]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: x86: MMU: Encapsulate the type of rmap-chain head in a new struct
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM 8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK 1
126 #define ACC_WRITE_MASK PT_WRITABLE_MASK
127 #define ACC_USER_MASK PT_USER_MASK
128 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
151 u64 *sptep;
152 int level;
153 unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
195 */
196 #define MMIO_SPTE_GEN_LOW_SHIFT 2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
199 #define MMIO_GEN_SHIFT 20
200 #define MMIO_GEN_LOW_SHIFT 10
201 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 u64 mask;
207
208 WARN_ON(gen & ~MMIO_GEN_MASK);
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232 unsigned access)
233 {
234 unsigned int gen = kvm_current_mmio_generation(vcpu);
235 u64 mask = generation_mmio_spte_mask(gen);
236
237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240 trace_mark_mmio_spte(sptep, gfn, access, gen);
241 mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
263 {
264 if (unlikely(is_noslot_pfn(pfn))) {
265 mark_mmio_spte(vcpu, sptep, gfn, access);
266 return true;
267 }
268
269 return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(vcpu);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296 return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311 return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316 return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
323 if (is_large_pte(pte))
324 return 1;
325 return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367 };
368
369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379 }
380
381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 union split_spte *ssptep, sspte;
384
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 ssptep->spte_low = sspte.spte_low;
398 }
399
400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 ssptep->spte_low = sspte.spte_low;
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
416 count_spte_clear(sptep, spte);
417 }
418
419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
430 count_spte_clear(sptep, spte);
431
432 return orig.spte;
433 }
434
435 /*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
452 */
453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459 retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474 }
475 #endif
476
477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482
483 static bool spte_has_volatile_bits(u64 spte)
484 {
485 /*
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
491 if (spte_is_locklessly_modifiable(spte))
492 return true;
493
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502 return false;
503
504 return true;
505 }
506
507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511
512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516
517 /* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527 }
528
529 /* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
537 */
538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540 u64 old_spte = *sptep;
541 bool ret = false;
542
543 WARN_ON(!is_rmap_spte(new_spte));
544
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, new_spte);
552 else
553 old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555 /*
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
559 */
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
562 ret = true;
563
564 if (!shadow_accessed_mask)
565 return ret;
566
567 /*
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
570 */
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
573 ret = true;
574
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580 return ret;
581 }
582
583 /*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590 pfn_t pfn;
591 u64 old_spte = *sptep;
592
593 if (!spte_has_volatile_bits(old_spte))
594 __update_clear_spte_fast(sptep, 0ull);
595 else
596 old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598 if (!is_rmap_spte(old_spte))
599 return 0;
600
601 pfn = spte_to_pfn(old_spte);
602
603 /*
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
607 */
608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
614 return 1;
615 }
616
617 /*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624 __update_clear_spte_fast(sptep, 0ull);
625 }
626
627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629 return __get_spte_lockless(sptep);
630 }
631
632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634 /*
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 */
638 local_irq_disable();
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 /*
641 * Make sure a following spte read is not reordered ahead of the write
642 * to vcpu->mode.
643 */
644 smp_mb();
645 }
646
647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649 /*
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 */
654 smp_mb();
655 vcpu->mode = OUTSIDE_GUEST_MODE;
656 local_irq_enable();
657 }
658
659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660 struct kmem_cache *base_cache, int min)
661 {
662 void *obj;
663
664 if (cache->nobjs >= min)
665 return 0;
666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668 if (!obj)
669 return -ENOMEM;
670 cache->objects[cache->nobjs++] = obj;
671 }
672 return 0;
673 }
674
675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677 return cache->nobjs;
678 }
679
680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
682 {
683 while (mc->nobjs)
684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686
687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688 int min)
689 {
690 void *page;
691
692 if (cache->nobjs >= min)
693 return 0;
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695 page = (void *)__get_free_page(GFP_KERNEL);
696 if (!page)
697 return -ENOMEM;
698 cache->objects[cache->nobjs++] = page;
699 }
700 return 0;
701 }
702
703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705 while (mc->nobjs)
706 free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708
709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711 int r;
712
713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715 if (r)
716 goto out;
717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718 if (r)
719 goto out;
720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721 mmu_page_header_cache, 4);
722 out:
723 return r;
724 }
725
726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
733 }
734
735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737 void *p;
738
739 BUG_ON(!mc->nobjs);
740 p = mc->objects[--mc->nobjs];
741 return p;
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 if (!sp->role.direct)
757 return sp->gfns[index];
758
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 if (sp->role.direct)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 else
767 sp->gfns[index] = gfn;
768 }
769
770 /*
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
773 */
774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
776 int level)
777 {
778 unsigned long idx;
779
780 idx = gfn_to_index(gfn, slot->base_gfn, level);
781 return &slot->arch.lpage_info[level - 2][idx];
782 }
783
784 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785 {
786 struct kvm_memslots *slots;
787 struct kvm_memory_slot *slot;
788 struct kvm_lpage_info *linfo;
789 gfn_t gfn;
790 int i;
791
792 gfn = sp->gfn;
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
798 }
799 kvm->arch.indirect_shadow_pages++;
800 }
801
802 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804 struct kvm_memslots *slots;
805 struct kvm_memory_slot *slot;
806 struct kvm_lpage_info *linfo;
807 gfn_t gfn;
808 int i;
809
810 gfn = sp->gfn;
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
817 }
818 kvm->arch.indirect_shadow_pages--;
819 }
820
821 static int __has_wrprotected_page(gfn_t gfn, int level,
822 struct kvm_memory_slot *slot)
823 {
824 struct kvm_lpage_info *linfo;
825
826 if (slot) {
827 linfo = lpage_info_slot(gfn, slot, level);
828 return linfo->write_count;
829 }
830
831 return 1;
832 }
833
834 static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
835 {
836 struct kvm_memory_slot *slot;
837
838 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839 return __has_wrprotected_page(gfn, level, slot);
840 }
841
842 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
843 {
844 unsigned long page_size;
845 int i, ret = 0;
846
847 page_size = kvm_host_page_size(kvm, gfn);
848
849 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
850 if (page_size >= KVM_HPAGE_SIZE(i))
851 ret = i;
852 else
853 break;
854 }
855
856 return ret;
857 }
858
859 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
860 bool no_dirty_log)
861 {
862 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
863 return false;
864 if (no_dirty_log && slot->dirty_bitmap)
865 return false;
866
867 return true;
868 }
869
870 static struct kvm_memory_slot *
871 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
872 bool no_dirty_log)
873 {
874 struct kvm_memory_slot *slot;
875
876 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
877 if (!memslot_valid_for_gpte(slot, no_dirty_log))
878 slot = NULL;
879
880 return slot;
881 }
882
883 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
884 bool *force_pt_level)
885 {
886 int host_level, level, max_level;
887 struct kvm_memory_slot *slot;
888
889 if (unlikely(*force_pt_level))
890 return PT_PAGE_TABLE_LEVEL;
891
892 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
893 *force_pt_level = !memslot_valid_for_gpte(slot, true);
894 if (unlikely(*force_pt_level))
895 return PT_PAGE_TABLE_LEVEL;
896
897 host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899 if (host_level == PT_PAGE_TABLE_LEVEL)
900 return host_level;
901
902 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903
904 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905 if (__has_wrprotected_page(large_gfn, level, slot))
906 break;
907
908 return level - 1;
909 }
910
911 /*
912 * About rmap_head encoding:
913 *
914 * If the bit zero of rmap_head->val is clear, then it points to the only spte
915 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
916 * pte_list_desc containing more mappings.
917 */
918
919 /*
920 * Returns the number of pointers in the rmap chain, not counting the new one.
921 */
922 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
923 struct kvm_rmap_head *rmap_head)
924 {
925 struct pte_list_desc *desc;
926 int i, count = 0;
927
928 if (!rmap_head->val) {
929 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
930 rmap_head->val = (unsigned long)spte;
931 } else if (!(rmap_head->val & 1)) {
932 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
933 desc = mmu_alloc_pte_list_desc(vcpu);
934 desc->sptes[0] = (u64 *)rmap_head->val;
935 desc->sptes[1] = spte;
936 rmap_head->val = (unsigned long)desc | 1;
937 ++count;
938 } else {
939 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
940 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
941 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
942 desc = desc->more;
943 count += PTE_LIST_EXT;
944 }
945 if (desc->sptes[PTE_LIST_EXT-1]) {
946 desc->more = mmu_alloc_pte_list_desc(vcpu);
947 desc = desc->more;
948 }
949 for (i = 0; desc->sptes[i]; ++i)
950 ++count;
951 desc->sptes[i] = spte;
952 }
953 return count;
954 }
955
956 static void
957 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
958 struct pte_list_desc *desc, int i,
959 struct pte_list_desc *prev_desc)
960 {
961 int j;
962
963 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964 ;
965 desc->sptes[i] = desc->sptes[j];
966 desc->sptes[j] = NULL;
967 if (j != 0)
968 return;
969 if (!prev_desc && !desc->more)
970 rmap_head->val = (unsigned long)desc->sptes[0];
971 else
972 if (prev_desc)
973 prev_desc->more = desc->more;
974 else
975 rmap_head->val = (unsigned long)desc->more | 1;
976 mmu_free_pte_list_desc(desc);
977 }
978
979 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
980 {
981 struct pte_list_desc *desc;
982 struct pte_list_desc *prev_desc;
983 int i;
984
985 if (!rmap_head->val) {
986 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987 BUG();
988 } else if (!(rmap_head->val & 1)) {
989 rmap_printk("pte_list_remove: %p 1->0\n", spte);
990 if ((u64 *)rmap_head->val != spte) {
991 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
992 BUG();
993 }
994 rmap_head->val = 0;
995 } else {
996 rmap_printk("pte_list_remove: %p many->many\n", spte);
997 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
998 prev_desc = NULL;
999 while (desc) {
1000 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1001 if (desc->sptes[i] == spte) {
1002 pte_list_desc_remove_entry(rmap_head,
1003 desc, i, prev_desc);
1004 return;
1005 }
1006 }
1007 prev_desc = desc;
1008 desc = desc->more;
1009 }
1010 pr_err("pte_list_remove: %p many->many\n", spte);
1011 BUG();
1012 }
1013 }
1014
1015 typedef void (*pte_list_walk_fn) (u64 *spte);
1016 static void pte_list_walk(struct kvm_rmap_head *rmap_head, pte_list_walk_fn fn)
1017 {
1018 struct pte_list_desc *desc;
1019 int i;
1020
1021 if (!rmap_head->val)
1022 return;
1023
1024 if (!(rmap_head->val & 1))
1025 return fn((u64 *)rmap_head->val);
1026
1027 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1028 while (desc) {
1029 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030 fn(desc->sptes[i]);
1031 desc = desc->more;
1032 }
1033 }
1034
1035 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1036 struct kvm_memory_slot *slot)
1037 {
1038 unsigned long idx;
1039
1040 idx = gfn_to_index(gfn, slot->base_gfn, level);
1041 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 }
1043
1044 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1045 struct kvm_mmu_page *sp)
1046 {
1047 struct kvm_memslots *slots;
1048 struct kvm_memory_slot *slot;
1049
1050 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1051 slot = __gfn_to_memslot(slots, gfn);
1052 return __gfn_to_rmap(gfn, sp->role.level, slot);
1053 }
1054
1055 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1056 {
1057 struct kvm_mmu_memory_cache *cache;
1058
1059 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1060 return mmu_memory_cache_free_objects(cache);
1061 }
1062
1063 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1064 {
1065 struct kvm_mmu_page *sp;
1066 struct kvm_rmap_head *rmap_head;
1067
1068 sp = page_header(__pa(spte));
1069 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1070 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1071 return pte_list_add(vcpu, spte, rmap_head);
1072 }
1073
1074 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 {
1076 struct kvm_mmu_page *sp;
1077 gfn_t gfn;
1078 struct kvm_rmap_head *rmap_head;
1079
1080 sp = page_header(__pa(spte));
1081 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1083 pte_list_remove(spte, rmap_head);
1084 }
1085
1086 /*
1087 * Used by the following functions to iterate through the sptes linked by a
1088 * rmap. All fields are private and not assumed to be used outside.
1089 */
1090 struct rmap_iterator {
1091 /* private fields */
1092 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1093 int pos; /* index of the sptep */
1094 };
1095
1096 /*
1097 * Iteration must be started by this function. This should also be used after
1098 * removing/dropping sptes from the rmap link because in such cases the
1099 * information in the itererator may not be valid.
1100 *
1101 * Returns sptep if found, NULL otherwise.
1102 */
1103 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1104 struct rmap_iterator *iter)
1105 {
1106 if (!rmap_head->val)
1107 return NULL;
1108
1109 if (!(rmap_head->val & 1)) {
1110 iter->desc = NULL;
1111 return (u64 *)rmap_head->val;
1112 }
1113
1114 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1115 iter->pos = 0;
1116 return iter->desc->sptes[iter->pos];
1117 }
1118
1119 /*
1120 * Must be used with a valid iterator: e.g. after rmap_get_first().
1121 *
1122 * Returns sptep if found, NULL otherwise.
1123 */
1124 static u64 *rmap_get_next(struct rmap_iterator *iter)
1125 {
1126 if (iter->desc) {
1127 if (iter->pos < PTE_LIST_EXT - 1) {
1128 u64 *sptep;
1129
1130 ++iter->pos;
1131 sptep = iter->desc->sptes[iter->pos];
1132 if (sptep)
1133 return sptep;
1134 }
1135
1136 iter->desc = iter->desc->more;
1137
1138 if (iter->desc) {
1139 iter->pos = 0;
1140 /* desc->sptes[0] cannot be NULL */
1141 return iter->desc->sptes[iter->pos];
1142 }
1143 }
1144
1145 return NULL;
1146 }
1147
1148 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1149 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1150 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1151 _spte_ = rmap_get_next(_iter_))
1152
1153 static void drop_spte(struct kvm *kvm, u64 *sptep)
1154 {
1155 if (mmu_spte_clear_track_bits(sptep))
1156 rmap_remove(kvm, sptep);
1157 }
1158
1159
1160 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1161 {
1162 if (is_large_pte(*sptep)) {
1163 WARN_ON(page_header(__pa(sptep))->role.level ==
1164 PT_PAGE_TABLE_LEVEL);
1165 drop_spte(kvm, sptep);
1166 --kvm->stat.lpages;
1167 return true;
1168 }
1169
1170 return false;
1171 }
1172
1173 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1174 {
1175 if (__drop_large_spte(vcpu->kvm, sptep))
1176 kvm_flush_remote_tlbs(vcpu->kvm);
1177 }
1178
1179 /*
1180 * Write-protect on the specified @sptep, @pt_protect indicates whether
1181 * spte write-protection is caused by protecting shadow page table.
1182 *
1183 * Note: write protection is difference between dirty logging and spte
1184 * protection:
1185 * - for dirty logging, the spte can be set to writable at anytime if
1186 * its dirty bitmap is properly set.
1187 * - for spte protection, the spte can be writable only after unsync-ing
1188 * shadow page.
1189 *
1190 * Return true if tlb need be flushed.
1191 */
1192 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1193 {
1194 u64 spte = *sptep;
1195
1196 if (!is_writable_pte(spte) &&
1197 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198 return false;
1199
1200 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1201
1202 if (pt_protect)
1203 spte &= ~SPTE_MMU_WRITEABLE;
1204 spte = spte & ~PT_WRITABLE_MASK;
1205
1206 return mmu_spte_update(sptep, spte);
1207 }
1208
1209 static bool __rmap_write_protect(struct kvm *kvm,
1210 struct kvm_rmap_head *rmap_head,
1211 bool pt_protect)
1212 {
1213 u64 *sptep;
1214 struct rmap_iterator iter;
1215 bool flush = false;
1216
1217 for_each_rmap_spte(rmap_head, &iter, sptep)
1218 flush |= spte_write_protect(kvm, sptep, pt_protect);
1219
1220 return flush;
1221 }
1222
1223 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1224 {
1225 u64 spte = *sptep;
1226
1227 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1228
1229 spte &= ~shadow_dirty_mask;
1230
1231 return mmu_spte_update(sptep, spte);
1232 }
1233
1234 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1235 {
1236 u64 *sptep;
1237 struct rmap_iterator iter;
1238 bool flush = false;
1239
1240 for_each_rmap_spte(rmap_head, &iter, sptep)
1241 flush |= spte_clear_dirty(kvm, sptep);
1242
1243 return flush;
1244 }
1245
1246 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1247 {
1248 u64 spte = *sptep;
1249
1250 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1251
1252 spte |= shadow_dirty_mask;
1253
1254 return mmu_spte_update(sptep, spte);
1255 }
1256
1257 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1258 {
1259 u64 *sptep;
1260 struct rmap_iterator iter;
1261 bool flush = false;
1262
1263 for_each_rmap_spte(rmap_head, &iter, sptep)
1264 flush |= spte_set_dirty(kvm, sptep);
1265
1266 return flush;
1267 }
1268
1269 /**
1270 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1271 * @kvm: kvm instance
1272 * @slot: slot to protect
1273 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274 * @mask: indicates which pages we should protect
1275 *
1276 * Used when we do not need to care about huge page mappings: e.g. during dirty
1277 * logging we do not have any such mappings.
1278 */
1279 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1280 struct kvm_memory_slot *slot,
1281 gfn_t gfn_offset, unsigned long mask)
1282 {
1283 struct kvm_rmap_head *rmap_head;
1284
1285 while (mask) {
1286 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1287 PT_PAGE_TABLE_LEVEL, slot);
1288 __rmap_write_protect(kvm, rmap_head, false);
1289
1290 /* clear the first set bit */
1291 mask &= mask - 1;
1292 }
1293 }
1294
1295 /**
1296 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1297 * @kvm: kvm instance
1298 * @slot: slot to clear D-bit
1299 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1300 * @mask: indicates which pages we should clear D-bit
1301 *
1302 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1303 */
1304 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1305 struct kvm_memory_slot *slot,
1306 gfn_t gfn_offset, unsigned long mask)
1307 {
1308 struct kvm_rmap_head *rmap_head;
1309
1310 while (mask) {
1311 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1312 PT_PAGE_TABLE_LEVEL, slot);
1313 __rmap_clear_dirty(kvm, rmap_head);
1314
1315 /* clear the first set bit */
1316 mask &= mask - 1;
1317 }
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1320
1321 /**
1322 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1323 * PT level pages.
1324 *
1325 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1326 * enable dirty logging for them.
1327 *
1328 * Used when we do not need to care about huge page mappings: e.g. during dirty
1329 * logging we do not have any such mappings.
1330 */
1331 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1332 struct kvm_memory_slot *slot,
1333 gfn_t gfn_offset, unsigned long mask)
1334 {
1335 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1336 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1337 mask);
1338 else
1339 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 }
1341
1342 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1343 {
1344 struct kvm_memory_slot *slot;
1345 struct kvm_rmap_head *rmap_head;
1346 int i;
1347 bool write_protected = false;
1348
1349 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1350
1351 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1352 rmap_head = __gfn_to_rmap(gfn, i, slot);
1353 write_protected |= __rmap_write_protect(vcpu->kvm, rmap_head, true);
1354 }
1355
1356 return write_protected;
1357 }
1358
1359 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1360 {
1361 u64 *sptep;
1362 struct rmap_iterator iter;
1363 bool flush = false;
1364
1365 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1366 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1367 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1368
1369 drop_spte(kvm, sptep);
1370 flush = true;
1371 }
1372
1373 return flush;
1374 }
1375
1376 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1377 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378 unsigned long data)
1379 {
1380 return kvm_zap_rmapp(kvm, rmap_head);
1381 }
1382
1383 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1384 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1385 unsigned long data)
1386 {
1387 u64 *sptep;
1388 struct rmap_iterator iter;
1389 int need_flush = 0;
1390 u64 new_spte;
1391 pte_t *ptep = (pte_t *)data;
1392 pfn_t new_pfn;
1393
1394 WARN_ON(pte_huge(*ptep));
1395 new_pfn = pte_pfn(*ptep);
1396
1397 restart:
1398 for_each_rmap_spte(rmap_head, &iter, sptep) {
1399 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400 sptep, *sptep, gfn, level);
1401
1402 need_flush = 1;
1403
1404 if (pte_write(*ptep)) {
1405 drop_spte(kvm, sptep);
1406 goto restart;
1407 } else {
1408 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1409 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1410
1411 new_spte &= ~PT_WRITABLE_MASK;
1412 new_spte &= ~SPTE_HOST_WRITEABLE;
1413 new_spte &= ~shadow_accessed_mask;
1414
1415 mmu_spte_clear_track_bits(sptep);
1416 mmu_spte_set(sptep, new_spte);
1417 }
1418 }
1419
1420 if (need_flush)
1421 kvm_flush_remote_tlbs(kvm);
1422
1423 return 0;
1424 }
1425
1426 struct slot_rmap_walk_iterator {
1427 /* input fields. */
1428 struct kvm_memory_slot *slot;
1429 gfn_t start_gfn;
1430 gfn_t end_gfn;
1431 int start_level;
1432 int end_level;
1433
1434 /* output fields. */
1435 gfn_t gfn;
1436 struct kvm_rmap_head *rmap;
1437 int level;
1438
1439 /* private field. */
1440 struct kvm_rmap_head *end_rmap;
1441 };
1442
1443 static void
1444 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1445 {
1446 iterator->level = level;
1447 iterator->gfn = iterator->start_gfn;
1448 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1449 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1450 iterator->slot);
1451 }
1452
1453 static void
1454 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1455 struct kvm_memory_slot *slot, int start_level,
1456 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1457 {
1458 iterator->slot = slot;
1459 iterator->start_level = start_level;
1460 iterator->end_level = end_level;
1461 iterator->start_gfn = start_gfn;
1462 iterator->end_gfn = end_gfn;
1463
1464 rmap_walk_init_level(iterator, iterator->start_level);
1465 }
1466
1467 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1468 {
1469 return !!iterator->rmap;
1470 }
1471
1472 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1473 {
1474 if (++iterator->rmap <= iterator->end_rmap) {
1475 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1476 return;
1477 }
1478
1479 if (++iterator->level > iterator->end_level) {
1480 iterator->rmap = NULL;
1481 return;
1482 }
1483
1484 rmap_walk_init_level(iterator, iterator->level);
1485 }
1486
1487 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1488 _start_gfn, _end_gfn, _iter_) \
1489 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1490 _end_level_, _start_gfn, _end_gfn); \
1491 slot_rmap_walk_okay(_iter_); \
1492 slot_rmap_walk_next(_iter_))
1493
1494 static int kvm_handle_hva_range(struct kvm *kvm,
1495 unsigned long start,
1496 unsigned long end,
1497 unsigned long data,
1498 int (*handler)(struct kvm *kvm,
1499 struct kvm_rmap_head *rmap_head,
1500 struct kvm_memory_slot *slot,
1501 gfn_t gfn,
1502 int level,
1503 unsigned long data))
1504 {
1505 struct kvm_memslots *slots;
1506 struct kvm_memory_slot *memslot;
1507 struct slot_rmap_walk_iterator iterator;
1508 int ret = 0;
1509 int i;
1510
1511 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1512 slots = __kvm_memslots(kvm, i);
1513 kvm_for_each_memslot(memslot, slots) {
1514 unsigned long hva_start, hva_end;
1515 gfn_t gfn_start, gfn_end;
1516
1517 hva_start = max(start, memslot->userspace_addr);
1518 hva_end = min(end, memslot->userspace_addr +
1519 (memslot->npages << PAGE_SHIFT));
1520 if (hva_start >= hva_end)
1521 continue;
1522 /*
1523 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1524 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1525 */
1526 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1527 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1528
1529 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1530 PT_MAX_HUGEPAGE_LEVEL,
1531 gfn_start, gfn_end - 1,
1532 &iterator)
1533 ret |= handler(kvm, iterator.rmap, memslot,
1534 iterator.gfn, iterator.level, data);
1535 }
1536 }
1537
1538 return ret;
1539 }
1540
1541 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1542 unsigned long data,
1543 int (*handler)(struct kvm *kvm,
1544 struct kvm_rmap_head *rmap_head,
1545 struct kvm_memory_slot *slot,
1546 gfn_t gfn, int level,
1547 unsigned long data))
1548 {
1549 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1550 }
1551
1552 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1553 {
1554 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1555 }
1556
1557 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1558 {
1559 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1560 }
1561
1562 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1563 {
1564 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1565 }
1566
1567 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1568 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1569 unsigned long data)
1570 {
1571 u64 *sptep;
1572 struct rmap_iterator uninitialized_var(iter);
1573 int young = 0;
1574
1575 BUG_ON(!shadow_accessed_mask);
1576
1577 for_each_rmap_spte(rmap_head, &iter, sptep) {
1578 if (*sptep & shadow_accessed_mask) {
1579 young = 1;
1580 clear_bit((ffs(shadow_accessed_mask) - 1),
1581 (unsigned long *)sptep);
1582 }
1583 }
1584
1585 trace_kvm_age_page(gfn, level, slot, young);
1586 return young;
1587 }
1588
1589 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1590 struct kvm_memory_slot *slot, gfn_t gfn,
1591 int level, unsigned long data)
1592 {
1593 u64 *sptep;
1594 struct rmap_iterator iter;
1595 int young = 0;
1596
1597 /*
1598 * If there's no access bit in the secondary pte set by the
1599 * hardware it's up to gup-fast/gup to set the access bit in
1600 * the primary pte or in the page structure.
1601 */
1602 if (!shadow_accessed_mask)
1603 goto out;
1604
1605 for_each_rmap_spte(rmap_head, &iter, sptep) {
1606 if (*sptep & shadow_accessed_mask) {
1607 young = 1;
1608 break;
1609 }
1610 }
1611 out:
1612 return young;
1613 }
1614
1615 #define RMAP_RECYCLE_THRESHOLD 1000
1616
1617 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1618 {
1619 struct kvm_rmap_head *rmap_head;
1620 struct kvm_mmu_page *sp;
1621
1622 sp = page_header(__pa(spte));
1623
1624 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1625
1626 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1627 kvm_flush_remote_tlbs(vcpu->kvm);
1628 }
1629
1630 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1631 {
1632 /*
1633 * In case of absence of EPT Access and Dirty Bits supports,
1634 * emulate the accessed bit for EPT, by checking if this page has
1635 * an EPT mapping, and clearing it if it does. On the next access,
1636 * a new EPT mapping will be established.
1637 * This has some overhead, but not as much as the cost of swapping
1638 * out actively used pages or breaking up actively used hugepages.
1639 */
1640 if (!shadow_accessed_mask) {
1641 /*
1642 * We are holding the kvm->mmu_lock, and we are blowing up
1643 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1644 * This is correct as long as we don't decouple the mmu_lock
1645 * protected regions (like invalidate_range_start|end does).
1646 */
1647 kvm->mmu_notifier_seq++;
1648 return kvm_handle_hva_range(kvm, start, end, 0,
1649 kvm_unmap_rmapp);
1650 }
1651
1652 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1653 }
1654
1655 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1656 {
1657 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1658 }
1659
1660 #ifdef MMU_DEBUG
1661 static int is_empty_shadow_page(u64 *spt)
1662 {
1663 u64 *pos;
1664 u64 *end;
1665
1666 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1667 if (is_shadow_present_pte(*pos)) {
1668 printk(KERN_ERR "%s: %p %llx\n", __func__,
1669 pos, *pos);
1670 return 0;
1671 }
1672 return 1;
1673 }
1674 #endif
1675
1676 /*
1677 * This value is the sum of all of the kvm instances's
1678 * kvm->arch.n_used_mmu_pages values. We need a global,
1679 * aggregate version in order to make the slab shrinker
1680 * faster
1681 */
1682 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1683 {
1684 kvm->arch.n_used_mmu_pages += nr;
1685 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1686 }
1687
1688 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1689 {
1690 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1691 hlist_del(&sp->hash_link);
1692 list_del(&sp->link);
1693 free_page((unsigned long)sp->spt);
1694 if (!sp->role.direct)
1695 free_page((unsigned long)sp->gfns);
1696 kmem_cache_free(mmu_page_header_cache, sp);
1697 }
1698
1699 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1700 {
1701 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1702 }
1703
1704 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1705 struct kvm_mmu_page *sp, u64 *parent_pte)
1706 {
1707 if (!parent_pte)
1708 return;
1709
1710 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1711 }
1712
1713 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1714 u64 *parent_pte)
1715 {
1716 pte_list_remove(parent_pte, &sp->parent_ptes);
1717 }
1718
1719 static void drop_parent_pte(struct kvm_mmu_page *sp,
1720 u64 *parent_pte)
1721 {
1722 mmu_page_remove_parent_pte(sp, parent_pte);
1723 mmu_spte_clear_no_track(parent_pte);
1724 }
1725
1726 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1727 u64 *parent_pte, int direct)
1728 {
1729 struct kvm_mmu_page *sp;
1730
1731 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1732 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1733 if (!direct)
1734 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1735 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1736
1737 /*
1738 * The active_mmu_pages list is the FIFO list, do not move the
1739 * page until it is zapped. kvm_zap_obsolete_pages depends on
1740 * this feature. See the comments in kvm_zap_obsolete_pages().
1741 */
1742 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1743 sp->parent_ptes.val = 0;
1744 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1745 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1746 return sp;
1747 }
1748
1749 static void mark_unsync(u64 *spte);
1750 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1751 {
1752 pte_list_walk(&sp->parent_ptes, mark_unsync);
1753 }
1754
1755 static void mark_unsync(u64 *spte)
1756 {
1757 struct kvm_mmu_page *sp;
1758 unsigned int index;
1759
1760 sp = page_header(__pa(spte));
1761 index = spte - sp->spt;
1762 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1763 return;
1764 if (sp->unsync_children++)
1765 return;
1766 kvm_mmu_mark_parents_unsync(sp);
1767 }
1768
1769 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1770 struct kvm_mmu_page *sp)
1771 {
1772 return 1;
1773 }
1774
1775 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1776 {
1777 }
1778
1779 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1780 struct kvm_mmu_page *sp, u64 *spte,
1781 const void *pte)
1782 {
1783 WARN_ON(1);
1784 }
1785
1786 #define KVM_PAGE_ARRAY_NR 16
1787
1788 struct kvm_mmu_pages {
1789 struct mmu_page_and_offset {
1790 struct kvm_mmu_page *sp;
1791 unsigned int idx;
1792 } page[KVM_PAGE_ARRAY_NR];
1793 unsigned int nr;
1794 };
1795
1796 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1797 int idx)
1798 {
1799 int i;
1800
1801 if (sp->unsync)
1802 for (i=0; i < pvec->nr; i++)
1803 if (pvec->page[i].sp == sp)
1804 return 0;
1805
1806 pvec->page[pvec->nr].sp = sp;
1807 pvec->page[pvec->nr].idx = idx;
1808 pvec->nr++;
1809 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1810 }
1811
1812 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1813 struct kvm_mmu_pages *pvec)
1814 {
1815 int i, ret, nr_unsync_leaf = 0;
1816
1817 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1818 struct kvm_mmu_page *child;
1819 u64 ent = sp->spt[i];
1820
1821 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1822 goto clear_child_bitmap;
1823
1824 child = page_header(ent & PT64_BASE_ADDR_MASK);
1825
1826 if (child->unsync_children) {
1827 if (mmu_pages_add(pvec, child, i))
1828 return -ENOSPC;
1829
1830 ret = __mmu_unsync_walk(child, pvec);
1831 if (!ret)
1832 goto clear_child_bitmap;
1833 else if (ret > 0)
1834 nr_unsync_leaf += ret;
1835 else
1836 return ret;
1837 } else if (child->unsync) {
1838 nr_unsync_leaf++;
1839 if (mmu_pages_add(pvec, child, i))
1840 return -ENOSPC;
1841 } else
1842 goto clear_child_bitmap;
1843
1844 continue;
1845
1846 clear_child_bitmap:
1847 __clear_bit(i, sp->unsync_child_bitmap);
1848 sp->unsync_children--;
1849 WARN_ON((int)sp->unsync_children < 0);
1850 }
1851
1852
1853 return nr_unsync_leaf;
1854 }
1855
1856 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1857 struct kvm_mmu_pages *pvec)
1858 {
1859 if (!sp->unsync_children)
1860 return 0;
1861
1862 mmu_pages_add(pvec, sp, 0);
1863 return __mmu_unsync_walk(sp, pvec);
1864 }
1865
1866 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1867 {
1868 WARN_ON(!sp->unsync);
1869 trace_kvm_mmu_sync_page(sp);
1870 sp->unsync = 0;
1871 --kvm->stat.mmu_unsync;
1872 }
1873
1874 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1875 struct list_head *invalid_list);
1876 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1877 struct list_head *invalid_list);
1878
1879 /*
1880 * NOTE: we should pay more attention on the zapped-obsolete page
1881 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1882 * since it has been deleted from active_mmu_pages but still can be found
1883 * at hast list.
1884 *
1885 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1886 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1887 * all the obsolete pages.
1888 */
1889 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1890 hlist_for_each_entry(_sp, \
1891 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1892 if ((_sp)->gfn != (_gfn)) {} else
1893
1894 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1895 for_each_gfn_sp(_kvm, _sp, _gfn) \
1896 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1897
1898 /* @sp->gfn should be write-protected at the call site */
1899 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1900 struct list_head *invalid_list, bool clear_unsync)
1901 {
1902 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1903 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1904 return 1;
1905 }
1906
1907 if (clear_unsync)
1908 kvm_unlink_unsync_page(vcpu->kvm, sp);
1909
1910 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1911 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1912 return 1;
1913 }
1914
1915 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1916 return 0;
1917 }
1918
1919 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1920 struct kvm_mmu_page *sp)
1921 {
1922 LIST_HEAD(invalid_list);
1923 int ret;
1924
1925 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1926 if (ret)
1927 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1928
1929 return ret;
1930 }
1931
1932 #ifdef CONFIG_KVM_MMU_AUDIT
1933 #include "mmu_audit.c"
1934 #else
1935 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1936 static void mmu_audit_disable(void) { }
1937 #endif
1938
1939 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1940 struct list_head *invalid_list)
1941 {
1942 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1943 }
1944
1945 /* @gfn should be write-protected at the call site */
1946 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1947 {
1948 struct kvm_mmu_page *s;
1949 LIST_HEAD(invalid_list);
1950 bool flush = false;
1951
1952 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1953 if (!s->unsync)
1954 continue;
1955
1956 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1957 kvm_unlink_unsync_page(vcpu->kvm, s);
1958 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1959 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1960 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1961 continue;
1962 }
1963 flush = true;
1964 }
1965
1966 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1967 if (flush)
1968 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1969 }
1970
1971 struct mmu_page_path {
1972 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1973 unsigned int idx[PT64_ROOT_LEVEL-1];
1974 };
1975
1976 #define for_each_sp(pvec, sp, parents, i) \
1977 for (i = mmu_pages_next(&pvec, &parents, -1), \
1978 sp = pvec.page[i].sp; \
1979 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1980 i = mmu_pages_next(&pvec, &parents, i))
1981
1982 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1983 struct mmu_page_path *parents,
1984 int i)
1985 {
1986 int n;
1987
1988 for (n = i+1; n < pvec->nr; n++) {
1989 struct kvm_mmu_page *sp = pvec->page[n].sp;
1990
1991 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1992 parents->idx[0] = pvec->page[n].idx;
1993 return n;
1994 }
1995
1996 parents->parent[sp->role.level-2] = sp;
1997 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1998 }
1999
2000 return n;
2001 }
2002
2003 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2004 {
2005 struct kvm_mmu_page *sp;
2006 unsigned int level = 0;
2007
2008 do {
2009 unsigned int idx = parents->idx[level];
2010
2011 sp = parents->parent[level];
2012 if (!sp)
2013 return;
2014
2015 --sp->unsync_children;
2016 WARN_ON((int)sp->unsync_children < 0);
2017 __clear_bit(idx, sp->unsync_child_bitmap);
2018 level++;
2019 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2020 }
2021
2022 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2023 struct mmu_page_path *parents,
2024 struct kvm_mmu_pages *pvec)
2025 {
2026 parents->parent[parent->role.level-1] = NULL;
2027 pvec->nr = 0;
2028 }
2029
2030 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2031 struct kvm_mmu_page *parent)
2032 {
2033 int i;
2034 struct kvm_mmu_page *sp;
2035 struct mmu_page_path parents;
2036 struct kvm_mmu_pages pages;
2037 LIST_HEAD(invalid_list);
2038
2039 kvm_mmu_pages_init(parent, &parents, &pages);
2040 while (mmu_unsync_walk(parent, &pages)) {
2041 bool protected = false;
2042
2043 for_each_sp(pages, sp, parents, i)
2044 protected |= rmap_write_protect(vcpu, sp->gfn);
2045
2046 if (protected)
2047 kvm_flush_remote_tlbs(vcpu->kvm);
2048
2049 for_each_sp(pages, sp, parents, i) {
2050 kvm_sync_page(vcpu, sp, &invalid_list);
2051 mmu_pages_clear_parents(&parents);
2052 }
2053 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2054 cond_resched_lock(&vcpu->kvm->mmu_lock);
2055 kvm_mmu_pages_init(parent, &parents, &pages);
2056 }
2057 }
2058
2059 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2060 {
2061 int i;
2062
2063 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2064 sp->spt[i] = 0ull;
2065 }
2066
2067 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2068 {
2069 sp->write_flooding_count = 0;
2070 }
2071
2072 static void clear_sp_write_flooding_count(u64 *spte)
2073 {
2074 struct kvm_mmu_page *sp = page_header(__pa(spte));
2075
2076 __clear_sp_write_flooding_count(sp);
2077 }
2078
2079 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2080 {
2081 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2082 }
2083
2084 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2085 gfn_t gfn,
2086 gva_t gaddr,
2087 unsigned level,
2088 int direct,
2089 unsigned access,
2090 u64 *parent_pte)
2091 {
2092 union kvm_mmu_page_role role;
2093 unsigned quadrant;
2094 struct kvm_mmu_page *sp;
2095 bool need_sync = false;
2096
2097 role = vcpu->arch.mmu.base_role;
2098 role.level = level;
2099 role.direct = direct;
2100 if (role.direct)
2101 role.cr4_pae = 0;
2102 role.access = access;
2103 if (!vcpu->arch.mmu.direct_map
2104 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2105 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2106 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2107 role.quadrant = quadrant;
2108 }
2109 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2110 if (is_obsolete_sp(vcpu->kvm, sp))
2111 continue;
2112
2113 if (!need_sync && sp->unsync)
2114 need_sync = true;
2115
2116 if (sp->role.word != role.word)
2117 continue;
2118
2119 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2120 break;
2121
2122 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2123 if (sp->unsync_children) {
2124 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2125 kvm_mmu_mark_parents_unsync(sp);
2126 } else if (sp->unsync)
2127 kvm_mmu_mark_parents_unsync(sp);
2128
2129 __clear_sp_write_flooding_count(sp);
2130 trace_kvm_mmu_get_page(sp, false);
2131 return sp;
2132 }
2133 ++vcpu->kvm->stat.mmu_cache_miss;
2134 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2135 if (!sp)
2136 return sp;
2137 sp->gfn = gfn;
2138 sp->role = role;
2139 hlist_add_head(&sp->hash_link,
2140 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2141 if (!direct) {
2142 if (rmap_write_protect(vcpu, gfn))
2143 kvm_flush_remote_tlbs(vcpu->kvm);
2144 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2145 kvm_sync_pages(vcpu, gfn);
2146
2147 account_shadowed(vcpu->kvm, sp);
2148 }
2149 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2150 init_shadow_page_table(sp);
2151 trace_kvm_mmu_get_page(sp, true);
2152 return sp;
2153 }
2154
2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156 struct kvm_vcpu *vcpu, u64 addr)
2157 {
2158 iterator->addr = addr;
2159 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2160 iterator->level = vcpu->arch.mmu.shadow_root_level;
2161
2162 if (iterator->level == PT64_ROOT_LEVEL &&
2163 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2164 !vcpu->arch.mmu.direct_map)
2165 --iterator->level;
2166
2167 if (iterator->level == PT32E_ROOT_LEVEL) {
2168 iterator->shadow_addr
2169 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2170 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2171 --iterator->level;
2172 if (!iterator->shadow_addr)
2173 iterator->level = 0;
2174 }
2175 }
2176
2177 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2178 {
2179 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2180 return false;
2181
2182 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2183 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2184 return true;
2185 }
2186
2187 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2188 u64 spte)
2189 {
2190 if (is_last_spte(spte, iterator->level)) {
2191 iterator->level = 0;
2192 return;
2193 }
2194
2195 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2196 --iterator->level;
2197 }
2198
2199 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2200 {
2201 return __shadow_walk_next(iterator, *iterator->sptep);
2202 }
2203
2204 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2205 {
2206 u64 spte;
2207
2208 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2209 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2210
2211 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2212 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2213
2214 mmu_spte_set(sptep, spte);
2215 }
2216
2217 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2218 unsigned direct_access)
2219 {
2220 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2221 struct kvm_mmu_page *child;
2222
2223 /*
2224 * For the direct sp, if the guest pte's dirty bit
2225 * changed form clean to dirty, it will corrupt the
2226 * sp's access: allow writable in the read-only sp,
2227 * so we should update the spte at this point to get
2228 * a new sp with the correct access.
2229 */
2230 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2231 if (child->role.access == direct_access)
2232 return;
2233
2234 drop_parent_pte(child, sptep);
2235 kvm_flush_remote_tlbs(vcpu->kvm);
2236 }
2237 }
2238
2239 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2240 u64 *spte)
2241 {
2242 u64 pte;
2243 struct kvm_mmu_page *child;
2244
2245 pte = *spte;
2246 if (is_shadow_present_pte(pte)) {
2247 if (is_last_spte(pte, sp->role.level)) {
2248 drop_spte(kvm, spte);
2249 if (is_large_pte(pte))
2250 --kvm->stat.lpages;
2251 } else {
2252 child = page_header(pte & PT64_BASE_ADDR_MASK);
2253 drop_parent_pte(child, spte);
2254 }
2255 return true;
2256 }
2257
2258 if (is_mmio_spte(pte))
2259 mmu_spte_clear_no_track(spte);
2260
2261 return false;
2262 }
2263
2264 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2265 struct kvm_mmu_page *sp)
2266 {
2267 unsigned i;
2268
2269 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2270 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2271 }
2272
2273 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2274 {
2275 mmu_page_remove_parent_pte(sp, parent_pte);
2276 }
2277
2278 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2279 {
2280 u64 *sptep;
2281 struct rmap_iterator iter;
2282
2283 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2284 drop_parent_pte(sp, sptep);
2285 }
2286
2287 static int mmu_zap_unsync_children(struct kvm *kvm,
2288 struct kvm_mmu_page *parent,
2289 struct list_head *invalid_list)
2290 {
2291 int i, zapped = 0;
2292 struct mmu_page_path parents;
2293 struct kvm_mmu_pages pages;
2294
2295 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2296 return 0;
2297
2298 kvm_mmu_pages_init(parent, &parents, &pages);
2299 while (mmu_unsync_walk(parent, &pages)) {
2300 struct kvm_mmu_page *sp;
2301
2302 for_each_sp(pages, sp, parents, i) {
2303 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2304 mmu_pages_clear_parents(&parents);
2305 zapped++;
2306 }
2307 kvm_mmu_pages_init(parent, &parents, &pages);
2308 }
2309
2310 return zapped;
2311 }
2312
2313 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2314 struct list_head *invalid_list)
2315 {
2316 int ret;
2317
2318 trace_kvm_mmu_prepare_zap_page(sp);
2319 ++kvm->stat.mmu_shadow_zapped;
2320 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2321 kvm_mmu_page_unlink_children(kvm, sp);
2322 kvm_mmu_unlink_parents(kvm, sp);
2323
2324 if (!sp->role.invalid && !sp->role.direct)
2325 unaccount_shadowed(kvm, sp);
2326
2327 if (sp->unsync)
2328 kvm_unlink_unsync_page(kvm, sp);
2329 if (!sp->root_count) {
2330 /* Count self */
2331 ret++;
2332 list_move(&sp->link, invalid_list);
2333 kvm_mod_used_mmu_pages(kvm, -1);
2334 } else {
2335 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2336
2337 /*
2338 * The obsolete pages can not be used on any vcpus.
2339 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2340 */
2341 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2342 kvm_reload_remote_mmus(kvm);
2343 }
2344
2345 sp->role.invalid = 1;
2346 return ret;
2347 }
2348
2349 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2350 struct list_head *invalid_list)
2351 {
2352 struct kvm_mmu_page *sp, *nsp;
2353
2354 if (list_empty(invalid_list))
2355 return;
2356
2357 /*
2358 * wmb: make sure everyone sees our modifications to the page tables
2359 * rmb: make sure we see changes to vcpu->mode
2360 */
2361 smp_mb();
2362
2363 /*
2364 * Wait for all vcpus to exit guest mode and/or lockless shadow
2365 * page table walks.
2366 */
2367 kvm_flush_remote_tlbs(kvm);
2368
2369 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2370 WARN_ON(!sp->role.invalid || sp->root_count);
2371 kvm_mmu_free_page(sp);
2372 }
2373 }
2374
2375 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2376 struct list_head *invalid_list)
2377 {
2378 struct kvm_mmu_page *sp;
2379
2380 if (list_empty(&kvm->arch.active_mmu_pages))
2381 return false;
2382
2383 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2384 struct kvm_mmu_page, link);
2385 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2386
2387 return true;
2388 }
2389
2390 /*
2391 * Changing the number of mmu pages allocated to the vm
2392 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2393 */
2394 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2395 {
2396 LIST_HEAD(invalid_list);
2397
2398 spin_lock(&kvm->mmu_lock);
2399
2400 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2401 /* Need to free some mmu pages to achieve the goal. */
2402 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2403 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2404 break;
2405
2406 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2407 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2408 }
2409
2410 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2411
2412 spin_unlock(&kvm->mmu_lock);
2413 }
2414
2415 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2416 {
2417 struct kvm_mmu_page *sp;
2418 LIST_HEAD(invalid_list);
2419 int r;
2420
2421 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2422 r = 0;
2423 spin_lock(&kvm->mmu_lock);
2424 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2425 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2426 sp->role.word);
2427 r = 1;
2428 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2429 }
2430 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431 spin_unlock(&kvm->mmu_lock);
2432
2433 return r;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2436
2437 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2438 {
2439 trace_kvm_mmu_unsync_page(sp);
2440 ++vcpu->kvm->stat.mmu_unsync;
2441 sp->unsync = 1;
2442
2443 kvm_mmu_mark_parents_unsync(sp);
2444 }
2445
2446 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2447 {
2448 struct kvm_mmu_page *s;
2449
2450 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2451 if (s->unsync)
2452 continue;
2453 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2454 __kvm_unsync_page(vcpu, s);
2455 }
2456 }
2457
2458 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2459 bool can_unsync)
2460 {
2461 struct kvm_mmu_page *s;
2462 bool need_unsync = false;
2463
2464 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2465 if (!can_unsync)
2466 return 1;
2467
2468 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2469 return 1;
2470
2471 if (!s->unsync)
2472 need_unsync = true;
2473 }
2474 if (need_unsync)
2475 kvm_unsync_pages(vcpu, gfn);
2476 return 0;
2477 }
2478
2479 static bool kvm_is_mmio_pfn(pfn_t pfn)
2480 {
2481 if (pfn_valid(pfn))
2482 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2483
2484 return true;
2485 }
2486
2487 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2488 unsigned pte_access, int level,
2489 gfn_t gfn, pfn_t pfn, bool speculative,
2490 bool can_unsync, bool host_writable)
2491 {
2492 u64 spte;
2493 int ret = 0;
2494
2495 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2496 return 0;
2497
2498 spte = PT_PRESENT_MASK;
2499 if (!speculative)
2500 spte |= shadow_accessed_mask;
2501
2502 if (pte_access & ACC_EXEC_MASK)
2503 spte |= shadow_x_mask;
2504 else
2505 spte |= shadow_nx_mask;
2506
2507 if (pte_access & ACC_USER_MASK)
2508 spte |= shadow_user_mask;
2509
2510 if (level > PT_PAGE_TABLE_LEVEL)
2511 spte |= PT_PAGE_SIZE_MASK;
2512 if (tdp_enabled)
2513 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2514 kvm_is_mmio_pfn(pfn));
2515
2516 if (host_writable)
2517 spte |= SPTE_HOST_WRITEABLE;
2518 else
2519 pte_access &= ~ACC_WRITE_MASK;
2520
2521 spte |= (u64)pfn << PAGE_SHIFT;
2522
2523 if (pte_access & ACC_WRITE_MASK) {
2524
2525 /*
2526 * Other vcpu creates new sp in the window between
2527 * mapping_level() and acquiring mmu-lock. We can
2528 * allow guest to retry the access, the mapping can
2529 * be fixed if guest refault.
2530 */
2531 if (level > PT_PAGE_TABLE_LEVEL &&
2532 has_wrprotected_page(vcpu, gfn, level))
2533 goto done;
2534
2535 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2536
2537 /*
2538 * Optimization: for pte sync, if spte was writable the hash
2539 * lookup is unnecessary (and expensive). Write protection
2540 * is responsibility of mmu_get_page / kvm_sync_page.
2541 * Same reasoning can be applied to dirty page accounting.
2542 */
2543 if (!can_unsync && is_writable_pte(*sptep))
2544 goto set_pte;
2545
2546 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2547 pgprintk("%s: found shadow page for %llx, marking ro\n",
2548 __func__, gfn);
2549 ret = 1;
2550 pte_access &= ~ACC_WRITE_MASK;
2551 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2552 }
2553 }
2554
2555 if (pte_access & ACC_WRITE_MASK) {
2556 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2557 spte |= shadow_dirty_mask;
2558 }
2559
2560 set_pte:
2561 if (mmu_spte_update(sptep, spte))
2562 kvm_flush_remote_tlbs(vcpu->kvm);
2563 done:
2564 return ret;
2565 }
2566
2567 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2568 unsigned pte_access, int write_fault, int *emulate,
2569 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2570 bool host_writable)
2571 {
2572 int was_rmapped = 0;
2573 int rmap_count;
2574
2575 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2576 *sptep, write_fault, gfn);
2577
2578 if (is_rmap_spte(*sptep)) {
2579 /*
2580 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2581 * the parent of the now unreachable PTE.
2582 */
2583 if (level > PT_PAGE_TABLE_LEVEL &&
2584 !is_large_pte(*sptep)) {
2585 struct kvm_mmu_page *child;
2586 u64 pte = *sptep;
2587
2588 child = page_header(pte & PT64_BASE_ADDR_MASK);
2589 drop_parent_pte(child, sptep);
2590 kvm_flush_remote_tlbs(vcpu->kvm);
2591 } else if (pfn != spte_to_pfn(*sptep)) {
2592 pgprintk("hfn old %llx new %llx\n",
2593 spte_to_pfn(*sptep), pfn);
2594 drop_spte(vcpu->kvm, sptep);
2595 kvm_flush_remote_tlbs(vcpu->kvm);
2596 } else
2597 was_rmapped = 1;
2598 }
2599
2600 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2601 true, host_writable)) {
2602 if (write_fault)
2603 *emulate = 1;
2604 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2605 }
2606
2607 if (unlikely(is_mmio_spte(*sptep) && emulate))
2608 *emulate = 1;
2609
2610 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2611 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2612 is_large_pte(*sptep)? "2MB" : "4kB",
2613 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2614 *sptep, sptep);
2615 if (!was_rmapped && is_large_pte(*sptep))
2616 ++vcpu->kvm->stat.lpages;
2617
2618 if (is_shadow_present_pte(*sptep)) {
2619 if (!was_rmapped) {
2620 rmap_count = rmap_add(vcpu, sptep, gfn);
2621 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2622 rmap_recycle(vcpu, sptep, gfn);
2623 }
2624 }
2625
2626 kvm_release_pfn_clean(pfn);
2627 }
2628
2629 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2630 bool no_dirty_log)
2631 {
2632 struct kvm_memory_slot *slot;
2633
2634 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2635 if (!slot)
2636 return KVM_PFN_ERR_FAULT;
2637
2638 return gfn_to_pfn_memslot_atomic(slot, gfn);
2639 }
2640
2641 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2642 struct kvm_mmu_page *sp,
2643 u64 *start, u64 *end)
2644 {
2645 struct page *pages[PTE_PREFETCH_NUM];
2646 struct kvm_memory_slot *slot;
2647 unsigned access = sp->role.access;
2648 int i, ret;
2649 gfn_t gfn;
2650
2651 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2652 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2653 if (!slot)
2654 return -1;
2655
2656 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2657 if (ret <= 0)
2658 return -1;
2659
2660 for (i = 0; i < ret; i++, gfn++, start++)
2661 mmu_set_spte(vcpu, start, access, 0, NULL,
2662 sp->role.level, gfn, page_to_pfn(pages[i]),
2663 true, true);
2664
2665 return 0;
2666 }
2667
2668 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2669 struct kvm_mmu_page *sp, u64 *sptep)
2670 {
2671 u64 *spte, *start = NULL;
2672 int i;
2673
2674 WARN_ON(!sp->role.direct);
2675
2676 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2677 spte = sp->spt + i;
2678
2679 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2680 if (is_shadow_present_pte(*spte) || spte == sptep) {
2681 if (!start)
2682 continue;
2683 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2684 break;
2685 start = NULL;
2686 } else if (!start)
2687 start = spte;
2688 }
2689 }
2690
2691 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2692 {
2693 struct kvm_mmu_page *sp;
2694
2695 /*
2696 * Since it's no accessed bit on EPT, it's no way to
2697 * distinguish between actually accessed translations
2698 * and prefetched, so disable pte prefetch if EPT is
2699 * enabled.
2700 */
2701 if (!shadow_accessed_mask)
2702 return;
2703
2704 sp = page_header(__pa(sptep));
2705 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2706 return;
2707
2708 __direct_pte_prefetch(vcpu, sp, sptep);
2709 }
2710
2711 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2712 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2713 bool prefault)
2714 {
2715 struct kvm_shadow_walk_iterator iterator;
2716 struct kvm_mmu_page *sp;
2717 int emulate = 0;
2718 gfn_t pseudo_gfn;
2719
2720 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2721 return 0;
2722
2723 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2724 if (iterator.level == level) {
2725 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2726 write, &emulate, level, gfn, pfn,
2727 prefault, map_writable);
2728 direct_pte_prefetch(vcpu, iterator.sptep);
2729 ++vcpu->stat.pf_fixed;
2730 break;
2731 }
2732
2733 drop_large_spte(vcpu, iterator.sptep);
2734 if (!is_shadow_present_pte(*iterator.sptep)) {
2735 u64 base_addr = iterator.addr;
2736
2737 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2738 pseudo_gfn = base_addr >> PAGE_SHIFT;
2739 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2740 iterator.level - 1,
2741 1, ACC_ALL, iterator.sptep);
2742
2743 link_shadow_page(iterator.sptep, sp);
2744 }
2745 }
2746 return emulate;
2747 }
2748
2749 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2750 {
2751 siginfo_t info;
2752
2753 info.si_signo = SIGBUS;
2754 info.si_errno = 0;
2755 info.si_code = BUS_MCEERR_AR;
2756 info.si_addr = (void __user *)address;
2757 info.si_addr_lsb = PAGE_SHIFT;
2758
2759 send_sig_info(SIGBUS, &info, tsk);
2760 }
2761
2762 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2763 {
2764 /*
2765 * Do not cache the mmio info caused by writing the readonly gfn
2766 * into the spte otherwise read access on readonly gfn also can
2767 * caused mmio page fault and treat it as mmio access.
2768 * Return 1 to tell kvm to emulate it.
2769 */
2770 if (pfn == KVM_PFN_ERR_RO_FAULT)
2771 return 1;
2772
2773 if (pfn == KVM_PFN_ERR_HWPOISON) {
2774 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2775 return 0;
2776 }
2777
2778 return -EFAULT;
2779 }
2780
2781 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2782 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2783 {
2784 pfn_t pfn = *pfnp;
2785 gfn_t gfn = *gfnp;
2786 int level = *levelp;
2787
2788 /*
2789 * Check if it's a transparent hugepage. If this would be an
2790 * hugetlbfs page, level wouldn't be set to
2791 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2792 * here.
2793 */
2794 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2795 level == PT_PAGE_TABLE_LEVEL &&
2796 PageTransCompound(pfn_to_page(pfn)) &&
2797 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2798 unsigned long mask;
2799 /*
2800 * mmu_notifier_retry was successful and we hold the
2801 * mmu_lock here, so the pmd can't become splitting
2802 * from under us, and in turn
2803 * __split_huge_page_refcount() can't run from under
2804 * us and we can safely transfer the refcount from
2805 * PG_tail to PG_head as we switch the pfn to tail to
2806 * head.
2807 */
2808 *levelp = level = PT_DIRECTORY_LEVEL;
2809 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2810 VM_BUG_ON((gfn & mask) != (pfn & mask));
2811 if (pfn & mask) {
2812 gfn &= ~mask;
2813 *gfnp = gfn;
2814 kvm_release_pfn_clean(pfn);
2815 pfn &= ~mask;
2816 kvm_get_pfn(pfn);
2817 *pfnp = pfn;
2818 }
2819 }
2820 }
2821
2822 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2823 pfn_t pfn, unsigned access, int *ret_val)
2824 {
2825 bool ret = true;
2826
2827 /* The pfn is invalid, report the error! */
2828 if (unlikely(is_error_pfn(pfn))) {
2829 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2830 goto exit;
2831 }
2832
2833 if (unlikely(is_noslot_pfn(pfn)))
2834 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2835
2836 ret = false;
2837 exit:
2838 return ret;
2839 }
2840
2841 static bool page_fault_can_be_fast(u32 error_code)
2842 {
2843 /*
2844 * Do not fix the mmio spte with invalid generation number which
2845 * need to be updated by slow page fault path.
2846 */
2847 if (unlikely(error_code & PFERR_RSVD_MASK))
2848 return false;
2849
2850 /*
2851 * #PF can be fast only if the shadow page table is present and it
2852 * is caused by write-protect, that means we just need change the
2853 * W bit of the spte which can be done out of mmu-lock.
2854 */
2855 if (!(error_code & PFERR_PRESENT_MASK) ||
2856 !(error_code & PFERR_WRITE_MASK))
2857 return false;
2858
2859 return true;
2860 }
2861
2862 static bool
2863 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2864 u64 *sptep, u64 spte)
2865 {
2866 gfn_t gfn;
2867
2868 WARN_ON(!sp->role.direct);
2869
2870 /*
2871 * The gfn of direct spte is stable since it is calculated
2872 * by sp->gfn.
2873 */
2874 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2875
2876 /*
2877 * Theoretically we could also set dirty bit (and flush TLB) here in
2878 * order to eliminate unnecessary PML logging. See comments in
2879 * set_spte. But fast_page_fault is very unlikely to happen with PML
2880 * enabled, so we do not do this. This might result in the same GPA
2881 * to be logged in PML buffer again when the write really happens, and
2882 * eventually to be called by mark_page_dirty twice. But it's also no
2883 * harm. This also avoids the TLB flush needed after setting dirty bit
2884 * so non-PML cases won't be impacted.
2885 *
2886 * Compare with set_spte where instead shadow_dirty_mask is set.
2887 */
2888 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2889 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2890
2891 return true;
2892 }
2893
2894 /*
2895 * Return value:
2896 * - true: let the vcpu to access on the same address again.
2897 * - false: let the real page fault path to fix it.
2898 */
2899 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2900 u32 error_code)
2901 {
2902 struct kvm_shadow_walk_iterator iterator;
2903 struct kvm_mmu_page *sp;
2904 bool ret = false;
2905 u64 spte = 0ull;
2906
2907 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2908 return false;
2909
2910 if (!page_fault_can_be_fast(error_code))
2911 return false;
2912
2913 walk_shadow_page_lockless_begin(vcpu);
2914 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2915 if (!is_shadow_present_pte(spte) || iterator.level < level)
2916 break;
2917
2918 /*
2919 * If the mapping has been changed, let the vcpu fault on the
2920 * same address again.
2921 */
2922 if (!is_rmap_spte(spte)) {
2923 ret = true;
2924 goto exit;
2925 }
2926
2927 sp = page_header(__pa(iterator.sptep));
2928 if (!is_last_spte(spte, sp->role.level))
2929 goto exit;
2930
2931 /*
2932 * Check if it is a spurious fault caused by TLB lazily flushed.
2933 *
2934 * Need not check the access of upper level table entries since
2935 * they are always ACC_ALL.
2936 */
2937 if (is_writable_pte(spte)) {
2938 ret = true;
2939 goto exit;
2940 }
2941
2942 /*
2943 * Currently, to simplify the code, only the spte write-protected
2944 * by dirty-log can be fast fixed.
2945 */
2946 if (!spte_is_locklessly_modifiable(spte))
2947 goto exit;
2948
2949 /*
2950 * Do not fix write-permission on the large spte since we only dirty
2951 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2952 * that means other pages are missed if its slot is dirty-logged.
2953 *
2954 * Instead, we let the slow page fault path create a normal spte to
2955 * fix the access.
2956 *
2957 * See the comments in kvm_arch_commit_memory_region().
2958 */
2959 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2960 goto exit;
2961
2962 /*
2963 * Currently, fast page fault only works for direct mapping since
2964 * the gfn is not stable for indirect shadow page.
2965 * See Documentation/virtual/kvm/locking.txt to get more detail.
2966 */
2967 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2968 exit:
2969 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2970 spte, ret);
2971 walk_shadow_page_lockless_end(vcpu);
2972
2973 return ret;
2974 }
2975
2976 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2977 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2978 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2979
2980 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2981 gfn_t gfn, bool prefault)
2982 {
2983 int r;
2984 int level;
2985 bool force_pt_level = false;
2986 pfn_t pfn;
2987 unsigned long mmu_seq;
2988 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2989
2990 level = mapping_level(vcpu, gfn, &force_pt_level);
2991 if (likely(!force_pt_level)) {
2992 /*
2993 * This path builds a PAE pagetable - so we can map
2994 * 2mb pages at maximum. Therefore check if the level
2995 * is larger than that.
2996 */
2997 if (level > PT_DIRECTORY_LEVEL)
2998 level = PT_DIRECTORY_LEVEL;
2999
3000 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3001 }
3002
3003 if (fast_page_fault(vcpu, v, level, error_code))
3004 return 0;
3005
3006 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3007 smp_rmb();
3008
3009 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3010 return 0;
3011
3012 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3013 return r;
3014
3015 spin_lock(&vcpu->kvm->mmu_lock);
3016 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3017 goto out_unlock;
3018 make_mmu_pages_available(vcpu);
3019 if (likely(!force_pt_level))
3020 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3021 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3022 prefault);
3023 spin_unlock(&vcpu->kvm->mmu_lock);
3024
3025
3026 return r;
3027
3028 out_unlock:
3029 spin_unlock(&vcpu->kvm->mmu_lock);
3030 kvm_release_pfn_clean(pfn);
3031 return 0;
3032 }
3033
3034
3035 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3036 {
3037 int i;
3038 struct kvm_mmu_page *sp;
3039 LIST_HEAD(invalid_list);
3040
3041 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3042 return;
3043
3044 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3045 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3046 vcpu->arch.mmu.direct_map)) {
3047 hpa_t root = vcpu->arch.mmu.root_hpa;
3048
3049 spin_lock(&vcpu->kvm->mmu_lock);
3050 sp = page_header(root);
3051 --sp->root_count;
3052 if (!sp->root_count && sp->role.invalid) {
3053 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3054 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3055 }
3056 spin_unlock(&vcpu->kvm->mmu_lock);
3057 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3058 return;
3059 }
3060
3061 spin_lock(&vcpu->kvm->mmu_lock);
3062 for (i = 0; i < 4; ++i) {
3063 hpa_t root = vcpu->arch.mmu.pae_root[i];
3064
3065 if (root) {
3066 root &= PT64_BASE_ADDR_MASK;
3067 sp = page_header(root);
3068 --sp->root_count;
3069 if (!sp->root_count && sp->role.invalid)
3070 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3071 &invalid_list);
3072 }
3073 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3074 }
3075 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3076 spin_unlock(&vcpu->kvm->mmu_lock);
3077 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078 }
3079
3080 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3081 {
3082 int ret = 0;
3083
3084 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3085 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3086 ret = 1;
3087 }
3088
3089 return ret;
3090 }
3091
3092 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3093 {
3094 struct kvm_mmu_page *sp;
3095 unsigned i;
3096
3097 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3098 spin_lock(&vcpu->kvm->mmu_lock);
3099 make_mmu_pages_available(vcpu);
3100 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3101 1, ACC_ALL, NULL);
3102 ++sp->root_count;
3103 spin_unlock(&vcpu->kvm->mmu_lock);
3104 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3105 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3106 for (i = 0; i < 4; ++i) {
3107 hpa_t root = vcpu->arch.mmu.pae_root[i];
3108
3109 MMU_WARN_ON(VALID_PAGE(root));
3110 spin_lock(&vcpu->kvm->mmu_lock);
3111 make_mmu_pages_available(vcpu);
3112 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3113 i << 30,
3114 PT32_ROOT_LEVEL, 1, ACC_ALL,
3115 NULL);
3116 root = __pa(sp->spt);
3117 ++sp->root_count;
3118 spin_unlock(&vcpu->kvm->mmu_lock);
3119 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3120 }
3121 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3122 } else
3123 BUG();
3124
3125 return 0;
3126 }
3127
3128 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3129 {
3130 struct kvm_mmu_page *sp;
3131 u64 pdptr, pm_mask;
3132 gfn_t root_gfn;
3133 int i;
3134
3135 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3136
3137 if (mmu_check_root(vcpu, root_gfn))
3138 return 1;
3139
3140 /*
3141 * Do we shadow a long mode page table? If so we need to
3142 * write-protect the guests page table root.
3143 */
3144 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3145 hpa_t root = vcpu->arch.mmu.root_hpa;
3146
3147 MMU_WARN_ON(VALID_PAGE(root));
3148
3149 spin_lock(&vcpu->kvm->mmu_lock);
3150 make_mmu_pages_available(vcpu);
3151 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3152 0, ACC_ALL, NULL);
3153 root = __pa(sp->spt);
3154 ++sp->root_count;
3155 spin_unlock(&vcpu->kvm->mmu_lock);
3156 vcpu->arch.mmu.root_hpa = root;
3157 return 0;
3158 }
3159
3160 /*
3161 * We shadow a 32 bit page table. This may be a legacy 2-level
3162 * or a PAE 3-level page table. In either case we need to be aware that
3163 * the shadow page table may be a PAE or a long mode page table.
3164 */
3165 pm_mask = PT_PRESENT_MASK;
3166 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3167 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3168
3169 for (i = 0; i < 4; ++i) {
3170 hpa_t root = vcpu->arch.mmu.pae_root[i];
3171
3172 MMU_WARN_ON(VALID_PAGE(root));
3173 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3174 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3175 if (!is_present_gpte(pdptr)) {
3176 vcpu->arch.mmu.pae_root[i] = 0;
3177 continue;
3178 }
3179 root_gfn = pdptr >> PAGE_SHIFT;
3180 if (mmu_check_root(vcpu, root_gfn))
3181 return 1;
3182 }
3183 spin_lock(&vcpu->kvm->mmu_lock);
3184 make_mmu_pages_available(vcpu);
3185 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3186 PT32_ROOT_LEVEL, 0,
3187 ACC_ALL, NULL);
3188 root = __pa(sp->spt);
3189 ++sp->root_count;
3190 spin_unlock(&vcpu->kvm->mmu_lock);
3191
3192 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3193 }
3194 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3195
3196 /*
3197 * If we shadow a 32 bit page table with a long mode page
3198 * table we enter this path.
3199 */
3200 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3201 if (vcpu->arch.mmu.lm_root == NULL) {
3202 /*
3203 * The additional page necessary for this is only
3204 * allocated on demand.
3205 */
3206
3207 u64 *lm_root;
3208
3209 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3210 if (lm_root == NULL)
3211 return 1;
3212
3213 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3214
3215 vcpu->arch.mmu.lm_root = lm_root;
3216 }
3217
3218 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3219 }
3220
3221 return 0;
3222 }
3223
3224 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3225 {
3226 if (vcpu->arch.mmu.direct_map)
3227 return mmu_alloc_direct_roots(vcpu);
3228 else
3229 return mmu_alloc_shadow_roots(vcpu);
3230 }
3231
3232 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3233 {
3234 int i;
3235 struct kvm_mmu_page *sp;
3236
3237 if (vcpu->arch.mmu.direct_map)
3238 return;
3239
3240 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3241 return;
3242
3243 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3244 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3245 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3246 hpa_t root = vcpu->arch.mmu.root_hpa;
3247 sp = page_header(root);
3248 mmu_sync_children(vcpu, sp);
3249 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3250 return;
3251 }
3252 for (i = 0; i < 4; ++i) {
3253 hpa_t root = vcpu->arch.mmu.pae_root[i];
3254
3255 if (root && VALID_PAGE(root)) {
3256 root &= PT64_BASE_ADDR_MASK;
3257 sp = page_header(root);
3258 mmu_sync_children(vcpu, sp);
3259 }
3260 }
3261 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3262 }
3263
3264 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3265 {
3266 spin_lock(&vcpu->kvm->mmu_lock);
3267 mmu_sync_roots(vcpu);
3268 spin_unlock(&vcpu->kvm->mmu_lock);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3271
3272 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3273 u32 access, struct x86_exception *exception)
3274 {
3275 if (exception)
3276 exception->error_code = 0;
3277 return vaddr;
3278 }
3279
3280 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3281 u32 access,
3282 struct x86_exception *exception)
3283 {
3284 if (exception)
3285 exception->error_code = 0;
3286 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3287 }
3288
3289 static bool
3290 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3291 {
3292 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3293
3294 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3295 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3296 }
3297
3298 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3299 {
3300 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3301 }
3302
3303 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3304 {
3305 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3306 }
3307
3308 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3309 {
3310 if (direct)
3311 return vcpu_match_mmio_gpa(vcpu, addr);
3312
3313 return vcpu_match_mmio_gva(vcpu, addr);
3314 }
3315
3316 /* return true if reserved bit is detected on spte. */
3317 static bool
3318 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3319 {
3320 struct kvm_shadow_walk_iterator iterator;
3321 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3322 int root, leaf;
3323 bool reserved = false;
3324
3325 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326 goto exit;
3327
3328 walk_shadow_page_lockless_begin(vcpu);
3329
3330 for (shadow_walk_init(&iterator, vcpu, addr),
3331 leaf = root = iterator.level;
3332 shadow_walk_okay(&iterator);
3333 __shadow_walk_next(&iterator, spte)) {
3334 spte = mmu_spte_get_lockless(iterator.sptep);
3335
3336 sptes[leaf - 1] = spte;
3337 leaf--;
3338
3339 if (!is_shadow_present_pte(spte))
3340 break;
3341
3342 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3343 iterator.level);
3344 }
3345
3346 walk_shadow_page_lockless_end(vcpu);
3347
3348 if (reserved) {
3349 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3350 __func__, addr);
3351 while (root > leaf) {
3352 pr_err("------ spte 0x%llx level %d.\n",
3353 sptes[root - 1], root);
3354 root--;
3355 }
3356 }
3357 exit:
3358 *sptep = spte;
3359 return reserved;
3360 }
3361
3362 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3363 {
3364 u64 spte;
3365 bool reserved;
3366
3367 if (quickly_check_mmio_pf(vcpu, addr, direct))
3368 return RET_MMIO_PF_EMULATE;
3369
3370 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3371 if (WARN_ON(reserved))
3372 return RET_MMIO_PF_BUG;
3373
3374 if (is_mmio_spte(spte)) {
3375 gfn_t gfn = get_mmio_spte_gfn(spte);
3376 unsigned access = get_mmio_spte_access(spte);
3377
3378 if (!check_mmio_spte(vcpu, spte))
3379 return RET_MMIO_PF_INVALID;
3380
3381 if (direct)
3382 addr = 0;
3383
3384 trace_handle_mmio_page_fault(addr, gfn, access);
3385 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3386 return RET_MMIO_PF_EMULATE;
3387 }
3388
3389 /*
3390 * If the page table is zapped by other cpus, let CPU fault again on
3391 * the address.
3392 */
3393 return RET_MMIO_PF_RETRY;
3394 }
3395 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3396
3397 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3398 u32 error_code, bool prefault)
3399 {
3400 gfn_t gfn;
3401 int r;
3402
3403 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3404
3405 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3406 r = handle_mmio_page_fault(vcpu, gva, true);
3407
3408 if (likely(r != RET_MMIO_PF_INVALID))
3409 return r;
3410 }
3411
3412 r = mmu_topup_memory_caches(vcpu);
3413 if (r)
3414 return r;
3415
3416 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3417
3418 gfn = gva >> PAGE_SHIFT;
3419
3420 return nonpaging_map(vcpu, gva & PAGE_MASK,
3421 error_code, gfn, prefault);
3422 }
3423
3424 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3425 {
3426 struct kvm_arch_async_pf arch;
3427
3428 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3429 arch.gfn = gfn;
3430 arch.direct_map = vcpu->arch.mmu.direct_map;
3431 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3432
3433 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3434 }
3435
3436 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3437 {
3438 if (unlikely(!lapic_in_kernel(vcpu) ||
3439 kvm_event_needs_reinjection(vcpu)))
3440 return false;
3441
3442 return kvm_x86_ops->interrupt_allowed(vcpu);
3443 }
3444
3445 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3446 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3447 {
3448 struct kvm_memory_slot *slot;
3449 bool async;
3450
3451 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3452 async = false;
3453 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3454 if (!async)
3455 return false; /* *pfn has correct page already */
3456
3457 if (!prefault && can_do_async_pf(vcpu)) {
3458 trace_kvm_try_async_get_page(gva, gfn);
3459 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3460 trace_kvm_async_pf_doublefault(gva, gfn);
3461 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3462 return true;
3463 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3464 return true;
3465 }
3466
3467 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3468 return false;
3469 }
3470
3471 static bool
3472 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3473 {
3474 int page_num = KVM_PAGES_PER_HPAGE(level);
3475
3476 gfn &= ~(page_num - 1);
3477
3478 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3479 }
3480
3481 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3482 bool prefault)
3483 {
3484 pfn_t pfn;
3485 int r;
3486 int level;
3487 bool force_pt_level;
3488 gfn_t gfn = gpa >> PAGE_SHIFT;
3489 unsigned long mmu_seq;
3490 int write = error_code & PFERR_WRITE_MASK;
3491 bool map_writable;
3492
3493 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3494
3495 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3496 r = handle_mmio_page_fault(vcpu, gpa, true);
3497
3498 if (likely(r != RET_MMIO_PF_INVALID))
3499 return r;
3500 }
3501
3502 r = mmu_topup_memory_caches(vcpu);
3503 if (r)
3504 return r;
3505
3506 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3507 PT_DIRECTORY_LEVEL);
3508 level = mapping_level(vcpu, gfn, &force_pt_level);
3509 if (likely(!force_pt_level)) {
3510 if (level > PT_DIRECTORY_LEVEL &&
3511 !check_hugepage_cache_consistency(vcpu, gfn, level))
3512 level = PT_DIRECTORY_LEVEL;
3513 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3514 }
3515
3516 if (fast_page_fault(vcpu, gpa, level, error_code))
3517 return 0;
3518
3519 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3520 smp_rmb();
3521
3522 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3523 return 0;
3524
3525 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3526 return r;
3527
3528 spin_lock(&vcpu->kvm->mmu_lock);
3529 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3530 goto out_unlock;
3531 make_mmu_pages_available(vcpu);
3532 if (likely(!force_pt_level))
3533 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3534 r = __direct_map(vcpu, gpa, write, map_writable,
3535 level, gfn, pfn, prefault);
3536 spin_unlock(&vcpu->kvm->mmu_lock);
3537
3538 return r;
3539
3540 out_unlock:
3541 spin_unlock(&vcpu->kvm->mmu_lock);
3542 kvm_release_pfn_clean(pfn);
3543 return 0;
3544 }
3545
3546 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3547 struct kvm_mmu *context)
3548 {
3549 context->page_fault = nonpaging_page_fault;
3550 context->gva_to_gpa = nonpaging_gva_to_gpa;
3551 context->sync_page = nonpaging_sync_page;
3552 context->invlpg = nonpaging_invlpg;
3553 context->update_pte = nonpaging_update_pte;
3554 context->root_level = 0;
3555 context->shadow_root_level = PT32E_ROOT_LEVEL;
3556 context->root_hpa = INVALID_PAGE;
3557 context->direct_map = true;
3558 context->nx = false;
3559 }
3560
3561 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3562 {
3563 mmu_free_roots(vcpu);
3564 }
3565
3566 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3567 {
3568 return kvm_read_cr3(vcpu);
3569 }
3570
3571 static void inject_page_fault(struct kvm_vcpu *vcpu,
3572 struct x86_exception *fault)
3573 {
3574 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3575 }
3576
3577 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3578 unsigned access, int *nr_present)
3579 {
3580 if (unlikely(is_mmio_spte(*sptep))) {
3581 if (gfn != get_mmio_spte_gfn(*sptep)) {
3582 mmu_spte_clear_no_track(sptep);
3583 return true;
3584 }
3585
3586 (*nr_present)++;
3587 mark_mmio_spte(vcpu, sptep, gfn, access);
3588 return true;
3589 }
3590
3591 return false;
3592 }
3593
3594 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3595 {
3596 unsigned index;
3597
3598 index = level - 1;
3599 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3600 return mmu->last_pte_bitmap & (1 << index);
3601 }
3602
3603 #define PTTYPE_EPT 18 /* arbitrary */
3604 #define PTTYPE PTTYPE_EPT
3605 #include "paging_tmpl.h"
3606 #undef PTTYPE
3607
3608 #define PTTYPE 64
3609 #include "paging_tmpl.h"
3610 #undef PTTYPE
3611
3612 #define PTTYPE 32
3613 #include "paging_tmpl.h"
3614 #undef PTTYPE
3615
3616 static void
3617 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3618 struct rsvd_bits_validate *rsvd_check,
3619 int maxphyaddr, int level, bool nx, bool gbpages,
3620 bool pse, bool amd)
3621 {
3622 u64 exb_bit_rsvd = 0;
3623 u64 gbpages_bit_rsvd = 0;
3624 u64 nonleaf_bit8_rsvd = 0;
3625
3626 rsvd_check->bad_mt_xwr = 0;
3627
3628 if (!nx)
3629 exb_bit_rsvd = rsvd_bits(63, 63);
3630 if (!gbpages)
3631 gbpages_bit_rsvd = rsvd_bits(7, 7);
3632
3633 /*
3634 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3635 * leaf entries) on AMD CPUs only.
3636 */
3637 if (amd)
3638 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3639
3640 switch (level) {
3641 case PT32_ROOT_LEVEL:
3642 /* no rsvd bits for 2 level 4K page table entries */
3643 rsvd_check->rsvd_bits_mask[0][1] = 0;
3644 rsvd_check->rsvd_bits_mask[0][0] = 0;
3645 rsvd_check->rsvd_bits_mask[1][0] =
3646 rsvd_check->rsvd_bits_mask[0][0];
3647
3648 if (!pse) {
3649 rsvd_check->rsvd_bits_mask[1][1] = 0;
3650 break;
3651 }
3652
3653 if (is_cpuid_PSE36())
3654 /* 36bits PSE 4MB page */
3655 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3656 else
3657 /* 32 bits PSE 4MB page */
3658 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3659 break;
3660 case PT32E_ROOT_LEVEL:
3661 rsvd_check->rsvd_bits_mask[0][2] =
3662 rsvd_bits(maxphyaddr, 63) |
3663 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3664 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3665 rsvd_bits(maxphyaddr, 62); /* PDE */
3666 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3667 rsvd_bits(maxphyaddr, 62); /* PTE */
3668 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3669 rsvd_bits(maxphyaddr, 62) |
3670 rsvd_bits(13, 20); /* large page */
3671 rsvd_check->rsvd_bits_mask[1][0] =
3672 rsvd_check->rsvd_bits_mask[0][0];
3673 break;
3674 case PT64_ROOT_LEVEL:
3675 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3676 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3677 rsvd_bits(maxphyaddr, 51);
3678 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3679 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3680 rsvd_bits(maxphyaddr, 51);
3681 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3682 rsvd_bits(maxphyaddr, 51);
3683 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3684 rsvd_bits(maxphyaddr, 51);
3685 rsvd_check->rsvd_bits_mask[1][3] =
3686 rsvd_check->rsvd_bits_mask[0][3];
3687 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3688 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3689 rsvd_bits(13, 29);
3690 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3691 rsvd_bits(maxphyaddr, 51) |
3692 rsvd_bits(13, 20); /* large page */
3693 rsvd_check->rsvd_bits_mask[1][0] =
3694 rsvd_check->rsvd_bits_mask[0][0];
3695 break;
3696 }
3697 }
3698
3699 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3700 struct kvm_mmu *context)
3701 {
3702 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3703 cpuid_maxphyaddr(vcpu), context->root_level,
3704 context->nx, guest_cpuid_has_gbpages(vcpu),
3705 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3706 }
3707
3708 static void
3709 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3710 int maxphyaddr, bool execonly)
3711 {
3712 u64 bad_mt_xwr;
3713
3714 rsvd_check->rsvd_bits_mask[0][3] =
3715 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3716 rsvd_check->rsvd_bits_mask[0][2] =
3717 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3718 rsvd_check->rsvd_bits_mask[0][1] =
3719 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3720 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3721
3722 /* large page */
3723 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3724 rsvd_check->rsvd_bits_mask[1][2] =
3725 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3726 rsvd_check->rsvd_bits_mask[1][1] =
3727 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3728 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3729
3730 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3731 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3732 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3733 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3734 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3735 if (!execonly) {
3736 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3737 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3738 }
3739 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3740 }
3741
3742 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3743 struct kvm_mmu *context, bool execonly)
3744 {
3745 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3746 cpuid_maxphyaddr(vcpu), execonly);
3747 }
3748
3749 /*
3750 * the page table on host is the shadow page table for the page
3751 * table in guest or amd nested guest, its mmu features completely
3752 * follow the features in guest.
3753 */
3754 void
3755 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3756 {
3757 /*
3758 * Passing "true" to the last argument is okay; it adds a check
3759 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3760 */
3761 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3762 boot_cpu_data.x86_phys_bits,
3763 context->shadow_root_level, context->nx,
3764 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3765 true);
3766 }
3767 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3768
3769 static inline bool boot_cpu_is_amd(void)
3770 {
3771 WARN_ON_ONCE(!tdp_enabled);
3772 return shadow_x_mask == 0;
3773 }
3774
3775 /*
3776 * the direct page table on host, use as much mmu features as
3777 * possible, however, kvm currently does not do execution-protection.
3778 */
3779 static void
3780 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3781 struct kvm_mmu *context)
3782 {
3783 if (boot_cpu_is_amd())
3784 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3785 boot_cpu_data.x86_phys_bits,
3786 context->shadow_root_level, false,
3787 cpu_has_gbpages, true, true);
3788 else
3789 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3790 boot_cpu_data.x86_phys_bits,
3791 false);
3792
3793 }
3794
3795 /*
3796 * as the comments in reset_shadow_zero_bits_mask() except it
3797 * is the shadow page table for intel nested guest.
3798 */
3799 static void
3800 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3801 struct kvm_mmu *context, bool execonly)
3802 {
3803 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3804 boot_cpu_data.x86_phys_bits, execonly);
3805 }
3806
3807 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3808 struct kvm_mmu *mmu, bool ept)
3809 {
3810 unsigned bit, byte, pfec;
3811 u8 map;
3812 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3813
3814 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3815 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3816 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3817 pfec = byte << 1;
3818 map = 0;
3819 wf = pfec & PFERR_WRITE_MASK;
3820 uf = pfec & PFERR_USER_MASK;
3821 ff = pfec & PFERR_FETCH_MASK;
3822 /*
3823 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3824 * subject to SMAP restrictions, and cleared otherwise. The
3825 * bit is only meaningful if the SMAP bit is set in CR4.
3826 */
3827 smapf = !(pfec & PFERR_RSVD_MASK);
3828 for (bit = 0; bit < 8; ++bit) {
3829 x = bit & ACC_EXEC_MASK;
3830 w = bit & ACC_WRITE_MASK;
3831 u = bit & ACC_USER_MASK;
3832
3833 if (!ept) {
3834 /* Not really needed: !nx will cause pte.nx to fault */
3835 x |= !mmu->nx;
3836 /* Allow supervisor writes if !cr0.wp */
3837 w |= !is_write_protection(vcpu) && !uf;
3838 /* Disallow supervisor fetches of user code if cr4.smep */
3839 x &= !(cr4_smep && u && !uf);
3840
3841 /*
3842 * SMAP:kernel-mode data accesses from user-mode
3843 * mappings should fault. A fault is considered
3844 * as a SMAP violation if all of the following
3845 * conditions are ture:
3846 * - X86_CR4_SMAP is set in CR4
3847 * - An user page is accessed
3848 * - Page fault in kernel mode
3849 * - if CPL = 3 or X86_EFLAGS_AC is clear
3850 *
3851 * Here, we cover the first three conditions.
3852 * The fourth is computed dynamically in
3853 * permission_fault() and is in smapf.
3854 *
3855 * Also, SMAP does not affect instruction
3856 * fetches, add the !ff check here to make it
3857 * clearer.
3858 */
3859 smap = cr4_smap && u && !uf && !ff;
3860 } else
3861 /* Not really needed: no U/S accesses on ept */
3862 u = 1;
3863
3864 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3865 (smapf && smap);
3866 map |= fault << bit;
3867 }
3868 mmu->permissions[byte] = map;
3869 }
3870 }
3871
3872 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3873 {
3874 u8 map;
3875 unsigned level, root_level = mmu->root_level;
3876 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3877
3878 if (root_level == PT32E_ROOT_LEVEL)
3879 --root_level;
3880 /* PT_PAGE_TABLE_LEVEL always terminates */
3881 map = 1 | (1 << ps_set_index);
3882 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3883 if (level <= PT_PDPE_LEVEL
3884 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3885 map |= 1 << (ps_set_index | (level - 1));
3886 }
3887 mmu->last_pte_bitmap = map;
3888 }
3889
3890 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3891 struct kvm_mmu *context,
3892 int level)
3893 {
3894 context->nx = is_nx(vcpu);
3895 context->root_level = level;
3896
3897 reset_rsvds_bits_mask(vcpu, context);
3898 update_permission_bitmask(vcpu, context, false);
3899 update_last_pte_bitmap(vcpu, context);
3900
3901 MMU_WARN_ON(!is_pae(vcpu));
3902 context->page_fault = paging64_page_fault;
3903 context->gva_to_gpa = paging64_gva_to_gpa;
3904 context->sync_page = paging64_sync_page;
3905 context->invlpg = paging64_invlpg;
3906 context->update_pte = paging64_update_pte;
3907 context->shadow_root_level = level;
3908 context->root_hpa = INVALID_PAGE;
3909 context->direct_map = false;
3910 }
3911
3912 static void paging64_init_context(struct kvm_vcpu *vcpu,
3913 struct kvm_mmu *context)
3914 {
3915 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3916 }
3917
3918 static void paging32_init_context(struct kvm_vcpu *vcpu,
3919 struct kvm_mmu *context)
3920 {
3921 context->nx = false;
3922 context->root_level = PT32_ROOT_LEVEL;
3923
3924 reset_rsvds_bits_mask(vcpu, context);
3925 update_permission_bitmask(vcpu, context, false);
3926 update_last_pte_bitmap(vcpu, context);
3927
3928 context->page_fault = paging32_page_fault;
3929 context->gva_to_gpa = paging32_gva_to_gpa;
3930 context->sync_page = paging32_sync_page;
3931 context->invlpg = paging32_invlpg;
3932 context->update_pte = paging32_update_pte;
3933 context->shadow_root_level = PT32E_ROOT_LEVEL;
3934 context->root_hpa = INVALID_PAGE;
3935 context->direct_map = false;
3936 }
3937
3938 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3939 struct kvm_mmu *context)
3940 {
3941 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3942 }
3943
3944 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3945 {
3946 struct kvm_mmu *context = &vcpu->arch.mmu;
3947
3948 context->base_role.word = 0;
3949 context->base_role.smm = is_smm(vcpu);
3950 context->page_fault = tdp_page_fault;
3951 context->sync_page = nonpaging_sync_page;
3952 context->invlpg = nonpaging_invlpg;
3953 context->update_pte = nonpaging_update_pte;
3954 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3955 context->root_hpa = INVALID_PAGE;
3956 context->direct_map = true;
3957 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3958 context->get_cr3 = get_cr3;
3959 context->get_pdptr = kvm_pdptr_read;
3960 context->inject_page_fault = kvm_inject_page_fault;
3961
3962 if (!is_paging(vcpu)) {
3963 context->nx = false;
3964 context->gva_to_gpa = nonpaging_gva_to_gpa;
3965 context->root_level = 0;
3966 } else if (is_long_mode(vcpu)) {
3967 context->nx = is_nx(vcpu);
3968 context->root_level = PT64_ROOT_LEVEL;
3969 reset_rsvds_bits_mask(vcpu, context);
3970 context->gva_to_gpa = paging64_gva_to_gpa;
3971 } else if (is_pae(vcpu)) {
3972 context->nx = is_nx(vcpu);
3973 context->root_level = PT32E_ROOT_LEVEL;
3974 reset_rsvds_bits_mask(vcpu, context);
3975 context->gva_to_gpa = paging64_gva_to_gpa;
3976 } else {
3977 context->nx = false;
3978 context->root_level = PT32_ROOT_LEVEL;
3979 reset_rsvds_bits_mask(vcpu, context);
3980 context->gva_to_gpa = paging32_gva_to_gpa;
3981 }
3982
3983 update_permission_bitmask(vcpu, context, false);
3984 update_last_pte_bitmap(vcpu, context);
3985 reset_tdp_shadow_zero_bits_mask(vcpu, context);
3986 }
3987
3988 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3989 {
3990 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3991 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3992 struct kvm_mmu *context = &vcpu->arch.mmu;
3993
3994 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3995
3996 if (!is_paging(vcpu))
3997 nonpaging_init_context(vcpu, context);
3998 else if (is_long_mode(vcpu))
3999 paging64_init_context(vcpu, context);
4000 else if (is_pae(vcpu))
4001 paging32E_init_context(vcpu, context);
4002 else
4003 paging32_init_context(vcpu, context);
4004
4005 context->base_role.nxe = is_nx(vcpu);
4006 context->base_role.cr4_pae = !!is_pae(vcpu);
4007 context->base_role.cr0_wp = is_write_protection(vcpu);
4008 context->base_role.smep_andnot_wp
4009 = smep && !is_write_protection(vcpu);
4010 context->base_role.smap_andnot_wp
4011 = smap && !is_write_protection(vcpu);
4012 context->base_role.smm = is_smm(vcpu);
4013 reset_shadow_zero_bits_mask(vcpu, context);
4014 }
4015 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4016
4017 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4018 {
4019 struct kvm_mmu *context = &vcpu->arch.mmu;
4020
4021 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4022
4023 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4024
4025 context->nx = true;
4026 context->page_fault = ept_page_fault;
4027 context->gva_to_gpa = ept_gva_to_gpa;
4028 context->sync_page = ept_sync_page;
4029 context->invlpg = ept_invlpg;
4030 context->update_pte = ept_update_pte;
4031 context->root_level = context->shadow_root_level;
4032 context->root_hpa = INVALID_PAGE;
4033 context->direct_map = false;
4034
4035 update_permission_bitmask(vcpu, context, true);
4036 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4037 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4038 }
4039 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4040
4041 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4042 {
4043 struct kvm_mmu *context = &vcpu->arch.mmu;
4044
4045 kvm_init_shadow_mmu(vcpu);
4046 context->set_cr3 = kvm_x86_ops->set_cr3;
4047 context->get_cr3 = get_cr3;
4048 context->get_pdptr = kvm_pdptr_read;
4049 context->inject_page_fault = kvm_inject_page_fault;
4050 }
4051
4052 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4053 {
4054 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4055
4056 g_context->get_cr3 = get_cr3;
4057 g_context->get_pdptr = kvm_pdptr_read;
4058 g_context->inject_page_fault = kvm_inject_page_fault;
4059
4060 /*
4061 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4062 * translation of l2_gpa to l1_gpa addresses is done using the
4063 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4064 * functions between mmu and nested_mmu are swapped.
4065 */
4066 if (!is_paging(vcpu)) {
4067 g_context->nx = false;
4068 g_context->root_level = 0;
4069 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4070 } else if (is_long_mode(vcpu)) {
4071 g_context->nx = is_nx(vcpu);
4072 g_context->root_level = PT64_ROOT_LEVEL;
4073 reset_rsvds_bits_mask(vcpu, g_context);
4074 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4075 } else if (is_pae(vcpu)) {
4076 g_context->nx = is_nx(vcpu);
4077 g_context->root_level = PT32E_ROOT_LEVEL;
4078 reset_rsvds_bits_mask(vcpu, g_context);
4079 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4080 } else {
4081 g_context->nx = false;
4082 g_context->root_level = PT32_ROOT_LEVEL;
4083 reset_rsvds_bits_mask(vcpu, g_context);
4084 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4085 }
4086
4087 update_permission_bitmask(vcpu, g_context, false);
4088 update_last_pte_bitmap(vcpu, g_context);
4089 }
4090
4091 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4092 {
4093 if (mmu_is_nested(vcpu))
4094 init_kvm_nested_mmu(vcpu);
4095 else if (tdp_enabled)
4096 init_kvm_tdp_mmu(vcpu);
4097 else
4098 init_kvm_softmmu(vcpu);
4099 }
4100
4101 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4102 {
4103 kvm_mmu_unload(vcpu);
4104 init_kvm_mmu(vcpu);
4105 }
4106 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4107
4108 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4109 {
4110 int r;
4111
4112 r = mmu_topup_memory_caches(vcpu);
4113 if (r)
4114 goto out;
4115 r = mmu_alloc_roots(vcpu);
4116 kvm_mmu_sync_roots(vcpu);
4117 if (r)
4118 goto out;
4119 /* set_cr3() should ensure TLB has been flushed */
4120 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4121 out:
4122 return r;
4123 }
4124 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4125
4126 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4127 {
4128 mmu_free_roots(vcpu);
4129 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4130 }
4131 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4132
4133 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4134 struct kvm_mmu_page *sp, u64 *spte,
4135 const void *new)
4136 {
4137 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4138 ++vcpu->kvm->stat.mmu_pde_zapped;
4139 return;
4140 }
4141
4142 ++vcpu->kvm->stat.mmu_pte_updated;
4143 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4144 }
4145
4146 static bool need_remote_flush(u64 old, u64 new)
4147 {
4148 if (!is_shadow_present_pte(old))
4149 return false;
4150 if (!is_shadow_present_pte(new))
4151 return true;
4152 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4153 return true;
4154 old ^= shadow_nx_mask;
4155 new ^= shadow_nx_mask;
4156 return (old & ~new & PT64_PERM_MASK) != 0;
4157 }
4158
4159 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4160 bool remote_flush, bool local_flush)
4161 {
4162 if (zap_page)
4163 return;
4164
4165 if (remote_flush)
4166 kvm_flush_remote_tlbs(vcpu->kvm);
4167 else if (local_flush)
4168 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4169 }
4170
4171 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4172 const u8 *new, int *bytes)
4173 {
4174 u64 gentry;
4175 int r;
4176
4177 /*
4178 * Assume that the pte write on a page table of the same type
4179 * as the current vcpu paging mode since we update the sptes only
4180 * when they have the same mode.
4181 */
4182 if (is_pae(vcpu) && *bytes == 4) {
4183 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4184 *gpa &= ~(gpa_t)7;
4185 *bytes = 8;
4186 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4187 if (r)
4188 gentry = 0;
4189 new = (const u8 *)&gentry;
4190 }
4191
4192 switch (*bytes) {
4193 case 4:
4194 gentry = *(const u32 *)new;
4195 break;
4196 case 8:
4197 gentry = *(const u64 *)new;
4198 break;
4199 default:
4200 gentry = 0;
4201 break;
4202 }
4203
4204 return gentry;
4205 }
4206
4207 /*
4208 * If we're seeing too many writes to a page, it may no longer be a page table,
4209 * or we may be forking, in which case it is better to unmap the page.
4210 */
4211 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4212 {
4213 /*
4214 * Skip write-flooding detected for the sp whose level is 1, because
4215 * it can become unsync, then the guest page is not write-protected.
4216 */
4217 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4218 return false;
4219
4220 return ++sp->write_flooding_count >= 3;
4221 }
4222
4223 /*
4224 * Misaligned accesses are too much trouble to fix up; also, they usually
4225 * indicate a page is not used as a page table.
4226 */
4227 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4228 int bytes)
4229 {
4230 unsigned offset, pte_size, misaligned;
4231
4232 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4233 gpa, bytes, sp->role.word);
4234
4235 offset = offset_in_page(gpa);
4236 pte_size = sp->role.cr4_pae ? 8 : 4;
4237
4238 /*
4239 * Sometimes, the OS only writes the last one bytes to update status
4240 * bits, for example, in linux, andb instruction is used in clear_bit().
4241 */
4242 if (!(offset & (pte_size - 1)) && bytes == 1)
4243 return false;
4244
4245 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4246 misaligned |= bytes < 4;
4247
4248 return misaligned;
4249 }
4250
4251 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4252 {
4253 unsigned page_offset, quadrant;
4254 u64 *spte;
4255 int level;
4256
4257 page_offset = offset_in_page(gpa);
4258 level = sp->role.level;
4259 *nspte = 1;
4260 if (!sp->role.cr4_pae) {
4261 page_offset <<= 1; /* 32->64 */
4262 /*
4263 * A 32-bit pde maps 4MB while the shadow pdes map
4264 * only 2MB. So we need to double the offset again
4265 * and zap two pdes instead of one.
4266 */
4267 if (level == PT32_ROOT_LEVEL) {
4268 page_offset &= ~7; /* kill rounding error */
4269 page_offset <<= 1;
4270 *nspte = 2;
4271 }
4272 quadrant = page_offset >> PAGE_SHIFT;
4273 page_offset &= ~PAGE_MASK;
4274 if (quadrant != sp->role.quadrant)
4275 return NULL;
4276 }
4277
4278 spte = &sp->spt[page_offset / sizeof(*spte)];
4279 return spte;
4280 }
4281
4282 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4283 const u8 *new, int bytes)
4284 {
4285 gfn_t gfn = gpa >> PAGE_SHIFT;
4286 struct kvm_mmu_page *sp;
4287 LIST_HEAD(invalid_list);
4288 u64 entry, gentry, *spte;
4289 int npte;
4290 bool remote_flush, local_flush, zap_page;
4291 union kvm_mmu_page_role mask = { };
4292
4293 mask.cr0_wp = 1;
4294 mask.cr4_pae = 1;
4295 mask.nxe = 1;
4296 mask.smep_andnot_wp = 1;
4297 mask.smap_andnot_wp = 1;
4298 mask.smm = 1;
4299
4300 /*
4301 * If we don't have indirect shadow pages, it means no page is
4302 * write-protected, so we can exit simply.
4303 */
4304 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4305 return;
4306
4307 zap_page = remote_flush = local_flush = false;
4308
4309 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4310
4311 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4312
4313 /*
4314 * No need to care whether allocation memory is successful
4315 * or not since pte prefetch is skiped if it does not have
4316 * enough objects in the cache.
4317 */
4318 mmu_topup_memory_caches(vcpu);
4319
4320 spin_lock(&vcpu->kvm->mmu_lock);
4321 ++vcpu->kvm->stat.mmu_pte_write;
4322 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4323
4324 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4325 if (detect_write_misaligned(sp, gpa, bytes) ||
4326 detect_write_flooding(sp)) {
4327 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4328 &invalid_list);
4329 ++vcpu->kvm->stat.mmu_flooded;
4330 continue;
4331 }
4332
4333 spte = get_written_sptes(sp, gpa, &npte);
4334 if (!spte)
4335 continue;
4336
4337 local_flush = true;
4338 while (npte--) {
4339 entry = *spte;
4340 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4341 if (gentry &&
4342 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4343 & mask.word) && rmap_can_add(vcpu))
4344 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4345 if (need_remote_flush(entry, *spte))
4346 remote_flush = true;
4347 ++spte;
4348 }
4349 }
4350 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4351 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4352 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4353 spin_unlock(&vcpu->kvm->mmu_lock);
4354 }
4355
4356 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4357 {
4358 gpa_t gpa;
4359 int r;
4360
4361 if (vcpu->arch.mmu.direct_map)
4362 return 0;
4363
4364 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4365
4366 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4367
4368 return r;
4369 }
4370 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4371
4372 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4373 {
4374 LIST_HEAD(invalid_list);
4375
4376 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4377 return;
4378
4379 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4380 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4381 break;
4382
4383 ++vcpu->kvm->stat.mmu_recycled;
4384 }
4385 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4386 }
4387
4388 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4389 {
4390 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4391 return vcpu_match_mmio_gpa(vcpu, addr);
4392
4393 return vcpu_match_mmio_gva(vcpu, addr);
4394 }
4395
4396 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4397 void *insn, int insn_len)
4398 {
4399 int r, emulation_type = EMULTYPE_RETRY;
4400 enum emulation_result er;
4401
4402 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4403 if (r < 0)
4404 goto out;
4405
4406 if (!r) {
4407 r = 1;
4408 goto out;
4409 }
4410
4411 if (is_mmio_page_fault(vcpu, cr2))
4412 emulation_type = 0;
4413
4414 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4415
4416 switch (er) {
4417 case EMULATE_DONE:
4418 return 1;
4419 case EMULATE_USER_EXIT:
4420 ++vcpu->stat.mmio_exits;
4421 /* fall through */
4422 case EMULATE_FAIL:
4423 return 0;
4424 default:
4425 BUG();
4426 }
4427 out:
4428 return r;
4429 }
4430 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4431
4432 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4433 {
4434 vcpu->arch.mmu.invlpg(vcpu, gva);
4435 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4436 ++vcpu->stat.invlpg;
4437 }
4438 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4439
4440 void kvm_enable_tdp(void)
4441 {
4442 tdp_enabled = true;
4443 }
4444 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4445
4446 void kvm_disable_tdp(void)
4447 {
4448 tdp_enabled = false;
4449 }
4450 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4451
4452 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4453 {
4454 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4455 if (vcpu->arch.mmu.lm_root != NULL)
4456 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4457 }
4458
4459 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4460 {
4461 struct page *page;
4462 int i;
4463
4464 /*
4465 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4466 * Therefore we need to allocate shadow page tables in the first
4467 * 4GB of memory, which happens to fit the DMA32 zone.
4468 */
4469 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4470 if (!page)
4471 return -ENOMEM;
4472
4473 vcpu->arch.mmu.pae_root = page_address(page);
4474 for (i = 0; i < 4; ++i)
4475 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4476
4477 return 0;
4478 }
4479
4480 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4481 {
4482 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4483 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4484 vcpu->arch.mmu.translate_gpa = translate_gpa;
4485 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4486
4487 return alloc_mmu_pages(vcpu);
4488 }
4489
4490 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4491 {
4492 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4493
4494 init_kvm_mmu(vcpu);
4495 }
4496
4497 /* The return value indicates if tlb flush on all vcpus is needed. */
4498 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4499
4500 /* The caller should hold mmu-lock before calling this function. */
4501 static bool
4502 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4503 slot_level_handler fn, int start_level, int end_level,
4504 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4505 {
4506 struct slot_rmap_walk_iterator iterator;
4507 bool flush = false;
4508
4509 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4510 end_gfn, &iterator) {
4511 if (iterator.rmap)
4512 flush |= fn(kvm, iterator.rmap);
4513
4514 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4515 if (flush && lock_flush_tlb) {
4516 kvm_flush_remote_tlbs(kvm);
4517 flush = false;
4518 }
4519 cond_resched_lock(&kvm->mmu_lock);
4520 }
4521 }
4522
4523 if (flush && lock_flush_tlb) {
4524 kvm_flush_remote_tlbs(kvm);
4525 flush = false;
4526 }
4527
4528 return flush;
4529 }
4530
4531 static bool
4532 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4533 slot_level_handler fn, int start_level, int end_level,
4534 bool lock_flush_tlb)
4535 {
4536 return slot_handle_level_range(kvm, memslot, fn, start_level,
4537 end_level, memslot->base_gfn,
4538 memslot->base_gfn + memslot->npages - 1,
4539 lock_flush_tlb);
4540 }
4541
4542 static bool
4543 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4544 slot_level_handler fn, bool lock_flush_tlb)
4545 {
4546 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4547 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4548 }
4549
4550 static bool
4551 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4552 slot_level_handler fn, bool lock_flush_tlb)
4553 {
4554 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4555 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4556 }
4557
4558 static bool
4559 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4560 slot_level_handler fn, bool lock_flush_tlb)
4561 {
4562 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4563 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4564 }
4565
4566 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4567 {
4568 struct kvm_memslots *slots;
4569 struct kvm_memory_slot *memslot;
4570 int i;
4571
4572 spin_lock(&kvm->mmu_lock);
4573 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4574 slots = __kvm_memslots(kvm, i);
4575 kvm_for_each_memslot(memslot, slots) {
4576 gfn_t start, end;
4577
4578 start = max(gfn_start, memslot->base_gfn);
4579 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4580 if (start >= end)
4581 continue;
4582
4583 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4584 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4585 start, end - 1, true);
4586 }
4587 }
4588
4589 spin_unlock(&kvm->mmu_lock);
4590 }
4591
4592 static bool slot_rmap_write_protect(struct kvm *kvm,
4593 struct kvm_rmap_head *rmap_head)
4594 {
4595 return __rmap_write_protect(kvm, rmap_head, false);
4596 }
4597
4598 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4599 struct kvm_memory_slot *memslot)
4600 {
4601 bool flush;
4602
4603 spin_lock(&kvm->mmu_lock);
4604 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4605 false);
4606 spin_unlock(&kvm->mmu_lock);
4607
4608 /*
4609 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4610 * which do tlb flush out of mmu-lock should be serialized by
4611 * kvm->slots_lock otherwise tlb flush would be missed.
4612 */
4613 lockdep_assert_held(&kvm->slots_lock);
4614
4615 /*
4616 * We can flush all the TLBs out of the mmu lock without TLB
4617 * corruption since we just change the spte from writable to
4618 * readonly so that we only need to care the case of changing
4619 * spte from present to present (changing the spte from present
4620 * to nonpresent will flush all the TLBs immediately), in other
4621 * words, the only case we care is mmu_spte_update() where we
4622 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4623 * instead of PT_WRITABLE_MASK, that means it does not depend
4624 * on PT_WRITABLE_MASK anymore.
4625 */
4626 if (flush)
4627 kvm_flush_remote_tlbs(kvm);
4628 }
4629
4630 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4631 struct kvm_rmap_head *rmap_head)
4632 {
4633 u64 *sptep;
4634 struct rmap_iterator iter;
4635 int need_tlb_flush = 0;
4636 pfn_t pfn;
4637 struct kvm_mmu_page *sp;
4638
4639 restart:
4640 for_each_rmap_spte(rmap_head, &iter, sptep) {
4641 sp = page_header(__pa(sptep));
4642 pfn = spte_to_pfn(*sptep);
4643
4644 /*
4645 * We cannot do huge page mapping for indirect shadow pages,
4646 * which are found on the last rmap (level = 1) when not using
4647 * tdp; such shadow pages are synced with the page table in
4648 * the guest, and the guest page table is using 4K page size
4649 * mapping if the indirect sp has level = 1.
4650 */
4651 if (sp->role.direct &&
4652 !kvm_is_reserved_pfn(pfn) &&
4653 PageTransCompound(pfn_to_page(pfn))) {
4654 drop_spte(kvm, sptep);
4655 need_tlb_flush = 1;
4656 goto restart;
4657 }
4658 }
4659
4660 return need_tlb_flush;
4661 }
4662
4663 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4664 const struct kvm_memory_slot *memslot)
4665 {
4666 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4667 spin_lock(&kvm->mmu_lock);
4668 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4669 kvm_mmu_zap_collapsible_spte, true);
4670 spin_unlock(&kvm->mmu_lock);
4671 }
4672
4673 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4674 struct kvm_memory_slot *memslot)
4675 {
4676 bool flush;
4677
4678 spin_lock(&kvm->mmu_lock);
4679 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4680 spin_unlock(&kvm->mmu_lock);
4681
4682 lockdep_assert_held(&kvm->slots_lock);
4683
4684 /*
4685 * It's also safe to flush TLBs out of mmu lock here as currently this
4686 * function is only used for dirty logging, in which case flushing TLB
4687 * out of mmu lock also guarantees no dirty pages will be lost in
4688 * dirty_bitmap.
4689 */
4690 if (flush)
4691 kvm_flush_remote_tlbs(kvm);
4692 }
4693 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4694
4695 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4696 struct kvm_memory_slot *memslot)
4697 {
4698 bool flush;
4699
4700 spin_lock(&kvm->mmu_lock);
4701 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4702 false);
4703 spin_unlock(&kvm->mmu_lock);
4704
4705 /* see kvm_mmu_slot_remove_write_access */
4706 lockdep_assert_held(&kvm->slots_lock);
4707
4708 if (flush)
4709 kvm_flush_remote_tlbs(kvm);
4710 }
4711 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4712
4713 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4714 struct kvm_memory_slot *memslot)
4715 {
4716 bool flush;
4717
4718 spin_lock(&kvm->mmu_lock);
4719 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4720 spin_unlock(&kvm->mmu_lock);
4721
4722 lockdep_assert_held(&kvm->slots_lock);
4723
4724 /* see kvm_mmu_slot_leaf_clear_dirty */
4725 if (flush)
4726 kvm_flush_remote_tlbs(kvm);
4727 }
4728 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4729
4730 #define BATCH_ZAP_PAGES 10
4731 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4732 {
4733 struct kvm_mmu_page *sp, *node;
4734 int batch = 0;
4735
4736 restart:
4737 list_for_each_entry_safe_reverse(sp, node,
4738 &kvm->arch.active_mmu_pages, link) {
4739 int ret;
4740
4741 /*
4742 * No obsolete page exists before new created page since
4743 * active_mmu_pages is the FIFO list.
4744 */
4745 if (!is_obsolete_sp(kvm, sp))
4746 break;
4747
4748 /*
4749 * Since we are reversely walking the list and the invalid
4750 * list will be moved to the head, skip the invalid page
4751 * can help us to avoid the infinity list walking.
4752 */
4753 if (sp->role.invalid)
4754 continue;
4755
4756 /*
4757 * Need not flush tlb since we only zap the sp with invalid
4758 * generation number.
4759 */
4760 if (batch >= BATCH_ZAP_PAGES &&
4761 cond_resched_lock(&kvm->mmu_lock)) {
4762 batch = 0;
4763 goto restart;
4764 }
4765
4766 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4767 &kvm->arch.zapped_obsolete_pages);
4768 batch += ret;
4769
4770 if (ret)
4771 goto restart;
4772 }
4773
4774 /*
4775 * Should flush tlb before free page tables since lockless-walking
4776 * may use the pages.
4777 */
4778 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4779 }
4780
4781 /*
4782 * Fast invalidate all shadow pages and use lock-break technique
4783 * to zap obsolete pages.
4784 *
4785 * It's required when memslot is being deleted or VM is being
4786 * destroyed, in these cases, we should ensure that KVM MMU does
4787 * not use any resource of the being-deleted slot or all slots
4788 * after calling the function.
4789 */
4790 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4791 {
4792 spin_lock(&kvm->mmu_lock);
4793 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4794 kvm->arch.mmu_valid_gen++;
4795
4796 /*
4797 * Notify all vcpus to reload its shadow page table
4798 * and flush TLB. Then all vcpus will switch to new
4799 * shadow page table with the new mmu_valid_gen.
4800 *
4801 * Note: we should do this under the protection of
4802 * mmu-lock, otherwise, vcpu would purge shadow page
4803 * but miss tlb flush.
4804 */
4805 kvm_reload_remote_mmus(kvm);
4806
4807 kvm_zap_obsolete_pages(kvm);
4808 spin_unlock(&kvm->mmu_lock);
4809 }
4810
4811 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4812 {
4813 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4814 }
4815
4816 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4817 {
4818 /*
4819 * The very rare case: if the generation-number is round,
4820 * zap all shadow pages.
4821 */
4822 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4823 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4824 kvm_mmu_invalidate_zap_all_pages(kvm);
4825 }
4826 }
4827
4828 static unsigned long
4829 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4830 {
4831 struct kvm *kvm;
4832 int nr_to_scan = sc->nr_to_scan;
4833 unsigned long freed = 0;
4834
4835 spin_lock(&kvm_lock);
4836
4837 list_for_each_entry(kvm, &vm_list, vm_list) {
4838 int idx;
4839 LIST_HEAD(invalid_list);
4840
4841 /*
4842 * Never scan more than sc->nr_to_scan VM instances.
4843 * Will not hit this condition practically since we do not try
4844 * to shrink more than one VM and it is very unlikely to see
4845 * !n_used_mmu_pages so many times.
4846 */
4847 if (!nr_to_scan--)
4848 break;
4849 /*
4850 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4851 * here. We may skip a VM instance errorneosly, but we do not
4852 * want to shrink a VM that only started to populate its MMU
4853 * anyway.
4854 */
4855 if (!kvm->arch.n_used_mmu_pages &&
4856 !kvm_has_zapped_obsolete_pages(kvm))
4857 continue;
4858
4859 idx = srcu_read_lock(&kvm->srcu);
4860 spin_lock(&kvm->mmu_lock);
4861
4862 if (kvm_has_zapped_obsolete_pages(kvm)) {
4863 kvm_mmu_commit_zap_page(kvm,
4864 &kvm->arch.zapped_obsolete_pages);
4865 goto unlock;
4866 }
4867
4868 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4869 freed++;
4870 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4871
4872 unlock:
4873 spin_unlock(&kvm->mmu_lock);
4874 srcu_read_unlock(&kvm->srcu, idx);
4875
4876 /*
4877 * unfair on small ones
4878 * per-vm shrinkers cry out
4879 * sadness comes quickly
4880 */
4881 list_move_tail(&kvm->vm_list, &vm_list);
4882 break;
4883 }
4884
4885 spin_unlock(&kvm_lock);
4886 return freed;
4887 }
4888
4889 static unsigned long
4890 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4891 {
4892 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4893 }
4894
4895 static struct shrinker mmu_shrinker = {
4896 .count_objects = mmu_shrink_count,
4897 .scan_objects = mmu_shrink_scan,
4898 .seeks = DEFAULT_SEEKS * 10,
4899 };
4900
4901 static void mmu_destroy_caches(void)
4902 {
4903 if (pte_list_desc_cache)
4904 kmem_cache_destroy(pte_list_desc_cache);
4905 if (mmu_page_header_cache)
4906 kmem_cache_destroy(mmu_page_header_cache);
4907 }
4908
4909 int kvm_mmu_module_init(void)
4910 {
4911 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4912 sizeof(struct pte_list_desc),
4913 0, 0, NULL);
4914 if (!pte_list_desc_cache)
4915 goto nomem;
4916
4917 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4918 sizeof(struct kvm_mmu_page),
4919 0, 0, NULL);
4920 if (!mmu_page_header_cache)
4921 goto nomem;
4922
4923 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4924 goto nomem;
4925
4926 register_shrinker(&mmu_shrinker);
4927
4928 return 0;
4929
4930 nomem:
4931 mmu_destroy_caches();
4932 return -ENOMEM;
4933 }
4934
4935 /*
4936 * Caculate mmu pages needed for kvm.
4937 */
4938 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4939 {
4940 unsigned int nr_mmu_pages;
4941 unsigned int nr_pages = 0;
4942 struct kvm_memslots *slots;
4943 struct kvm_memory_slot *memslot;
4944 int i;
4945
4946 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4947 slots = __kvm_memslots(kvm, i);
4948
4949 kvm_for_each_memslot(memslot, slots)
4950 nr_pages += memslot->npages;
4951 }
4952
4953 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4954 nr_mmu_pages = max(nr_mmu_pages,
4955 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4956
4957 return nr_mmu_pages;
4958 }
4959
4960 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4961 {
4962 kvm_mmu_unload(vcpu);
4963 free_mmu_pages(vcpu);
4964 mmu_free_memory_caches(vcpu);
4965 }
4966
4967 void kvm_mmu_module_exit(void)
4968 {
4969 mmu_destroy_caches();
4970 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4971 unregister_shrinker(&mmu_shrinker);
4972 mmu_audit_disable();
4973 }