]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kvm/mmu.c
Merge tag 'for-4.2' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM 8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
151 u64 *sptep;
152 int level;
153 unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
195 */
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 u64 mask;
207
208 WARN_ON(gen & ~MMIO_GEN_MASK);
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227 {
228 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232 unsigned access)
233 {
234 unsigned int gen = kvm_current_mmio_generation(kvm);
235 u64 mask = generation_mmio_spte_mask(gen);
236
237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
263 {
264 if (unlikely(is_noslot_pfn(pfn))) {
265 mark_mmio_spte(kvm, sptep, gfn, access);
266 return true;
267 }
268
269 return false;
270 }
271
272 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273 {
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(kvm);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296 return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311 return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316 return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
323 if (is_large_pte(pte))
324 return 1;
325 return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 return ACCESS_ONCE(*sptep);
359 }
360
361 static bool __check_direct_spte_mmio_pf(u64 spte)
362 {
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365 }
366 #else
367 union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373 };
374
375 static void count_spte_clear(u64 *sptep, u64 spte)
376 {
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385 }
386
387 static void __set_spte(u64 *sptep, u64 spte)
388 {
389 union split_spte *ssptep, sspte;
390
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
404 }
405
406 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407 {
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
422 count_spte_clear(sptep, spte);
423 }
424
425 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426 {
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
436 count_spte_clear(sptep, spte);
437
438 return orig.spte;
439 }
440
441 /*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
458 */
459 static u64 __get_spte_lockless(u64 *sptep)
460 {
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465 retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480 }
481
482 static bool __check_direct_spte_mmio_pf(u64 spte)
483 {
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497 }
498 #endif
499
500 static bool spte_is_locklessly_modifiable(u64 spte)
501 {
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 }
505
506 static bool spte_has_volatile_bits(u64 spte)
507 {
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 return false;
526
527 return true;
528 }
529
530 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531 {
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533 }
534
535 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536 {
537 return (old_spte & bit_mask) != (new_spte & bit_mask);
538 }
539
540 /* Rules for using mmu_spte_set:
541 * Set the sptep from nonpresent to present.
542 * Note: the sptep being assigned *must* be either not present
543 * or in a state where the hardware will not attempt to update
544 * the spte.
545 */
546 static void mmu_spte_set(u64 *sptep, u64 new_spte)
547 {
548 WARN_ON(is_shadow_present_pte(*sptep));
549 __set_spte(sptep, new_spte);
550 }
551
552 /* Rules for using mmu_spte_update:
553 * Update the state bits, it means the mapped pfn is not changged.
554 *
555 * Whenever we overwrite a writable spte with a read-only one we
556 * should flush remote TLBs. Otherwise rmap_write_protect
557 * will find a read-only spte, even though the writable spte
558 * might be cached on a CPU's TLB, the return value indicates this
559 * case.
560 */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563 u64 old_spte = *sptep;
564 bool ret = false;
565
566 WARN_ON(!is_rmap_spte(new_spte));
567
568 if (!is_shadow_present_pte(old_spte)) {
569 mmu_spte_set(sptep, new_spte);
570 return ret;
571 }
572
573 if (!spte_has_volatile_bits(old_spte))
574 __update_clear_spte_fast(sptep, new_spte);
575 else
576 old_spte = __update_clear_spte_slow(sptep, new_spte);
577
578 /*
579 * For the spte updated out of mmu-lock is safe, since
580 * we always atomicly update it, see the comments in
581 * spte_has_volatile_bits().
582 */
583 if (spte_is_locklessly_modifiable(old_spte) &&
584 !is_writable_pte(new_spte))
585 ret = true;
586
587 if (!shadow_accessed_mask)
588 return ret;
589
590 /*
591 * Flush TLB when accessed/dirty bits are changed in the page tables,
592 * to guarantee consistency between TLB and page tables.
593 */
594 if (spte_is_bit_changed(old_spte, new_spte,
595 shadow_accessed_mask | shadow_dirty_mask))
596 ret = true;
597
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602
603 return ret;
604 }
605
606 /*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611 static int mmu_spte_clear_track_bits(u64 *sptep)
612 {
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
617 __update_clear_spte_fast(sptep, 0ull);
618 else
619 old_spte = __update_clear_spte_slow(sptep, 0ull);
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
631 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638 }
639
640 /*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645 static void mmu_spte_clear_no_track(u64 *sptep)
646 {
647 __update_clear_spte_fast(sptep, 0ull);
648 }
649
650 static u64 mmu_spte_get_lockless(u64 *sptep)
651 {
652 return __get_spte_lockless(sptep);
653 }
654
655 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656 {
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
668 }
669
670 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671 {
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
680 }
681
682 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683 struct kmem_cache *base_cache, int min)
684 {
685 void *obj;
686
687 if (cache->nobjs >= min)
688 return 0;
689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691 if (!obj)
692 return -ENOMEM;
693 cache->objects[cache->nobjs++] = obj;
694 }
695 return 0;
696 }
697
698 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699 {
700 return cache->nobjs;
701 }
702
703 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
705 {
706 while (mc->nobjs)
707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711 int min)
712 {
713 void *page;
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718 page = (void *)__get_free_page(GFP_KERNEL);
719 if (!page)
720 return -ENOMEM;
721 cache->objects[cache->nobjs++] = page;
722 }
723 return 0;
724 }
725
726 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727 {
728 while (mc->nobjs)
729 free_page((unsigned long)mc->objects[--mc->nobjs]);
730 }
731
732 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733 {
734 int r;
735
736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738 if (r)
739 goto out;
740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741 if (r)
742 goto out;
743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744 mmu_page_header_cache, 4);
745 out:
746 return r;
747 }
748
749 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750 {
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
756 }
757
758 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 {
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
764 return p;
765 }
766
767 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768 {
769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 }
771
772 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773 {
774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 }
776
777 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778 {
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783 }
784
785 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786 {
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791 }
792
793 /*
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
796 */
797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
800 {
801 unsigned long idx;
802
803 idx = gfn_to_index(gfn, slot->base_gfn, level);
804 return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808 {
809 struct kvm_memory_slot *slot;
810 struct kvm_lpage_info *linfo;
811 int i;
812
813 slot = gfn_to_memslot(kvm, gfn);
814 for (i = PT_DIRECTORY_LEVEL;
815 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
816 linfo = lpage_info_slot(gfn, slot, i);
817 linfo->write_count += 1;
818 }
819 kvm->arch.indirect_shadow_pages++;
820 }
821
822 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
823 {
824 struct kvm_memory_slot *slot;
825 struct kvm_lpage_info *linfo;
826 int i;
827
828 slot = gfn_to_memslot(kvm, gfn);
829 for (i = PT_DIRECTORY_LEVEL;
830 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
831 linfo = lpage_info_slot(gfn, slot, i);
832 linfo->write_count -= 1;
833 WARN_ON(linfo->write_count < 0);
834 }
835 kvm->arch.indirect_shadow_pages--;
836 }
837
838 static int has_wrprotected_page(struct kvm *kvm,
839 gfn_t gfn,
840 int level)
841 {
842 struct kvm_memory_slot *slot;
843 struct kvm_lpage_info *linfo;
844
845 slot = gfn_to_memslot(kvm, gfn);
846 if (slot) {
847 linfo = lpage_info_slot(gfn, slot, level);
848 return linfo->write_count;
849 }
850
851 return 1;
852 }
853
854 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
855 {
856 unsigned long page_size;
857 int i, ret = 0;
858
859 page_size = kvm_host_page_size(kvm, gfn);
860
861 for (i = PT_PAGE_TABLE_LEVEL;
862 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
863 if (page_size >= KVM_HPAGE_SIZE(i))
864 ret = i;
865 else
866 break;
867 }
868
869 return ret;
870 }
871
872 static struct kvm_memory_slot *
873 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
874 bool no_dirty_log)
875 {
876 struct kvm_memory_slot *slot;
877
878 slot = gfn_to_memslot(vcpu->kvm, gfn);
879 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
880 (no_dirty_log && slot->dirty_bitmap))
881 slot = NULL;
882
883 return slot;
884 }
885
886 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
887 {
888 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
889 }
890
891 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
892 {
893 int host_level, level, max_level;
894
895 host_level = host_mapping_level(vcpu->kvm, large_gfn);
896
897 if (host_level == PT_PAGE_TABLE_LEVEL)
898 return host_level;
899
900 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
901
902 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
903 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
904 break;
905
906 return level - 1;
907 }
908
909 /*
910 * Pte mapping structures:
911 *
912 * If pte_list bit zero is zero, then pte_list point to the spte.
913 *
914 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
915 * pte_list_desc containing more mappings.
916 *
917 * Returns the number of pte entries before the spte was added or zero if
918 * the spte was not added.
919 *
920 */
921 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
922 unsigned long *pte_list)
923 {
924 struct pte_list_desc *desc;
925 int i, count = 0;
926
927 if (!*pte_list) {
928 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
929 *pte_list = (unsigned long)spte;
930 } else if (!(*pte_list & 1)) {
931 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
932 desc = mmu_alloc_pte_list_desc(vcpu);
933 desc->sptes[0] = (u64 *)*pte_list;
934 desc->sptes[1] = spte;
935 *pte_list = (unsigned long)desc | 1;
936 ++count;
937 } else {
938 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
939 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
940 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
941 desc = desc->more;
942 count += PTE_LIST_EXT;
943 }
944 if (desc->sptes[PTE_LIST_EXT-1]) {
945 desc->more = mmu_alloc_pte_list_desc(vcpu);
946 desc = desc->more;
947 }
948 for (i = 0; desc->sptes[i]; ++i)
949 ++count;
950 desc->sptes[i] = spte;
951 }
952 return count;
953 }
954
955 static void
956 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
957 int i, struct pte_list_desc *prev_desc)
958 {
959 int j;
960
961 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
962 ;
963 desc->sptes[i] = desc->sptes[j];
964 desc->sptes[j] = NULL;
965 if (j != 0)
966 return;
967 if (!prev_desc && !desc->more)
968 *pte_list = (unsigned long)desc->sptes[0];
969 else
970 if (prev_desc)
971 prev_desc->more = desc->more;
972 else
973 *pte_list = (unsigned long)desc->more | 1;
974 mmu_free_pte_list_desc(desc);
975 }
976
977 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
978 {
979 struct pte_list_desc *desc;
980 struct pte_list_desc *prev_desc;
981 int i;
982
983 if (!*pte_list) {
984 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
985 BUG();
986 } else if (!(*pte_list & 1)) {
987 rmap_printk("pte_list_remove: %p 1->0\n", spte);
988 if ((u64 *)*pte_list != spte) {
989 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
990 BUG();
991 }
992 *pte_list = 0;
993 } else {
994 rmap_printk("pte_list_remove: %p many->many\n", spte);
995 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
996 prev_desc = NULL;
997 while (desc) {
998 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
999 if (desc->sptes[i] == spte) {
1000 pte_list_desc_remove_entry(pte_list,
1001 desc, i,
1002 prev_desc);
1003 return;
1004 }
1005 prev_desc = desc;
1006 desc = desc->more;
1007 }
1008 pr_err("pte_list_remove: %p many->many\n", spte);
1009 BUG();
1010 }
1011 }
1012
1013 typedef void (*pte_list_walk_fn) (u64 *spte);
1014 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1015 {
1016 struct pte_list_desc *desc;
1017 int i;
1018
1019 if (!*pte_list)
1020 return;
1021
1022 if (!(*pte_list & 1))
1023 return fn((u64 *)*pte_list);
1024
1025 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1026 while (desc) {
1027 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1028 fn(desc->sptes[i]);
1029 desc = desc->more;
1030 }
1031 }
1032
1033 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1034 struct kvm_memory_slot *slot)
1035 {
1036 unsigned long idx;
1037
1038 idx = gfn_to_index(gfn, slot->base_gfn, level);
1039 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1040 }
1041
1042 /*
1043 * Take gfn and return the reverse mapping to it.
1044 */
1045 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1046 {
1047 struct kvm_memory_slot *slot;
1048
1049 slot = gfn_to_memslot(kvm, gfn);
1050 return __gfn_to_rmap(gfn, level, slot);
1051 }
1052
1053 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1054 {
1055 struct kvm_mmu_memory_cache *cache;
1056
1057 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1058 return mmu_memory_cache_free_objects(cache);
1059 }
1060
1061 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1062 {
1063 struct kvm_mmu_page *sp;
1064 unsigned long *rmapp;
1065
1066 sp = page_header(__pa(spte));
1067 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1068 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1069 return pte_list_add(vcpu, spte, rmapp);
1070 }
1071
1072 static void rmap_remove(struct kvm *kvm, u64 *spte)
1073 {
1074 struct kvm_mmu_page *sp;
1075 gfn_t gfn;
1076 unsigned long *rmapp;
1077
1078 sp = page_header(__pa(spte));
1079 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1080 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1081 pte_list_remove(spte, rmapp);
1082 }
1083
1084 /*
1085 * Used by the following functions to iterate through the sptes linked by a
1086 * rmap. All fields are private and not assumed to be used outside.
1087 */
1088 struct rmap_iterator {
1089 /* private fields */
1090 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1091 int pos; /* index of the sptep */
1092 };
1093
1094 /*
1095 * Iteration must be started by this function. This should also be used after
1096 * removing/dropping sptes from the rmap link because in such cases the
1097 * information in the itererator may not be valid.
1098 *
1099 * Returns sptep if found, NULL otherwise.
1100 */
1101 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1102 {
1103 if (!rmap)
1104 return NULL;
1105
1106 if (!(rmap & 1)) {
1107 iter->desc = NULL;
1108 return (u64 *)rmap;
1109 }
1110
1111 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1112 iter->pos = 0;
1113 return iter->desc->sptes[iter->pos];
1114 }
1115
1116 /*
1117 * Must be used with a valid iterator: e.g. after rmap_get_first().
1118 *
1119 * Returns sptep if found, NULL otherwise.
1120 */
1121 static u64 *rmap_get_next(struct rmap_iterator *iter)
1122 {
1123 if (iter->desc) {
1124 if (iter->pos < PTE_LIST_EXT - 1) {
1125 u64 *sptep;
1126
1127 ++iter->pos;
1128 sptep = iter->desc->sptes[iter->pos];
1129 if (sptep)
1130 return sptep;
1131 }
1132
1133 iter->desc = iter->desc->more;
1134
1135 if (iter->desc) {
1136 iter->pos = 0;
1137 /* desc->sptes[0] cannot be NULL */
1138 return iter->desc->sptes[iter->pos];
1139 }
1140 }
1141
1142 return NULL;
1143 }
1144
1145 static void drop_spte(struct kvm *kvm, u64 *sptep)
1146 {
1147 if (mmu_spte_clear_track_bits(sptep))
1148 rmap_remove(kvm, sptep);
1149 }
1150
1151
1152 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1153 {
1154 if (is_large_pte(*sptep)) {
1155 WARN_ON(page_header(__pa(sptep))->role.level ==
1156 PT_PAGE_TABLE_LEVEL);
1157 drop_spte(kvm, sptep);
1158 --kvm->stat.lpages;
1159 return true;
1160 }
1161
1162 return false;
1163 }
1164
1165 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1166 {
1167 if (__drop_large_spte(vcpu->kvm, sptep))
1168 kvm_flush_remote_tlbs(vcpu->kvm);
1169 }
1170
1171 /*
1172 * Write-protect on the specified @sptep, @pt_protect indicates whether
1173 * spte write-protection is caused by protecting shadow page table.
1174 *
1175 * Note: write protection is difference between dirty logging and spte
1176 * protection:
1177 * - for dirty logging, the spte can be set to writable at anytime if
1178 * its dirty bitmap is properly set.
1179 * - for spte protection, the spte can be writable only after unsync-ing
1180 * shadow page.
1181 *
1182 * Return true if tlb need be flushed.
1183 */
1184 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1185 {
1186 u64 spte = *sptep;
1187
1188 if (!is_writable_pte(spte) &&
1189 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1190 return false;
1191
1192 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1193
1194 if (pt_protect)
1195 spte &= ~SPTE_MMU_WRITEABLE;
1196 spte = spte & ~PT_WRITABLE_MASK;
1197
1198 return mmu_spte_update(sptep, spte);
1199 }
1200
1201 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1202 bool pt_protect)
1203 {
1204 u64 *sptep;
1205 struct rmap_iterator iter;
1206 bool flush = false;
1207
1208 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1209 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1210
1211 flush |= spte_write_protect(kvm, sptep, pt_protect);
1212 sptep = rmap_get_next(&iter);
1213 }
1214
1215 return flush;
1216 }
1217
1218 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1219 {
1220 u64 spte = *sptep;
1221
1222 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1223
1224 spte &= ~shadow_dirty_mask;
1225
1226 return mmu_spte_update(sptep, spte);
1227 }
1228
1229 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1230 {
1231 u64 *sptep;
1232 struct rmap_iterator iter;
1233 bool flush = false;
1234
1235 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1236 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1237
1238 flush |= spte_clear_dirty(kvm, sptep);
1239 sptep = rmap_get_next(&iter);
1240 }
1241
1242 return flush;
1243 }
1244
1245 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1246 {
1247 u64 spte = *sptep;
1248
1249 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1250
1251 spte |= shadow_dirty_mask;
1252
1253 return mmu_spte_update(sptep, spte);
1254 }
1255
1256 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1257 {
1258 u64 *sptep;
1259 struct rmap_iterator iter;
1260 bool flush = false;
1261
1262 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1263 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1264
1265 flush |= spte_set_dirty(kvm, sptep);
1266 sptep = rmap_get_next(&iter);
1267 }
1268
1269 return flush;
1270 }
1271
1272 /**
1273 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1274 * @kvm: kvm instance
1275 * @slot: slot to protect
1276 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1277 * @mask: indicates which pages we should protect
1278 *
1279 * Used when we do not need to care about huge page mappings: e.g. during dirty
1280 * logging we do not have any such mappings.
1281 */
1282 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1283 struct kvm_memory_slot *slot,
1284 gfn_t gfn_offset, unsigned long mask)
1285 {
1286 unsigned long *rmapp;
1287
1288 while (mask) {
1289 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1290 PT_PAGE_TABLE_LEVEL, slot);
1291 __rmap_write_protect(kvm, rmapp, false);
1292
1293 /* clear the first set bit */
1294 mask &= mask - 1;
1295 }
1296 }
1297
1298 /**
1299 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1300 * @kvm: kvm instance
1301 * @slot: slot to clear D-bit
1302 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303 * @mask: indicates which pages we should clear D-bit
1304 *
1305 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1306 */
1307 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1308 struct kvm_memory_slot *slot,
1309 gfn_t gfn_offset, unsigned long mask)
1310 {
1311 unsigned long *rmapp;
1312
1313 while (mask) {
1314 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 PT_PAGE_TABLE_LEVEL, slot);
1316 __rmap_clear_dirty(kvm, rmapp);
1317
1318 /* clear the first set bit */
1319 mask &= mask - 1;
1320 }
1321 }
1322 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1323
1324 /**
1325 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1326 * PT level pages.
1327 *
1328 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1329 * enable dirty logging for them.
1330 *
1331 * Used when we do not need to care about huge page mappings: e.g. during dirty
1332 * logging we do not have any such mappings.
1333 */
1334 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1335 struct kvm_memory_slot *slot,
1336 gfn_t gfn_offset, unsigned long mask)
1337 {
1338 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1339 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1340 mask);
1341 else
1342 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1343 }
1344
1345 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1346 {
1347 struct kvm_memory_slot *slot;
1348 unsigned long *rmapp;
1349 int i;
1350 bool write_protected = false;
1351
1352 slot = gfn_to_memslot(kvm, gfn);
1353
1354 for (i = PT_PAGE_TABLE_LEVEL;
1355 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1356 rmapp = __gfn_to_rmap(gfn, i, slot);
1357 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1358 }
1359
1360 return write_protected;
1361 }
1362
1363 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1364 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1365 unsigned long data)
1366 {
1367 u64 *sptep;
1368 struct rmap_iterator iter;
1369 int need_tlb_flush = 0;
1370
1371 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1372 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1373 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1374 sptep, *sptep, gfn, level);
1375
1376 drop_spte(kvm, sptep);
1377 need_tlb_flush = 1;
1378 }
1379
1380 return need_tlb_flush;
1381 }
1382
1383 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1384 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1385 unsigned long data)
1386 {
1387 u64 *sptep;
1388 struct rmap_iterator iter;
1389 int need_flush = 0;
1390 u64 new_spte;
1391 pte_t *ptep = (pte_t *)data;
1392 pfn_t new_pfn;
1393
1394 WARN_ON(pte_huge(*ptep));
1395 new_pfn = pte_pfn(*ptep);
1396
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1398 BUG_ON(!is_shadow_present_pte(*sptep));
1399 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400 sptep, *sptep, gfn, level);
1401
1402 need_flush = 1;
1403
1404 if (pte_write(*ptep)) {
1405 drop_spte(kvm, sptep);
1406 sptep = rmap_get_first(*rmapp, &iter);
1407 } else {
1408 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1409 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1410
1411 new_spte &= ~PT_WRITABLE_MASK;
1412 new_spte &= ~SPTE_HOST_WRITEABLE;
1413 new_spte &= ~shadow_accessed_mask;
1414
1415 mmu_spte_clear_track_bits(sptep);
1416 mmu_spte_set(sptep, new_spte);
1417 sptep = rmap_get_next(&iter);
1418 }
1419 }
1420
1421 if (need_flush)
1422 kvm_flush_remote_tlbs(kvm);
1423
1424 return 0;
1425 }
1426
1427 static int kvm_handle_hva_range(struct kvm *kvm,
1428 unsigned long start,
1429 unsigned long end,
1430 unsigned long data,
1431 int (*handler)(struct kvm *kvm,
1432 unsigned long *rmapp,
1433 struct kvm_memory_slot *slot,
1434 gfn_t gfn,
1435 int level,
1436 unsigned long data))
1437 {
1438 int j;
1439 int ret = 0;
1440 struct kvm_memslots *slots;
1441 struct kvm_memory_slot *memslot;
1442
1443 slots = kvm_memslots(kvm);
1444
1445 kvm_for_each_memslot(memslot, slots) {
1446 unsigned long hva_start, hva_end;
1447 gfn_t gfn_start, gfn_end;
1448
1449 hva_start = max(start, memslot->userspace_addr);
1450 hva_end = min(end, memslot->userspace_addr +
1451 (memslot->npages << PAGE_SHIFT));
1452 if (hva_start >= hva_end)
1453 continue;
1454 /*
1455 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1456 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1457 */
1458 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1459 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1460
1461 for (j = PT_PAGE_TABLE_LEVEL;
1462 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1463 unsigned long idx, idx_end;
1464 unsigned long *rmapp;
1465 gfn_t gfn = gfn_start;
1466
1467 /*
1468 * {idx(page_j) | page_j intersects with
1469 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1470 */
1471 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1472 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1473
1474 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1475
1476 for (; idx <= idx_end;
1477 ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1478 ret |= handler(kvm, rmapp++, memslot,
1479 gfn, j, data);
1480 }
1481 }
1482
1483 return ret;
1484 }
1485
1486 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1487 unsigned long data,
1488 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1489 struct kvm_memory_slot *slot,
1490 gfn_t gfn, int level,
1491 unsigned long data))
1492 {
1493 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1494 }
1495
1496 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1497 {
1498 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1499 }
1500
1501 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1502 {
1503 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1504 }
1505
1506 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1507 {
1508 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1509 }
1510
1511 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1512 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1513 unsigned long data)
1514 {
1515 u64 *sptep;
1516 struct rmap_iterator uninitialized_var(iter);
1517 int young = 0;
1518
1519 BUG_ON(!shadow_accessed_mask);
1520
1521 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1522 sptep = rmap_get_next(&iter)) {
1523 BUG_ON(!is_shadow_present_pte(*sptep));
1524
1525 if (*sptep & shadow_accessed_mask) {
1526 young = 1;
1527 clear_bit((ffs(shadow_accessed_mask) - 1),
1528 (unsigned long *)sptep);
1529 }
1530 }
1531 trace_kvm_age_page(gfn, level, slot, young);
1532 return young;
1533 }
1534
1535 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1536 struct kvm_memory_slot *slot, gfn_t gfn,
1537 int level, unsigned long data)
1538 {
1539 u64 *sptep;
1540 struct rmap_iterator iter;
1541 int young = 0;
1542
1543 /*
1544 * If there's no access bit in the secondary pte set by the
1545 * hardware it's up to gup-fast/gup to set the access bit in
1546 * the primary pte or in the page structure.
1547 */
1548 if (!shadow_accessed_mask)
1549 goto out;
1550
1551 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1552 sptep = rmap_get_next(&iter)) {
1553 BUG_ON(!is_shadow_present_pte(*sptep));
1554
1555 if (*sptep & shadow_accessed_mask) {
1556 young = 1;
1557 break;
1558 }
1559 }
1560 out:
1561 return young;
1562 }
1563
1564 #define RMAP_RECYCLE_THRESHOLD 1000
1565
1566 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1567 {
1568 unsigned long *rmapp;
1569 struct kvm_mmu_page *sp;
1570
1571 sp = page_header(__pa(spte));
1572
1573 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1574
1575 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1576 kvm_flush_remote_tlbs(vcpu->kvm);
1577 }
1578
1579 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1580 {
1581 /*
1582 * In case of absence of EPT Access and Dirty Bits supports,
1583 * emulate the accessed bit for EPT, by checking if this page has
1584 * an EPT mapping, and clearing it if it does. On the next access,
1585 * a new EPT mapping will be established.
1586 * This has some overhead, but not as much as the cost of swapping
1587 * out actively used pages or breaking up actively used hugepages.
1588 */
1589 if (!shadow_accessed_mask) {
1590 /*
1591 * We are holding the kvm->mmu_lock, and we are blowing up
1592 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1593 * This is correct as long as we don't decouple the mmu_lock
1594 * protected regions (like invalidate_range_start|end does).
1595 */
1596 kvm->mmu_notifier_seq++;
1597 return kvm_handle_hva_range(kvm, start, end, 0,
1598 kvm_unmap_rmapp);
1599 }
1600
1601 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1602 }
1603
1604 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1605 {
1606 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1607 }
1608
1609 #ifdef MMU_DEBUG
1610 static int is_empty_shadow_page(u64 *spt)
1611 {
1612 u64 *pos;
1613 u64 *end;
1614
1615 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1616 if (is_shadow_present_pte(*pos)) {
1617 printk(KERN_ERR "%s: %p %llx\n", __func__,
1618 pos, *pos);
1619 return 0;
1620 }
1621 return 1;
1622 }
1623 #endif
1624
1625 /*
1626 * This value is the sum of all of the kvm instances's
1627 * kvm->arch.n_used_mmu_pages values. We need a global,
1628 * aggregate version in order to make the slab shrinker
1629 * faster
1630 */
1631 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1632 {
1633 kvm->arch.n_used_mmu_pages += nr;
1634 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1635 }
1636
1637 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1638 {
1639 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1640 hlist_del(&sp->hash_link);
1641 list_del(&sp->link);
1642 free_page((unsigned long)sp->spt);
1643 if (!sp->role.direct)
1644 free_page((unsigned long)sp->gfns);
1645 kmem_cache_free(mmu_page_header_cache, sp);
1646 }
1647
1648 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1649 {
1650 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1651 }
1652
1653 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1654 struct kvm_mmu_page *sp, u64 *parent_pte)
1655 {
1656 if (!parent_pte)
1657 return;
1658
1659 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1660 }
1661
1662 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1663 u64 *parent_pte)
1664 {
1665 pte_list_remove(parent_pte, &sp->parent_ptes);
1666 }
1667
1668 static void drop_parent_pte(struct kvm_mmu_page *sp,
1669 u64 *parent_pte)
1670 {
1671 mmu_page_remove_parent_pte(sp, parent_pte);
1672 mmu_spte_clear_no_track(parent_pte);
1673 }
1674
1675 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1676 u64 *parent_pte, int direct)
1677 {
1678 struct kvm_mmu_page *sp;
1679
1680 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1681 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1682 if (!direct)
1683 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1684 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1685
1686 /*
1687 * The active_mmu_pages list is the FIFO list, do not move the
1688 * page until it is zapped. kvm_zap_obsolete_pages depends on
1689 * this feature. See the comments in kvm_zap_obsolete_pages().
1690 */
1691 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1692 sp->parent_ptes = 0;
1693 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1694 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1695 return sp;
1696 }
1697
1698 static void mark_unsync(u64 *spte);
1699 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1700 {
1701 pte_list_walk(&sp->parent_ptes, mark_unsync);
1702 }
1703
1704 static void mark_unsync(u64 *spte)
1705 {
1706 struct kvm_mmu_page *sp;
1707 unsigned int index;
1708
1709 sp = page_header(__pa(spte));
1710 index = spte - sp->spt;
1711 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1712 return;
1713 if (sp->unsync_children++)
1714 return;
1715 kvm_mmu_mark_parents_unsync(sp);
1716 }
1717
1718 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1719 struct kvm_mmu_page *sp)
1720 {
1721 return 1;
1722 }
1723
1724 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1725 {
1726 }
1727
1728 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1729 struct kvm_mmu_page *sp, u64 *spte,
1730 const void *pte)
1731 {
1732 WARN_ON(1);
1733 }
1734
1735 #define KVM_PAGE_ARRAY_NR 16
1736
1737 struct kvm_mmu_pages {
1738 struct mmu_page_and_offset {
1739 struct kvm_mmu_page *sp;
1740 unsigned int idx;
1741 } page[KVM_PAGE_ARRAY_NR];
1742 unsigned int nr;
1743 };
1744
1745 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1746 int idx)
1747 {
1748 int i;
1749
1750 if (sp->unsync)
1751 for (i=0; i < pvec->nr; i++)
1752 if (pvec->page[i].sp == sp)
1753 return 0;
1754
1755 pvec->page[pvec->nr].sp = sp;
1756 pvec->page[pvec->nr].idx = idx;
1757 pvec->nr++;
1758 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1759 }
1760
1761 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1762 struct kvm_mmu_pages *pvec)
1763 {
1764 int i, ret, nr_unsync_leaf = 0;
1765
1766 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1767 struct kvm_mmu_page *child;
1768 u64 ent = sp->spt[i];
1769
1770 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1771 goto clear_child_bitmap;
1772
1773 child = page_header(ent & PT64_BASE_ADDR_MASK);
1774
1775 if (child->unsync_children) {
1776 if (mmu_pages_add(pvec, child, i))
1777 return -ENOSPC;
1778
1779 ret = __mmu_unsync_walk(child, pvec);
1780 if (!ret)
1781 goto clear_child_bitmap;
1782 else if (ret > 0)
1783 nr_unsync_leaf += ret;
1784 else
1785 return ret;
1786 } else if (child->unsync) {
1787 nr_unsync_leaf++;
1788 if (mmu_pages_add(pvec, child, i))
1789 return -ENOSPC;
1790 } else
1791 goto clear_child_bitmap;
1792
1793 continue;
1794
1795 clear_child_bitmap:
1796 __clear_bit(i, sp->unsync_child_bitmap);
1797 sp->unsync_children--;
1798 WARN_ON((int)sp->unsync_children < 0);
1799 }
1800
1801
1802 return nr_unsync_leaf;
1803 }
1804
1805 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1806 struct kvm_mmu_pages *pvec)
1807 {
1808 if (!sp->unsync_children)
1809 return 0;
1810
1811 mmu_pages_add(pvec, sp, 0);
1812 return __mmu_unsync_walk(sp, pvec);
1813 }
1814
1815 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1816 {
1817 WARN_ON(!sp->unsync);
1818 trace_kvm_mmu_sync_page(sp);
1819 sp->unsync = 0;
1820 --kvm->stat.mmu_unsync;
1821 }
1822
1823 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1824 struct list_head *invalid_list);
1825 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1826 struct list_head *invalid_list);
1827
1828 /*
1829 * NOTE: we should pay more attention on the zapped-obsolete page
1830 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1831 * since it has been deleted from active_mmu_pages but still can be found
1832 * at hast list.
1833 *
1834 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1835 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1836 * all the obsolete pages.
1837 */
1838 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1839 hlist_for_each_entry(_sp, \
1840 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1841 if ((_sp)->gfn != (_gfn)) {} else
1842
1843 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1844 for_each_gfn_sp(_kvm, _sp, _gfn) \
1845 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1846
1847 /* @sp->gfn should be write-protected at the call site */
1848 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1849 struct list_head *invalid_list, bool clear_unsync)
1850 {
1851 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1852 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1853 return 1;
1854 }
1855
1856 if (clear_unsync)
1857 kvm_unlink_unsync_page(vcpu->kvm, sp);
1858
1859 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1860 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1861 return 1;
1862 }
1863
1864 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1865 return 0;
1866 }
1867
1868 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1869 struct kvm_mmu_page *sp)
1870 {
1871 LIST_HEAD(invalid_list);
1872 int ret;
1873
1874 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1875 if (ret)
1876 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1877
1878 return ret;
1879 }
1880
1881 #ifdef CONFIG_KVM_MMU_AUDIT
1882 #include "mmu_audit.c"
1883 #else
1884 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1885 static void mmu_audit_disable(void) { }
1886 #endif
1887
1888 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1889 struct list_head *invalid_list)
1890 {
1891 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1892 }
1893
1894 /* @gfn should be write-protected at the call site */
1895 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1896 {
1897 struct kvm_mmu_page *s;
1898 LIST_HEAD(invalid_list);
1899 bool flush = false;
1900
1901 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1902 if (!s->unsync)
1903 continue;
1904
1905 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1906 kvm_unlink_unsync_page(vcpu->kvm, s);
1907 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1908 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1909 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1910 continue;
1911 }
1912 flush = true;
1913 }
1914
1915 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1916 if (flush)
1917 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1918 }
1919
1920 struct mmu_page_path {
1921 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1922 unsigned int idx[PT64_ROOT_LEVEL-1];
1923 };
1924
1925 #define for_each_sp(pvec, sp, parents, i) \
1926 for (i = mmu_pages_next(&pvec, &parents, -1), \
1927 sp = pvec.page[i].sp; \
1928 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1929 i = mmu_pages_next(&pvec, &parents, i))
1930
1931 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1932 struct mmu_page_path *parents,
1933 int i)
1934 {
1935 int n;
1936
1937 for (n = i+1; n < pvec->nr; n++) {
1938 struct kvm_mmu_page *sp = pvec->page[n].sp;
1939
1940 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1941 parents->idx[0] = pvec->page[n].idx;
1942 return n;
1943 }
1944
1945 parents->parent[sp->role.level-2] = sp;
1946 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1947 }
1948
1949 return n;
1950 }
1951
1952 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1953 {
1954 struct kvm_mmu_page *sp;
1955 unsigned int level = 0;
1956
1957 do {
1958 unsigned int idx = parents->idx[level];
1959
1960 sp = parents->parent[level];
1961 if (!sp)
1962 return;
1963
1964 --sp->unsync_children;
1965 WARN_ON((int)sp->unsync_children < 0);
1966 __clear_bit(idx, sp->unsync_child_bitmap);
1967 level++;
1968 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1969 }
1970
1971 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1972 struct mmu_page_path *parents,
1973 struct kvm_mmu_pages *pvec)
1974 {
1975 parents->parent[parent->role.level-1] = NULL;
1976 pvec->nr = 0;
1977 }
1978
1979 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1980 struct kvm_mmu_page *parent)
1981 {
1982 int i;
1983 struct kvm_mmu_page *sp;
1984 struct mmu_page_path parents;
1985 struct kvm_mmu_pages pages;
1986 LIST_HEAD(invalid_list);
1987
1988 kvm_mmu_pages_init(parent, &parents, &pages);
1989 while (mmu_unsync_walk(parent, &pages)) {
1990 bool protected = false;
1991
1992 for_each_sp(pages, sp, parents, i)
1993 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1994
1995 if (protected)
1996 kvm_flush_remote_tlbs(vcpu->kvm);
1997
1998 for_each_sp(pages, sp, parents, i) {
1999 kvm_sync_page(vcpu, sp, &invalid_list);
2000 mmu_pages_clear_parents(&parents);
2001 }
2002 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2003 cond_resched_lock(&vcpu->kvm->mmu_lock);
2004 kvm_mmu_pages_init(parent, &parents, &pages);
2005 }
2006 }
2007
2008 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2009 {
2010 int i;
2011
2012 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2013 sp->spt[i] = 0ull;
2014 }
2015
2016 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2017 {
2018 sp->write_flooding_count = 0;
2019 }
2020
2021 static void clear_sp_write_flooding_count(u64 *spte)
2022 {
2023 struct kvm_mmu_page *sp = page_header(__pa(spte));
2024
2025 __clear_sp_write_flooding_count(sp);
2026 }
2027
2028 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2029 {
2030 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2031 }
2032
2033 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2034 gfn_t gfn,
2035 gva_t gaddr,
2036 unsigned level,
2037 int direct,
2038 unsigned access,
2039 u64 *parent_pte)
2040 {
2041 union kvm_mmu_page_role role;
2042 unsigned quadrant;
2043 struct kvm_mmu_page *sp;
2044 bool need_sync = false;
2045
2046 role = vcpu->arch.mmu.base_role;
2047 role.level = level;
2048 role.direct = direct;
2049 if (role.direct)
2050 role.cr4_pae = 0;
2051 role.access = access;
2052 if (!vcpu->arch.mmu.direct_map
2053 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2054 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2055 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2056 role.quadrant = quadrant;
2057 }
2058 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2059 if (is_obsolete_sp(vcpu->kvm, sp))
2060 continue;
2061
2062 if (!need_sync && sp->unsync)
2063 need_sync = true;
2064
2065 if (sp->role.word != role.word)
2066 continue;
2067
2068 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2069 break;
2070
2071 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2072 if (sp->unsync_children) {
2073 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2074 kvm_mmu_mark_parents_unsync(sp);
2075 } else if (sp->unsync)
2076 kvm_mmu_mark_parents_unsync(sp);
2077
2078 __clear_sp_write_flooding_count(sp);
2079 trace_kvm_mmu_get_page(sp, false);
2080 return sp;
2081 }
2082 ++vcpu->kvm->stat.mmu_cache_miss;
2083 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2084 if (!sp)
2085 return sp;
2086 sp->gfn = gfn;
2087 sp->role = role;
2088 hlist_add_head(&sp->hash_link,
2089 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2090 if (!direct) {
2091 if (rmap_write_protect(vcpu->kvm, gfn))
2092 kvm_flush_remote_tlbs(vcpu->kvm);
2093 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2094 kvm_sync_pages(vcpu, gfn);
2095
2096 account_shadowed(vcpu->kvm, gfn);
2097 }
2098 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2099 init_shadow_page_table(sp);
2100 trace_kvm_mmu_get_page(sp, true);
2101 return sp;
2102 }
2103
2104 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2105 struct kvm_vcpu *vcpu, u64 addr)
2106 {
2107 iterator->addr = addr;
2108 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2109 iterator->level = vcpu->arch.mmu.shadow_root_level;
2110
2111 if (iterator->level == PT64_ROOT_LEVEL &&
2112 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2113 !vcpu->arch.mmu.direct_map)
2114 --iterator->level;
2115
2116 if (iterator->level == PT32E_ROOT_LEVEL) {
2117 iterator->shadow_addr
2118 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2119 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2120 --iterator->level;
2121 if (!iterator->shadow_addr)
2122 iterator->level = 0;
2123 }
2124 }
2125
2126 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2127 {
2128 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2129 return false;
2130
2131 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2132 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2133 return true;
2134 }
2135
2136 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2137 u64 spte)
2138 {
2139 if (is_last_spte(spte, iterator->level)) {
2140 iterator->level = 0;
2141 return;
2142 }
2143
2144 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2145 --iterator->level;
2146 }
2147
2148 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2149 {
2150 return __shadow_walk_next(iterator, *iterator->sptep);
2151 }
2152
2153 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2154 {
2155 u64 spte;
2156
2157 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2158 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2159
2160 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2161 shadow_user_mask | shadow_x_mask;
2162
2163 if (accessed)
2164 spte |= shadow_accessed_mask;
2165
2166 mmu_spte_set(sptep, spte);
2167 }
2168
2169 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2170 unsigned direct_access)
2171 {
2172 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2173 struct kvm_mmu_page *child;
2174
2175 /*
2176 * For the direct sp, if the guest pte's dirty bit
2177 * changed form clean to dirty, it will corrupt the
2178 * sp's access: allow writable in the read-only sp,
2179 * so we should update the spte at this point to get
2180 * a new sp with the correct access.
2181 */
2182 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2183 if (child->role.access == direct_access)
2184 return;
2185
2186 drop_parent_pte(child, sptep);
2187 kvm_flush_remote_tlbs(vcpu->kvm);
2188 }
2189 }
2190
2191 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2192 u64 *spte)
2193 {
2194 u64 pte;
2195 struct kvm_mmu_page *child;
2196
2197 pte = *spte;
2198 if (is_shadow_present_pte(pte)) {
2199 if (is_last_spte(pte, sp->role.level)) {
2200 drop_spte(kvm, spte);
2201 if (is_large_pte(pte))
2202 --kvm->stat.lpages;
2203 } else {
2204 child = page_header(pte & PT64_BASE_ADDR_MASK);
2205 drop_parent_pte(child, spte);
2206 }
2207 return true;
2208 }
2209
2210 if (is_mmio_spte(pte))
2211 mmu_spte_clear_no_track(spte);
2212
2213 return false;
2214 }
2215
2216 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2217 struct kvm_mmu_page *sp)
2218 {
2219 unsigned i;
2220
2221 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2222 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2223 }
2224
2225 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2226 {
2227 mmu_page_remove_parent_pte(sp, parent_pte);
2228 }
2229
2230 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2231 {
2232 u64 *sptep;
2233 struct rmap_iterator iter;
2234
2235 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2236 drop_parent_pte(sp, sptep);
2237 }
2238
2239 static int mmu_zap_unsync_children(struct kvm *kvm,
2240 struct kvm_mmu_page *parent,
2241 struct list_head *invalid_list)
2242 {
2243 int i, zapped = 0;
2244 struct mmu_page_path parents;
2245 struct kvm_mmu_pages pages;
2246
2247 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2248 return 0;
2249
2250 kvm_mmu_pages_init(parent, &parents, &pages);
2251 while (mmu_unsync_walk(parent, &pages)) {
2252 struct kvm_mmu_page *sp;
2253
2254 for_each_sp(pages, sp, parents, i) {
2255 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2256 mmu_pages_clear_parents(&parents);
2257 zapped++;
2258 }
2259 kvm_mmu_pages_init(parent, &parents, &pages);
2260 }
2261
2262 return zapped;
2263 }
2264
2265 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2266 struct list_head *invalid_list)
2267 {
2268 int ret;
2269
2270 trace_kvm_mmu_prepare_zap_page(sp);
2271 ++kvm->stat.mmu_shadow_zapped;
2272 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2273 kvm_mmu_page_unlink_children(kvm, sp);
2274 kvm_mmu_unlink_parents(kvm, sp);
2275
2276 if (!sp->role.invalid && !sp->role.direct)
2277 unaccount_shadowed(kvm, sp->gfn);
2278
2279 if (sp->unsync)
2280 kvm_unlink_unsync_page(kvm, sp);
2281 if (!sp->root_count) {
2282 /* Count self */
2283 ret++;
2284 list_move(&sp->link, invalid_list);
2285 kvm_mod_used_mmu_pages(kvm, -1);
2286 } else {
2287 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2288
2289 /*
2290 * The obsolete pages can not be used on any vcpus.
2291 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2292 */
2293 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2294 kvm_reload_remote_mmus(kvm);
2295 }
2296
2297 sp->role.invalid = 1;
2298 return ret;
2299 }
2300
2301 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2302 struct list_head *invalid_list)
2303 {
2304 struct kvm_mmu_page *sp, *nsp;
2305
2306 if (list_empty(invalid_list))
2307 return;
2308
2309 /*
2310 * wmb: make sure everyone sees our modifications to the page tables
2311 * rmb: make sure we see changes to vcpu->mode
2312 */
2313 smp_mb();
2314
2315 /*
2316 * Wait for all vcpus to exit guest mode and/or lockless shadow
2317 * page table walks.
2318 */
2319 kvm_flush_remote_tlbs(kvm);
2320
2321 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2322 WARN_ON(!sp->role.invalid || sp->root_count);
2323 kvm_mmu_free_page(sp);
2324 }
2325 }
2326
2327 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2328 struct list_head *invalid_list)
2329 {
2330 struct kvm_mmu_page *sp;
2331
2332 if (list_empty(&kvm->arch.active_mmu_pages))
2333 return false;
2334
2335 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2336 struct kvm_mmu_page, link);
2337 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2338
2339 return true;
2340 }
2341
2342 /*
2343 * Changing the number of mmu pages allocated to the vm
2344 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2345 */
2346 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2347 {
2348 LIST_HEAD(invalid_list);
2349
2350 spin_lock(&kvm->mmu_lock);
2351
2352 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2353 /* Need to free some mmu pages to achieve the goal. */
2354 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2355 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2356 break;
2357
2358 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2359 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2360 }
2361
2362 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2363
2364 spin_unlock(&kvm->mmu_lock);
2365 }
2366
2367 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2368 {
2369 struct kvm_mmu_page *sp;
2370 LIST_HEAD(invalid_list);
2371 int r;
2372
2373 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2374 r = 0;
2375 spin_lock(&kvm->mmu_lock);
2376 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2377 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2378 sp->role.word);
2379 r = 1;
2380 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2381 }
2382 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2383 spin_unlock(&kvm->mmu_lock);
2384
2385 return r;
2386 }
2387 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2388
2389 /*
2390 * The function is based on mtrr_type_lookup() in
2391 * arch/x86/kernel/cpu/mtrr/generic.c
2392 */
2393 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2394 u64 start, u64 end)
2395 {
2396 int i;
2397 u64 base, mask;
2398 u8 prev_match, curr_match;
2399 int num_var_ranges = KVM_NR_VAR_MTRR;
2400
2401 if (!mtrr_state->enabled)
2402 return 0xFF;
2403
2404 /* Make end inclusive end, instead of exclusive */
2405 end--;
2406
2407 /* Look in fixed ranges. Just return the type as per start */
2408 if (mtrr_state->have_fixed && (start < 0x100000)) {
2409 int idx;
2410
2411 if (start < 0x80000) {
2412 idx = 0;
2413 idx += (start >> 16);
2414 return mtrr_state->fixed_ranges[idx];
2415 } else if (start < 0xC0000) {
2416 idx = 1 * 8;
2417 idx += ((start - 0x80000) >> 14);
2418 return mtrr_state->fixed_ranges[idx];
2419 } else if (start < 0x1000000) {
2420 idx = 3 * 8;
2421 idx += ((start - 0xC0000) >> 12);
2422 return mtrr_state->fixed_ranges[idx];
2423 }
2424 }
2425
2426 /*
2427 * Look in variable ranges
2428 * Look of multiple ranges matching this address and pick type
2429 * as per MTRR precedence
2430 */
2431 if (!(mtrr_state->enabled & 2))
2432 return mtrr_state->def_type;
2433
2434 prev_match = 0xFF;
2435 for (i = 0; i < num_var_ranges; ++i) {
2436 unsigned short start_state, end_state;
2437
2438 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2439 continue;
2440
2441 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2442 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2443 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2444 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2445
2446 start_state = ((start & mask) == (base & mask));
2447 end_state = ((end & mask) == (base & mask));
2448 if (start_state != end_state)
2449 return 0xFE;
2450
2451 if ((start & mask) != (base & mask))
2452 continue;
2453
2454 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2455 if (prev_match == 0xFF) {
2456 prev_match = curr_match;
2457 continue;
2458 }
2459
2460 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2461 curr_match == MTRR_TYPE_UNCACHABLE)
2462 return MTRR_TYPE_UNCACHABLE;
2463
2464 if ((prev_match == MTRR_TYPE_WRBACK &&
2465 curr_match == MTRR_TYPE_WRTHROUGH) ||
2466 (prev_match == MTRR_TYPE_WRTHROUGH &&
2467 curr_match == MTRR_TYPE_WRBACK)) {
2468 prev_match = MTRR_TYPE_WRTHROUGH;
2469 curr_match = MTRR_TYPE_WRTHROUGH;
2470 }
2471
2472 if (prev_match != curr_match)
2473 return MTRR_TYPE_UNCACHABLE;
2474 }
2475
2476 if (prev_match != 0xFF)
2477 return prev_match;
2478
2479 return mtrr_state->def_type;
2480 }
2481
2482 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2483 {
2484 u8 mtrr;
2485
2486 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2487 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2488 if (mtrr == 0xfe || mtrr == 0xff)
2489 mtrr = MTRR_TYPE_WRBACK;
2490 return mtrr;
2491 }
2492 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2493
2494 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2495 {
2496 trace_kvm_mmu_unsync_page(sp);
2497 ++vcpu->kvm->stat.mmu_unsync;
2498 sp->unsync = 1;
2499
2500 kvm_mmu_mark_parents_unsync(sp);
2501 }
2502
2503 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2504 {
2505 struct kvm_mmu_page *s;
2506
2507 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2508 if (s->unsync)
2509 continue;
2510 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2511 __kvm_unsync_page(vcpu, s);
2512 }
2513 }
2514
2515 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2516 bool can_unsync)
2517 {
2518 struct kvm_mmu_page *s;
2519 bool need_unsync = false;
2520
2521 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2522 if (!can_unsync)
2523 return 1;
2524
2525 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2526 return 1;
2527
2528 if (!s->unsync)
2529 need_unsync = true;
2530 }
2531 if (need_unsync)
2532 kvm_unsync_pages(vcpu, gfn);
2533 return 0;
2534 }
2535
2536 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2537 unsigned pte_access, int level,
2538 gfn_t gfn, pfn_t pfn, bool speculative,
2539 bool can_unsync, bool host_writable)
2540 {
2541 u64 spte;
2542 int ret = 0;
2543
2544 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2545 return 0;
2546
2547 spte = PT_PRESENT_MASK;
2548 if (!speculative)
2549 spte |= shadow_accessed_mask;
2550
2551 if (pte_access & ACC_EXEC_MASK)
2552 spte |= shadow_x_mask;
2553 else
2554 spte |= shadow_nx_mask;
2555
2556 if (pte_access & ACC_USER_MASK)
2557 spte |= shadow_user_mask;
2558
2559 if (level > PT_PAGE_TABLE_LEVEL)
2560 spte |= PT_PAGE_SIZE_MASK;
2561 if (tdp_enabled)
2562 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2563 kvm_is_reserved_pfn(pfn));
2564
2565 if (host_writable)
2566 spte |= SPTE_HOST_WRITEABLE;
2567 else
2568 pte_access &= ~ACC_WRITE_MASK;
2569
2570 spte |= (u64)pfn << PAGE_SHIFT;
2571
2572 if (pte_access & ACC_WRITE_MASK) {
2573
2574 /*
2575 * Other vcpu creates new sp in the window between
2576 * mapping_level() and acquiring mmu-lock. We can
2577 * allow guest to retry the access, the mapping can
2578 * be fixed if guest refault.
2579 */
2580 if (level > PT_PAGE_TABLE_LEVEL &&
2581 has_wrprotected_page(vcpu->kvm, gfn, level))
2582 goto done;
2583
2584 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2585
2586 /*
2587 * Optimization: for pte sync, if spte was writable the hash
2588 * lookup is unnecessary (and expensive). Write protection
2589 * is responsibility of mmu_get_page / kvm_sync_page.
2590 * Same reasoning can be applied to dirty page accounting.
2591 */
2592 if (!can_unsync && is_writable_pte(*sptep))
2593 goto set_pte;
2594
2595 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2596 pgprintk("%s: found shadow page for %llx, marking ro\n",
2597 __func__, gfn);
2598 ret = 1;
2599 pte_access &= ~ACC_WRITE_MASK;
2600 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2601 }
2602 }
2603
2604 if (pte_access & ACC_WRITE_MASK) {
2605 mark_page_dirty(vcpu->kvm, gfn);
2606 spte |= shadow_dirty_mask;
2607 }
2608
2609 set_pte:
2610 if (mmu_spte_update(sptep, spte))
2611 kvm_flush_remote_tlbs(vcpu->kvm);
2612 done:
2613 return ret;
2614 }
2615
2616 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2617 unsigned pte_access, int write_fault, int *emulate,
2618 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2619 bool host_writable)
2620 {
2621 int was_rmapped = 0;
2622 int rmap_count;
2623
2624 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2625 *sptep, write_fault, gfn);
2626
2627 if (is_rmap_spte(*sptep)) {
2628 /*
2629 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2630 * the parent of the now unreachable PTE.
2631 */
2632 if (level > PT_PAGE_TABLE_LEVEL &&
2633 !is_large_pte(*sptep)) {
2634 struct kvm_mmu_page *child;
2635 u64 pte = *sptep;
2636
2637 child = page_header(pte & PT64_BASE_ADDR_MASK);
2638 drop_parent_pte(child, sptep);
2639 kvm_flush_remote_tlbs(vcpu->kvm);
2640 } else if (pfn != spte_to_pfn(*sptep)) {
2641 pgprintk("hfn old %llx new %llx\n",
2642 spte_to_pfn(*sptep), pfn);
2643 drop_spte(vcpu->kvm, sptep);
2644 kvm_flush_remote_tlbs(vcpu->kvm);
2645 } else
2646 was_rmapped = 1;
2647 }
2648
2649 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2650 true, host_writable)) {
2651 if (write_fault)
2652 *emulate = 1;
2653 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2654 }
2655
2656 if (unlikely(is_mmio_spte(*sptep) && emulate))
2657 *emulate = 1;
2658
2659 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2660 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2661 is_large_pte(*sptep)? "2MB" : "4kB",
2662 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2663 *sptep, sptep);
2664 if (!was_rmapped && is_large_pte(*sptep))
2665 ++vcpu->kvm->stat.lpages;
2666
2667 if (is_shadow_present_pte(*sptep)) {
2668 if (!was_rmapped) {
2669 rmap_count = rmap_add(vcpu, sptep, gfn);
2670 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2671 rmap_recycle(vcpu, sptep, gfn);
2672 }
2673 }
2674
2675 kvm_release_pfn_clean(pfn);
2676 }
2677
2678 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2679 bool no_dirty_log)
2680 {
2681 struct kvm_memory_slot *slot;
2682
2683 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2684 if (!slot)
2685 return KVM_PFN_ERR_FAULT;
2686
2687 return gfn_to_pfn_memslot_atomic(slot, gfn);
2688 }
2689
2690 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2691 struct kvm_mmu_page *sp,
2692 u64 *start, u64 *end)
2693 {
2694 struct page *pages[PTE_PREFETCH_NUM];
2695 unsigned access = sp->role.access;
2696 int i, ret;
2697 gfn_t gfn;
2698
2699 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2700 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2701 return -1;
2702
2703 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2704 if (ret <= 0)
2705 return -1;
2706
2707 for (i = 0; i < ret; i++, gfn++, start++)
2708 mmu_set_spte(vcpu, start, access, 0, NULL,
2709 sp->role.level, gfn, page_to_pfn(pages[i]),
2710 true, true);
2711
2712 return 0;
2713 }
2714
2715 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2716 struct kvm_mmu_page *sp, u64 *sptep)
2717 {
2718 u64 *spte, *start = NULL;
2719 int i;
2720
2721 WARN_ON(!sp->role.direct);
2722
2723 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2724 spte = sp->spt + i;
2725
2726 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2727 if (is_shadow_present_pte(*spte) || spte == sptep) {
2728 if (!start)
2729 continue;
2730 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2731 break;
2732 start = NULL;
2733 } else if (!start)
2734 start = spte;
2735 }
2736 }
2737
2738 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2739 {
2740 struct kvm_mmu_page *sp;
2741
2742 /*
2743 * Since it's no accessed bit on EPT, it's no way to
2744 * distinguish between actually accessed translations
2745 * and prefetched, so disable pte prefetch if EPT is
2746 * enabled.
2747 */
2748 if (!shadow_accessed_mask)
2749 return;
2750
2751 sp = page_header(__pa(sptep));
2752 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2753 return;
2754
2755 __direct_pte_prefetch(vcpu, sp, sptep);
2756 }
2757
2758 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2759 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2760 bool prefault)
2761 {
2762 struct kvm_shadow_walk_iterator iterator;
2763 struct kvm_mmu_page *sp;
2764 int emulate = 0;
2765 gfn_t pseudo_gfn;
2766
2767 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2768 return 0;
2769
2770 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2771 if (iterator.level == level) {
2772 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2773 write, &emulate, level, gfn, pfn,
2774 prefault, map_writable);
2775 direct_pte_prefetch(vcpu, iterator.sptep);
2776 ++vcpu->stat.pf_fixed;
2777 break;
2778 }
2779
2780 drop_large_spte(vcpu, iterator.sptep);
2781 if (!is_shadow_present_pte(*iterator.sptep)) {
2782 u64 base_addr = iterator.addr;
2783
2784 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2785 pseudo_gfn = base_addr >> PAGE_SHIFT;
2786 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2787 iterator.level - 1,
2788 1, ACC_ALL, iterator.sptep);
2789
2790 link_shadow_page(iterator.sptep, sp, true);
2791 }
2792 }
2793 return emulate;
2794 }
2795
2796 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2797 {
2798 siginfo_t info;
2799
2800 info.si_signo = SIGBUS;
2801 info.si_errno = 0;
2802 info.si_code = BUS_MCEERR_AR;
2803 info.si_addr = (void __user *)address;
2804 info.si_addr_lsb = PAGE_SHIFT;
2805
2806 send_sig_info(SIGBUS, &info, tsk);
2807 }
2808
2809 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2810 {
2811 /*
2812 * Do not cache the mmio info caused by writing the readonly gfn
2813 * into the spte otherwise read access on readonly gfn also can
2814 * caused mmio page fault and treat it as mmio access.
2815 * Return 1 to tell kvm to emulate it.
2816 */
2817 if (pfn == KVM_PFN_ERR_RO_FAULT)
2818 return 1;
2819
2820 if (pfn == KVM_PFN_ERR_HWPOISON) {
2821 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2822 return 0;
2823 }
2824
2825 return -EFAULT;
2826 }
2827
2828 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2829 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2830 {
2831 pfn_t pfn = *pfnp;
2832 gfn_t gfn = *gfnp;
2833 int level = *levelp;
2834
2835 /*
2836 * Check if it's a transparent hugepage. If this would be an
2837 * hugetlbfs page, level wouldn't be set to
2838 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2839 * here.
2840 */
2841 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2842 level == PT_PAGE_TABLE_LEVEL &&
2843 PageTransCompound(pfn_to_page(pfn)) &&
2844 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2845 unsigned long mask;
2846 /*
2847 * mmu_notifier_retry was successful and we hold the
2848 * mmu_lock here, so the pmd can't become splitting
2849 * from under us, and in turn
2850 * __split_huge_page_refcount() can't run from under
2851 * us and we can safely transfer the refcount from
2852 * PG_tail to PG_head as we switch the pfn to tail to
2853 * head.
2854 */
2855 *levelp = level = PT_DIRECTORY_LEVEL;
2856 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2857 VM_BUG_ON((gfn & mask) != (pfn & mask));
2858 if (pfn & mask) {
2859 gfn &= ~mask;
2860 *gfnp = gfn;
2861 kvm_release_pfn_clean(pfn);
2862 pfn &= ~mask;
2863 kvm_get_pfn(pfn);
2864 *pfnp = pfn;
2865 }
2866 }
2867 }
2868
2869 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2870 pfn_t pfn, unsigned access, int *ret_val)
2871 {
2872 bool ret = true;
2873
2874 /* The pfn is invalid, report the error! */
2875 if (unlikely(is_error_pfn(pfn))) {
2876 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2877 goto exit;
2878 }
2879
2880 if (unlikely(is_noslot_pfn(pfn)))
2881 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2882
2883 ret = false;
2884 exit:
2885 return ret;
2886 }
2887
2888 static bool page_fault_can_be_fast(u32 error_code)
2889 {
2890 /*
2891 * Do not fix the mmio spte with invalid generation number which
2892 * need to be updated by slow page fault path.
2893 */
2894 if (unlikely(error_code & PFERR_RSVD_MASK))
2895 return false;
2896
2897 /*
2898 * #PF can be fast only if the shadow page table is present and it
2899 * is caused by write-protect, that means we just need change the
2900 * W bit of the spte which can be done out of mmu-lock.
2901 */
2902 if (!(error_code & PFERR_PRESENT_MASK) ||
2903 !(error_code & PFERR_WRITE_MASK))
2904 return false;
2905
2906 return true;
2907 }
2908
2909 static bool
2910 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2911 u64 *sptep, u64 spte)
2912 {
2913 gfn_t gfn;
2914
2915 WARN_ON(!sp->role.direct);
2916
2917 /*
2918 * The gfn of direct spte is stable since it is calculated
2919 * by sp->gfn.
2920 */
2921 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2922
2923 /*
2924 * Theoretically we could also set dirty bit (and flush TLB) here in
2925 * order to eliminate unnecessary PML logging. See comments in
2926 * set_spte. But fast_page_fault is very unlikely to happen with PML
2927 * enabled, so we do not do this. This might result in the same GPA
2928 * to be logged in PML buffer again when the write really happens, and
2929 * eventually to be called by mark_page_dirty twice. But it's also no
2930 * harm. This also avoids the TLB flush needed after setting dirty bit
2931 * so non-PML cases won't be impacted.
2932 *
2933 * Compare with set_spte where instead shadow_dirty_mask is set.
2934 */
2935 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2936 mark_page_dirty(vcpu->kvm, gfn);
2937
2938 return true;
2939 }
2940
2941 /*
2942 * Return value:
2943 * - true: let the vcpu to access on the same address again.
2944 * - false: let the real page fault path to fix it.
2945 */
2946 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2947 u32 error_code)
2948 {
2949 struct kvm_shadow_walk_iterator iterator;
2950 struct kvm_mmu_page *sp;
2951 bool ret = false;
2952 u64 spte = 0ull;
2953
2954 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2955 return false;
2956
2957 if (!page_fault_can_be_fast(error_code))
2958 return false;
2959
2960 walk_shadow_page_lockless_begin(vcpu);
2961 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2962 if (!is_shadow_present_pte(spte) || iterator.level < level)
2963 break;
2964
2965 /*
2966 * If the mapping has been changed, let the vcpu fault on the
2967 * same address again.
2968 */
2969 if (!is_rmap_spte(spte)) {
2970 ret = true;
2971 goto exit;
2972 }
2973
2974 sp = page_header(__pa(iterator.sptep));
2975 if (!is_last_spte(spte, sp->role.level))
2976 goto exit;
2977
2978 /*
2979 * Check if it is a spurious fault caused by TLB lazily flushed.
2980 *
2981 * Need not check the access of upper level table entries since
2982 * they are always ACC_ALL.
2983 */
2984 if (is_writable_pte(spte)) {
2985 ret = true;
2986 goto exit;
2987 }
2988
2989 /*
2990 * Currently, to simplify the code, only the spte write-protected
2991 * by dirty-log can be fast fixed.
2992 */
2993 if (!spte_is_locklessly_modifiable(spte))
2994 goto exit;
2995
2996 /*
2997 * Do not fix write-permission on the large spte since we only dirty
2998 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2999 * that means other pages are missed if its slot is dirty-logged.
3000 *
3001 * Instead, we let the slow page fault path create a normal spte to
3002 * fix the access.
3003 *
3004 * See the comments in kvm_arch_commit_memory_region().
3005 */
3006 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3007 goto exit;
3008
3009 /*
3010 * Currently, fast page fault only works for direct mapping since
3011 * the gfn is not stable for indirect shadow page.
3012 * See Documentation/virtual/kvm/locking.txt to get more detail.
3013 */
3014 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
3015 exit:
3016 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3017 spte, ret);
3018 walk_shadow_page_lockless_end(vcpu);
3019
3020 return ret;
3021 }
3022
3023 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3024 gva_t gva, pfn_t *pfn, bool write, bool *writable);
3025 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3026
3027 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3028 gfn_t gfn, bool prefault)
3029 {
3030 int r;
3031 int level;
3032 int force_pt_level;
3033 pfn_t pfn;
3034 unsigned long mmu_seq;
3035 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3036
3037 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3038 if (likely(!force_pt_level)) {
3039 level = mapping_level(vcpu, gfn);
3040 /*
3041 * This path builds a PAE pagetable - so we can map
3042 * 2mb pages at maximum. Therefore check if the level
3043 * is larger than that.
3044 */
3045 if (level > PT_DIRECTORY_LEVEL)
3046 level = PT_DIRECTORY_LEVEL;
3047
3048 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3049 } else
3050 level = PT_PAGE_TABLE_LEVEL;
3051
3052 if (fast_page_fault(vcpu, v, level, error_code))
3053 return 0;
3054
3055 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3056 smp_rmb();
3057
3058 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3059 return 0;
3060
3061 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3062 return r;
3063
3064 spin_lock(&vcpu->kvm->mmu_lock);
3065 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3066 goto out_unlock;
3067 make_mmu_pages_available(vcpu);
3068 if (likely(!force_pt_level))
3069 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3070 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3071 prefault);
3072 spin_unlock(&vcpu->kvm->mmu_lock);
3073
3074
3075 return r;
3076
3077 out_unlock:
3078 spin_unlock(&vcpu->kvm->mmu_lock);
3079 kvm_release_pfn_clean(pfn);
3080 return 0;
3081 }
3082
3083
3084 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3085 {
3086 int i;
3087 struct kvm_mmu_page *sp;
3088 LIST_HEAD(invalid_list);
3089
3090 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3091 return;
3092
3093 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3094 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3095 vcpu->arch.mmu.direct_map)) {
3096 hpa_t root = vcpu->arch.mmu.root_hpa;
3097
3098 spin_lock(&vcpu->kvm->mmu_lock);
3099 sp = page_header(root);
3100 --sp->root_count;
3101 if (!sp->root_count && sp->role.invalid) {
3102 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3103 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3104 }
3105 spin_unlock(&vcpu->kvm->mmu_lock);
3106 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3107 return;
3108 }
3109
3110 spin_lock(&vcpu->kvm->mmu_lock);
3111 for (i = 0; i < 4; ++i) {
3112 hpa_t root = vcpu->arch.mmu.pae_root[i];
3113
3114 if (root) {
3115 root &= PT64_BASE_ADDR_MASK;
3116 sp = page_header(root);
3117 --sp->root_count;
3118 if (!sp->root_count && sp->role.invalid)
3119 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3120 &invalid_list);
3121 }
3122 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3123 }
3124 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3125 spin_unlock(&vcpu->kvm->mmu_lock);
3126 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3127 }
3128
3129 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3130 {
3131 int ret = 0;
3132
3133 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3134 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3135 ret = 1;
3136 }
3137
3138 return ret;
3139 }
3140
3141 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3142 {
3143 struct kvm_mmu_page *sp;
3144 unsigned i;
3145
3146 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3147 spin_lock(&vcpu->kvm->mmu_lock);
3148 make_mmu_pages_available(vcpu);
3149 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3150 1, ACC_ALL, NULL);
3151 ++sp->root_count;
3152 spin_unlock(&vcpu->kvm->mmu_lock);
3153 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3154 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3155 for (i = 0; i < 4; ++i) {
3156 hpa_t root = vcpu->arch.mmu.pae_root[i];
3157
3158 MMU_WARN_ON(VALID_PAGE(root));
3159 spin_lock(&vcpu->kvm->mmu_lock);
3160 make_mmu_pages_available(vcpu);
3161 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3162 i << 30,
3163 PT32_ROOT_LEVEL, 1, ACC_ALL,
3164 NULL);
3165 root = __pa(sp->spt);
3166 ++sp->root_count;
3167 spin_unlock(&vcpu->kvm->mmu_lock);
3168 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3169 }
3170 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3171 } else
3172 BUG();
3173
3174 return 0;
3175 }
3176
3177 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3178 {
3179 struct kvm_mmu_page *sp;
3180 u64 pdptr, pm_mask;
3181 gfn_t root_gfn;
3182 int i;
3183
3184 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3185
3186 if (mmu_check_root(vcpu, root_gfn))
3187 return 1;
3188
3189 /*
3190 * Do we shadow a long mode page table? If so we need to
3191 * write-protect the guests page table root.
3192 */
3193 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3194 hpa_t root = vcpu->arch.mmu.root_hpa;
3195
3196 MMU_WARN_ON(VALID_PAGE(root));
3197
3198 spin_lock(&vcpu->kvm->mmu_lock);
3199 make_mmu_pages_available(vcpu);
3200 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3201 0, ACC_ALL, NULL);
3202 root = __pa(sp->spt);
3203 ++sp->root_count;
3204 spin_unlock(&vcpu->kvm->mmu_lock);
3205 vcpu->arch.mmu.root_hpa = root;
3206 return 0;
3207 }
3208
3209 /*
3210 * We shadow a 32 bit page table. This may be a legacy 2-level
3211 * or a PAE 3-level page table. In either case we need to be aware that
3212 * the shadow page table may be a PAE or a long mode page table.
3213 */
3214 pm_mask = PT_PRESENT_MASK;
3215 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3216 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3217
3218 for (i = 0; i < 4; ++i) {
3219 hpa_t root = vcpu->arch.mmu.pae_root[i];
3220
3221 MMU_WARN_ON(VALID_PAGE(root));
3222 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3223 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3224 if (!is_present_gpte(pdptr)) {
3225 vcpu->arch.mmu.pae_root[i] = 0;
3226 continue;
3227 }
3228 root_gfn = pdptr >> PAGE_SHIFT;
3229 if (mmu_check_root(vcpu, root_gfn))
3230 return 1;
3231 }
3232 spin_lock(&vcpu->kvm->mmu_lock);
3233 make_mmu_pages_available(vcpu);
3234 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3235 PT32_ROOT_LEVEL, 0,
3236 ACC_ALL, NULL);
3237 root = __pa(sp->spt);
3238 ++sp->root_count;
3239 spin_unlock(&vcpu->kvm->mmu_lock);
3240
3241 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3242 }
3243 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3244
3245 /*
3246 * If we shadow a 32 bit page table with a long mode page
3247 * table we enter this path.
3248 */
3249 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3250 if (vcpu->arch.mmu.lm_root == NULL) {
3251 /*
3252 * The additional page necessary for this is only
3253 * allocated on demand.
3254 */
3255
3256 u64 *lm_root;
3257
3258 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3259 if (lm_root == NULL)
3260 return 1;
3261
3262 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3263
3264 vcpu->arch.mmu.lm_root = lm_root;
3265 }
3266
3267 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3268 }
3269
3270 return 0;
3271 }
3272
3273 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3274 {
3275 if (vcpu->arch.mmu.direct_map)
3276 return mmu_alloc_direct_roots(vcpu);
3277 else
3278 return mmu_alloc_shadow_roots(vcpu);
3279 }
3280
3281 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3282 {
3283 int i;
3284 struct kvm_mmu_page *sp;
3285
3286 if (vcpu->arch.mmu.direct_map)
3287 return;
3288
3289 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3290 return;
3291
3292 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3293 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3294 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3295 hpa_t root = vcpu->arch.mmu.root_hpa;
3296 sp = page_header(root);
3297 mmu_sync_children(vcpu, sp);
3298 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3299 return;
3300 }
3301 for (i = 0; i < 4; ++i) {
3302 hpa_t root = vcpu->arch.mmu.pae_root[i];
3303
3304 if (root && VALID_PAGE(root)) {
3305 root &= PT64_BASE_ADDR_MASK;
3306 sp = page_header(root);
3307 mmu_sync_children(vcpu, sp);
3308 }
3309 }
3310 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3311 }
3312
3313 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3314 {
3315 spin_lock(&vcpu->kvm->mmu_lock);
3316 mmu_sync_roots(vcpu);
3317 spin_unlock(&vcpu->kvm->mmu_lock);
3318 }
3319 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3320
3321 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3322 u32 access, struct x86_exception *exception)
3323 {
3324 if (exception)
3325 exception->error_code = 0;
3326 return vaddr;
3327 }
3328
3329 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3330 u32 access,
3331 struct x86_exception *exception)
3332 {
3333 if (exception)
3334 exception->error_code = 0;
3335 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3336 }
3337
3338 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3339 {
3340 if (direct)
3341 return vcpu_match_mmio_gpa(vcpu, addr);
3342
3343 return vcpu_match_mmio_gva(vcpu, addr);
3344 }
3345
3346
3347 /*
3348 * On direct hosts, the last spte is only allows two states
3349 * for mmio page fault:
3350 * - It is the mmio spte
3351 * - It is zapped or it is being zapped.
3352 *
3353 * This function completely checks the spte when the last spte
3354 * is not the mmio spte.
3355 */
3356 static bool check_direct_spte_mmio_pf(u64 spte)
3357 {
3358 return __check_direct_spte_mmio_pf(spte);
3359 }
3360
3361 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3362 {
3363 struct kvm_shadow_walk_iterator iterator;
3364 u64 spte = 0ull;
3365
3366 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3367 return spte;
3368
3369 walk_shadow_page_lockless_begin(vcpu);
3370 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3371 if (!is_shadow_present_pte(spte))
3372 break;
3373 walk_shadow_page_lockless_end(vcpu);
3374
3375 return spte;
3376 }
3377
3378 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3379 {
3380 u64 spte;
3381
3382 if (quickly_check_mmio_pf(vcpu, addr, direct))
3383 return RET_MMIO_PF_EMULATE;
3384
3385 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3386
3387 if (is_mmio_spte(spte)) {
3388 gfn_t gfn = get_mmio_spte_gfn(spte);
3389 unsigned access = get_mmio_spte_access(spte);
3390
3391 if (!check_mmio_spte(vcpu->kvm, spte))
3392 return RET_MMIO_PF_INVALID;
3393
3394 if (direct)
3395 addr = 0;
3396
3397 trace_handle_mmio_page_fault(addr, gfn, access);
3398 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3399 return RET_MMIO_PF_EMULATE;
3400 }
3401
3402 /*
3403 * It's ok if the gva is remapped by other cpus on shadow guest,
3404 * it's a BUG if the gfn is not a mmio page.
3405 */
3406 if (direct && !check_direct_spte_mmio_pf(spte))
3407 return RET_MMIO_PF_BUG;
3408
3409 /*
3410 * If the page table is zapped by other cpus, let CPU fault again on
3411 * the address.
3412 */
3413 return RET_MMIO_PF_RETRY;
3414 }
3415 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3416
3417 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3418 u32 error_code, bool direct)
3419 {
3420 int ret;
3421
3422 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3423 WARN_ON(ret == RET_MMIO_PF_BUG);
3424 return ret;
3425 }
3426
3427 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3428 u32 error_code, bool prefault)
3429 {
3430 gfn_t gfn;
3431 int r;
3432
3433 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3434
3435 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3436 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3437
3438 if (likely(r != RET_MMIO_PF_INVALID))
3439 return r;
3440 }
3441
3442 r = mmu_topup_memory_caches(vcpu);
3443 if (r)
3444 return r;
3445
3446 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3447
3448 gfn = gva >> PAGE_SHIFT;
3449
3450 return nonpaging_map(vcpu, gva & PAGE_MASK,
3451 error_code, gfn, prefault);
3452 }
3453
3454 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3455 {
3456 struct kvm_arch_async_pf arch;
3457
3458 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3459 arch.gfn = gfn;
3460 arch.direct_map = vcpu->arch.mmu.direct_map;
3461 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3462
3463 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3464 }
3465
3466 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3467 {
3468 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3469 kvm_event_needs_reinjection(vcpu)))
3470 return false;
3471
3472 return kvm_x86_ops->interrupt_allowed(vcpu);
3473 }
3474
3475 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3476 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3477 {
3478 bool async;
3479
3480 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3481
3482 if (!async)
3483 return false; /* *pfn has correct page already */
3484
3485 if (!prefault && can_do_async_pf(vcpu)) {
3486 trace_kvm_try_async_get_page(gva, gfn);
3487 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3488 trace_kvm_async_pf_doublefault(gva, gfn);
3489 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3490 return true;
3491 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3492 return true;
3493 }
3494
3495 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3496
3497 return false;
3498 }
3499
3500 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3501 bool prefault)
3502 {
3503 pfn_t pfn;
3504 int r;
3505 int level;
3506 int force_pt_level;
3507 gfn_t gfn = gpa >> PAGE_SHIFT;
3508 unsigned long mmu_seq;
3509 int write = error_code & PFERR_WRITE_MASK;
3510 bool map_writable;
3511
3512 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3513
3514 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3515 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3516
3517 if (likely(r != RET_MMIO_PF_INVALID))
3518 return r;
3519 }
3520
3521 r = mmu_topup_memory_caches(vcpu);
3522 if (r)
3523 return r;
3524
3525 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3526 if (likely(!force_pt_level)) {
3527 level = mapping_level(vcpu, gfn);
3528 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3529 } else
3530 level = PT_PAGE_TABLE_LEVEL;
3531
3532 if (fast_page_fault(vcpu, gpa, level, error_code))
3533 return 0;
3534
3535 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3536 smp_rmb();
3537
3538 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3539 return 0;
3540
3541 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3542 return r;
3543
3544 spin_lock(&vcpu->kvm->mmu_lock);
3545 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3546 goto out_unlock;
3547 make_mmu_pages_available(vcpu);
3548 if (likely(!force_pt_level))
3549 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3550 r = __direct_map(vcpu, gpa, write, map_writable,
3551 level, gfn, pfn, prefault);
3552 spin_unlock(&vcpu->kvm->mmu_lock);
3553
3554 return r;
3555
3556 out_unlock:
3557 spin_unlock(&vcpu->kvm->mmu_lock);
3558 kvm_release_pfn_clean(pfn);
3559 return 0;
3560 }
3561
3562 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3563 struct kvm_mmu *context)
3564 {
3565 context->page_fault = nonpaging_page_fault;
3566 context->gva_to_gpa = nonpaging_gva_to_gpa;
3567 context->sync_page = nonpaging_sync_page;
3568 context->invlpg = nonpaging_invlpg;
3569 context->update_pte = nonpaging_update_pte;
3570 context->root_level = 0;
3571 context->shadow_root_level = PT32E_ROOT_LEVEL;
3572 context->root_hpa = INVALID_PAGE;
3573 context->direct_map = true;
3574 context->nx = false;
3575 }
3576
3577 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3578 {
3579 mmu_free_roots(vcpu);
3580 }
3581
3582 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3583 {
3584 return kvm_read_cr3(vcpu);
3585 }
3586
3587 static void inject_page_fault(struct kvm_vcpu *vcpu,
3588 struct x86_exception *fault)
3589 {
3590 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3591 }
3592
3593 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3594 unsigned access, int *nr_present)
3595 {
3596 if (unlikely(is_mmio_spte(*sptep))) {
3597 if (gfn != get_mmio_spte_gfn(*sptep)) {
3598 mmu_spte_clear_no_track(sptep);
3599 return true;
3600 }
3601
3602 (*nr_present)++;
3603 mark_mmio_spte(kvm, sptep, gfn, access);
3604 return true;
3605 }
3606
3607 return false;
3608 }
3609
3610 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3611 {
3612 unsigned index;
3613
3614 index = level - 1;
3615 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3616 return mmu->last_pte_bitmap & (1 << index);
3617 }
3618
3619 #define PTTYPE_EPT 18 /* arbitrary */
3620 #define PTTYPE PTTYPE_EPT
3621 #include "paging_tmpl.h"
3622 #undef PTTYPE
3623
3624 #define PTTYPE 64
3625 #include "paging_tmpl.h"
3626 #undef PTTYPE
3627
3628 #define PTTYPE 32
3629 #include "paging_tmpl.h"
3630 #undef PTTYPE
3631
3632 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3633 struct kvm_mmu *context)
3634 {
3635 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3636 u64 exb_bit_rsvd = 0;
3637 u64 gbpages_bit_rsvd = 0;
3638 u64 nonleaf_bit8_rsvd = 0;
3639
3640 context->bad_mt_xwr = 0;
3641
3642 if (!context->nx)
3643 exb_bit_rsvd = rsvd_bits(63, 63);
3644 if (!guest_cpuid_has_gbpages(vcpu))
3645 gbpages_bit_rsvd = rsvd_bits(7, 7);
3646
3647 /*
3648 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3649 * leaf entries) on AMD CPUs only.
3650 */
3651 if (guest_cpuid_is_amd(vcpu))
3652 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3653
3654 switch (context->root_level) {
3655 case PT32_ROOT_LEVEL:
3656 /* no rsvd bits for 2 level 4K page table entries */
3657 context->rsvd_bits_mask[0][1] = 0;
3658 context->rsvd_bits_mask[0][0] = 0;
3659 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3660
3661 if (!is_pse(vcpu)) {
3662 context->rsvd_bits_mask[1][1] = 0;
3663 break;
3664 }
3665
3666 if (is_cpuid_PSE36())
3667 /* 36bits PSE 4MB page */
3668 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3669 else
3670 /* 32 bits PSE 4MB page */
3671 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3672 break;
3673 case PT32E_ROOT_LEVEL:
3674 context->rsvd_bits_mask[0][2] =
3675 rsvd_bits(maxphyaddr, 63) |
3676 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3677 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3678 rsvd_bits(maxphyaddr, 62); /* PDE */
3679 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3680 rsvd_bits(maxphyaddr, 62); /* PTE */
3681 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3682 rsvd_bits(maxphyaddr, 62) |
3683 rsvd_bits(13, 20); /* large page */
3684 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3685 break;
3686 case PT64_ROOT_LEVEL:
3687 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3688 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3689 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3690 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3691 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3692 rsvd_bits(maxphyaddr, 51);
3693 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3694 rsvd_bits(maxphyaddr, 51);
3695 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3696 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3697 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3698 rsvd_bits(13, 29);
3699 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3700 rsvd_bits(maxphyaddr, 51) |
3701 rsvd_bits(13, 20); /* large page */
3702 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3703 break;
3704 }
3705 }
3706
3707 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3708 struct kvm_mmu *context, bool execonly)
3709 {
3710 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3711 int pte;
3712
3713 context->rsvd_bits_mask[0][3] =
3714 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3715 context->rsvd_bits_mask[0][2] =
3716 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3717 context->rsvd_bits_mask[0][1] =
3718 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3719 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3720
3721 /* large page */
3722 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3723 context->rsvd_bits_mask[1][2] =
3724 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3725 context->rsvd_bits_mask[1][1] =
3726 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3727 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3728
3729 for (pte = 0; pte < 64; pte++) {
3730 int rwx_bits = pte & 7;
3731 int mt = pte >> 3;
3732 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3733 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3734 (rwx_bits == 0x4 && !execonly))
3735 context->bad_mt_xwr |= (1ull << pte);
3736 }
3737 }
3738
3739 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3740 struct kvm_mmu *mmu, bool ept)
3741 {
3742 unsigned bit, byte, pfec;
3743 u8 map;
3744 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3745
3746 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3747 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3748 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3749 pfec = byte << 1;
3750 map = 0;
3751 wf = pfec & PFERR_WRITE_MASK;
3752 uf = pfec & PFERR_USER_MASK;
3753 ff = pfec & PFERR_FETCH_MASK;
3754 /*
3755 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3756 * subject to SMAP restrictions, and cleared otherwise. The
3757 * bit is only meaningful if the SMAP bit is set in CR4.
3758 */
3759 smapf = !(pfec & PFERR_RSVD_MASK);
3760 for (bit = 0; bit < 8; ++bit) {
3761 x = bit & ACC_EXEC_MASK;
3762 w = bit & ACC_WRITE_MASK;
3763 u = bit & ACC_USER_MASK;
3764
3765 if (!ept) {
3766 /* Not really needed: !nx will cause pte.nx to fault */
3767 x |= !mmu->nx;
3768 /* Allow supervisor writes if !cr0.wp */
3769 w |= !is_write_protection(vcpu) && !uf;
3770 /* Disallow supervisor fetches of user code if cr4.smep */
3771 x &= !(cr4_smep && u && !uf);
3772
3773 /*
3774 * SMAP:kernel-mode data accesses from user-mode
3775 * mappings should fault. A fault is considered
3776 * as a SMAP violation if all of the following
3777 * conditions are ture:
3778 * - X86_CR4_SMAP is set in CR4
3779 * - An user page is accessed
3780 * - Page fault in kernel mode
3781 * - if CPL = 3 or X86_EFLAGS_AC is clear
3782 *
3783 * Here, we cover the first three conditions.
3784 * The fourth is computed dynamically in
3785 * permission_fault() and is in smapf.
3786 *
3787 * Also, SMAP does not affect instruction
3788 * fetches, add the !ff check here to make it
3789 * clearer.
3790 */
3791 smap = cr4_smap && u && !uf && !ff;
3792 } else
3793 /* Not really needed: no U/S accesses on ept */
3794 u = 1;
3795
3796 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3797 (smapf && smap);
3798 map |= fault << bit;
3799 }
3800 mmu->permissions[byte] = map;
3801 }
3802 }
3803
3804 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3805 {
3806 u8 map;
3807 unsigned level, root_level = mmu->root_level;
3808 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3809
3810 if (root_level == PT32E_ROOT_LEVEL)
3811 --root_level;
3812 /* PT_PAGE_TABLE_LEVEL always terminates */
3813 map = 1 | (1 << ps_set_index);
3814 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3815 if (level <= PT_PDPE_LEVEL
3816 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3817 map |= 1 << (ps_set_index | (level - 1));
3818 }
3819 mmu->last_pte_bitmap = map;
3820 }
3821
3822 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3823 struct kvm_mmu *context,
3824 int level)
3825 {
3826 context->nx = is_nx(vcpu);
3827 context->root_level = level;
3828
3829 reset_rsvds_bits_mask(vcpu, context);
3830 update_permission_bitmask(vcpu, context, false);
3831 update_last_pte_bitmap(vcpu, context);
3832
3833 MMU_WARN_ON(!is_pae(vcpu));
3834 context->page_fault = paging64_page_fault;
3835 context->gva_to_gpa = paging64_gva_to_gpa;
3836 context->sync_page = paging64_sync_page;
3837 context->invlpg = paging64_invlpg;
3838 context->update_pte = paging64_update_pte;
3839 context->shadow_root_level = level;
3840 context->root_hpa = INVALID_PAGE;
3841 context->direct_map = false;
3842 }
3843
3844 static void paging64_init_context(struct kvm_vcpu *vcpu,
3845 struct kvm_mmu *context)
3846 {
3847 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3848 }
3849
3850 static void paging32_init_context(struct kvm_vcpu *vcpu,
3851 struct kvm_mmu *context)
3852 {
3853 context->nx = false;
3854 context->root_level = PT32_ROOT_LEVEL;
3855
3856 reset_rsvds_bits_mask(vcpu, context);
3857 update_permission_bitmask(vcpu, context, false);
3858 update_last_pte_bitmap(vcpu, context);
3859
3860 context->page_fault = paging32_page_fault;
3861 context->gva_to_gpa = paging32_gva_to_gpa;
3862 context->sync_page = paging32_sync_page;
3863 context->invlpg = paging32_invlpg;
3864 context->update_pte = paging32_update_pte;
3865 context->shadow_root_level = PT32E_ROOT_LEVEL;
3866 context->root_hpa = INVALID_PAGE;
3867 context->direct_map = false;
3868 }
3869
3870 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3871 struct kvm_mmu *context)
3872 {
3873 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3874 }
3875
3876 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3877 {
3878 struct kvm_mmu *context = &vcpu->arch.mmu;
3879
3880 context->base_role.word = 0;
3881 context->page_fault = tdp_page_fault;
3882 context->sync_page = nonpaging_sync_page;
3883 context->invlpg = nonpaging_invlpg;
3884 context->update_pte = nonpaging_update_pte;
3885 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3886 context->root_hpa = INVALID_PAGE;
3887 context->direct_map = true;
3888 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3889 context->get_cr3 = get_cr3;
3890 context->get_pdptr = kvm_pdptr_read;
3891 context->inject_page_fault = kvm_inject_page_fault;
3892
3893 if (!is_paging(vcpu)) {
3894 context->nx = false;
3895 context->gva_to_gpa = nonpaging_gva_to_gpa;
3896 context->root_level = 0;
3897 } else if (is_long_mode(vcpu)) {
3898 context->nx = is_nx(vcpu);
3899 context->root_level = PT64_ROOT_LEVEL;
3900 reset_rsvds_bits_mask(vcpu, context);
3901 context->gva_to_gpa = paging64_gva_to_gpa;
3902 } else if (is_pae(vcpu)) {
3903 context->nx = is_nx(vcpu);
3904 context->root_level = PT32E_ROOT_LEVEL;
3905 reset_rsvds_bits_mask(vcpu, context);
3906 context->gva_to_gpa = paging64_gva_to_gpa;
3907 } else {
3908 context->nx = false;
3909 context->root_level = PT32_ROOT_LEVEL;
3910 reset_rsvds_bits_mask(vcpu, context);
3911 context->gva_to_gpa = paging32_gva_to_gpa;
3912 }
3913
3914 update_permission_bitmask(vcpu, context, false);
3915 update_last_pte_bitmap(vcpu, context);
3916 }
3917
3918 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3919 {
3920 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3921 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3922 struct kvm_mmu *context = &vcpu->arch.mmu;
3923
3924 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3925
3926 if (!is_paging(vcpu))
3927 nonpaging_init_context(vcpu, context);
3928 else if (is_long_mode(vcpu))
3929 paging64_init_context(vcpu, context);
3930 else if (is_pae(vcpu))
3931 paging32E_init_context(vcpu, context);
3932 else
3933 paging32_init_context(vcpu, context);
3934
3935 context->base_role.nxe = is_nx(vcpu);
3936 context->base_role.cr4_pae = !!is_pae(vcpu);
3937 context->base_role.cr0_wp = is_write_protection(vcpu);
3938 context->base_role.smep_andnot_wp
3939 = smep && !is_write_protection(vcpu);
3940 context->base_role.smap_andnot_wp
3941 = smap && !is_write_protection(vcpu);
3942 }
3943 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3944
3945 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3946 {
3947 struct kvm_mmu *context = &vcpu->arch.mmu;
3948
3949 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3950
3951 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3952
3953 context->nx = true;
3954 context->page_fault = ept_page_fault;
3955 context->gva_to_gpa = ept_gva_to_gpa;
3956 context->sync_page = ept_sync_page;
3957 context->invlpg = ept_invlpg;
3958 context->update_pte = ept_update_pte;
3959 context->root_level = context->shadow_root_level;
3960 context->root_hpa = INVALID_PAGE;
3961 context->direct_map = false;
3962
3963 update_permission_bitmask(vcpu, context, true);
3964 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3965 }
3966 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3967
3968 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3969 {
3970 struct kvm_mmu *context = &vcpu->arch.mmu;
3971
3972 kvm_init_shadow_mmu(vcpu);
3973 context->set_cr3 = kvm_x86_ops->set_cr3;
3974 context->get_cr3 = get_cr3;
3975 context->get_pdptr = kvm_pdptr_read;
3976 context->inject_page_fault = kvm_inject_page_fault;
3977 }
3978
3979 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3980 {
3981 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3982
3983 g_context->get_cr3 = get_cr3;
3984 g_context->get_pdptr = kvm_pdptr_read;
3985 g_context->inject_page_fault = kvm_inject_page_fault;
3986
3987 /*
3988 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3989 * translation of l2_gpa to l1_gpa addresses is done using the
3990 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3991 * functions between mmu and nested_mmu are swapped.
3992 */
3993 if (!is_paging(vcpu)) {
3994 g_context->nx = false;
3995 g_context->root_level = 0;
3996 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3997 } else if (is_long_mode(vcpu)) {
3998 g_context->nx = is_nx(vcpu);
3999 g_context->root_level = PT64_ROOT_LEVEL;
4000 reset_rsvds_bits_mask(vcpu, g_context);
4001 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4002 } else if (is_pae(vcpu)) {
4003 g_context->nx = is_nx(vcpu);
4004 g_context->root_level = PT32E_ROOT_LEVEL;
4005 reset_rsvds_bits_mask(vcpu, g_context);
4006 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4007 } else {
4008 g_context->nx = false;
4009 g_context->root_level = PT32_ROOT_LEVEL;
4010 reset_rsvds_bits_mask(vcpu, g_context);
4011 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4012 }
4013
4014 update_permission_bitmask(vcpu, g_context, false);
4015 update_last_pte_bitmap(vcpu, g_context);
4016 }
4017
4018 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4019 {
4020 if (mmu_is_nested(vcpu))
4021 init_kvm_nested_mmu(vcpu);
4022 else if (tdp_enabled)
4023 init_kvm_tdp_mmu(vcpu);
4024 else
4025 init_kvm_softmmu(vcpu);
4026 }
4027
4028 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4029 {
4030 kvm_mmu_unload(vcpu);
4031 init_kvm_mmu(vcpu);
4032 }
4033 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4034
4035 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4036 {
4037 int r;
4038
4039 r = mmu_topup_memory_caches(vcpu);
4040 if (r)
4041 goto out;
4042 r = mmu_alloc_roots(vcpu);
4043 kvm_mmu_sync_roots(vcpu);
4044 if (r)
4045 goto out;
4046 /* set_cr3() should ensure TLB has been flushed */
4047 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4048 out:
4049 return r;
4050 }
4051 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4052
4053 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4054 {
4055 mmu_free_roots(vcpu);
4056 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4057 }
4058 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4059
4060 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4061 struct kvm_mmu_page *sp, u64 *spte,
4062 const void *new)
4063 {
4064 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4065 ++vcpu->kvm->stat.mmu_pde_zapped;
4066 return;
4067 }
4068
4069 ++vcpu->kvm->stat.mmu_pte_updated;
4070 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4071 }
4072
4073 static bool need_remote_flush(u64 old, u64 new)
4074 {
4075 if (!is_shadow_present_pte(old))
4076 return false;
4077 if (!is_shadow_present_pte(new))
4078 return true;
4079 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4080 return true;
4081 old ^= shadow_nx_mask;
4082 new ^= shadow_nx_mask;
4083 return (old & ~new & PT64_PERM_MASK) != 0;
4084 }
4085
4086 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4087 bool remote_flush, bool local_flush)
4088 {
4089 if (zap_page)
4090 return;
4091
4092 if (remote_flush)
4093 kvm_flush_remote_tlbs(vcpu->kvm);
4094 else if (local_flush)
4095 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4096 }
4097
4098 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4099 const u8 *new, int *bytes)
4100 {
4101 u64 gentry;
4102 int r;
4103
4104 /*
4105 * Assume that the pte write on a page table of the same type
4106 * as the current vcpu paging mode since we update the sptes only
4107 * when they have the same mode.
4108 */
4109 if (is_pae(vcpu) && *bytes == 4) {
4110 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4111 *gpa &= ~(gpa_t)7;
4112 *bytes = 8;
4113 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4114 if (r)
4115 gentry = 0;
4116 new = (const u8 *)&gentry;
4117 }
4118
4119 switch (*bytes) {
4120 case 4:
4121 gentry = *(const u32 *)new;
4122 break;
4123 case 8:
4124 gentry = *(const u64 *)new;
4125 break;
4126 default:
4127 gentry = 0;
4128 break;
4129 }
4130
4131 return gentry;
4132 }
4133
4134 /*
4135 * If we're seeing too many writes to a page, it may no longer be a page table,
4136 * or we may be forking, in which case it is better to unmap the page.
4137 */
4138 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4139 {
4140 /*
4141 * Skip write-flooding detected for the sp whose level is 1, because
4142 * it can become unsync, then the guest page is not write-protected.
4143 */
4144 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4145 return false;
4146
4147 return ++sp->write_flooding_count >= 3;
4148 }
4149
4150 /*
4151 * Misaligned accesses are too much trouble to fix up; also, they usually
4152 * indicate a page is not used as a page table.
4153 */
4154 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4155 int bytes)
4156 {
4157 unsigned offset, pte_size, misaligned;
4158
4159 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4160 gpa, bytes, sp->role.word);
4161
4162 offset = offset_in_page(gpa);
4163 pte_size = sp->role.cr4_pae ? 8 : 4;
4164
4165 /*
4166 * Sometimes, the OS only writes the last one bytes to update status
4167 * bits, for example, in linux, andb instruction is used in clear_bit().
4168 */
4169 if (!(offset & (pte_size - 1)) && bytes == 1)
4170 return false;
4171
4172 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4173 misaligned |= bytes < 4;
4174
4175 return misaligned;
4176 }
4177
4178 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4179 {
4180 unsigned page_offset, quadrant;
4181 u64 *spte;
4182 int level;
4183
4184 page_offset = offset_in_page(gpa);
4185 level = sp->role.level;
4186 *nspte = 1;
4187 if (!sp->role.cr4_pae) {
4188 page_offset <<= 1; /* 32->64 */
4189 /*
4190 * A 32-bit pde maps 4MB while the shadow pdes map
4191 * only 2MB. So we need to double the offset again
4192 * and zap two pdes instead of one.
4193 */
4194 if (level == PT32_ROOT_LEVEL) {
4195 page_offset &= ~7; /* kill rounding error */
4196 page_offset <<= 1;
4197 *nspte = 2;
4198 }
4199 quadrant = page_offset >> PAGE_SHIFT;
4200 page_offset &= ~PAGE_MASK;
4201 if (quadrant != sp->role.quadrant)
4202 return NULL;
4203 }
4204
4205 spte = &sp->spt[page_offset / sizeof(*spte)];
4206 return spte;
4207 }
4208
4209 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4210 const u8 *new, int bytes)
4211 {
4212 gfn_t gfn = gpa >> PAGE_SHIFT;
4213 struct kvm_mmu_page *sp;
4214 LIST_HEAD(invalid_list);
4215 u64 entry, gentry, *spte;
4216 int npte;
4217 bool remote_flush, local_flush, zap_page;
4218 union kvm_mmu_page_role mask = { };
4219
4220 mask.cr0_wp = 1;
4221 mask.cr4_pae = 1;
4222 mask.nxe = 1;
4223 mask.smep_andnot_wp = 1;
4224 mask.smap_andnot_wp = 1;
4225
4226 /*
4227 * If we don't have indirect shadow pages, it means no page is
4228 * write-protected, so we can exit simply.
4229 */
4230 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4231 return;
4232
4233 zap_page = remote_flush = local_flush = false;
4234
4235 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4236
4237 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4238
4239 /*
4240 * No need to care whether allocation memory is successful
4241 * or not since pte prefetch is skiped if it does not have
4242 * enough objects in the cache.
4243 */
4244 mmu_topup_memory_caches(vcpu);
4245
4246 spin_lock(&vcpu->kvm->mmu_lock);
4247 ++vcpu->kvm->stat.mmu_pte_write;
4248 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4249
4250 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4251 if (detect_write_misaligned(sp, gpa, bytes) ||
4252 detect_write_flooding(sp)) {
4253 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4254 &invalid_list);
4255 ++vcpu->kvm->stat.mmu_flooded;
4256 continue;
4257 }
4258
4259 spte = get_written_sptes(sp, gpa, &npte);
4260 if (!spte)
4261 continue;
4262
4263 local_flush = true;
4264 while (npte--) {
4265 entry = *spte;
4266 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4267 if (gentry &&
4268 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4269 & mask.word) && rmap_can_add(vcpu))
4270 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4271 if (need_remote_flush(entry, *spte))
4272 remote_flush = true;
4273 ++spte;
4274 }
4275 }
4276 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4277 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4278 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4279 spin_unlock(&vcpu->kvm->mmu_lock);
4280 }
4281
4282 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4283 {
4284 gpa_t gpa;
4285 int r;
4286
4287 if (vcpu->arch.mmu.direct_map)
4288 return 0;
4289
4290 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4291
4292 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4293
4294 return r;
4295 }
4296 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4297
4298 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4299 {
4300 LIST_HEAD(invalid_list);
4301
4302 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4303 return;
4304
4305 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4306 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4307 break;
4308
4309 ++vcpu->kvm->stat.mmu_recycled;
4310 }
4311 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4312 }
4313
4314 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4315 {
4316 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4317 return vcpu_match_mmio_gpa(vcpu, addr);
4318
4319 return vcpu_match_mmio_gva(vcpu, addr);
4320 }
4321
4322 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4323 void *insn, int insn_len)
4324 {
4325 int r, emulation_type = EMULTYPE_RETRY;
4326 enum emulation_result er;
4327
4328 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4329 if (r < 0)
4330 goto out;
4331
4332 if (!r) {
4333 r = 1;
4334 goto out;
4335 }
4336
4337 if (is_mmio_page_fault(vcpu, cr2))
4338 emulation_type = 0;
4339
4340 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4341
4342 switch (er) {
4343 case EMULATE_DONE:
4344 return 1;
4345 case EMULATE_USER_EXIT:
4346 ++vcpu->stat.mmio_exits;
4347 /* fall through */
4348 case EMULATE_FAIL:
4349 return 0;
4350 default:
4351 BUG();
4352 }
4353 out:
4354 return r;
4355 }
4356 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4357
4358 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4359 {
4360 vcpu->arch.mmu.invlpg(vcpu, gva);
4361 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4362 ++vcpu->stat.invlpg;
4363 }
4364 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4365
4366 void kvm_enable_tdp(void)
4367 {
4368 tdp_enabled = true;
4369 }
4370 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4371
4372 void kvm_disable_tdp(void)
4373 {
4374 tdp_enabled = false;
4375 }
4376 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4377
4378 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4379 {
4380 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4381 if (vcpu->arch.mmu.lm_root != NULL)
4382 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4383 }
4384
4385 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4386 {
4387 struct page *page;
4388 int i;
4389
4390 /*
4391 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4392 * Therefore we need to allocate shadow page tables in the first
4393 * 4GB of memory, which happens to fit the DMA32 zone.
4394 */
4395 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4396 if (!page)
4397 return -ENOMEM;
4398
4399 vcpu->arch.mmu.pae_root = page_address(page);
4400 for (i = 0; i < 4; ++i)
4401 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4402
4403 return 0;
4404 }
4405
4406 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4407 {
4408 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4409 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4410 vcpu->arch.mmu.translate_gpa = translate_gpa;
4411 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4412
4413 return alloc_mmu_pages(vcpu);
4414 }
4415
4416 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4417 {
4418 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4419
4420 init_kvm_mmu(vcpu);
4421 }
4422
4423 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4424 struct kvm_memory_slot *memslot)
4425 {
4426 gfn_t last_gfn;
4427 int i;
4428 bool flush = false;
4429
4430 last_gfn = memslot->base_gfn + memslot->npages - 1;
4431
4432 spin_lock(&kvm->mmu_lock);
4433
4434 for (i = PT_PAGE_TABLE_LEVEL;
4435 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4436 unsigned long *rmapp;
4437 unsigned long last_index, index;
4438
4439 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4440 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4441
4442 for (index = 0; index <= last_index; ++index, ++rmapp) {
4443 if (*rmapp)
4444 flush |= __rmap_write_protect(kvm, rmapp,
4445 false);
4446
4447 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4448 cond_resched_lock(&kvm->mmu_lock);
4449 }
4450 }
4451
4452 spin_unlock(&kvm->mmu_lock);
4453
4454 /*
4455 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4456 * which do tlb flush out of mmu-lock should be serialized by
4457 * kvm->slots_lock otherwise tlb flush would be missed.
4458 */
4459 lockdep_assert_held(&kvm->slots_lock);
4460
4461 /*
4462 * We can flush all the TLBs out of the mmu lock without TLB
4463 * corruption since we just change the spte from writable to
4464 * readonly so that we only need to care the case of changing
4465 * spte from present to present (changing the spte from present
4466 * to nonpresent will flush all the TLBs immediately), in other
4467 * words, the only case we care is mmu_spte_update() where we
4468 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4469 * instead of PT_WRITABLE_MASK, that means it does not depend
4470 * on PT_WRITABLE_MASK anymore.
4471 */
4472 if (flush)
4473 kvm_flush_remote_tlbs(kvm);
4474 }
4475
4476 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4477 unsigned long *rmapp)
4478 {
4479 u64 *sptep;
4480 struct rmap_iterator iter;
4481 int need_tlb_flush = 0;
4482 pfn_t pfn;
4483 struct kvm_mmu_page *sp;
4484
4485 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
4486 BUG_ON(!(*sptep & PT_PRESENT_MASK));
4487
4488 sp = page_header(__pa(sptep));
4489 pfn = spte_to_pfn(*sptep);
4490
4491 /*
4492 * We cannot do huge page mapping for indirect shadow pages,
4493 * which are found on the last rmap (level = 1) when not using
4494 * tdp; such shadow pages are synced with the page table in
4495 * the guest, and the guest page table is using 4K page size
4496 * mapping if the indirect sp has level = 1.
4497 */
4498 if (sp->role.direct &&
4499 !kvm_is_reserved_pfn(pfn) &&
4500 PageTransCompound(pfn_to_page(pfn))) {
4501 drop_spte(kvm, sptep);
4502 sptep = rmap_get_first(*rmapp, &iter);
4503 need_tlb_flush = 1;
4504 } else
4505 sptep = rmap_get_next(&iter);
4506 }
4507
4508 return need_tlb_flush;
4509 }
4510
4511 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4512 struct kvm_memory_slot *memslot)
4513 {
4514 bool flush = false;
4515 unsigned long *rmapp;
4516 unsigned long last_index, index;
4517
4518 spin_lock(&kvm->mmu_lock);
4519
4520 rmapp = memslot->arch.rmap[0];
4521 last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1,
4522 memslot->base_gfn, PT_PAGE_TABLE_LEVEL);
4523
4524 for (index = 0; index <= last_index; ++index, ++rmapp) {
4525 if (*rmapp)
4526 flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp);
4527
4528 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4529 if (flush) {
4530 kvm_flush_remote_tlbs(kvm);
4531 flush = false;
4532 }
4533 cond_resched_lock(&kvm->mmu_lock);
4534 }
4535 }
4536
4537 if (flush)
4538 kvm_flush_remote_tlbs(kvm);
4539
4540 spin_unlock(&kvm->mmu_lock);
4541 }
4542
4543 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4544 struct kvm_memory_slot *memslot)
4545 {
4546 gfn_t last_gfn;
4547 unsigned long *rmapp;
4548 unsigned long last_index, index;
4549 bool flush = false;
4550
4551 last_gfn = memslot->base_gfn + memslot->npages - 1;
4552
4553 spin_lock(&kvm->mmu_lock);
4554
4555 rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
4556 last_index = gfn_to_index(last_gfn, memslot->base_gfn,
4557 PT_PAGE_TABLE_LEVEL);
4558
4559 for (index = 0; index <= last_index; ++index, ++rmapp) {
4560 if (*rmapp)
4561 flush |= __rmap_clear_dirty(kvm, rmapp);
4562
4563 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4564 cond_resched_lock(&kvm->mmu_lock);
4565 }
4566
4567 spin_unlock(&kvm->mmu_lock);
4568
4569 lockdep_assert_held(&kvm->slots_lock);
4570
4571 /*
4572 * It's also safe to flush TLBs out of mmu lock here as currently this
4573 * function is only used for dirty logging, in which case flushing TLB
4574 * out of mmu lock also guarantees no dirty pages will be lost in
4575 * dirty_bitmap.
4576 */
4577 if (flush)
4578 kvm_flush_remote_tlbs(kvm);
4579 }
4580 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4581
4582 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4583 struct kvm_memory_slot *memslot)
4584 {
4585 gfn_t last_gfn;
4586 int i;
4587 bool flush = false;
4588
4589 last_gfn = memslot->base_gfn + memslot->npages - 1;
4590
4591 spin_lock(&kvm->mmu_lock);
4592
4593 for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */
4594 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4595 unsigned long *rmapp;
4596 unsigned long last_index, index;
4597
4598 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4599 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4600
4601 for (index = 0; index <= last_index; ++index, ++rmapp) {
4602 if (*rmapp)
4603 flush |= __rmap_write_protect(kvm, rmapp,
4604 false);
4605
4606 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4607 cond_resched_lock(&kvm->mmu_lock);
4608 }
4609 }
4610 spin_unlock(&kvm->mmu_lock);
4611
4612 /* see kvm_mmu_slot_remove_write_access */
4613 lockdep_assert_held(&kvm->slots_lock);
4614
4615 if (flush)
4616 kvm_flush_remote_tlbs(kvm);
4617 }
4618 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4619
4620 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4621 struct kvm_memory_slot *memslot)
4622 {
4623 gfn_t last_gfn;
4624 int i;
4625 bool flush = false;
4626
4627 last_gfn = memslot->base_gfn + memslot->npages - 1;
4628
4629 spin_lock(&kvm->mmu_lock);
4630
4631 for (i = PT_PAGE_TABLE_LEVEL;
4632 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4633 unsigned long *rmapp;
4634 unsigned long last_index, index;
4635
4636 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4637 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4638
4639 for (index = 0; index <= last_index; ++index, ++rmapp) {
4640 if (*rmapp)
4641 flush |= __rmap_set_dirty(kvm, rmapp);
4642
4643 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4644 cond_resched_lock(&kvm->mmu_lock);
4645 }
4646 }
4647
4648 spin_unlock(&kvm->mmu_lock);
4649
4650 lockdep_assert_held(&kvm->slots_lock);
4651
4652 /* see kvm_mmu_slot_leaf_clear_dirty */
4653 if (flush)
4654 kvm_flush_remote_tlbs(kvm);
4655 }
4656 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4657
4658 #define BATCH_ZAP_PAGES 10
4659 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4660 {
4661 struct kvm_mmu_page *sp, *node;
4662 int batch = 0;
4663
4664 restart:
4665 list_for_each_entry_safe_reverse(sp, node,
4666 &kvm->arch.active_mmu_pages, link) {
4667 int ret;
4668
4669 /*
4670 * No obsolete page exists before new created page since
4671 * active_mmu_pages is the FIFO list.
4672 */
4673 if (!is_obsolete_sp(kvm, sp))
4674 break;
4675
4676 /*
4677 * Since we are reversely walking the list and the invalid
4678 * list will be moved to the head, skip the invalid page
4679 * can help us to avoid the infinity list walking.
4680 */
4681 if (sp->role.invalid)
4682 continue;
4683
4684 /*
4685 * Need not flush tlb since we only zap the sp with invalid
4686 * generation number.
4687 */
4688 if (batch >= BATCH_ZAP_PAGES &&
4689 cond_resched_lock(&kvm->mmu_lock)) {
4690 batch = 0;
4691 goto restart;
4692 }
4693
4694 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4695 &kvm->arch.zapped_obsolete_pages);
4696 batch += ret;
4697
4698 if (ret)
4699 goto restart;
4700 }
4701
4702 /*
4703 * Should flush tlb before free page tables since lockless-walking
4704 * may use the pages.
4705 */
4706 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4707 }
4708
4709 /*
4710 * Fast invalidate all shadow pages and use lock-break technique
4711 * to zap obsolete pages.
4712 *
4713 * It's required when memslot is being deleted or VM is being
4714 * destroyed, in these cases, we should ensure that KVM MMU does
4715 * not use any resource of the being-deleted slot or all slots
4716 * after calling the function.
4717 */
4718 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4719 {
4720 spin_lock(&kvm->mmu_lock);
4721 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4722 kvm->arch.mmu_valid_gen++;
4723
4724 /*
4725 * Notify all vcpus to reload its shadow page table
4726 * and flush TLB. Then all vcpus will switch to new
4727 * shadow page table with the new mmu_valid_gen.
4728 *
4729 * Note: we should do this under the protection of
4730 * mmu-lock, otherwise, vcpu would purge shadow page
4731 * but miss tlb flush.
4732 */
4733 kvm_reload_remote_mmus(kvm);
4734
4735 kvm_zap_obsolete_pages(kvm);
4736 spin_unlock(&kvm->mmu_lock);
4737 }
4738
4739 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4740 {
4741 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4742 }
4743
4744 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4745 {
4746 /*
4747 * The very rare case: if the generation-number is round,
4748 * zap all shadow pages.
4749 */
4750 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4751 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4752 kvm_mmu_invalidate_zap_all_pages(kvm);
4753 }
4754 }
4755
4756 static unsigned long
4757 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4758 {
4759 struct kvm *kvm;
4760 int nr_to_scan = sc->nr_to_scan;
4761 unsigned long freed = 0;
4762
4763 spin_lock(&kvm_lock);
4764
4765 list_for_each_entry(kvm, &vm_list, vm_list) {
4766 int idx;
4767 LIST_HEAD(invalid_list);
4768
4769 /*
4770 * Never scan more than sc->nr_to_scan VM instances.
4771 * Will not hit this condition practically since we do not try
4772 * to shrink more than one VM and it is very unlikely to see
4773 * !n_used_mmu_pages so many times.
4774 */
4775 if (!nr_to_scan--)
4776 break;
4777 /*
4778 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4779 * here. We may skip a VM instance errorneosly, but we do not
4780 * want to shrink a VM that only started to populate its MMU
4781 * anyway.
4782 */
4783 if (!kvm->arch.n_used_mmu_pages &&
4784 !kvm_has_zapped_obsolete_pages(kvm))
4785 continue;
4786
4787 idx = srcu_read_lock(&kvm->srcu);
4788 spin_lock(&kvm->mmu_lock);
4789
4790 if (kvm_has_zapped_obsolete_pages(kvm)) {
4791 kvm_mmu_commit_zap_page(kvm,
4792 &kvm->arch.zapped_obsolete_pages);
4793 goto unlock;
4794 }
4795
4796 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4797 freed++;
4798 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4799
4800 unlock:
4801 spin_unlock(&kvm->mmu_lock);
4802 srcu_read_unlock(&kvm->srcu, idx);
4803
4804 /*
4805 * unfair on small ones
4806 * per-vm shrinkers cry out
4807 * sadness comes quickly
4808 */
4809 list_move_tail(&kvm->vm_list, &vm_list);
4810 break;
4811 }
4812
4813 spin_unlock(&kvm_lock);
4814 return freed;
4815 }
4816
4817 static unsigned long
4818 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4819 {
4820 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4821 }
4822
4823 static struct shrinker mmu_shrinker = {
4824 .count_objects = mmu_shrink_count,
4825 .scan_objects = mmu_shrink_scan,
4826 .seeks = DEFAULT_SEEKS * 10,
4827 };
4828
4829 static void mmu_destroy_caches(void)
4830 {
4831 if (pte_list_desc_cache)
4832 kmem_cache_destroy(pte_list_desc_cache);
4833 if (mmu_page_header_cache)
4834 kmem_cache_destroy(mmu_page_header_cache);
4835 }
4836
4837 int kvm_mmu_module_init(void)
4838 {
4839 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4840 sizeof(struct pte_list_desc),
4841 0, 0, NULL);
4842 if (!pte_list_desc_cache)
4843 goto nomem;
4844
4845 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4846 sizeof(struct kvm_mmu_page),
4847 0, 0, NULL);
4848 if (!mmu_page_header_cache)
4849 goto nomem;
4850
4851 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4852 goto nomem;
4853
4854 register_shrinker(&mmu_shrinker);
4855
4856 return 0;
4857
4858 nomem:
4859 mmu_destroy_caches();
4860 return -ENOMEM;
4861 }
4862
4863 /*
4864 * Caculate mmu pages needed for kvm.
4865 */
4866 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4867 {
4868 unsigned int nr_mmu_pages;
4869 unsigned int nr_pages = 0;
4870 struct kvm_memslots *slots;
4871 struct kvm_memory_slot *memslot;
4872
4873 slots = kvm_memslots(kvm);
4874
4875 kvm_for_each_memslot(memslot, slots)
4876 nr_pages += memslot->npages;
4877
4878 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4879 nr_mmu_pages = max(nr_mmu_pages,
4880 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4881
4882 return nr_mmu_pages;
4883 }
4884
4885 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4886 {
4887 struct kvm_shadow_walk_iterator iterator;
4888 u64 spte;
4889 int nr_sptes = 0;
4890
4891 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4892 return nr_sptes;
4893
4894 walk_shadow_page_lockless_begin(vcpu);
4895 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4896 sptes[iterator.level-1] = spte;
4897 nr_sptes++;
4898 if (!is_shadow_present_pte(spte))
4899 break;
4900 }
4901 walk_shadow_page_lockless_end(vcpu);
4902
4903 return nr_sptes;
4904 }
4905 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4906
4907 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4908 {
4909 kvm_mmu_unload(vcpu);
4910 free_mmu_pages(vcpu);
4911 mmu_free_memory_caches(vcpu);
4912 }
4913
4914 void kvm_mmu_module_exit(void)
4915 {
4916 mmu_destroy_caches();
4917 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4918 unregister_shrinker(&mmu_shrinker);
4919 mmu_audit_disable();
4920 }