3923 return false;
3924
3925 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3926 misaligned |= bytes < 4;
3927
3928 return misaligned;
3929 }
3930
3931 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3932 {
3933 unsigned page_offset, quadrant;
3934 u64 *spte;
3935 int level;
3936
3937 page_offset = offset_in_page(gpa);
3938 level = sp->role.level;
3939 *nspte = 1;
3940 if (!sp->role.cr4_pae) {
3941 page_offset <<= 1; /* 32->64 */
3942 /*
3943 * A 32-bit pde maps 4MB while the shadow pdes map
3944 * only 2MB. So we need to double the offset again
3945 * and zap two pdes instead of one.
3946 */
3947 if (level == PT32_ROOT_LEVEL) {
3948 page_offset &= ~7; /* kill rounding error */
3949 page_offset <<= 1;
3950 *nspte = 2;
3951 }
3952 quadrant = page_offset >> PAGE_SHIFT;
3953 page_offset &= ~PAGE_MASK;
3954 if (quadrant != sp->role.quadrant)
3955 return NULL;
3956 }
3957
3958 spte = &sp->spt[page_offset / sizeof(*spte)];
3959 return spte;
3960 }
3961
3962 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3963 const u8 *new, int bytes)
3964 {
3965 gfn_t gfn = gpa >> PAGE_SHIFT;
3966 union kvm_mmu_page_role mask = { .word = 0 };
3967 struct kvm_mmu_page *sp;
3968 LIST_HEAD(invalid_list);
3969 u64 entry, gentry, *spte;
3970 int npte;
3971 bool remote_flush, local_flush, zap_page;
3972
3973 /*
3974 * If we don't have indirect shadow pages, it means no page is
3975 * write-protected, so we can exit simply.
3976 */
3977 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3978 return;
3979
3980 zap_page = remote_flush = local_flush = false;
3981
3982 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3983
3984 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3985
3986 /*
3987 * No need to care whether allocation memory is successful
3988 * or not since pte prefetch is skiped if it does not have
3989 * enough objects in the cache.
3990 */
3991 mmu_topup_memory_caches(vcpu);
3992
3993 spin_lock(&vcpu->kvm->mmu_lock);
3994 ++vcpu->kvm->stat.mmu_pte_write;
3995 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3996
3997 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3998 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3999 if (detect_write_misaligned(sp, gpa, bytes) ||
4000 detect_write_flooding(sp)) {
4001 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4002 &invalid_list);
4003 ++vcpu->kvm->stat.mmu_flooded;
4004 continue;
4005 }
4006
4007 spte = get_written_sptes(sp, gpa, &npte);
4008 if (!spte)
4009 continue;
4010
4011 local_flush = true;
4012 while (npte--) {
4013 entry = *spte;
4014 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4015 if (gentry &&
4016 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4017 & mask.word) && rmap_can_add(vcpu))
4018 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4019 if (need_remote_flush(entry, *spte))
4020 remote_flush = true;
4021 ++spte;
4022 }
4023 }
4024 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4025 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4026 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4027 spin_unlock(&vcpu->kvm->mmu_lock);
4028 }
4029
4030 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4031 {
4032 gpa_t gpa;
4033 int r;
4034
4035 if (vcpu->arch.mmu.direct_map)
4036 return 0;
4037
4038 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4039
4040 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4041
4042 return r;
4043 }
4044 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4045
4046 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4047 {
4048 LIST_HEAD(invalid_list);
4049
4050 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4051 return;
4052
4053 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4054 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4055 break;
4056
4057 ++vcpu->kvm->stat.mmu_recycled;
4058 }
4059 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4060 }
4061
4062 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4063 {
4064 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4065 return vcpu_match_mmio_gpa(vcpu, addr);
4066
4067 return vcpu_match_mmio_gva(vcpu, addr);
4068 }
4069
4070 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4071 void *insn, int insn_len)
4072 {
4073 int r, emulation_type = EMULTYPE_RETRY;
4074 enum emulation_result er;
4075
4076 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4077 if (r < 0)
4078 goto out;
4079
4080 if (!r) {
4081 r = 1;
4082 goto out;
4083 }
4084
4085 if (is_mmio_page_fault(vcpu, cr2))
4086 emulation_type = 0;
4087
4088 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4089
4090 switch (er) {
4091 case EMULATE_DONE:
4092 return 1;
4093 case EMULATE_DO_MMIO:
4094 ++vcpu->stat.mmio_exits;
4095 /* fall through */
4096 case EMULATE_FAIL:
4097 return 0;
4098 default:
4099 BUG();
4100 }
4101 out:
4102 return r;
4103 }
4104 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4105
4106 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4107 {
4108 vcpu->arch.mmu.invlpg(vcpu, gva);
4109 kvm_mmu_flush_tlb(vcpu);
4110 ++vcpu->stat.invlpg;
4111 }
4112 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4113
4114 void kvm_enable_tdp(void)
4115 {
4116 tdp_enabled = true;
4117 }
4118 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4119
4120 void kvm_disable_tdp(void)
4121 {
4122 tdp_enabled = false;
4123 }
4124 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4125
4126 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4127 {
4128 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4129 if (vcpu->arch.mmu.lm_root != NULL)
4130 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4131 }
4132
4133 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4134 {
4135 struct page *page;
4136 int i;
4137
4138 ASSERT(vcpu);
4139
4140 /*
4141 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4142 * Therefore we need to allocate shadow page tables in the first
4143 * 4GB of memory, which happens to fit the DMA32 zone.
4144 */
4145 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4146 if (!page)
4147 return -ENOMEM;
4148
4149 vcpu->arch.mmu.pae_root = page_address(page);
4150 for (i = 0; i < 4; ++i)
4151 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4152
4153 return 0;
4154 }
4155
4156 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4157 {
4158 ASSERT(vcpu);
4159
4160 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4161 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4162 vcpu->arch.mmu.translate_gpa = translate_gpa;
4163 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4164
4165 return alloc_mmu_pages(vcpu);
4166 }
4167
4168 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4169 {
4170 ASSERT(vcpu);
4171 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4172
4173 return init_kvm_mmu(vcpu);
4174 }
4175
4176 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4177 {
4178 struct kvm_memory_slot *memslot;
4179 gfn_t last_gfn;
4180 int i;
4181
4182 memslot = id_to_memslot(kvm->memslots, slot);
4183 last_gfn = memslot->base_gfn + memslot->npages - 1;
4184
4185 spin_lock(&kvm->mmu_lock);
4186
4187 for (i = PT_PAGE_TABLE_LEVEL;
4188 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4189 unsigned long *rmapp;
4190 unsigned long last_index, index;
4191
4192 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4193 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4194
4195 for (index = 0; index <= last_index; ++index, ++rmapp) {
4196 if (*rmapp)
4197 __rmap_write_protect(kvm, rmapp, false);
4198
4199 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4200 kvm_flush_remote_tlbs(kvm);
4201 cond_resched_lock(&kvm->mmu_lock);
4202 }
4203 }
4204 }
4205
4206 kvm_flush_remote_tlbs(kvm);
4207 spin_unlock(&kvm->mmu_lock);
4208 }
4209
4210 #define BATCH_ZAP_PAGES 10
4211 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4212 {
4213 struct kvm_mmu_page *sp, *node;
4214 int batch = 0;
4215
4216 restart:
4217 list_for_each_entry_safe_reverse(sp, node,
4218 &kvm->arch.active_mmu_pages, link) {
4219 int ret;
4220
4221 /*
4222 * No obsolete page exists before new created page since
4223 * active_mmu_pages is the FIFO list.
4224 */
4225 if (!is_obsolete_sp(kvm, sp))
4226 break;
4227
4228 /*
4229 * Since we are reversely walking the list and the invalid
4230 * list will be moved to the head, skip the invalid page
4231 * can help us to avoid the infinity list walking.
4232 */
4233 if (sp->role.invalid)
4234 continue;
4235
4236 /*
4237 * Need not flush tlb since we only zap the sp with invalid
4238 * generation number.
4239 */
4240 if (batch >= BATCH_ZAP_PAGES &&
4241 cond_resched_lock(&kvm->mmu_lock)) {
4242 batch = 0;
4243 goto restart;
4244 }
4245
4246 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4247 &kvm->arch.zapped_obsolete_pages);
4248 batch += ret;
4249
4250 if (ret)
4251 goto restart;
4252 }
4253
4254 /*
4255 * Should flush tlb before free page tables since lockless-walking
4256 * may use the pages.
4257 */
4258 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4259 }
4260
4261 /*
4262 * Fast invalidate all shadow pages and use lock-break technique
4263 * to zap obsolete pages.
4264 *
4265 * It's required when memslot is being deleted or VM is being
4266 * destroyed, in these cases, we should ensure that KVM MMU does
4267 * not use any resource of the being-deleted slot or all slots
4268 * after calling the function.
4269 */
4270 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4271 {
4272 spin_lock(&kvm->mmu_lock);
4273 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4274 kvm->arch.mmu_valid_gen++;
4275
4276 /*
4277 * Notify all vcpus to reload its shadow page table
4278 * and flush TLB. Then all vcpus will switch to new
4279 * shadow page table with the new mmu_valid_gen.
4280 *
4281 * Note: we should do this under the protection of
4282 * mmu-lock, otherwise, vcpu would purge shadow page
4283 * but miss tlb flush.
4284 */
4285 kvm_reload_remote_mmus(kvm);
4286
4287 kvm_zap_obsolete_pages(kvm);
4288 spin_unlock(&kvm->mmu_lock);
4289 }
4290
4291 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4292 {
4293 struct kvm_mmu_page *sp, *node;
4294 LIST_HEAD(invalid_list);
4295
4296 spin_lock(&kvm->mmu_lock);
4297 restart:
4298 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4299 if (!sp->mmio_cached)
4300 continue;
4301 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4302 goto restart;
4303 }
4304
4305 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4306 spin_unlock(&kvm->mmu_lock);
4307 }
4308
4309 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4310 {
4311 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4312 }
4313
4314 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4315 {
4316 struct kvm *kvm;
4317 int nr_to_scan = sc->nr_to_scan;
4318
4319 if (nr_to_scan == 0)
4320 goto out;
4321
4322 raw_spin_lock(&kvm_lock);
4323
4324 list_for_each_entry(kvm, &vm_list, vm_list) {
4325 int idx;
4326 LIST_HEAD(invalid_list);
4327
4328 /*
4329 * Never scan more than sc->nr_to_scan VM instances.
4330 * Will not hit this condition practically since we do not try
4331 * to shrink more than one VM and it is very unlikely to see
4332 * !n_used_mmu_pages so many times.
4333 */
4334 if (!nr_to_scan--)
4335 break;
4336 /*
4337 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4338 * here. We may skip a VM instance errorneosly, but we do not
4339 * want to shrink a VM that only started to populate its MMU
4340 * anyway.
4341 */
4342 if (!kvm->arch.n_used_mmu_pages &&
4343 !kvm_has_zapped_obsolete_pages(kvm))
4344 continue;
4345
4346 idx = srcu_read_lock(&kvm->srcu);
4347 spin_lock(&kvm->mmu_lock);
4348
4349 if (kvm_has_zapped_obsolete_pages(kvm)) {
4350 kvm_mmu_commit_zap_page(kvm,
4351 &kvm->arch.zapped_obsolete_pages);
4352 goto unlock;
4353 }
4354
4355 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4356 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4357
4358 unlock:
4359 spin_unlock(&kvm->mmu_lock);
4360 srcu_read_unlock(&kvm->srcu, idx);
4361
4362 list_move_tail(&kvm->vm_list, &vm_list);
4363 break;
4364 }
4365
4366 raw_spin_unlock(&kvm_lock);
4367
4368 out:
4369 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4370 }
4371
4372 static struct shrinker mmu_shrinker = {
4373 .shrink = mmu_shrink,
4374 .seeks = DEFAULT_SEEKS * 10,
4375 };
4376
4377 static void mmu_destroy_caches(void)
4378 {
4379 if (pte_list_desc_cache)
4380 kmem_cache_destroy(pte_list_desc_cache);
4381 if (mmu_page_header_cache)
4382 kmem_cache_destroy(mmu_page_header_cache);
4383 }
4384
4385 int kvm_mmu_module_init(void)
4386 {
4387 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4388 sizeof(struct pte_list_desc),
4389 0, 0, NULL);
4390 if (!pte_list_desc_cache)
4391 goto nomem;
4392
4393 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4394 sizeof(struct kvm_mmu_page),
4395 0, 0, NULL);
4396 if (!mmu_page_header_cache)
4397 goto nomem;
4398
4399 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4400 goto nomem;
4401
4402 register_shrinker(&mmu_shrinker);
4403
4404 return 0;
4405
4406 nomem:
4407 mmu_destroy_caches();
4408 return -ENOMEM;
4409 }
4410
4411 /*
4412 * Caculate mmu pages needed for kvm.
4413 */
4414 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4415 {
4416 unsigned int nr_mmu_pages;
4417 unsigned int nr_pages = 0;
4418 struct kvm_memslots *slots;
4419 struct kvm_memory_slot *memslot;
4420
4421 slots = kvm_memslots(kvm);
4422
4423 kvm_for_each_memslot(memslot, slots)
4424 nr_pages += memslot->npages;
4425
4426 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4427 nr_mmu_pages = max(nr_mmu_pages,
4428 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4429
4430 return nr_mmu_pages;
4431 }
4432
4433 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4434 {
4435 struct kvm_shadow_walk_iterator iterator;
4436 u64 spte;
4437 int nr_sptes = 0;
4438
4439 walk_shadow_page_lockless_begin(vcpu);
4440 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4441 sptes[iterator.level-1] = spte;
4442 nr_sptes++;
4443 if (!is_shadow_present_pte(spte))
4444 break;
4445 }
4446 walk_shadow_page_lockless_end(vcpu);
4447
4448 return nr_sptes;
4449 }
4450 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4451
4452 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4453 {
4454 ASSERT(vcpu);
4455
4456 destroy_kvm_mmu(vcpu);
4457 free_mmu_pages(vcpu);
4458 mmu_free_memory_caches(vcpu);
4459 }
4460
4461 void kvm_mmu_module_exit(void)
4462 {
4463 mmu_destroy_caches();
4464 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4465 unregister_shrinker(&mmu_shrinker);
4466 mmu_audit_disable();
4467 }