]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: audit: check whether have unsync sps after root sync
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affilates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "mmu.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/page.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/io.h>
41 #include <asm/vmx.h>
42
43 /*
44 * When setting this variable to true it enables Two-Dimensional-Paging
45 * where the hardware walks 2 page tables:
46 * 1. the guest-virtual to guest-physical
47 * 2. while doing 1. it walks guest-physical to host-physical
48 * If the hardware supports that we don't need to do shadow paging.
49 */
50 bool tdp_enabled = false;
51
52 enum {
53 AUDIT_PRE_PAGE_FAULT,
54 AUDIT_POST_PAGE_FAULT,
55 AUDIT_PRE_PTE_WRITE,
56 AUDIT_POST_PTE_WRITE,
57 AUDIT_PRE_SYNC,
58 AUDIT_POST_SYNC
59 };
60
61 char *audit_point_name[] = {
62 "pre page fault",
63 "post page fault",
64 "pre pte write",
65 "post pte write",
66 "pre sync",
67 "post sync"
68 };
69
70 #undef MMU_DEBUG
71
72 #ifdef MMU_DEBUG
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76
77 #else
78
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
81
82 #endif
83
84 #ifdef MMU_DEBUG
85 static int dbg = 0;
86 module_param(dbg, bool, 0644);
87 #endif
88
89 static int oos_shadow = 1;
90 module_param(oos_shadow, bool, 0644);
91
92 #ifndef MMU_DEBUG
93 #define ASSERT(x) do { } while (0)
94 #else
95 #define ASSERT(x) \
96 if (!(x)) { \
97 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
98 __FILE__, __LINE__, #x); \
99 }
100 #endif
101
102 #define PTE_PREFETCH_NUM 8
103
104 #define PT_FIRST_AVAIL_BITS_SHIFT 9
105 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
106
107 #define PT64_LEVEL_BITS 9
108
109 #define PT64_LEVEL_SHIFT(level) \
110 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
111
112 #define PT64_LEVEL_MASK(level) \
113 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
114
115 #define PT64_INDEX(address, level)\
116 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
117
118
119 #define PT32_LEVEL_BITS 10
120
121 #define PT32_LEVEL_SHIFT(level) \
122 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123
124 #define PT32_LEVEL_MASK(level) \
125 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
126 #define PT32_LVL_OFFSET_MASK(level) \
127 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
128 * PT32_LEVEL_BITS))) - 1))
129
130 #define PT32_INDEX(address, level)\
131 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
132
133
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
135 #define PT64_DIR_BASE_ADDR_MASK \
136 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
137 #define PT64_LVL_ADDR_MASK(level) \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
139 * PT64_LEVEL_BITS))) - 1))
140 #define PT64_LVL_OFFSET_MASK(level) \
141 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
142 * PT64_LEVEL_BITS))) - 1))
143
144 #define PT32_BASE_ADDR_MASK PAGE_MASK
145 #define PT32_DIR_BASE_ADDR_MASK \
146 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
147 #define PT32_LVL_ADDR_MASK(level) \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
149 * PT32_LEVEL_BITS))) - 1))
150
151 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
152 | PT64_NX_MASK)
153
154 #define RMAP_EXT 4
155
156 #define ACC_EXEC_MASK 1
157 #define ACC_WRITE_MASK PT_WRITABLE_MASK
158 #define ACC_USER_MASK PT_USER_MASK
159 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
160
161 #include <trace/events/kvm.h>
162
163 #define CREATE_TRACE_POINTS
164 #include "mmutrace.h"
165
166 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
167
168 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
169
170 struct kvm_rmap_desc {
171 u64 *sptes[RMAP_EXT];
172 struct kvm_rmap_desc *more;
173 };
174
175 struct kvm_shadow_walk_iterator {
176 u64 addr;
177 hpa_t shadow_addr;
178 int level;
179 u64 *sptep;
180 unsigned index;
181 };
182
183 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
184 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
185 shadow_walk_okay(&(_walker)); \
186 shadow_walk_next(&(_walker)))
187
188 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
189
190 static struct kmem_cache *pte_chain_cache;
191 static struct kmem_cache *rmap_desc_cache;
192 static struct kmem_cache *mmu_page_header_cache;
193 static struct percpu_counter kvm_total_used_mmu_pages;
194
195 static u64 __read_mostly shadow_trap_nonpresent_pte;
196 static u64 __read_mostly shadow_notrap_nonpresent_pte;
197 static u64 __read_mostly shadow_base_present_pte;
198 static u64 __read_mostly shadow_nx_mask;
199 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
200 static u64 __read_mostly shadow_user_mask;
201 static u64 __read_mostly shadow_accessed_mask;
202 static u64 __read_mostly shadow_dirty_mask;
203
204 static inline u64 rsvd_bits(int s, int e)
205 {
206 return ((1ULL << (e - s + 1)) - 1) << s;
207 }
208
209 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
210 {
211 shadow_trap_nonpresent_pte = trap_pte;
212 shadow_notrap_nonpresent_pte = notrap_pte;
213 }
214 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
215
216 void kvm_mmu_set_base_ptes(u64 base_pte)
217 {
218 shadow_base_present_pte = base_pte;
219 }
220 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
221
222 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
223 u64 dirty_mask, u64 nx_mask, u64 x_mask)
224 {
225 shadow_user_mask = user_mask;
226 shadow_accessed_mask = accessed_mask;
227 shadow_dirty_mask = dirty_mask;
228 shadow_nx_mask = nx_mask;
229 shadow_x_mask = x_mask;
230 }
231 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
232
233 static bool is_write_protection(struct kvm_vcpu *vcpu)
234 {
235 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
236 }
237
238 static int is_cpuid_PSE36(void)
239 {
240 return 1;
241 }
242
243 static int is_nx(struct kvm_vcpu *vcpu)
244 {
245 return vcpu->arch.efer & EFER_NX;
246 }
247
248 static int is_shadow_present_pte(u64 pte)
249 {
250 return pte != shadow_trap_nonpresent_pte
251 && pte != shadow_notrap_nonpresent_pte;
252 }
253
254 static int is_large_pte(u64 pte)
255 {
256 return pte & PT_PAGE_SIZE_MASK;
257 }
258
259 static int is_writable_pte(unsigned long pte)
260 {
261 return pte & PT_WRITABLE_MASK;
262 }
263
264 static int is_dirty_gpte(unsigned long pte)
265 {
266 return pte & PT_DIRTY_MASK;
267 }
268
269 static int is_rmap_spte(u64 pte)
270 {
271 return is_shadow_present_pte(pte);
272 }
273
274 static int is_last_spte(u64 pte, int level)
275 {
276 if (level == PT_PAGE_TABLE_LEVEL)
277 return 1;
278 if (is_large_pte(pte))
279 return 1;
280 return 0;
281 }
282
283 static pfn_t spte_to_pfn(u64 pte)
284 {
285 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
286 }
287
288 static gfn_t pse36_gfn_delta(u32 gpte)
289 {
290 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
291
292 return (gpte & PT32_DIR_PSE36_MASK) << shift;
293 }
294
295 static void __set_spte(u64 *sptep, u64 spte)
296 {
297 set_64bit(sptep, spte);
298 }
299
300 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
301 {
302 #ifdef CONFIG_X86_64
303 return xchg(sptep, new_spte);
304 #else
305 u64 old_spte;
306
307 do {
308 old_spte = *sptep;
309 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
310
311 return old_spte;
312 #endif
313 }
314
315 static bool spte_has_volatile_bits(u64 spte)
316 {
317 if (!shadow_accessed_mask)
318 return false;
319
320 if (!is_shadow_present_pte(spte))
321 return false;
322
323 if ((spte & shadow_accessed_mask) &&
324 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
325 return false;
326
327 return true;
328 }
329
330 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
331 {
332 return (old_spte & bit_mask) && !(new_spte & bit_mask);
333 }
334
335 static void update_spte(u64 *sptep, u64 new_spte)
336 {
337 u64 mask, old_spte = *sptep;
338
339 WARN_ON(!is_rmap_spte(new_spte));
340
341 new_spte |= old_spte & shadow_dirty_mask;
342
343 mask = shadow_accessed_mask;
344 if (is_writable_pte(old_spte))
345 mask |= shadow_dirty_mask;
346
347 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
348 __set_spte(sptep, new_spte);
349 else
350 old_spte = __xchg_spte(sptep, new_spte);
351
352 if (!shadow_accessed_mask)
353 return;
354
355 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
356 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
357 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
358 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
359 }
360
361 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
362 struct kmem_cache *base_cache, int min)
363 {
364 void *obj;
365
366 if (cache->nobjs >= min)
367 return 0;
368 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
369 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
370 if (!obj)
371 return -ENOMEM;
372 cache->objects[cache->nobjs++] = obj;
373 }
374 return 0;
375 }
376
377 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
378 struct kmem_cache *cache)
379 {
380 while (mc->nobjs)
381 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
382 }
383
384 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
385 int min)
386 {
387 struct page *page;
388
389 if (cache->nobjs >= min)
390 return 0;
391 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
392 page = alloc_page(GFP_KERNEL);
393 if (!page)
394 return -ENOMEM;
395 cache->objects[cache->nobjs++] = page_address(page);
396 }
397 return 0;
398 }
399
400 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
401 {
402 while (mc->nobjs)
403 free_page((unsigned long)mc->objects[--mc->nobjs]);
404 }
405
406 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
407 {
408 int r;
409
410 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
411 pte_chain_cache, 4);
412 if (r)
413 goto out;
414 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
415 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
416 if (r)
417 goto out;
418 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
419 if (r)
420 goto out;
421 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
422 mmu_page_header_cache, 4);
423 out:
424 return r;
425 }
426
427 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
428 {
429 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
430 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
431 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
432 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
433 mmu_page_header_cache);
434 }
435
436 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
437 size_t size)
438 {
439 void *p;
440
441 BUG_ON(!mc->nobjs);
442 p = mc->objects[--mc->nobjs];
443 return p;
444 }
445
446 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
447 {
448 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
449 sizeof(struct kvm_pte_chain));
450 }
451
452 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
453 {
454 kmem_cache_free(pte_chain_cache, pc);
455 }
456
457 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
458 {
459 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
460 sizeof(struct kvm_rmap_desc));
461 }
462
463 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
464 {
465 kmem_cache_free(rmap_desc_cache, rd);
466 }
467
468 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
469 {
470 if (!sp->role.direct)
471 return sp->gfns[index];
472
473 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
474 }
475
476 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
477 {
478 if (sp->role.direct)
479 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
480 else
481 sp->gfns[index] = gfn;
482 }
483
484 /*
485 * Return the pointer to the largepage write count for a given
486 * gfn, handling slots that are not large page aligned.
487 */
488 static int *slot_largepage_idx(gfn_t gfn,
489 struct kvm_memory_slot *slot,
490 int level)
491 {
492 unsigned long idx;
493
494 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
495 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
496 return &slot->lpage_info[level - 2][idx].write_count;
497 }
498
499 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
500 {
501 struct kvm_memory_slot *slot;
502 int *write_count;
503 int i;
504
505 slot = gfn_to_memslot(kvm, gfn);
506 for (i = PT_DIRECTORY_LEVEL;
507 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
508 write_count = slot_largepage_idx(gfn, slot, i);
509 *write_count += 1;
510 }
511 }
512
513 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
514 {
515 struct kvm_memory_slot *slot;
516 int *write_count;
517 int i;
518
519 slot = gfn_to_memslot(kvm, gfn);
520 for (i = PT_DIRECTORY_LEVEL;
521 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
522 write_count = slot_largepage_idx(gfn, slot, i);
523 *write_count -= 1;
524 WARN_ON(*write_count < 0);
525 }
526 }
527
528 static int has_wrprotected_page(struct kvm *kvm,
529 gfn_t gfn,
530 int level)
531 {
532 struct kvm_memory_slot *slot;
533 int *largepage_idx;
534
535 slot = gfn_to_memslot(kvm, gfn);
536 if (slot) {
537 largepage_idx = slot_largepage_idx(gfn, slot, level);
538 return *largepage_idx;
539 }
540
541 return 1;
542 }
543
544 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
545 {
546 unsigned long page_size;
547 int i, ret = 0;
548
549 page_size = kvm_host_page_size(kvm, gfn);
550
551 for (i = PT_PAGE_TABLE_LEVEL;
552 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
553 if (page_size >= KVM_HPAGE_SIZE(i))
554 ret = i;
555 else
556 break;
557 }
558
559 return ret;
560 }
561
562 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
563 {
564 struct kvm_memory_slot *slot;
565 int host_level, level, max_level;
566
567 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
568 if (slot && slot->dirty_bitmap)
569 return PT_PAGE_TABLE_LEVEL;
570
571 host_level = host_mapping_level(vcpu->kvm, large_gfn);
572
573 if (host_level == PT_PAGE_TABLE_LEVEL)
574 return host_level;
575
576 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
577 kvm_x86_ops->get_lpage_level() : host_level;
578
579 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
580 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
581 break;
582
583 return level - 1;
584 }
585
586 /*
587 * Take gfn and return the reverse mapping to it.
588 */
589
590 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
591 {
592 struct kvm_memory_slot *slot;
593 unsigned long idx;
594
595 slot = gfn_to_memslot(kvm, gfn);
596 if (likely(level == PT_PAGE_TABLE_LEVEL))
597 return &slot->rmap[gfn - slot->base_gfn];
598
599 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
600 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
601
602 return &slot->lpage_info[level - 2][idx].rmap_pde;
603 }
604
605 /*
606 * Reverse mapping data structures:
607 *
608 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
609 * that points to page_address(page).
610 *
611 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
612 * containing more mappings.
613 *
614 * Returns the number of rmap entries before the spte was added or zero if
615 * the spte was not added.
616 *
617 */
618 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
619 {
620 struct kvm_mmu_page *sp;
621 struct kvm_rmap_desc *desc;
622 unsigned long *rmapp;
623 int i, count = 0;
624
625 if (!is_rmap_spte(*spte))
626 return count;
627 sp = page_header(__pa(spte));
628 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
629 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
630 if (!*rmapp) {
631 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
632 *rmapp = (unsigned long)spte;
633 } else if (!(*rmapp & 1)) {
634 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
635 desc = mmu_alloc_rmap_desc(vcpu);
636 desc->sptes[0] = (u64 *)*rmapp;
637 desc->sptes[1] = spte;
638 *rmapp = (unsigned long)desc | 1;
639 ++count;
640 } else {
641 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
642 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
643 while (desc->sptes[RMAP_EXT-1] && desc->more) {
644 desc = desc->more;
645 count += RMAP_EXT;
646 }
647 if (desc->sptes[RMAP_EXT-1]) {
648 desc->more = mmu_alloc_rmap_desc(vcpu);
649 desc = desc->more;
650 }
651 for (i = 0; desc->sptes[i]; ++i)
652 ++count;
653 desc->sptes[i] = spte;
654 }
655 return count;
656 }
657
658 static void rmap_desc_remove_entry(unsigned long *rmapp,
659 struct kvm_rmap_desc *desc,
660 int i,
661 struct kvm_rmap_desc *prev_desc)
662 {
663 int j;
664
665 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
666 ;
667 desc->sptes[i] = desc->sptes[j];
668 desc->sptes[j] = NULL;
669 if (j != 0)
670 return;
671 if (!prev_desc && !desc->more)
672 *rmapp = (unsigned long)desc->sptes[0];
673 else
674 if (prev_desc)
675 prev_desc->more = desc->more;
676 else
677 *rmapp = (unsigned long)desc->more | 1;
678 mmu_free_rmap_desc(desc);
679 }
680
681 static void rmap_remove(struct kvm *kvm, u64 *spte)
682 {
683 struct kvm_rmap_desc *desc;
684 struct kvm_rmap_desc *prev_desc;
685 struct kvm_mmu_page *sp;
686 gfn_t gfn;
687 unsigned long *rmapp;
688 int i;
689
690 sp = page_header(__pa(spte));
691 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
692 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
693 if (!*rmapp) {
694 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
695 BUG();
696 } else if (!(*rmapp & 1)) {
697 rmap_printk("rmap_remove: %p 1->0\n", spte);
698 if ((u64 *)*rmapp != spte) {
699 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
700 BUG();
701 }
702 *rmapp = 0;
703 } else {
704 rmap_printk("rmap_remove: %p many->many\n", spte);
705 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
706 prev_desc = NULL;
707 while (desc) {
708 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
709 if (desc->sptes[i] == spte) {
710 rmap_desc_remove_entry(rmapp,
711 desc, i,
712 prev_desc);
713 return;
714 }
715 prev_desc = desc;
716 desc = desc->more;
717 }
718 pr_err("rmap_remove: %p many->many\n", spte);
719 BUG();
720 }
721 }
722
723 static void set_spte_track_bits(u64 *sptep, u64 new_spte)
724 {
725 pfn_t pfn;
726 u64 old_spte = *sptep;
727
728 if (!spte_has_volatile_bits(old_spte))
729 __set_spte(sptep, new_spte);
730 else
731 old_spte = __xchg_spte(sptep, new_spte);
732
733 if (!is_rmap_spte(old_spte))
734 return;
735
736 pfn = spte_to_pfn(old_spte);
737 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
738 kvm_set_pfn_accessed(pfn);
739 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
740 kvm_set_pfn_dirty(pfn);
741 }
742
743 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
744 {
745 set_spte_track_bits(sptep, new_spte);
746 rmap_remove(kvm, sptep);
747 }
748
749 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
750 {
751 struct kvm_rmap_desc *desc;
752 u64 *prev_spte;
753 int i;
754
755 if (!*rmapp)
756 return NULL;
757 else if (!(*rmapp & 1)) {
758 if (!spte)
759 return (u64 *)*rmapp;
760 return NULL;
761 }
762 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
763 prev_spte = NULL;
764 while (desc) {
765 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
766 if (prev_spte == spte)
767 return desc->sptes[i];
768 prev_spte = desc->sptes[i];
769 }
770 desc = desc->more;
771 }
772 return NULL;
773 }
774
775 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
776 {
777 unsigned long *rmapp;
778 u64 *spte;
779 int i, write_protected = 0;
780
781 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
782
783 spte = rmap_next(kvm, rmapp, NULL);
784 while (spte) {
785 BUG_ON(!spte);
786 BUG_ON(!(*spte & PT_PRESENT_MASK));
787 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
788 if (is_writable_pte(*spte)) {
789 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
790 write_protected = 1;
791 }
792 spte = rmap_next(kvm, rmapp, spte);
793 }
794
795 /* check for huge page mappings */
796 for (i = PT_DIRECTORY_LEVEL;
797 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
798 rmapp = gfn_to_rmap(kvm, gfn, i);
799 spte = rmap_next(kvm, rmapp, NULL);
800 while (spte) {
801 BUG_ON(!spte);
802 BUG_ON(!(*spte & PT_PRESENT_MASK));
803 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
804 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
805 if (is_writable_pte(*spte)) {
806 drop_spte(kvm, spte,
807 shadow_trap_nonpresent_pte);
808 --kvm->stat.lpages;
809 spte = NULL;
810 write_protected = 1;
811 }
812 spte = rmap_next(kvm, rmapp, spte);
813 }
814 }
815
816 return write_protected;
817 }
818
819 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
820 unsigned long data)
821 {
822 u64 *spte;
823 int need_tlb_flush = 0;
824
825 while ((spte = rmap_next(kvm, rmapp, NULL))) {
826 BUG_ON(!(*spte & PT_PRESENT_MASK));
827 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
828 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
829 need_tlb_flush = 1;
830 }
831 return need_tlb_flush;
832 }
833
834 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
835 unsigned long data)
836 {
837 int need_flush = 0;
838 u64 *spte, new_spte;
839 pte_t *ptep = (pte_t *)data;
840 pfn_t new_pfn;
841
842 WARN_ON(pte_huge(*ptep));
843 new_pfn = pte_pfn(*ptep);
844 spte = rmap_next(kvm, rmapp, NULL);
845 while (spte) {
846 BUG_ON(!is_shadow_present_pte(*spte));
847 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
848 need_flush = 1;
849 if (pte_write(*ptep)) {
850 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
851 spte = rmap_next(kvm, rmapp, NULL);
852 } else {
853 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
854 new_spte |= (u64)new_pfn << PAGE_SHIFT;
855
856 new_spte &= ~PT_WRITABLE_MASK;
857 new_spte &= ~SPTE_HOST_WRITEABLE;
858 new_spte &= ~shadow_accessed_mask;
859 set_spte_track_bits(spte, new_spte);
860 spte = rmap_next(kvm, rmapp, spte);
861 }
862 }
863 if (need_flush)
864 kvm_flush_remote_tlbs(kvm);
865
866 return 0;
867 }
868
869 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
870 unsigned long data,
871 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
872 unsigned long data))
873 {
874 int i, j;
875 int ret;
876 int retval = 0;
877 struct kvm_memslots *slots;
878
879 slots = kvm_memslots(kvm);
880
881 for (i = 0; i < slots->nmemslots; i++) {
882 struct kvm_memory_slot *memslot = &slots->memslots[i];
883 unsigned long start = memslot->userspace_addr;
884 unsigned long end;
885
886 end = start + (memslot->npages << PAGE_SHIFT);
887 if (hva >= start && hva < end) {
888 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
889
890 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
891
892 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
893 unsigned long idx;
894 int sh;
895
896 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
897 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
898 (memslot->base_gfn >> sh);
899 ret |= handler(kvm,
900 &memslot->lpage_info[j][idx].rmap_pde,
901 data);
902 }
903 trace_kvm_age_page(hva, memslot, ret);
904 retval |= ret;
905 }
906 }
907
908 return retval;
909 }
910
911 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
912 {
913 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
914 }
915
916 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
917 {
918 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
919 }
920
921 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
922 unsigned long data)
923 {
924 u64 *spte;
925 int young = 0;
926
927 /*
928 * Emulate the accessed bit for EPT, by checking if this page has
929 * an EPT mapping, and clearing it if it does. On the next access,
930 * a new EPT mapping will be established.
931 * This has some overhead, but not as much as the cost of swapping
932 * out actively used pages or breaking up actively used hugepages.
933 */
934 if (!shadow_accessed_mask)
935 return kvm_unmap_rmapp(kvm, rmapp, data);
936
937 spte = rmap_next(kvm, rmapp, NULL);
938 while (spte) {
939 int _young;
940 u64 _spte = *spte;
941 BUG_ON(!(_spte & PT_PRESENT_MASK));
942 _young = _spte & PT_ACCESSED_MASK;
943 if (_young) {
944 young = 1;
945 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
946 }
947 spte = rmap_next(kvm, rmapp, spte);
948 }
949 return young;
950 }
951
952 #define RMAP_RECYCLE_THRESHOLD 1000
953
954 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
955 {
956 unsigned long *rmapp;
957 struct kvm_mmu_page *sp;
958
959 sp = page_header(__pa(spte));
960
961 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
962
963 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
964 kvm_flush_remote_tlbs(vcpu->kvm);
965 }
966
967 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
968 {
969 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
970 }
971
972 #ifdef MMU_DEBUG
973 static int is_empty_shadow_page(u64 *spt)
974 {
975 u64 *pos;
976 u64 *end;
977
978 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
979 if (is_shadow_present_pte(*pos)) {
980 printk(KERN_ERR "%s: %p %llx\n", __func__,
981 pos, *pos);
982 return 0;
983 }
984 return 1;
985 }
986 #endif
987
988 /*
989 * This value is the sum of all of the kvm instances's
990 * kvm->arch.n_used_mmu_pages values. We need a global,
991 * aggregate version in order to make the slab shrinker
992 * faster
993 */
994 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
995 {
996 kvm->arch.n_used_mmu_pages += nr;
997 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
998 }
999
1000 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1001 {
1002 ASSERT(is_empty_shadow_page(sp->spt));
1003 hlist_del(&sp->hash_link);
1004 list_del(&sp->link);
1005 __free_page(virt_to_page(sp->spt));
1006 if (!sp->role.direct)
1007 __free_page(virt_to_page(sp->gfns));
1008 kmem_cache_free(mmu_page_header_cache, sp);
1009 kvm_mod_used_mmu_pages(kvm, -1);
1010 }
1011
1012 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1013 {
1014 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1015 }
1016
1017 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1018 u64 *parent_pte, int direct)
1019 {
1020 struct kvm_mmu_page *sp;
1021
1022 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1023 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1024 if (!direct)
1025 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1026 PAGE_SIZE);
1027 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1028 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1029 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1030 sp->multimapped = 0;
1031 sp->parent_pte = parent_pte;
1032 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1033 return sp;
1034 }
1035
1036 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1037 struct kvm_mmu_page *sp, u64 *parent_pte)
1038 {
1039 struct kvm_pte_chain *pte_chain;
1040 struct hlist_node *node;
1041 int i;
1042
1043 if (!parent_pte)
1044 return;
1045 if (!sp->multimapped) {
1046 u64 *old = sp->parent_pte;
1047
1048 if (!old) {
1049 sp->parent_pte = parent_pte;
1050 return;
1051 }
1052 sp->multimapped = 1;
1053 pte_chain = mmu_alloc_pte_chain(vcpu);
1054 INIT_HLIST_HEAD(&sp->parent_ptes);
1055 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1056 pte_chain->parent_ptes[0] = old;
1057 }
1058 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1059 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1060 continue;
1061 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1062 if (!pte_chain->parent_ptes[i]) {
1063 pte_chain->parent_ptes[i] = parent_pte;
1064 return;
1065 }
1066 }
1067 pte_chain = mmu_alloc_pte_chain(vcpu);
1068 BUG_ON(!pte_chain);
1069 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1070 pte_chain->parent_ptes[0] = parent_pte;
1071 }
1072
1073 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1074 u64 *parent_pte)
1075 {
1076 struct kvm_pte_chain *pte_chain;
1077 struct hlist_node *node;
1078 int i;
1079
1080 if (!sp->multimapped) {
1081 BUG_ON(sp->parent_pte != parent_pte);
1082 sp->parent_pte = NULL;
1083 return;
1084 }
1085 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1086 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1087 if (!pte_chain->parent_ptes[i])
1088 break;
1089 if (pte_chain->parent_ptes[i] != parent_pte)
1090 continue;
1091 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1092 && pte_chain->parent_ptes[i + 1]) {
1093 pte_chain->parent_ptes[i]
1094 = pte_chain->parent_ptes[i + 1];
1095 ++i;
1096 }
1097 pte_chain->parent_ptes[i] = NULL;
1098 if (i == 0) {
1099 hlist_del(&pte_chain->link);
1100 mmu_free_pte_chain(pte_chain);
1101 if (hlist_empty(&sp->parent_ptes)) {
1102 sp->multimapped = 0;
1103 sp->parent_pte = NULL;
1104 }
1105 }
1106 return;
1107 }
1108 BUG();
1109 }
1110
1111 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1112 {
1113 struct kvm_pte_chain *pte_chain;
1114 struct hlist_node *node;
1115 struct kvm_mmu_page *parent_sp;
1116 int i;
1117
1118 if (!sp->multimapped && sp->parent_pte) {
1119 parent_sp = page_header(__pa(sp->parent_pte));
1120 fn(parent_sp, sp->parent_pte);
1121 return;
1122 }
1123
1124 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1125 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1126 u64 *spte = pte_chain->parent_ptes[i];
1127
1128 if (!spte)
1129 break;
1130 parent_sp = page_header(__pa(spte));
1131 fn(parent_sp, spte);
1132 }
1133 }
1134
1135 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1136 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1137 {
1138 mmu_parent_walk(sp, mark_unsync);
1139 }
1140
1141 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1142 {
1143 unsigned int index;
1144
1145 index = spte - sp->spt;
1146 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1147 return;
1148 if (sp->unsync_children++)
1149 return;
1150 kvm_mmu_mark_parents_unsync(sp);
1151 }
1152
1153 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1154 struct kvm_mmu_page *sp)
1155 {
1156 int i;
1157
1158 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1159 sp->spt[i] = shadow_trap_nonpresent_pte;
1160 }
1161
1162 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1163 struct kvm_mmu_page *sp, bool clear_unsync)
1164 {
1165 return 1;
1166 }
1167
1168 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1169 {
1170 }
1171
1172 #define KVM_PAGE_ARRAY_NR 16
1173
1174 struct kvm_mmu_pages {
1175 struct mmu_page_and_offset {
1176 struct kvm_mmu_page *sp;
1177 unsigned int idx;
1178 } page[KVM_PAGE_ARRAY_NR];
1179 unsigned int nr;
1180 };
1181
1182 #define for_each_unsync_children(bitmap, idx) \
1183 for (idx = find_first_bit(bitmap, 512); \
1184 idx < 512; \
1185 idx = find_next_bit(bitmap, 512, idx+1))
1186
1187 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1188 int idx)
1189 {
1190 int i;
1191
1192 if (sp->unsync)
1193 for (i=0; i < pvec->nr; i++)
1194 if (pvec->page[i].sp == sp)
1195 return 0;
1196
1197 pvec->page[pvec->nr].sp = sp;
1198 pvec->page[pvec->nr].idx = idx;
1199 pvec->nr++;
1200 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1201 }
1202
1203 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1204 struct kvm_mmu_pages *pvec)
1205 {
1206 int i, ret, nr_unsync_leaf = 0;
1207
1208 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1209 struct kvm_mmu_page *child;
1210 u64 ent = sp->spt[i];
1211
1212 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1213 goto clear_child_bitmap;
1214
1215 child = page_header(ent & PT64_BASE_ADDR_MASK);
1216
1217 if (child->unsync_children) {
1218 if (mmu_pages_add(pvec, child, i))
1219 return -ENOSPC;
1220
1221 ret = __mmu_unsync_walk(child, pvec);
1222 if (!ret)
1223 goto clear_child_bitmap;
1224 else if (ret > 0)
1225 nr_unsync_leaf += ret;
1226 else
1227 return ret;
1228 } else if (child->unsync) {
1229 nr_unsync_leaf++;
1230 if (mmu_pages_add(pvec, child, i))
1231 return -ENOSPC;
1232 } else
1233 goto clear_child_bitmap;
1234
1235 continue;
1236
1237 clear_child_bitmap:
1238 __clear_bit(i, sp->unsync_child_bitmap);
1239 sp->unsync_children--;
1240 WARN_ON((int)sp->unsync_children < 0);
1241 }
1242
1243
1244 return nr_unsync_leaf;
1245 }
1246
1247 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1248 struct kvm_mmu_pages *pvec)
1249 {
1250 if (!sp->unsync_children)
1251 return 0;
1252
1253 mmu_pages_add(pvec, sp, 0);
1254 return __mmu_unsync_walk(sp, pvec);
1255 }
1256
1257 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1258 {
1259 WARN_ON(!sp->unsync);
1260 trace_kvm_mmu_sync_page(sp);
1261 sp->unsync = 0;
1262 --kvm->stat.mmu_unsync;
1263 }
1264
1265 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1266 struct list_head *invalid_list);
1267 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1268 struct list_head *invalid_list);
1269
1270 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1271 hlist_for_each_entry(sp, pos, \
1272 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1273 if ((sp)->gfn != (gfn)) {} else
1274
1275 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1276 hlist_for_each_entry(sp, pos, \
1277 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1278 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1279 (sp)->role.invalid) {} else
1280
1281 /* @sp->gfn should be write-protected at the call site */
1282 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1283 struct list_head *invalid_list, bool clear_unsync)
1284 {
1285 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1286 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1287 return 1;
1288 }
1289
1290 if (clear_unsync)
1291 kvm_unlink_unsync_page(vcpu->kvm, sp);
1292
1293 if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1294 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1295 return 1;
1296 }
1297
1298 kvm_mmu_flush_tlb(vcpu);
1299 return 0;
1300 }
1301
1302 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1303 struct kvm_mmu_page *sp)
1304 {
1305 LIST_HEAD(invalid_list);
1306 int ret;
1307
1308 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1309 if (ret)
1310 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1311
1312 return ret;
1313 }
1314
1315 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1316 struct list_head *invalid_list)
1317 {
1318 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1319 }
1320
1321 /* @gfn should be write-protected at the call site */
1322 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1323 {
1324 struct kvm_mmu_page *s;
1325 struct hlist_node *node;
1326 LIST_HEAD(invalid_list);
1327 bool flush = false;
1328
1329 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1330 if (!s->unsync)
1331 continue;
1332
1333 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1334 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1335 (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1336 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1337 continue;
1338 }
1339 kvm_unlink_unsync_page(vcpu->kvm, s);
1340 flush = true;
1341 }
1342
1343 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1344 if (flush)
1345 kvm_mmu_flush_tlb(vcpu);
1346 }
1347
1348 struct mmu_page_path {
1349 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1350 unsigned int idx[PT64_ROOT_LEVEL-1];
1351 };
1352
1353 #define for_each_sp(pvec, sp, parents, i) \
1354 for (i = mmu_pages_next(&pvec, &parents, -1), \
1355 sp = pvec.page[i].sp; \
1356 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1357 i = mmu_pages_next(&pvec, &parents, i))
1358
1359 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1360 struct mmu_page_path *parents,
1361 int i)
1362 {
1363 int n;
1364
1365 for (n = i+1; n < pvec->nr; n++) {
1366 struct kvm_mmu_page *sp = pvec->page[n].sp;
1367
1368 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1369 parents->idx[0] = pvec->page[n].idx;
1370 return n;
1371 }
1372
1373 parents->parent[sp->role.level-2] = sp;
1374 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1375 }
1376
1377 return n;
1378 }
1379
1380 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1381 {
1382 struct kvm_mmu_page *sp;
1383 unsigned int level = 0;
1384
1385 do {
1386 unsigned int idx = parents->idx[level];
1387
1388 sp = parents->parent[level];
1389 if (!sp)
1390 return;
1391
1392 --sp->unsync_children;
1393 WARN_ON((int)sp->unsync_children < 0);
1394 __clear_bit(idx, sp->unsync_child_bitmap);
1395 level++;
1396 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1397 }
1398
1399 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1400 struct mmu_page_path *parents,
1401 struct kvm_mmu_pages *pvec)
1402 {
1403 parents->parent[parent->role.level-1] = NULL;
1404 pvec->nr = 0;
1405 }
1406
1407 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1408 struct kvm_mmu_page *parent)
1409 {
1410 int i;
1411 struct kvm_mmu_page *sp;
1412 struct mmu_page_path parents;
1413 struct kvm_mmu_pages pages;
1414 LIST_HEAD(invalid_list);
1415
1416 kvm_mmu_pages_init(parent, &parents, &pages);
1417 while (mmu_unsync_walk(parent, &pages)) {
1418 int protected = 0;
1419
1420 for_each_sp(pages, sp, parents, i)
1421 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1422
1423 if (protected)
1424 kvm_flush_remote_tlbs(vcpu->kvm);
1425
1426 for_each_sp(pages, sp, parents, i) {
1427 kvm_sync_page(vcpu, sp, &invalid_list);
1428 mmu_pages_clear_parents(&parents);
1429 }
1430 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1431 cond_resched_lock(&vcpu->kvm->mmu_lock);
1432 kvm_mmu_pages_init(parent, &parents, &pages);
1433 }
1434 }
1435
1436 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1437 gfn_t gfn,
1438 gva_t gaddr,
1439 unsigned level,
1440 int direct,
1441 unsigned access,
1442 u64 *parent_pte)
1443 {
1444 union kvm_mmu_page_role role;
1445 unsigned quadrant;
1446 struct kvm_mmu_page *sp;
1447 struct hlist_node *node;
1448 bool need_sync = false;
1449
1450 role = vcpu->arch.mmu.base_role;
1451 role.level = level;
1452 role.direct = direct;
1453 if (role.direct)
1454 role.cr4_pae = 0;
1455 role.access = access;
1456 if (!vcpu->arch.mmu.direct_map
1457 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1458 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1459 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1460 role.quadrant = quadrant;
1461 }
1462 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1463 if (!need_sync && sp->unsync)
1464 need_sync = true;
1465
1466 if (sp->role.word != role.word)
1467 continue;
1468
1469 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1470 break;
1471
1472 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1473 if (sp->unsync_children) {
1474 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1475 kvm_mmu_mark_parents_unsync(sp);
1476 } else if (sp->unsync)
1477 kvm_mmu_mark_parents_unsync(sp);
1478
1479 trace_kvm_mmu_get_page(sp, false);
1480 return sp;
1481 }
1482 ++vcpu->kvm->stat.mmu_cache_miss;
1483 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1484 if (!sp)
1485 return sp;
1486 sp->gfn = gfn;
1487 sp->role = role;
1488 hlist_add_head(&sp->hash_link,
1489 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1490 if (!direct) {
1491 if (rmap_write_protect(vcpu->kvm, gfn))
1492 kvm_flush_remote_tlbs(vcpu->kvm);
1493 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1494 kvm_sync_pages(vcpu, gfn);
1495
1496 account_shadowed(vcpu->kvm, gfn);
1497 }
1498 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1499 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1500 else
1501 nonpaging_prefetch_page(vcpu, sp);
1502 trace_kvm_mmu_get_page(sp, true);
1503 return sp;
1504 }
1505
1506 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1507 struct kvm_vcpu *vcpu, u64 addr)
1508 {
1509 iterator->addr = addr;
1510 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1511 iterator->level = vcpu->arch.mmu.shadow_root_level;
1512
1513 if (iterator->level == PT64_ROOT_LEVEL &&
1514 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1515 !vcpu->arch.mmu.direct_map)
1516 --iterator->level;
1517
1518 if (iterator->level == PT32E_ROOT_LEVEL) {
1519 iterator->shadow_addr
1520 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1521 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1522 --iterator->level;
1523 if (!iterator->shadow_addr)
1524 iterator->level = 0;
1525 }
1526 }
1527
1528 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1529 {
1530 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1531 return false;
1532
1533 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1534 if (is_large_pte(*iterator->sptep))
1535 return false;
1536
1537 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1538 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1539 return true;
1540 }
1541
1542 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1543 {
1544 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1545 --iterator->level;
1546 }
1547
1548 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1549 {
1550 u64 spte;
1551
1552 spte = __pa(sp->spt)
1553 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1554 | PT_WRITABLE_MASK | PT_USER_MASK;
1555 __set_spte(sptep, spte);
1556 }
1557
1558 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1559 {
1560 if (is_large_pte(*sptep)) {
1561 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1562 kvm_flush_remote_tlbs(vcpu->kvm);
1563 }
1564 }
1565
1566 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1567 unsigned direct_access)
1568 {
1569 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1570 struct kvm_mmu_page *child;
1571
1572 /*
1573 * For the direct sp, if the guest pte's dirty bit
1574 * changed form clean to dirty, it will corrupt the
1575 * sp's access: allow writable in the read-only sp,
1576 * so we should update the spte at this point to get
1577 * a new sp with the correct access.
1578 */
1579 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1580 if (child->role.access == direct_access)
1581 return;
1582
1583 mmu_page_remove_parent_pte(child, sptep);
1584 __set_spte(sptep, shadow_trap_nonpresent_pte);
1585 kvm_flush_remote_tlbs(vcpu->kvm);
1586 }
1587 }
1588
1589 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1590 struct kvm_mmu_page *sp)
1591 {
1592 unsigned i;
1593 u64 *pt;
1594 u64 ent;
1595
1596 pt = sp->spt;
1597
1598 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1599 ent = pt[i];
1600
1601 if (is_shadow_present_pte(ent)) {
1602 if (!is_last_spte(ent, sp->role.level)) {
1603 ent &= PT64_BASE_ADDR_MASK;
1604 mmu_page_remove_parent_pte(page_header(ent),
1605 &pt[i]);
1606 } else {
1607 if (is_large_pte(ent))
1608 --kvm->stat.lpages;
1609 drop_spte(kvm, &pt[i],
1610 shadow_trap_nonpresent_pte);
1611 }
1612 }
1613 pt[i] = shadow_trap_nonpresent_pte;
1614 }
1615 }
1616
1617 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1618 {
1619 mmu_page_remove_parent_pte(sp, parent_pte);
1620 }
1621
1622 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1623 {
1624 int i;
1625 struct kvm_vcpu *vcpu;
1626
1627 kvm_for_each_vcpu(i, vcpu, kvm)
1628 vcpu->arch.last_pte_updated = NULL;
1629 }
1630
1631 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1632 {
1633 u64 *parent_pte;
1634
1635 while (sp->multimapped || sp->parent_pte) {
1636 if (!sp->multimapped)
1637 parent_pte = sp->parent_pte;
1638 else {
1639 struct kvm_pte_chain *chain;
1640
1641 chain = container_of(sp->parent_ptes.first,
1642 struct kvm_pte_chain, link);
1643 parent_pte = chain->parent_ptes[0];
1644 }
1645 BUG_ON(!parent_pte);
1646 kvm_mmu_put_page(sp, parent_pte);
1647 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1648 }
1649 }
1650
1651 static int mmu_zap_unsync_children(struct kvm *kvm,
1652 struct kvm_mmu_page *parent,
1653 struct list_head *invalid_list)
1654 {
1655 int i, zapped = 0;
1656 struct mmu_page_path parents;
1657 struct kvm_mmu_pages pages;
1658
1659 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1660 return 0;
1661
1662 kvm_mmu_pages_init(parent, &parents, &pages);
1663 while (mmu_unsync_walk(parent, &pages)) {
1664 struct kvm_mmu_page *sp;
1665
1666 for_each_sp(pages, sp, parents, i) {
1667 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1668 mmu_pages_clear_parents(&parents);
1669 zapped++;
1670 }
1671 kvm_mmu_pages_init(parent, &parents, &pages);
1672 }
1673
1674 return zapped;
1675 }
1676
1677 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1678 struct list_head *invalid_list)
1679 {
1680 int ret;
1681
1682 trace_kvm_mmu_prepare_zap_page(sp);
1683 ++kvm->stat.mmu_shadow_zapped;
1684 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1685 kvm_mmu_page_unlink_children(kvm, sp);
1686 kvm_mmu_unlink_parents(kvm, sp);
1687 if (!sp->role.invalid && !sp->role.direct)
1688 unaccount_shadowed(kvm, sp->gfn);
1689 if (sp->unsync)
1690 kvm_unlink_unsync_page(kvm, sp);
1691 if (!sp->root_count) {
1692 /* Count self */
1693 ret++;
1694 list_move(&sp->link, invalid_list);
1695 } else {
1696 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1697 kvm_reload_remote_mmus(kvm);
1698 }
1699
1700 sp->role.invalid = 1;
1701 kvm_mmu_reset_last_pte_updated(kvm);
1702 return ret;
1703 }
1704
1705 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1706 struct list_head *invalid_list)
1707 {
1708 struct kvm_mmu_page *sp;
1709
1710 if (list_empty(invalid_list))
1711 return;
1712
1713 kvm_flush_remote_tlbs(kvm);
1714
1715 do {
1716 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1717 WARN_ON(!sp->role.invalid || sp->root_count);
1718 kvm_mmu_free_page(kvm, sp);
1719 } while (!list_empty(invalid_list));
1720
1721 }
1722
1723 /*
1724 * Changing the number of mmu pages allocated to the vm
1725 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1726 */
1727 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1728 {
1729 LIST_HEAD(invalid_list);
1730 /*
1731 * If we set the number of mmu pages to be smaller be than the
1732 * number of actived pages , we must to free some mmu pages before we
1733 * change the value
1734 */
1735
1736 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1737 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1738 !list_empty(&kvm->arch.active_mmu_pages)) {
1739 struct kvm_mmu_page *page;
1740
1741 page = container_of(kvm->arch.active_mmu_pages.prev,
1742 struct kvm_mmu_page, link);
1743 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1744 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1745 }
1746 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1747 }
1748
1749 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1750 }
1751
1752 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1753 {
1754 struct kvm_mmu_page *sp;
1755 struct hlist_node *node;
1756 LIST_HEAD(invalid_list);
1757 int r;
1758
1759 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1760 r = 0;
1761
1762 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1763 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1764 sp->role.word);
1765 r = 1;
1766 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1767 }
1768 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1769 return r;
1770 }
1771
1772 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1773 {
1774 struct kvm_mmu_page *sp;
1775 struct hlist_node *node;
1776 LIST_HEAD(invalid_list);
1777
1778 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1779 pgprintk("%s: zap %llx %x\n",
1780 __func__, gfn, sp->role.word);
1781 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1782 }
1783 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1784 }
1785
1786 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1787 {
1788 int slot = memslot_id(kvm, gfn);
1789 struct kvm_mmu_page *sp = page_header(__pa(pte));
1790
1791 __set_bit(slot, sp->slot_bitmap);
1792 }
1793
1794 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1795 {
1796 int i;
1797 u64 *pt = sp->spt;
1798
1799 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1800 return;
1801
1802 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1803 if (pt[i] == shadow_notrap_nonpresent_pte)
1804 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1805 }
1806 }
1807
1808 /*
1809 * The function is based on mtrr_type_lookup() in
1810 * arch/x86/kernel/cpu/mtrr/generic.c
1811 */
1812 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1813 u64 start, u64 end)
1814 {
1815 int i;
1816 u64 base, mask;
1817 u8 prev_match, curr_match;
1818 int num_var_ranges = KVM_NR_VAR_MTRR;
1819
1820 if (!mtrr_state->enabled)
1821 return 0xFF;
1822
1823 /* Make end inclusive end, instead of exclusive */
1824 end--;
1825
1826 /* Look in fixed ranges. Just return the type as per start */
1827 if (mtrr_state->have_fixed && (start < 0x100000)) {
1828 int idx;
1829
1830 if (start < 0x80000) {
1831 idx = 0;
1832 idx += (start >> 16);
1833 return mtrr_state->fixed_ranges[idx];
1834 } else if (start < 0xC0000) {
1835 idx = 1 * 8;
1836 idx += ((start - 0x80000) >> 14);
1837 return mtrr_state->fixed_ranges[idx];
1838 } else if (start < 0x1000000) {
1839 idx = 3 * 8;
1840 idx += ((start - 0xC0000) >> 12);
1841 return mtrr_state->fixed_ranges[idx];
1842 }
1843 }
1844
1845 /*
1846 * Look in variable ranges
1847 * Look of multiple ranges matching this address and pick type
1848 * as per MTRR precedence
1849 */
1850 if (!(mtrr_state->enabled & 2))
1851 return mtrr_state->def_type;
1852
1853 prev_match = 0xFF;
1854 for (i = 0; i < num_var_ranges; ++i) {
1855 unsigned short start_state, end_state;
1856
1857 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1858 continue;
1859
1860 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1861 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1862 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1863 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1864
1865 start_state = ((start & mask) == (base & mask));
1866 end_state = ((end & mask) == (base & mask));
1867 if (start_state != end_state)
1868 return 0xFE;
1869
1870 if ((start & mask) != (base & mask))
1871 continue;
1872
1873 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1874 if (prev_match == 0xFF) {
1875 prev_match = curr_match;
1876 continue;
1877 }
1878
1879 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1880 curr_match == MTRR_TYPE_UNCACHABLE)
1881 return MTRR_TYPE_UNCACHABLE;
1882
1883 if ((prev_match == MTRR_TYPE_WRBACK &&
1884 curr_match == MTRR_TYPE_WRTHROUGH) ||
1885 (prev_match == MTRR_TYPE_WRTHROUGH &&
1886 curr_match == MTRR_TYPE_WRBACK)) {
1887 prev_match = MTRR_TYPE_WRTHROUGH;
1888 curr_match = MTRR_TYPE_WRTHROUGH;
1889 }
1890
1891 if (prev_match != curr_match)
1892 return MTRR_TYPE_UNCACHABLE;
1893 }
1894
1895 if (prev_match != 0xFF)
1896 return prev_match;
1897
1898 return mtrr_state->def_type;
1899 }
1900
1901 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1902 {
1903 u8 mtrr;
1904
1905 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1906 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1907 if (mtrr == 0xfe || mtrr == 0xff)
1908 mtrr = MTRR_TYPE_WRBACK;
1909 return mtrr;
1910 }
1911 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1912
1913 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1914 {
1915 trace_kvm_mmu_unsync_page(sp);
1916 ++vcpu->kvm->stat.mmu_unsync;
1917 sp->unsync = 1;
1918
1919 kvm_mmu_mark_parents_unsync(sp);
1920 mmu_convert_notrap(sp);
1921 }
1922
1923 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1924 {
1925 struct kvm_mmu_page *s;
1926 struct hlist_node *node;
1927
1928 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1929 if (s->unsync)
1930 continue;
1931 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1932 __kvm_unsync_page(vcpu, s);
1933 }
1934 }
1935
1936 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1937 bool can_unsync)
1938 {
1939 struct kvm_mmu_page *s;
1940 struct hlist_node *node;
1941 bool need_unsync = false;
1942
1943 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1944 if (!can_unsync)
1945 return 1;
1946
1947 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1948 return 1;
1949
1950 if (!need_unsync && !s->unsync) {
1951 if (!oos_shadow)
1952 return 1;
1953 need_unsync = true;
1954 }
1955 }
1956 if (need_unsync)
1957 kvm_unsync_pages(vcpu, gfn);
1958 return 0;
1959 }
1960
1961 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1962 unsigned pte_access, int user_fault,
1963 int write_fault, int dirty, int level,
1964 gfn_t gfn, pfn_t pfn, bool speculative,
1965 bool can_unsync, bool reset_host_protection)
1966 {
1967 u64 spte;
1968 int ret = 0;
1969
1970 /*
1971 * We don't set the accessed bit, since we sometimes want to see
1972 * whether the guest actually used the pte (in order to detect
1973 * demand paging).
1974 */
1975 spte = shadow_base_present_pte;
1976 if (!speculative)
1977 spte |= shadow_accessed_mask;
1978 if (!dirty)
1979 pte_access &= ~ACC_WRITE_MASK;
1980 if (pte_access & ACC_EXEC_MASK)
1981 spte |= shadow_x_mask;
1982 else
1983 spte |= shadow_nx_mask;
1984 if (pte_access & ACC_USER_MASK)
1985 spte |= shadow_user_mask;
1986 if (level > PT_PAGE_TABLE_LEVEL)
1987 spte |= PT_PAGE_SIZE_MASK;
1988 if (tdp_enabled)
1989 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1990 kvm_is_mmio_pfn(pfn));
1991
1992 if (reset_host_protection)
1993 spte |= SPTE_HOST_WRITEABLE;
1994
1995 spte |= (u64)pfn << PAGE_SHIFT;
1996
1997 if ((pte_access & ACC_WRITE_MASK)
1998 || (!vcpu->arch.mmu.direct_map && write_fault
1999 && !is_write_protection(vcpu) && !user_fault)) {
2000
2001 if (level > PT_PAGE_TABLE_LEVEL &&
2002 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2003 ret = 1;
2004 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2005 goto done;
2006 }
2007
2008 spte |= PT_WRITABLE_MASK;
2009
2010 if (!vcpu->arch.mmu.direct_map
2011 && !(pte_access & ACC_WRITE_MASK))
2012 spte &= ~PT_USER_MASK;
2013
2014 /*
2015 * Optimization: for pte sync, if spte was writable the hash
2016 * lookup is unnecessary (and expensive). Write protection
2017 * is responsibility of mmu_get_page / kvm_sync_page.
2018 * Same reasoning can be applied to dirty page accounting.
2019 */
2020 if (!can_unsync && is_writable_pte(*sptep))
2021 goto set_pte;
2022
2023 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2024 pgprintk("%s: found shadow page for %llx, marking ro\n",
2025 __func__, gfn);
2026 ret = 1;
2027 pte_access &= ~ACC_WRITE_MASK;
2028 if (is_writable_pte(spte))
2029 spte &= ~PT_WRITABLE_MASK;
2030 }
2031 }
2032
2033 if (pte_access & ACC_WRITE_MASK)
2034 mark_page_dirty(vcpu->kvm, gfn);
2035
2036 set_pte:
2037 update_spte(sptep, spte);
2038 done:
2039 return ret;
2040 }
2041
2042 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2043 unsigned pt_access, unsigned pte_access,
2044 int user_fault, int write_fault, int dirty,
2045 int *ptwrite, int level, gfn_t gfn,
2046 pfn_t pfn, bool speculative,
2047 bool reset_host_protection)
2048 {
2049 int was_rmapped = 0;
2050 int rmap_count;
2051
2052 pgprintk("%s: spte %llx access %x write_fault %d"
2053 " user_fault %d gfn %llx\n",
2054 __func__, *sptep, pt_access,
2055 write_fault, user_fault, gfn);
2056
2057 if (is_rmap_spte(*sptep)) {
2058 /*
2059 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2060 * the parent of the now unreachable PTE.
2061 */
2062 if (level > PT_PAGE_TABLE_LEVEL &&
2063 !is_large_pte(*sptep)) {
2064 struct kvm_mmu_page *child;
2065 u64 pte = *sptep;
2066
2067 child = page_header(pte & PT64_BASE_ADDR_MASK);
2068 mmu_page_remove_parent_pte(child, sptep);
2069 __set_spte(sptep, shadow_trap_nonpresent_pte);
2070 kvm_flush_remote_tlbs(vcpu->kvm);
2071 } else if (pfn != spte_to_pfn(*sptep)) {
2072 pgprintk("hfn old %llx new %llx\n",
2073 spte_to_pfn(*sptep), pfn);
2074 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2075 kvm_flush_remote_tlbs(vcpu->kvm);
2076 } else
2077 was_rmapped = 1;
2078 }
2079
2080 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2081 dirty, level, gfn, pfn, speculative, true,
2082 reset_host_protection)) {
2083 if (write_fault)
2084 *ptwrite = 1;
2085 kvm_mmu_flush_tlb(vcpu);
2086 }
2087
2088 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2089 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2090 is_large_pte(*sptep)? "2MB" : "4kB",
2091 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2092 *sptep, sptep);
2093 if (!was_rmapped && is_large_pte(*sptep))
2094 ++vcpu->kvm->stat.lpages;
2095
2096 page_header_update_slot(vcpu->kvm, sptep, gfn);
2097 if (!was_rmapped) {
2098 rmap_count = rmap_add(vcpu, sptep, gfn);
2099 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2100 rmap_recycle(vcpu, sptep, gfn);
2101 }
2102 kvm_release_pfn_clean(pfn);
2103 if (speculative) {
2104 vcpu->arch.last_pte_updated = sptep;
2105 vcpu->arch.last_pte_gfn = gfn;
2106 }
2107 }
2108
2109 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2110 {
2111 }
2112
2113 static struct kvm_memory_slot *
2114 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2115 {
2116 struct kvm_memory_slot *slot;
2117
2118 slot = gfn_to_memslot(vcpu->kvm, gfn);
2119 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2120 (no_dirty_log && slot->dirty_bitmap))
2121 slot = NULL;
2122
2123 return slot;
2124 }
2125
2126 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2127 bool no_dirty_log)
2128 {
2129 struct kvm_memory_slot *slot;
2130 unsigned long hva;
2131
2132 slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2133 if (!slot) {
2134 get_page(bad_page);
2135 return page_to_pfn(bad_page);
2136 }
2137
2138 hva = gfn_to_hva_memslot(slot, gfn);
2139
2140 return hva_to_pfn_atomic(vcpu->kvm, hva);
2141 }
2142
2143 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2144 struct kvm_mmu_page *sp,
2145 u64 *start, u64 *end)
2146 {
2147 struct page *pages[PTE_PREFETCH_NUM];
2148 unsigned access = sp->role.access;
2149 int i, ret;
2150 gfn_t gfn;
2151
2152 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2153 if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2154 return -1;
2155
2156 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2157 if (ret <= 0)
2158 return -1;
2159
2160 for (i = 0; i < ret; i++, gfn++, start++)
2161 mmu_set_spte(vcpu, start, ACC_ALL,
2162 access, 0, 0, 1, NULL,
2163 sp->role.level, gfn,
2164 page_to_pfn(pages[i]), true, true);
2165
2166 return 0;
2167 }
2168
2169 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2170 struct kvm_mmu_page *sp, u64 *sptep)
2171 {
2172 u64 *spte, *start = NULL;
2173 int i;
2174
2175 WARN_ON(!sp->role.direct);
2176
2177 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2178 spte = sp->spt + i;
2179
2180 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2181 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2182 if (!start)
2183 continue;
2184 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2185 break;
2186 start = NULL;
2187 } else if (!start)
2188 start = spte;
2189 }
2190 }
2191
2192 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2193 {
2194 struct kvm_mmu_page *sp;
2195
2196 /*
2197 * Since it's no accessed bit on EPT, it's no way to
2198 * distinguish between actually accessed translations
2199 * and prefetched, so disable pte prefetch if EPT is
2200 * enabled.
2201 */
2202 if (!shadow_accessed_mask)
2203 return;
2204
2205 sp = page_header(__pa(sptep));
2206 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2207 return;
2208
2209 __direct_pte_prefetch(vcpu, sp, sptep);
2210 }
2211
2212 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2213 int level, gfn_t gfn, pfn_t pfn)
2214 {
2215 struct kvm_shadow_walk_iterator iterator;
2216 struct kvm_mmu_page *sp;
2217 int pt_write = 0;
2218 gfn_t pseudo_gfn;
2219
2220 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2221 if (iterator.level == level) {
2222 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
2223 0, write, 1, &pt_write,
2224 level, gfn, pfn, false, true);
2225 direct_pte_prefetch(vcpu, iterator.sptep);
2226 ++vcpu->stat.pf_fixed;
2227 break;
2228 }
2229
2230 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2231 u64 base_addr = iterator.addr;
2232
2233 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2234 pseudo_gfn = base_addr >> PAGE_SHIFT;
2235 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2236 iterator.level - 1,
2237 1, ACC_ALL, iterator.sptep);
2238 if (!sp) {
2239 pgprintk("nonpaging_map: ENOMEM\n");
2240 kvm_release_pfn_clean(pfn);
2241 return -ENOMEM;
2242 }
2243
2244 __set_spte(iterator.sptep,
2245 __pa(sp->spt)
2246 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2247 | shadow_user_mask | shadow_x_mask
2248 | shadow_accessed_mask);
2249 }
2250 }
2251 return pt_write;
2252 }
2253
2254 static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
2255 {
2256 char buf[1];
2257 void __user *hva;
2258 int r;
2259
2260 /* Touch the page, so send SIGBUS */
2261 hva = (void __user *)gfn_to_hva(kvm, gfn);
2262 r = copy_from_user(buf, hva, 1);
2263 }
2264
2265 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2266 {
2267 kvm_release_pfn_clean(pfn);
2268 if (is_hwpoison_pfn(pfn)) {
2269 kvm_send_hwpoison_signal(kvm, gfn);
2270 return 0;
2271 } else if (is_fault_pfn(pfn))
2272 return -EFAULT;
2273
2274 return 1;
2275 }
2276
2277 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2278 {
2279 int r;
2280 int level;
2281 pfn_t pfn;
2282 unsigned long mmu_seq;
2283
2284 level = mapping_level(vcpu, gfn);
2285
2286 /*
2287 * This path builds a PAE pagetable - so we can map 2mb pages at
2288 * maximum. Therefore check if the level is larger than that.
2289 */
2290 if (level > PT_DIRECTORY_LEVEL)
2291 level = PT_DIRECTORY_LEVEL;
2292
2293 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2294
2295 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2296 smp_rmb();
2297 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2298
2299 /* mmio */
2300 if (is_error_pfn(pfn))
2301 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2302
2303 spin_lock(&vcpu->kvm->mmu_lock);
2304 if (mmu_notifier_retry(vcpu, mmu_seq))
2305 goto out_unlock;
2306 kvm_mmu_free_some_pages(vcpu);
2307 r = __direct_map(vcpu, v, write, level, gfn, pfn);
2308 spin_unlock(&vcpu->kvm->mmu_lock);
2309
2310
2311 return r;
2312
2313 out_unlock:
2314 spin_unlock(&vcpu->kvm->mmu_lock);
2315 kvm_release_pfn_clean(pfn);
2316 return 0;
2317 }
2318
2319
2320 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2321 {
2322 int i;
2323 struct kvm_mmu_page *sp;
2324 LIST_HEAD(invalid_list);
2325
2326 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2327 return;
2328 spin_lock(&vcpu->kvm->mmu_lock);
2329 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2330 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2331 vcpu->arch.mmu.direct_map)) {
2332 hpa_t root = vcpu->arch.mmu.root_hpa;
2333
2334 sp = page_header(root);
2335 --sp->root_count;
2336 if (!sp->root_count && sp->role.invalid) {
2337 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2338 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2339 }
2340 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2341 spin_unlock(&vcpu->kvm->mmu_lock);
2342 return;
2343 }
2344 for (i = 0; i < 4; ++i) {
2345 hpa_t root = vcpu->arch.mmu.pae_root[i];
2346
2347 if (root) {
2348 root &= PT64_BASE_ADDR_MASK;
2349 sp = page_header(root);
2350 --sp->root_count;
2351 if (!sp->root_count && sp->role.invalid)
2352 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2353 &invalid_list);
2354 }
2355 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2356 }
2357 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2358 spin_unlock(&vcpu->kvm->mmu_lock);
2359 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2360 }
2361
2362 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2363 {
2364 int ret = 0;
2365
2366 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2367 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2368 ret = 1;
2369 }
2370
2371 return ret;
2372 }
2373
2374 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2375 {
2376 struct kvm_mmu_page *sp;
2377 int i;
2378
2379 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2380 spin_lock(&vcpu->kvm->mmu_lock);
2381 kvm_mmu_free_some_pages(vcpu);
2382 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2383 1, ACC_ALL, NULL);
2384 ++sp->root_count;
2385 spin_unlock(&vcpu->kvm->mmu_lock);
2386 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2387 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2388 for (i = 0; i < 4; ++i) {
2389 hpa_t root = vcpu->arch.mmu.pae_root[i];
2390
2391 ASSERT(!VALID_PAGE(root));
2392 spin_lock(&vcpu->kvm->mmu_lock);
2393 kvm_mmu_free_some_pages(vcpu);
2394 sp = kvm_mmu_get_page(vcpu, i << 30, i << 30,
2395 PT32_ROOT_LEVEL, 1, ACC_ALL,
2396 NULL);
2397 root = __pa(sp->spt);
2398 ++sp->root_count;
2399 spin_unlock(&vcpu->kvm->mmu_lock);
2400 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2401 }
2402 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2403 } else
2404 BUG();
2405
2406 return 0;
2407 }
2408
2409 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2410 {
2411 struct kvm_mmu_page *sp;
2412 u64 pdptr, pm_mask;
2413 gfn_t root_gfn;
2414 int i;
2415
2416 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2417
2418 if (mmu_check_root(vcpu, root_gfn))
2419 return 1;
2420
2421 /*
2422 * Do we shadow a long mode page table? If so we need to
2423 * write-protect the guests page table root.
2424 */
2425 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2426 hpa_t root = vcpu->arch.mmu.root_hpa;
2427
2428 ASSERT(!VALID_PAGE(root));
2429
2430 spin_lock(&vcpu->kvm->mmu_lock);
2431 kvm_mmu_free_some_pages(vcpu);
2432 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2433 0, ACC_ALL, NULL);
2434 root = __pa(sp->spt);
2435 ++sp->root_count;
2436 spin_unlock(&vcpu->kvm->mmu_lock);
2437 vcpu->arch.mmu.root_hpa = root;
2438 return 0;
2439 }
2440
2441 /*
2442 * We shadow a 32 bit page table. This may be a legacy 2-level
2443 * or a PAE 3-level page table. In either case we need to be aware that
2444 * the shadow page table may be a PAE or a long mode page table.
2445 */
2446 pm_mask = PT_PRESENT_MASK;
2447 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2448 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2449
2450 for (i = 0; i < 4; ++i) {
2451 hpa_t root = vcpu->arch.mmu.pae_root[i];
2452
2453 ASSERT(!VALID_PAGE(root));
2454 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2455 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2456 if (!is_present_gpte(pdptr)) {
2457 vcpu->arch.mmu.pae_root[i] = 0;
2458 continue;
2459 }
2460 root_gfn = pdptr >> PAGE_SHIFT;
2461 if (mmu_check_root(vcpu, root_gfn))
2462 return 1;
2463 }
2464 spin_lock(&vcpu->kvm->mmu_lock);
2465 kvm_mmu_free_some_pages(vcpu);
2466 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2467 PT32_ROOT_LEVEL, 0,
2468 ACC_ALL, NULL);
2469 root = __pa(sp->spt);
2470 ++sp->root_count;
2471 spin_unlock(&vcpu->kvm->mmu_lock);
2472
2473 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2474 }
2475 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2476
2477 /*
2478 * If we shadow a 32 bit page table with a long mode page
2479 * table we enter this path.
2480 */
2481 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2482 if (vcpu->arch.mmu.lm_root == NULL) {
2483 /*
2484 * The additional page necessary for this is only
2485 * allocated on demand.
2486 */
2487
2488 u64 *lm_root;
2489
2490 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2491 if (lm_root == NULL)
2492 return 1;
2493
2494 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2495
2496 vcpu->arch.mmu.lm_root = lm_root;
2497 }
2498
2499 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2500 }
2501
2502 return 0;
2503 }
2504
2505 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2506 {
2507 if (vcpu->arch.mmu.direct_map)
2508 return mmu_alloc_direct_roots(vcpu);
2509 else
2510 return mmu_alloc_shadow_roots(vcpu);
2511 }
2512
2513 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2514 {
2515 int i;
2516 struct kvm_mmu_page *sp;
2517
2518 if (vcpu->arch.mmu.direct_map)
2519 return;
2520
2521 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2522 return;
2523
2524 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2525 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2526 hpa_t root = vcpu->arch.mmu.root_hpa;
2527 sp = page_header(root);
2528 mmu_sync_children(vcpu, sp);
2529 return;
2530 }
2531 for (i = 0; i < 4; ++i) {
2532 hpa_t root = vcpu->arch.mmu.pae_root[i];
2533
2534 if (root && VALID_PAGE(root)) {
2535 root &= PT64_BASE_ADDR_MASK;
2536 sp = page_header(root);
2537 mmu_sync_children(vcpu, sp);
2538 }
2539 }
2540 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2541 }
2542
2543 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2544 {
2545 spin_lock(&vcpu->kvm->mmu_lock);
2546 mmu_sync_roots(vcpu);
2547 spin_unlock(&vcpu->kvm->mmu_lock);
2548 }
2549
2550 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2551 u32 access, u32 *error)
2552 {
2553 if (error)
2554 *error = 0;
2555 return vaddr;
2556 }
2557
2558 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2559 u32 access, u32 *error)
2560 {
2561 if (error)
2562 *error = 0;
2563 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2564 }
2565
2566 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2567 u32 error_code)
2568 {
2569 gfn_t gfn;
2570 int r;
2571
2572 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2573 r = mmu_topup_memory_caches(vcpu);
2574 if (r)
2575 return r;
2576
2577 ASSERT(vcpu);
2578 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2579
2580 gfn = gva >> PAGE_SHIFT;
2581
2582 return nonpaging_map(vcpu, gva & PAGE_MASK,
2583 error_code & PFERR_WRITE_MASK, gfn);
2584 }
2585
2586 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2587 u32 error_code)
2588 {
2589 pfn_t pfn;
2590 int r;
2591 int level;
2592 gfn_t gfn = gpa >> PAGE_SHIFT;
2593 unsigned long mmu_seq;
2594
2595 ASSERT(vcpu);
2596 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2597
2598 r = mmu_topup_memory_caches(vcpu);
2599 if (r)
2600 return r;
2601
2602 level = mapping_level(vcpu, gfn);
2603
2604 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2605
2606 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2607 smp_rmb();
2608 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2609 if (is_error_pfn(pfn))
2610 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2611 spin_lock(&vcpu->kvm->mmu_lock);
2612 if (mmu_notifier_retry(vcpu, mmu_seq))
2613 goto out_unlock;
2614 kvm_mmu_free_some_pages(vcpu);
2615 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2616 level, gfn, pfn);
2617 spin_unlock(&vcpu->kvm->mmu_lock);
2618
2619 return r;
2620
2621 out_unlock:
2622 spin_unlock(&vcpu->kvm->mmu_lock);
2623 kvm_release_pfn_clean(pfn);
2624 return 0;
2625 }
2626
2627 static void nonpaging_free(struct kvm_vcpu *vcpu)
2628 {
2629 mmu_free_roots(vcpu);
2630 }
2631
2632 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2633 struct kvm_mmu *context)
2634 {
2635 context->new_cr3 = nonpaging_new_cr3;
2636 context->page_fault = nonpaging_page_fault;
2637 context->gva_to_gpa = nonpaging_gva_to_gpa;
2638 context->free = nonpaging_free;
2639 context->prefetch_page = nonpaging_prefetch_page;
2640 context->sync_page = nonpaging_sync_page;
2641 context->invlpg = nonpaging_invlpg;
2642 context->root_level = 0;
2643 context->shadow_root_level = PT32E_ROOT_LEVEL;
2644 context->root_hpa = INVALID_PAGE;
2645 context->direct_map = true;
2646 context->nx = false;
2647 return 0;
2648 }
2649
2650 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2651 {
2652 ++vcpu->stat.tlb_flush;
2653 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2654 }
2655
2656 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2657 {
2658 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2659 mmu_free_roots(vcpu);
2660 }
2661
2662 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2663 {
2664 return vcpu->arch.cr3;
2665 }
2666
2667 static void inject_page_fault(struct kvm_vcpu *vcpu)
2668 {
2669 vcpu->arch.mmu.inject_page_fault(vcpu);
2670 }
2671
2672 static void paging_free(struct kvm_vcpu *vcpu)
2673 {
2674 nonpaging_free(vcpu);
2675 }
2676
2677 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2678 {
2679 int bit7;
2680
2681 bit7 = (gpte >> 7) & 1;
2682 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2683 }
2684
2685 #define PTTYPE 64
2686 #include "paging_tmpl.h"
2687 #undef PTTYPE
2688
2689 #define PTTYPE 32
2690 #include "paging_tmpl.h"
2691 #undef PTTYPE
2692
2693 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2694 struct kvm_mmu *context,
2695 int level)
2696 {
2697 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2698 u64 exb_bit_rsvd = 0;
2699
2700 if (!context->nx)
2701 exb_bit_rsvd = rsvd_bits(63, 63);
2702 switch (level) {
2703 case PT32_ROOT_LEVEL:
2704 /* no rsvd bits for 2 level 4K page table entries */
2705 context->rsvd_bits_mask[0][1] = 0;
2706 context->rsvd_bits_mask[0][0] = 0;
2707 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2708
2709 if (!is_pse(vcpu)) {
2710 context->rsvd_bits_mask[1][1] = 0;
2711 break;
2712 }
2713
2714 if (is_cpuid_PSE36())
2715 /* 36bits PSE 4MB page */
2716 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2717 else
2718 /* 32 bits PSE 4MB page */
2719 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2720 break;
2721 case PT32E_ROOT_LEVEL:
2722 context->rsvd_bits_mask[0][2] =
2723 rsvd_bits(maxphyaddr, 63) |
2724 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2725 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2726 rsvd_bits(maxphyaddr, 62); /* PDE */
2727 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2728 rsvd_bits(maxphyaddr, 62); /* PTE */
2729 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2730 rsvd_bits(maxphyaddr, 62) |
2731 rsvd_bits(13, 20); /* large page */
2732 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2733 break;
2734 case PT64_ROOT_LEVEL:
2735 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2736 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2737 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2738 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2739 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2740 rsvd_bits(maxphyaddr, 51);
2741 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2742 rsvd_bits(maxphyaddr, 51);
2743 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2744 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2745 rsvd_bits(maxphyaddr, 51) |
2746 rsvd_bits(13, 29);
2747 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2748 rsvd_bits(maxphyaddr, 51) |
2749 rsvd_bits(13, 20); /* large page */
2750 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2751 break;
2752 }
2753 }
2754
2755 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2756 struct kvm_mmu *context,
2757 int level)
2758 {
2759 context->nx = is_nx(vcpu);
2760
2761 reset_rsvds_bits_mask(vcpu, context, level);
2762
2763 ASSERT(is_pae(vcpu));
2764 context->new_cr3 = paging_new_cr3;
2765 context->page_fault = paging64_page_fault;
2766 context->gva_to_gpa = paging64_gva_to_gpa;
2767 context->prefetch_page = paging64_prefetch_page;
2768 context->sync_page = paging64_sync_page;
2769 context->invlpg = paging64_invlpg;
2770 context->free = paging_free;
2771 context->root_level = level;
2772 context->shadow_root_level = level;
2773 context->root_hpa = INVALID_PAGE;
2774 context->direct_map = false;
2775 return 0;
2776 }
2777
2778 static int paging64_init_context(struct kvm_vcpu *vcpu,
2779 struct kvm_mmu *context)
2780 {
2781 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2782 }
2783
2784 static int paging32_init_context(struct kvm_vcpu *vcpu,
2785 struct kvm_mmu *context)
2786 {
2787 context->nx = false;
2788
2789 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2790
2791 context->new_cr3 = paging_new_cr3;
2792 context->page_fault = paging32_page_fault;
2793 context->gva_to_gpa = paging32_gva_to_gpa;
2794 context->free = paging_free;
2795 context->prefetch_page = paging32_prefetch_page;
2796 context->sync_page = paging32_sync_page;
2797 context->invlpg = paging32_invlpg;
2798 context->root_level = PT32_ROOT_LEVEL;
2799 context->shadow_root_level = PT32E_ROOT_LEVEL;
2800 context->root_hpa = INVALID_PAGE;
2801 context->direct_map = false;
2802 return 0;
2803 }
2804
2805 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2806 struct kvm_mmu *context)
2807 {
2808 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2809 }
2810
2811 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2812 {
2813 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2814
2815 context->new_cr3 = nonpaging_new_cr3;
2816 context->page_fault = tdp_page_fault;
2817 context->free = nonpaging_free;
2818 context->prefetch_page = nonpaging_prefetch_page;
2819 context->sync_page = nonpaging_sync_page;
2820 context->invlpg = nonpaging_invlpg;
2821 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2822 context->root_hpa = INVALID_PAGE;
2823 context->direct_map = true;
2824 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2825 context->get_cr3 = get_cr3;
2826 context->inject_page_fault = kvm_inject_page_fault;
2827 context->nx = is_nx(vcpu);
2828
2829 if (!is_paging(vcpu)) {
2830 context->nx = false;
2831 context->gva_to_gpa = nonpaging_gva_to_gpa;
2832 context->root_level = 0;
2833 } else if (is_long_mode(vcpu)) {
2834 context->nx = is_nx(vcpu);
2835 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2836 context->gva_to_gpa = paging64_gva_to_gpa;
2837 context->root_level = PT64_ROOT_LEVEL;
2838 } else if (is_pae(vcpu)) {
2839 context->nx = is_nx(vcpu);
2840 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2841 context->gva_to_gpa = paging64_gva_to_gpa;
2842 context->root_level = PT32E_ROOT_LEVEL;
2843 } else {
2844 context->nx = false;
2845 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2846 context->gva_to_gpa = paging32_gva_to_gpa;
2847 context->root_level = PT32_ROOT_LEVEL;
2848 }
2849
2850 return 0;
2851 }
2852
2853 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2854 {
2855 int r;
2856 ASSERT(vcpu);
2857 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2858
2859 if (!is_paging(vcpu))
2860 r = nonpaging_init_context(vcpu, context);
2861 else if (is_long_mode(vcpu))
2862 r = paging64_init_context(vcpu, context);
2863 else if (is_pae(vcpu))
2864 r = paging32E_init_context(vcpu, context);
2865 else
2866 r = paging32_init_context(vcpu, context);
2867
2868 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2869 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2870
2871 return r;
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2874
2875 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2876 {
2877 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2878
2879 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
2880 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
2881 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2882
2883 return r;
2884 }
2885
2886 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2887 {
2888 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2889
2890 g_context->get_cr3 = get_cr3;
2891 g_context->inject_page_fault = kvm_inject_page_fault;
2892
2893 /*
2894 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2895 * translation of l2_gpa to l1_gpa addresses is done using the
2896 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2897 * functions between mmu and nested_mmu are swapped.
2898 */
2899 if (!is_paging(vcpu)) {
2900 g_context->nx = false;
2901 g_context->root_level = 0;
2902 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
2903 } else if (is_long_mode(vcpu)) {
2904 g_context->nx = is_nx(vcpu);
2905 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
2906 g_context->root_level = PT64_ROOT_LEVEL;
2907 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2908 } else if (is_pae(vcpu)) {
2909 g_context->nx = is_nx(vcpu);
2910 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
2911 g_context->root_level = PT32E_ROOT_LEVEL;
2912 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2913 } else {
2914 g_context->nx = false;
2915 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
2916 g_context->root_level = PT32_ROOT_LEVEL;
2917 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
2918 }
2919
2920 return 0;
2921 }
2922
2923 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2924 {
2925 vcpu->arch.update_pte.pfn = bad_pfn;
2926
2927 if (mmu_is_nested(vcpu))
2928 return init_kvm_nested_mmu(vcpu);
2929 else if (tdp_enabled)
2930 return init_kvm_tdp_mmu(vcpu);
2931 else
2932 return init_kvm_softmmu(vcpu);
2933 }
2934
2935 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2936 {
2937 ASSERT(vcpu);
2938 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2939 /* mmu.free() should set root_hpa = INVALID_PAGE */
2940 vcpu->arch.mmu.free(vcpu);
2941 }
2942
2943 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2944 {
2945 destroy_kvm_mmu(vcpu);
2946 return init_kvm_mmu(vcpu);
2947 }
2948 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2949
2950 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2951 {
2952 int r;
2953
2954 r = mmu_topup_memory_caches(vcpu);
2955 if (r)
2956 goto out;
2957 r = mmu_alloc_roots(vcpu);
2958 spin_lock(&vcpu->kvm->mmu_lock);
2959 mmu_sync_roots(vcpu);
2960 spin_unlock(&vcpu->kvm->mmu_lock);
2961 if (r)
2962 goto out;
2963 /* set_cr3() should ensure TLB has been flushed */
2964 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2965 out:
2966 return r;
2967 }
2968 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2969
2970 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2971 {
2972 mmu_free_roots(vcpu);
2973 }
2974 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
2975
2976 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2977 struct kvm_mmu_page *sp,
2978 u64 *spte)
2979 {
2980 u64 pte;
2981 struct kvm_mmu_page *child;
2982
2983 pte = *spte;
2984 if (is_shadow_present_pte(pte)) {
2985 if (is_last_spte(pte, sp->role.level))
2986 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
2987 else {
2988 child = page_header(pte & PT64_BASE_ADDR_MASK);
2989 mmu_page_remove_parent_pte(child, spte);
2990 }
2991 }
2992 __set_spte(spte, shadow_trap_nonpresent_pte);
2993 if (is_large_pte(pte))
2994 --vcpu->kvm->stat.lpages;
2995 }
2996
2997 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2998 struct kvm_mmu_page *sp,
2999 u64 *spte,
3000 const void *new)
3001 {
3002 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3003 ++vcpu->kvm->stat.mmu_pde_zapped;
3004 return;
3005 }
3006
3007 if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
3008 return;
3009
3010 ++vcpu->kvm->stat.mmu_pte_updated;
3011 if (!sp->role.cr4_pae)
3012 paging32_update_pte(vcpu, sp, spte, new);
3013 else
3014 paging64_update_pte(vcpu, sp, spte, new);
3015 }
3016
3017 static bool need_remote_flush(u64 old, u64 new)
3018 {
3019 if (!is_shadow_present_pte(old))
3020 return false;
3021 if (!is_shadow_present_pte(new))
3022 return true;
3023 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3024 return true;
3025 old ^= PT64_NX_MASK;
3026 new ^= PT64_NX_MASK;
3027 return (old & ~new & PT64_PERM_MASK) != 0;
3028 }
3029
3030 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3031 bool remote_flush, bool local_flush)
3032 {
3033 if (zap_page)
3034 return;
3035
3036 if (remote_flush)
3037 kvm_flush_remote_tlbs(vcpu->kvm);
3038 else if (local_flush)
3039 kvm_mmu_flush_tlb(vcpu);
3040 }
3041
3042 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3043 {
3044 u64 *spte = vcpu->arch.last_pte_updated;
3045
3046 return !!(spte && (*spte & shadow_accessed_mask));
3047 }
3048
3049 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3050 u64 gpte)
3051 {
3052 gfn_t gfn;
3053 pfn_t pfn;
3054
3055 if (!is_present_gpte(gpte))
3056 return;
3057 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3058
3059 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3060 smp_rmb();
3061 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3062
3063 if (is_error_pfn(pfn)) {
3064 kvm_release_pfn_clean(pfn);
3065 return;
3066 }
3067 vcpu->arch.update_pte.gfn = gfn;
3068 vcpu->arch.update_pte.pfn = pfn;
3069 }
3070
3071 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3072 {
3073 u64 *spte = vcpu->arch.last_pte_updated;
3074
3075 if (spte
3076 && vcpu->arch.last_pte_gfn == gfn
3077 && shadow_accessed_mask
3078 && !(*spte & shadow_accessed_mask)
3079 && is_shadow_present_pte(*spte))
3080 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3081 }
3082
3083 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3084 const u8 *new, int bytes,
3085 bool guest_initiated)
3086 {
3087 gfn_t gfn = gpa >> PAGE_SHIFT;
3088 union kvm_mmu_page_role mask = { .word = 0 };
3089 struct kvm_mmu_page *sp;
3090 struct hlist_node *node;
3091 LIST_HEAD(invalid_list);
3092 u64 entry, gentry;
3093 u64 *spte;
3094 unsigned offset = offset_in_page(gpa);
3095 unsigned pte_size;
3096 unsigned page_offset;
3097 unsigned misaligned;
3098 unsigned quadrant;
3099 int level;
3100 int flooded = 0;
3101 int npte;
3102 int r;
3103 int invlpg_counter;
3104 bool remote_flush, local_flush, zap_page;
3105
3106 zap_page = remote_flush = local_flush = false;
3107
3108 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3109
3110 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3111
3112 /*
3113 * Assume that the pte write on a page table of the same type
3114 * as the current vcpu paging mode. This is nearly always true
3115 * (might be false while changing modes). Note it is verified later
3116 * by update_pte().
3117 */
3118 if ((is_pae(vcpu) && bytes == 4) || !new) {
3119 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3120 if (is_pae(vcpu)) {
3121 gpa &= ~(gpa_t)7;
3122 bytes = 8;
3123 }
3124 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3125 if (r)
3126 gentry = 0;
3127 new = (const u8 *)&gentry;
3128 }
3129
3130 switch (bytes) {
3131 case 4:
3132 gentry = *(const u32 *)new;
3133 break;
3134 case 8:
3135 gentry = *(const u64 *)new;
3136 break;
3137 default:
3138 gentry = 0;
3139 break;
3140 }
3141
3142 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3143 spin_lock(&vcpu->kvm->mmu_lock);
3144 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3145 gentry = 0;
3146 kvm_mmu_access_page(vcpu, gfn);
3147 kvm_mmu_free_some_pages(vcpu);
3148 ++vcpu->kvm->stat.mmu_pte_write;
3149 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3150 if (guest_initiated) {
3151 if (gfn == vcpu->arch.last_pt_write_gfn
3152 && !last_updated_pte_accessed(vcpu)) {
3153 ++vcpu->arch.last_pt_write_count;
3154 if (vcpu->arch.last_pt_write_count >= 3)
3155 flooded = 1;
3156 } else {
3157 vcpu->arch.last_pt_write_gfn = gfn;
3158 vcpu->arch.last_pt_write_count = 1;
3159 vcpu->arch.last_pte_updated = NULL;
3160 }
3161 }
3162
3163 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3164 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3165 pte_size = sp->role.cr4_pae ? 8 : 4;
3166 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3167 misaligned |= bytes < 4;
3168 if (misaligned || flooded) {
3169 /*
3170 * Misaligned accesses are too much trouble to fix
3171 * up; also, they usually indicate a page is not used
3172 * as a page table.
3173 *
3174 * If we're seeing too many writes to a page,
3175 * it may no longer be a page table, or we may be
3176 * forking, in which case it is better to unmap the
3177 * page.
3178 */
3179 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3180 gpa, bytes, sp->role.word);
3181 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3182 &invalid_list);
3183 ++vcpu->kvm->stat.mmu_flooded;
3184 continue;
3185 }
3186 page_offset = offset;
3187 level = sp->role.level;
3188 npte = 1;
3189 if (!sp->role.cr4_pae) {
3190 page_offset <<= 1; /* 32->64 */
3191 /*
3192 * A 32-bit pde maps 4MB while the shadow pdes map
3193 * only 2MB. So we need to double the offset again
3194 * and zap two pdes instead of one.
3195 */
3196 if (level == PT32_ROOT_LEVEL) {
3197 page_offset &= ~7; /* kill rounding error */
3198 page_offset <<= 1;
3199 npte = 2;
3200 }
3201 quadrant = page_offset >> PAGE_SHIFT;
3202 page_offset &= ~PAGE_MASK;
3203 if (quadrant != sp->role.quadrant)
3204 continue;
3205 }
3206 local_flush = true;
3207 spte = &sp->spt[page_offset / sizeof(*spte)];
3208 while (npte--) {
3209 entry = *spte;
3210 mmu_pte_write_zap_pte(vcpu, sp, spte);
3211 if (gentry &&
3212 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3213 & mask.word))
3214 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3215 if (!remote_flush && need_remote_flush(entry, *spte))
3216 remote_flush = true;
3217 ++spte;
3218 }
3219 }
3220 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3221 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3222 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3223 spin_unlock(&vcpu->kvm->mmu_lock);
3224 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3225 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3226 vcpu->arch.update_pte.pfn = bad_pfn;
3227 }
3228 }
3229
3230 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3231 {
3232 gpa_t gpa;
3233 int r;
3234
3235 if (vcpu->arch.mmu.direct_map)
3236 return 0;
3237
3238 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3239
3240 spin_lock(&vcpu->kvm->mmu_lock);
3241 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3242 spin_unlock(&vcpu->kvm->mmu_lock);
3243 return r;
3244 }
3245 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3246
3247 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3248 {
3249 LIST_HEAD(invalid_list);
3250
3251 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3252 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3253 struct kvm_mmu_page *sp;
3254
3255 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3256 struct kvm_mmu_page, link);
3257 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3258 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3259 ++vcpu->kvm->stat.mmu_recycled;
3260 }
3261 }
3262
3263 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
3264 {
3265 int r;
3266 enum emulation_result er;
3267
3268 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
3269 if (r < 0)
3270 goto out;
3271
3272 if (!r) {
3273 r = 1;
3274 goto out;
3275 }
3276
3277 r = mmu_topup_memory_caches(vcpu);
3278 if (r)
3279 goto out;
3280
3281 er = emulate_instruction(vcpu, cr2, error_code, 0);
3282
3283 switch (er) {
3284 case EMULATE_DONE:
3285 return 1;
3286 case EMULATE_DO_MMIO:
3287 ++vcpu->stat.mmio_exits;
3288 /* fall through */
3289 case EMULATE_FAIL:
3290 return 0;
3291 default:
3292 BUG();
3293 }
3294 out:
3295 return r;
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3298
3299 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3300 {
3301 vcpu->arch.mmu.invlpg(vcpu, gva);
3302 kvm_mmu_flush_tlb(vcpu);
3303 ++vcpu->stat.invlpg;
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3306
3307 void kvm_enable_tdp(void)
3308 {
3309 tdp_enabled = true;
3310 }
3311 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3312
3313 void kvm_disable_tdp(void)
3314 {
3315 tdp_enabled = false;
3316 }
3317 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3318
3319 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3320 {
3321 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3322 if (vcpu->arch.mmu.lm_root != NULL)
3323 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3324 }
3325
3326 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3327 {
3328 struct page *page;
3329 int i;
3330
3331 ASSERT(vcpu);
3332
3333 /*
3334 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3335 * Therefore we need to allocate shadow page tables in the first
3336 * 4GB of memory, which happens to fit the DMA32 zone.
3337 */
3338 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3339 if (!page)
3340 return -ENOMEM;
3341
3342 vcpu->arch.mmu.pae_root = page_address(page);
3343 for (i = 0; i < 4; ++i)
3344 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3345
3346 return 0;
3347 }
3348
3349 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3350 {
3351 ASSERT(vcpu);
3352 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3353
3354 return alloc_mmu_pages(vcpu);
3355 }
3356
3357 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3358 {
3359 ASSERT(vcpu);
3360 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3361
3362 return init_kvm_mmu(vcpu);
3363 }
3364
3365 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3366 {
3367 struct kvm_mmu_page *sp;
3368
3369 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3370 int i;
3371 u64 *pt;
3372
3373 if (!test_bit(slot, sp->slot_bitmap))
3374 continue;
3375
3376 pt = sp->spt;
3377 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3378 /* avoid RMW */
3379 if (is_writable_pte(pt[i]))
3380 pt[i] &= ~PT_WRITABLE_MASK;
3381 }
3382 kvm_flush_remote_tlbs(kvm);
3383 }
3384
3385 void kvm_mmu_zap_all(struct kvm *kvm)
3386 {
3387 struct kvm_mmu_page *sp, *node;
3388 LIST_HEAD(invalid_list);
3389
3390 spin_lock(&kvm->mmu_lock);
3391 restart:
3392 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3393 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3394 goto restart;
3395
3396 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3397 spin_unlock(&kvm->mmu_lock);
3398 }
3399
3400 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3401 struct list_head *invalid_list)
3402 {
3403 struct kvm_mmu_page *page;
3404
3405 page = container_of(kvm->arch.active_mmu_pages.prev,
3406 struct kvm_mmu_page, link);
3407 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3408 }
3409
3410 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3411 {
3412 struct kvm *kvm;
3413 struct kvm *kvm_freed = NULL;
3414
3415 if (nr_to_scan == 0)
3416 goto out;
3417
3418 spin_lock(&kvm_lock);
3419
3420 list_for_each_entry(kvm, &vm_list, vm_list) {
3421 int idx, freed_pages;
3422 LIST_HEAD(invalid_list);
3423
3424 idx = srcu_read_lock(&kvm->srcu);
3425 spin_lock(&kvm->mmu_lock);
3426 if (!kvm_freed && nr_to_scan > 0 &&
3427 kvm->arch.n_used_mmu_pages > 0) {
3428 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3429 &invalid_list);
3430 kvm_freed = kvm;
3431 }
3432 nr_to_scan--;
3433
3434 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3435 spin_unlock(&kvm->mmu_lock);
3436 srcu_read_unlock(&kvm->srcu, idx);
3437 }
3438 if (kvm_freed)
3439 list_move_tail(&kvm_freed->vm_list, &vm_list);
3440
3441 spin_unlock(&kvm_lock);
3442
3443 out:
3444 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3445 }
3446
3447 static struct shrinker mmu_shrinker = {
3448 .shrink = mmu_shrink,
3449 .seeks = DEFAULT_SEEKS * 10,
3450 };
3451
3452 static void mmu_destroy_caches(void)
3453 {
3454 if (pte_chain_cache)
3455 kmem_cache_destroy(pte_chain_cache);
3456 if (rmap_desc_cache)
3457 kmem_cache_destroy(rmap_desc_cache);
3458 if (mmu_page_header_cache)
3459 kmem_cache_destroy(mmu_page_header_cache);
3460 }
3461
3462 void kvm_mmu_module_exit(void)
3463 {
3464 mmu_destroy_caches();
3465 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3466 unregister_shrinker(&mmu_shrinker);
3467 }
3468
3469 int kvm_mmu_module_init(void)
3470 {
3471 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3472 sizeof(struct kvm_pte_chain),
3473 0, 0, NULL);
3474 if (!pte_chain_cache)
3475 goto nomem;
3476 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3477 sizeof(struct kvm_rmap_desc),
3478 0, 0, NULL);
3479 if (!rmap_desc_cache)
3480 goto nomem;
3481
3482 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3483 sizeof(struct kvm_mmu_page),
3484 0, 0, NULL);
3485 if (!mmu_page_header_cache)
3486 goto nomem;
3487
3488 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3489 goto nomem;
3490
3491 register_shrinker(&mmu_shrinker);
3492
3493 return 0;
3494
3495 nomem:
3496 mmu_destroy_caches();
3497 return -ENOMEM;
3498 }
3499
3500 /*
3501 * Caculate mmu pages needed for kvm.
3502 */
3503 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3504 {
3505 int i;
3506 unsigned int nr_mmu_pages;
3507 unsigned int nr_pages = 0;
3508 struct kvm_memslots *slots;
3509
3510 slots = kvm_memslots(kvm);
3511
3512 for (i = 0; i < slots->nmemslots; i++)
3513 nr_pages += slots->memslots[i].npages;
3514
3515 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3516 nr_mmu_pages = max(nr_mmu_pages,
3517 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3518
3519 return nr_mmu_pages;
3520 }
3521
3522 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3523 unsigned len)
3524 {
3525 if (len > buffer->len)
3526 return NULL;
3527 return buffer->ptr;
3528 }
3529
3530 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3531 unsigned len)
3532 {
3533 void *ret;
3534
3535 ret = pv_mmu_peek_buffer(buffer, len);
3536 if (!ret)
3537 return ret;
3538 buffer->ptr += len;
3539 buffer->len -= len;
3540 buffer->processed += len;
3541 return ret;
3542 }
3543
3544 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3545 gpa_t addr, gpa_t value)
3546 {
3547 int bytes = 8;
3548 int r;
3549
3550 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3551 bytes = 4;
3552
3553 r = mmu_topup_memory_caches(vcpu);
3554 if (r)
3555 return r;
3556
3557 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3558 return -EFAULT;
3559
3560 return 1;
3561 }
3562
3563 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3564 {
3565 (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3566 return 1;
3567 }
3568
3569 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3570 {
3571 spin_lock(&vcpu->kvm->mmu_lock);
3572 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3573 spin_unlock(&vcpu->kvm->mmu_lock);
3574 return 1;
3575 }
3576
3577 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3578 struct kvm_pv_mmu_op_buffer *buffer)
3579 {
3580 struct kvm_mmu_op_header *header;
3581
3582 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3583 if (!header)
3584 return 0;
3585 switch (header->op) {
3586 case KVM_MMU_OP_WRITE_PTE: {
3587 struct kvm_mmu_op_write_pte *wpte;
3588
3589 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3590 if (!wpte)
3591 return 0;
3592 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3593 wpte->pte_val);
3594 }
3595 case KVM_MMU_OP_FLUSH_TLB: {
3596 struct kvm_mmu_op_flush_tlb *ftlb;
3597
3598 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3599 if (!ftlb)
3600 return 0;
3601 return kvm_pv_mmu_flush_tlb(vcpu);
3602 }
3603 case KVM_MMU_OP_RELEASE_PT: {
3604 struct kvm_mmu_op_release_pt *rpt;
3605
3606 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3607 if (!rpt)
3608 return 0;
3609 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3610 }
3611 default: return 0;
3612 }
3613 }
3614
3615 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3616 gpa_t addr, unsigned long *ret)
3617 {
3618 int r;
3619 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3620
3621 buffer->ptr = buffer->buf;
3622 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3623 buffer->processed = 0;
3624
3625 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3626 if (r)
3627 goto out;
3628
3629 while (buffer->len) {
3630 r = kvm_pv_mmu_op_one(vcpu, buffer);
3631 if (r < 0)
3632 goto out;
3633 if (r == 0)
3634 break;
3635 }
3636
3637 r = 1;
3638 out:
3639 *ret = buffer->processed;
3640 return r;
3641 }
3642
3643 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3644 {
3645 struct kvm_shadow_walk_iterator iterator;
3646 int nr_sptes = 0;
3647
3648 spin_lock(&vcpu->kvm->mmu_lock);
3649 for_each_shadow_entry(vcpu, addr, iterator) {
3650 sptes[iterator.level-1] = *iterator.sptep;
3651 nr_sptes++;
3652 if (!is_shadow_present_pte(*iterator.sptep))
3653 break;
3654 }
3655 spin_unlock(&vcpu->kvm->mmu_lock);
3656
3657 return nr_sptes;
3658 }
3659 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3660
3661 #ifdef CONFIG_KVM_MMU_AUDIT
3662 #include "mmu_audit.c"
3663 #else
3664 static void mmu_audit_disable(void) { }
3665 #endif
3666
3667 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3668 {
3669 ASSERT(vcpu);
3670
3671 destroy_kvm_mmu(vcpu);
3672 free_mmu_pages(vcpu);
3673 mmu_free_memory_caches(vcpu);
3674 mmu_audit_disable();
3675 }