]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/mmu.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49
50 /*
51 * When setting this variable to true it enables Two-Dimensional-Paging
52 * where the hardware walks 2 page tables:
53 * 1. the guest-virtual to guest-physical
54 * 2. while doing 1. it walks guest-physical to host-physical
55 * If the hardware supports that we don't need to do shadow paging.
56 */
57 bool tdp_enabled = false;
58
59 enum {
60 AUDIT_PRE_PAGE_FAULT,
61 AUDIT_POST_PAGE_FAULT,
62 AUDIT_PRE_PTE_WRITE,
63 AUDIT_POST_PTE_WRITE,
64 AUDIT_PRE_SYNC,
65 AUDIT_POST_SYNC
66 };
67
68 #undef MMU_DEBUG
69
70 #ifdef MMU_DEBUG
71 static bool dbg = 0;
72 module_param(dbg, bool, 0644);
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76 #define MMU_WARN_ON(x) WARN_ON(x)
77 #else
78 #define pgprintk(x...) do { } while (0)
79 #define rmap_printk(x...) do { } while (0)
80 #define MMU_WARN_ON(x) do { } while (0)
81 #endif
82
83 #define PTE_PREFETCH_NUM 8
84
85 #define PT_FIRST_AVAIL_BITS_SHIFT 10
86 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
101
102 #define PT32_LVL_OFFSET_MASK(level) \
103 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104 * PT32_LEVEL_BITS))) - 1))
105
106 #define PT32_INDEX(address, level)\
107 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
110 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
111 #define PT64_DIR_BASE_ADDR_MASK \
112 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
113 #define PT64_LVL_ADDR_MASK(level) \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 * PT64_LEVEL_BITS))) - 1))
116 #define PT64_LVL_OFFSET_MASK(level) \
117 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
118 * PT64_LEVEL_BITS))) - 1))
119
120 #define PT32_BASE_ADDR_MASK PAGE_MASK
121 #define PT32_DIR_BASE_ADDR_MASK \
122 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123 #define PT32_LVL_ADDR_MASK(level) \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
128 | shadow_x_mask | shadow_nx_mask)
129
130 #define ACC_EXEC_MASK 1
131 #define ACC_WRITE_MASK PT_WRITABLE_MASK
132 #define ACC_USER_MASK PT_USER_MASK
133 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
134
135 /* The mask for the R/X bits in EPT PTEs */
136 #define PT64_EPT_READABLE_MASK 0x1ull
137 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
138
139 #include <trace/events/kvm.h>
140
141 #define CREATE_TRACE_POINTS
142 #include "mmutrace.h"
143
144 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
145 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
146
147 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
148
149 /* make pte_list_desc fit well in cache line */
150 #define PTE_LIST_EXT 3
151
152 struct pte_list_desc {
153 u64 *sptes[PTE_LIST_EXT];
154 struct pte_list_desc *more;
155 };
156
157 struct kvm_shadow_walk_iterator {
158 u64 addr;
159 hpa_t shadow_addr;
160 u64 *sptep;
161 int level;
162 unsigned index;
163 };
164
165 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)); \
168 shadow_walk_next(&(_walker)))
169
170 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)) && \
173 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
174 __shadow_walk_next(&(_walker), spte))
175
176 static struct kmem_cache *pte_list_desc_cache;
177 static struct kmem_cache *mmu_page_header_cache;
178 static struct percpu_counter kvm_total_used_mmu_pages;
179
180 static u64 __read_mostly shadow_nx_mask;
181 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
182 static u64 __read_mostly shadow_user_mask;
183 static u64 __read_mostly shadow_accessed_mask;
184 static u64 __read_mostly shadow_dirty_mask;
185 static u64 __read_mostly shadow_mmio_mask;
186 static u64 __read_mostly shadow_present_mask;
187
188 /*
189 * The mask/value to distinguish a PTE that has been marked not-present for
190 * access tracking purposes.
191 * The mask would be either 0 if access tracking is disabled, or
192 * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
193 */
194 static u64 __read_mostly shadow_acc_track_mask;
195 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
196
197 /*
198 * The mask/shift to use for saving the original R/X bits when marking the PTE
199 * as not-present for access tracking purposes. We do not save the W bit as the
200 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
201 * restored only when a write is attempted to the page.
202 */
203 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
204 PT64_EPT_EXECUTABLE_MASK;
205 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
206
207 static void mmu_spte_set(u64 *sptep, u64 spte);
208 static void mmu_free_roots(struct kvm_vcpu *vcpu);
209
210 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
211 {
212 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
213 }
214 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
215
216 static inline bool is_access_track_spte(u64 spte)
217 {
218 /* Always false if shadow_acc_track_mask is zero. */
219 return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
220 }
221
222 /*
223 * the low bit of the generation number is always presumed to be zero.
224 * This disables mmio caching during memslot updates. The concept is
225 * similar to a seqcount but instead of retrying the access we just punt
226 * and ignore the cache.
227 *
228 * spte bits 3-11 are used as bits 1-9 of the generation number,
229 * the bits 52-61 are used as bits 10-19 of the generation number.
230 */
231 #define MMIO_SPTE_GEN_LOW_SHIFT 2
232 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
233
234 #define MMIO_GEN_SHIFT 20
235 #define MMIO_GEN_LOW_SHIFT 10
236 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
237 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
238
239 static u64 generation_mmio_spte_mask(unsigned int gen)
240 {
241 u64 mask;
242
243 WARN_ON(gen & ~MMIO_GEN_MASK);
244
245 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
246 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
247 return mask;
248 }
249
250 static unsigned int get_mmio_spte_generation(u64 spte)
251 {
252 unsigned int gen;
253
254 spte &= ~shadow_mmio_mask;
255
256 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
257 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
258 return gen;
259 }
260
261 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
262 {
263 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
264 }
265
266 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
267 unsigned access)
268 {
269 unsigned int gen = kvm_current_mmio_generation(vcpu);
270 u64 mask = generation_mmio_spte_mask(gen);
271
272 access &= ACC_WRITE_MASK | ACC_USER_MASK;
273 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
274
275 trace_mark_mmio_spte(sptep, gfn, access, gen);
276 mmu_spte_set(sptep, mask);
277 }
278
279 static bool is_mmio_spte(u64 spte)
280 {
281 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
282 }
283
284 static gfn_t get_mmio_spte_gfn(u64 spte)
285 {
286 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
287 return (spte & ~mask) >> PAGE_SHIFT;
288 }
289
290 static unsigned get_mmio_spte_access(u64 spte)
291 {
292 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
293 return (spte & ~mask) & ~PAGE_MASK;
294 }
295
296 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
297 kvm_pfn_t pfn, unsigned access)
298 {
299 if (unlikely(is_noslot_pfn(pfn))) {
300 mark_mmio_spte(vcpu, sptep, gfn, access);
301 return true;
302 }
303
304 return false;
305 }
306
307 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
308 {
309 unsigned int kvm_gen, spte_gen;
310
311 kvm_gen = kvm_current_mmio_generation(vcpu);
312 spte_gen = get_mmio_spte_generation(spte);
313
314 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
315 return likely(kvm_gen == spte_gen);
316 }
317
318 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
319 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
320 u64 acc_track_mask)
321 {
322 if (acc_track_mask != 0)
323 acc_track_mask |= SPTE_SPECIAL_MASK;
324
325 shadow_user_mask = user_mask;
326 shadow_accessed_mask = accessed_mask;
327 shadow_dirty_mask = dirty_mask;
328 shadow_nx_mask = nx_mask;
329 shadow_x_mask = x_mask;
330 shadow_present_mask = p_mask;
331 shadow_acc_track_mask = acc_track_mask;
332 WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
333 }
334 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
335
336 void kvm_mmu_clear_all_pte_masks(void)
337 {
338 shadow_user_mask = 0;
339 shadow_accessed_mask = 0;
340 shadow_dirty_mask = 0;
341 shadow_nx_mask = 0;
342 shadow_x_mask = 0;
343 shadow_mmio_mask = 0;
344 shadow_present_mask = 0;
345 shadow_acc_track_mask = 0;
346 }
347
348 static int is_cpuid_PSE36(void)
349 {
350 return 1;
351 }
352
353 static int is_nx(struct kvm_vcpu *vcpu)
354 {
355 return vcpu->arch.efer & EFER_NX;
356 }
357
358 static int is_shadow_present_pte(u64 pte)
359 {
360 return (pte != 0) && !is_mmio_spte(pte);
361 }
362
363 static int is_large_pte(u64 pte)
364 {
365 return pte & PT_PAGE_SIZE_MASK;
366 }
367
368 static int is_last_spte(u64 pte, int level)
369 {
370 if (level == PT_PAGE_TABLE_LEVEL)
371 return 1;
372 if (is_large_pte(pte))
373 return 1;
374 return 0;
375 }
376
377 static bool is_executable_pte(u64 spte)
378 {
379 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
380 }
381
382 static kvm_pfn_t spte_to_pfn(u64 pte)
383 {
384 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
385 }
386
387 static gfn_t pse36_gfn_delta(u32 gpte)
388 {
389 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
390
391 return (gpte & PT32_DIR_PSE36_MASK) << shift;
392 }
393
394 #ifdef CONFIG_X86_64
395 static void __set_spte(u64 *sptep, u64 spte)
396 {
397 WRITE_ONCE(*sptep, spte);
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 WRITE_ONCE(*sptep, spte);
403 }
404
405 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
406 {
407 return xchg(sptep, spte);
408 }
409
410 static u64 __get_spte_lockless(u64 *sptep)
411 {
412 return ACCESS_ONCE(*sptep);
413 }
414 #else
415 union split_spte {
416 struct {
417 u32 spte_low;
418 u32 spte_high;
419 };
420 u64 spte;
421 };
422
423 static void count_spte_clear(u64 *sptep, u64 spte)
424 {
425 struct kvm_mmu_page *sp = page_header(__pa(sptep));
426
427 if (is_shadow_present_pte(spte))
428 return;
429
430 /* Ensure the spte is completely set before we increase the count */
431 smp_wmb();
432 sp->clear_spte_count++;
433 }
434
435 static void __set_spte(u64 *sptep, u64 spte)
436 {
437 union split_spte *ssptep, sspte;
438
439 ssptep = (union split_spte *)sptep;
440 sspte = (union split_spte)spte;
441
442 ssptep->spte_high = sspte.spte_high;
443
444 /*
445 * If we map the spte from nonpresent to present, We should store
446 * the high bits firstly, then set present bit, so cpu can not
447 * fetch this spte while we are setting the spte.
448 */
449 smp_wmb();
450
451 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
452 }
453
454 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
455 {
456 union split_spte *ssptep, sspte;
457
458 ssptep = (union split_spte *)sptep;
459 sspte = (union split_spte)spte;
460
461 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
462
463 /*
464 * If we map the spte from present to nonpresent, we should clear
465 * present bit firstly to avoid vcpu fetch the old high bits.
466 */
467 smp_wmb();
468
469 ssptep->spte_high = sspte.spte_high;
470 count_spte_clear(sptep, spte);
471 }
472
473 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
474 {
475 union split_spte *ssptep, sspte, orig;
476
477 ssptep = (union split_spte *)sptep;
478 sspte = (union split_spte)spte;
479
480 /* xchg acts as a barrier before the setting of the high bits */
481 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
482 orig.spte_high = ssptep->spte_high;
483 ssptep->spte_high = sspte.spte_high;
484 count_spte_clear(sptep, spte);
485
486 return orig.spte;
487 }
488
489 /*
490 * The idea using the light way get the spte on x86_32 guest is from
491 * gup_get_pte(arch/x86/mm/gup.c).
492 *
493 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
494 * coalesces them and we are running out of the MMU lock. Therefore
495 * we need to protect against in-progress updates of the spte.
496 *
497 * Reading the spte while an update is in progress may get the old value
498 * for the high part of the spte. The race is fine for a present->non-present
499 * change (because the high part of the spte is ignored for non-present spte),
500 * but for a present->present change we must reread the spte.
501 *
502 * All such changes are done in two steps (present->non-present and
503 * non-present->present), hence it is enough to count the number of
504 * present->non-present updates: if it changed while reading the spte,
505 * we might have hit the race. This is done using clear_spte_count.
506 */
507 static u64 __get_spte_lockless(u64 *sptep)
508 {
509 struct kvm_mmu_page *sp = page_header(__pa(sptep));
510 union split_spte spte, *orig = (union split_spte *)sptep;
511 int count;
512
513 retry:
514 count = sp->clear_spte_count;
515 smp_rmb();
516
517 spte.spte_low = orig->spte_low;
518 smp_rmb();
519
520 spte.spte_high = orig->spte_high;
521 smp_rmb();
522
523 if (unlikely(spte.spte_low != orig->spte_low ||
524 count != sp->clear_spte_count))
525 goto retry;
526
527 return spte.spte;
528 }
529 #endif
530
531 static bool spte_can_locklessly_be_made_writable(u64 spte)
532 {
533 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
534 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
535 }
536
537 static bool spte_has_volatile_bits(u64 spte)
538 {
539 if (!is_shadow_present_pte(spte))
540 return false;
541
542 /*
543 * Always atomically update spte if it can be updated
544 * out of mmu-lock, it can ensure dirty bit is not lost,
545 * also, it can help us to get a stable is_writable_pte()
546 * to ensure tlb flush is not missed.
547 */
548 if (spte_can_locklessly_be_made_writable(spte) ||
549 is_access_track_spte(spte))
550 return true;
551
552 if (shadow_accessed_mask) {
553 if ((spte & shadow_accessed_mask) == 0 ||
554 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
555 return true;
556 }
557
558 return false;
559 }
560
561 static bool is_accessed_spte(u64 spte)
562 {
563 return shadow_accessed_mask ? spte & shadow_accessed_mask
564 : !is_access_track_spte(spte);
565 }
566
567 static bool is_dirty_spte(u64 spte)
568 {
569 return shadow_dirty_mask ? spte & shadow_dirty_mask
570 : spte & PT_WRITABLE_MASK;
571 }
572
573 /* Rules for using mmu_spte_set:
574 * Set the sptep from nonpresent to present.
575 * Note: the sptep being assigned *must* be either not present
576 * or in a state where the hardware will not attempt to update
577 * the spte.
578 */
579 static void mmu_spte_set(u64 *sptep, u64 new_spte)
580 {
581 WARN_ON(is_shadow_present_pte(*sptep));
582 __set_spte(sptep, new_spte);
583 }
584
585 /*
586 * Update the SPTE (excluding the PFN), but do not track changes in its
587 * accessed/dirty status.
588 */
589 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
590 {
591 u64 old_spte = *sptep;
592
593 WARN_ON(!is_shadow_present_pte(new_spte));
594
595 if (!is_shadow_present_pte(old_spte)) {
596 mmu_spte_set(sptep, new_spte);
597 return old_spte;
598 }
599
600 if (!spte_has_volatile_bits(old_spte))
601 __update_clear_spte_fast(sptep, new_spte);
602 else
603 old_spte = __update_clear_spte_slow(sptep, new_spte);
604
605 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
606
607 return old_spte;
608 }
609
610 /* Rules for using mmu_spte_update:
611 * Update the state bits, it means the mapped pfn is not changed.
612 *
613 * Whenever we overwrite a writable spte with a read-only one we
614 * should flush remote TLBs. Otherwise rmap_write_protect
615 * will find a read-only spte, even though the writable spte
616 * might be cached on a CPU's TLB, the return value indicates this
617 * case.
618 *
619 * Returns true if the TLB needs to be flushed
620 */
621 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
622 {
623 bool flush = false;
624 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
625
626 if (!is_shadow_present_pte(old_spte))
627 return false;
628
629 /*
630 * For the spte updated out of mmu-lock is safe, since
631 * we always atomically update it, see the comments in
632 * spte_has_volatile_bits().
633 */
634 if (spte_can_locklessly_be_made_writable(old_spte) &&
635 !is_writable_pte(new_spte))
636 flush = true;
637
638 /*
639 * Flush TLB when accessed/dirty states are changed in the page tables,
640 * to guarantee consistency between TLB and page tables.
641 */
642
643 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
644 flush = true;
645 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
646 }
647
648 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
649 flush = true;
650 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
651 }
652
653 return flush;
654 }
655
656 /*
657 * Rules for using mmu_spte_clear_track_bits:
658 * It sets the sptep from present to nonpresent, and track the
659 * state bits, it is used to clear the last level sptep.
660 * Returns non-zero if the PTE was previously valid.
661 */
662 static int mmu_spte_clear_track_bits(u64 *sptep)
663 {
664 kvm_pfn_t pfn;
665 u64 old_spte = *sptep;
666
667 if (!spte_has_volatile_bits(old_spte))
668 __update_clear_spte_fast(sptep, 0ull);
669 else
670 old_spte = __update_clear_spte_slow(sptep, 0ull);
671
672 if (!is_shadow_present_pte(old_spte))
673 return 0;
674
675 pfn = spte_to_pfn(old_spte);
676
677 /*
678 * KVM does not hold the refcount of the page used by
679 * kvm mmu, before reclaiming the page, we should
680 * unmap it from mmu first.
681 */
682 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
683
684 if (is_accessed_spte(old_spte))
685 kvm_set_pfn_accessed(pfn);
686
687 if (is_dirty_spte(old_spte))
688 kvm_set_pfn_dirty(pfn);
689
690 return 1;
691 }
692
693 /*
694 * Rules for using mmu_spte_clear_no_track:
695 * Directly clear spte without caring the state bits of sptep,
696 * it is used to set the upper level spte.
697 */
698 static void mmu_spte_clear_no_track(u64 *sptep)
699 {
700 __update_clear_spte_fast(sptep, 0ull);
701 }
702
703 static u64 mmu_spte_get_lockless(u64 *sptep)
704 {
705 return __get_spte_lockless(sptep);
706 }
707
708 static u64 mark_spte_for_access_track(u64 spte)
709 {
710 if (shadow_accessed_mask != 0)
711 return spte & ~shadow_accessed_mask;
712
713 if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
714 return spte;
715
716 /*
717 * Making an Access Tracking PTE will result in removal of write access
718 * from the PTE. So, verify that we will be able to restore the write
719 * access in the fast page fault path later on.
720 */
721 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
722 !spte_can_locklessly_be_made_writable(spte),
723 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
724
725 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
726 shadow_acc_track_saved_bits_shift),
727 "kvm: Access Tracking saved bit locations are not zero\n");
728
729 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
730 shadow_acc_track_saved_bits_shift;
731 spte &= ~shadow_acc_track_mask;
732 spte |= shadow_acc_track_value;
733
734 return spte;
735 }
736
737 /* Restore an acc-track PTE back to a regular PTE */
738 static u64 restore_acc_track_spte(u64 spte)
739 {
740 u64 new_spte = spte;
741 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
742 & shadow_acc_track_saved_bits_mask;
743
744 WARN_ON_ONCE(!is_access_track_spte(spte));
745
746 new_spte &= ~shadow_acc_track_mask;
747 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
748 shadow_acc_track_saved_bits_shift);
749 new_spte |= saved_bits;
750
751 return new_spte;
752 }
753
754 /* Returns the Accessed status of the PTE and resets it at the same time. */
755 static bool mmu_spte_age(u64 *sptep)
756 {
757 u64 spte = mmu_spte_get_lockless(sptep);
758
759 if (!is_accessed_spte(spte))
760 return false;
761
762 if (shadow_accessed_mask) {
763 clear_bit((ffs(shadow_accessed_mask) - 1),
764 (unsigned long *)sptep);
765 } else {
766 /*
767 * Capture the dirty status of the page, so that it doesn't get
768 * lost when the SPTE is marked for access tracking.
769 */
770 if (is_writable_pte(spte))
771 kvm_set_pfn_dirty(spte_to_pfn(spte));
772
773 spte = mark_spte_for_access_track(spte);
774 mmu_spte_update_no_track(sptep, spte);
775 }
776
777 return true;
778 }
779
780 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
781 {
782 /*
783 * Prevent page table teardown by making any free-er wait during
784 * kvm_flush_remote_tlbs() IPI to all active vcpus.
785 */
786 local_irq_disable();
787
788 /*
789 * Make sure a following spte read is not reordered ahead of the write
790 * to vcpu->mode.
791 */
792 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
793 }
794
795 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
796 {
797 /*
798 * Make sure the write to vcpu->mode is not reordered in front of
799 * reads to sptes. If it does, kvm_commit_zap_page() can see us
800 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
801 */
802 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
803 local_irq_enable();
804 }
805
806 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
807 struct kmem_cache *base_cache, int min)
808 {
809 void *obj;
810
811 if (cache->nobjs >= min)
812 return 0;
813 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
814 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
815 if (!obj)
816 return -ENOMEM;
817 cache->objects[cache->nobjs++] = obj;
818 }
819 return 0;
820 }
821
822 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
823 {
824 return cache->nobjs;
825 }
826
827 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
828 struct kmem_cache *cache)
829 {
830 while (mc->nobjs)
831 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
832 }
833
834 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
835 int min)
836 {
837 void *page;
838
839 if (cache->nobjs >= min)
840 return 0;
841 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842 page = (void *)__get_free_page(GFP_KERNEL);
843 if (!page)
844 return -ENOMEM;
845 cache->objects[cache->nobjs++] = page;
846 }
847 return 0;
848 }
849
850 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
851 {
852 while (mc->nobjs)
853 free_page((unsigned long)mc->objects[--mc->nobjs]);
854 }
855
856 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
857 {
858 int r;
859
860 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
861 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
862 if (r)
863 goto out;
864 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
865 if (r)
866 goto out;
867 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
868 mmu_page_header_cache, 4);
869 out:
870 return r;
871 }
872
873 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
874 {
875 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
876 pte_list_desc_cache);
877 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
878 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
879 mmu_page_header_cache);
880 }
881
882 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
883 {
884 void *p;
885
886 BUG_ON(!mc->nobjs);
887 p = mc->objects[--mc->nobjs];
888 return p;
889 }
890
891 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
892 {
893 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
894 }
895
896 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
897 {
898 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
899 }
900
901 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
902 {
903 if (!sp->role.direct)
904 return sp->gfns[index];
905
906 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
907 }
908
909 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
910 {
911 if (sp->role.direct)
912 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
913 else
914 sp->gfns[index] = gfn;
915 }
916
917 /*
918 * Return the pointer to the large page information for a given gfn,
919 * handling slots that are not large page aligned.
920 */
921 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
922 struct kvm_memory_slot *slot,
923 int level)
924 {
925 unsigned long idx;
926
927 idx = gfn_to_index(gfn, slot->base_gfn, level);
928 return &slot->arch.lpage_info[level - 2][idx];
929 }
930
931 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
932 gfn_t gfn, int count)
933 {
934 struct kvm_lpage_info *linfo;
935 int i;
936
937 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
938 linfo = lpage_info_slot(gfn, slot, i);
939 linfo->disallow_lpage += count;
940 WARN_ON(linfo->disallow_lpage < 0);
941 }
942 }
943
944 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
945 {
946 update_gfn_disallow_lpage_count(slot, gfn, 1);
947 }
948
949 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
950 {
951 update_gfn_disallow_lpage_count(slot, gfn, -1);
952 }
953
954 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
955 {
956 struct kvm_memslots *slots;
957 struct kvm_memory_slot *slot;
958 gfn_t gfn;
959
960 kvm->arch.indirect_shadow_pages++;
961 gfn = sp->gfn;
962 slots = kvm_memslots_for_spte_role(kvm, sp->role);
963 slot = __gfn_to_memslot(slots, gfn);
964
965 /* the non-leaf shadow pages are keeping readonly. */
966 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
967 return kvm_slot_page_track_add_page(kvm, slot, gfn,
968 KVM_PAGE_TRACK_WRITE);
969
970 kvm_mmu_gfn_disallow_lpage(slot, gfn);
971 }
972
973 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
974 {
975 struct kvm_memslots *slots;
976 struct kvm_memory_slot *slot;
977 gfn_t gfn;
978
979 kvm->arch.indirect_shadow_pages--;
980 gfn = sp->gfn;
981 slots = kvm_memslots_for_spte_role(kvm, sp->role);
982 slot = __gfn_to_memslot(slots, gfn);
983 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
984 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
985 KVM_PAGE_TRACK_WRITE);
986
987 kvm_mmu_gfn_allow_lpage(slot, gfn);
988 }
989
990 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
991 struct kvm_memory_slot *slot)
992 {
993 struct kvm_lpage_info *linfo;
994
995 if (slot) {
996 linfo = lpage_info_slot(gfn, slot, level);
997 return !!linfo->disallow_lpage;
998 }
999
1000 return true;
1001 }
1002
1003 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1004 int level)
1005 {
1006 struct kvm_memory_slot *slot;
1007
1008 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1009 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1010 }
1011
1012 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1013 {
1014 unsigned long page_size;
1015 int i, ret = 0;
1016
1017 page_size = kvm_host_page_size(kvm, gfn);
1018
1019 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1020 if (page_size >= KVM_HPAGE_SIZE(i))
1021 ret = i;
1022 else
1023 break;
1024 }
1025
1026 return ret;
1027 }
1028
1029 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1030 bool no_dirty_log)
1031 {
1032 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1033 return false;
1034 if (no_dirty_log && slot->dirty_bitmap)
1035 return false;
1036
1037 return true;
1038 }
1039
1040 static struct kvm_memory_slot *
1041 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1042 bool no_dirty_log)
1043 {
1044 struct kvm_memory_slot *slot;
1045
1046 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1047 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1048 slot = NULL;
1049
1050 return slot;
1051 }
1052
1053 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1054 bool *force_pt_level)
1055 {
1056 int host_level, level, max_level;
1057 struct kvm_memory_slot *slot;
1058
1059 if (unlikely(*force_pt_level))
1060 return PT_PAGE_TABLE_LEVEL;
1061
1062 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1063 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1064 if (unlikely(*force_pt_level))
1065 return PT_PAGE_TABLE_LEVEL;
1066
1067 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1068
1069 if (host_level == PT_PAGE_TABLE_LEVEL)
1070 return host_level;
1071
1072 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1073
1074 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1075 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1076 break;
1077
1078 return level - 1;
1079 }
1080
1081 /*
1082 * About rmap_head encoding:
1083 *
1084 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1085 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1086 * pte_list_desc containing more mappings.
1087 */
1088
1089 /*
1090 * Returns the number of pointers in the rmap chain, not counting the new one.
1091 */
1092 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1093 struct kvm_rmap_head *rmap_head)
1094 {
1095 struct pte_list_desc *desc;
1096 int i, count = 0;
1097
1098 if (!rmap_head->val) {
1099 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1100 rmap_head->val = (unsigned long)spte;
1101 } else if (!(rmap_head->val & 1)) {
1102 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1103 desc = mmu_alloc_pte_list_desc(vcpu);
1104 desc->sptes[0] = (u64 *)rmap_head->val;
1105 desc->sptes[1] = spte;
1106 rmap_head->val = (unsigned long)desc | 1;
1107 ++count;
1108 } else {
1109 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1110 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1111 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1112 desc = desc->more;
1113 count += PTE_LIST_EXT;
1114 }
1115 if (desc->sptes[PTE_LIST_EXT-1]) {
1116 desc->more = mmu_alloc_pte_list_desc(vcpu);
1117 desc = desc->more;
1118 }
1119 for (i = 0; desc->sptes[i]; ++i)
1120 ++count;
1121 desc->sptes[i] = spte;
1122 }
1123 return count;
1124 }
1125
1126 static void
1127 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1128 struct pte_list_desc *desc, int i,
1129 struct pte_list_desc *prev_desc)
1130 {
1131 int j;
1132
1133 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1134 ;
1135 desc->sptes[i] = desc->sptes[j];
1136 desc->sptes[j] = NULL;
1137 if (j != 0)
1138 return;
1139 if (!prev_desc && !desc->more)
1140 rmap_head->val = (unsigned long)desc->sptes[0];
1141 else
1142 if (prev_desc)
1143 prev_desc->more = desc->more;
1144 else
1145 rmap_head->val = (unsigned long)desc->more | 1;
1146 mmu_free_pte_list_desc(desc);
1147 }
1148
1149 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1150 {
1151 struct pte_list_desc *desc;
1152 struct pte_list_desc *prev_desc;
1153 int i;
1154
1155 if (!rmap_head->val) {
1156 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1157 BUG();
1158 } else if (!(rmap_head->val & 1)) {
1159 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1160 if ((u64 *)rmap_head->val != spte) {
1161 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1162 BUG();
1163 }
1164 rmap_head->val = 0;
1165 } else {
1166 rmap_printk("pte_list_remove: %p many->many\n", spte);
1167 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1168 prev_desc = NULL;
1169 while (desc) {
1170 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1171 if (desc->sptes[i] == spte) {
1172 pte_list_desc_remove_entry(rmap_head,
1173 desc, i, prev_desc);
1174 return;
1175 }
1176 }
1177 prev_desc = desc;
1178 desc = desc->more;
1179 }
1180 pr_err("pte_list_remove: %p many->many\n", spte);
1181 BUG();
1182 }
1183 }
1184
1185 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1186 struct kvm_memory_slot *slot)
1187 {
1188 unsigned long idx;
1189
1190 idx = gfn_to_index(gfn, slot->base_gfn, level);
1191 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1192 }
1193
1194 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1195 struct kvm_mmu_page *sp)
1196 {
1197 struct kvm_memslots *slots;
1198 struct kvm_memory_slot *slot;
1199
1200 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1201 slot = __gfn_to_memslot(slots, gfn);
1202 return __gfn_to_rmap(gfn, sp->role.level, slot);
1203 }
1204
1205 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1206 {
1207 struct kvm_mmu_memory_cache *cache;
1208
1209 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1210 return mmu_memory_cache_free_objects(cache);
1211 }
1212
1213 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1214 {
1215 struct kvm_mmu_page *sp;
1216 struct kvm_rmap_head *rmap_head;
1217
1218 sp = page_header(__pa(spte));
1219 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1220 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1221 return pte_list_add(vcpu, spte, rmap_head);
1222 }
1223
1224 static void rmap_remove(struct kvm *kvm, u64 *spte)
1225 {
1226 struct kvm_mmu_page *sp;
1227 gfn_t gfn;
1228 struct kvm_rmap_head *rmap_head;
1229
1230 sp = page_header(__pa(spte));
1231 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1232 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1233 pte_list_remove(spte, rmap_head);
1234 }
1235
1236 /*
1237 * Used by the following functions to iterate through the sptes linked by a
1238 * rmap. All fields are private and not assumed to be used outside.
1239 */
1240 struct rmap_iterator {
1241 /* private fields */
1242 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1243 int pos; /* index of the sptep */
1244 };
1245
1246 /*
1247 * Iteration must be started by this function. This should also be used after
1248 * removing/dropping sptes from the rmap link because in such cases the
1249 * information in the itererator may not be valid.
1250 *
1251 * Returns sptep if found, NULL otherwise.
1252 */
1253 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1254 struct rmap_iterator *iter)
1255 {
1256 u64 *sptep;
1257
1258 if (!rmap_head->val)
1259 return NULL;
1260
1261 if (!(rmap_head->val & 1)) {
1262 iter->desc = NULL;
1263 sptep = (u64 *)rmap_head->val;
1264 goto out;
1265 }
1266
1267 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1268 iter->pos = 0;
1269 sptep = iter->desc->sptes[iter->pos];
1270 out:
1271 BUG_ON(!is_shadow_present_pte(*sptep));
1272 return sptep;
1273 }
1274
1275 /*
1276 * Must be used with a valid iterator: e.g. after rmap_get_first().
1277 *
1278 * Returns sptep if found, NULL otherwise.
1279 */
1280 static u64 *rmap_get_next(struct rmap_iterator *iter)
1281 {
1282 u64 *sptep;
1283
1284 if (iter->desc) {
1285 if (iter->pos < PTE_LIST_EXT - 1) {
1286 ++iter->pos;
1287 sptep = iter->desc->sptes[iter->pos];
1288 if (sptep)
1289 goto out;
1290 }
1291
1292 iter->desc = iter->desc->more;
1293
1294 if (iter->desc) {
1295 iter->pos = 0;
1296 /* desc->sptes[0] cannot be NULL */
1297 sptep = iter->desc->sptes[iter->pos];
1298 goto out;
1299 }
1300 }
1301
1302 return NULL;
1303 out:
1304 BUG_ON(!is_shadow_present_pte(*sptep));
1305 return sptep;
1306 }
1307
1308 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1309 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1310 _spte_; _spte_ = rmap_get_next(_iter_))
1311
1312 static void drop_spte(struct kvm *kvm, u64 *sptep)
1313 {
1314 if (mmu_spte_clear_track_bits(sptep))
1315 rmap_remove(kvm, sptep);
1316 }
1317
1318
1319 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1320 {
1321 if (is_large_pte(*sptep)) {
1322 WARN_ON(page_header(__pa(sptep))->role.level ==
1323 PT_PAGE_TABLE_LEVEL);
1324 drop_spte(kvm, sptep);
1325 --kvm->stat.lpages;
1326 return true;
1327 }
1328
1329 return false;
1330 }
1331
1332 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1333 {
1334 if (__drop_large_spte(vcpu->kvm, sptep))
1335 kvm_flush_remote_tlbs(vcpu->kvm);
1336 }
1337
1338 /*
1339 * Write-protect on the specified @sptep, @pt_protect indicates whether
1340 * spte write-protection is caused by protecting shadow page table.
1341 *
1342 * Note: write protection is difference between dirty logging and spte
1343 * protection:
1344 * - for dirty logging, the spte can be set to writable at anytime if
1345 * its dirty bitmap is properly set.
1346 * - for spte protection, the spte can be writable only after unsync-ing
1347 * shadow page.
1348 *
1349 * Return true if tlb need be flushed.
1350 */
1351 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1352 {
1353 u64 spte = *sptep;
1354
1355 if (!is_writable_pte(spte) &&
1356 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1357 return false;
1358
1359 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1360
1361 if (pt_protect)
1362 spte &= ~SPTE_MMU_WRITEABLE;
1363 spte = spte & ~PT_WRITABLE_MASK;
1364
1365 return mmu_spte_update(sptep, spte);
1366 }
1367
1368 static bool __rmap_write_protect(struct kvm *kvm,
1369 struct kvm_rmap_head *rmap_head,
1370 bool pt_protect)
1371 {
1372 u64 *sptep;
1373 struct rmap_iterator iter;
1374 bool flush = false;
1375
1376 for_each_rmap_spte(rmap_head, &iter, sptep)
1377 flush |= spte_write_protect(sptep, pt_protect);
1378
1379 return flush;
1380 }
1381
1382 static bool spte_clear_dirty(u64 *sptep)
1383 {
1384 u64 spte = *sptep;
1385
1386 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1387
1388 spte &= ~shadow_dirty_mask;
1389
1390 return mmu_spte_update(sptep, spte);
1391 }
1392
1393 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1394 {
1395 u64 *sptep;
1396 struct rmap_iterator iter;
1397 bool flush = false;
1398
1399 for_each_rmap_spte(rmap_head, &iter, sptep)
1400 flush |= spte_clear_dirty(sptep);
1401
1402 return flush;
1403 }
1404
1405 static bool spte_set_dirty(u64 *sptep)
1406 {
1407 u64 spte = *sptep;
1408
1409 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1410
1411 spte |= shadow_dirty_mask;
1412
1413 return mmu_spte_update(sptep, spte);
1414 }
1415
1416 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1417 {
1418 u64 *sptep;
1419 struct rmap_iterator iter;
1420 bool flush = false;
1421
1422 for_each_rmap_spte(rmap_head, &iter, sptep)
1423 flush |= spte_set_dirty(sptep);
1424
1425 return flush;
1426 }
1427
1428 /**
1429 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1430 * @kvm: kvm instance
1431 * @slot: slot to protect
1432 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1433 * @mask: indicates which pages we should protect
1434 *
1435 * Used when we do not need to care about huge page mappings: e.g. during dirty
1436 * logging we do not have any such mappings.
1437 */
1438 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1439 struct kvm_memory_slot *slot,
1440 gfn_t gfn_offset, unsigned long mask)
1441 {
1442 struct kvm_rmap_head *rmap_head;
1443
1444 while (mask) {
1445 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1446 PT_PAGE_TABLE_LEVEL, slot);
1447 __rmap_write_protect(kvm, rmap_head, false);
1448
1449 /* clear the first set bit */
1450 mask &= mask - 1;
1451 }
1452 }
1453
1454 /**
1455 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1456 * @kvm: kvm instance
1457 * @slot: slot to clear D-bit
1458 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1459 * @mask: indicates which pages we should clear D-bit
1460 *
1461 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1462 */
1463 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1464 struct kvm_memory_slot *slot,
1465 gfn_t gfn_offset, unsigned long mask)
1466 {
1467 struct kvm_rmap_head *rmap_head;
1468
1469 while (mask) {
1470 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1471 PT_PAGE_TABLE_LEVEL, slot);
1472 __rmap_clear_dirty(kvm, rmap_head);
1473
1474 /* clear the first set bit */
1475 mask &= mask - 1;
1476 }
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1479
1480 /**
1481 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1482 * PT level pages.
1483 *
1484 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1485 * enable dirty logging for them.
1486 *
1487 * Used when we do not need to care about huge page mappings: e.g. during dirty
1488 * logging we do not have any such mappings.
1489 */
1490 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1491 struct kvm_memory_slot *slot,
1492 gfn_t gfn_offset, unsigned long mask)
1493 {
1494 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1495 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1496 mask);
1497 else
1498 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1499 }
1500
1501 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1502 struct kvm_memory_slot *slot, u64 gfn)
1503 {
1504 struct kvm_rmap_head *rmap_head;
1505 int i;
1506 bool write_protected = false;
1507
1508 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1509 rmap_head = __gfn_to_rmap(gfn, i, slot);
1510 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1511 }
1512
1513 return write_protected;
1514 }
1515
1516 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1517 {
1518 struct kvm_memory_slot *slot;
1519
1520 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1521 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1522 }
1523
1524 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1525 {
1526 u64 *sptep;
1527 struct rmap_iterator iter;
1528 bool flush = false;
1529
1530 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1531 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1532
1533 drop_spte(kvm, sptep);
1534 flush = true;
1535 }
1536
1537 return flush;
1538 }
1539
1540 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1541 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1542 unsigned long data)
1543 {
1544 return kvm_zap_rmapp(kvm, rmap_head);
1545 }
1546
1547 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1548 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1549 unsigned long data)
1550 {
1551 u64 *sptep;
1552 struct rmap_iterator iter;
1553 int need_flush = 0;
1554 u64 new_spte;
1555 pte_t *ptep = (pte_t *)data;
1556 kvm_pfn_t new_pfn;
1557
1558 WARN_ON(pte_huge(*ptep));
1559 new_pfn = pte_pfn(*ptep);
1560
1561 restart:
1562 for_each_rmap_spte(rmap_head, &iter, sptep) {
1563 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1564 sptep, *sptep, gfn, level);
1565
1566 need_flush = 1;
1567
1568 if (pte_write(*ptep)) {
1569 drop_spte(kvm, sptep);
1570 goto restart;
1571 } else {
1572 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1573 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1574
1575 new_spte &= ~PT_WRITABLE_MASK;
1576 new_spte &= ~SPTE_HOST_WRITEABLE;
1577
1578 new_spte = mark_spte_for_access_track(new_spte);
1579
1580 mmu_spte_clear_track_bits(sptep);
1581 mmu_spte_set(sptep, new_spte);
1582 }
1583 }
1584
1585 if (need_flush)
1586 kvm_flush_remote_tlbs(kvm);
1587
1588 return 0;
1589 }
1590
1591 struct slot_rmap_walk_iterator {
1592 /* input fields. */
1593 struct kvm_memory_slot *slot;
1594 gfn_t start_gfn;
1595 gfn_t end_gfn;
1596 int start_level;
1597 int end_level;
1598
1599 /* output fields. */
1600 gfn_t gfn;
1601 struct kvm_rmap_head *rmap;
1602 int level;
1603
1604 /* private field. */
1605 struct kvm_rmap_head *end_rmap;
1606 };
1607
1608 static void
1609 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1610 {
1611 iterator->level = level;
1612 iterator->gfn = iterator->start_gfn;
1613 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1614 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1615 iterator->slot);
1616 }
1617
1618 static void
1619 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1620 struct kvm_memory_slot *slot, int start_level,
1621 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1622 {
1623 iterator->slot = slot;
1624 iterator->start_level = start_level;
1625 iterator->end_level = end_level;
1626 iterator->start_gfn = start_gfn;
1627 iterator->end_gfn = end_gfn;
1628
1629 rmap_walk_init_level(iterator, iterator->start_level);
1630 }
1631
1632 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1633 {
1634 return !!iterator->rmap;
1635 }
1636
1637 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1638 {
1639 if (++iterator->rmap <= iterator->end_rmap) {
1640 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1641 return;
1642 }
1643
1644 if (++iterator->level > iterator->end_level) {
1645 iterator->rmap = NULL;
1646 return;
1647 }
1648
1649 rmap_walk_init_level(iterator, iterator->level);
1650 }
1651
1652 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1653 _start_gfn, _end_gfn, _iter_) \
1654 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1655 _end_level_, _start_gfn, _end_gfn); \
1656 slot_rmap_walk_okay(_iter_); \
1657 slot_rmap_walk_next(_iter_))
1658
1659 static int kvm_handle_hva_range(struct kvm *kvm,
1660 unsigned long start,
1661 unsigned long end,
1662 unsigned long data,
1663 int (*handler)(struct kvm *kvm,
1664 struct kvm_rmap_head *rmap_head,
1665 struct kvm_memory_slot *slot,
1666 gfn_t gfn,
1667 int level,
1668 unsigned long data))
1669 {
1670 struct kvm_memslots *slots;
1671 struct kvm_memory_slot *memslot;
1672 struct slot_rmap_walk_iterator iterator;
1673 int ret = 0;
1674 int i;
1675
1676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1677 slots = __kvm_memslots(kvm, i);
1678 kvm_for_each_memslot(memslot, slots) {
1679 unsigned long hva_start, hva_end;
1680 gfn_t gfn_start, gfn_end;
1681
1682 hva_start = max(start, memslot->userspace_addr);
1683 hva_end = min(end, memslot->userspace_addr +
1684 (memslot->npages << PAGE_SHIFT));
1685 if (hva_start >= hva_end)
1686 continue;
1687 /*
1688 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1689 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1690 */
1691 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1692 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1693
1694 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1695 PT_MAX_HUGEPAGE_LEVEL,
1696 gfn_start, gfn_end - 1,
1697 &iterator)
1698 ret |= handler(kvm, iterator.rmap, memslot,
1699 iterator.gfn, iterator.level, data);
1700 }
1701 }
1702
1703 return ret;
1704 }
1705
1706 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1707 unsigned long data,
1708 int (*handler)(struct kvm *kvm,
1709 struct kvm_rmap_head *rmap_head,
1710 struct kvm_memory_slot *slot,
1711 gfn_t gfn, int level,
1712 unsigned long data))
1713 {
1714 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1715 }
1716
1717 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1718 {
1719 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1720 }
1721
1722 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1723 {
1724 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1725 }
1726
1727 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1728 {
1729 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1730 }
1731
1732 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1733 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1734 unsigned long data)
1735 {
1736 u64 *sptep;
1737 struct rmap_iterator uninitialized_var(iter);
1738 int young = 0;
1739
1740 for_each_rmap_spte(rmap_head, &iter, sptep)
1741 young |= mmu_spte_age(sptep);
1742
1743 trace_kvm_age_page(gfn, level, slot, young);
1744 return young;
1745 }
1746
1747 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1748 struct kvm_memory_slot *slot, gfn_t gfn,
1749 int level, unsigned long data)
1750 {
1751 u64 *sptep;
1752 struct rmap_iterator iter;
1753
1754 /*
1755 * If there's no access bit in the secondary pte set by the hardware and
1756 * fast access tracking is also not enabled, it's up to gup-fast/gup to
1757 * set the access bit in the primary pte or in the page structure.
1758 */
1759 if (!shadow_accessed_mask && !shadow_acc_track_mask)
1760 goto out;
1761
1762 for_each_rmap_spte(rmap_head, &iter, sptep)
1763 if (is_accessed_spte(*sptep))
1764 return 1;
1765 out:
1766 return 0;
1767 }
1768
1769 #define RMAP_RECYCLE_THRESHOLD 1000
1770
1771 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1772 {
1773 struct kvm_rmap_head *rmap_head;
1774 struct kvm_mmu_page *sp;
1775
1776 sp = page_header(__pa(spte));
1777
1778 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1779
1780 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1781 kvm_flush_remote_tlbs(vcpu->kvm);
1782 }
1783
1784 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1785 {
1786 /*
1787 * In case of absence of EPT Access and Dirty Bits supports,
1788 * emulate the accessed bit for EPT, by checking if this page has
1789 * an EPT mapping, and clearing it if it does. On the next access,
1790 * a new EPT mapping will be established.
1791 * This has some overhead, but not as much as the cost of swapping
1792 * out actively used pages or breaking up actively used hugepages.
1793 */
1794 if (!shadow_accessed_mask && !shadow_acc_track_mask)
1795 return kvm_handle_hva_range(kvm, start, end, 0,
1796 kvm_unmap_rmapp);
1797
1798 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1799 }
1800
1801 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1802 {
1803 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1804 }
1805
1806 #ifdef MMU_DEBUG
1807 static int is_empty_shadow_page(u64 *spt)
1808 {
1809 u64 *pos;
1810 u64 *end;
1811
1812 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1813 if (is_shadow_present_pte(*pos)) {
1814 printk(KERN_ERR "%s: %p %llx\n", __func__,
1815 pos, *pos);
1816 return 0;
1817 }
1818 return 1;
1819 }
1820 #endif
1821
1822 /*
1823 * This value is the sum of all of the kvm instances's
1824 * kvm->arch.n_used_mmu_pages values. We need a global,
1825 * aggregate version in order to make the slab shrinker
1826 * faster
1827 */
1828 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1829 {
1830 kvm->arch.n_used_mmu_pages += nr;
1831 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1832 }
1833
1834 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1835 {
1836 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1837 hlist_del(&sp->hash_link);
1838 list_del(&sp->link);
1839 free_page((unsigned long)sp->spt);
1840 if (!sp->role.direct)
1841 free_page((unsigned long)sp->gfns);
1842 kmem_cache_free(mmu_page_header_cache, sp);
1843 }
1844
1845 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1846 {
1847 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1848 }
1849
1850 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1851 struct kvm_mmu_page *sp, u64 *parent_pte)
1852 {
1853 if (!parent_pte)
1854 return;
1855
1856 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1857 }
1858
1859 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1860 u64 *parent_pte)
1861 {
1862 pte_list_remove(parent_pte, &sp->parent_ptes);
1863 }
1864
1865 static void drop_parent_pte(struct kvm_mmu_page *sp,
1866 u64 *parent_pte)
1867 {
1868 mmu_page_remove_parent_pte(sp, parent_pte);
1869 mmu_spte_clear_no_track(parent_pte);
1870 }
1871
1872 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1873 {
1874 struct kvm_mmu_page *sp;
1875
1876 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1877 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1878 if (!direct)
1879 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1880 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1881
1882 /*
1883 * The active_mmu_pages list is the FIFO list, do not move the
1884 * page until it is zapped. kvm_zap_obsolete_pages depends on
1885 * this feature. See the comments in kvm_zap_obsolete_pages().
1886 */
1887 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1888 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1889 return sp;
1890 }
1891
1892 static void mark_unsync(u64 *spte);
1893 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1894 {
1895 u64 *sptep;
1896 struct rmap_iterator iter;
1897
1898 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1899 mark_unsync(sptep);
1900 }
1901 }
1902
1903 static void mark_unsync(u64 *spte)
1904 {
1905 struct kvm_mmu_page *sp;
1906 unsigned int index;
1907
1908 sp = page_header(__pa(spte));
1909 index = spte - sp->spt;
1910 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1911 return;
1912 if (sp->unsync_children++)
1913 return;
1914 kvm_mmu_mark_parents_unsync(sp);
1915 }
1916
1917 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1918 struct kvm_mmu_page *sp)
1919 {
1920 return 0;
1921 }
1922
1923 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1924 {
1925 }
1926
1927 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1928 struct kvm_mmu_page *sp, u64 *spte,
1929 const void *pte)
1930 {
1931 WARN_ON(1);
1932 }
1933
1934 #define KVM_PAGE_ARRAY_NR 16
1935
1936 struct kvm_mmu_pages {
1937 struct mmu_page_and_offset {
1938 struct kvm_mmu_page *sp;
1939 unsigned int idx;
1940 } page[KVM_PAGE_ARRAY_NR];
1941 unsigned int nr;
1942 };
1943
1944 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1945 int idx)
1946 {
1947 int i;
1948
1949 if (sp->unsync)
1950 for (i=0; i < pvec->nr; i++)
1951 if (pvec->page[i].sp == sp)
1952 return 0;
1953
1954 pvec->page[pvec->nr].sp = sp;
1955 pvec->page[pvec->nr].idx = idx;
1956 pvec->nr++;
1957 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1958 }
1959
1960 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1961 {
1962 --sp->unsync_children;
1963 WARN_ON((int)sp->unsync_children < 0);
1964 __clear_bit(idx, sp->unsync_child_bitmap);
1965 }
1966
1967 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1968 struct kvm_mmu_pages *pvec)
1969 {
1970 int i, ret, nr_unsync_leaf = 0;
1971
1972 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1973 struct kvm_mmu_page *child;
1974 u64 ent = sp->spt[i];
1975
1976 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1977 clear_unsync_child_bit(sp, i);
1978 continue;
1979 }
1980
1981 child = page_header(ent & PT64_BASE_ADDR_MASK);
1982
1983 if (child->unsync_children) {
1984 if (mmu_pages_add(pvec, child, i))
1985 return -ENOSPC;
1986
1987 ret = __mmu_unsync_walk(child, pvec);
1988 if (!ret) {
1989 clear_unsync_child_bit(sp, i);
1990 continue;
1991 } else if (ret > 0) {
1992 nr_unsync_leaf += ret;
1993 } else
1994 return ret;
1995 } else if (child->unsync) {
1996 nr_unsync_leaf++;
1997 if (mmu_pages_add(pvec, child, i))
1998 return -ENOSPC;
1999 } else
2000 clear_unsync_child_bit(sp, i);
2001 }
2002
2003 return nr_unsync_leaf;
2004 }
2005
2006 #define INVALID_INDEX (-1)
2007
2008 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2009 struct kvm_mmu_pages *pvec)
2010 {
2011 pvec->nr = 0;
2012 if (!sp->unsync_children)
2013 return 0;
2014
2015 mmu_pages_add(pvec, sp, INVALID_INDEX);
2016 return __mmu_unsync_walk(sp, pvec);
2017 }
2018
2019 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2020 {
2021 WARN_ON(!sp->unsync);
2022 trace_kvm_mmu_sync_page(sp);
2023 sp->unsync = 0;
2024 --kvm->stat.mmu_unsync;
2025 }
2026
2027 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2028 struct list_head *invalid_list);
2029 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2030 struct list_head *invalid_list);
2031
2032 /*
2033 * NOTE: we should pay more attention on the zapped-obsolete page
2034 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2035 * since it has been deleted from active_mmu_pages but still can be found
2036 * at hast list.
2037 *
2038 * for_each_valid_sp() has skipped that kind of pages.
2039 */
2040 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2041 hlist_for_each_entry(_sp, \
2042 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2043 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2044 } else
2045
2046 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2047 for_each_valid_sp(_kvm, _sp, _gfn) \
2048 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2049
2050 /* @sp->gfn should be write-protected at the call site */
2051 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2052 struct list_head *invalid_list)
2053 {
2054 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2055 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2056 return false;
2057 }
2058
2059 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2060 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2061 return false;
2062 }
2063
2064 return true;
2065 }
2066
2067 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2068 struct list_head *invalid_list,
2069 bool remote_flush, bool local_flush)
2070 {
2071 if (!list_empty(invalid_list)) {
2072 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2073 return;
2074 }
2075
2076 if (remote_flush)
2077 kvm_flush_remote_tlbs(vcpu->kvm);
2078 else if (local_flush)
2079 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2080 }
2081
2082 #ifdef CONFIG_KVM_MMU_AUDIT
2083 #include "mmu_audit.c"
2084 #else
2085 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2086 static void mmu_audit_disable(void) { }
2087 #endif
2088
2089 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2090 {
2091 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2092 }
2093
2094 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2095 struct list_head *invalid_list)
2096 {
2097 kvm_unlink_unsync_page(vcpu->kvm, sp);
2098 return __kvm_sync_page(vcpu, sp, invalid_list);
2099 }
2100
2101 /* @gfn should be write-protected at the call site */
2102 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2103 struct list_head *invalid_list)
2104 {
2105 struct kvm_mmu_page *s;
2106 bool ret = false;
2107
2108 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2109 if (!s->unsync)
2110 continue;
2111
2112 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2113 ret |= kvm_sync_page(vcpu, s, invalid_list);
2114 }
2115
2116 return ret;
2117 }
2118
2119 struct mmu_page_path {
2120 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2121 unsigned int idx[PT64_ROOT_LEVEL];
2122 };
2123
2124 #define for_each_sp(pvec, sp, parents, i) \
2125 for (i = mmu_pages_first(&pvec, &parents); \
2126 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2127 i = mmu_pages_next(&pvec, &parents, i))
2128
2129 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2130 struct mmu_page_path *parents,
2131 int i)
2132 {
2133 int n;
2134
2135 for (n = i+1; n < pvec->nr; n++) {
2136 struct kvm_mmu_page *sp = pvec->page[n].sp;
2137 unsigned idx = pvec->page[n].idx;
2138 int level = sp->role.level;
2139
2140 parents->idx[level-1] = idx;
2141 if (level == PT_PAGE_TABLE_LEVEL)
2142 break;
2143
2144 parents->parent[level-2] = sp;
2145 }
2146
2147 return n;
2148 }
2149
2150 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2151 struct mmu_page_path *parents)
2152 {
2153 struct kvm_mmu_page *sp;
2154 int level;
2155
2156 if (pvec->nr == 0)
2157 return 0;
2158
2159 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2160
2161 sp = pvec->page[0].sp;
2162 level = sp->role.level;
2163 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2164
2165 parents->parent[level-2] = sp;
2166
2167 /* Also set up a sentinel. Further entries in pvec are all
2168 * children of sp, so this element is never overwritten.
2169 */
2170 parents->parent[level-1] = NULL;
2171 return mmu_pages_next(pvec, parents, 0);
2172 }
2173
2174 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2175 {
2176 struct kvm_mmu_page *sp;
2177 unsigned int level = 0;
2178
2179 do {
2180 unsigned int idx = parents->idx[level];
2181 sp = parents->parent[level];
2182 if (!sp)
2183 return;
2184
2185 WARN_ON(idx == INVALID_INDEX);
2186 clear_unsync_child_bit(sp, idx);
2187 level++;
2188 } while (!sp->unsync_children);
2189 }
2190
2191 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2192 struct kvm_mmu_page *parent)
2193 {
2194 int i;
2195 struct kvm_mmu_page *sp;
2196 struct mmu_page_path parents;
2197 struct kvm_mmu_pages pages;
2198 LIST_HEAD(invalid_list);
2199 bool flush = false;
2200
2201 while (mmu_unsync_walk(parent, &pages)) {
2202 bool protected = false;
2203
2204 for_each_sp(pages, sp, parents, i)
2205 protected |= rmap_write_protect(vcpu, sp->gfn);
2206
2207 if (protected) {
2208 kvm_flush_remote_tlbs(vcpu->kvm);
2209 flush = false;
2210 }
2211
2212 for_each_sp(pages, sp, parents, i) {
2213 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2214 mmu_pages_clear_parents(&parents);
2215 }
2216 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2217 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2218 cond_resched_lock(&vcpu->kvm->mmu_lock);
2219 flush = false;
2220 }
2221 }
2222
2223 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2224 }
2225
2226 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2227 {
2228 atomic_set(&sp->write_flooding_count, 0);
2229 }
2230
2231 static void clear_sp_write_flooding_count(u64 *spte)
2232 {
2233 struct kvm_mmu_page *sp = page_header(__pa(spte));
2234
2235 __clear_sp_write_flooding_count(sp);
2236 }
2237
2238 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2239 gfn_t gfn,
2240 gva_t gaddr,
2241 unsigned level,
2242 int direct,
2243 unsigned access)
2244 {
2245 union kvm_mmu_page_role role;
2246 unsigned quadrant;
2247 struct kvm_mmu_page *sp;
2248 bool need_sync = false;
2249 bool flush = false;
2250 int collisions = 0;
2251 LIST_HEAD(invalid_list);
2252
2253 role = vcpu->arch.mmu.base_role;
2254 role.level = level;
2255 role.direct = direct;
2256 if (role.direct)
2257 role.cr4_pae = 0;
2258 role.access = access;
2259 if (!vcpu->arch.mmu.direct_map
2260 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2261 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2262 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2263 role.quadrant = quadrant;
2264 }
2265 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2266 if (sp->gfn != gfn) {
2267 collisions++;
2268 continue;
2269 }
2270
2271 if (!need_sync && sp->unsync)
2272 need_sync = true;
2273
2274 if (sp->role.word != role.word)
2275 continue;
2276
2277 if (sp->unsync) {
2278 /* The page is good, but __kvm_sync_page might still end
2279 * up zapping it. If so, break in order to rebuild it.
2280 */
2281 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2282 break;
2283
2284 WARN_ON(!list_empty(&invalid_list));
2285 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2286 }
2287
2288 if (sp->unsync_children)
2289 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2290
2291 __clear_sp_write_flooding_count(sp);
2292 trace_kvm_mmu_get_page(sp, false);
2293 goto out;
2294 }
2295
2296 ++vcpu->kvm->stat.mmu_cache_miss;
2297
2298 sp = kvm_mmu_alloc_page(vcpu, direct);
2299
2300 sp->gfn = gfn;
2301 sp->role = role;
2302 hlist_add_head(&sp->hash_link,
2303 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2304 if (!direct) {
2305 /*
2306 * we should do write protection before syncing pages
2307 * otherwise the content of the synced shadow page may
2308 * be inconsistent with guest page table.
2309 */
2310 account_shadowed(vcpu->kvm, sp);
2311 if (level == PT_PAGE_TABLE_LEVEL &&
2312 rmap_write_protect(vcpu, gfn))
2313 kvm_flush_remote_tlbs(vcpu->kvm);
2314
2315 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2316 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2317 }
2318 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2319 clear_page(sp->spt);
2320 trace_kvm_mmu_get_page(sp, true);
2321
2322 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2323 out:
2324 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2325 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2326 return sp;
2327 }
2328
2329 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2330 struct kvm_vcpu *vcpu, u64 addr)
2331 {
2332 iterator->addr = addr;
2333 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2334 iterator->level = vcpu->arch.mmu.shadow_root_level;
2335
2336 if (iterator->level == PT64_ROOT_LEVEL &&
2337 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2338 !vcpu->arch.mmu.direct_map)
2339 --iterator->level;
2340
2341 if (iterator->level == PT32E_ROOT_LEVEL) {
2342 iterator->shadow_addr
2343 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2344 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2345 --iterator->level;
2346 if (!iterator->shadow_addr)
2347 iterator->level = 0;
2348 }
2349 }
2350
2351 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2352 {
2353 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2354 return false;
2355
2356 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2357 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2358 return true;
2359 }
2360
2361 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2362 u64 spte)
2363 {
2364 if (is_last_spte(spte, iterator->level)) {
2365 iterator->level = 0;
2366 return;
2367 }
2368
2369 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2370 --iterator->level;
2371 }
2372
2373 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2374 {
2375 return __shadow_walk_next(iterator, *iterator->sptep);
2376 }
2377
2378 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2379 struct kvm_mmu_page *sp)
2380 {
2381 u64 spte;
2382
2383 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2384
2385 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2386 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2387
2388 mmu_spte_set(sptep, spte);
2389
2390 mmu_page_add_parent_pte(vcpu, sp, sptep);
2391
2392 if (sp->unsync_children || sp->unsync)
2393 mark_unsync(sptep);
2394 }
2395
2396 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2397 unsigned direct_access)
2398 {
2399 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2400 struct kvm_mmu_page *child;
2401
2402 /*
2403 * For the direct sp, if the guest pte's dirty bit
2404 * changed form clean to dirty, it will corrupt the
2405 * sp's access: allow writable in the read-only sp,
2406 * so we should update the spte at this point to get
2407 * a new sp with the correct access.
2408 */
2409 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2410 if (child->role.access == direct_access)
2411 return;
2412
2413 drop_parent_pte(child, sptep);
2414 kvm_flush_remote_tlbs(vcpu->kvm);
2415 }
2416 }
2417
2418 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2419 u64 *spte)
2420 {
2421 u64 pte;
2422 struct kvm_mmu_page *child;
2423
2424 pte = *spte;
2425 if (is_shadow_present_pte(pte)) {
2426 if (is_last_spte(pte, sp->role.level)) {
2427 drop_spte(kvm, spte);
2428 if (is_large_pte(pte))
2429 --kvm->stat.lpages;
2430 } else {
2431 child = page_header(pte & PT64_BASE_ADDR_MASK);
2432 drop_parent_pte(child, spte);
2433 }
2434 return true;
2435 }
2436
2437 if (is_mmio_spte(pte))
2438 mmu_spte_clear_no_track(spte);
2439
2440 return false;
2441 }
2442
2443 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2444 struct kvm_mmu_page *sp)
2445 {
2446 unsigned i;
2447
2448 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2449 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2450 }
2451
2452 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2453 {
2454 u64 *sptep;
2455 struct rmap_iterator iter;
2456
2457 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2458 drop_parent_pte(sp, sptep);
2459 }
2460
2461 static int mmu_zap_unsync_children(struct kvm *kvm,
2462 struct kvm_mmu_page *parent,
2463 struct list_head *invalid_list)
2464 {
2465 int i, zapped = 0;
2466 struct mmu_page_path parents;
2467 struct kvm_mmu_pages pages;
2468
2469 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2470 return 0;
2471
2472 while (mmu_unsync_walk(parent, &pages)) {
2473 struct kvm_mmu_page *sp;
2474
2475 for_each_sp(pages, sp, parents, i) {
2476 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2477 mmu_pages_clear_parents(&parents);
2478 zapped++;
2479 }
2480 }
2481
2482 return zapped;
2483 }
2484
2485 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2486 struct list_head *invalid_list)
2487 {
2488 int ret;
2489
2490 trace_kvm_mmu_prepare_zap_page(sp);
2491 ++kvm->stat.mmu_shadow_zapped;
2492 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2493 kvm_mmu_page_unlink_children(kvm, sp);
2494 kvm_mmu_unlink_parents(kvm, sp);
2495
2496 if (!sp->role.invalid && !sp->role.direct)
2497 unaccount_shadowed(kvm, sp);
2498
2499 if (sp->unsync)
2500 kvm_unlink_unsync_page(kvm, sp);
2501 if (!sp->root_count) {
2502 /* Count self */
2503 ret++;
2504 list_move(&sp->link, invalid_list);
2505 kvm_mod_used_mmu_pages(kvm, -1);
2506 } else {
2507 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2508
2509 /*
2510 * The obsolete pages can not be used on any vcpus.
2511 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2512 */
2513 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2514 kvm_reload_remote_mmus(kvm);
2515 }
2516
2517 sp->role.invalid = 1;
2518 return ret;
2519 }
2520
2521 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2522 struct list_head *invalid_list)
2523 {
2524 struct kvm_mmu_page *sp, *nsp;
2525
2526 if (list_empty(invalid_list))
2527 return;
2528
2529 /*
2530 * We need to make sure everyone sees our modifications to
2531 * the page tables and see changes to vcpu->mode here. The barrier
2532 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2533 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2534 *
2535 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2536 * guest mode and/or lockless shadow page table walks.
2537 */
2538 kvm_flush_remote_tlbs(kvm);
2539
2540 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2541 WARN_ON(!sp->role.invalid || sp->root_count);
2542 kvm_mmu_free_page(sp);
2543 }
2544 }
2545
2546 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2547 struct list_head *invalid_list)
2548 {
2549 struct kvm_mmu_page *sp;
2550
2551 if (list_empty(&kvm->arch.active_mmu_pages))
2552 return false;
2553
2554 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2555 struct kvm_mmu_page, link);
2556 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2557
2558 return true;
2559 }
2560
2561 /*
2562 * Changing the number of mmu pages allocated to the vm
2563 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2564 */
2565 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2566 {
2567 LIST_HEAD(invalid_list);
2568
2569 spin_lock(&kvm->mmu_lock);
2570
2571 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2572 /* Need to free some mmu pages to achieve the goal. */
2573 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2574 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2575 break;
2576
2577 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2578 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2579 }
2580
2581 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2582
2583 spin_unlock(&kvm->mmu_lock);
2584 }
2585
2586 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2587 {
2588 struct kvm_mmu_page *sp;
2589 LIST_HEAD(invalid_list);
2590 int r;
2591
2592 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2593 r = 0;
2594 spin_lock(&kvm->mmu_lock);
2595 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2596 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2597 sp->role.word);
2598 r = 1;
2599 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2600 }
2601 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2602 spin_unlock(&kvm->mmu_lock);
2603
2604 return r;
2605 }
2606 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2607
2608 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2609 {
2610 trace_kvm_mmu_unsync_page(sp);
2611 ++vcpu->kvm->stat.mmu_unsync;
2612 sp->unsync = 1;
2613
2614 kvm_mmu_mark_parents_unsync(sp);
2615 }
2616
2617 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2618 bool can_unsync)
2619 {
2620 struct kvm_mmu_page *sp;
2621
2622 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2623 return true;
2624
2625 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2626 if (!can_unsync)
2627 return true;
2628
2629 if (sp->unsync)
2630 continue;
2631
2632 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2633 kvm_unsync_page(vcpu, sp);
2634 }
2635
2636 return false;
2637 }
2638
2639 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2640 {
2641 if (pfn_valid(pfn))
2642 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2643
2644 return true;
2645 }
2646
2647 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2648 unsigned pte_access, int level,
2649 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2650 bool can_unsync, bool host_writable)
2651 {
2652 u64 spte = 0;
2653 int ret = 0;
2654
2655 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2656 return 0;
2657
2658 /*
2659 * For the EPT case, shadow_present_mask is 0 if hardware
2660 * supports exec-only page table entries. In that case,
2661 * ACC_USER_MASK and shadow_user_mask are used to represent
2662 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2663 */
2664 spte |= shadow_present_mask;
2665 if (!speculative)
2666 spte |= shadow_accessed_mask;
2667
2668 if (pte_access & ACC_EXEC_MASK)
2669 spte |= shadow_x_mask;
2670 else
2671 spte |= shadow_nx_mask;
2672
2673 if (pte_access & ACC_USER_MASK)
2674 spte |= shadow_user_mask;
2675
2676 if (level > PT_PAGE_TABLE_LEVEL)
2677 spte |= PT_PAGE_SIZE_MASK;
2678 if (tdp_enabled)
2679 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2680 kvm_is_mmio_pfn(pfn));
2681
2682 if (host_writable)
2683 spte |= SPTE_HOST_WRITEABLE;
2684 else
2685 pte_access &= ~ACC_WRITE_MASK;
2686
2687 spte |= (u64)pfn << PAGE_SHIFT;
2688
2689 if (pte_access & ACC_WRITE_MASK) {
2690
2691 /*
2692 * Other vcpu creates new sp in the window between
2693 * mapping_level() and acquiring mmu-lock. We can
2694 * allow guest to retry the access, the mapping can
2695 * be fixed if guest refault.
2696 */
2697 if (level > PT_PAGE_TABLE_LEVEL &&
2698 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2699 goto done;
2700
2701 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2702
2703 /*
2704 * Optimization: for pte sync, if spte was writable the hash
2705 * lookup is unnecessary (and expensive). Write protection
2706 * is responsibility of mmu_get_page / kvm_sync_page.
2707 * Same reasoning can be applied to dirty page accounting.
2708 */
2709 if (!can_unsync && is_writable_pte(*sptep))
2710 goto set_pte;
2711
2712 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2713 pgprintk("%s: found shadow page for %llx, marking ro\n",
2714 __func__, gfn);
2715 ret = 1;
2716 pte_access &= ~ACC_WRITE_MASK;
2717 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2718 }
2719 }
2720
2721 if (pte_access & ACC_WRITE_MASK) {
2722 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2723 spte |= shadow_dirty_mask;
2724 }
2725
2726 if (speculative)
2727 spte = mark_spte_for_access_track(spte);
2728
2729 set_pte:
2730 if (mmu_spte_update(sptep, spte))
2731 kvm_flush_remote_tlbs(vcpu->kvm);
2732 done:
2733 return ret;
2734 }
2735
2736 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2737 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2738 bool speculative, bool host_writable)
2739 {
2740 int was_rmapped = 0;
2741 int rmap_count;
2742 bool emulate = false;
2743
2744 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2745 *sptep, write_fault, gfn);
2746
2747 if (is_shadow_present_pte(*sptep)) {
2748 /*
2749 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2750 * the parent of the now unreachable PTE.
2751 */
2752 if (level > PT_PAGE_TABLE_LEVEL &&
2753 !is_large_pte(*sptep)) {
2754 struct kvm_mmu_page *child;
2755 u64 pte = *sptep;
2756
2757 child = page_header(pte & PT64_BASE_ADDR_MASK);
2758 drop_parent_pte(child, sptep);
2759 kvm_flush_remote_tlbs(vcpu->kvm);
2760 } else if (pfn != spte_to_pfn(*sptep)) {
2761 pgprintk("hfn old %llx new %llx\n",
2762 spte_to_pfn(*sptep), pfn);
2763 drop_spte(vcpu->kvm, sptep);
2764 kvm_flush_remote_tlbs(vcpu->kvm);
2765 } else
2766 was_rmapped = 1;
2767 }
2768
2769 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2770 true, host_writable)) {
2771 if (write_fault)
2772 emulate = true;
2773 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2774 }
2775
2776 if (unlikely(is_mmio_spte(*sptep)))
2777 emulate = true;
2778
2779 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2780 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2781 is_large_pte(*sptep)? "2MB" : "4kB",
2782 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2783 *sptep, sptep);
2784 if (!was_rmapped && is_large_pte(*sptep))
2785 ++vcpu->kvm->stat.lpages;
2786
2787 if (is_shadow_present_pte(*sptep)) {
2788 if (!was_rmapped) {
2789 rmap_count = rmap_add(vcpu, sptep, gfn);
2790 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2791 rmap_recycle(vcpu, sptep, gfn);
2792 }
2793 }
2794
2795 kvm_release_pfn_clean(pfn);
2796
2797 return emulate;
2798 }
2799
2800 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2801 bool no_dirty_log)
2802 {
2803 struct kvm_memory_slot *slot;
2804
2805 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2806 if (!slot)
2807 return KVM_PFN_ERR_FAULT;
2808
2809 return gfn_to_pfn_memslot_atomic(slot, gfn);
2810 }
2811
2812 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2813 struct kvm_mmu_page *sp,
2814 u64 *start, u64 *end)
2815 {
2816 struct page *pages[PTE_PREFETCH_NUM];
2817 struct kvm_memory_slot *slot;
2818 unsigned access = sp->role.access;
2819 int i, ret;
2820 gfn_t gfn;
2821
2822 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2823 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2824 if (!slot)
2825 return -1;
2826
2827 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2828 if (ret <= 0)
2829 return -1;
2830
2831 for (i = 0; i < ret; i++, gfn++, start++)
2832 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2833 page_to_pfn(pages[i]), true, true);
2834
2835 return 0;
2836 }
2837
2838 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2839 struct kvm_mmu_page *sp, u64 *sptep)
2840 {
2841 u64 *spte, *start = NULL;
2842 int i;
2843
2844 WARN_ON(!sp->role.direct);
2845
2846 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2847 spte = sp->spt + i;
2848
2849 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2850 if (is_shadow_present_pte(*spte) || spte == sptep) {
2851 if (!start)
2852 continue;
2853 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2854 break;
2855 start = NULL;
2856 } else if (!start)
2857 start = spte;
2858 }
2859 }
2860
2861 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2862 {
2863 struct kvm_mmu_page *sp;
2864
2865 /*
2866 * Since it's no accessed bit on EPT, it's no way to
2867 * distinguish between actually accessed translations
2868 * and prefetched, so disable pte prefetch if EPT is
2869 * enabled.
2870 */
2871 if (!shadow_accessed_mask)
2872 return;
2873
2874 sp = page_header(__pa(sptep));
2875 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2876 return;
2877
2878 __direct_pte_prefetch(vcpu, sp, sptep);
2879 }
2880
2881 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2882 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2883 {
2884 struct kvm_shadow_walk_iterator iterator;
2885 struct kvm_mmu_page *sp;
2886 int emulate = 0;
2887 gfn_t pseudo_gfn;
2888
2889 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890 return 0;
2891
2892 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2893 if (iterator.level == level) {
2894 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2895 write, level, gfn, pfn, prefault,
2896 map_writable);
2897 direct_pte_prefetch(vcpu, iterator.sptep);
2898 ++vcpu->stat.pf_fixed;
2899 break;
2900 }
2901
2902 drop_large_spte(vcpu, iterator.sptep);
2903 if (!is_shadow_present_pte(*iterator.sptep)) {
2904 u64 base_addr = iterator.addr;
2905
2906 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2907 pseudo_gfn = base_addr >> PAGE_SHIFT;
2908 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2909 iterator.level - 1, 1, ACC_ALL);
2910
2911 link_shadow_page(vcpu, iterator.sptep, sp);
2912 }
2913 }
2914 return emulate;
2915 }
2916
2917 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2918 {
2919 siginfo_t info;
2920
2921 info.si_signo = SIGBUS;
2922 info.si_errno = 0;
2923 info.si_code = BUS_MCEERR_AR;
2924 info.si_addr = (void __user *)address;
2925 info.si_addr_lsb = PAGE_SHIFT;
2926
2927 send_sig_info(SIGBUS, &info, tsk);
2928 }
2929
2930 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2931 {
2932 /*
2933 * Do not cache the mmio info caused by writing the readonly gfn
2934 * into the spte otherwise read access on readonly gfn also can
2935 * caused mmio page fault and treat it as mmio access.
2936 * Return 1 to tell kvm to emulate it.
2937 */
2938 if (pfn == KVM_PFN_ERR_RO_FAULT)
2939 return 1;
2940
2941 if (pfn == KVM_PFN_ERR_HWPOISON) {
2942 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2943 return 0;
2944 }
2945
2946 return -EFAULT;
2947 }
2948
2949 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2950 gfn_t *gfnp, kvm_pfn_t *pfnp,
2951 int *levelp)
2952 {
2953 kvm_pfn_t pfn = *pfnp;
2954 gfn_t gfn = *gfnp;
2955 int level = *levelp;
2956
2957 /*
2958 * Check if it's a transparent hugepage. If this would be an
2959 * hugetlbfs page, level wouldn't be set to
2960 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2961 * here.
2962 */
2963 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2964 level == PT_PAGE_TABLE_LEVEL &&
2965 PageTransCompoundMap(pfn_to_page(pfn)) &&
2966 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2967 unsigned long mask;
2968 /*
2969 * mmu_notifier_retry was successful and we hold the
2970 * mmu_lock here, so the pmd can't become splitting
2971 * from under us, and in turn
2972 * __split_huge_page_refcount() can't run from under
2973 * us and we can safely transfer the refcount from
2974 * PG_tail to PG_head as we switch the pfn to tail to
2975 * head.
2976 */
2977 *levelp = level = PT_DIRECTORY_LEVEL;
2978 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2979 VM_BUG_ON((gfn & mask) != (pfn & mask));
2980 if (pfn & mask) {
2981 gfn &= ~mask;
2982 *gfnp = gfn;
2983 kvm_release_pfn_clean(pfn);
2984 pfn &= ~mask;
2985 kvm_get_pfn(pfn);
2986 *pfnp = pfn;
2987 }
2988 }
2989 }
2990
2991 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2992 kvm_pfn_t pfn, unsigned access, int *ret_val)
2993 {
2994 /* The pfn is invalid, report the error! */
2995 if (unlikely(is_error_pfn(pfn))) {
2996 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2997 return true;
2998 }
2999
3000 if (unlikely(is_noslot_pfn(pfn)))
3001 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3002
3003 return false;
3004 }
3005
3006 static bool page_fault_can_be_fast(u32 error_code)
3007 {
3008 /*
3009 * Do not fix the mmio spte with invalid generation number which
3010 * need to be updated by slow page fault path.
3011 */
3012 if (unlikely(error_code & PFERR_RSVD_MASK))
3013 return false;
3014
3015 /* See if the page fault is due to an NX violation */
3016 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3017 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3018 return false;
3019
3020 /*
3021 * #PF can be fast if:
3022 * 1. The shadow page table entry is not present, which could mean that
3023 * the fault is potentially caused by access tracking (if enabled).
3024 * 2. The shadow page table entry is present and the fault
3025 * is caused by write-protect, that means we just need change the W
3026 * bit of the spte which can be done out of mmu-lock.
3027 *
3028 * However, if access tracking is disabled we know that a non-present
3029 * page must be a genuine page fault where we have to create a new SPTE.
3030 * So, if access tracking is disabled, we return true only for write
3031 * accesses to a present page.
3032 */
3033
3034 return shadow_acc_track_mask != 0 ||
3035 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3036 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3037 }
3038
3039 /*
3040 * Returns true if the SPTE was fixed successfully. Otherwise,
3041 * someone else modified the SPTE from its original value.
3042 */
3043 static bool
3044 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3045 u64 *sptep, u64 old_spte, u64 new_spte)
3046 {
3047 gfn_t gfn;
3048
3049 WARN_ON(!sp->role.direct);
3050
3051 /*
3052 * Theoretically we could also set dirty bit (and flush TLB) here in
3053 * order to eliminate unnecessary PML logging. See comments in
3054 * set_spte. But fast_page_fault is very unlikely to happen with PML
3055 * enabled, so we do not do this. This might result in the same GPA
3056 * to be logged in PML buffer again when the write really happens, and
3057 * eventually to be called by mark_page_dirty twice. But it's also no
3058 * harm. This also avoids the TLB flush needed after setting dirty bit
3059 * so non-PML cases won't be impacted.
3060 *
3061 * Compare with set_spte where instead shadow_dirty_mask is set.
3062 */
3063 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3064 return false;
3065
3066 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3067 /*
3068 * The gfn of direct spte is stable since it is
3069 * calculated by sp->gfn.
3070 */
3071 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3072 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3073 }
3074
3075 return true;
3076 }
3077
3078 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3079 {
3080 if (fault_err_code & PFERR_FETCH_MASK)
3081 return is_executable_pte(spte);
3082
3083 if (fault_err_code & PFERR_WRITE_MASK)
3084 return is_writable_pte(spte);
3085
3086 /* Fault was on Read access */
3087 return spte & PT_PRESENT_MASK;
3088 }
3089
3090 /*
3091 * Return value:
3092 * - true: let the vcpu to access on the same address again.
3093 * - false: let the real page fault path to fix it.
3094 */
3095 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3096 u32 error_code)
3097 {
3098 struct kvm_shadow_walk_iterator iterator;
3099 struct kvm_mmu_page *sp;
3100 bool fault_handled = false;
3101 u64 spte = 0ull;
3102 uint retry_count = 0;
3103
3104 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3105 return false;
3106
3107 if (!page_fault_can_be_fast(error_code))
3108 return false;
3109
3110 walk_shadow_page_lockless_begin(vcpu);
3111
3112 do {
3113 u64 new_spte;
3114
3115 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3116 if (!is_shadow_present_pte(spte) ||
3117 iterator.level < level)
3118 break;
3119
3120 sp = page_header(__pa(iterator.sptep));
3121 if (!is_last_spte(spte, sp->role.level))
3122 break;
3123
3124 /*
3125 * Check whether the memory access that caused the fault would
3126 * still cause it if it were to be performed right now. If not,
3127 * then this is a spurious fault caused by TLB lazily flushed,
3128 * or some other CPU has already fixed the PTE after the
3129 * current CPU took the fault.
3130 *
3131 * Need not check the access of upper level table entries since
3132 * they are always ACC_ALL.
3133 */
3134 if (is_access_allowed(error_code, spte)) {
3135 fault_handled = true;
3136 break;
3137 }
3138
3139 new_spte = spte;
3140
3141 if (is_access_track_spte(spte))
3142 new_spte = restore_acc_track_spte(new_spte);
3143
3144 /*
3145 * Currently, to simplify the code, write-protection can
3146 * be removed in the fast path only if the SPTE was
3147 * write-protected for dirty-logging or access tracking.
3148 */
3149 if ((error_code & PFERR_WRITE_MASK) &&
3150 spte_can_locklessly_be_made_writable(spte))
3151 {
3152 new_spte |= PT_WRITABLE_MASK;
3153
3154 /*
3155 * Do not fix write-permission on the large spte. Since
3156 * we only dirty the first page into the dirty-bitmap in
3157 * fast_pf_fix_direct_spte(), other pages are missed
3158 * if its slot has dirty logging enabled.
3159 *
3160 * Instead, we let the slow page fault path create a
3161 * normal spte to fix the access.
3162 *
3163 * See the comments in kvm_arch_commit_memory_region().
3164 */
3165 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3166 break;
3167 }
3168
3169 /* Verify that the fault can be handled in the fast path */
3170 if (new_spte == spte ||
3171 !is_access_allowed(error_code, new_spte))
3172 break;
3173
3174 /*
3175 * Currently, fast page fault only works for direct mapping
3176 * since the gfn is not stable for indirect shadow page. See
3177 * Documentation/virtual/kvm/locking.txt to get more detail.
3178 */
3179 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3180 iterator.sptep, spte,
3181 new_spte);
3182 if (fault_handled)
3183 break;
3184
3185 if (++retry_count > 4) {
3186 printk_once(KERN_WARNING
3187 "kvm: Fast #PF retrying more than 4 times.\n");
3188 break;
3189 }
3190
3191 } while (true);
3192
3193 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3194 spte, fault_handled);
3195 walk_shadow_page_lockless_end(vcpu);
3196
3197 return fault_handled;
3198 }
3199
3200 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3201 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3202 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3203
3204 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3205 gfn_t gfn, bool prefault)
3206 {
3207 int r;
3208 int level;
3209 bool force_pt_level = false;
3210 kvm_pfn_t pfn;
3211 unsigned long mmu_seq;
3212 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3213
3214 level = mapping_level(vcpu, gfn, &force_pt_level);
3215 if (likely(!force_pt_level)) {
3216 /*
3217 * This path builds a PAE pagetable - so we can map
3218 * 2mb pages at maximum. Therefore check if the level
3219 * is larger than that.
3220 */
3221 if (level > PT_DIRECTORY_LEVEL)
3222 level = PT_DIRECTORY_LEVEL;
3223
3224 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3225 }
3226
3227 if (fast_page_fault(vcpu, v, level, error_code))
3228 return 0;
3229
3230 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3231 smp_rmb();
3232
3233 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3234 return 0;
3235
3236 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3237 return r;
3238
3239 spin_lock(&vcpu->kvm->mmu_lock);
3240 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3241 goto out_unlock;
3242 make_mmu_pages_available(vcpu);
3243 if (likely(!force_pt_level))
3244 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3245 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3246 spin_unlock(&vcpu->kvm->mmu_lock);
3247
3248 return r;
3249
3250 out_unlock:
3251 spin_unlock(&vcpu->kvm->mmu_lock);
3252 kvm_release_pfn_clean(pfn);
3253 return 0;
3254 }
3255
3256
3257 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3258 {
3259 int i;
3260 struct kvm_mmu_page *sp;
3261 LIST_HEAD(invalid_list);
3262
3263 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3264 return;
3265
3266 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3267 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3268 vcpu->arch.mmu.direct_map)) {
3269 hpa_t root = vcpu->arch.mmu.root_hpa;
3270
3271 spin_lock(&vcpu->kvm->mmu_lock);
3272 sp = page_header(root);
3273 --sp->root_count;
3274 if (!sp->root_count && sp->role.invalid) {
3275 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3276 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3277 }
3278 spin_unlock(&vcpu->kvm->mmu_lock);
3279 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3280 return;
3281 }
3282
3283 spin_lock(&vcpu->kvm->mmu_lock);
3284 for (i = 0; i < 4; ++i) {
3285 hpa_t root = vcpu->arch.mmu.pae_root[i];
3286
3287 if (root) {
3288 root &= PT64_BASE_ADDR_MASK;
3289 sp = page_header(root);
3290 --sp->root_count;
3291 if (!sp->root_count && sp->role.invalid)
3292 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3293 &invalid_list);
3294 }
3295 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3296 }
3297 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3298 spin_unlock(&vcpu->kvm->mmu_lock);
3299 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3300 }
3301
3302 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3303 {
3304 int ret = 0;
3305
3306 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3308 ret = 1;
3309 }
3310
3311 return ret;
3312 }
3313
3314 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3315 {
3316 struct kvm_mmu_page *sp;
3317 unsigned i;
3318
3319 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3320 spin_lock(&vcpu->kvm->mmu_lock);
3321 make_mmu_pages_available(vcpu);
3322 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3323 ++sp->root_count;
3324 spin_unlock(&vcpu->kvm->mmu_lock);
3325 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3326 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3327 for (i = 0; i < 4; ++i) {
3328 hpa_t root = vcpu->arch.mmu.pae_root[i];
3329
3330 MMU_WARN_ON(VALID_PAGE(root));
3331 spin_lock(&vcpu->kvm->mmu_lock);
3332 make_mmu_pages_available(vcpu);
3333 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3334 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3335 root = __pa(sp->spt);
3336 ++sp->root_count;
3337 spin_unlock(&vcpu->kvm->mmu_lock);
3338 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3339 }
3340 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3341 } else
3342 BUG();
3343
3344 return 0;
3345 }
3346
3347 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3348 {
3349 struct kvm_mmu_page *sp;
3350 u64 pdptr, pm_mask;
3351 gfn_t root_gfn;
3352 int i;
3353
3354 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3355
3356 if (mmu_check_root(vcpu, root_gfn))
3357 return 1;
3358
3359 /*
3360 * Do we shadow a long mode page table? If so we need to
3361 * write-protect the guests page table root.
3362 */
3363 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3364 hpa_t root = vcpu->arch.mmu.root_hpa;
3365
3366 MMU_WARN_ON(VALID_PAGE(root));
3367
3368 spin_lock(&vcpu->kvm->mmu_lock);
3369 make_mmu_pages_available(vcpu);
3370 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3371 0, ACC_ALL);
3372 root = __pa(sp->spt);
3373 ++sp->root_count;
3374 spin_unlock(&vcpu->kvm->mmu_lock);
3375 vcpu->arch.mmu.root_hpa = root;
3376 return 0;
3377 }
3378
3379 /*
3380 * We shadow a 32 bit page table. This may be a legacy 2-level
3381 * or a PAE 3-level page table. In either case we need to be aware that
3382 * the shadow page table may be a PAE or a long mode page table.
3383 */
3384 pm_mask = PT_PRESENT_MASK;
3385 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3386 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3387
3388 for (i = 0; i < 4; ++i) {
3389 hpa_t root = vcpu->arch.mmu.pae_root[i];
3390
3391 MMU_WARN_ON(VALID_PAGE(root));
3392 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3393 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3394 if (!(pdptr & PT_PRESENT_MASK)) {
3395 vcpu->arch.mmu.pae_root[i] = 0;
3396 continue;
3397 }
3398 root_gfn = pdptr >> PAGE_SHIFT;
3399 if (mmu_check_root(vcpu, root_gfn))
3400 return 1;
3401 }
3402 spin_lock(&vcpu->kvm->mmu_lock);
3403 make_mmu_pages_available(vcpu);
3404 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3405 0, ACC_ALL);
3406 root = __pa(sp->spt);
3407 ++sp->root_count;
3408 spin_unlock(&vcpu->kvm->mmu_lock);
3409
3410 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3411 }
3412 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3413
3414 /*
3415 * If we shadow a 32 bit page table with a long mode page
3416 * table we enter this path.
3417 */
3418 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3419 if (vcpu->arch.mmu.lm_root == NULL) {
3420 /*
3421 * The additional page necessary for this is only
3422 * allocated on demand.
3423 */
3424
3425 u64 *lm_root;
3426
3427 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3428 if (lm_root == NULL)
3429 return 1;
3430
3431 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3432
3433 vcpu->arch.mmu.lm_root = lm_root;
3434 }
3435
3436 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3437 }
3438
3439 return 0;
3440 }
3441
3442 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3443 {
3444 if (vcpu->arch.mmu.direct_map)
3445 return mmu_alloc_direct_roots(vcpu);
3446 else
3447 return mmu_alloc_shadow_roots(vcpu);
3448 }
3449
3450 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3451 {
3452 int i;
3453 struct kvm_mmu_page *sp;
3454
3455 if (vcpu->arch.mmu.direct_map)
3456 return;
3457
3458 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3459 return;
3460
3461 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3462 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3463 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3464 hpa_t root = vcpu->arch.mmu.root_hpa;
3465 sp = page_header(root);
3466 mmu_sync_children(vcpu, sp);
3467 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3468 return;
3469 }
3470 for (i = 0; i < 4; ++i) {
3471 hpa_t root = vcpu->arch.mmu.pae_root[i];
3472
3473 if (root && VALID_PAGE(root)) {
3474 root &= PT64_BASE_ADDR_MASK;
3475 sp = page_header(root);
3476 mmu_sync_children(vcpu, sp);
3477 }
3478 }
3479 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3480 }
3481
3482 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3483 {
3484 spin_lock(&vcpu->kvm->mmu_lock);
3485 mmu_sync_roots(vcpu);
3486 spin_unlock(&vcpu->kvm->mmu_lock);
3487 }
3488 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3489
3490 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3491 u32 access, struct x86_exception *exception)
3492 {
3493 if (exception)
3494 exception->error_code = 0;
3495 return vaddr;
3496 }
3497
3498 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3499 u32 access,
3500 struct x86_exception *exception)
3501 {
3502 if (exception)
3503 exception->error_code = 0;
3504 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3505 }
3506
3507 static bool
3508 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3509 {
3510 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3511
3512 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3513 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3514 }
3515
3516 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3517 {
3518 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3519 }
3520
3521 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3522 {
3523 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3524 }
3525
3526 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3527 {
3528 if (direct)
3529 return vcpu_match_mmio_gpa(vcpu, addr);
3530
3531 return vcpu_match_mmio_gva(vcpu, addr);
3532 }
3533
3534 /* return true if reserved bit is detected on spte. */
3535 static bool
3536 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3537 {
3538 struct kvm_shadow_walk_iterator iterator;
3539 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3540 int root, leaf;
3541 bool reserved = false;
3542
3543 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3544 goto exit;
3545
3546 walk_shadow_page_lockless_begin(vcpu);
3547
3548 for (shadow_walk_init(&iterator, vcpu, addr),
3549 leaf = root = iterator.level;
3550 shadow_walk_okay(&iterator);
3551 __shadow_walk_next(&iterator, spte)) {
3552 spte = mmu_spte_get_lockless(iterator.sptep);
3553
3554 sptes[leaf - 1] = spte;
3555 leaf--;
3556
3557 if (!is_shadow_present_pte(spte))
3558 break;
3559
3560 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3561 iterator.level);
3562 }
3563
3564 walk_shadow_page_lockless_end(vcpu);
3565
3566 if (reserved) {
3567 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3568 __func__, addr);
3569 while (root > leaf) {
3570 pr_err("------ spte 0x%llx level %d.\n",
3571 sptes[root - 1], root);
3572 root--;
3573 }
3574 }
3575 exit:
3576 *sptep = spte;
3577 return reserved;
3578 }
3579
3580 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3581 {
3582 u64 spte;
3583 bool reserved;
3584
3585 if (mmio_info_in_cache(vcpu, addr, direct))
3586 return RET_MMIO_PF_EMULATE;
3587
3588 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3589 if (WARN_ON(reserved))
3590 return RET_MMIO_PF_BUG;
3591
3592 if (is_mmio_spte(spte)) {
3593 gfn_t gfn = get_mmio_spte_gfn(spte);
3594 unsigned access = get_mmio_spte_access(spte);
3595
3596 if (!check_mmio_spte(vcpu, spte))
3597 return RET_MMIO_PF_INVALID;
3598
3599 if (direct)
3600 addr = 0;
3601
3602 trace_handle_mmio_page_fault(addr, gfn, access);
3603 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3604 return RET_MMIO_PF_EMULATE;
3605 }
3606
3607 /*
3608 * If the page table is zapped by other cpus, let CPU fault again on
3609 * the address.
3610 */
3611 return RET_MMIO_PF_RETRY;
3612 }
3613 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3614
3615 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3616 u32 error_code, gfn_t gfn)
3617 {
3618 if (unlikely(error_code & PFERR_RSVD_MASK))
3619 return false;
3620
3621 if (!(error_code & PFERR_PRESENT_MASK) ||
3622 !(error_code & PFERR_WRITE_MASK))
3623 return false;
3624
3625 /*
3626 * guest is writing the page which is write tracked which can
3627 * not be fixed by page fault handler.
3628 */
3629 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3630 return true;
3631
3632 return false;
3633 }
3634
3635 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3636 {
3637 struct kvm_shadow_walk_iterator iterator;
3638 u64 spte;
3639
3640 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3641 return;
3642
3643 walk_shadow_page_lockless_begin(vcpu);
3644 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3645 clear_sp_write_flooding_count(iterator.sptep);
3646 if (!is_shadow_present_pte(spte))
3647 break;
3648 }
3649 walk_shadow_page_lockless_end(vcpu);
3650 }
3651
3652 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3653 u32 error_code, bool prefault)
3654 {
3655 gfn_t gfn = gva >> PAGE_SHIFT;
3656 int r;
3657
3658 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3659
3660 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3661 return 1;
3662
3663 r = mmu_topup_memory_caches(vcpu);
3664 if (r)
3665 return r;
3666
3667 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3668
3669
3670 return nonpaging_map(vcpu, gva & PAGE_MASK,
3671 error_code, gfn, prefault);
3672 }
3673
3674 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3675 {
3676 struct kvm_arch_async_pf arch;
3677
3678 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3679 arch.gfn = gfn;
3680 arch.direct_map = vcpu->arch.mmu.direct_map;
3681 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3682
3683 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3684 }
3685
3686 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3687 {
3688 if (unlikely(!lapic_in_kernel(vcpu) ||
3689 kvm_event_needs_reinjection(vcpu)))
3690 return false;
3691
3692 return kvm_x86_ops->interrupt_allowed(vcpu);
3693 }
3694
3695 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3696 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3697 {
3698 struct kvm_memory_slot *slot;
3699 bool async;
3700
3701 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3702 async = false;
3703 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3704 if (!async)
3705 return false; /* *pfn has correct page already */
3706
3707 if (!prefault && can_do_async_pf(vcpu)) {
3708 trace_kvm_try_async_get_page(gva, gfn);
3709 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3710 trace_kvm_async_pf_doublefault(gva, gfn);
3711 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3712 return true;
3713 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3714 return true;
3715 }
3716
3717 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3718 return false;
3719 }
3720
3721 static bool
3722 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3723 {
3724 int page_num = KVM_PAGES_PER_HPAGE(level);
3725
3726 gfn &= ~(page_num - 1);
3727
3728 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3729 }
3730
3731 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3732 bool prefault)
3733 {
3734 kvm_pfn_t pfn;
3735 int r;
3736 int level;
3737 bool force_pt_level;
3738 gfn_t gfn = gpa >> PAGE_SHIFT;
3739 unsigned long mmu_seq;
3740 int write = error_code & PFERR_WRITE_MASK;
3741 bool map_writable;
3742
3743 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3744
3745 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3746 return 1;
3747
3748 r = mmu_topup_memory_caches(vcpu);
3749 if (r)
3750 return r;
3751
3752 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3753 PT_DIRECTORY_LEVEL);
3754 level = mapping_level(vcpu, gfn, &force_pt_level);
3755 if (likely(!force_pt_level)) {
3756 if (level > PT_DIRECTORY_LEVEL &&
3757 !check_hugepage_cache_consistency(vcpu, gfn, level))
3758 level = PT_DIRECTORY_LEVEL;
3759 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3760 }
3761
3762 if (fast_page_fault(vcpu, gpa, level, error_code))
3763 return 0;
3764
3765 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3766 smp_rmb();
3767
3768 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3769 return 0;
3770
3771 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3772 return r;
3773
3774 spin_lock(&vcpu->kvm->mmu_lock);
3775 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3776 goto out_unlock;
3777 make_mmu_pages_available(vcpu);
3778 if (likely(!force_pt_level))
3779 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3780 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3781 spin_unlock(&vcpu->kvm->mmu_lock);
3782
3783 return r;
3784
3785 out_unlock:
3786 spin_unlock(&vcpu->kvm->mmu_lock);
3787 kvm_release_pfn_clean(pfn);
3788 return 0;
3789 }
3790
3791 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3792 struct kvm_mmu *context)
3793 {
3794 context->page_fault = nonpaging_page_fault;
3795 context->gva_to_gpa = nonpaging_gva_to_gpa;
3796 context->sync_page = nonpaging_sync_page;
3797 context->invlpg = nonpaging_invlpg;
3798 context->update_pte = nonpaging_update_pte;
3799 context->root_level = 0;
3800 context->shadow_root_level = PT32E_ROOT_LEVEL;
3801 context->root_hpa = INVALID_PAGE;
3802 context->direct_map = true;
3803 context->nx = false;
3804 }
3805
3806 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3807 {
3808 mmu_free_roots(vcpu);
3809 }
3810
3811 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3812 {
3813 return kvm_read_cr3(vcpu);
3814 }
3815
3816 static void inject_page_fault(struct kvm_vcpu *vcpu,
3817 struct x86_exception *fault)
3818 {
3819 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3820 }
3821
3822 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3823 unsigned access, int *nr_present)
3824 {
3825 if (unlikely(is_mmio_spte(*sptep))) {
3826 if (gfn != get_mmio_spte_gfn(*sptep)) {
3827 mmu_spte_clear_no_track(sptep);
3828 return true;
3829 }
3830
3831 (*nr_present)++;
3832 mark_mmio_spte(vcpu, sptep, gfn, access);
3833 return true;
3834 }
3835
3836 return false;
3837 }
3838
3839 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3840 unsigned level, unsigned gpte)
3841 {
3842 /*
3843 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3844 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3845 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3846 */
3847 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3848
3849 /*
3850 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3851 * If it is clear, there are no large pages at this level, so clear
3852 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3853 */
3854 gpte &= level - mmu->last_nonleaf_level;
3855
3856 return gpte & PT_PAGE_SIZE_MASK;
3857 }
3858
3859 #define PTTYPE_EPT 18 /* arbitrary */
3860 #define PTTYPE PTTYPE_EPT
3861 #include "paging_tmpl.h"
3862 #undef PTTYPE
3863
3864 #define PTTYPE 64
3865 #include "paging_tmpl.h"
3866 #undef PTTYPE
3867
3868 #define PTTYPE 32
3869 #include "paging_tmpl.h"
3870 #undef PTTYPE
3871
3872 static void
3873 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3874 struct rsvd_bits_validate *rsvd_check,
3875 int maxphyaddr, int level, bool nx, bool gbpages,
3876 bool pse, bool amd)
3877 {
3878 u64 exb_bit_rsvd = 0;
3879 u64 gbpages_bit_rsvd = 0;
3880 u64 nonleaf_bit8_rsvd = 0;
3881
3882 rsvd_check->bad_mt_xwr = 0;
3883
3884 if (!nx)
3885 exb_bit_rsvd = rsvd_bits(63, 63);
3886 if (!gbpages)
3887 gbpages_bit_rsvd = rsvd_bits(7, 7);
3888
3889 /*
3890 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3891 * leaf entries) on AMD CPUs only.
3892 */
3893 if (amd)
3894 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3895
3896 switch (level) {
3897 case PT32_ROOT_LEVEL:
3898 /* no rsvd bits for 2 level 4K page table entries */
3899 rsvd_check->rsvd_bits_mask[0][1] = 0;
3900 rsvd_check->rsvd_bits_mask[0][0] = 0;
3901 rsvd_check->rsvd_bits_mask[1][0] =
3902 rsvd_check->rsvd_bits_mask[0][0];
3903
3904 if (!pse) {
3905 rsvd_check->rsvd_bits_mask[1][1] = 0;
3906 break;
3907 }
3908
3909 if (is_cpuid_PSE36())
3910 /* 36bits PSE 4MB page */
3911 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3912 else
3913 /* 32 bits PSE 4MB page */
3914 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3915 break;
3916 case PT32E_ROOT_LEVEL:
3917 rsvd_check->rsvd_bits_mask[0][2] =
3918 rsvd_bits(maxphyaddr, 63) |
3919 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3920 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3921 rsvd_bits(maxphyaddr, 62); /* PDE */
3922 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3923 rsvd_bits(maxphyaddr, 62); /* PTE */
3924 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3925 rsvd_bits(maxphyaddr, 62) |
3926 rsvd_bits(13, 20); /* large page */
3927 rsvd_check->rsvd_bits_mask[1][0] =
3928 rsvd_check->rsvd_bits_mask[0][0];
3929 break;
3930 case PT64_ROOT_LEVEL:
3931 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3932 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3933 rsvd_bits(maxphyaddr, 51);
3934 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3935 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3936 rsvd_bits(maxphyaddr, 51);
3937 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3938 rsvd_bits(maxphyaddr, 51);
3939 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3940 rsvd_bits(maxphyaddr, 51);
3941 rsvd_check->rsvd_bits_mask[1][3] =
3942 rsvd_check->rsvd_bits_mask[0][3];
3943 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3944 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3945 rsvd_bits(13, 29);
3946 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3947 rsvd_bits(maxphyaddr, 51) |
3948 rsvd_bits(13, 20); /* large page */
3949 rsvd_check->rsvd_bits_mask[1][0] =
3950 rsvd_check->rsvd_bits_mask[0][0];
3951 break;
3952 }
3953 }
3954
3955 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3956 struct kvm_mmu *context)
3957 {
3958 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3959 cpuid_maxphyaddr(vcpu), context->root_level,
3960 context->nx, guest_cpuid_has_gbpages(vcpu),
3961 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3962 }
3963
3964 static void
3965 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3966 int maxphyaddr, bool execonly)
3967 {
3968 u64 bad_mt_xwr;
3969
3970 rsvd_check->rsvd_bits_mask[0][3] =
3971 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3972 rsvd_check->rsvd_bits_mask[0][2] =
3973 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3974 rsvd_check->rsvd_bits_mask[0][1] =
3975 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3976 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3977
3978 /* large page */
3979 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3980 rsvd_check->rsvd_bits_mask[1][2] =
3981 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3982 rsvd_check->rsvd_bits_mask[1][1] =
3983 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3984 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3985
3986 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3987 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3988 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3989 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3990 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3991 if (!execonly) {
3992 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3993 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3994 }
3995 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3996 }
3997
3998 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3999 struct kvm_mmu *context, bool execonly)
4000 {
4001 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4002 cpuid_maxphyaddr(vcpu), execonly);
4003 }
4004
4005 /*
4006 * the page table on host is the shadow page table for the page
4007 * table in guest or amd nested guest, its mmu features completely
4008 * follow the features in guest.
4009 */
4010 void
4011 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4012 {
4013 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4014
4015 /*
4016 * Passing "true" to the last argument is okay; it adds a check
4017 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4018 */
4019 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4020 boot_cpu_data.x86_phys_bits,
4021 context->shadow_root_level, uses_nx,
4022 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4023 true);
4024 }
4025 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4026
4027 static inline bool boot_cpu_is_amd(void)
4028 {
4029 WARN_ON_ONCE(!tdp_enabled);
4030 return shadow_x_mask == 0;
4031 }
4032
4033 /*
4034 * the direct page table on host, use as much mmu features as
4035 * possible, however, kvm currently does not do execution-protection.
4036 */
4037 static void
4038 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4039 struct kvm_mmu *context)
4040 {
4041 if (boot_cpu_is_amd())
4042 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4043 boot_cpu_data.x86_phys_bits,
4044 context->shadow_root_level, false,
4045 boot_cpu_has(X86_FEATURE_GBPAGES),
4046 true, true);
4047 else
4048 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4049 boot_cpu_data.x86_phys_bits,
4050 false);
4051
4052 }
4053
4054 /*
4055 * as the comments in reset_shadow_zero_bits_mask() except it
4056 * is the shadow page table for intel nested guest.
4057 */
4058 static void
4059 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4060 struct kvm_mmu *context, bool execonly)
4061 {
4062 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4063 boot_cpu_data.x86_phys_bits, execonly);
4064 }
4065
4066 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4067 struct kvm_mmu *mmu, bool ept)
4068 {
4069 unsigned bit, byte, pfec;
4070 u8 map;
4071 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
4072
4073 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4074 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4075 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4076 pfec = byte << 1;
4077 map = 0;
4078 wf = pfec & PFERR_WRITE_MASK;
4079 uf = pfec & PFERR_USER_MASK;
4080 ff = pfec & PFERR_FETCH_MASK;
4081 /*
4082 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4083 * subject to SMAP restrictions, and cleared otherwise. The
4084 * bit is only meaningful if the SMAP bit is set in CR4.
4085 */
4086 smapf = !(pfec & PFERR_RSVD_MASK);
4087 for (bit = 0; bit < 8; ++bit) {
4088 x = bit & ACC_EXEC_MASK;
4089 w = bit & ACC_WRITE_MASK;
4090 u = bit & ACC_USER_MASK;
4091
4092 if (!ept) {
4093 /* Not really needed: !nx will cause pte.nx to fault */
4094 x |= !mmu->nx;
4095 /* Allow supervisor writes if !cr0.wp */
4096 w |= !is_write_protection(vcpu) && !uf;
4097 /* Disallow supervisor fetches of user code if cr4.smep */
4098 x &= !(cr4_smep && u && !uf);
4099
4100 /*
4101 * SMAP:kernel-mode data accesses from user-mode
4102 * mappings should fault. A fault is considered
4103 * as a SMAP violation if all of the following
4104 * conditions are ture:
4105 * - X86_CR4_SMAP is set in CR4
4106 * - A user page is accessed
4107 * - Page fault in kernel mode
4108 * - if CPL = 3 or X86_EFLAGS_AC is clear
4109 *
4110 * Here, we cover the first three conditions.
4111 * The fourth is computed dynamically in
4112 * permission_fault() and is in smapf.
4113 *
4114 * Also, SMAP does not affect instruction
4115 * fetches, add the !ff check here to make it
4116 * clearer.
4117 */
4118 smap = cr4_smap && u && !uf && !ff;
4119 }
4120
4121 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4122 (smapf && smap);
4123 map |= fault << bit;
4124 }
4125 mmu->permissions[byte] = map;
4126 }
4127 }
4128
4129 /*
4130 * PKU is an additional mechanism by which the paging controls access to
4131 * user-mode addresses based on the value in the PKRU register. Protection
4132 * key violations are reported through a bit in the page fault error code.
4133 * Unlike other bits of the error code, the PK bit is not known at the
4134 * call site of e.g. gva_to_gpa; it must be computed directly in
4135 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4136 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4137 *
4138 * In particular the following conditions come from the error code, the
4139 * page tables and the machine state:
4140 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4141 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4142 * - PK is always zero if U=0 in the page tables
4143 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4144 *
4145 * The PKRU bitmask caches the result of these four conditions. The error
4146 * code (minus the P bit) and the page table's U bit form an index into the
4147 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4148 * with the two bits of the PKRU register corresponding to the protection key.
4149 * For the first three conditions above the bits will be 00, thus masking
4150 * away both AD and WD. For all reads or if the last condition holds, WD
4151 * only will be masked away.
4152 */
4153 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4154 bool ept)
4155 {
4156 unsigned bit;
4157 bool wp;
4158
4159 if (ept) {
4160 mmu->pkru_mask = 0;
4161 return;
4162 }
4163
4164 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4165 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4166 mmu->pkru_mask = 0;
4167 return;
4168 }
4169
4170 wp = is_write_protection(vcpu);
4171
4172 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4173 unsigned pfec, pkey_bits;
4174 bool check_pkey, check_write, ff, uf, wf, pte_user;
4175
4176 pfec = bit << 1;
4177 ff = pfec & PFERR_FETCH_MASK;
4178 uf = pfec & PFERR_USER_MASK;
4179 wf = pfec & PFERR_WRITE_MASK;
4180
4181 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4182 pte_user = pfec & PFERR_RSVD_MASK;
4183
4184 /*
4185 * Only need to check the access which is not an
4186 * instruction fetch and is to a user page.
4187 */
4188 check_pkey = (!ff && pte_user);
4189 /*
4190 * write access is controlled by PKRU if it is a
4191 * user access or CR0.WP = 1.
4192 */
4193 check_write = check_pkey && wf && (uf || wp);
4194
4195 /* PKRU.AD stops both read and write access. */
4196 pkey_bits = !!check_pkey;
4197 /* PKRU.WD stops write access. */
4198 pkey_bits |= (!!check_write) << 1;
4199
4200 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4201 }
4202 }
4203
4204 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4205 {
4206 unsigned root_level = mmu->root_level;
4207
4208 mmu->last_nonleaf_level = root_level;
4209 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4210 mmu->last_nonleaf_level++;
4211 }
4212
4213 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4214 struct kvm_mmu *context,
4215 int level)
4216 {
4217 context->nx = is_nx(vcpu);
4218 context->root_level = level;
4219
4220 reset_rsvds_bits_mask(vcpu, context);
4221 update_permission_bitmask(vcpu, context, false);
4222 update_pkru_bitmask(vcpu, context, false);
4223 update_last_nonleaf_level(vcpu, context);
4224
4225 MMU_WARN_ON(!is_pae(vcpu));
4226 context->page_fault = paging64_page_fault;
4227 context->gva_to_gpa = paging64_gva_to_gpa;
4228 context->sync_page = paging64_sync_page;
4229 context->invlpg = paging64_invlpg;
4230 context->update_pte = paging64_update_pte;
4231 context->shadow_root_level = level;
4232 context->root_hpa = INVALID_PAGE;
4233 context->direct_map = false;
4234 }
4235
4236 static void paging64_init_context(struct kvm_vcpu *vcpu,
4237 struct kvm_mmu *context)
4238 {
4239 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4240 }
4241
4242 static void paging32_init_context(struct kvm_vcpu *vcpu,
4243 struct kvm_mmu *context)
4244 {
4245 context->nx = false;
4246 context->root_level = PT32_ROOT_LEVEL;
4247
4248 reset_rsvds_bits_mask(vcpu, context);
4249 update_permission_bitmask(vcpu, context, false);
4250 update_pkru_bitmask(vcpu, context, false);
4251 update_last_nonleaf_level(vcpu, context);
4252
4253 context->page_fault = paging32_page_fault;
4254 context->gva_to_gpa = paging32_gva_to_gpa;
4255 context->sync_page = paging32_sync_page;
4256 context->invlpg = paging32_invlpg;
4257 context->update_pte = paging32_update_pte;
4258 context->shadow_root_level = PT32E_ROOT_LEVEL;
4259 context->root_hpa = INVALID_PAGE;
4260 context->direct_map = false;
4261 }
4262
4263 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4264 struct kvm_mmu *context)
4265 {
4266 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4267 }
4268
4269 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4270 {
4271 struct kvm_mmu *context = &vcpu->arch.mmu;
4272
4273 context->base_role.word = 0;
4274 context->base_role.smm = is_smm(vcpu);
4275 context->page_fault = tdp_page_fault;
4276 context->sync_page = nonpaging_sync_page;
4277 context->invlpg = nonpaging_invlpg;
4278 context->update_pte = nonpaging_update_pte;
4279 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4280 context->root_hpa = INVALID_PAGE;
4281 context->direct_map = true;
4282 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4283 context->get_cr3 = get_cr3;
4284 context->get_pdptr = kvm_pdptr_read;
4285 context->inject_page_fault = kvm_inject_page_fault;
4286
4287 if (!is_paging(vcpu)) {
4288 context->nx = false;
4289 context->gva_to_gpa = nonpaging_gva_to_gpa;
4290 context->root_level = 0;
4291 } else if (is_long_mode(vcpu)) {
4292 context->nx = is_nx(vcpu);
4293 context->root_level = PT64_ROOT_LEVEL;
4294 reset_rsvds_bits_mask(vcpu, context);
4295 context->gva_to_gpa = paging64_gva_to_gpa;
4296 } else if (is_pae(vcpu)) {
4297 context->nx = is_nx(vcpu);
4298 context->root_level = PT32E_ROOT_LEVEL;
4299 reset_rsvds_bits_mask(vcpu, context);
4300 context->gva_to_gpa = paging64_gva_to_gpa;
4301 } else {
4302 context->nx = false;
4303 context->root_level = PT32_ROOT_LEVEL;
4304 reset_rsvds_bits_mask(vcpu, context);
4305 context->gva_to_gpa = paging32_gva_to_gpa;
4306 }
4307
4308 update_permission_bitmask(vcpu, context, false);
4309 update_pkru_bitmask(vcpu, context, false);
4310 update_last_nonleaf_level(vcpu, context);
4311 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4312 }
4313
4314 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4315 {
4316 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4317 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4318 struct kvm_mmu *context = &vcpu->arch.mmu;
4319
4320 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4321
4322 if (!is_paging(vcpu))
4323 nonpaging_init_context(vcpu, context);
4324 else if (is_long_mode(vcpu))
4325 paging64_init_context(vcpu, context);
4326 else if (is_pae(vcpu))
4327 paging32E_init_context(vcpu, context);
4328 else
4329 paging32_init_context(vcpu, context);
4330
4331 context->base_role.nxe = is_nx(vcpu);
4332 context->base_role.cr4_pae = !!is_pae(vcpu);
4333 context->base_role.cr0_wp = is_write_protection(vcpu);
4334 context->base_role.smep_andnot_wp
4335 = smep && !is_write_protection(vcpu);
4336 context->base_role.smap_andnot_wp
4337 = smap && !is_write_protection(vcpu);
4338 context->base_role.smm = is_smm(vcpu);
4339 reset_shadow_zero_bits_mask(vcpu, context);
4340 }
4341 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4342
4343 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4344 {
4345 struct kvm_mmu *context = &vcpu->arch.mmu;
4346
4347 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4348
4349 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4350
4351 context->nx = true;
4352 context->page_fault = ept_page_fault;
4353 context->gva_to_gpa = ept_gva_to_gpa;
4354 context->sync_page = ept_sync_page;
4355 context->invlpg = ept_invlpg;
4356 context->update_pte = ept_update_pte;
4357 context->root_level = context->shadow_root_level;
4358 context->root_hpa = INVALID_PAGE;
4359 context->direct_map = false;
4360
4361 update_permission_bitmask(vcpu, context, true);
4362 update_pkru_bitmask(vcpu, context, true);
4363 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4364 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4365 }
4366 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4367
4368 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4369 {
4370 struct kvm_mmu *context = &vcpu->arch.mmu;
4371
4372 kvm_init_shadow_mmu(vcpu);
4373 context->set_cr3 = kvm_x86_ops->set_cr3;
4374 context->get_cr3 = get_cr3;
4375 context->get_pdptr = kvm_pdptr_read;
4376 context->inject_page_fault = kvm_inject_page_fault;
4377 }
4378
4379 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4380 {
4381 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4382
4383 g_context->get_cr3 = get_cr3;
4384 g_context->get_pdptr = kvm_pdptr_read;
4385 g_context->inject_page_fault = kvm_inject_page_fault;
4386
4387 /*
4388 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4389 * L1's nested page tables (e.g. EPT12). The nested translation
4390 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4391 * L2's page tables as the first level of translation and L1's
4392 * nested page tables as the second level of translation. Basically
4393 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4394 */
4395 if (!is_paging(vcpu)) {
4396 g_context->nx = false;
4397 g_context->root_level = 0;
4398 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4399 } else if (is_long_mode(vcpu)) {
4400 g_context->nx = is_nx(vcpu);
4401 g_context->root_level = PT64_ROOT_LEVEL;
4402 reset_rsvds_bits_mask(vcpu, g_context);
4403 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4404 } else if (is_pae(vcpu)) {
4405 g_context->nx = is_nx(vcpu);
4406 g_context->root_level = PT32E_ROOT_LEVEL;
4407 reset_rsvds_bits_mask(vcpu, g_context);
4408 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4409 } else {
4410 g_context->nx = false;
4411 g_context->root_level = PT32_ROOT_LEVEL;
4412 reset_rsvds_bits_mask(vcpu, g_context);
4413 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4414 }
4415
4416 update_permission_bitmask(vcpu, g_context, false);
4417 update_pkru_bitmask(vcpu, g_context, false);
4418 update_last_nonleaf_level(vcpu, g_context);
4419 }
4420
4421 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4422 {
4423 if (mmu_is_nested(vcpu))
4424 init_kvm_nested_mmu(vcpu);
4425 else if (tdp_enabled)
4426 init_kvm_tdp_mmu(vcpu);
4427 else
4428 init_kvm_softmmu(vcpu);
4429 }
4430
4431 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4432 {
4433 kvm_mmu_unload(vcpu);
4434 init_kvm_mmu(vcpu);
4435 }
4436 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4437
4438 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4439 {
4440 int r;
4441
4442 r = mmu_topup_memory_caches(vcpu);
4443 if (r)
4444 goto out;
4445 r = mmu_alloc_roots(vcpu);
4446 kvm_mmu_sync_roots(vcpu);
4447 if (r)
4448 goto out;
4449 /* set_cr3() should ensure TLB has been flushed */
4450 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4451 out:
4452 return r;
4453 }
4454 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4455
4456 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4457 {
4458 mmu_free_roots(vcpu);
4459 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4460 }
4461 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4462
4463 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4464 struct kvm_mmu_page *sp, u64 *spte,
4465 const void *new)
4466 {
4467 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4468 ++vcpu->kvm->stat.mmu_pde_zapped;
4469 return;
4470 }
4471
4472 ++vcpu->kvm->stat.mmu_pte_updated;
4473 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4474 }
4475
4476 static bool need_remote_flush(u64 old, u64 new)
4477 {
4478 if (!is_shadow_present_pte(old))
4479 return false;
4480 if (!is_shadow_present_pte(new))
4481 return true;
4482 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4483 return true;
4484 old ^= shadow_nx_mask;
4485 new ^= shadow_nx_mask;
4486 return (old & ~new & PT64_PERM_MASK) != 0;
4487 }
4488
4489 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4490 const u8 *new, int *bytes)
4491 {
4492 u64 gentry;
4493 int r;
4494
4495 /*
4496 * Assume that the pte write on a page table of the same type
4497 * as the current vcpu paging mode since we update the sptes only
4498 * when they have the same mode.
4499 */
4500 if (is_pae(vcpu) && *bytes == 4) {
4501 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4502 *gpa &= ~(gpa_t)7;
4503 *bytes = 8;
4504 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4505 if (r)
4506 gentry = 0;
4507 new = (const u8 *)&gentry;
4508 }
4509
4510 switch (*bytes) {
4511 case 4:
4512 gentry = *(const u32 *)new;
4513 break;
4514 case 8:
4515 gentry = *(const u64 *)new;
4516 break;
4517 default:
4518 gentry = 0;
4519 break;
4520 }
4521
4522 return gentry;
4523 }
4524
4525 /*
4526 * If we're seeing too many writes to a page, it may no longer be a page table,
4527 * or we may be forking, in which case it is better to unmap the page.
4528 */
4529 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4530 {
4531 /*
4532 * Skip write-flooding detected for the sp whose level is 1, because
4533 * it can become unsync, then the guest page is not write-protected.
4534 */
4535 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4536 return false;
4537
4538 atomic_inc(&sp->write_flooding_count);
4539 return atomic_read(&sp->write_flooding_count) >= 3;
4540 }
4541
4542 /*
4543 * Misaligned accesses are too much trouble to fix up; also, they usually
4544 * indicate a page is not used as a page table.
4545 */
4546 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4547 int bytes)
4548 {
4549 unsigned offset, pte_size, misaligned;
4550
4551 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4552 gpa, bytes, sp->role.word);
4553
4554 offset = offset_in_page(gpa);
4555 pte_size = sp->role.cr4_pae ? 8 : 4;
4556
4557 /*
4558 * Sometimes, the OS only writes the last one bytes to update status
4559 * bits, for example, in linux, andb instruction is used in clear_bit().
4560 */
4561 if (!(offset & (pte_size - 1)) && bytes == 1)
4562 return false;
4563
4564 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4565 misaligned |= bytes < 4;
4566
4567 return misaligned;
4568 }
4569
4570 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4571 {
4572 unsigned page_offset, quadrant;
4573 u64 *spte;
4574 int level;
4575
4576 page_offset = offset_in_page(gpa);
4577 level = sp->role.level;
4578 *nspte = 1;
4579 if (!sp->role.cr4_pae) {
4580 page_offset <<= 1; /* 32->64 */
4581 /*
4582 * A 32-bit pde maps 4MB while the shadow pdes map
4583 * only 2MB. So we need to double the offset again
4584 * and zap two pdes instead of one.
4585 */
4586 if (level == PT32_ROOT_LEVEL) {
4587 page_offset &= ~7; /* kill rounding error */
4588 page_offset <<= 1;
4589 *nspte = 2;
4590 }
4591 quadrant = page_offset >> PAGE_SHIFT;
4592 page_offset &= ~PAGE_MASK;
4593 if (quadrant != sp->role.quadrant)
4594 return NULL;
4595 }
4596
4597 spte = &sp->spt[page_offset / sizeof(*spte)];
4598 return spte;
4599 }
4600
4601 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4602 const u8 *new, int bytes,
4603 struct kvm_page_track_notifier_node *node)
4604 {
4605 gfn_t gfn = gpa >> PAGE_SHIFT;
4606 struct kvm_mmu_page *sp;
4607 LIST_HEAD(invalid_list);
4608 u64 entry, gentry, *spte;
4609 int npte;
4610 bool remote_flush, local_flush;
4611 union kvm_mmu_page_role mask = { };
4612
4613 mask.cr0_wp = 1;
4614 mask.cr4_pae = 1;
4615 mask.nxe = 1;
4616 mask.smep_andnot_wp = 1;
4617 mask.smap_andnot_wp = 1;
4618 mask.smm = 1;
4619
4620 /*
4621 * If we don't have indirect shadow pages, it means no page is
4622 * write-protected, so we can exit simply.
4623 */
4624 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4625 return;
4626
4627 remote_flush = local_flush = false;
4628
4629 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4630
4631 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4632
4633 /*
4634 * No need to care whether allocation memory is successful
4635 * or not since pte prefetch is skiped if it does not have
4636 * enough objects in the cache.
4637 */
4638 mmu_topup_memory_caches(vcpu);
4639
4640 spin_lock(&vcpu->kvm->mmu_lock);
4641 ++vcpu->kvm->stat.mmu_pte_write;
4642 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4643
4644 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4645 if (detect_write_misaligned(sp, gpa, bytes) ||
4646 detect_write_flooding(sp)) {
4647 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4648 ++vcpu->kvm->stat.mmu_flooded;
4649 continue;
4650 }
4651
4652 spte = get_written_sptes(sp, gpa, &npte);
4653 if (!spte)
4654 continue;
4655
4656 local_flush = true;
4657 while (npte--) {
4658 entry = *spte;
4659 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4660 if (gentry &&
4661 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4662 & mask.word) && rmap_can_add(vcpu))
4663 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4664 if (need_remote_flush(entry, *spte))
4665 remote_flush = true;
4666 ++spte;
4667 }
4668 }
4669 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4670 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4671 spin_unlock(&vcpu->kvm->mmu_lock);
4672 }
4673
4674 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4675 {
4676 gpa_t gpa;
4677 int r;
4678
4679 if (vcpu->arch.mmu.direct_map)
4680 return 0;
4681
4682 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4683
4684 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4685
4686 return r;
4687 }
4688 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4689
4690 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4691 {
4692 LIST_HEAD(invalid_list);
4693
4694 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4695 return;
4696
4697 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4698 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4699 break;
4700
4701 ++vcpu->kvm->stat.mmu_recycled;
4702 }
4703 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4704 }
4705
4706 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4707 void *insn, int insn_len)
4708 {
4709 int r, emulation_type = EMULTYPE_RETRY;
4710 enum emulation_result er;
4711 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4712
4713 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4714 r = handle_mmio_page_fault(vcpu, cr2, direct);
4715 if (r == RET_MMIO_PF_EMULATE) {
4716 emulation_type = 0;
4717 goto emulate;
4718 }
4719 if (r == RET_MMIO_PF_RETRY)
4720 return 1;
4721 if (r < 0)
4722 return r;
4723 }
4724
4725 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4726 false);
4727 if (r < 0)
4728 return r;
4729 if (!r)
4730 return 1;
4731
4732 /*
4733 * Before emulating the instruction, check if the error code
4734 * was due to a RO violation while translating the guest page.
4735 * This can occur when using nested virtualization with nested
4736 * paging in both guests. If true, we simply unprotect the page
4737 * and resume the guest.
4738 *
4739 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4740 * in PFERR_NEXT_GUEST_PAGE)
4741 */
4742 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4743 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4744 return 1;
4745 }
4746
4747 if (mmio_info_in_cache(vcpu, cr2, direct))
4748 emulation_type = 0;
4749 emulate:
4750 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4751
4752 switch (er) {
4753 case EMULATE_DONE:
4754 return 1;
4755 case EMULATE_USER_EXIT:
4756 ++vcpu->stat.mmio_exits;
4757 /* fall through */
4758 case EMULATE_FAIL:
4759 return 0;
4760 default:
4761 BUG();
4762 }
4763 }
4764 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4765
4766 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4767 {
4768 vcpu->arch.mmu.invlpg(vcpu, gva);
4769 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4770 ++vcpu->stat.invlpg;
4771 }
4772 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4773
4774 void kvm_enable_tdp(void)
4775 {
4776 tdp_enabled = true;
4777 }
4778 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4779
4780 void kvm_disable_tdp(void)
4781 {
4782 tdp_enabled = false;
4783 }
4784 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4785
4786 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4787 {
4788 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4789 if (vcpu->arch.mmu.lm_root != NULL)
4790 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4791 }
4792
4793 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4794 {
4795 struct page *page;
4796 int i;
4797
4798 /*
4799 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4800 * Therefore we need to allocate shadow page tables in the first
4801 * 4GB of memory, which happens to fit the DMA32 zone.
4802 */
4803 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4804 if (!page)
4805 return -ENOMEM;
4806
4807 vcpu->arch.mmu.pae_root = page_address(page);
4808 for (i = 0; i < 4; ++i)
4809 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4810
4811 return 0;
4812 }
4813
4814 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4815 {
4816 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4817 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4818 vcpu->arch.mmu.translate_gpa = translate_gpa;
4819 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4820
4821 return alloc_mmu_pages(vcpu);
4822 }
4823
4824 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4825 {
4826 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4827
4828 init_kvm_mmu(vcpu);
4829 }
4830
4831 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4832 struct kvm_memory_slot *slot,
4833 struct kvm_page_track_notifier_node *node)
4834 {
4835 kvm_mmu_invalidate_zap_all_pages(kvm);
4836 }
4837
4838 void kvm_mmu_init_vm(struct kvm *kvm)
4839 {
4840 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4841
4842 node->track_write = kvm_mmu_pte_write;
4843 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4844 kvm_page_track_register_notifier(kvm, node);
4845 }
4846
4847 void kvm_mmu_uninit_vm(struct kvm *kvm)
4848 {
4849 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4850
4851 kvm_page_track_unregister_notifier(kvm, node);
4852 }
4853
4854 /* The return value indicates if tlb flush on all vcpus is needed. */
4855 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4856
4857 /* The caller should hold mmu-lock before calling this function. */
4858 static bool
4859 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4860 slot_level_handler fn, int start_level, int end_level,
4861 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4862 {
4863 struct slot_rmap_walk_iterator iterator;
4864 bool flush = false;
4865
4866 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4867 end_gfn, &iterator) {
4868 if (iterator.rmap)
4869 flush |= fn(kvm, iterator.rmap);
4870
4871 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4872 if (flush && lock_flush_tlb) {
4873 kvm_flush_remote_tlbs(kvm);
4874 flush = false;
4875 }
4876 cond_resched_lock(&kvm->mmu_lock);
4877 }
4878 }
4879
4880 if (flush && lock_flush_tlb) {
4881 kvm_flush_remote_tlbs(kvm);
4882 flush = false;
4883 }
4884
4885 return flush;
4886 }
4887
4888 static bool
4889 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4890 slot_level_handler fn, int start_level, int end_level,
4891 bool lock_flush_tlb)
4892 {
4893 return slot_handle_level_range(kvm, memslot, fn, start_level,
4894 end_level, memslot->base_gfn,
4895 memslot->base_gfn + memslot->npages - 1,
4896 lock_flush_tlb);
4897 }
4898
4899 static bool
4900 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4901 slot_level_handler fn, bool lock_flush_tlb)
4902 {
4903 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4904 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4905 }
4906
4907 static bool
4908 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4909 slot_level_handler fn, bool lock_flush_tlb)
4910 {
4911 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4912 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4913 }
4914
4915 static bool
4916 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4917 slot_level_handler fn, bool lock_flush_tlb)
4918 {
4919 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4920 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4921 }
4922
4923 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4924 {
4925 struct kvm_memslots *slots;
4926 struct kvm_memory_slot *memslot;
4927 int i;
4928
4929 spin_lock(&kvm->mmu_lock);
4930 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4931 slots = __kvm_memslots(kvm, i);
4932 kvm_for_each_memslot(memslot, slots) {
4933 gfn_t start, end;
4934
4935 start = max(gfn_start, memslot->base_gfn);
4936 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4937 if (start >= end)
4938 continue;
4939
4940 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4941 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4942 start, end - 1, true);
4943 }
4944 }
4945
4946 spin_unlock(&kvm->mmu_lock);
4947 }
4948
4949 static bool slot_rmap_write_protect(struct kvm *kvm,
4950 struct kvm_rmap_head *rmap_head)
4951 {
4952 return __rmap_write_protect(kvm, rmap_head, false);
4953 }
4954
4955 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4956 struct kvm_memory_slot *memslot)
4957 {
4958 bool flush;
4959
4960 spin_lock(&kvm->mmu_lock);
4961 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4962 false);
4963 spin_unlock(&kvm->mmu_lock);
4964
4965 /*
4966 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4967 * which do tlb flush out of mmu-lock should be serialized by
4968 * kvm->slots_lock otherwise tlb flush would be missed.
4969 */
4970 lockdep_assert_held(&kvm->slots_lock);
4971
4972 /*
4973 * We can flush all the TLBs out of the mmu lock without TLB
4974 * corruption since we just change the spte from writable to
4975 * readonly so that we only need to care the case of changing
4976 * spte from present to present (changing the spte from present
4977 * to nonpresent will flush all the TLBs immediately), in other
4978 * words, the only case we care is mmu_spte_update() where we
4979 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4980 * instead of PT_WRITABLE_MASK, that means it does not depend
4981 * on PT_WRITABLE_MASK anymore.
4982 */
4983 if (flush)
4984 kvm_flush_remote_tlbs(kvm);
4985 }
4986
4987 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4988 struct kvm_rmap_head *rmap_head)
4989 {
4990 u64 *sptep;
4991 struct rmap_iterator iter;
4992 int need_tlb_flush = 0;
4993 kvm_pfn_t pfn;
4994 struct kvm_mmu_page *sp;
4995
4996 restart:
4997 for_each_rmap_spte(rmap_head, &iter, sptep) {
4998 sp = page_header(__pa(sptep));
4999 pfn = spte_to_pfn(*sptep);
5000
5001 /*
5002 * We cannot do huge page mapping for indirect shadow pages,
5003 * which are found on the last rmap (level = 1) when not using
5004 * tdp; such shadow pages are synced with the page table in
5005 * the guest, and the guest page table is using 4K page size
5006 * mapping if the indirect sp has level = 1.
5007 */
5008 if (sp->role.direct &&
5009 !kvm_is_reserved_pfn(pfn) &&
5010 PageTransCompoundMap(pfn_to_page(pfn))) {
5011 drop_spte(kvm, sptep);
5012 need_tlb_flush = 1;
5013 goto restart;
5014 }
5015 }
5016
5017 return need_tlb_flush;
5018 }
5019
5020 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5021 const struct kvm_memory_slot *memslot)
5022 {
5023 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5024 spin_lock(&kvm->mmu_lock);
5025 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5026 kvm_mmu_zap_collapsible_spte, true);
5027 spin_unlock(&kvm->mmu_lock);
5028 }
5029
5030 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5031 struct kvm_memory_slot *memslot)
5032 {
5033 bool flush;
5034
5035 spin_lock(&kvm->mmu_lock);
5036 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5037 spin_unlock(&kvm->mmu_lock);
5038
5039 lockdep_assert_held(&kvm->slots_lock);
5040
5041 /*
5042 * It's also safe to flush TLBs out of mmu lock here as currently this
5043 * function is only used for dirty logging, in which case flushing TLB
5044 * out of mmu lock also guarantees no dirty pages will be lost in
5045 * dirty_bitmap.
5046 */
5047 if (flush)
5048 kvm_flush_remote_tlbs(kvm);
5049 }
5050 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5051
5052 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5053 struct kvm_memory_slot *memslot)
5054 {
5055 bool flush;
5056
5057 spin_lock(&kvm->mmu_lock);
5058 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5059 false);
5060 spin_unlock(&kvm->mmu_lock);
5061
5062 /* see kvm_mmu_slot_remove_write_access */
5063 lockdep_assert_held(&kvm->slots_lock);
5064
5065 if (flush)
5066 kvm_flush_remote_tlbs(kvm);
5067 }
5068 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5069
5070 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5071 struct kvm_memory_slot *memslot)
5072 {
5073 bool flush;
5074
5075 spin_lock(&kvm->mmu_lock);
5076 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5077 spin_unlock(&kvm->mmu_lock);
5078
5079 lockdep_assert_held(&kvm->slots_lock);
5080
5081 /* see kvm_mmu_slot_leaf_clear_dirty */
5082 if (flush)
5083 kvm_flush_remote_tlbs(kvm);
5084 }
5085 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5086
5087 #define BATCH_ZAP_PAGES 10
5088 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5089 {
5090 struct kvm_mmu_page *sp, *node;
5091 int batch = 0;
5092
5093 restart:
5094 list_for_each_entry_safe_reverse(sp, node,
5095 &kvm->arch.active_mmu_pages, link) {
5096 int ret;
5097
5098 /*
5099 * No obsolete page exists before new created page since
5100 * active_mmu_pages is the FIFO list.
5101 */
5102 if (!is_obsolete_sp(kvm, sp))
5103 break;
5104
5105 /*
5106 * Since we are reversely walking the list and the invalid
5107 * list will be moved to the head, skip the invalid page
5108 * can help us to avoid the infinity list walking.
5109 */
5110 if (sp->role.invalid)
5111 continue;
5112
5113 /*
5114 * Need not flush tlb since we only zap the sp with invalid
5115 * generation number.
5116 */
5117 if (batch >= BATCH_ZAP_PAGES &&
5118 cond_resched_lock(&kvm->mmu_lock)) {
5119 batch = 0;
5120 goto restart;
5121 }
5122
5123 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5124 &kvm->arch.zapped_obsolete_pages);
5125 batch += ret;
5126
5127 if (ret)
5128 goto restart;
5129 }
5130
5131 /*
5132 * Should flush tlb before free page tables since lockless-walking
5133 * may use the pages.
5134 */
5135 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5136 }
5137
5138 /*
5139 * Fast invalidate all shadow pages and use lock-break technique
5140 * to zap obsolete pages.
5141 *
5142 * It's required when memslot is being deleted or VM is being
5143 * destroyed, in these cases, we should ensure that KVM MMU does
5144 * not use any resource of the being-deleted slot or all slots
5145 * after calling the function.
5146 */
5147 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5148 {
5149 spin_lock(&kvm->mmu_lock);
5150 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5151 kvm->arch.mmu_valid_gen++;
5152
5153 /*
5154 * Notify all vcpus to reload its shadow page table
5155 * and flush TLB. Then all vcpus will switch to new
5156 * shadow page table with the new mmu_valid_gen.
5157 *
5158 * Note: we should do this under the protection of
5159 * mmu-lock, otherwise, vcpu would purge shadow page
5160 * but miss tlb flush.
5161 */
5162 kvm_reload_remote_mmus(kvm);
5163
5164 kvm_zap_obsolete_pages(kvm);
5165 spin_unlock(&kvm->mmu_lock);
5166 }
5167
5168 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5169 {
5170 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5171 }
5172
5173 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5174 {
5175 /*
5176 * The very rare case: if the generation-number is round,
5177 * zap all shadow pages.
5178 */
5179 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5180 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5181 kvm_mmu_invalidate_zap_all_pages(kvm);
5182 }
5183 }
5184
5185 static unsigned long
5186 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5187 {
5188 struct kvm *kvm;
5189 int nr_to_scan = sc->nr_to_scan;
5190 unsigned long freed = 0;
5191
5192 spin_lock(&kvm_lock);
5193
5194 list_for_each_entry(kvm, &vm_list, vm_list) {
5195 int idx;
5196 LIST_HEAD(invalid_list);
5197
5198 /*
5199 * Never scan more than sc->nr_to_scan VM instances.
5200 * Will not hit this condition practically since we do not try
5201 * to shrink more than one VM and it is very unlikely to see
5202 * !n_used_mmu_pages so many times.
5203 */
5204 if (!nr_to_scan--)
5205 break;
5206 /*
5207 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5208 * here. We may skip a VM instance errorneosly, but we do not
5209 * want to shrink a VM that only started to populate its MMU
5210 * anyway.
5211 */
5212 if (!kvm->arch.n_used_mmu_pages &&
5213 !kvm_has_zapped_obsolete_pages(kvm))
5214 continue;
5215
5216 idx = srcu_read_lock(&kvm->srcu);
5217 spin_lock(&kvm->mmu_lock);
5218
5219 if (kvm_has_zapped_obsolete_pages(kvm)) {
5220 kvm_mmu_commit_zap_page(kvm,
5221 &kvm->arch.zapped_obsolete_pages);
5222 goto unlock;
5223 }
5224
5225 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5226 freed++;
5227 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5228
5229 unlock:
5230 spin_unlock(&kvm->mmu_lock);
5231 srcu_read_unlock(&kvm->srcu, idx);
5232
5233 /*
5234 * unfair on small ones
5235 * per-vm shrinkers cry out
5236 * sadness comes quickly
5237 */
5238 list_move_tail(&kvm->vm_list, &vm_list);
5239 break;
5240 }
5241
5242 spin_unlock(&kvm_lock);
5243 return freed;
5244 }
5245
5246 static unsigned long
5247 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5248 {
5249 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5250 }
5251
5252 static struct shrinker mmu_shrinker = {
5253 .count_objects = mmu_shrink_count,
5254 .scan_objects = mmu_shrink_scan,
5255 .seeks = DEFAULT_SEEKS * 10,
5256 };
5257
5258 static void mmu_destroy_caches(void)
5259 {
5260 if (pte_list_desc_cache)
5261 kmem_cache_destroy(pte_list_desc_cache);
5262 if (mmu_page_header_cache)
5263 kmem_cache_destroy(mmu_page_header_cache);
5264 }
5265
5266 int kvm_mmu_module_init(void)
5267 {
5268 kvm_mmu_clear_all_pte_masks();
5269
5270 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5271 sizeof(struct pte_list_desc),
5272 0, 0, NULL);
5273 if (!pte_list_desc_cache)
5274 goto nomem;
5275
5276 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5277 sizeof(struct kvm_mmu_page),
5278 0, 0, NULL);
5279 if (!mmu_page_header_cache)
5280 goto nomem;
5281
5282 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5283 goto nomem;
5284
5285 register_shrinker(&mmu_shrinker);
5286
5287 return 0;
5288
5289 nomem:
5290 mmu_destroy_caches();
5291 return -ENOMEM;
5292 }
5293
5294 /*
5295 * Caculate mmu pages needed for kvm.
5296 */
5297 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5298 {
5299 unsigned int nr_mmu_pages;
5300 unsigned int nr_pages = 0;
5301 struct kvm_memslots *slots;
5302 struct kvm_memory_slot *memslot;
5303 int i;
5304
5305 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5306 slots = __kvm_memslots(kvm, i);
5307
5308 kvm_for_each_memslot(memslot, slots)
5309 nr_pages += memslot->npages;
5310 }
5311
5312 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5313 nr_mmu_pages = max(nr_mmu_pages,
5314 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5315
5316 return nr_mmu_pages;
5317 }
5318
5319 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5320 {
5321 kvm_mmu_unload(vcpu);
5322 free_mmu_pages(vcpu);
5323 mmu_free_memory_caches(vcpu);
5324 }
5325
5326 void kvm_mmu_module_exit(void)
5327 {
5328 mmu_destroy_caches();
5329 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5330 unregister_shrinker(&mmu_shrinker);
5331 mmu_audit_disable();
5332 }