]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40
41 #include <asm/page.h>
42 #include <asm/pat.h>
43 #include <asm/cmpxchg.h>
44 #include <asm/e820/api.h>
45 #include <asm/io.h>
46 #include <asm/vmx.h>
47 #include <asm/kvm_page_track.h>
48 #include "trace.h"
49
50 /*
51 * When setting this variable to true it enables Two-Dimensional-Paging
52 * where the hardware walks 2 page tables:
53 * 1. the guest-virtual to guest-physical
54 * 2. while doing 1. it walks guest-physical to host-physical
55 * If the hardware supports that we don't need to do shadow paging.
56 */
57 bool tdp_enabled = false;
58
59 enum {
60 AUDIT_PRE_PAGE_FAULT,
61 AUDIT_POST_PAGE_FAULT,
62 AUDIT_PRE_PTE_WRITE,
63 AUDIT_POST_PTE_WRITE,
64 AUDIT_PRE_SYNC,
65 AUDIT_POST_SYNC
66 };
67
68 #undef MMU_DEBUG
69
70 #ifdef MMU_DEBUG
71 static bool dbg = 0;
72 module_param(dbg, bool, 0644);
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76 #define MMU_WARN_ON(x) WARN_ON(x)
77 #else
78 #define pgprintk(x...) do { } while (0)
79 #define rmap_printk(x...) do { } while (0)
80 #define MMU_WARN_ON(x) do { } while (0)
81 #endif
82
83 #define PTE_PREFETCH_NUM 8
84
85 #define PT_FIRST_AVAIL_BITS_SHIFT 10
86 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
101
102 #define PT32_LVL_OFFSET_MASK(level) \
103 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104 * PT32_LEVEL_BITS))) - 1))
105
106 #define PT32_INDEX(address, level)\
107 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
110 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
111 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
112 #else
113 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
114 #endif
115 #define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118 #define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
121
122 #define PT32_BASE_ADDR_MASK PAGE_MASK
123 #define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
125 #define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
128
129 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
131
132 #define ACC_EXEC_MASK 1
133 #define ACC_WRITE_MASK PT_WRITABLE_MASK
134 #define ACC_USER_MASK PT_USER_MASK
135 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
137 /* The mask for the R/X bits in EPT PTEs */
138 #define PT64_EPT_READABLE_MASK 0x1ull
139 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
141 #include <trace/events/kvm.h>
142
143 #define CREATE_TRACE_POINTS
144 #include "mmutrace.h"
145
146 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
148
149 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
151 /* make pte_list_desc fit well in cache line */
152 #define PTE_LIST_EXT 3
153
154 /*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162 enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166 };
167
168 struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
171 };
172
173 struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
176 u64 *sptep;
177 int level;
178 unsigned index;
179 };
180
181 static const union kvm_mmu_page_role mmu_base_role_mask = {
182 .cr0_wp = 1,
183 .gpte_is_8_bytes = 1,
184 .nxe = 1,
185 .smep_andnot_wp = 1,
186 .smap_andnot_wp = 1,
187 .smm = 1,
188 .guest_mode = 1,
189 .ad_disabled = 1,
190 };
191
192 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
193 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
194 (_root), (_addr)); \
195 shadow_walk_okay(&(_walker)); \
196 shadow_walk_next(&(_walker)))
197
198 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
199 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
200 shadow_walk_okay(&(_walker)); \
201 shadow_walk_next(&(_walker)))
202
203 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
204 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
205 shadow_walk_okay(&(_walker)) && \
206 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
207 __shadow_walk_next(&(_walker), spte))
208
209 static struct kmem_cache *pte_list_desc_cache;
210 static struct kmem_cache *mmu_page_header_cache;
211 static struct percpu_counter kvm_total_used_mmu_pages;
212
213 static u64 __read_mostly shadow_nx_mask;
214 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215 static u64 __read_mostly shadow_user_mask;
216 static u64 __read_mostly shadow_accessed_mask;
217 static u64 __read_mostly shadow_dirty_mask;
218 static u64 __read_mostly shadow_mmio_mask;
219 static u64 __read_mostly shadow_mmio_value;
220 static u64 __read_mostly shadow_present_mask;
221 static u64 __read_mostly shadow_me_mask;
222
223 /*
224 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225 * Non-present SPTEs with shadow_acc_track_value set are in place for access
226 * tracking.
227 */
228 static u64 __read_mostly shadow_acc_track_mask;
229 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231 /*
232 * The mask/shift to use for saving the original R/X bits when marking the PTE
233 * as not-present for access tracking purposes. We do not save the W bit as the
234 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235 * restored only when a write is attempted to the page.
236 */
237 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238 PT64_EPT_EXECUTABLE_MASK;
239 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
241 /*
242 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243 * to guard against L1TF attacks.
244 */
245 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247 /*
248 * The number of high-order 1 bits to use in the mask above.
249 */
250 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
252 /*
253 * In some cases, we need to preserve the GFN of a non-present or reserved
254 * SPTE when we usurp the upper five bits of the physical address space to
255 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
256 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258 * high and low parts. This mask covers the lower bits of the GFN.
259 */
260 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
261
262
263 static void mmu_spte_set(u64 *sptep, u64 spte);
264 static union kvm_mmu_page_role
265 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
266
267
268 static inline bool kvm_available_flush_tlb_with_range(void)
269 {
270 return kvm_x86_ops->tlb_remote_flush_with_range;
271 }
272
273 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
274 struct kvm_tlb_range *range)
275 {
276 int ret = -ENOTSUPP;
277
278 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
279 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
280
281 if (ret)
282 kvm_flush_remote_tlbs(kvm);
283 }
284
285 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
286 u64 start_gfn, u64 pages)
287 {
288 struct kvm_tlb_range range;
289
290 range.start_gfn = start_gfn;
291 range.pages = pages;
292
293 kvm_flush_remote_tlbs_with_range(kvm, &range);
294 }
295
296 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
297 {
298 BUG_ON((mmio_mask & mmio_value) != mmio_value);
299 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
300 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
301 }
302 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
303
304 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
305 {
306 return sp->role.ad_disabled;
307 }
308
309 static inline bool spte_ad_enabled(u64 spte)
310 {
311 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
312 return !(spte & shadow_acc_track_value);
313 }
314
315 static inline u64 spte_shadow_accessed_mask(u64 spte)
316 {
317 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
318 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
319 }
320
321 static inline u64 spte_shadow_dirty_mask(u64 spte)
322 {
323 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
324 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
325 }
326
327 static inline bool is_access_track_spte(u64 spte)
328 {
329 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
330 }
331
332 /*
333 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
334 * the memslots generation and is derived as follows:
335 *
336 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
337 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
338 *
339 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
340 * the MMIO generation number, as doing so would require stealing a bit from
341 * the "real" generation number and thus effectively halve the maximum number
342 * of MMIO generations that can be handled before encountering a wrap (which
343 * requires a full MMU zap). The flag is instead explicitly queried when
344 * checking for MMIO spte cache hits.
345 */
346 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
347
348 #define MMIO_SPTE_GEN_LOW_START 3
349 #define MMIO_SPTE_GEN_LOW_END 11
350 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
351 MMIO_SPTE_GEN_LOW_START)
352
353 #define MMIO_SPTE_GEN_HIGH_START 52
354 #define MMIO_SPTE_GEN_HIGH_END 61
355 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
356 MMIO_SPTE_GEN_HIGH_START)
357 static u64 generation_mmio_spte_mask(u64 gen)
358 {
359 u64 mask;
360
361 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
362
363 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
364 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
365 return mask;
366 }
367
368 static u64 get_mmio_spte_generation(u64 spte)
369 {
370 u64 gen;
371
372 spte &= ~shadow_mmio_mask;
373
374 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
375 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
376 return gen;
377 }
378
379 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
380 unsigned access)
381 {
382 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
383 u64 mask = generation_mmio_spte_mask(gen);
384 u64 gpa = gfn << PAGE_SHIFT;
385
386 access &= ACC_WRITE_MASK | ACC_USER_MASK;
387 mask |= shadow_mmio_value | access;
388 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
389 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
390 << shadow_nonpresent_or_rsvd_mask_len;
391
392 page_header(__pa(sptep))->mmio_cached = true;
393
394 trace_mark_mmio_spte(sptep, gfn, access, gen);
395 mmu_spte_set(sptep, mask);
396 }
397
398 static bool is_mmio_spte(u64 spte)
399 {
400 return (spte & shadow_mmio_mask) == shadow_mmio_value;
401 }
402
403 static gfn_t get_mmio_spte_gfn(u64 spte)
404 {
405 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
406
407 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
408 & shadow_nonpresent_or_rsvd_mask;
409
410 return gpa >> PAGE_SHIFT;
411 }
412
413 static unsigned get_mmio_spte_access(u64 spte)
414 {
415 u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
416 return (spte & ~mask) & ~PAGE_MASK;
417 }
418
419 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
420 kvm_pfn_t pfn, unsigned access)
421 {
422 if (unlikely(is_noslot_pfn(pfn))) {
423 mark_mmio_spte(vcpu, sptep, gfn, access);
424 return true;
425 }
426
427 return false;
428 }
429
430 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
431 {
432 u64 kvm_gen, spte_gen, gen;
433
434 gen = kvm_vcpu_memslots(vcpu)->generation;
435 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
436 return false;
437
438 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
439 spte_gen = get_mmio_spte_generation(spte);
440
441 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
442 return likely(kvm_gen == spte_gen);
443 }
444
445 /*
446 * Sets the shadow PTE masks used by the MMU.
447 *
448 * Assumptions:
449 * - Setting either @accessed_mask or @dirty_mask requires setting both
450 * - At least one of @accessed_mask or @acc_track_mask must be set
451 */
452 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
453 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
454 u64 acc_track_mask, u64 me_mask)
455 {
456 BUG_ON(!dirty_mask != !accessed_mask);
457 BUG_ON(!accessed_mask && !acc_track_mask);
458 BUG_ON(acc_track_mask & shadow_acc_track_value);
459
460 shadow_user_mask = user_mask;
461 shadow_accessed_mask = accessed_mask;
462 shadow_dirty_mask = dirty_mask;
463 shadow_nx_mask = nx_mask;
464 shadow_x_mask = x_mask;
465 shadow_present_mask = p_mask;
466 shadow_acc_track_mask = acc_track_mask;
467 shadow_me_mask = me_mask;
468 }
469 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
470
471 static void kvm_mmu_reset_all_pte_masks(void)
472 {
473 u8 low_phys_bits;
474
475 shadow_user_mask = 0;
476 shadow_accessed_mask = 0;
477 shadow_dirty_mask = 0;
478 shadow_nx_mask = 0;
479 shadow_x_mask = 0;
480 shadow_mmio_mask = 0;
481 shadow_present_mask = 0;
482 shadow_acc_track_mask = 0;
483
484 /*
485 * If the CPU has 46 or less physical address bits, then set an
486 * appropriate mask to guard against L1TF attacks. Otherwise, it is
487 * assumed that the CPU is not vulnerable to L1TF.
488 *
489 * Some Intel CPUs address the L1 cache using more PA bits than are
490 * reported by CPUID. Use the PA width of the L1 cache when possible
491 * to achieve more effective mitigation, e.g. if system RAM overlaps
492 * the most significant bits of legal physical address space.
493 */
494 shadow_nonpresent_or_rsvd_mask = 0;
495 low_phys_bits = boot_cpu_data.x86_cache_bits;
496 if (boot_cpu_data.x86_cache_bits <
497 52 - shadow_nonpresent_or_rsvd_mask_len) {
498 shadow_nonpresent_or_rsvd_mask =
499 rsvd_bits(boot_cpu_data.x86_cache_bits -
500 shadow_nonpresent_or_rsvd_mask_len,
501 boot_cpu_data.x86_cache_bits - 1);
502 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
503 } else
504 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
505
506 shadow_nonpresent_or_rsvd_lower_gfn_mask =
507 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
508 }
509
510 static int is_cpuid_PSE36(void)
511 {
512 return 1;
513 }
514
515 static int is_nx(struct kvm_vcpu *vcpu)
516 {
517 return vcpu->arch.efer & EFER_NX;
518 }
519
520 static int is_shadow_present_pte(u64 pte)
521 {
522 return (pte != 0) && !is_mmio_spte(pte);
523 }
524
525 static int is_large_pte(u64 pte)
526 {
527 return pte & PT_PAGE_SIZE_MASK;
528 }
529
530 static int is_last_spte(u64 pte, int level)
531 {
532 if (level == PT_PAGE_TABLE_LEVEL)
533 return 1;
534 if (is_large_pte(pte))
535 return 1;
536 return 0;
537 }
538
539 static bool is_executable_pte(u64 spte)
540 {
541 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
542 }
543
544 static kvm_pfn_t spte_to_pfn(u64 pte)
545 {
546 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
547 }
548
549 static gfn_t pse36_gfn_delta(u32 gpte)
550 {
551 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
552
553 return (gpte & PT32_DIR_PSE36_MASK) << shift;
554 }
555
556 #ifdef CONFIG_X86_64
557 static void __set_spte(u64 *sptep, u64 spte)
558 {
559 WRITE_ONCE(*sptep, spte);
560 }
561
562 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
563 {
564 WRITE_ONCE(*sptep, spte);
565 }
566
567 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
568 {
569 return xchg(sptep, spte);
570 }
571
572 static u64 __get_spte_lockless(u64 *sptep)
573 {
574 return READ_ONCE(*sptep);
575 }
576 #else
577 union split_spte {
578 struct {
579 u32 spte_low;
580 u32 spte_high;
581 };
582 u64 spte;
583 };
584
585 static void count_spte_clear(u64 *sptep, u64 spte)
586 {
587 struct kvm_mmu_page *sp = page_header(__pa(sptep));
588
589 if (is_shadow_present_pte(spte))
590 return;
591
592 /* Ensure the spte is completely set before we increase the count */
593 smp_wmb();
594 sp->clear_spte_count++;
595 }
596
597 static void __set_spte(u64 *sptep, u64 spte)
598 {
599 union split_spte *ssptep, sspte;
600
601 ssptep = (union split_spte *)sptep;
602 sspte = (union split_spte)spte;
603
604 ssptep->spte_high = sspte.spte_high;
605
606 /*
607 * If we map the spte from nonpresent to present, We should store
608 * the high bits firstly, then set present bit, so cpu can not
609 * fetch this spte while we are setting the spte.
610 */
611 smp_wmb();
612
613 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
614 }
615
616 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
617 {
618 union split_spte *ssptep, sspte;
619
620 ssptep = (union split_spte *)sptep;
621 sspte = (union split_spte)spte;
622
623 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
624
625 /*
626 * If we map the spte from present to nonpresent, we should clear
627 * present bit firstly to avoid vcpu fetch the old high bits.
628 */
629 smp_wmb();
630
631 ssptep->spte_high = sspte.spte_high;
632 count_spte_clear(sptep, spte);
633 }
634
635 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
636 {
637 union split_spte *ssptep, sspte, orig;
638
639 ssptep = (union split_spte *)sptep;
640 sspte = (union split_spte)spte;
641
642 /* xchg acts as a barrier before the setting of the high bits */
643 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
644 orig.spte_high = ssptep->spte_high;
645 ssptep->spte_high = sspte.spte_high;
646 count_spte_clear(sptep, spte);
647
648 return orig.spte;
649 }
650
651 /*
652 * The idea using the light way get the spte on x86_32 guest is from
653 * gup_get_pte(arch/x86/mm/gup.c).
654 *
655 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
656 * coalesces them and we are running out of the MMU lock. Therefore
657 * we need to protect against in-progress updates of the spte.
658 *
659 * Reading the spte while an update is in progress may get the old value
660 * for the high part of the spte. The race is fine for a present->non-present
661 * change (because the high part of the spte is ignored for non-present spte),
662 * but for a present->present change we must reread the spte.
663 *
664 * All such changes are done in two steps (present->non-present and
665 * non-present->present), hence it is enough to count the number of
666 * present->non-present updates: if it changed while reading the spte,
667 * we might have hit the race. This is done using clear_spte_count.
668 */
669 static u64 __get_spte_lockless(u64 *sptep)
670 {
671 struct kvm_mmu_page *sp = page_header(__pa(sptep));
672 union split_spte spte, *orig = (union split_spte *)sptep;
673 int count;
674
675 retry:
676 count = sp->clear_spte_count;
677 smp_rmb();
678
679 spte.spte_low = orig->spte_low;
680 smp_rmb();
681
682 spte.spte_high = orig->spte_high;
683 smp_rmb();
684
685 if (unlikely(spte.spte_low != orig->spte_low ||
686 count != sp->clear_spte_count))
687 goto retry;
688
689 return spte.spte;
690 }
691 #endif
692
693 static bool spte_can_locklessly_be_made_writable(u64 spte)
694 {
695 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
696 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
697 }
698
699 static bool spte_has_volatile_bits(u64 spte)
700 {
701 if (!is_shadow_present_pte(spte))
702 return false;
703
704 /*
705 * Always atomically update spte if it can be updated
706 * out of mmu-lock, it can ensure dirty bit is not lost,
707 * also, it can help us to get a stable is_writable_pte()
708 * to ensure tlb flush is not missed.
709 */
710 if (spte_can_locklessly_be_made_writable(spte) ||
711 is_access_track_spte(spte))
712 return true;
713
714 if (spte_ad_enabled(spte)) {
715 if ((spte & shadow_accessed_mask) == 0 ||
716 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
717 return true;
718 }
719
720 return false;
721 }
722
723 static bool is_accessed_spte(u64 spte)
724 {
725 u64 accessed_mask = spte_shadow_accessed_mask(spte);
726
727 return accessed_mask ? spte & accessed_mask
728 : !is_access_track_spte(spte);
729 }
730
731 static bool is_dirty_spte(u64 spte)
732 {
733 u64 dirty_mask = spte_shadow_dirty_mask(spte);
734
735 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
736 }
737
738 /* Rules for using mmu_spte_set:
739 * Set the sptep from nonpresent to present.
740 * Note: the sptep being assigned *must* be either not present
741 * or in a state where the hardware will not attempt to update
742 * the spte.
743 */
744 static void mmu_spte_set(u64 *sptep, u64 new_spte)
745 {
746 WARN_ON(is_shadow_present_pte(*sptep));
747 __set_spte(sptep, new_spte);
748 }
749
750 /*
751 * Update the SPTE (excluding the PFN), but do not track changes in its
752 * accessed/dirty status.
753 */
754 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
755 {
756 u64 old_spte = *sptep;
757
758 WARN_ON(!is_shadow_present_pte(new_spte));
759
760 if (!is_shadow_present_pte(old_spte)) {
761 mmu_spte_set(sptep, new_spte);
762 return old_spte;
763 }
764
765 if (!spte_has_volatile_bits(old_spte))
766 __update_clear_spte_fast(sptep, new_spte);
767 else
768 old_spte = __update_clear_spte_slow(sptep, new_spte);
769
770 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
771
772 return old_spte;
773 }
774
775 /* Rules for using mmu_spte_update:
776 * Update the state bits, it means the mapped pfn is not changed.
777 *
778 * Whenever we overwrite a writable spte with a read-only one we
779 * should flush remote TLBs. Otherwise rmap_write_protect
780 * will find a read-only spte, even though the writable spte
781 * might be cached on a CPU's TLB, the return value indicates this
782 * case.
783 *
784 * Returns true if the TLB needs to be flushed
785 */
786 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
787 {
788 bool flush = false;
789 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
790
791 if (!is_shadow_present_pte(old_spte))
792 return false;
793
794 /*
795 * For the spte updated out of mmu-lock is safe, since
796 * we always atomically update it, see the comments in
797 * spte_has_volatile_bits().
798 */
799 if (spte_can_locklessly_be_made_writable(old_spte) &&
800 !is_writable_pte(new_spte))
801 flush = true;
802
803 /*
804 * Flush TLB when accessed/dirty states are changed in the page tables,
805 * to guarantee consistency between TLB and page tables.
806 */
807
808 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
809 flush = true;
810 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
811 }
812
813 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
814 flush = true;
815 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
816 }
817
818 return flush;
819 }
820
821 /*
822 * Rules for using mmu_spte_clear_track_bits:
823 * It sets the sptep from present to nonpresent, and track the
824 * state bits, it is used to clear the last level sptep.
825 * Returns non-zero if the PTE was previously valid.
826 */
827 static int mmu_spte_clear_track_bits(u64 *sptep)
828 {
829 kvm_pfn_t pfn;
830 u64 old_spte = *sptep;
831
832 if (!spte_has_volatile_bits(old_spte))
833 __update_clear_spte_fast(sptep, 0ull);
834 else
835 old_spte = __update_clear_spte_slow(sptep, 0ull);
836
837 if (!is_shadow_present_pte(old_spte))
838 return 0;
839
840 pfn = spte_to_pfn(old_spte);
841
842 /*
843 * KVM does not hold the refcount of the page used by
844 * kvm mmu, before reclaiming the page, we should
845 * unmap it from mmu first.
846 */
847 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
848
849 if (is_accessed_spte(old_spte))
850 kvm_set_pfn_accessed(pfn);
851
852 if (is_dirty_spte(old_spte))
853 kvm_set_pfn_dirty(pfn);
854
855 return 1;
856 }
857
858 /*
859 * Rules for using mmu_spte_clear_no_track:
860 * Directly clear spte without caring the state bits of sptep,
861 * it is used to set the upper level spte.
862 */
863 static void mmu_spte_clear_no_track(u64 *sptep)
864 {
865 __update_clear_spte_fast(sptep, 0ull);
866 }
867
868 static u64 mmu_spte_get_lockless(u64 *sptep)
869 {
870 return __get_spte_lockless(sptep);
871 }
872
873 static u64 mark_spte_for_access_track(u64 spte)
874 {
875 if (spte_ad_enabled(spte))
876 return spte & ~shadow_accessed_mask;
877
878 if (is_access_track_spte(spte))
879 return spte;
880
881 /*
882 * Making an Access Tracking PTE will result in removal of write access
883 * from the PTE. So, verify that we will be able to restore the write
884 * access in the fast page fault path later on.
885 */
886 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
887 !spte_can_locklessly_be_made_writable(spte),
888 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
889
890 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
891 shadow_acc_track_saved_bits_shift),
892 "kvm: Access Tracking saved bit locations are not zero\n");
893
894 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
895 shadow_acc_track_saved_bits_shift;
896 spte &= ~shadow_acc_track_mask;
897
898 return spte;
899 }
900
901 /* Restore an acc-track PTE back to a regular PTE */
902 static u64 restore_acc_track_spte(u64 spte)
903 {
904 u64 new_spte = spte;
905 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
906 & shadow_acc_track_saved_bits_mask;
907
908 WARN_ON_ONCE(spte_ad_enabled(spte));
909 WARN_ON_ONCE(!is_access_track_spte(spte));
910
911 new_spte &= ~shadow_acc_track_mask;
912 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
913 shadow_acc_track_saved_bits_shift);
914 new_spte |= saved_bits;
915
916 return new_spte;
917 }
918
919 /* Returns the Accessed status of the PTE and resets it at the same time. */
920 static bool mmu_spte_age(u64 *sptep)
921 {
922 u64 spte = mmu_spte_get_lockless(sptep);
923
924 if (!is_accessed_spte(spte))
925 return false;
926
927 if (spte_ad_enabled(spte)) {
928 clear_bit((ffs(shadow_accessed_mask) - 1),
929 (unsigned long *)sptep);
930 } else {
931 /*
932 * Capture the dirty status of the page, so that it doesn't get
933 * lost when the SPTE is marked for access tracking.
934 */
935 if (is_writable_pte(spte))
936 kvm_set_pfn_dirty(spte_to_pfn(spte));
937
938 spte = mark_spte_for_access_track(spte);
939 mmu_spte_update_no_track(sptep, spte);
940 }
941
942 return true;
943 }
944
945 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
946 {
947 /*
948 * Prevent page table teardown by making any free-er wait during
949 * kvm_flush_remote_tlbs() IPI to all active vcpus.
950 */
951 local_irq_disable();
952
953 /*
954 * Make sure a following spte read is not reordered ahead of the write
955 * to vcpu->mode.
956 */
957 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
958 }
959
960 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
961 {
962 /*
963 * Make sure the write to vcpu->mode is not reordered in front of
964 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
965 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
966 */
967 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
968 local_irq_enable();
969 }
970
971 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
972 struct kmem_cache *base_cache, int min)
973 {
974 void *obj;
975
976 if (cache->nobjs >= min)
977 return 0;
978 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
979 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
980 if (!obj)
981 return cache->nobjs >= min ? 0 : -ENOMEM;
982 cache->objects[cache->nobjs++] = obj;
983 }
984 return 0;
985 }
986
987 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
988 {
989 return cache->nobjs;
990 }
991
992 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
993 struct kmem_cache *cache)
994 {
995 while (mc->nobjs)
996 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
997 }
998
999 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1000 int min)
1001 {
1002 void *page;
1003
1004 if (cache->nobjs >= min)
1005 return 0;
1006 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1007 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1008 if (!page)
1009 return cache->nobjs >= min ? 0 : -ENOMEM;
1010 cache->objects[cache->nobjs++] = page;
1011 }
1012 return 0;
1013 }
1014
1015 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1016 {
1017 while (mc->nobjs)
1018 free_page((unsigned long)mc->objects[--mc->nobjs]);
1019 }
1020
1021 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1022 {
1023 int r;
1024
1025 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1026 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1027 if (r)
1028 goto out;
1029 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1030 if (r)
1031 goto out;
1032 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1033 mmu_page_header_cache, 4);
1034 out:
1035 return r;
1036 }
1037
1038 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1039 {
1040 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1041 pte_list_desc_cache);
1042 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1043 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1044 mmu_page_header_cache);
1045 }
1046
1047 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1048 {
1049 void *p;
1050
1051 BUG_ON(!mc->nobjs);
1052 p = mc->objects[--mc->nobjs];
1053 return p;
1054 }
1055
1056 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1057 {
1058 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1059 }
1060
1061 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1062 {
1063 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1064 }
1065
1066 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1067 {
1068 if (!sp->role.direct)
1069 return sp->gfns[index];
1070
1071 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1072 }
1073
1074 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1075 {
1076 if (sp->role.direct)
1077 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1078 else
1079 sp->gfns[index] = gfn;
1080 }
1081
1082 /*
1083 * Return the pointer to the large page information for a given gfn,
1084 * handling slots that are not large page aligned.
1085 */
1086 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1087 struct kvm_memory_slot *slot,
1088 int level)
1089 {
1090 unsigned long idx;
1091
1092 idx = gfn_to_index(gfn, slot->base_gfn, level);
1093 return &slot->arch.lpage_info[level - 2][idx];
1094 }
1095
1096 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1097 gfn_t gfn, int count)
1098 {
1099 struct kvm_lpage_info *linfo;
1100 int i;
1101
1102 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1103 linfo = lpage_info_slot(gfn, slot, i);
1104 linfo->disallow_lpage += count;
1105 WARN_ON(linfo->disallow_lpage < 0);
1106 }
1107 }
1108
1109 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1110 {
1111 update_gfn_disallow_lpage_count(slot, gfn, 1);
1112 }
1113
1114 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1115 {
1116 update_gfn_disallow_lpage_count(slot, gfn, -1);
1117 }
1118
1119 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1120 {
1121 struct kvm_memslots *slots;
1122 struct kvm_memory_slot *slot;
1123 gfn_t gfn;
1124
1125 kvm->arch.indirect_shadow_pages++;
1126 gfn = sp->gfn;
1127 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1128 slot = __gfn_to_memslot(slots, gfn);
1129
1130 /* the non-leaf shadow pages are keeping readonly. */
1131 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1132 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1133 KVM_PAGE_TRACK_WRITE);
1134
1135 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1136 }
1137
1138 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1139 {
1140 struct kvm_memslots *slots;
1141 struct kvm_memory_slot *slot;
1142 gfn_t gfn;
1143
1144 kvm->arch.indirect_shadow_pages--;
1145 gfn = sp->gfn;
1146 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1147 slot = __gfn_to_memslot(slots, gfn);
1148 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1149 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1150 KVM_PAGE_TRACK_WRITE);
1151
1152 kvm_mmu_gfn_allow_lpage(slot, gfn);
1153 }
1154
1155 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1156 struct kvm_memory_slot *slot)
1157 {
1158 struct kvm_lpage_info *linfo;
1159
1160 if (slot) {
1161 linfo = lpage_info_slot(gfn, slot, level);
1162 return !!linfo->disallow_lpage;
1163 }
1164
1165 return true;
1166 }
1167
1168 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1169 int level)
1170 {
1171 struct kvm_memory_slot *slot;
1172
1173 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1174 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1175 }
1176
1177 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1178 {
1179 unsigned long page_size;
1180 int i, ret = 0;
1181
1182 page_size = kvm_host_page_size(kvm, gfn);
1183
1184 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1185 if (page_size >= KVM_HPAGE_SIZE(i))
1186 ret = i;
1187 else
1188 break;
1189 }
1190
1191 return ret;
1192 }
1193
1194 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1195 bool no_dirty_log)
1196 {
1197 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1198 return false;
1199 if (no_dirty_log && slot->dirty_bitmap)
1200 return false;
1201
1202 return true;
1203 }
1204
1205 static struct kvm_memory_slot *
1206 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1207 bool no_dirty_log)
1208 {
1209 struct kvm_memory_slot *slot;
1210
1211 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1212 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1213 slot = NULL;
1214
1215 return slot;
1216 }
1217
1218 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1219 bool *force_pt_level)
1220 {
1221 int host_level, level, max_level;
1222 struct kvm_memory_slot *slot;
1223
1224 if (unlikely(*force_pt_level))
1225 return PT_PAGE_TABLE_LEVEL;
1226
1227 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1228 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1229 if (unlikely(*force_pt_level))
1230 return PT_PAGE_TABLE_LEVEL;
1231
1232 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1233
1234 if (host_level == PT_PAGE_TABLE_LEVEL)
1235 return host_level;
1236
1237 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1238
1239 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1240 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1241 break;
1242
1243 return level - 1;
1244 }
1245
1246 /*
1247 * About rmap_head encoding:
1248 *
1249 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1250 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1251 * pte_list_desc containing more mappings.
1252 */
1253
1254 /*
1255 * Returns the number of pointers in the rmap chain, not counting the new one.
1256 */
1257 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1258 struct kvm_rmap_head *rmap_head)
1259 {
1260 struct pte_list_desc *desc;
1261 int i, count = 0;
1262
1263 if (!rmap_head->val) {
1264 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1265 rmap_head->val = (unsigned long)spte;
1266 } else if (!(rmap_head->val & 1)) {
1267 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1268 desc = mmu_alloc_pte_list_desc(vcpu);
1269 desc->sptes[0] = (u64 *)rmap_head->val;
1270 desc->sptes[1] = spte;
1271 rmap_head->val = (unsigned long)desc | 1;
1272 ++count;
1273 } else {
1274 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1275 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1276 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1277 desc = desc->more;
1278 count += PTE_LIST_EXT;
1279 }
1280 if (desc->sptes[PTE_LIST_EXT-1]) {
1281 desc->more = mmu_alloc_pte_list_desc(vcpu);
1282 desc = desc->more;
1283 }
1284 for (i = 0; desc->sptes[i]; ++i)
1285 ++count;
1286 desc->sptes[i] = spte;
1287 }
1288 return count;
1289 }
1290
1291 static void
1292 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1293 struct pte_list_desc *desc, int i,
1294 struct pte_list_desc *prev_desc)
1295 {
1296 int j;
1297
1298 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1299 ;
1300 desc->sptes[i] = desc->sptes[j];
1301 desc->sptes[j] = NULL;
1302 if (j != 0)
1303 return;
1304 if (!prev_desc && !desc->more)
1305 rmap_head->val = (unsigned long)desc->sptes[0];
1306 else
1307 if (prev_desc)
1308 prev_desc->more = desc->more;
1309 else
1310 rmap_head->val = (unsigned long)desc->more | 1;
1311 mmu_free_pte_list_desc(desc);
1312 }
1313
1314 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1315 {
1316 struct pte_list_desc *desc;
1317 struct pte_list_desc *prev_desc;
1318 int i;
1319
1320 if (!rmap_head->val) {
1321 pr_err("%s: %p 0->BUG\n", __func__, spte);
1322 BUG();
1323 } else if (!(rmap_head->val & 1)) {
1324 rmap_printk("%s: %p 1->0\n", __func__, spte);
1325 if ((u64 *)rmap_head->val != spte) {
1326 pr_err("%s: %p 1->BUG\n", __func__, spte);
1327 BUG();
1328 }
1329 rmap_head->val = 0;
1330 } else {
1331 rmap_printk("%s: %p many->many\n", __func__, spte);
1332 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1333 prev_desc = NULL;
1334 while (desc) {
1335 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1336 if (desc->sptes[i] == spte) {
1337 pte_list_desc_remove_entry(rmap_head,
1338 desc, i, prev_desc);
1339 return;
1340 }
1341 }
1342 prev_desc = desc;
1343 desc = desc->more;
1344 }
1345 pr_err("%s: %p many->many\n", __func__, spte);
1346 BUG();
1347 }
1348 }
1349
1350 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1351 {
1352 mmu_spte_clear_track_bits(sptep);
1353 __pte_list_remove(sptep, rmap_head);
1354 }
1355
1356 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1357 struct kvm_memory_slot *slot)
1358 {
1359 unsigned long idx;
1360
1361 idx = gfn_to_index(gfn, slot->base_gfn, level);
1362 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1363 }
1364
1365 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1366 struct kvm_mmu_page *sp)
1367 {
1368 struct kvm_memslots *slots;
1369 struct kvm_memory_slot *slot;
1370
1371 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1372 slot = __gfn_to_memslot(slots, gfn);
1373 return __gfn_to_rmap(gfn, sp->role.level, slot);
1374 }
1375
1376 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1377 {
1378 struct kvm_mmu_memory_cache *cache;
1379
1380 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1381 return mmu_memory_cache_free_objects(cache);
1382 }
1383
1384 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1385 {
1386 struct kvm_mmu_page *sp;
1387 struct kvm_rmap_head *rmap_head;
1388
1389 sp = page_header(__pa(spte));
1390 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1391 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1392 return pte_list_add(vcpu, spte, rmap_head);
1393 }
1394
1395 static void rmap_remove(struct kvm *kvm, u64 *spte)
1396 {
1397 struct kvm_mmu_page *sp;
1398 gfn_t gfn;
1399 struct kvm_rmap_head *rmap_head;
1400
1401 sp = page_header(__pa(spte));
1402 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1403 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1404 __pte_list_remove(spte, rmap_head);
1405 }
1406
1407 /*
1408 * Used by the following functions to iterate through the sptes linked by a
1409 * rmap. All fields are private and not assumed to be used outside.
1410 */
1411 struct rmap_iterator {
1412 /* private fields */
1413 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1414 int pos; /* index of the sptep */
1415 };
1416
1417 /*
1418 * Iteration must be started by this function. This should also be used after
1419 * removing/dropping sptes from the rmap link because in such cases the
1420 * information in the itererator may not be valid.
1421 *
1422 * Returns sptep if found, NULL otherwise.
1423 */
1424 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1425 struct rmap_iterator *iter)
1426 {
1427 u64 *sptep;
1428
1429 if (!rmap_head->val)
1430 return NULL;
1431
1432 if (!(rmap_head->val & 1)) {
1433 iter->desc = NULL;
1434 sptep = (u64 *)rmap_head->val;
1435 goto out;
1436 }
1437
1438 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1439 iter->pos = 0;
1440 sptep = iter->desc->sptes[iter->pos];
1441 out:
1442 BUG_ON(!is_shadow_present_pte(*sptep));
1443 return sptep;
1444 }
1445
1446 /*
1447 * Must be used with a valid iterator: e.g. after rmap_get_first().
1448 *
1449 * Returns sptep if found, NULL otherwise.
1450 */
1451 static u64 *rmap_get_next(struct rmap_iterator *iter)
1452 {
1453 u64 *sptep;
1454
1455 if (iter->desc) {
1456 if (iter->pos < PTE_LIST_EXT - 1) {
1457 ++iter->pos;
1458 sptep = iter->desc->sptes[iter->pos];
1459 if (sptep)
1460 goto out;
1461 }
1462
1463 iter->desc = iter->desc->more;
1464
1465 if (iter->desc) {
1466 iter->pos = 0;
1467 /* desc->sptes[0] cannot be NULL */
1468 sptep = iter->desc->sptes[iter->pos];
1469 goto out;
1470 }
1471 }
1472
1473 return NULL;
1474 out:
1475 BUG_ON(!is_shadow_present_pte(*sptep));
1476 return sptep;
1477 }
1478
1479 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1480 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1481 _spte_; _spte_ = rmap_get_next(_iter_))
1482
1483 static void drop_spte(struct kvm *kvm, u64 *sptep)
1484 {
1485 if (mmu_spte_clear_track_bits(sptep))
1486 rmap_remove(kvm, sptep);
1487 }
1488
1489
1490 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1491 {
1492 if (is_large_pte(*sptep)) {
1493 WARN_ON(page_header(__pa(sptep))->role.level ==
1494 PT_PAGE_TABLE_LEVEL);
1495 drop_spte(kvm, sptep);
1496 --kvm->stat.lpages;
1497 return true;
1498 }
1499
1500 return false;
1501 }
1502
1503 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1504 {
1505 if (__drop_large_spte(vcpu->kvm, sptep)) {
1506 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1507
1508 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1509 KVM_PAGES_PER_HPAGE(sp->role.level));
1510 }
1511 }
1512
1513 /*
1514 * Write-protect on the specified @sptep, @pt_protect indicates whether
1515 * spte write-protection is caused by protecting shadow page table.
1516 *
1517 * Note: write protection is difference between dirty logging and spte
1518 * protection:
1519 * - for dirty logging, the spte can be set to writable at anytime if
1520 * its dirty bitmap is properly set.
1521 * - for spte protection, the spte can be writable only after unsync-ing
1522 * shadow page.
1523 *
1524 * Return true if tlb need be flushed.
1525 */
1526 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1527 {
1528 u64 spte = *sptep;
1529
1530 if (!is_writable_pte(spte) &&
1531 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1532 return false;
1533
1534 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1535
1536 if (pt_protect)
1537 spte &= ~SPTE_MMU_WRITEABLE;
1538 spte = spte & ~PT_WRITABLE_MASK;
1539
1540 return mmu_spte_update(sptep, spte);
1541 }
1542
1543 static bool __rmap_write_protect(struct kvm *kvm,
1544 struct kvm_rmap_head *rmap_head,
1545 bool pt_protect)
1546 {
1547 u64 *sptep;
1548 struct rmap_iterator iter;
1549 bool flush = false;
1550
1551 for_each_rmap_spte(rmap_head, &iter, sptep)
1552 flush |= spte_write_protect(sptep, pt_protect);
1553
1554 return flush;
1555 }
1556
1557 static bool spte_clear_dirty(u64 *sptep)
1558 {
1559 u64 spte = *sptep;
1560
1561 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1562
1563 spte &= ~shadow_dirty_mask;
1564
1565 return mmu_spte_update(sptep, spte);
1566 }
1567
1568 static bool wrprot_ad_disabled_spte(u64 *sptep)
1569 {
1570 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1571 (unsigned long *)sptep);
1572 if (was_writable)
1573 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1574
1575 return was_writable;
1576 }
1577
1578 /*
1579 * Gets the GFN ready for another round of dirty logging by clearing the
1580 * - D bit on ad-enabled SPTEs, and
1581 * - W bit on ad-disabled SPTEs.
1582 * Returns true iff any D or W bits were cleared.
1583 */
1584 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1585 {
1586 u64 *sptep;
1587 struct rmap_iterator iter;
1588 bool flush = false;
1589
1590 for_each_rmap_spte(rmap_head, &iter, sptep)
1591 if (spte_ad_enabled(*sptep))
1592 flush |= spte_clear_dirty(sptep);
1593 else
1594 flush |= wrprot_ad_disabled_spte(sptep);
1595
1596 return flush;
1597 }
1598
1599 static bool spte_set_dirty(u64 *sptep)
1600 {
1601 u64 spte = *sptep;
1602
1603 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1604
1605 spte |= shadow_dirty_mask;
1606
1607 return mmu_spte_update(sptep, spte);
1608 }
1609
1610 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1611 {
1612 u64 *sptep;
1613 struct rmap_iterator iter;
1614 bool flush = false;
1615
1616 for_each_rmap_spte(rmap_head, &iter, sptep)
1617 if (spte_ad_enabled(*sptep))
1618 flush |= spte_set_dirty(sptep);
1619
1620 return flush;
1621 }
1622
1623 /**
1624 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1625 * @kvm: kvm instance
1626 * @slot: slot to protect
1627 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1628 * @mask: indicates which pages we should protect
1629 *
1630 * Used when we do not need to care about huge page mappings: e.g. during dirty
1631 * logging we do not have any such mappings.
1632 */
1633 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1634 struct kvm_memory_slot *slot,
1635 gfn_t gfn_offset, unsigned long mask)
1636 {
1637 struct kvm_rmap_head *rmap_head;
1638
1639 while (mask) {
1640 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1641 PT_PAGE_TABLE_LEVEL, slot);
1642 __rmap_write_protect(kvm, rmap_head, false);
1643
1644 /* clear the first set bit */
1645 mask &= mask - 1;
1646 }
1647 }
1648
1649 /**
1650 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1651 * protect the page if the D-bit isn't supported.
1652 * @kvm: kvm instance
1653 * @slot: slot to clear D-bit
1654 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1655 * @mask: indicates which pages we should clear D-bit
1656 *
1657 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1658 */
1659 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1660 struct kvm_memory_slot *slot,
1661 gfn_t gfn_offset, unsigned long mask)
1662 {
1663 struct kvm_rmap_head *rmap_head;
1664
1665 while (mask) {
1666 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1667 PT_PAGE_TABLE_LEVEL, slot);
1668 __rmap_clear_dirty(kvm, rmap_head);
1669
1670 /* clear the first set bit */
1671 mask &= mask - 1;
1672 }
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1675
1676 /**
1677 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1678 * PT level pages.
1679 *
1680 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1681 * enable dirty logging for them.
1682 *
1683 * Used when we do not need to care about huge page mappings: e.g. during dirty
1684 * logging we do not have any such mappings.
1685 */
1686 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1687 struct kvm_memory_slot *slot,
1688 gfn_t gfn_offset, unsigned long mask)
1689 {
1690 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1691 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1692 mask);
1693 else
1694 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1695 }
1696
1697 /**
1698 * kvm_arch_write_log_dirty - emulate dirty page logging
1699 * @vcpu: Guest mode vcpu
1700 *
1701 * Emulate arch specific page modification logging for the
1702 * nested hypervisor
1703 */
1704 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1705 {
1706 if (kvm_x86_ops->write_log_dirty)
1707 return kvm_x86_ops->write_log_dirty(vcpu);
1708
1709 return 0;
1710 }
1711
1712 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1713 struct kvm_memory_slot *slot, u64 gfn)
1714 {
1715 struct kvm_rmap_head *rmap_head;
1716 int i;
1717 bool write_protected = false;
1718
1719 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1720 rmap_head = __gfn_to_rmap(gfn, i, slot);
1721 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1722 }
1723
1724 return write_protected;
1725 }
1726
1727 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1728 {
1729 struct kvm_memory_slot *slot;
1730
1731 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1732 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1733 }
1734
1735 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1736 {
1737 u64 *sptep;
1738 struct rmap_iterator iter;
1739 bool flush = false;
1740
1741 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1742 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1743
1744 pte_list_remove(rmap_head, sptep);
1745 flush = true;
1746 }
1747
1748 return flush;
1749 }
1750
1751 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1752 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1753 unsigned long data)
1754 {
1755 return kvm_zap_rmapp(kvm, rmap_head);
1756 }
1757
1758 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1759 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1760 unsigned long data)
1761 {
1762 u64 *sptep;
1763 struct rmap_iterator iter;
1764 int need_flush = 0;
1765 u64 new_spte;
1766 pte_t *ptep = (pte_t *)data;
1767 kvm_pfn_t new_pfn;
1768
1769 WARN_ON(pte_huge(*ptep));
1770 new_pfn = pte_pfn(*ptep);
1771
1772 restart:
1773 for_each_rmap_spte(rmap_head, &iter, sptep) {
1774 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1775 sptep, *sptep, gfn, level);
1776
1777 need_flush = 1;
1778
1779 if (pte_write(*ptep)) {
1780 pte_list_remove(rmap_head, sptep);
1781 goto restart;
1782 } else {
1783 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1784 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1785
1786 new_spte &= ~PT_WRITABLE_MASK;
1787 new_spte &= ~SPTE_HOST_WRITEABLE;
1788
1789 new_spte = mark_spte_for_access_track(new_spte);
1790
1791 mmu_spte_clear_track_bits(sptep);
1792 mmu_spte_set(sptep, new_spte);
1793 }
1794 }
1795
1796 if (need_flush && kvm_available_flush_tlb_with_range()) {
1797 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1798 return 0;
1799 }
1800
1801 return need_flush;
1802 }
1803
1804 struct slot_rmap_walk_iterator {
1805 /* input fields. */
1806 struct kvm_memory_slot *slot;
1807 gfn_t start_gfn;
1808 gfn_t end_gfn;
1809 int start_level;
1810 int end_level;
1811
1812 /* output fields. */
1813 gfn_t gfn;
1814 struct kvm_rmap_head *rmap;
1815 int level;
1816
1817 /* private field. */
1818 struct kvm_rmap_head *end_rmap;
1819 };
1820
1821 static void
1822 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1823 {
1824 iterator->level = level;
1825 iterator->gfn = iterator->start_gfn;
1826 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1827 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1828 iterator->slot);
1829 }
1830
1831 static void
1832 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1833 struct kvm_memory_slot *slot, int start_level,
1834 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1835 {
1836 iterator->slot = slot;
1837 iterator->start_level = start_level;
1838 iterator->end_level = end_level;
1839 iterator->start_gfn = start_gfn;
1840 iterator->end_gfn = end_gfn;
1841
1842 rmap_walk_init_level(iterator, iterator->start_level);
1843 }
1844
1845 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1846 {
1847 return !!iterator->rmap;
1848 }
1849
1850 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1851 {
1852 if (++iterator->rmap <= iterator->end_rmap) {
1853 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1854 return;
1855 }
1856
1857 if (++iterator->level > iterator->end_level) {
1858 iterator->rmap = NULL;
1859 return;
1860 }
1861
1862 rmap_walk_init_level(iterator, iterator->level);
1863 }
1864
1865 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1866 _start_gfn, _end_gfn, _iter_) \
1867 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1868 _end_level_, _start_gfn, _end_gfn); \
1869 slot_rmap_walk_okay(_iter_); \
1870 slot_rmap_walk_next(_iter_))
1871
1872 static int kvm_handle_hva_range(struct kvm *kvm,
1873 unsigned long start,
1874 unsigned long end,
1875 unsigned long data,
1876 int (*handler)(struct kvm *kvm,
1877 struct kvm_rmap_head *rmap_head,
1878 struct kvm_memory_slot *slot,
1879 gfn_t gfn,
1880 int level,
1881 unsigned long data))
1882 {
1883 struct kvm_memslots *slots;
1884 struct kvm_memory_slot *memslot;
1885 struct slot_rmap_walk_iterator iterator;
1886 int ret = 0;
1887 int i;
1888
1889 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1890 slots = __kvm_memslots(kvm, i);
1891 kvm_for_each_memslot(memslot, slots) {
1892 unsigned long hva_start, hva_end;
1893 gfn_t gfn_start, gfn_end;
1894
1895 hva_start = max(start, memslot->userspace_addr);
1896 hva_end = min(end, memslot->userspace_addr +
1897 (memslot->npages << PAGE_SHIFT));
1898 if (hva_start >= hva_end)
1899 continue;
1900 /*
1901 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1902 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1903 */
1904 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1905 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1906
1907 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1908 PT_MAX_HUGEPAGE_LEVEL,
1909 gfn_start, gfn_end - 1,
1910 &iterator)
1911 ret |= handler(kvm, iterator.rmap, memslot,
1912 iterator.gfn, iterator.level, data);
1913 }
1914 }
1915
1916 return ret;
1917 }
1918
1919 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1920 unsigned long data,
1921 int (*handler)(struct kvm *kvm,
1922 struct kvm_rmap_head *rmap_head,
1923 struct kvm_memory_slot *slot,
1924 gfn_t gfn, int level,
1925 unsigned long data))
1926 {
1927 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1928 }
1929
1930 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1931 {
1932 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1933 }
1934
1935 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1936 {
1937 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1938 }
1939
1940 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1941 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1942 unsigned long data)
1943 {
1944 u64 *sptep;
1945 struct rmap_iterator uninitialized_var(iter);
1946 int young = 0;
1947
1948 for_each_rmap_spte(rmap_head, &iter, sptep)
1949 young |= mmu_spte_age(sptep);
1950
1951 trace_kvm_age_page(gfn, level, slot, young);
1952 return young;
1953 }
1954
1955 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1956 struct kvm_memory_slot *slot, gfn_t gfn,
1957 int level, unsigned long data)
1958 {
1959 u64 *sptep;
1960 struct rmap_iterator iter;
1961
1962 for_each_rmap_spte(rmap_head, &iter, sptep)
1963 if (is_accessed_spte(*sptep))
1964 return 1;
1965 return 0;
1966 }
1967
1968 #define RMAP_RECYCLE_THRESHOLD 1000
1969
1970 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1971 {
1972 struct kvm_rmap_head *rmap_head;
1973 struct kvm_mmu_page *sp;
1974
1975 sp = page_header(__pa(spte));
1976
1977 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1978
1979 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1980 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1981 KVM_PAGES_PER_HPAGE(sp->role.level));
1982 }
1983
1984 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1985 {
1986 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1987 }
1988
1989 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1990 {
1991 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1992 }
1993
1994 #ifdef MMU_DEBUG
1995 static int is_empty_shadow_page(u64 *spt)
1996 {
1997 u64 *pos;
1998 u64 *end;
1999
2000 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2001 if (is_shadow_present_pte(*pos)) {
2002 printk(KERN_ERR "%s: %p %llx\n", __func__,
2003 pos, *pos);
2004 return 0;
2005 }
2006 return 1;
2007 }
2008 #endif
2009
2010 /*
2011 * This value is the sum of all of the kvm instances's
2012 * kvm->arch.n_used_mmu_pages values. We need a global,
2013 * aggregate version in order to make the slab shrinker
2014 * faster
2015 */
2016 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2017 {
2018 kvm->arch.n_used_mmu_pages += nr;
2019 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2020 }
2021
2022 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2023 {
2024 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2025 hlist_del(&sp->hash_link);
2026 list_del(&sp->link);
2027 free_page((unsigned long)sp->spt);
2028 if (!sp->role.direct)
2029 free_page((unsigned long)sp->gfns);
2030 kmem_cache_free(mmu_page_header_cache, sp);
2031 }
2032
2033 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2034 {
2035 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2036 }
2037
2038 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2039 struct kvm_mmu_page *sp, u64 *parent_pte)
2040 {
2041 if (!parent_pte)
2042 return;
2043
2044 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2045 }
2046
2047 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2048 u64 *parent_pte)
2049 {
2050 __pte_list_remove(parent_pte, &sp->parent_ptes);
2051 }
2052
2053 static void drop_parent_pte(struct kvm_mmu_page *sp,
2054 u64 *parent_pte)
2055 {
2056 mmu_page_remove_parent_pte(sp, parent_pte);
2057 mmu_spte_clear_no_track(parent_pte);
2058 }
2059
2060 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2061 {
2062 struct kvm_mmu_page *sp;
2063
2064 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2065 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2066 if (!direct)
2067 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2068 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2069 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2070 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2071 return sp;
2072 }
2073
2074 static void mark_unsync(u64 *spte);
2075 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2076 {
2077 u64 *sptep;
2078 struct rmap_iterator iter;
2079
2080 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2081 mark_unsync(sptep);
2082 }
2083 }
2084
2085 static void mark_unsync(u64 *spte)
2086 {
2087 struct kvm_mmu_page *sp;
2088 unsigned int index;
2089
2090 sp = page_header(__pa(spte));
2091 index = spte - sp->spt;
2092 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2093 return;
2094 if (sp->unsync_children++)
2095 return;
2096 kvm_mmu_mark_parents_unsync(sp);
2097 }
2098
2099 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2100 struct kvm_mmu_page *sp)
2101 {
2102 return 0;
2103 }
2104
2105 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2106 {
2107 }
2108
2109 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2110 struct kvm_mmu_page *sp, u64 *spte,
2111 const void *pte)
2112 {
2113 WARN_ON(1);
2114 }
2115
2116 #define KVM_PAGE_ARRAY_NR 16
2117
2118 struct kvm_mmu_pages {
2119 struct mmu_page_and_offset {
2120 struct kvm_mmu_page *sp;
2121 unsigned int idx;
2122 } page[KVM_PAGE_ARRAY_NR];
2123 unsigned int nr;
2124 };
2125
2126 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2127 int idx)
2128 {
2129 int i;
2130
2131 if (sp->unsync)
2132 for (i=0; i < pvec->nr; i++)
2133 if (pvec->page[i].sp == sp)
2134 return 0;
2135
2136 pvec->page[pvec->nr].sp = sp;
2137 pvec->page[pvec->nr].idx = idx;
2138 pvec->nr++;
2139 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2140 }
2141
2142 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2143 {
2144 --sp->unsync_children;
2145 WARN_ON((int)sp->unsync_children < 0);
2146 __clear_bit(idx, sp->unsync_child_bitmap);
2147 }
2148
2149 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2150 struct kvm_mmu_pages *pvec)
2151 {
2152 int i, ret, nr_unsync_leaf = 0;
2153
2154 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2155 struct kvm_mmu_page *child;
2156 u64 ent = sp->spt[i];
2157
2158 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2159 clear_unsync_child_bit(sp, i);
2160 continue;
2161 }
2162
2163 child = page_header(ent & PT64_BASE_ADDR_MASK);
2164
2165 if (child->unsync_children) {
2166 if (mmu_pages_add(pvec, child, i))
2167 return -ENOSPC;
2168
2169 ret = __mmu_unsync_walk(child, pvec);
2170 if (!ret) {
2171 clear_unsync_child_bit(sp, i);
2172 continue;
2173 } else if (ret > 0) {
2174 nr_unsync_leaf += ret;
2175 } else
2176 return ret;
2177 } else if (child->unsync) {
2178 nr_unsync_leaf++;
2179 if (mmu_pages_add(pvec, child, i))
2180 return -ENOSPC;
2181 } else
2182 clear_unsync_child_bit(sp, i);
2183 }
2184
2185 return nr_unsync_leaf;
2186 }
2187
2188 #define INVALID_INDEX (-1)
2189
2190 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2191 struct kvm_mmu_pages *pvec)
2192 {
2193 pvec->nr = 0;
2194 if (!sp->unsync_children)
2195 return 0;
2196
2197 mmu_pages_add(pvec, sp, INVALID_INDEX);
2198 return __mmu_unsync_walk(sp, pvec);
2199 }
2200
2201 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2202 {
2203 WARN_ON(!sp->unsync);
2204 trace_kvm_mmu_sync_page(sp);
2205 sp->unsync = 0;
2206 --kvm->stat.mmu_unsync;
2207 }
2208
2209 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2210 struct list_head *invalid_list);
2211 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2212 struct list_head *invalid_list);
2213
2214
2215 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2216 hlist_for_each_entry(_sp, \
2217 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2218 if ((_sp)->role.invalid) { \
2219 } else
2220
2221 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2222 for_each_valid_sp(_kvm, _sp, _gfn) \
2223 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2224
2225 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2226 {
2227 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2228 }
2229
2230 /* @sp->gfn should be write-protected at the call site */
2231 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2232 struct list_head *invalid_list)
2233 {
2234 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2235 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2236 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2237 return false;
2238 }
2239
2240 return true;
2241 }
2242
2243 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2244 struct list_head *invalid_list,
2245 bool remote_flush)
2246 {
2247 if (!remote_flush && list_empty(invalid_list))
2248 return false;
2249
2250 if (!list_empty(invalid_list))
2251 kvm_mmu_commit_zap_page(kvm, invalid_list);
2252 else
2253 kvm_flush_remote_tlbs(kvm);
2254 return true;
2255 }
2256
2257 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2258 struct list_head *invalid_list,
2259 bool remote_flush, bool local_flush)
2260 {
2261 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2262 return;
2263
2264 if (local_flush)
2265 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2266 }
2267
2268 #ifdef CONFIG_KVM_MMU_AUDIT
2269 #include "mmu_audit.c"
2270 #else
2271 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2272 static void mmu_audit_disable(void) { }
2273 #endif
2274
2275 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2276 struct list_head *invalid_list)
2277 {
2278 kvm_unlink_unsync_page(vcpu->kvm, sp);
2279 return __kvm_sync_page(vcpu, sp, invalid_list);
2280 }
2281
2282 /* @gfn should be write-protected at the call site */
2283 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2284 struct list_head *invalid_list)
2285 {
2286 struct kvm_mmu_page *s;
2287 bool ret = false;
2288
2289 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2290 if (!s->unsync)
2291 continue;
2292
2293 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2294 ret |= kvm_sync_page(vcpu, s, invalid_list);
2295 }
2296
2297 return ret;
2298 }
2299
2300 struct mmu_page_path {
2301 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2302 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2303 };
2304
2305 #define for_each_sp(pvec, sp, parents, i) \
2306 for (i = mmu_pages_first(&pvec, &parents); \
2307 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2308 i = mmu_pages_next(&pvec, &parents, i))
2309
2310 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2311 struct mmu_page_path *parents,
2312 int i)
2313 {
2314 int n;
2315
2316 for (n = i+1; n < pvec->nr; n++) {
2317 struct kvm_mmu_page *sp = pvec->page[n].sp;
2318 unsigned idx = pvec->page[n].idx;
2319 int level = sp->role.level;
2320
2321 parents->idx[level-1] = idx;
2322 if (level == PT_PAGE_TABLE_LEVEL)
2323 break;
2324
2325 parents->parent[level-2] = sp;
2326 }
2327
2328 return n;
2329 }
2330
2331 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2332 struct mmu_page_path *parents)
2333 {
2334 struct kvm_mmu_page *sp;
2335 int level;
2336
2337 if (pvec->nr == 0)
2338 return 0;
2339
2340 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2341
2342 sp = pvec->page[0].sp;
2343 level = sp->role.level;
2344 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2345
2346 parents->parent[level-2] = sp;
2347
2348 /* Also set up a sentinel. Further entries in pvec are all
2349 * children of sp, so this element is never overwritten.
2350 */
2351 parents->parent[level-1] = NULL;
2352 return mmu_pages_next(pvec, parents, 0);
2353 }
2354
2355 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2356 {
2357 struct kvm_mmu_page *sp;
2358 unsigned int level = 0;
2359
2360 do {
2361 unsigned int idx = parents->idx[level];
2362 sp = parents->parent[level];
2363 if (!sp)
2364 return;
2365
2366 WARN_ON(idx == INVALID_INDEX);
2367 clear_unsync_child_bit(sp, idx);
2368 level++;
2369 } while (!sp->unsync_children);
2370 }
2371
2372 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2373 struct kvm_mmu_page *parent)
2374 {
2375 int i;
2376 struct kvm_mmu_page *sp;
2377 struct mmu_page_path parents;
2378 struct kvm_mmu_pages pages;
2379 LIST_HEAD(invalid_list);
2380 bool flush = false;
2381
2382 while (mmu_unsync_walk(parent, &pages)) {
2383 bool protected = false;
2384
2385 for_each_sp(pages, sp, parents, i)
2386 protected |= rmap_write_protect(vcpu, sp->gfn);
2387
2388 if (protected) {
2389 kvm_flush_remote_tlbs(vcpu->kvm);
2390 flush = false;
2391 }
2392
2393 for_each_sp(pages, sp, parents, i) {
2394 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2395 mmu_pages_clear_parents(&parents);
2396 }
2397 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2398 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2399 cond_resched_lock(&vcpu->kvm->mmu_lock);
2400 flush = false;
2401 }
2402 }
2403
2404 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2405 }
2406
2407 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2408 {
2409 atomic_set(&sp->write_flooding_count, 0);
2410 }
2411
2412 static void clear_sp_write_flooding_count(u64 *spte)
2413 {
2414 struct kvm_mmu_page *sp = page_header(__pa(spte));
2415
2416 __clear_sp_write_flooding_count(sp);
2417 }
2418
2419 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2420 gfn_t gfn,
2421 gva_t gaddr,
2422 unsigned level,
2423 int direct,
2424 unsigned access)
2425 {
2426 union kvm_mmu_page_role role;
2427 unsigned quadrant;
2428 struct kvm_mmu_page *sp;
2429 bool need_sync = false;
2430 bool flush = false;
2431 int collisions = 0;
2432 LIST_HEAD(invalid_list);
2433
2434 role = vcpu->arch.mmu->mmu_role.base;
2435 role.level = level;
2436 role.direct = direct;
2437 if (role.direct)
2438 role.gpte_is_8_bytes = true;
2439 role.access = access;
2440 if (!vcpu->arch.mmu->direct_map
2441 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2442 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2443 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2444 role.quadrant = quadrant;
2445 }
2446 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2447 if (sp->gfn != gfn) {
2448 collisions++;
2449 continue;
2450 }
2451
2452 if (!need_sync && sp->unsync)
2453 need_sync = true;
2454
2455 if (sp->role.word != role.word)
2456 continue;
2457
2458 if (sp->unsync) {
2459 /* The page is good, but __kvm_sync_page might still end
2460 * up zapping it. If so, break in order to rebuild it.
2461 */
2462 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2463 break;
2464
2465 WARN_ON(!list_empty(&invalid_list));
2466 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2467 }
2468
2469 if (sp->unsync_children)
2470 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2471
2472 __clear_sp_write_flooding_count(sp);
2473 trace_kvm_mmu_get_page(sp, false);
2474 goto out;
2475 }
2476
2477 ++vcpu->kvm->stat.mmu_cache_miss;
2478
2479 sp = kvm_mmu_alloc_page(vcpu, direct);
2480
2481 sp->gfn = gfn;
2482 sp->role = role;
2483 hlist_add_head(&sp->hash_link,
2484 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2485 if (!direct) {
2486 /*
2487 * we should do write protection before syncing pages
2488 * otherwise the content of the synced shadow page may
2489 * be inconsistent with guest page table.
2490 */
2491 account_shadowed(vcpu->kvm, sp);
2492 if (level == PT_PAGE_TABLE_LEVEL &&
2493 rmap_write_protect(vcpu, gfn))
2494 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2495
2496 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2497 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2498 }
2499 clear_page(sp->spt);
2500 trace_kvm_mmu_get_page(sp, true);
2501
2502 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2503 out:
2504 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2505 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2506 return sp;
2507 }
2508
2509 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2510 struct kvm_vcpu *vcpu, hpa_t root,
2511 u64 addr)
2512 {
2513 iterator->addr = addr;
2514 iterator->shadow_addr = root;
2515 iterator->level = vcpu->arch.mmu->shadow_root_level;
2516
2517 if (iterator->level == PT64_ROOT_4LEVEL &&
2518 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2519 !vcpu->arch.mmu->direct_map)
2520 --iterator->level;
2521
2522 if (iterator->level == PT32E_ROOT_LEVEL) {
2523 /*
2524 * prev_root is currently only used for 64-bit hosts. So only
2525 * the active root_hpa is valid here.
2526 */
2527 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2528
2529 iterator->shadow_addr
2530 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2531 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2532 --iterator->level;
2533 if (!iterator->shadow_addr)
2534 iterator->level = 0;
2535 }
2536 }
2537
2538 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2539 struct kvm_vcpu *vcpu, u64 addr)
2540 {
2541 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2542 addr);
2543 }
2544
2545 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2546 {
2547 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2548 return false;
2549
2550 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2551 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2552 return true;
2553 }
2554
2555 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2556 u64 spte)
2557 {
2558 if (is_last_spte(spte, iterator->level)) {
2559 iterator->level = 0;
2560 return;
2561 }
2562
2563 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2564 --iterator->level;
2565 }
2566
2567 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2568 {
2569 __shadow_walk_next(iterator, *iterator->sptep);
2570 }
2571
2572 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2573 struct kvm_mmu_page *sp)
2574 {
2575 u64 spte;
2576
2577 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2578
2579 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2580 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2581
2582 if (sp_ad_disabled(sp))
2583 spte |= shadow_acc_track_value;
2584 else
2585 spte |= shadow_accessed_mask;
2586
2587 mmu_spte_set(sptep, spte);
2588
2589 mmu_page_add_parent_pte(vcpu, sp, sptep);
2590
2591 if (sp->unsync_children || sp->unsync)
2592 mark_unsync(sptep);
2593 }
2594
2595 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2596 unsigned direct_access)
2597 {
2598 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2599 struct kvm_mmu_page *child;
2600
2601 /*
2602 * For the direct sp, if the guest pte's dirty bit
2603 * changed form clean to dirty, it will corrupt the
2604 * sp's access: allow writable in the read-only sp,
2605 * so we should update the spte at this point to get
2606 * a new sp with the correct access.
2607 */
2608 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2609 if (child->role.access == direct_access)
2610 return;
2611
2612 drop_parent_pte(child, sptep);
2613 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2614 }
2615 }
2616
2617 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2618 u64 *spte)
2619 {
2620 u64 pte;
2621 struct kvm_mmu_page *child;
2622
2623 pte = *spte;
2624 if (is_shadow_present_pte(pte)) {
2625 if (is_last_spte(pte, sp->role.level)) {
2626 drop_spte(kvm, spte);
2627 if (is_large_pte(pte))
2628 --kvm->stat.lpages;
2629 } else {
2630 child = page_header(pte & PT64_BASE_ADDR_MASK);
2631 drop_parent_pte(child, spte);
2632 }
2633 return true;
2634 }
2635
2636 if (is_mmio_spte(pte))
2637 mmu_spte_clear_no_track(spte);
2638
2639 return false;
2640 }
2641
2642 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2643 struct kvm_mmu_page *sp)
2644 {
2645 unsigned i;
2646
2647 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2648 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2649 }
2650
2651 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2652 {
2653 u64 *sptep;
2654 struct rmap_iterator iter;
2655
2656 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2657 drop_parent_pte(sp, sptep);
2658 }
2659
2660 static int mmu_zap_unsync_children(struct kvm *kvm,
2661 struct kvm_mmu_page *parent,
2662 struct list_head *invalid_list)
2663 {
2664 int i, zapped = 0;
2665 struct mmu_page_path parents;
2666 struct kvm_mmu_pages pages;
2667
2668 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2669 return 0;
2670
2671 while (mmu_unsync_walk(parent, &pages)) {
2672 struct kvm_mmu_page *sp;
2673
2674 for_each_sp(pages, sp, parents, i) {
2675 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2676 mmu_pages_clear_parents(&parents);
2677 zapped++;
2678 }
2679 }
2680
2681 return zapped;
2682 }
2683
2684 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2685 struct kvm_mmu_page *sp,
2686 struct list_head *invalid_list,
2687 int *nr_zapped)
2688 {
2689 bool list_unstable;
2690
2691 trace_kvm_mmu_prepare_zap_page(sp);
2692 ++kvm->stat.mmu_shadow_zapped;
2693 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2694 kvm_mmu_page_unlink_children(kvm, sp);
2695 kvm_mmu_unlink_parents(kvm, sp);
2696
2697 /* Zapping children means active_mmu_pages has become unstable. */
2698 list_unstable = *nr_zapped;
2699
2700 if (!sp->role.invalid && !sp->role.direct)
2701 unaccount_shadowed(kvm, sp);
2702
2703 if (sp->unsync)
2704 kvm_unlink_unsync_page(kvm, sp);
2705 if (!sp->root_count) {
2706 /* Count self */
2707 (*nr_zapped)++;
2708 list_move(&sp->link, invalid_list);
2709 kvm_mod_used_mmu_pages(kvm, -1);
2710 } else {
2711 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2712
2713 if (!sp->role.invalid)
2714 kvm_reload_remote_mmus(kvm);
2715 }
2716
2717 sp->role.invalid = 1;
2718 return list_unstable;
2719 }
2720
2721 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2722 struct list_head *invalid_list)
2723 {
2724 int nr_zapped;
2725
2726 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2727 return nr_zapped;
2728 }
2729
2730 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2731 struct list_head *invalid_list)
2732 {
2733 struct kvm_mmu_page *sp, *nsp;
2734
2735 if (list_empty(invalid_list))
2736 return;
2737
2738 /*
2739 * We need to make sure everyone sees our modifications to
2740 * the page tables and see changes to vcpu->mode here. The barrier
2741 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2742 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2743 *
2744 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2745 * guest mode and/or lockless shadow page table walks.
2746 */
2747 kvm_flush_remote_tlbs(kvm);
2748
2749 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2750 WARN_ON(!sp->role.invalid || sp->root_count);
2751 kvm_mmu_free_page(sp);
2752 }
2753 }
2754
2755 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2756 struct list_head *invalid_list)
2757 {
2758 struct kvm_mmu_page *sp;
2759
2760 if (list_empty(&kvm->arch.active_mmu_pages))
2761 return false;
2762
2763 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2764 struct kvm_mmu_page, link);
2765 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2766 }
2767
2768 /*
2769 * Changing the number of mmu pages allocated to the vm
2770 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2771 */
2772 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2773 {
2774 LIST_HEAD(invalid_list);
2775
2776 spin_lock(&kvm->mmu_lock);
2777
2778 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2779 /* Need to free some mmu pages to achieve the goal. */
2780 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2781 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2782 break;
2783
2784 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2785 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2786 }
2787
2788 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2789
2790 spin_unlock(&kvm->mmu_lock);
2791 }
2792
2793 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2794 {
2795 struct kvm_mmu_page *sp;
2796 LIST_HEAD(invalid_list);
2797 int r;
2798
2799 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2800 r = 0;
2801 spin_lock(&kvm->mmu_lock);
2802 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2803 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2804 sp->role.word);
2805 r = 1;
2806 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2807 }
2808 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2809 spin_unlock(&kvm->mmu_lock);
2810
2811 return r;
2812 }
2813 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2814
2815 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2816 {
2817 trace_kvm_mmu_unsync_page(sp);
2818 ++vcpu->kvm->stat.mmu_unsync;
2819 sp->unsync = 1;
2820
2821 kvm_mmu_mark_parents_unsync(sp);
2822 }
2823
2824 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2825 bool can_unsync)
2826 {
2827 struct kvm_mmu_page *sp;
2828
2829 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2830 return true;
2831
2832 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2833 if (!can_unsync)
2834 return true;
2835
2836 if (sp->unsync)
2837 continue;
2838
2839 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2840 kvm_unsync_page(vcpu, sp);
2841 }
2842
2843 /*
2844 * We need to ensure that the marking of unsync pages is visible
2845 * before the SPTE is updated to allow writes because
2846 * kvm_mmu_sync_roots() checks the unsync flags without holding
2847 * the MMU lock and so can race with this. If the SPTE was updated
2848 * before the page had been marked as unsync-ed, something like the
2849 * following could happen:
2850 *
2851 * CPU 1 CPU 2
2852 * ---------------------------------------------------------------------
2853 * 1.2 Host updates SPTE
2854 * to be writable
2855 * 2.1 Guest writes a GPTE for GVA X.
2856 * (GPTE being in the guest page table shadowed
2857 * by the SP from CPU 1.)
2858 * This reads SPTE during the page table walk.
2859 * Since SPTE.W is read as 1, there is no
2860 * fault.
2861 *
2862 * 2.2 Guest issues TLB flush.
2863 * That causes a VM Exit.
2864 *
2865 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2866 * Since it is false, so it just returns.
2867 *
2868 * 2.4 Guest accesses GVA X.
2869 * Since the mapping in the SP was not updated,
2870 * so the old mapping for GVA X incorrectly
2871 * gets used.
2872 * 1.1 Host marks SP
2873 * as unsync
2874 * (sp->unsync = true)
2875 *
2876 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2877 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2878 * pairs with this write barrier.
2879 */
2880 smp_wmb();
2881
2882 return false;
2883 }
2884
2885 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2886 {
2887 if (pfn_valid(pfn))
2888 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2889 /*
2890 * Some reserved pages, such as those from NVDIMM
2891 * DAX devices, are not for MMIO, and can be mapped
2892 * with cached memory type for better performance.
2893 * However, the above check misconceives those pages
2894 * as MMIO, and results in KVM mapping them with UC
2895 * memory type, which would hurt the performance.
2896 * Therefore, we check the host memory type in addition
2897 * and only treat UC/UC-/WC pages as MMIO.
2898 */
2899 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2900
2901 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2902 pfn_to_hpa(pfn + 1) - 1,
2903 E820_TYPE_RAM);
2904 }
2905
2906 /* Bits which may be returned by set_spte() */
2907 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2908 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2909
2910 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2911 unsigned pte_access, int level,
2912 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2913 bool can_unsync, bool host_writable)
2914 {
2915 u64 spte = 0;
2916 int ret = 0;
2917 struct kvm_mmu_page *sp;
2918
2919 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2920 return 0;
2921
2922 sp = page_header(__pa(sptep));
2923 if (sp_ad_disabled(sp))
2924 spte |= shadow_acc_track_value;
2925
2926 /*
2927 * For the EPT case, shadow_present_mask is 0 if hardware
2928 * supports exec-only page table entries. In that case,
2929 * ACC_USER_MASK and shadow_user_mask are used to represent
2930 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2931 */
2932 spte |= shadow_present_mask;
2933 if (!speculative)
2934 spte |= spte_shadow_accessed_mask(spte);
2935
2936 if (pte_access & ACC_EXEC_MASK)
2937 spte |= shadow_x_mask;
2938 else
2939 spte |= shadow_nx_mask;
2940
2941 if (pte_access & ACC_USER_MASK)
2942 spte |= shadow_user_mask;
2943
2944 if (level > PT_PAGE_TABLE_LEVEL)
2945 spte |= PT_PAGE_SIZE_MASK;
2946 if (tdp_enabled)
2947 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2948 kvm_is_mmio_pfn(pfn));
2949
2950 if (host_writable)
2951 spte |= SPTE_HOST_WRITEABLE;
2952 else
2953 pte_access &= ~ACC_WRITE_MASK;
2954
2955 if (!kvm_is_mmio_pfn(pfn))
2956 spte |= shadow_me_mask;
2957
2958 spte |= (u64)pfn << PAGE_SHIFT;
2959
2960 if (pte_access & ACC_WRITE_MASK) {
2961
2962 /*
2963 * Other vcpu creates new sp in the window between
2964 * mapping_level() and acquiring mmu-lock. We can
2965 * allow guest to retry the access, the mapping can
2966 * be fixed if guest refault.
2967 */
2968 if (level > PT_PAGE_TABLE_LEVEL &&
2969 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2970 goto done;
2971
2972 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2973
2974 /*
2975 * Optimization: for pte sync, if spte was writable the hash
2976 * lookup is unnecessary (and expensive). Write protection
2977 * is responsibility of mmu_get_page / kvm_sync_page.
2978 * Same reasoning can be applied to dirty page accounting.
2979 */
2980 if (!can_unsync && is_writable_pte(*sptep))
2981 goto set_pte;
2982
2983 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2984 pgprintk("%s: found shadow page for %llx, marking ro\n",
2985 __func__, gfn);
2986 ret |= SET_SPTE_WRITE_PROTECTED_PT;
2987 pte_access &= ~ACC_WRITE_MASK;
2988 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2989 }
2990 }
2991
2992 if (pte_access & ACC_WRITE_MASK) {
2993 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2994 spte |= spte_shadow_dirty_mask(spte);
2995 }
2996
2997 if (speculative)
2998 spte = mark_spte_for_access_track(spte);
2999
3000 set_pte:
3001 if (mmu_spte_update(sptep, spte))
3002 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3003 done:
3004 return ret;
3005 }
3006
3007 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3008 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3009 bool speculative, bool host_writable)
3010 {
3011 int was_rmapped = 0;
3012 int rmap_count;
3013 int set_spte_ret;
3014 int ret = RET_PF_RETRY;
3015 bool flush = false;
3016
3017 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3018 *sptep, write_fault, gfn);
3019
3020 if (is_shadow_present_pte(*sptep)) {
3021 /*
3022 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3023 * the parent of the now unreachable PTE.
3024 */
3025 if (level > PT_PAGE_TABLE_LEVEL &&
3026 !is_large_pte(*sptep)) {
3027 struct kvm_mmu_page *child;
3028 u64 pte = *sptep;
3029
3030 child = page_header(pte & PT64_BASE_ADDR_MASK);
3031 drop_parent_pte(child, sptep);
3032 flush = true;
3033 } else if (pfn != spte_to_pfn(*sptep)) {
3034 pgprintk("hfn old %llx new %llx\n",
3035 spte_to_pfn(*sptep), pfn);
3036 drop_spte(vcpu->kvm, sptep);
3037 flush = true;
3038 } else
3039 was_rmapped = 1;
3040 }
3041
3042 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3043 speculative, true, host_writable);
3044 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3045 if (write_fault)
3046 ret = RET_PF_EMULATE;
3047 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3048 }
3049
3050 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3051 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3052 KVM_PAGES_PER_HPAGE(level));
3053
3054 if (unlikely(is_mmio_spte(*sptep)))
3055 ret = RET_PF_EMULATE;
3056
3057 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3058 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
3059 is_large_pte(*sptep)? "2MB" : "4kB",
3060 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
3061 *sptep, sptep);
3062 if (!was_rmapped && is_large_pte(*sptep))
3063 ++vcpu->kvm->stat.lpages;
3064
3065 if (is_shadow_present_pte(*sptep)) {
3066 if (!was_rmapped) {
3067 rmap_count = rmap_add(vcpu, sptep, gfn);
3068 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3069 rmap_recycle(vcpu, sptep, gfn);
3070 }
3071 }
3072
3073 kvm_release_pfn_clean(pfn);
3074
3075 return ret;
3076 }
3077
3078 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3079 bool no_dirty_log)
3080 {
3081 struct kvm_memory_slot *slot;
3082
3083 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3084 if (!slot)
3085 return KVM_PFN_ERR_FAULT;
3086
3087 return gfn_to_pfn_memslot_atomic(slot, gfn);
3088 }
3089
3090 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3091 struct kvm_mmu_page *sp,
3092 u64 *start, u64 *end)
3093 {
3094 struct page *pages[PTE_PREFETCH_NUM];
3095 struct kvm_memory_slot *slot;
3096 unsigned access = sp->role.access;
3097 int i, ret;
3098 gfn_t gfn;
3099
3100 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3101 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3102 if (!slot)
3103 return -1;
3104
3105 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3106 if (ret <= 0)
3107 return -1;
3108
3109 for (i = 0; i < ret; i++, gfn++, start++)
3110 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3111 page_to_pfn(pages[i]), true, true);
3112
3113 return 0;
3114 }
3115
3116 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3117 struct kvm_mmu_page *sp, u64 *sptep)
3118 {
3119 u64 *spte, *start = NULL;
3120 int i;
3121
3122 WARN_ON(!sp->role.direct);
3123
3124 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3125 spte = sp->spt + i;
3126
3127 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3128 if (is_shadow_present_pte(*spte) || spte == sptep) {
3129 if (!start)
3130 continue;
3131 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3132 break;
3133 start = NULL;
3134 } else if (!start)
3135 start = spte;
3136 }
3137 }
3138
3139 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3140 {
3141 struct kvm_mmu_page *sp;
3142
3143 sp = page_header(__pa(sptep));
3144
3145 /*
3146 * Without accessed bits, there's no way to distinguish between
3147 * actually accessed translations and prefetched, so disable pte
3148 * prefetch if accessed bits aren't available.
3149 */
3150 if (sp_ad_disabled(sp))
3151 return;
3152
3153 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3154 return;
3155
3156 __direct_pte_prefetch(vcpu, sp, sptep);
3157 }
3158
3159 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
3160 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
3161 {
3162 struct kvm_shadow_walk_iterator iterator;
3163 struct kvm_mmu_page *sp;
3164 int emulate = 0;
3165 gfn_t pseudo_gfn;
3166
3167 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3168 return 0;
3169
3170 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
3171 if (iterator.level == level) {
3172 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3173 write, level, gfn, pfn, prefault,
3174 map_writable);
3175 direct_pte_prefetch(vcpu, iterator.sptep);
3176 ++vcpu->stat.pf_fixed;
3177 break;
3178 }
3179
3180 drop_large_spte(vcpu, iterator.sptep);
3181 if (!is_shadow_present_pte(*iterator.sptep)) {
3182 u64 base_addr = iterator.addr;
3183
3184 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3185 pseudo_gfn = base_addr >> PAGE_SHIFT;
3186 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
3187 iterator.level - 1, 1, ACC_ALL);
3188
3189 link_shadow_page(vcpu, iterator.sptep, sp);
3190 }
3191 }
3192 return emulate;
3193 }
3194
3195 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3196 {
3197 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3198 }
3199
3200 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3201 {
3202 /*
3203 * Do not cache the mmio info caused by writing the readonly gfn
3204 * into the spte otherwise read access on readonly gfn also can
3205 * caused mmio page fault and treat it as mmio access.
3206 */
3207 if (pfn == KVM_PFN_ERR_RO_FAULT)
3208 return RET_PF_EMULATE;
3209
3210 if (pfn == KVM_PFN_ERR_HWPOISON) {
3211 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3212 return RET_PF_RETRY;
3213 }
3214
3215 return -EFAULT;
3216 }
3217
3218 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3219 gfn_t *gfnp, kvm_pfn_t *pfnp,
3220 int *levelp)
3221 {
3222 kvm_pfn_t pfn = *pfnp;
3223 gfn_t gfn = *gfnp;
3224 int level = *levelp;
3225
3226 /*
3227 * Check if it's a transparent hugepage. If this would be an
3228 * hugetlbfs page, level wouldn't be set to
3229 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3230 * here.
3231 */
3232 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3233 level == PT_PAGE_TABLE_LEVEL &&
3234 PageTransCompoundMap(pfn_to_page(pfn)) &&
3235 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3236 unsigned long mask;
3237 /*
3238 * mmu_notifier_retry was successful and we hold the
3239 * mmu_lock here, so the pmd can't become splitting
3240 * from under us, and in turn
3241 * __split_huge_page_refcount() can't run from under
3242 * us and we can safely transfer the refcount from
3243 * PG_tail to PG_head as we switch the pfn to tail to
3244 * head.
3245 */
3246 *levelp = level = PT_DIRECTORY_LEVEL;
3247 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3248 VM_BUG_ON((gfn & mask) != (pfn & mask));
3249 if (pfn & mask) {
3250 gfn &= ~mask;
3251 *gfnp = gfn;
3252 kvm_release_pfn_clean(pfn);
3253 pfn &= ~mask;
3254 kvm_get_pfn(pfn);
3255 *pfnp = pfn;
3256 }
3257 }
3258 }
3259
3260 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3261 kvm_pfn_t pfn, unsigned access, int *ret_val)
3262 {
3263 /* The pfn is invalid, report the error! */
3264 if (unlikely(is_error_pfn(pfn))) {
3265 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3266 return true;
3267 }
3268
3269 if (unlikely(is_noslot_pfn(pfn)))
3270 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3271
3272 return false;
3273 }
3274
3275 static bool page_fault_can_be_fast(u32 error_code)
3276 {
3277 /*
3278 * Do not fix the mmio spte with invalid generation number which
3279 * need to be updated by slow page fault path.
3280 */
3281 if (unlikely(error_code & PFERR_RSVD_MASK))
3282 return false;
3283
3284 /* See if the page fault is due to an NX violation */
3285 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3286 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3287 return false;
3288
3289 /*
3290 * #PF can be fast if:
3291 * 1. The shadow page table entry is not present, which could mean that
3292 * the fault is potentially caused by access tracking (if enabled).
3293 * 2. The shadow page table entry is present and the fault
3294 * is caused by write-protect, that means we just need change the W
3295 * bit of the spte which can be done out of mmu-lock.
3296 *
3297 * However, if access tracking is disabled we know that a non-present
3298 * page must be a genuine page fault where we have to create a new SPTE.
3299 * So, if access tracking is disabled, we return true only for write
3300 * accesses to a present page.
3301 */
3302
3303 return shadow_acc_track_mask != 0 ||
3304 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3305 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3306 }
3307
3308 /*
3309 * Returns true if the SPTE was fixed successfully. Otherwise,
3310 * someone else modified the SPTE from its original value.
3311 */
3312 static bool
3313 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3314 u64 *sptep, u64 old_spte, u64 new_spte)
3315 {
3316 gfn_t gfn;
3317
3318 WARN_ON(!sp->role.direct);
3319
3320 /*
3321 * Theoretically we could also set dirty bit (and flush TLB) here in
3322 * order to eliminate unnecessary PML logging. See comments in
3323 * set_spte. But fast_page_fault is very unlikely to happen with PML
3324 * enabled, so we do not do this. This might result in the same GPA
3325 * to be logged in PML buffer again when the write really happens, and
3326 * eventually to be called by mark_page_dirty twice. But it's also no
3327 * harm. This also avoids the TLB flush needed after setting dirty bit
3328 * so non-PML cases won't be impacted.
3329 *
3330 * Compare with set_spte where instead shadow_dirty_mask is set.
3331 */
3332 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3333 return false;
3334
3335 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3336 /*
3337 * The gfn of direct spte is stable since it is
3338 * calculated by sp->gfn.
3339 */
3340 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3341 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3342 }
3343
3344 return true;
3345 }
3346
3347 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3348 {
3349 if (fault_err_code & PFERR_FETCH_MASK)
3350 return is_executable_pte(spte);
3351
3352 if (fault_err_code & PFERR_WRITE_MASK)
3353 return is_writable_pte(spte);
3354
3355 /* Fault was on Read access */
3356 return spte & PT_PRESENT_MASK;
3357 }
3358
3359 /*
3360 * Return value:
3361 * - true: let the vcpu to access on the same address again.
3362 * - false: let the real page fault path to fix it.
3363 */
3364 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3365 u32 error_code)
3366 {
3367 struct kvm_shadow_walk_iterator iterator;
3368 struct kvm_mmu_page *sp;
3369 bool fault_handled = false;
3370 u64 spte = 0ull;
3371 uint retry_count = 0;
3372
3373 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3374 return false;
3375
3376 if (!page_fault_can_be_fast(error_code))
3377 return false;
3378
3379 walk_shadow_page_lockless_begin(vcpu);
3380
3381 do {
3382 u64 new_spte;
3383
3384 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3385 if (!is_shadow_present_pte(spte) ||
3386 iterator.level < level)
3387 break;
3388
3389 sp = page_header(__pa(iterator.sptep));
3390 if (!is_last_spte(spte, sp->role.level))
3391 break;
3392
3393 /*
3394 * Check whether the memory access that caused the fault would
3395 * still cause it if it were to be performed right now. If not,
3396 * then this is a spurious fault caused by TLB lazily flushed,
3397 * or some other CPU has already fixed the PTE after the
3398 * current CPU took the fault.
3399 *
3400 * Need not check the access of upper level table entries since
3401 * they are always ACC_ALL.
3402 */
3403 if (is_access_allowed(error_code, spte)) {
3404 fault_handled = true;
3405 break;
3406 }
3407
3408 new_spte = spte;
3409
3410 if (is_access_track_spte(spte))
3411 new_spte = restore_acc_track_spte(new_spte);
3412
3413 /*
3414 * Currently, to simplify the code, write-protection can
3415 * be removed in the fast path only if the SPTE was
3416 * write-protected for dirty-logging or access tracking.
3417 */
3418 if ((error_code & PFERR_WRITE_MASK) &&
3419 spte_can_locklessly_be_made_writable(spte))
3420 {
3421 new_spte |= PT_WRITABLE_MASK;
3422
3423 /*
3424 * Do not fix write-permission on the large spte. Since
3425 * we only dirty the first page into the dirty-bitmap in
3426 * fast_pf_fix_direct_spte(), other pages are missed
3427 * if its slot has dirty logging enabled.
3428 *
3429 * Instead, we let the slow page fault path create a
3430 * normal spte to fix the access.
3431 *
3432 * See the comments in kvm_arch_commit_memory_region().
3433 */
3434 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3435 break;
3436 }
3437
3438 /* Verify that the fault can be handled in the fast path */
3439 if (new_spte == spte ||
3440 !is_access_allowed(error_code, new_spte))
3441 break;
3442
3443 /*
3444 * Currently, fast page fault only works for direct mapping
3445 * since the gfn is not stable for indirect shadow page. See
3446 * Documentation/virtual/kvm/locking.txt to get more detail.
3447 */
3448 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3449 iterator.sptep, spte,
3450 new_spte);
3451 if (fault_handled)
3452 break;
3453
3454 if (++retry_count > 4) {
3455 printk_once(KERN_WARNING
3456 "kvm: Fast #PF retrying more than 4 times.\n");
3457 break;
3458 }
3459
3460 } while (true);
3461
3462 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3463 spte, fault_handled);
3464 walk_shadow_page_lockless_end(vcpu);
3465
3466 return fault_handled;
3467 }
3468
3469 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3470 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3471 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3472
3473 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3474 gfn_t gfn, bool prefault)
3475 {
3476 int r;
3477 int level;
3478 bool force_pt_level = false;
3479 kvm_pfn_t pfn;
3480 unsigned long mmu_seq;
3481 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3482
3483 level = mapping_level(vcpu, gfn, &force_pt_level);
3484 if (likely(!force_pt_level)) {
3485 /*
3486 * This path builds a PAE pagetable - so we can map
3487 * 2mb pages at maximum. Therefore check if the level
3488 * is larger than that.
3489 */
3490 if (level > PT_DIRECTORY_LEVEL)
3491 level = PT_DIRECTORY_LEVEL;
3492
3493 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3494 }
3495
3496 if (fast_page_fault(vcpu, v, level, error_code))
3497 return RET_PF_RETRY;
3498
3499 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3500 smp_rmb();
3501
3502 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3503 return RET_PF_RETRY;
3504
3505 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3506 return r;
3507
3508 spin_lock(&vcpu->kvm->mmu_lock);
3509 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3510 goto out_unlock;
3511 if (make_mmu_pages_available(vcpu) < 0)
3512 goto out_unlock;
3513 if (likely(!force_pt_level))
3514 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3515 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3516 spin_unlock(&vcpu->kvm->mmu_lock);
3517
3518 return r;
3519
3520 out_unlock:
3521 spin_unlock(&vcpu->kvm->mmu_lock);
3522 kvm_release_pfn_clean(pfn);
3523 return RET_PF_RETRY;
3524 }
3525
3526 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3527 struct list_head *invalid_list)
3528 {
3529 struct kvm_mmu_page *sp;
3530
3531 if (!VALID_PAGE(*root_hpa))
3532 return;
3533
3534 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3535 --sp->root_count;
3536 if (!sp->root_count && sp->role.invalid)
3537 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3538
3539 *root_hpa = INVALID_PAGE;
3540 }
3541
3542 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3543 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3544 ulong roots_to_free)
3545 {
3546 int i;
3547 LIST_HEAD(invalid_list);
3548 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3549
3550 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3551
3552 /* Before acquiring the MMU lock, see if we need to do any real work. */
3553 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3554 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3555 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3556 VALID_PAGE(mmu->prev_roots[i].hpa))
3557 break;
3558
3559 if (i == KVM_MMU_NUM_PREV_ROOTS)
3560 return;
3561 }
3562
3563 spin_lock(&vcpu->kvm->mmu_lock);
3564
3565 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3566 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3567 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3568 &invalid_list);
3569
3570 if (free_active_root) {
3571 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3572 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3573 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3574 &invalid_list);
3575 } else {
3576 for (i = 0; i < 4; ++i)
3577 if (mmu->pae_root[i] != 0)
3578 mmu_free_root_page(vcpu->kvm,
3579 &mmu->pae_root[i],
3580 &invalid_list);
3581 mmu->root_hpa = INVALID_PAGE;
3582 }
3583 mmu->root_cr3 = 0;
3584 }
3585
3586 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3587 spin_unlock(&vcpu->kvm->mmu_lock);
3588 }
3589 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3590
3591 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3592 {
3593 int ret = 0;
3594
3595 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3596 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3597 ret = 1;
3598 }
3599
3600 return ret;
3601 }
3602
3603 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3604 {
3605 struct kvm_mmu_page *sp;
3606 unsigned i;
3607
3608 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3609 spin_lock(&vcpu->kvm->mmu_lock);
3610 if(make_mmu_pages_available(vcpu) < 0) {
3611 spin_unlock(&vcpu->kvm->mmu_lock);
3612 return -ENOSPC;
3613 }
3614 sp = kvm_mmu_get_page(vcpu, 0, 0,
3615 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3616 ++sp->root_count;
3617 spin_unlock(&vcpu->kvm->mmu_lock);
3618 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3619 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3620 for (i = 0; i < 4; ++i) {
3621 hpa_t root = vcpu->arch.mmu->pae_root[i];
3622
3623 MMU_WARN_ON(VALID_PAGE(root));
3624 spin_lock(&vcpu->kvm->mmu_lock);
3625 if (make_mmu_pages_available(vcpu) < 0) {
3626 spin_unlock(&vcpu->kvm->mmu_lock);
3627 return -ENOSPC;
3628 }
3629 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3630 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3631 root = __pa(sp->spt);
3632 ++sp->root_count;
3633 spin_unlock(&vcpu->kvm->mmu_lock);
3634 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3635 }
3636 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3637 } else
3638 BUG();
3639 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3640
3641 return 0;
3642 }
3643
3644 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3645 {
3646 struct kvm_mmu_page *sp;
3647 u64 pdptr, pm_mask;
3648 gfn_t root_gfn, root_cr3;
3649 int i;
3650
3651 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3652 root_gfn = root_cr3 >> PAGE_SHIFT;
3653
3654 if (mmu_check_root(vcpu, root_gfn))
3655 return 1;
3656
3657 /*
3658 * Do we shadow a long mode page table? If so we need to
3659 * write-protect the guests page table root.
3660 */
3661 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3662 hpa_t root = vcpu->arch.mmu->root_hpa;
3663
3664 MMU_WARN_ON(VALID_PAGE(root));
3665
3666 spin_lock(&vcpu->kvm->mmu_lock);
3667 if (make_mmu_pages_available(vcpu) < 0) {
3668 spin_unlock(&vcpu->kvm->mmu_lock);
3669 return -ENOSPC;
3670 }
3671 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3672 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3673 root = __pa(sp->spt);
3674 ++sp->root_count;
3675 spin_unlock(&vcpu->kvm->mmu_lock);
3676 vcpu->arch.mmu->root_hpa = root;
3677 goto set_root_cr3;
3678 }
3679
3680 /*
3681 * We shadow a 32 bit page table. This may be a legacy 2-level
3682 * or a PAE 3-level page table. In either case we need to be aware that
3683 * the shadow page table may be a PAE or a long mode page table.
3684 */
3685 pm_mask = PT_PRESENT_MASK;
3686 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3687 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3688
3689 for (i = 0; i < 4; ++i) {
3690 hpa_t root = vcpu->arch.mmu->pae_root[i];
3691
3692 MMU_WARN_ON(VALID_PAGE(root));
3693 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3694 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3695 if (!(pdptr & PT_PRESENT_MASK)) {
3696 vcpu->arch.mmu->pae_root[i] = 0;
3697 continue;
3698 }
3699 root_gfn = pdptr >> PAGE_SHIFT;
3700 if (mmu_check_root(vcpu, root_gfn))
3701 return 1;
3702 }
3703 spin_lock(&vcpu->kvm->mmu_lock);
3704 if (make_mmu_pages_available(vcpu) < 0) {
3705 spin_unlock(&vcpu->kvm->mmu_lock);
3706 return -ENOSPC;
3707 }
3708 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3709 0, ACC_ALL);
3710 root = __pa(sp->spt);
3711 ++sp->root_count;
3712 spin_unlock(&vcpu->kvm->mmu_lock);
3713
3714 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3715 }
3716 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3717
3718 /*
3719 * If we shadow a 32 bit page table with a long mode page
3720 * table we enter this path.
3721 */
3722 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3723 if (vcpu->arch.mmu->lm_root == NULL) {
3724 /*
3725 * The additional page necessary for this is only
3726 * allocated on demand.
3727 */
3728
3729 u64 *lm_root;
3730
3731 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3732 if (lm_root == NULL)
3733 return 1;
3734
3735 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3736
3737 vcpu->arch.mmu->lm_root = lm_root;
3738 }
3739
3740 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3741 }
3742
3743 set_root_cr3:
3744 vcpu->arch.mmu->root_cr3 = root_cr3;
3745
3746 return 0;
3747 }
3748
3749 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3750 {
3751 if (vcpu->arch.mmu->direct_map)
3752 return mmu_alloc_direct_roots(vcpu);
3753 else
3754 return mmu_alloc_shadow_roots(vcpu);
3755 }
3756
3757 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3758 {
3759 int i;
3760 struct kvm_mmu_page *sp;
3761
3762 if (vcpu->arch.mmu->direct_map)
3763 return;
3764
3765 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3766 return;
3767
3768 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3769
3770 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3771 hpa_t root = vcpu->arch.mmu->root_hpa;
3772 sp = page_header(root);
3773
3774 /*
3775 * Even if another CPU was marking the SP as unsync-ed
3776 * simultaneously, any guest page table changes are not
3777 * guaranteed to be visible anyway until this VCPU issues a TLB
3778 * flush strictly after those changes are made. We only need to
3779 * ensure that the other CPU sets these flags before any actual
3780 * changes to the page tables are made. The comments in
3781 * mmu_need_write_protect() describe what could go wrong if this
3782 * requirement isn't satisfied.
3783 */
3784 if (!smp_load_acquire(&sp->unsync) &&
3785 !smp_load_acquire(&sp->unsync_children))
3786 return;
3787
3788 spin_lock(&vcpu->kvm->mmu_lock);
3789 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3790
3791 mmu_sync_children(vcpu, sp);
3792
3793 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3794 spin_unlock(&vcpu->kvm->mmu_lock);
3795 return;
3796 }
3797
3798 spin_lock(&vcpu->kvm->mmu_lock);
3799 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3800
3801 for (i = 0; i < 4; ++i) {
3802 hpa_t root = vcpu->arch.mmu->pae_root[i];
3803
3804 if (root && VALID_PAGE(root)) {
3805 root &= PT64_BASE_ADDR_MASK;
3806 sp = page_header(root);
3807 mmu_sync_children(vcpu, sp);
3808 }
3809 }
3810
3811 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3812 spin_unlock(&vcpu->kvm->mmu_lock);
3813 }
3814 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3815
3816 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3817 u32 access, struct x86_exception *exception)
3818 {
3819 if (exception)
3820 exception->error_code = 0;
3821 return vaddr;
3822 }
3823
3824 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3825 u32 access,
3826 struct x86_exception *exception)
3827 {
3828 if (exception)
3829 exception->error_code = 0;
3830 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3831 }
3832
3833 static bool
3834 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3835 {
3836 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3837
3838 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3839 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3840 }
3841
3842 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3843 {
3844 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3845 }
3846
3847 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3848 {
3849 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3850 }
3851
3852 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3853 {
3854 /*
3855 * A nested guest cannot use the MMIO cache if it is using nested
3856 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3857 */
3858 if (mmu_is_nested(vcpu))
3859 return false;
3860
3861 if (direct)
3862 return vcpu_match_mmio_gpa(vcpu, addr);
3863
3864 return vcpu_match_mmio_gva(vcpu, addr);
3865 }
3866
3867 /* return true if reserved bit is detected on spte. */
3868 static bool
3869 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3870 {
3871 struct kvm_shadow_walk_iterator iterator;
3872 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3873 int root, leaf;
3874 bool reserved = false;
3875
3876 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3877 goto exit;
3878
3879 walk_shadow_page_lockless_begin(vcpu);
3880
3881 for (shadow_walk_init(&iterator, vcpu, addr),
3882 leaf = root = iterator.level;
3883 shadow_walk_okay(&iterator);
3884 __shadow_walk_next(&iterator, spte)) {
3885 spte = mmu_spte_get_lockless(iterator.sptep);
3886
3887 sptes[leaf - 1] = spte;
3888 leaf--;
3889
3890 if (!is_shadow_present_pte(spte))
3891 break;
3892
3893 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
3894 iterator.level);
3895 }
3896
3897 walk_shadow_page_lockless_end(vcpu);
3898
3899 if (reserved) {
3900 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3901 __func__, addr);
3902 while (root > leaf) {
3903 pr_err("------ spte 0x%llx level %d.\n",
3904 sptes[root - 1], root);
3905 root--;
3906 }
3907 }
3908 exit:
3909 *sptep = spte;
3910 return reserved;
3911 }
3912
3913 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3914 {
3915 u64 spte;
3916 bool reserved;
3917
3918 if (mmio_info_in_cache(vcpu, addr, direct))
3919 return RET_PF_EMULATE;
3920
3921 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3922 if (WARN_ON(reserved))
3923 return -EINVAL;
3924
3925 if (is_mmio_spte(spte)) {
3926 gfn_t gfn = get_mmio_spte_gfn(spte);
3927 unsigned access = get_mmio_spte_access(spte);
3928
3929 if (!check_mmio_spte(vcpu, spte))
3930 return RET_PF_INVALID;
3931
3932 if (direct)
3933 addr = 0;
3934
3935 trace_handle_mmio_page_fault(addr, gfn, access);
3936 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3937 return RET_PF_EMULATE;
3938 }
3939
3940 /*
3941 * If the page table is zapped by other cpus, let CPU fault again on
3942 * the address.
3943 */
3944 return RET_PF_RETRY;
3945 }
3946
3947 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3948 u32 error_code, gfn_t gfn)
3949 {
3950 if (unlikely(error_code & PFERR_RSVD_MASK))
3951 return false;
3952
3953 if (!(error_code & PFERR_PRESENT_MASK) ||
3954 !(error_code & PFERR_WRITE_MASK))
3955 return false;
3956
3957 /*
3958 * guest is writing the page which is write tracked which can
3959 * not be fixed by page fault handler.
3960 */
3961 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3962 return true;
3963
3964 return false;
3965 }
3966
3967 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3968 {
3969 struct kvm_shadow_walk_iterator iterator;
3970 u64 spte;
3971
3972 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3973 return;
3974
3975 walk_shadow_page_lockless_begin(vcpu);
3976 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3977 clear_sp_write_flooding_count(iterator.sptep);
3978 if (!is_shadow_present_pte(spte))
3979 break;
3980 }
3981 walk_shadow_page_lockless_end(vcpu);
3982 }
3983
3984 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3985 u32 error_code, bool prefault)
3986 {
3987 gfn_t gfn = gva >> PAGE_SHIFT;
3988 int r;
3989
3990 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3991
3992 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3993 return RET_PF_EMULATE;
3994
3995 r = mmu_topup_memory_caches(vcpu);
3996 if (r)
3997 return r;
3998
3999 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4000
4001
4002 return nonpaging_map(vcpu, gva & PAGE_MASK,
4003 error_code, gfn, prefault);
4004 }
4005
4006 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
4007 {
4008 struct kvm_arch_async_pf arch;
4009
4010 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4011 arch.gfn = gfn;
4012 arch.direct_map = vcpu->arch.mmu->direct_map;
4013 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4014
4015 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4016 }
4017
4018 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
4019 {
4020 if (unlikely(!lapic_in_kernel(vcpu) ||
4021 kvm_event_needs_reinjection(vcpu) ||
4022 vcpu->arch.exception.pending))
4023 return false;
4024
4025 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
4026 return false;
4027
4028 return kvm_x86_ops->interrupt_allowed(vcpu);
4029 }
4030
4031 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4032 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
4033 {
4034 struct kvm_memory_slot *slot;
4035 bool async;
4036
4037 /*
4038 * Don't expose private memslots to L2.
4039 */
4040 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4041 *pfn = KVM_PFN_NOSLOT;
4042 return false;
4043 }
4044
4045 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4046 async = false;
4047 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4048 if (!async)
4049 return false; /* *pfn has correct page already */
4050
4051 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4052 trace_kvm_try_async_get_page(gva, gfn);
4053 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4054 trace_kvm_async_pf_doublefault(gva, gfn);
4055 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4056 return true;
4057 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4058 return true;
4059 }
4060
4061 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4062 return false;
4063 }
4064
4065 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4066 u64 fault_address, char *insn, int insn_len)
4067 {
4068 int r = 1;
4069
4070 vcpu->arch.l1tf_flush_l1d = true;
4071 switch (vcpu->arch.apf.host_apf_reason) {
4072 default:
4073 trace_kvm_page_fault(fault_address, error_code);
4074
4075 if (kvm_event_needs_reinjection(vcpu))
4076 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4077 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4078 insn_len);
4079 break;
4080 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4081 vcpu->arch.apf.host_apf_reason = 0;
4082 local_irq_disable();
4083 kvm_async_pf_task_wait(fault_address, 0);
4084 local_irq_enable();
4085 break;
4086 case KVM_PV_REASON_PAGE_READY:
4087 vcpu->arch.apf.host_apf_reason = 0;
4088 local_irq_disable();
4089 kvm_async_pf_task_wake(fault_address);
4090 local_irq_enable();
4091 break;
4092 }
4093 return r;
4094 }
4095 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4096
4097 static bool
4098 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4099 {
4100 int page_num = KVM_PAGES_PER_HPAGE(level);
4101
4102 gfn &= ~(page_num - 1);
4103
4104 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4105 }
4106
4107 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
4108 bool prefault)
4109 {
4110 kvm_pfn_t pfn;
4111 int r;
4112 int level;
4113 bool force_pt_level;
4114 gfn_t gfn = gpa >> PAGE_SHIFT;
4115 unsigned long mmu_seq;
4116 int write = error_code & PFERR_WRITE_MASK;
4117 bool map_writable;
4118
4119 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4120
4121 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4122 return RET_PF_EMULATE;
4123
4124 r = mmu_topup_memory_caches(vcpu);
4125 if (r)
4126 return r;
4127
4128 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4129 PT_DIRECTORY_LEVEL);
4130 level = mapping_level(vcpu, gfn, &force_pt_level);
4131 if (likely(!force_pt_level)) {
4132 if (level > PT_DIRECTORY_LEVEL &&
4133 !check_hugepage_cache_consistency(vcpu, gfn, level))
4134 level = PT_DIRECTORY_LEVEL;
4135 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4136 }
4137
4138 if (fast_page_fault(vcpu, gpa, level, error_code))
4139 return RET_PF_RETRY;
4140
4141 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4142 smp_rmb();
4143
4144 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4145 return RET_PF_RETRY;
4146
4147 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4148 return r;
4149
4150 spin_lock(&vcpu->kvm->mmu_lock);
4151 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4152 goto out_unlock;
4153 if (make_mmu_pages_available(vcpu) < 0)
4154 goto out_unlock;
4155 if (likely(!force_pt_level))
4156 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
4157 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
4158 spin_unlock(&vcpu->kvm->mmu_lock);
4159
4160 return r;
4161
4162 out_unlock:
4163 spin_unlock(&vcpu->kvm->mmu_lock);
4164 kvm_release_pfn_clean(pfn);
4165 return RET_PF_RETRY;
4166 }
4167
4168 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4169 struct kvm_mmu *context)
4170 {
4171 context->page_fault = nonpaging_page_fault;
4172 context->gva_to_gpa = nonpaging_gva_to_gpa;
4173 context->sync_page = nonpaging_sync_page;
4174 context->invlpg = nonpaging_invlpg;
4175 context->update_pte = nonpaging_update_pte;
4176 context->root_level = 0;
4177 context->shadow_root_level = PT32E_ROOT_LEVEL;
4178 context->direct_map = true;
4179 context->nx = false;
4180 }
4181
4182 /*
4183 * Find out if a previously cached root matching the new CR3/role is available.
4184 * The current root is also inserted into the cache.
4185 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4186 * returned.
4187 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4188 * false is returned. This root should now be freed by the caller.
4189 */
4190 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4191 union kvm_mmu_page_role new_role)
4192 {
4193 uint i;
4194 struct kvm_mmu_root_info root;
4195 struct kvm_mmu *mmu = vcpu->arch.mmu;
4196
4197 root.cr3 = mmu->root_cr3;
4198 root.hpa = mmu->root_hpa;
4199
4200 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4201 swap(root, mmu->prev_roots[i]);
4202
4203 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4204 page_header(root.hpa) != NULL &&
4205 new_role.word == page_header(root.hpa)->role.word)
4206 break;
4207 }
4208
4209 mmu->root_hpa = root.hpa;
4210 mmu->root_cr3 = root.cr3;
4211
4212 return i < KVM_MMU_NUM_PREV_ROOTS;
4213 }
4214
4215 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4216 union kvm_mmu_page_role new_role,
4217 bool skip_tlb_flush)
4218 {
4219 struct kvm_mmu *mmu = vcpu->arch.mmu;
4220
4221 /*
4222 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4223 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4224 * later if necessary.
4225 */
4226 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4227 mmu->root_level >= PT64_ROOT_4LEVEL) {
4228 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4229 return false;
4230
4231 if (cached_root_available(vcpu, new_cr3, new_role)) {
4232 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4233 if (!skip_tlb_flush) {
4234 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4235 kvm_x86_ops->tlb_flush(vcpu, true);
4236 }
4237
4238 /*
4239 * The last MMIO access's GVA and GPA are cached in the
4240 * VCPU. When switching to a new CR3, that GVA->GPA
4241 * mapping may no longer be valid. So clear any cached
4242 * MMIO info even when we don't need to sync the shadow
4243 * page tables.
4244 */
4245 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4246
4247 __clear_sp_write_flooding_count(
4248 page_header(mmu->root_hpa));
4249
4250 return true;
4251 }
4252 }
4253
4254 return false;
4255 }
4256
4257 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4258 union kvm_mmu_page_role new_role,
4259 bool skip_tlb_flush)
4260 {
4261 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4262 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4263 KVM_MMU_ROOT_CURRENT);
4264 }
4265
4266 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4267 {
4268 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4269 skip_tlb_flush);
4270 }
4271 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4272
4273 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4274 {
4275 return kvm_read_cr3(vcpu);
4276 }
4277
4278 static void inject_page_fault(struct kvm_vcpu *vcpu,
4279 struct x86_exception *fault)
4280 {
4281 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4282 }
4283
4284 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4285 unsigned access, int *nr_present)
4286 {
4287 if (unlikely(is_mmio_spte(*sptep))) {
4288 if (gfn != get_mmio_spte_gfn(*sptep)) {
4289 mmu_spte_clear_no_track(sptep);
4290 return true;
4291 }
4292
4293 (*nr_present)++;
4294 mark_mmio_spte(vcpu, sptep, gfn, access);
4295 return true;
4296 }
4297
4298 return false;
4299 }
4300
4301 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4302 unsigned level, unsigned gpte)
4303 {
4304 /*
4305 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4306 * If it is clear, there are no large pages at this level, so clear
4307 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4308 */
4309 gpte &= level - mmu->last_nonleaf_level;
4310
4311 /*
4312 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4313 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4314 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4315 */
4316 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4317
4318 return gpte & PT_PAGE_SIZE_MASK;
4319 }
4320
4321 #define PTTYPE_EPT 18 /* arbitrary */
4322 #define PTTYPE PTTYPE_EPT
4323 #include "paging_tmpl.h"
4324 #undef PTTYPE
4325
4326 #define PTTYPE 64
4327 #include "paging_tmpl.h"
4328 #undef PTTYPE
4329
4330 #define PTTYPE 32
4331 #include "paging_tmpl.h"
4332 #undef PTTYPE
4333
4334 static void
4335 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4336 struct rsvd_bits_validate *rsvd_check,
4337 int maxphyaddr, int level, bool nx, bool gbpages,
4338 bool pse, bool amd)
4339 {
4340 u64 exb_bit_rsvd = 0;
4341 u64 gbpages_bit_rsvd = 0;
4342 u64 nonleaf_bit8_rsvd = 0;
4343
4344 rsvd_check->bad_mt_xwr = 0;
4345
4346 if (!nx)
4347 exb_bit_rsvd = rsvd_bits(63, 63);
4348 if (!gbpages)
4349 gbpages_bit_rsvd = rsvd_bits(7, 7);
4350
4351 /*
4352 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4353 * leaf entries) on AMD CPUs only.
4354 */
4355 if (amd)
4356 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4357
4358 switch (level) {
4359 case PT32_ROOT_LEVEL:
4360 /* no rsvd bits for 2 level 4K page table entries */
4361 rsvd_check->rsvd_bits_mask[0][1] = 0;
4362 rsvd_check->rsvd_bits_mask[0][0] = 0;
4363 rsvd_check->rsvd_bits_mask[1][0] =
4364 rsvd_check->rsvd_bits_mask[0][0];
4365
4366 if (!pse) {
4367 rsvd_check->rsvd_bits_mask[1][1] = 0;
4368 break;
4369 }
4370
4371 if (is_cpuid_PSE36())
4372 /* 36bits PSE 4MB page */
4373 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4374 else
4375 /* 32 bits PSE 4MB page */
4376 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4377 break;
4378 case PT32E_ROOT_LEVEL:
4379 rsvd_check->rsvd_bits_mask[0][2] =
4380 rsvd_bits(maxphyaddr, 63) |
4381 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4382 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4383 rsvd_bits(maxphyaddr, 62); /* PDE */
4384 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4385 rsvd_bits(maxphyaddr, 62); /* PTE */
4386 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4387 rsvd_bits(maxphyaddr, 62) |
4388 rsvd_bits(13, 20); /* large page */
4389 rsvd_check->rsvd_bits_mask[1][0] =
4390 rsvd_check->rsvd_bits_mask[0][0];
4391 break;
4392 case PT64_ROOT_5LEVEL:
4393 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4394 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4395 rsvd_bits(maxphyaddr, 51);
4396 rsvd_check->rsvd_bits_mask[1][4] =
4397 rsvd_check->rsvd_bits_mask[0][4];
4398 /* fall through */
4399 case PT64_ROOT_4LEVEL:
4400 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4401 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4402 rsvd_bits(maxphyaddr, 51);
4403 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4404 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4405 rsvd_bits(maxphyaddr, 51);
4406 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4407 rsvd_bits(maxphyaddr, 51);
4408 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4409 rsvd_bits(maxphyaddr, 51);
4410 rsvd_check->rsvd_bits_mask[1][3] =
4411 rsvd_check->rsvd_bits_mask[0][3];
4412 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4413 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4414 rsvd_bits(13, 29);
4415 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4416 rsvd_bits(maxphyaddr, 51) |
4417 rsvd_bits(13, 20); /* large page */
4418 rsvd_check->rsvd_bits_mask[1][0] =
4419 rsvd_check->rsvd_bits_mask[0][0];
4420 break;
4421 }
4422 }
4423
4424 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4425 struct kvm_mmu *context)
4426 {
4427 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4428 cpuid_maxphyaddr(vcpu), context->root_level,
4429 context->nx,
4430 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4431 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4432 }
4433
4434 static void
4435 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4436 int maxphyaddr, bool execonly)
4437 {
4438 u64 bad_mt_xwr;
4439
4440 rsvd_check->rsvd_bits_mask[0][4] =
4441 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4442 rsvd_check->rsvd_bits_mask[0][3] =
4443 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4444 rsvd_check->rsvd_bits_mask[0][2] =
4445 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4446 rsvd_check->rsvd_bits_mask[0][1] =
4447 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4448 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4449
4450 /* large page */
4451 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4452 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4453 rsvd_check->rsvd_bits_mask[1][2] =
4454 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4455 rsvd_check->rsvd_bits_mask[1][1] =
4456 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4457 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4458
4459 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4460 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4461 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4462 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4463 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4464 if (!execonly) {
4465 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4466 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4467 }
4468 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4469 }
4470
4471 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4472 struct kvm_mmu *context, bool execonly)
4473 {
4474 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4475 cpuid_maxphyaddr(vcpu), execonly);
4476 }
4477
4478 /*
4479 * the page table on host is the shadow page table for the page
4480 * table in guest or amd nested guest, its mmu features completely
4481 * follow the features in guest.
4482 */
4483 void
4484 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4485 {
4486 bool uses_nx = context->nx ||
4487 context->mmu_role.base.smep_andnot_wp;
4488 struct rsvd_bits_validate *shadow_zero_check;
4489 int i;
4490
4491 /*
4492 * Passing "true" to the last argument is okay; it adds a check
4493 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4494 */
4495 shadow_zero_check = &context->shadow_zero_check;
4496 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4497 boot_cpu_data.x86_phys_bits,
4498 context->shadow_root_level, uses_nx,
4499 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4500 is_pse(vcpu), true);
4501
4502 if (!shadow_me_mask)
4503 return;
4504
4505 for (i = context->shadow_root_level; --i >= 0;) {
4506 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4507 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4508 }
4509
4510 }
4511 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4512
4513 static inline bool boot_cpu_is_amd(void)
4514 {
4515 WARN_ON_ONCE(!tdp_enabled);
4516 return shadow_x_mask == 0;
4517 }
4518
4519 /*
4520 * the direct page table on host, use as much mmu features as
4521 * possible, however, kvm currently does not do execution-protection.
4522 */
4523 static void
4524 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4525 struct kvm_mmu *context)
4526 {
4527 struct rsvd_bits_validate *shadow_zero_check;
4528 int i;
4529
4530 shadow_zero_check = &context->shadow_zero_check;
4531
4532 if (boot_cpu_is_amd())
4533 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4534 boot_cpu_data.x86_phys_bits,
4535 context->shadow_root_level, false,
4536 boot_cpu_has(X86_FEATURE_GBPAGES),
4537 true, true);
4538 else
4539 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4540 boot_cpu_data.x86_phys_bits,
4541 false);
4542
4543 if (!shadow_me_mask)
4544 return;
4545
4546 for (i = context->shadow_root_level; --i >= 0;) {
4547 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4548 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4549 }
4550 }
4551
4552 /*
4553 * as the comments in reset_shadow_zero_bits_mask() except it
4554 * is the shadow page table for intel nested guest.
4555 */
4556 static void
4557 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4558 struct kvm_mmu *context, bool execonly)
4559 {
4560 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4561 boot_cpu_data.x86_phys_bits, execonly);
4562 }
4563
4564 #define BYTE_MASK(access) \
4565 ((1 & (access) ? 2 : 0) | \
4566 (2 & (access) ? 4 : 0) | \
4567 (3 & (access) ? 8 : 0) | \
4568 (4 & (access) ? 16 : 0) | \
4569 (5 & (access) ? 32 : 0) | \
4570 (6 & (access) ? 64 : 0) | \
4571 (7 & (access) ? 128 : 0))
4572
4573
4574 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4575 struct kvm_mmu *mmu, bool ept)
4576 {
4577 unsigned byte;
4578
4579 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4580 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4581 const u8 u = BYTE_MASK(ACC_USER_MASK);
4582
4583 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4584 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4585 bool cr0_wp = is_write_protection(vcpu);
4586
4587 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4588 unsigned pfec = byte << 1;
4589
4590 /*
4591 * Each "*f" variable has a 1 bit for each UWX value
4592 * that causes a fault with the given PFEC.
4593 */
4594
4595 /* Faults from writes to non-writable pages */
4596 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4597 /* Faults from user mode accesses to supervisor pages */
4598 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4599 /* Faults from fetches of non-executable pages*/
4600 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4601 /* Faults from kernel mode fetches of user pages */
4602 u8 smepf = 0;
4603 /* Faults from kernel mode accesses of user pages */
4604 u8 smapf = 0;
4605
4606 if (!ept) {
4607 /* Faults from kernel mode accesses to user pages */
4608 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4609
4610 /* Not really needed: !nx will cause pte.nx to fault */
4611 if (!mmu->nx)
4612 ff = 0;
4613
4614 /* Allow supervisor writes if !cr0.wp */
4615 if (!cr0_wp)
4616 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4617
4618 /* Disallow supervisor fetches of user code if cr4.smep */
4619 if (cr4_smep)
4620 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4621
4622 /*
4623 * SMAP:kernel-mode data accesses from user-mode
4624 * mappings should fault. A fault is considered
4625 * as a SMAP violation if all of the following
4626 * conditions are true:
4627 * - X86_CR4_SMAP is set in CR4
4628 * - A user page is accessed
4629 * - The access is not a fetch
4630 * - Page fault in kernel mode
4631 * - if CPL = 3 or X86_EFLAGS_AC is clear
4632 *
4633 * Here, we cover the first three conditions.
4634 * The fourth is computed dynamically in permission_fault();
4635 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4636 * *not* subject to SMAP restrictions.
4637 */
4638 if (cr4_smap)
4639 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4640 }
4641
4642 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4643 }
4644 }
4645
4646 /*
4647 * PKU is an additional mechanism by which the paging controls access to
4648 * user-mode addresses based on the value in the PKRU register. Protection
4649 * key violations are reported through a bit in the page fault error code.
4650 * Unlike other bits of the error code, the PK bit is not known at the
4651 * call site of e.g. gva_to_gpa; it must be computed directly in
4652 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4653 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4654 *
4655 * In particular the following conditions come from the error code, the
4656 * page tables and the machine state:
4657 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4658 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4659 * - PK is always zero if U=0 in the page tables
4660 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4661 *
4662 * The PKRU bitmask caches the result of these four conditions. The error
4663 * code (minus the P bit) and the page table's U bit form an index into the
4664 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4665 * with the two bits of the PKRU register corresponding to the protection key.
4666 * For the first three conditions above the bits will be 00, thus masking
4667 * away both AD and WD. For all reads or if the last condition holds, WD
4668 * only will be masked away.
4669 */
4670 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4671 bool ept)
4672 {
4673 unsigned bit;
4674 bool wp;
4675
4676 if (ept) {
4677 mmu->pkru_mask = 0;
4678 return;
4679 }
4680
4681 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4682 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4683 mmu->pkru_mask = 0;
4684 return;
4685 }
4686
4687 wp = is_write_protection(vcpu);
4688
4689 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4690 unsigned pfec, pkey_bits;
4691 bool check_pkey, check_write, ff, uf, wf, pte_user;
4692
4693 pfec = bit << 1;
4694 ff = pfec & PFERR_FETCH_MASK;
4695 uf = pfec & PFERR_USER_MASK;
4696 wf = pfec & PFERR_WRITE_MASK;
4697
4698 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4699 pte_user = pfec & PFERR_RSVD_MASK;
4700
4701 /*
4702 * Only need to check the access which is not an
4703 * instruction fetch and is to a user page.
4704 */
4705 check_pkey = (!ff && pte_user);
4706 /*
4707 * write access is controlled by PKRU if it is a
4708 * user access or CR0.WP = 1.
4709 */
4710 check_write = check_pkey && wf && (uf || wp);
4711
4712 /* PKRU.AD stops both read and write access. */
4713 pkey_bits = !!check_pkey;
4714 /* PKRU.WD stops write access. */
4715 pkey_bits |= (!!check_write) << 1;
4716
4717 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4718 }
4719 }
4720
4721 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4722 {
4723 unsigned root_level = mmu->root_level;
4724
4725 mmu->last_nonleaf_level = root_level;
4726 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4727 mmu->last_nonleaf_level++;
4728 }
4729
4730 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4731 struct kvm_mmu *context,
4732 int level)
4733 {
4734 context->nx = is_nx(vcpu);
4735 context->root_level = level;
4736
4737 reset_rsvds_bits_mask(vcpu, context);
4738 update_permission_bitmask(vcpu, context, false);
4739 update_pkru_bitmask(vcpu, context, false);
4740 update_last_nonleaf_level(vcpu, context);
4741
4742 MMU_WARN_ON(!is_pae(vcpu));
4743 context->page_fault = paging64_page_fault;
4744 context->gva_to_gpa = paging64_gva_to_gpa;
4745 context->sync_page = paging64_sync_page;
4746 context->invlpg = paging64_invlpg;
4747 context->update_pte = paging64_update_pte;
4748 context->shadow_root_level = level;
4749 context->direct_map = false;
4750 }
4751
4752 static void paging64_init_context(struct kvm_vcpu *vcpu,
4753 struct kvm_mmu *context)
4754 {
4755 int root_level = is_la57_mode(vcpu) ?
4756 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4757
4758 paging64_init_context_common(vcpu, context, root_level);
4759 }
4760
4761 static void paging32_init_context(struct kvm_vcpu *vcpu,
4762 struct kvm_mmu *context)
4763 {
4764 context->nx = false;
4765 context->root_level = PT32_ROOT_LEVEL;
4766
4767 reset_rsvds_bits_mask(vcpu, context);
4768 update_permission_bitmask(vcpu, context, false);
4769 update_pkru_bitmask(vcpu, context, false);
4770 update_last_nonleaf_level(vcpu, context);
4771
4772 context->page_fault = paging32_page_fault;
4773 context->gva_to_gpa = paging32_gva_to_gpa;
4774 context->sync_page = paging32_sync_page;
4775 context->invlpg = paging32_invlpg;
4776 context->update_pte = paging32_update_pte;
4777 context->shadow_root_level = PT32E_ROOT_LEVEL;
4778 context->direct_map = false;
4779 }
4780
4781 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4782 struct kvm_mmu *context)
4783 {
4784 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4785 }
4786
4787 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4788 {
4789 union kvm_mmu_extended_role ext = {0};
4790
4791 ext.cr0_pg = !!is_paging(vcpu);
4792 ext.cr4_pae = !!is_pae(vcpu);
4793 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4794 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4795 ext.cr4_pse = !!is_pse(vcpu);
4796 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4797 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4798 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4799
4800 ext.valid = 1;
4801
4802 return ext;
4803 }
4804
4805 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4806 bool base_only)
4807 {
4808 union kvm_mmu_role role = {0};
4809
4810 role.base.access = ACC_ALL;
4811 role.base.nxe = !!is_nx(vcpu);
4812 role.base.cr0_wp = is_write_protection(vcpu);
4813 role.base.smm = is_smm(vcpu);
4814 role.base.guest_mode = is_guest_mode(vcpu);
4815
4816 if (base_only)
4817 return role;
4818
4819 role.ext = kvm_calc_mmu_role_ext(vcpu);
4820
4821 return role;
4822 }
4823
4824 static union kvm_mmu_role
4825 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4826 {
4827 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4828
4829 role.base.ad_disabled = (shadow_accessed_mask == 0);
4830 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4831 role.base.direct = true;
4832 role.base.gpte_is_8_bytes = true;
4833
4834 return role;
4835 }
4836
4837 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4838 {
4839 struct kvm_mmu *context = vcpu->arch.mmu;
4840 union kvm_mmu_role new_role =
4841 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4842
4843 new_role.base.word &= mmu_base_role_mask.word;
4844 if (new_role.as_u64 == context->mmu_role.as_u64)
4845 return;
4846
4847 context->mmu_role.as_u64 = new_role.as_u64;
4848 context->page_fault = tdp_page_fault;
4849 context->sync_page = nonpaging_sync_page;
4850 context->invlpg = nonpaging_invlpg;
4851 context->update_pte = nonpaging_update_pte;
4852 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4853 context->direct_map = true;
4854 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4855 context->get_cr3 = get_cr3;
4856 context->get_pdptr = kvm_pdptr_read;
4857 context->inject_page_fault = kvm_inject_page_fault;
4858
4859 if (!is_paging(vcpu)) {
4860 context->nx = false;
4861 context->gva_to_gpa = nonpaging_gva_to_gpa;
4862 context->root_level = 0;
4863 } else if (is_long_mode(vcpu)) {
4864 context->nx = is_nx(vcpu);
4865 context->root_level = is_la57_mode(vcpu) ?
4866 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4867 reset_rsvds_bits_mask(vcpu, context);
4868 context->gva_to_gpa = paging64_gva_to_gpa;
4869 } else if (is_pae(vcpu)) {
4870 context->nx = is_nx(vcpu);
4871 context->root_level = PT32E_ROOT_LEVEL;
4872 reset_rsvds_bits_mask(vcpu, context);
4873 context->gva_to_gpa = paging64_gva_to_gpa;
4874 } else {
4875 context->nx = false;
4876 context->root_level = PT32_ROOT_LEVEL;
4877 reset_rsvds_bits_mask(vcpu, context);
4878 context->gva_to_gpa = paging32_gva_to_gpa;
4879 }
4880
4881 update_permission_bitmask(vcpu, context, false);
4882 update_pkru_bitmask(vcpu, context, false);
4883 update_last_nonleaf_level(vcpu, context);
4884 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4885 }
4886
4887 static union kvm_mmu_role
4888 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4889 {
4890 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4891
4892 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4893 !is_write_protection(vcpu);
4894 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4895 !is_write_protection(vcpu);
4896 role.base.direct = !is_paging(vcpu);
4897 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4898
4899 if (!is_long_mode(vcpu))
4900 role.base.level = PT32E_ROOT_LEVEL;
4901 else if (is_la57_mode(vcpu))
4902 role.base.level = PT64_ROOT_5LEVEL;
4903 else
4904 role.base.level = PT64_ROOT_4LEVEL;
4905
4906 return role;
4907 }
4908
4909 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4910 {
4911 struct kvm_mmu *context = vcpu->arch.mmu;
4912 union kvm_mmu_role new_role =
4913 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4914
4915 new_role.base.word &= mmu_base_role_mask.word;
4916 if (new_role.as_u64 == context->mmu_role.as_u64)
4917 return;
4918
4919 if (!is_paging(vcpu))
4920 nonpaging_init_context(vcpu, context);
4921 else if (is_long_mode(vcpu))
4922 paging64_init_context(vcpu, context);
4923 else if (is_pae(vcpu))
4924 paging32E_init_context(vcpu, context);
4925 else
4926 paging32_init_context(vcpu, context);
4927
4928 context->mmu_role.as_u64 = new_role.as_u64;
4929 reset_shadow_zero_bits_mask(vcpu, context);
4930 }
4931 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4932
4933 static union kvm_mmu_role
4934 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4935 bool execonly)
4936 {
4937 union kvm_mmu_role role = {0};
4938
4939 /* SMM flag is inherited from root_mmu */
4940 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4941
4942 role.base.level = PT64_ROOT_4LEVEL;
4943 role.base.gpte_is_8_bytes = true;
4944 role.base.direct = false;
4945 role.base.ad_disabled = !accessed_dirty;
4946 role.base.guest_mode = true;
4947 role.base.access = ACC_ALL;
4948
4949 /*
4950 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4951 * SMAP variation to denote shadow EPT entries.
4952 */
4953 role.base.cr0_wp = true;
4954 role.base.smap_andnot_wp = true;
4955
4956 role.ext = kvm_calc_mmu_role_ext(vcpu);
4957 role.ext.execonly = execonly;
4958
4959 return role;
4960 }
4961
4962 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4963 bool accessed_dirty, gpa_t new_eptp)
4964 {
4965 struct kvm_mmu *context = vcpu->arch.mmu;
4966 union kvm_mmu_role new_role =
4967 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4968 execonly);
4969
4970 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4971
4972 new_role.base.word &= mmu_base_role_mask.word;
4973 if (new_role.as_u64 == context->mmu_role.as_u64)
4974 return;
4975
4976 context->shadow_root_level = PT64_ROOT_4LEVEL;
4977
4978 context->nx = true;
4979 context->ept_ad = accessed_dirty;
4980 context->page_fault = ept_page_fault;
4981 context->gva_to_gpa = ept_gva_to_gpa;
4982 context->sync_page = ept_sync_page;
4983 context->invlpg = ept_invlpg;
4984 context->update_pte = ept_update_pte;
4985 context->root_level = PT64_ROOT_4LEVEL;
4986 context->direct_map = false;
4987 context->mmu_role.as_u64 = new_role.as_u64;
4988
4989 update_permission_bitmask(vcpu, context, true);
4990 update_pkru_bitmask(vcpu, context, true);
4991 update_last_nonleaf_level(vcpu, context);
4992 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4993 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4994 }
4995 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4996
4997 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4998 {
4999 struct kvm_mmu *context = vcpu->arch.mmu;
5000
5001 kvm_init_shadow_mmu(vcpu);
5002 context->set_cr3 = kvm_x86_ops->set_cr3;
5003 context->get_cr3 = get_cr3;
5004 context->get_pdptr = kvm_pdptr_read;
5005 context->inject_page_fault = kvm_inject_page_fault;
5006 }
5007
5008 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5009 {
5010 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5011 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5012
5013 new_role.base.word &= mmu_base_role_mask.word;
5014 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5015 return;
5016
5017 g_context->mmu_role.as_u64 = new_role.as_u64;
5018 g_context->get_cr3 = get_cr3;
5019 g_context->get_pdptr = kvm_pdptr_read;
5020 g_context->inject_page_fault = kvm_inject_page_fault;
5021
5022 /*
5023 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5024 * L1's nested page tables (e.g. EPT12). The nested translation
5025 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5026 * L2's page tables as the first level of translation and L1's
5027 * nested page tables as the second level of translation. Basically
5028 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5029 */
5030 if (!is_paging(vcpu)) {
5031 g_context->nx = false;
5032 g_context->root_level = 0;
5033 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5034 } else if (is_long_mode(vcpu)) {
5035 g_context->nx = is_nx(vcpu);
5036 g_context->root_level = is_la57_mode(vcpu) ?
5037 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5038 reset_rsvds_bits_mask(vcpu, g_context);
5039 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5040 } else if (is_pae(vcpu)) {
5041 g_context->nx = is_nx(vcpu);
5042 g_context->root_level = PT32E_ROOT_LEVEL;
5043 reset_rsvds_bits_mask(vcpu, g_context);
5044 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5045 } else {
5046 g_context->nx = false;
5047 g_context->root_level = PT32_ROOT_LEVEL;
5048 reset_rsvds_bits_mask(vcpu, g_context);
5049 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5050 }
5051
5052 update_permission_bitmask(vcpu, g_context, false);
5053 update_pkru_bitmask(vcpu, g_context, false);
5054 update_last_nonleaf_level(vcpu, g_context);
5055 }
5056
5057 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5058 {
5059 if (reset_roots) {
5060 uint i;
5061
5062 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5063
5064 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5065 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5066 }
5067
5068 if (mmu_is_nested(vcpu))
5069 init_kvm_nested_mmu(vcpu);
5070 else if (tdp_enabled)
5071 init_kvm_tdp_mmu(vcpu);
5072 else
5073 init_kvm_softmmu(vcpu);
5074 }
5075 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5076
5077 static union kvm_mmu_page_role
5078 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5079 {
5080 union kvm_mmu_role role;
5081
5082 if (tdp_enabled)
5083 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5084 else
5085 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5086
5087 return role.base;
5088 }
5089
5090 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5091 {
5092 kvm_mmu_unload(vcpu);
5093 kvm_init_mmu(vcpu, true);
5094 }
5095 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5096
5097 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5098 {
5099 int r;
5100
5101 r = mmu_topup_memory_caches(vcpu);
5102 if (r)
5103 goto out;
5104 r = mmu_alloc_roots(vcpu);
5105 kvm_mmu_sync_roots(vcpu);
5106 if (r)
5107 goto out;
5108 kvm_mmu_load_cr3(vcpu);
5109 kvm_x86_ops->tlb_flush(vcpu, true);
5110 out:
5111 return r;
5112 }
5113 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5114
5115 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5116 {
5117 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5118 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5119 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5120 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5121 }
5122 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5123
5124 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5125 struct kvm_mmu_page *sp, u64 *spte,
5126 const void *new)
5127 {
5128 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
5129 ++vcpu->kvm->stat.mmu_pde_zapped;
5130 return;
5131 }
5132
5133 ++vcpu->kvm->stat.mmu_pte_updated;
5134 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5135 }
5136
5137 static bool need_remote_flush(u64 old, u64 new)
5138 {
5139 if (!is_shadow_present_pte(old))
5140 return false;
5141 if (!is_shadow_present_pte(new))
5142 return true;
5143 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5144 return true;
5145 old ^= shadow_nx_mask;
5146 new ^= shadow_nx_mask;
5147 return (old & ~new & PT64_PERM_MASK) != 0;
5148 }
5149
5150 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5151 int *bytes)
5152 {
5153 u64 gentry = 0;
5154 int r;
5155
5156 /*
5157 * Assume that the pte write on a page table of the same type
5158 * as the current vcpu paging mode since we update the sptes only
5159 * when they have the same mode.
5160 */
5161 if (is_pae(vcpu) && *bytes == 4) {
5162 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5163 *gpa &= ~(gpa_t)7;
5164 *bytes = 8;
5165 }
5166
5167 if (*bytes == 4 || *bytes == 8) {
5168 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5169 if (r)
5170 gentry = 0;
5171 }
5172
5173 return gentry;
5174 }
5175
5176 /*
5177 * If we're seeing too many writes to a page, it may no longer be a page table,
5178 * or we may be forking, in which case it is better to unmap the page.
5179 */
5180 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5181 {
5182 /*
5183 * Skip write-flooding detected for the sp whose level is 1, because
5184 * it can become unsync, then the guest page is not write-protected.
5185 */
5186 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5187 return false;
5188
5189 atomic_inc(&sp->write_flooding_count);
5190 return atomic_read(&sp->write_flooding_count) >= 3;
5191 }
5192
5193 /*
5194 * Misaligned accesses are too much trouble to fix up; also, they usually
5195 * indicate a page is not used as a page table.
5196 */
5197 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5198 int bytes)
5199 {
5200 unsigned offset, pte_size, misaligned;
5201
5202 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5203 gpa, bytes, sp->role.word);
5204
5205 offset = offset_in_page(gpa);
5206 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5207
5208 /*
5209 * Sometimes, the OS only writes the last one bytes to update status
5210 * bits, for example, in linux, andb instruction is used in clear_bit().
5211 */
5212 if (!(offset & (pte_size - 1)) && bytes == 1)
5213 return false;
5214
5215 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5216 misaligned |= bytes < 4;
5217
5218 return misaligned;
5219 }
5220
5221 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5222 {
5223 unsigned page_offset, quadrant;
5224 u64 *spte;
5225 int level;
5226
5227 page_offset = offset_in_page(gpa);
5228 level = sp->role.level;
5229 *nspte = 1;
5230 if (!sp->role.gpte_is_8_bytes) {
5231 page_offset <<= 1; /* 32->64 */
5232 /*
5233 * A 32-bit pde maps 4MB while the shadow pdes map
5234 * only 2MB. So we need to double the offset again
5235 * and zap two pdes instead of one.
5236 */
5237 if (level == PT32_ROOT_LEVEL) {
5238 page_offset &= ~7; /* kill rounding error */
5239 page_offset <<= 1;
5240 *nspte = 2;
5241 }
5242 quadrant = page_offset >> PAGE_SHIFT;
5243 page_offset &= ~PAGE_MASK;
5244 if (quadrant != sp->role.quadrant)
5245 return NULL;
5246 }
5247
5248 spte = &sp->spt[page_offset / sizeof(*spte)];
5249 return spte;
5250 }
5251
5252 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5253 const u8 *new, int bytes,
5254 struct kvm_page_track_notifier_node *node)
5255 {
5256 gfn_t gfn = gpa >> PAGE_SHIFT;
5257 struct kvm_mmu_page *sp;
5258 LIST_HEAD(invalid_list);
5259 u64 entry, gentry, *spte;
5260 int npte;
5261 bool remote_flush, local_flush;
5262
5263 /*
5264 * If we don't have indirect shadow pages, it means no page is
5265 * write-protected, so we can exit simply.
5266 */
5267 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5268 return;
5269
5270 remote_flush = local_flush = false;
5271
5272 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5273
5274 /*
5275 * No need to care whether allocation memory is successful
5276 * or not since pte prefetch is skiped if it does not have
5277 * enough objects in the cache.
5278 */
5279 mmu_topup_memory_caches(vcpu);
5280
5281 spin_lock(&vcpu->kvm->mmu_lock);
5282
5283 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5284
5285 ++vcpu->kvm->stat.mmu_pte_write;
5286 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5287
5288 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5289 if (detect_write_misaligned(sp, gpa, bytes) ||
5290 detect_write_flooding(sp)) {
5291 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5292 ++vcpu->kvm->stat.mmu_flooded;
5293 continue;
5294 }
5295
5296 spte = get_written_sptes(sp, gpa, &npte);
5297 if (!spte)
5298 continue;
5299
5300 local_flush = true;
5301 while (npte--) {
5302 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5303
5304 entry = *spte;
5305 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5306 if (gentry &&
5307 !((sp->role.word ^ base_role)
5308 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
5309 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5310 if (need_remote_flush(entry, *spte))
5311 remote_flush = true;
5312 ++spte;
5313 }
5314 }
5315 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5316 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5317 spin_unlock(&vcpu->kvm->mmu_lock);
5318 }
5319
5320 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5321 {
5322 gpa_t gpa;
5323 int r;
5324
5325 if (vcpu->arch.mmu->direct_map)
5326 return 0;
5327
5328 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5329
5330 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5331
5332 return r;
5333 }
5334 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5335
5336 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5337 {
5338 LIST_HEAD(invalid_list);
5339
5340 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5341 return 0;
5342
5343 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5344 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5345 break;
5346
5347 ++vcpu->kvm->stat.mmu_recycled;
5348 }
5349 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5350
5351 if (!kvm_mmu_available_pages(vcpu->kvm))
5352 return -ENOSPC;
5353 return 0;
5354 }
5355
5356 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
5357 void *insn, int insn_len)
5358 {
5359 int r, emulation_type = 0;
5360 enum emulation_result er;
5361 bool direct = vcpu->arch.mmu->direct_map;
5362
5363 /* With shadow page tables, fault_address contains a GVA or nGPA. */
5364 if (vcpu->arch.mmu->direct_map) {
5365 vcpu->arch.gpa_available = true;
5366 vcpu->arch.gpa_val = cr2;
5367 }
5368
5369 r = RET_PF_INVALID;
5370 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5371 r = handle_mmio_page_fault(vcpu, cr2, direct);
5372 if (r == RET_PF_EMULATE)
5373 goto emulate;
5374 }
5375
5376 if (r == RET_PF_INVALID) {
5377 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5378 lower_32_bits(error_code),
5379 false);
5380 WARN_ON(r == RET_PF_INVALID);
5381 }
5382
5383 if (r == RET_PF_RETRY)
5384 return 1;
5385 if (r < 0)
5386 return r;
5387
5388 /*
5389 * Before emulating the instruction, check if the error code
5390 * was due to a RO violation while translating the guest page.
5391 * This can occur when using nested virtualization with nested
5392 * paging in both guests. If true, we simply unprotect the page
5393 * and resume the guest.
5394 */
5395 if (vcpu->arch.mmu->direct_map &&
5396 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5397 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5398 return 1;
5399 }
5400
5401 /*
5402 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5403 * optimistically try to just unprotect the page and let the processor
5404 * re-execute the instruction that caused the page fault. Do not allow
5405 * retrying MMIO emulation, as it's not only pointless but could also
5406 * cause us to enter an infinite loop because the processor will keep
5407 * faulting on the non-existent MMIO address. Retrying an instruction
5408 * from a nested guest is also pointless and dangerous as we are only
5409 * explicitly shadowing L1's page tables, i.e. unprotecting something
5410 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5411 */
5412 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
5413 emulation_type = EMULTYPE_ALLOW_RETRY;
5414 emulate:
5415 /*
5416 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5417 * This can happen if a guest gets a page-fault on data access but the HW
5418 * table walker is not able to read the instruction page (e.g instruction
5419 * page is not present in memory). In those cases we simply restart the
5420 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5421 */
5422 if (unlikely(insn && !insn_len)) {
5423 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5424 return 1;
5425 }
5426
5427 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
5428
5429 switch (er) {
5430 case EMULATE_DONE:
5431 return 1;
5432 case EMULATE_USER_EXIT:
5433 ++vcpu->stat.mmio_exits;
5434 /* fall through */
5435 case EMULATE_FAIL:
5436 return 0;
5437 default:
5438 BUG();
5439 }
5440 }
5441 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5442
5443 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5444 {
5445 struct kvm_mmu *mmu = vcpu->arch.mmu;
5446 int i;
5447
5448 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5449 if (is_noncanonical_address(gva, vcpu))
5450 return;
5451
5452 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5453
5454 /*
5455 * INVLPG is required to invalidate any global mappings for the VA,
5456 * irrespective of PCID. Since it would take us roughly similar amount
5457 * of work to determine whether any of the prev_root mappings of the VA
5458 * is marked global, or to just sync it blindly, so we might as well
5459 * just always sync it.
5460 *
5461 * Mappings not reachable via the current cr3 or the prev_roots will be
5462 * synced when switching to that cr3, so nothing needs to be done here
5463 * for them.
5464 */
5465 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5466 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5467 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5468
5469 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5470 ++vcpu->stat.invlpg;
5471 }
5472 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5473
5474 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5475 {
5476 struct kvm_mmu *mmu = vcpu->arch.mmu;
5477 bool tlb_flush = false;
5478 uint i;
5479
5480 if (pcid == kvm_get_active_pcid(vcpu)) {
5481 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5482 tlb_flush = true;
5483 }
5484
5485 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5486 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5487 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5488 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5489 tlb_flush = true;
5490 }
5491 }
5492
5493 if (tlb_flush)
5494 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5495
5496 ++vcpu->stat.invlpg;
5497
5498 /*
5499 * Mappings not reachable via the current cr3 or the prev_roots will be
5500 * synced when switching to that cr3, so nothing needs to be done here
5501 * for them.
5502 */
5503 }
5504 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5505
5506 void kvm_enable_tdp(void)
5507 {
5508 tdp_enabled = true;
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5511
5512 void kvm_disable_tdp(void)
5513 {
5514 tdp_enabled = false;
5515 }
5516 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5517
5518
5519 /* The return value indicates if tlb flush on all vcpus is needed. */
5520 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5521
5522 /* The caller should hold mmu-lock before calling this function. */
5523 static __always_inline bool
5524 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5525 slot_level_handler fn, int start_level, int end_level,
5526 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5527 {
5528 struct slot_rmap_walk_iterator iterator;
5529 bool flush = false;
5530
5531 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5532 end_gfn, &iterator) {
5533 if (iterator.rmap)
5534 flush |= fn(kvm, iterator.rmap);
5535
5536 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5537 if (flush && lock_flush_tlb) {
5538 kvm_flush_remote_tlbs_with_address(kvm,
5539 start_gfn,
5540 iterator.gfn - start_gfn + 1);
5541 flush = false;
5542 }
5543 cond_resched_lock(&kvm->mmu_lock);
5544 }
5545 }
5546
5547 if (flush && lock_flush_tlb) {
5548 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5549 end_gfn - start_gfn + 1);
5550 flush = false;
5551 }
5552
5553 return flush;
5554 }
5555
5556 static __always_inline bool
5557 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5558 slot_level_handler fn, int start_level, int end_level,
5559 bool lock_flush_tlb)
5560 {
5561 return slot_handle_level_range(kvm, memslot, fn, start_level,
5562 end_level, memslot->base_gfn,
5563 memslot->base_gfn + memslot->npages - 1,
5564 lock_flush_tlb);
5565 }
5566
5567 static __always_inline bool
5568 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5569 slot_level_handler fn, bool lock_flush_tlb)
5570 {
5571 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5572 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5573 }
5574
5575 static __always_inline bool
5576 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5577 slot_level_handler fn, bool lock_flush_tlb)
5578 {
5579 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5580 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5581 }
5582
5583 static __always_inline bool
5584 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5585 slot_level_handler fn, bool lock_flush_tlb)
5586 {
5587 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5588 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5589 }
5590
5591 static void free_mmu_pages(struct kvm_vcpu *vcpu)
5592 {
5593 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5594 free_page((unsigned long)vcpu->arch.mmu->lm_root);
5595 }
5596
5597 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5598 {
5599 struct page *page;
5600 int i;
5601
5602 if (tdp_enabled)
5603 return 0;
5604
5605 /*
5606 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5607 * Therefore we need to allocate shadow page tables in the first
5608 * 4GB of memory, which happens to fit the DMA32 zone.
5609 */
5610 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5611 if (!page)
5612 return -ENOMEM;
5613
5614 vcpu->arch.mmu->pae_root = page_address(page);
5615 for (i = 0; i < 4; ++i)
5616 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
5617
5618 return 0;
5619 }
5620
5621 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5622 {
5623 uint i;
5624
5625 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5626 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5627
5628 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5629 vcpu->arch.root_mmu.root_cr3 = 0;
5630 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5631 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5632 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5633
5634 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5635 vcpu->arch.guest_mmu.root_cr3 = 0;
5636 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5637 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5638 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5639
5640 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5641 return alloc_mmu_pages(vcpu);
5642 }
5643
5644 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5645 struct kvm_memory_slot *slot,
5646 struct kvm_page_track_notifier_node *node)
5647 {
5648 struct kvm_mmu_page *sp;
5649 LIST_HEAD(invalid_list);
5650 unsigned long i;
5651 bool flush;
5652 gfn_t gfn;
5653
5654 spin_lock(&kvm->mmu_lock);
5655
5656 if (list_empty(&kvm->arch.active_mmu_pages))
5657 goto out_unlock;
5658
5659 flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
5660
5661 for (i = 0; i < slot->npages; i++) {
5662 gfn = slot->base_gfn + i;
5663
5664 for_each_valid_sp(kvm, sp, gfn) {
5665 if (sp->gfn != gfn)
5666 continue;
5667
5668 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5669 }
5670 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5671 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5672 flush = false;
5673 cond_resched_lock(&kvm->mmu_lock);
5674 }
5675 }
5676 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5677
5678 out_unlock:
5679 spin_unlock(&kvm->mmu_lock);
5680 }
5681
5682 void kvm_mmu_init_vm(struct kvm *kvm)
5683 {
5684 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5685
5686 node->track_write = kvm_mmu_pte_write;
5687 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5688 kvm_page_track_register_notifier(kvm, node);
5689 }
5690
5691 void kvm_mmu_uninit_vm(struct kvm *kvm)
5692 {
5693 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5694
5695 kvm_page_track_unregister_notifier(kvm, node);
5696 }
5697
5698 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5699 {
5700 struct kvm_memslots *slots;
5701 struct kvm_memory_slot *memslot;
5702 int i;
5703
5704 spin_lock(&kvm->mmu_lock);
5705 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5706 slots = __kvm_memslots(kvm, i);
5707 kvm_for_each_memslot(memslot, slots) {
5708 gfn_t start, end;
5709
5710 start = max(gfn_start, memslot->base_gfn);
5711 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5712 if (start >= end)
5713 continue;
5714
5715 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5716 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5717 start, end - 1, true);
5718 }
5719 }
5720
5721 spin_unlock(&kvm->mmu_lock);
5722 }
5723
5724 static bool slot_rmap_write_protect(struct kvm *kvm,
5725 struct kvm_rmap_head *rmap_head)
5726 {
5727 return __rmap_write_protect(kvm, rmap_head, false);
5728 }
5729
5730 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5731 struct kvm_memory_slot *memslot)
5732 {
5733 bool flush;
5734
5735 spin_lock(&kvm->mmu_lock);
5736 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5737 false);
5738 spin_unlock(&kvm->mmu_lock);
5739
5740 /*
5741 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5742 * which do tlb flush out of mmu-lock should be serialized by
5743 * kvm->slots_lock otherwise tlb flush would be missed.
5744 */
5745 lockdep_assert_held(&kvm->slots_lock);
5746
5747 /*
5748 * We can flush all the TLBs out of the mmu lock without TLB
5749 * corruption since we just change the spte from writable to
5750 * readonly so that we only need to care the case of changing
5751 * spte from present to present (changing the spte from present
5752 * to nonpresent will flush all the TLBs immediately), in other
5753 * words, the only case we care is mmu_spte_update() where we
5754 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5755 * instead of PT_WRITABLE_MASK, that means it does not depend
5756 * on PT_WRITABLE_MASK anymore.
5757 */
5758 if (flush)
5759 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5760 memslot->npages);
5761 }
5762
5763 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5764 struct kvm_rmap_head *rmap_head)
5765 {
5766 u64 *sptep;
5767 struct rmap_iterator iter;
5768 int need_tlb_flush = 0;
5769 kvm_pfn_t pfn;
5770 struct kvm_mmu_page *sp;
5771
5772 restart:
5773 for_each_rmap_spte(rmap_head, &iter, sptep) {
5774 sp = page_header(__pa(sptep));
5775 pfn = spte_to_pfn(*sptep);
5776
5777 /*
5778 * We cannot do huge page mapping for indirect shadow pages,
5779 * which are found on the last rmap (level = 1) when not using
5780 * tdp; such shadow pages are synced with the page table in
5781 * the guest, and the guest page table is using 4K page size
5782 * mapping if the indirect sp has level = 1.
5783 */
5784 if (sp->role.direct &&
5785 !kvm_is_reserved_pfn(pfn) &&
5786 PageTransCompoundMap(pfn_to_page(pfn))) {
5787 pte_list_remove(rmap_head, sptep);
5788
5789 if (kvm_available_flush_tlb_with_range())
5790 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5791 KVM_PAGES_PER_HPAGE(sp->role.level));
5792 else
5793 need_tlb_flush = 1;
5794
5795 goto restart;
5796 }
5797 }
5798
5799 return need_tlb_flush;
5800 }
5801
5802 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5803 const struct kvm_memory_slot *memslot)
5804 {
5805 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5806 spin_lock(&kvm->mmu_lock);
5807 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5808 kvm_mmu_zap_collapsible_spte, true);
5809 spin_unlock(&kvm->mmu_lock);
5810 }
5811
5812 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5813 struct kvm_memory_slot *memslot)
5814 {
5815 bool flush;
5816
5817 spin_lock(&kvm->mmu_lock);
5818 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5819 spin_unlock(&kvm->mmu_lock);
5820
5821 lockdep_assert_held(&kvm->slots_lock);
5822
5823 /*
5824 * It's also safe to flush TLBs out of mmu lock here as currently this
5825 * function is only used for dirty logging, in which case flushing TLB
5826 * out of mmu lock also guarantees no dirty pages will be lost in
5827 * dirty_bitmap.
5828 */
5829 if (flush)
5830 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5831 memslot->npages);
5832 }
5833 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5834
5835 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5836 struct kvm_memory_slot *memslot)
5837 {
5838 bool flush;
5839
5840 spin_lock(&kvm->mmu_lock);
5841 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5842 false);
5843 spin_unlock(&kvm->mmu_lock);
5844
5845 /* see kvm_mmu_slot_remove_write_access */
5846 lockdep_assert_held(&kvm->slots_lock);
5847
5848 if (flush)
5849 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5850 memslot->npages);
5851 }
5852 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5853
5854 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5855 struct kvm_memory_slot *memslot)
5856 {
5857 bool flush;
5858
5859 spin_lock(&kvm->mmu_lock);
5860 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5861 spin_unlock(&kvm->mmu_lock);
5862
5863 lockdep_assert_held(&kvm->slots_lock);
5864
5865 /* see kvm_mmu_slot_leaf_clear_dirty */
5866 if (flush)
5867 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5868 memslot->npages);
5869 }
5870 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5871
5872 static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
5873 {
5874 struct kvm_mmu_page *sp, *node;
5875 LIST_HEAD(invalid_list);
5876 int ign;
5877
5878 spin_lock(&kvm->mmu_lock);
5879 restart:
5880 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5881 if (mmio_only && !sp->mmio_cached)
5882 continue;
5883 if (sp->role.invalid && sp->root_count)
5884 continue;
5885 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
5886 WARN_ON_ONCE(mmio_only);
5887 goto restart;
5888 }
5889 if (cond_resched_lock(&kvm->mmu_lock))
5890 goto restart;
5891 }
5892
5893 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5894 spin_unlock(&kvm->mmu_lock);
5895 }
5896
5897 void kvm_mmu_zap_all(struct kvm *kvm)
5898 {
5899 return __kvm_mmu_zap_all(kvm, false);
5900 }
5901
5902 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5903 {
5904 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5905
5906 gen &= MMIO_SPTE_GEN_MASK;
5907
5908 /*
5909 * Generation numbers are incremented in multiples of the number of
5910 * address spaces in order to provide unique generations across all
5911 * address spaces. Strip what is effectively the address space
5912 * modifier prior to checking for a wrap of the MMIO generation so
5913 * that a wrap in any address space is detected.
5914 */
5915 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5916
5917 /*
5918 * The very rare case: if the MMIO generation number has wrapped,
5919 * zap all shadow pages.
5920 */
5921 if (unlikely(gen == 0)) {
5922 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5923 __kvm_mmu_zap_all(kvm, true);
5924 }
5925 }
5926
5927 static unsigned long
5928 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5929 {
5930 struct kvm *kvm;
5931 int nr_to_scan = sc->nr_to_scan;
5932 unsigned long freed = 0;
5933
5934 spin_lock(&kvm_lock);
5935
5936 list_for_each_entry(kvm, &vm_list, vm_list) {
5937 int idx;
5938 LIST_HEAD(invalid_list);
5939
5940 /*
5941 * Never scan more than sc->nr_to_scan VM instances.
5942 * Will not hit this condition practically since we do not try
5943 * to shrink more than one VM and it is very unlikely to see
5944 * !n_used_mmu_pages so many times.
5945 */
5946 if (!nr_to_scan--)
5947 break;
5948 /*
5949 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5950 * here. We may skip a VM instance errorneosly, but we do not
5951 * want to shrink a VM that only started to populate its MMU
5952 * anyway.
5953 */
5954 if (!kvm->arch.n_used_mmu_pages)
5955 continue;
5956
5957 idx = srcu_read_lock(&kvm->srcu);
5958 spin_lock(&kvm->mmu_lock);
5959
5960 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5961 freed++;
5962 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5963
5964 spin_unlock(&kvm->mmu_lock);
5965 srcu_read_unlock(&kvm->srcu, idx);
5966
5967 /*
5968 * unfair on small ones
5969 * per-vm shrinkers cry out
5970 * sadness comes quickly
5971 */
5972 list_move_tail(&kvm->vm_list, &vm_list);
5973 break;
5974 }
5975
5976 spin_unlock(&kvm_lock);
5977 return freed;
5978 }
5979
5980 static unsigned long
5981 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5982 {
5983 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5984 }
5985
5986 static struct shrinker mmu_shrinker = {
5987 .count_objects = mmu_shrink_count,
5988 .scan_objects = mmu_shrink_scan,
5989 .seeks = DEFAULT_SEEKS * 10,
5990 };
5991
5992 static void mmu_destroy_caches(void)
5993 {
5994 kmem_cache_destroy(pte_list_desc_cache);
5995 kmem_cache_destroy(mmu_page_header_cache);
5996 }
5997
5998 int kvm_mmu_module_init(void)
5999 {
6000 int ret = -ENOMEM;
6001
6002 /*
6003 * MMU roles use union aliasing which is, generally speaking, an
6004 * undefined behavior. However, we supposedly know how compilers behave
6005 * and the current status quo is unlikely to change. Guardians below are
6006 * supposed to let us know if the assumption becomes false.
6007 */
6008 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6009 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6010 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6011
6012 kvm_mmu_reset_all_pte_masks();
6013
6014 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6015 sizeof(struct pte_list_desc),
6016 0, SLAB_ACCOUNT, NULL);
6017 if (!pte_list_desc_cache)
6018 goto out;
6019
6020 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6021 sizeof(struct kvm_mmu_page),
6022 0, SLAB_ACCOUNT, NULL);
6023 if (!mmu_page_header_cache)
6024 goto out;
6025
6026 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6027 goto out;
6028
6029 ret = register_shrinker(&mmu_shrinker);
6030 if (ret)
6031 goto out;
6032
6033 return 0;
6034
6035 out:
6036 mmu_destroy_caches();
6037 return ret;
6038 }
6039
6040 /*
6041 * Calculate mmu pages needed for kvm.
6042 */
6043 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6044 {
6045 unsigned long nr_mmu_pages;
6046 unsigned long nr_pages = 0;
6047 struct kvm_memslots *slots;
6048 struct kvm_memory_slot *memslot;
6049 int i;
6050
6051 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6052 slots = __kvm_memslots(kvm, i);
6053
6054 kvm_for_each_memslot(memslot, slots)
6055 nr_pages += memslot->npages;
6056 }
6057
6058 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6059 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6060
6061 return nr_mmu_pages;
6062 }
6063
6064 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6065 {
6066 kvm_mmu_unload(vcpu);
6067 free_mmu_pages(vcpu);
6068 mmu_free_memory_caches(vcpu);
6069 }
6070
6071 void kvm_mmu_module_exit(void)
6072 {
6073 mmu_destroy_caches();
6074 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6075 unregister_shrinker(&mmu_shrinker);
6076 mmu_audit_disable();
6077 }