]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: speedup update_permission_bitmask
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 /*
52 * When setting this variable to true it enables Two-Dimensional-Paging
53 * where the hardware walks 2 page tables:
54 * 1. the guest-virtual to guest-physical
55 * 2. while doing 1. it walks guest-physical to host-physical
56 * If the hardware supports that we don't need to do shadow paging.
57 */
58 bool tdp_enabled = false;
59
60 enum {
61 AUDIT_PRE_PAGE_FAULT,
62 AUDIT_POST_PAGE_FAULT,
63 AUDIT_PRE_PTE_WRITE,
64 AUDIT_POST_PTE_WRITE,
65 AUDIT_PRE_SYNC,
66 AUDIT_POST_SYNC
67 };
68
69 #undef MMU_DEBUG
70
71 #ifdef MMU_DEBUG
72 static bool dbg = 0;
73 module_param(dbg, bool, 0644);
74
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77 #define MMU_WARN_ON(x) WARN_ON(x)
78 #else
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
81 #define MMU_WARN_ON(x) do { } while (0)
82 #endif
83
84 #define PTE_PREFETCH_NUM 8
85
86 #define PT_FIRST_AVAIL_BITS_SHIFT 10
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
89 #define PT64_LEVEL_BITS 9
90
91 #define PT64_LEVEL_SHIFT(level) \
92 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
93
94 #define PT64_INDEX(address, level)\
95 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98 #define PT32_LEVEL_BITS 10
99
100 #define PT32_LEVEL_SHIFT(level) \
101 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
102
103 #define PT32_LVL_OFFSET_MASK(level) \
104 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105 * PT32_LEVEL_BITS))) - 1))
106
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114 #define PT64_LVL_ADDR_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
117 #define PT64_LVL_OFFSET_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
120
121 #define PT32_BASE_ADDR_MASK PAGE_MASK
122 #define PT32_DIR_BASE_ADDR_MASK \
123 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
124 #define PT32_LVL_ADDR_MASK(level) \
125 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
127
128 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
129 | shadow_x_mask | shadow_nx_mask)
130
131 #define ACC_EXEC_MASK 1
132 #define ACC_WRITE_MASK PT_WRITABLE_MASK
133 #define ACC_USER_MASK PT_USER_MASK
134 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
136 /* The mask for the R/X bits in EPT PTEs */
137 #define PT64_EPT_READABLE_MASK 0x1ull
138 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
139
140 #include <trace/events/kvm.h>
141
142 #define CREATE_TRACE_POINTS
143 #include "mmutrace.h"
144
145 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
147
148 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
150 /* make pte_list_desc fit well in cache line */
151 #define PTE_LIST_EXT 3
152
153 struct pte_list_desc {
154 u64 *sptes[PTE_LIST_EXT];
155 struct pte_list_desc *more;
156 };
157
158 struct kvm_shadow_walk_iterator {
159 u64 addr;
160 hpa_t shadow_addr;
161 u64 *sptep;
162 int level;
163 unsigned index;
164 };
165
166 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
167 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
168 shadow_walk_okay(&(_walker)); \
169 shadow_walk_next(&(_walker)))
170
171 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
172 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
173 shadow_walk_okay(&(_walker)) && \
174 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
175 __shadow_walk_next(&(_walker), spte))
176
177 static struct kmem_cache *pte_list_desc_cache;
178 static struct kmem_cache *mmu_page_header_cache;
179 static struct percpu_counter kvm_total_used_mmu_pages;
180
181 static u64 __read_mostly shadow_nx_mask;
182 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
183 static u64 __read_mostly shadow_user_mask;
184 static u64 __read_mostly shadow_accessed_mask;
185 static u64 __read_mostly shadow_dirty_mask;
186 static u64 __read_mostly shadow_mmio_mask;
187 static u64 __read_mostly shadow_mmio_value;
188 static u64 __read_mostly shadow_present_mask;
189
190 /*
191 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
192 * Non-present SPTEs with shadow_acc_track_value set are in place for access
193 * tracking.
194 */
195 static u64 __read_mostly shadow_acc_track_mask;
196 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
197
198 /*
199 * The mask/shift to use for saving the original R/X bits when marking the PTE
200 * as not-present for access tracking purposes. We do not save the W bit as the
201 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
202 * restored only when a write is attempted to the page.
203 */
204 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
205 PT64_EPT_EXECUTABLE_MASK;
206 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
207
208 static void mmu_spte_set(u64 *sptep, u64 spte);
209 static void mmu_free_roots(struct kvm_vcpu *vcpu);
210
211 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
212 {
213 BUG_ON((mmio_mask & mmio_value) != mmio_value);
214 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
215 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
216 }
217 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
218
219 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
220 {
221 return sp->role.ad_disabled;
222 }
223
224 static inline bool spte_ad_enabled(u64 spte)
225 {
226 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
227 return !(spte & shadow_acc_track_value);
228 }
229
230 static inline u64 spte_shadow_accessed_mask(u64 spte)
231 {
232 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
233 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
234 }
235
236 static inline u64 spte_shadow_dirty_mask(u64 spte)
237 {
238 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
239 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
240 }
241
242 static inline bool is_access_track_spte(u64 spte)
243 {
244 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
245 }
246
247 /*
248 * the low bit of the generation number is always presumed to be zero.
249 * This disables mmio caching during memslot updates. The concept is
250 * similar to a seqcount but instead of retrying the access we just punt
251 * and ignore the cache.
252 *
253 * spte bits 3-11 are used as bits 1-9 of the generation number,
254 * the bits 52-61 are used as bits 10-19 of the generation number.
255 */
256 #define MMIO_SPTE_GEN_LOW_SHIFT 2
257 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
258
259 #define MMIO_GEN_SHIFT 20
260 #define MMIO_GEN_LOW_SHIFT 10
261 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
262 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
263
264 static u64 generation_mmio_spte_mask(unsigned int gen)
265 {
266 u64 mask;
267
268 WARN_ON(gen & ~MMIO_GEN_MASK);
269
270 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
271 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
272 return mask;
273 }
274
275 static unsigned int get_mmio_spte_generation(u64 spte)
276 {
277 unsigned int gen;
278
279 spte &= ~shadow_mmio_mask;
280
281 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
282 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
283 return gen;
284 }
285
286 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
287 {
288 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
289 }
290
291 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
292 unsigned access)
293 {
294 unsigned int gen = kvm_current_mmio_generation(vcpu);
295 u64 mask = generation_mmio_spte_mask(gen);
296
297 access &= ACC_WRITE_MASK | ACC_USER_MASK;
298 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
299
300 trace_mark_mmio_spte(sptep, gfn, access, gen);
301 mmu_spte_set(sptep, mask);
302 }
303
304 static bool is_mmio_spte(u64 spte)
305 {
306 return (spte & shadow_mmio_mask) == shadow_mmio_value;
307 }
308
309 static gfn_t get_mmio_spte_gfn(u64 spte)
310 {
311 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
312 return (spte & ~mask) >> PAGE_SHIFT;
313 }
314
315 static unsigned get_mmio_spte_access(u64 spte)
316 {
317 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
318 return (spte & ~mask) & ~PAGE_MASK;
319 }
320
321 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
322 kvm_pfn_t pfn, unsigned access)
323 {
324 if (unlikely(is_noslot_pfn(pfn))) {
325 mark_mmio_spte(vcpu, sptep, gfn, access);
326 return true;
327 }
328
329 return false;
330 }
331
332 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
333 {
334 unsigned int kvm_gen, spte_gen;
335
336 kvm_gen = kvm_current_mmio_generation(vcpu);
337 spte_gen = get_mmio_spte_generation(spte);
338
339 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
340 return likely(kvm_gen == spte_gen);
341 }
342
343 /*
344 * Sets the shadow PTE masks used by the MMU.
345 *
346 * Assumptions:
347 * - Setting either @accessed_mask or @dirty_mask requires setting both
348 * - At least one of @accessed_mask or @acc_track_mask must be set
349 */
350 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
351 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
352 u64 acc_track_mask)
353 {
354 BUG_ON(!dirty_mask != !accessed_mask);
355 BUG_ON(!accessed_mask && !acc_track_mask);
356 BUG_ON(acc_track_mask & shadow_acc_track_value);
357
358 shadow_user_mask = user_mask;
359 shadow_accessed_mask = accessed_mask;
360 shadow_dirty_mask = dirty_mask;
361 shadow_nx_mask = nx_mask;
362 shadow_x_mask = x_mask;
363 shadow_present_mask = p_mask;
364 shadow_acc_track_mask = acc_track_mask;
365 }
366 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
367
368 void kvm_mmu_clear_all_pte_masks(void)
369 {
370 shadow_user_mask = 0;
371 shadow_accessed_mask = 0;
372 shadow_dirty_mask = 0;
373 shadow_nx_mask = 0;
374 shadow_x_mask = 0;
375 shadow_mmio_mask = 0;
376 shadow_present_mask = 0;
377 shadow_acc_track_mask = 0;
378 }
379
380 static int is_cpuid_PSE36(void)
381 {
382 return 1;
383 }
384
385 static int is_nx(struct kvm_vcpu *vcpu)
386 {
387 return vcpu->arch.efer & EFER_NX;
388 }
389
390 static int is_shadow_present_pte(u64 pte)
391 {
392 return (pte != 0) && !is_mmio_spte(pte);
393 }
394
395 static int is_large_pte(u64 pte)
396 {
397 return pte & PT_PAGE_SIZE_MASK;
398 }
399
400 static int is_last_spte(u64 pte, int level)
401 {
402 if (level == PT_PAGE_TABLE_LEVEL)
403 return 1;
404 if (is_large_pte(pte))
405 return 1;
406 return 0;
407 }
408
409 static bool is_executable_pte(u64 spte)
410 {
411 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
412 }
413
414 static kvm_pfn_t spte_to_pfn(u64 pte)
415 {
416 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
417 }
418
419 static gfn_t pse36_gfn_delta(u32 gpte)
420 {
421 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
422
423 return (gpte & PT32_DIR_PSE36_MASK) << shift;
424 }
425
426 #ifdef CONFIG_X86_64
427 static void __set_spte(u64 *sptep, u64 spte)
428 {
429 WRITE_ONCE(*sptep, spte);
430 }
431
432 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
433 {
434 WRITE_ONCE(*sptep, spte);
435 }
436
437 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
438 {
439 return xchg(sptep, spte);
440 }
441
442 static u64 __get_spte_lockless(u64 *sptep)
443 {
444 return ACCESS_ONCE(*sptep);
445 }
446 #else
447 union split_spte {
448 struct {
449 u32 spte_low;
450 u32 spte_high;
451 };
452 u64 spte;
453 };
454
455 static void count_spte_clear(u64 *sptep, u64 spte)
456 {
457 struct kvm_mmu_page *sp = page_header(__pa(sptep));
458
459 if (is_shadow_present_pte(spte))
460 return;
461
462 /* Ensure the spte is completely set before we increase the count */
463 smp_wmb();
464 sp->clear_spte_count++;
465 }
466
467 static void __set_spte(u64 *sptep, u64 spte)
468 {
469 union split_spte *ssptep, sspte;
470
471 ssptep = (union split_spte *)sptep;
472 sspte = (union split_spte)spte;
473
474 ssptep->spte_high = sspte.spte_high;
475
476 /*
477 * If we map the spte from nonpresent to present, We should store
478 * the high bits firstly, then set present bit, so cpu can not
479 * fetch this spte while we are setting the spte.
480 */
481 smp_wmb();
482
483 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
484 }
485
486 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
487 {
488 union split_spte *ssptep, sspte;
489
490 ssptep = (union split_spte *)sptep;
491 sspte = (union split_spte)spte;
492
493 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
494
495 /*
496 * If we map the spte from present to nonpresent, we should clear
497 * present bit firstly to avoid vcpu fetch the old high bits.
498 */
499 smp_wmb();
500
501 ssptep->spte_high = sspte.spte_high;
502 count_spte_clear(sptep, spte);
503 }
504
505 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
506 {
507 union split_spte *ssptep, sspte, orig;
508
509 ssptep = (union split_spte *)sptep;
510 sspte = (union split_spte)spte;
511
512 /* xchg acts as a barrier before the setting of the high bits */
513 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
514 orig.spte_high = ssptep->spte_high;
515 ssptep->spte_high = sspte.spte_high;
516 count_spte_clear(sptep, spte);
517
518 return orig.spte;
519 }
520
521 /*
522 * The idea using the light way get the spte on x86_32 guest is from
523 * gup_get_pte(arch/x86/mm/gup.c).
524 *
525 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
526 * coalesces them and we are running out of the MMU lock. Therefore
527 * we need to protect against in-progress updates of the spte.
528 *
529 * Reading the spte while an update is in progress may get the old value
530 * for the high part of the spte. The race is fine for a present->non-present
531 * change (because the high part of the spte is ignored for non-present spte),
532 * but for a present->present change we must reread the spte.
533 *
534 * All such changes are done in two steps (present->non-present and
535 * non-present->present), hence it is enough to count the number of
536 * present->non-present updates: if it changed while reading the spte,
537 * we might have hit the race. This is done using clear_spte_count.
538 */
539 static u64 __get_spte_lockless(u64 *sptep)
540 {
541 struct kvm_mmu_page *sp = page_header(__pa(sptep));
542 union split_spte spte, *orig = (union split_spte *)sptep;
543 int count;
544
545 retry:
546 count = sp->clear_spte_count;
547 smp_rmb();
548
549 spte.spte_low = orig->spte_low;
550 smp_rmb();
551
552 spte.spte_high = orig->spte_high;
553 smp_rmb();
554
555 if (unlikely(spte.spte_low != orig->spte_low ||
556 count != sp->clear_spte_count))
557 goto retry;
558
559 return spte.spte;
560 }
561 #endif
562
563 static bool spte_can_locklessly_be_made_writable(u64 spte)
564 {
565 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
566 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
567 }
568
569 static bool spte_has_volatile_bits(u64 spte)
570 {
571 if (!is_shadow_present_pte(spte))
572 return false;
573
574 /*
575 * Always atomically update spte if it can be updated
576 * out of mmu-lock, it can ensure dirty bit is not lost,
577 * also, it can help us to get a stable is_writable_pte()
578 * to ensure tlb flush is not missed.
579 */
580 if (spte_can_locklessly_be_made_writable(spte) ||
581 is_access_track_spte(spte))
582 return true;
583
584 if (spte_ad_enabled(spte)) {
585 if ((spte & shadow_accessed_mask) == 0 ||
586 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
587 return true;
588 }
589
590 return false;
591 }
592
593 static bool is_accessed_spte(u64 spte)
594 {
595 u64 accessed_mask = spte_shadow_accessed_mask(spte);
596
597 return accessed_mask ? spte & accessed_mask
598 : !is_access_track_spte(spte);
599 }
600
601 static bool is_dirty_spte(u64 spte)
602 {
603 u64 dirty_mask = spte_shadow_dirty_mask(spte);
604
605 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
606 }
607
608 /* Rules for using mmu_spte_set:
609 * Set the sptep from nonpresent to present.
610 * Note: the sptep being assigned *must* be either not present
611 * or in a state where the hardware will not attempt to update
612 * the spte.
613 */
614 static void mmu_spte_set(u64 *sptep, u64 new_spte)
615 {
616 WARN_ON(is_shadow_present_pte(*sptep));
617 __set_spte(sptep, new_spte);
618 }
619
620 /*
621 * Update the SPTE (excluding the PFN), but do not track changes in its
622 * accessed/dirty status.
623 */
624 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
625 {
626 u64 old_spte = *sptep;
627
628 WARN_ON(!is_shadow_present_pte(new_spte));
629
630 if (!is_shadow_present_pte(old_spte)) {
631 mmu_spte_set(sptep, new_spte);
632 return old_spte;
633 }
634
635 if (!spte_has_volatile_bits(old_spte))
636 __update_clear_spte_fast(sptep, new_spte);
637 else
638 old_spte = __update_clear_spte_slow(sptep, new_spte);
639
640 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
641
642 return old_spte;
643 }
644
645 /* Rules for using mmu_spte_update:
646 * Update the state bits, it means the mapped pfn is not changed.
647 *
648 * Whenever we overwrite a writable spte with a read-only one we
649 * should flush remote TLBs. Otherwise rmap_write_protect
650 * will find a read-only spte, even though the writable spte
651 * might be cached on a CPU's TLB, the return value indicates this
652 * case.
653 *
654 * Returns true if the TLB needs to be flushed
655 */
656 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
657 {
658 bool flush = false;
659 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
660
661 if (!is_shadow_present_pte(old_spte))
662 return false;
663
664 /*
665 * For the spte updated out of mmu-lock is safe, since
666 * we always atomically update it, see the comments in
667 * spte_has_volatile_bits().
668 */
669 if (spte_can_locklessly_be_made_writable(old_spte) &&
670 !is_writable_pte(new_spte))
671 flush = true;
672
673 /*
674 * Flush TLB when accessed/dirty states are changed in the page tables,
675 * to guarantee consistency between TLB and page tables.
676 */
677
678 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
679 flush = true;
680 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
681 }
682
683 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
684 flush = true;
685 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
686 }
687
688 return flush;
689 }
690
691 /*
692 * Rules for using mmu_spte_clear_track_bits:
693 * It sets the sptep from present to nonpresent, and track the
694 * state bits, it is used to clear the last level sptep.
695 * Returns non-zero if the PTE was previously valid.
696 */
697 static int mmu_spte_clear_track_bits(u64 *sptep)
698 {
699 kvm_pfn_t pfn;
700 u64 old_spte = *sptep;
701
702 if (!spte_has_volatile_bits(old_spte))
703 __update_clear_spte_fast(sptep, 0ull);
704 else
705 old_spte = __update_clear_spte_slow(sptep, 0ull);
706
707 if (!is_shadow_present_pte(old_spte))
708 return 0;
709
710 pfn = spte_to_pfn(old_spte);
711
712 /*
713 * KVM does not hold the refcount of the page used by
714 * kvm mmu, before reclaiming the page, we should
715 * unmap it from mmu first.
716 */
717 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
718
719 if (is_accessed_spte(old_spte))
720 kvm_set_pfn_accessed(pfn);
721
722 if (is_dirty_spte(old_spte))
723 kvm_set_pfn_dirty(pfn);
724
725 return 1;
726 }
727
728 /*
729 * Rules for using mmu_spte_clear_no_track:
730 * Directly clear spte without caring the state bits of sptep,
731 * it is used to set the upper level spte.
732 */
733 static void mmu_spte_clear_no_track(u64 *sptep)
734 {
735 __update_clear_spte_fast(sptep, 0ull);
736 }
737
738 static u64 mmu_spte_get_lockless(u64 *sptep)
739 {
740 return __get_spte_lockless(sptep);
741 }
742
743 static u64 mark_spte_for_access_track(u64 spte)
744 {
745 if (spte_ad_enabled(spte))
746 return spte & ~shadow_accessed_mask;
747
748 if (is_access_track_spte(spte))
749 return spte;
750
751 /*
752 * Making an Access Tracking PTE will result in removal of write access
753 * from the PTE. So, verify that we will be able to restore the write
754 * access in the fast page fault path later on.
755 */
756 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
757 !spte_can_locklessly_be_made_writable(spte),
758 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
759
760 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
761 shadow_acc_track_saved_bits_shift),
762 "kvm: Access Tracking saved bit locations are not zero\n");
763
764 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
765 shadow_acc_track_saved_bits_shift;
766 spte &= ~shadow_acc_track_mask;
767
768 return spte;
769 }
770
771 /* Restore an acc-track PTE back to a regular PTE */
772 static u64 restore_acc_track_spte(u64 spte)
773 {
774 u64 new_spte = spte;
775 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
776 & shadow_acc_track_saved_bits_mask;
777
778 WARN_ON_ONCE(spte_ad_enabled(spte));
779 WARN_ON_ONCE(!is_access_track_spte(spte));
780
781 new_spte &= ~shadow_acc_track_mask;
782 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
783 shadow_acc_track_saved_bits_shift);
784 new_spte |= saved_bits;
785
786 return new_spte;
787 }
788
789 /* Returns the Accessed status of the PTE and resets it at the same time. */
790 static bool mmu_spte_age(u64 *sptep)
791 {
792 u64 spte = mmu_spte_get_lockless(sptep);
793
794 if (!is_accessed_spte(spte))
795 return false;
796
797 if (spte_ad_enabled(spte)) {
798 clear_bit((ffs(shadow_accessed_mask) - 1),
799 (unsigned long *)sptep);
800 } else {
801 /*
802 * Capture the dirty status of the page, so that it doesn't get
803 * lost when the SPTE is marked for access tracking.
804 */
805 if (is_writable_pte(spte))
806 kvm_set_pfn_dirty(spte_to_pfn(spte));
807
808 spte = mark_spte_for_access_track(spte);
809 mmu_spte_update_no_track(sptep, spte);
810 }
811
812 return true;
813 }
814
815 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
816 {
817 /*
818 * Prevent page table teardown by making any free-er wait during
819 * kvm_flush_remote_tlbs() IPI to all active vcpus.
820 */
821 local_irq_disable();
822
823 /*
824 * Make sure a following spte read is not reordered ahead of the write
825 * to vcpu->mode.
826 */
827 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
828 }
829
830 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
831 {
832 /*
833 * Make sure the write to vcpu->mode is not reordered in front of
834 * reads to sptes. If it does, kvm_commit_zap_page() can see us
835 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
836 */
837 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
838 local_irq_enable();
839 }
840
841 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
842 struct kmem_cache *base_cache, int min)
843 {
844 void *obj;
845
846 if (cache->nobjs >= min)
847 return 0;
848 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
849 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
850 if (!obj)
851 return -ENOMEM;
852 cache->objects[cache->nobjs++] = obj;
853 }
854 return 0;
855 }
856
857 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
858 {
859 return cache->nobjs;
860 }
861
862 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
863 struct kmem_cache *cache)
864 {
865 while (mc->nobjs)
866 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
867 }
868
869 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
870 int min)
871 {
872 void *page;
873
874 if (cache->nobjs >= min)
875 return 0;
876 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
877 page = (void *)__get_free_page(GFP_KERNEL);
878 if (!page)
879 return -ENOMEM;
880 cache->objects[cache->nobjs++] = page;
881 }
882 return 0;
883 }
884
885 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
886 {
887 while (mc->nobjs)
888 free_page((unsigned long)mc->objects[--mc->nobjs]);
889 }
890
891 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
892 {
893 int r;
894
895 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
896 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
897 if (r)
898 goto out;
899 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
900 if (r)
901 goto out;
902 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
903 mmu_page_header_cache, 4);
904 out:
905 return r;
906 }
907
908 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
909 {
910 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
911 pte_list_desc_cache);
912 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
913 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
914 mmu_page_header_cache);
915 }
916
917 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
918 {
919 void *p;
920
921 BUG_ON(!mc->nobjs);
922 p = mc->objects[--mc->nobjs];
923 return p;
924 }
925
926 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
927 {
928 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
929 }
930
931 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
932 {
933 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
934 }
935
936 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
937 {
938 if (!sp->role.direct)
939 return sp->gfns[index];
940
941 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
942 }
943
944 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
945 {
946 if (sp->role.direct)
947 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
948 else
949 sp->gfns[index] = gfn;
950 }
951
952 /*
953 * Return the pointer to the large page information for a given gfn,
954 * handling slots that are not large page aligned.
955 */
956 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
957 struct kvm_memory_slot *slot,
958 int level)
959 {
960 unsigned long idx;
961
962 idx = gfn_to_index(gfn, slot->base_gfn, level);
963 return &slot->arch.lpage_info[level - 2][idx];
964 }
965
966 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
967 gfn_t gfn, int count)
968 {
969 struct kvm_lpage_info *linfo;
970 int i;
971
972 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
973 linfo = lpage_info_slot(gfn, slot, i);
974 linfo->disallow_lpage += count;
975 WARN_ON(linfo->disallow_lpage < 0);
976 }
977 }
978
979 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
980 {
981 update_gfn_disallow_lpage_count(slot, gfn, 1);
982 }
983
984 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
985 {
986 update_gfn_disallow_lpage_count(slot, gfn, -1);
987 }
988
989 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
990 {
991 struct kvm_memslots *slots;
992 struct kvm_memory_slot *slot;
993 gfn_t gfn;
994
995 kvm->arch.indirect_shadow_pages++;
996 gfn = sp->gfn;
997 slots = kvm_memslots_for_spte_role(kvm, sp->role);
998 slot = __gfn_to_memslot(slots, gfn);
999
1000 /* the non-leaf shadow pages are keeping readonly. */
1001 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1002 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1003 KVM_PAGE_TRACK_WRITE);
1004
1005 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1006 }
1007
1008 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1009 {
1010 struct kvm_memslots *slots;
1011 struct kvm_memory_slot *slot;
1012 gfn_t gfn;
1013
1014 kvm->arch.indirect_shadow_pages--;
1015 gfn = sp->gfn;
1016 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1017 slot = __gfn_to_memslot(slots, gfn);
1018 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1019 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1020 KVM_PAGE_TRACK_WRITE);
1021
1022 kvm_mmu_gfn_allow_lpage(slot, gfn);
1023 }
1024
1025 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1026 struct kvm_memory_slot *slot)
1027 {
1028 struct kvm_lpage_info *linfo;
1029
1030 if (slot) {
1031 linfo = lpage_info_slot(gfn, slot, level);
1032 return !!linfo->disallow_lpage;
1033 }
1034
1035 return true;
1036 }
1037
1038 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1039 int level)
1040 {
1041 struct kvm_memory_slot *slot;
1042
1043 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1044 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1045 }
1046
1047 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1048 {
1049 unsigned long page_size;
1050 int i, ret = 0;
1051
1052 page_size = kvm_host_page_size(kvm, gfn);
1053
1054 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1055 if (page_size >= KVM_HPAGE_SIZE(i))
1056 ret = i;
1057 else
1058 break;
1059 }
1060
1061 return ret;
1062 }
1063
1064 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1065 bool no_dirty_log)
1066 {
1067 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1068 return false;
1069 if (no_dirty_log && slot->dirty_bitmap)
1070 return false;
1071
1072 return true;
1073 }
1074
1075 static struct kvm_memory_slot *
1076 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1077 bool no_dirty_log)
1078 {
1079 struct kvm_memory_slot *slot;
1080
1081 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1082 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1083 slot = NULL;
1084
1085 return slot;
1086 }
1087
1088 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1089 bool *force_pt_level)
1090 {
1091 int host_level, level, max_level;
1092 struct kvm_memory_slot *slot;
1093
1094 if (unlikely(*force_pt_level))
1095 return PT_PAGE_TABLE_LEVEL;
1096
1097 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1098 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1099 if (unlikely(*force_pt_level))
1100 return PT_PAGE_TABLE_LEVEL;
1101
1102 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1103
1104 if (host_level == PT_PAGE_TABLE_LEVEL)
1105 return host_level;
1106
1107 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1108
1109 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1110 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1111 break;
1112
1113 return level - 1;
1114 }
1115
1116 /*
1117 * About rmap_head encoding:
1118 *
1119 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1120 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1121 * pte_list_desc containing more mappings.
1122 */
1123
1124 /*
1125 * Returns the number of pointers in the rmap chain, not counting the new one.
1126 */
1127 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1128 struct kvm_rmap_head *rmap_head)
1129 {
1130 struct pte_list_desc *desc;
1131 int i, count = 0;
1132
1133 if (!rmap_head->val) {
1134 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1135 rmap_head->val = (unsigned long)spte;
1136 } else if (!(rmap_head->val & 1)) {
1137 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1138 desc = mmu_alloc_pte_list_desc(vcpu);
1139 desc->sptes[0] = (u64 *)rmap_head->val;
1140 desc->sptes[1] = spte;
1141 rmap_head->val = (unsigned long)desc | 1;
1142 ++count;
1143 } else {
1144 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1145 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1146 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1147 desc = desc->more;
1148 count += PTE_LIST_EXT;
1149 }
1150 if (desc->sptes[PTE_LIST_EXT-1]) {
1151 desc->more = mmu_alloc_pte_list_desc(vcpu);
1152 desc = desc->more;
1153 }
1154 for (i = 0; desc->sptes[i]; ++i)
1155 ++count;
1156 desc->sptes[i] = spte;
1157 }
1158 return count;
1159 }
1160
1161 static void
1162 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1163 struct pte_list_desc *desc, int i,
1164 struct pte_list_desc *prev_desc)
1165 {
1166 int j;
1167
1168 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1169 ;
1170 desc->sptes[i] = desc->sptes[j];
1171 desc->sptes[j] = NULL;
1172 if (j != 0)
1173 return;
1174 if (!prev_desc && !desc->more)
1175 rmap_head->val = (unsigned long)desc->sptes[0];
1176 else
1177 if (prev_desc)
1178 prev_desc->more = desc->more;
1179 else
1180 rmap_head->val = (unsigned long)desc->more | 1;
1181 mmu_free_pte_list_desc(desc);
1182 }
1183
1184 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1185 {
1186 struct pte_list_desc *desc;
1187 struct pte_list_desc *prev_desc;
1188 int i;
1189
1190 if (!rmap_head->val) {
1191 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1192 BUG();
1193 } else if (!(rmap_head->val & 1)) {
1194 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1195 if ((u64 *)rmap_head->val != spte) {
1196 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1197 BUG();
1198 }
1199 rmap_head->val = 0;
1200 } else {
1201 rmap_printk("pte_list_remove: %p many->many\n", spte);
1202 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1203 prev_desc = NULL;
1204 while (desc) {
1205 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1206 if (desc->sptes[i] == spte) {
1207 pte_list_desc_remove_entry(rmap_head,
1208 desc, i, prev_desc);
1209 return;
1210 }
1211 }
1212 prev_desc = desc;
1213 desc = desc->more;
1214 }
1215 pr_err("pte_list_remove: %p many->many\n", spte);
1216 BUG();
1217 }
1218 }
1219
1220 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1221 struct kvm_memory_slot *slot)
1222 {
1223 unsigned long idx;
1224
1225 idx = gfn_to_index(gfn, slot->base_gfn, level);
1226 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1227 }
1228
1229 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1230 struct kvm_mmu_page *sp)
1231 {
1232 struct kvm_memslots *slots;
1233 struct kvm_memory_slot *slot;
1234
1235 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1236 slot = __gfn_to_memslot(slots, gfn);
1237 return __gfn_to_rmap(gfn, sp->role.level, slot);
1238 }
1239
1240 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1241 {
1242 struct kvm_mmu_memory_cache *cache;
1243
1244 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1245 return mmu_memory_cache_free_objects(cache);
1246 }
1247
1248 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1249 {
1250 struct kvm_mmu_page *sp;
1251 struct kvm_rmap_head *rmap_head;
1252
1253 sp = page_header(__pa(spte));
1254 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1255 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1256 return pte_list_add(vcpu, spte, rmap_head);
1257 }
1258
1259 static void rmap_remove(struct kvm *kvm, u64 *spte)
1260 {
1261 struct kvm_mmu_page *sp;
1262 gfn_t gfn;
1263 struct kvm_rmap_head *rmap_head;
1264
1265 sp = page_header(__pa(spte));
1266 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1267 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1268 pte_list_remove(spte, rmap_head);
1269 }
1270
1271 /*
1272 * Used by the following functions to iterate through the sptes linked by a
1273 * rmap. All fields are private and not assumed to be used outside.
1274 */
1275 struct rmap_iterator {
1276 /* private fields */
1277 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1278 int pos; /* index of the sptep */
1279 };
1280
1281 /*
1282 * Iteration must be started by this function. This should also be used after
1283 * removing/dropping sptes from the rmap link because in such cases the
1284 * information in the itererator may not be valid.
1285 *
1286 * Returns sptep if found, NULL otherwise.
1287 */
1288 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1289 struct rmap_iterator *iter)
1290 {
1291 u64 *sptep;
1292
1293 if (!rmap_head->val)
1294 return NULL;
1295
1296 if (!(rmap_head->val & 1)) {
1297 iter->desc = NULL;
1298 sptep = (u64 *)rmap_head->val;
1299 goto out;
1300 }
1301
1302 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1303 iter->pos = 0;
1304 sptep = iter->desc->sptes[iter->pos];
1305 out:
1306 BUG_ON(!is_shadow_present_pte(*sptep));
1307 return sptep;
1308 }
1309
1310 /*
1311 * Must be used with a valid iterator: e.g. after rmap_get_first().
1312 *
1313 * Returns sptep if found, NULL otherwise.
1314 */
1315 static u64 *rmap_get_next(struct rmap_iterator *iter)
1316 {
1317 u64 *sptep;
1318
1319 if (iter->desc) {
1320 if (iter->pos < PTE_LIST_EXT - 1) {
1321 ++iter->pos;
1322 sptep = iter->desc->sptes[iter->pos];
1323 if (sptep)
1324 goto out;
1325 }
1326
1327 iter->desc = iter->desc->more;
1328
1329 if (iter->desc) {
1330 iter->pos = 0;
1331 /* desc->sptes[0] cannot be NULL */
1332 sptep = iter->desc->sptes[iter->pos];
1333 goto out;
1334 }
1335 }
1336
1337 return NULL;
1338 out:
1339 BUG_ON(!is_shadow_present_pte(*sptep));
1340 return sptep;
1341 }
1342
1343 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1344 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1345 _spte_; _spte_ = rmap_get_next(_iter_))
1346
1347 static void drop_spte(struct kvm *kvm, u64 *sptep)
1348 {
1349 if (mmu_spte_clear_track_bits(sptep))
1350 rmap_remove(kvm, sptep);
1351 }
1352
1353
1354 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1355 {
1356 if (is_large_pte(*sptep)) {
1357 WARN_ON(page_header(__pa(sptep))->role.level ==
1358 PT_PAGE_TABLE_LEVEL);
1359 drop_spte(kvm, sptep);
1360 --kvm->stat.lpages;
1361 return true;
1362 }
1363
1364 return false;
1365 }
1366
1367 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1368 {
1369 if (__drop_large_spte(vcpu->kvm, sptep))
1370 kvm_flush_remote_tlbs(vcpu->kvm);
1371 }
1372
1373 /*
1374 * Write-protect on the specified @sptep, @pt_protect indicates whether
1375 * spte write-protection is caused by protecting shadow page table.
1376 *
1377 * Note: write protection is difference between dirty logging and spte
1378 * protection:
1379 * - for dirty logging, the spte can be set to writable at anytime if
1380 * its dirty bitmap is properly set.
1381 * - for spte protection, the spte can be writable only after unsync-ing
1382 * shadow page.
1383 *
1384 * Return true if tlb need be flushed.
1385 */
1386 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1387 {
1388 u64 spte = *sptep;
1389
1390 if (!is_writable_pte(spte) &&
1391 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1392 return false;
1393
1394 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1395
1396 if (pt_protect)
1397 spte &= ~SPTE_MMU_WRITEABLE;
1398 spte = spte & ~PT_WRITABLE_MASK;
1399
1400 return mmu_spte_update(sptep, spte);
1401 }
1402
1403 static bool __rmap_write_protect(struct kvm *kvm,
1404 struct kvm_rmap_head *rmap_head,
1405 bool pt_protect)
1406 {
1407 u64 *sptep;
1408 struct rmap_iterator iter;
1409 bool flush = false;
1410
1411 for_each_rmap_spte(rmap_head, &iter, sptep)
1412 flush |= spte_write_protect(sptep, pt_protect);
1413
1414 return flush;
1415 }
1416
1417 static bool spte_clear_dirty(u64 *sptep)
1418 {
1419 u64 spte = *sptep;
1420
1421 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1422
1423 spte &= ~shadow_dirty_mask;
1424
1425 return mmu_spte_update(sptep, spte);
1426 }
1427
1428 static bool wrprot_ad_disabled_spte(u64 *sptep)
1429 {
1430 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1431 (unsigned long *)sptep);
1432 if (was_writable)
1433 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1434
1435 return was_writable;
1436 }
1437
1438 /*
1439 * Gets the GFN ready for another round of dirty logging by clearing the
1440 * - D bit on ad-enabled SPTEs, and
1441 * - W bit on ad-disabled SPTEs.
1442 * Returns true iff any D or W bits were cleared.
1443 */
1444 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1445 {
1446 u64 *sptep;
1447 struct rmap_iterator iter;
1448 bool flush = false;
1449
1450 for_each_rmap_spte(rmap_head, &iter, sptep)
1451 if (spte_ad_enabled(*sptep))
1452 flush |= spte_clear_dirty(sptep);
1453 else
1454 flush |= wrprot_ad_disabled_spte(sptep);
1455
1456 return flush;
1457 }
1458
1459 static bool spte_set_dirty(u64 *sptep)
1460 {
1461 u64 spte = *sptep;
1462
1463 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1464
1465 spte |= shadow_dirty_mask;
1466
1467 return mmu_spte_update(sptep, spte);
1468 }
1469
1470 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1471 {
1472 u64 *sptep;
1473 struct rmap_iterator iter;
1474 bool flush = false;
1475
1476 for_each_rmap_spte(rmap_head, &iter, sptep)
1477 if (spte_ad_enabled(*sptep))
1478 flush |= spte_set_dirty(sptep);
1479
1480 return flush;
1481 }
1482
1483 /**
1484 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1485 * @kvm: kvm instance
1486 * @slot: slot to protect
1487 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1488 * @mask: indicates which pages we should protect
1489 *
1490 * Used when we do not need to care about huge page mappings: e.g. during dirty
1491 * logging we do not have any such mappings.
1492 */
1493 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1494 struct kvm_memory_slot *slot,
1495 gfn_t gfn_offset, unsigned long mask)
1496 {
1497 struct kvm_rmap_head *rmap_head;
1498
1499 while (mask) {
1500 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1501 PT_PAGE_TABLE_LEVEL, slot);
1502 __rmap_write_protect(kvm, rmap_head, false);
1503
1504 /* clear the first set bit */
1505 mask &= mask - 1;
1506 }
1507 }
1508
1509 /**
1510 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1511 * protect the page if the D-bit isn't supported.
1512 * @kvm: kvm instance
1513 * @slot: slot to clear D-bit
1514 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1515 * @mask: indicates which pages we should clear D-bit
1516 *
1517 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1518 */
1519 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1520 struct kvm_memory_slot *slot,
1521 gfn_t gfn_offset, unsigned long mask)
1522 {
1523 struct kvm_rmap_head *rmap_head;
1524
1525 while (mask) {
1526 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1527 PT_PAGE_TABLE_LEVEL, slot);
1528 __rmap_clear_dirty(kvm, rmap_head);
1529
1530 /* clear the first set bit */
1531 mask &= mask - 1;
1532 }
1533 }
1534 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1535
1536 /**
1537 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1538 * PT level pages.
1539 *
1540 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1541 * enable dirty logging for them.
1542 *
1543 * Used when we do not need to care about huge page mappings: e.g. during dirty
1544 * logging we do not have any such mappings.
1545 */
1546 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1547 struct kvm_memory_slot *slot,
1548 gfn_t gfn_offset, unsigned long mask)
1549 {
1550 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1551 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1552 mask);
1553 else
1554 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1555 }
1556
1557 /**
1558 * kvm_arch_write_log_dirty - emulate dirty page logging
1559 * @vcpu: Guest mode vcpu
1560 *
1561 * Emulate arch specific page modification logging for the
1562 * nested hypervisor
1563 */
1564 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1565 {
1566 if (kvm_x86_ops->write_log_dirty)
1567 return kvm_x86_ops->write_log_dirty(vcpu);
1568
1569 return 0;
1570 }
1571
1572 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1573 struct kvm_memory_slot *slot, u64 gfn)
1574 {
1575 struct kvm_rmap_head *rmap_head;
1576 int i;
1577 bool write_protected = false;
1578
1579 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1580 rmap_head = __gfn_to_rmap(gfn, i, slot);
1581 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1582 }
1583
1584 return write_protected;
1585 }
1586
1587 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1588 {
1589 struct kvm_memory_slot *slot;
1590
1591 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1592 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1593 }
1594
1595 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1596 {
1597 u64 *sptep;
1598 struct rmap_iterator iter;
1599 bool flush = false;
1600
1601 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1602 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1603
1604 drop_spte(kvm, sptep);
1605 flush = true;
1606 }
1607
1608 return flush;
1609 }
1610
1611 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1612 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1613 unsigned long data)
1614 {
1615 return kvm_zap_rmapp(kvm, rmap_head);
1616 }
1617
1618 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1619 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1620 unsigned long data)
1621 {
1622 u64 *sptep;
1623 struct rmap_iterator iter;
1624 int need_flush = 0;
1625 u64 new_spte;
1626 pte_t *ptep = (pte_t *)data;
1627 kvm_pfn_t new_pfn;
1628
1629 WARN_ON(pte_huge(*ptep));
1630 new_pfn = pte_pfn(*ptep);
1631
1632 restart:
1633 for_each_rmap_spte(rmap_head, &iter, sptep) {
1634 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1635 sptep, *sptep, gfn, level);
1636
1637 need_flush = 1;
1638
1639 if (pte_write(*ptep)) {
1640 drop_spte(kvm, sptep);
1641 goto restart;
1642 } else {
1643 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1644 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1645
1646 new_spte &= ~PT_WRITABLE_MASK;
1647 new_spte &= ~SPTE_HOST_WRITEABLE;
1648
1649 new_spte = mark_spte_for_access_track(new_spte);
1650
1651 mmu_spte_clear_track_bits(sptep);
1652 mmu_spte_set(sptep, new_spte);
1653 }
1654 }
1655
1656 if (need_flush)
1657 kvm_flush_remote_tlbs(kvm);
1658
1659 return 0;
1660 }
1661
1662 struct slot_rmap_walk_iterator {
1663 /* input fields. */
1664 struct kvm_memory_slot *slot;
1665 gfn_t start_gfn;
1666 gfn_t end_gfn;
1667 int start_level;
1668 int end_level;
1669
1670 /* output fields. */
1671 gfn_t gfn;
1672 struct kvm_rmap_head *rmap;
1673 int level;
1674
1675 /* private field. */
1676 struct kvm_rmap_head *end_rmap;
1677 };
1678
1679 static void
1680 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1681 {
1682 iterator->level = level;
1683 iterator->gfn = iterator->start_gfn;
1684 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1685 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1686 iterator->slot);
1687 }
1688
1689 static void
1690 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1691 struct kvm_memory_slot *slot, int start_level,
1692 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1693 {
1694 iterator->slot = slot;
1695 iterator->start_level = start_level;
1696 iterator->end_level = end_level;
1697 iterator->start_gfn = start_gfn;
1698 iterator->end_gfn = end_gfn;
1699
1700 rmap_walk_init_level(iterator, iterator->start_level);
1701 }
1702
1703 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1704 {
1705 return !!iterator->rmap;
1706 }
1707
1708 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1709 {
1710 if (++iterator->rmap <= iterator->end_rmap) {
1711 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1712 return;
1713 }
1714
1715 if (++iterator->level > iterator->end_level) {
1716 iterator->rmap = NULL;
1717 return;
1718 }
1719
1720 rmap_walk_init_level(iterator, iterator->level);
1721 }
1722
1723 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1724 _start_gfn, _end_gfn, _iter_) \
1725 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1726 _end_level_, _start_gfn, _end_gfn); \
1727 slot_rmap_walk_okay(_iter_); \
1728 slot_rmap_walk_next(_iter_))
1729
1730 static int kvm_handle_hva_range(struct kvm *kvm,
1731 unsigned long start,
1732 unsigned long end,
1733 unsigned long data,
1734 int (*handler)(struct kvm *kvm,
1735 struct kvm_rmap_head *rmap_head,
1736 struct kvm_memory_slot *slot,
1737 gfn_t gfn,
1738 int level,
1739 unsigned long data))
1740 {
1741 struct kvm_memslots *slots;
1742 struct kvm_memory_slot *memslot;
1743 struct slot_rmap_walk_iterator iterator;
1744 int ret = 0;
1745 int i;
1746
1747 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1748 slots = __kvm_memslots(kvm, i);
1749 kvm_for_each_memslot(memslot, slots) {
1750 unsigned long hva_start, hva_end;
1751 gfn_t gfn_start, gfn_end;
1752
1753 hva_start = max(start, memslot->userspace_addr);
1754 hva_end = min(end, memslot->userspace_addr +
1755 (memslot->npages << PAGE_SHIFT));
1756 if (hva_start >= hva_end)
1757 continue;
1758 /*
1759 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1760 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1761 */
1762 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1763 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1764
1765 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1766 PT_MAX_HUGEPAGE_LEVEL,
1767 gfn_start, gfn_end - 1,
1768 &iterator)
1769 ret |= handler(kvm, iterator.rmap, memslot,
1770 iterator.gfn, iterator.level, data);
1771 }
1772 }
1773
1774 return ret;
1775 }
1776
1777 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1778 unsigned long data,
1779 int (*handler)(struct kvm *kvm,
1780 struct kvm_rmap_head *rmap_head,
1781 struct kvm_memory_slot *slot,
1782 gfn_t gfn, int level,
1783 unsigned long data))
1784 {
1785 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1786 }
1787
1788 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1789 {
1790 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1791 }
1792
1793 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1794 {
1795 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1796 }
1797
1798 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1799 {
1800 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1801 }
1802
1803 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1804 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1805 unsigned long data)
1806 {
1807 u64 *sptep;
1808 struct rmap_iterator uninitialized_var(iter);
1809 int young = 0;
1810
1811 for_each_rmap_spte(rmap_head, &iter, sptep)
1812 young |= mmu_spte_age(sptep);
1813
1814 trace_kvm_age_page(gfn, level, slot, young);
1815 return young;
1816 }
1817
1818 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1819 struct kvm_memory_slot *slot, gfn_t gfn,
1820 int level, unsigned long data)
1821 {
1822 u64 *sptep;
1823 struct rmap_iterator iter;
1824
1825 for_each_rmap_spte(rmap_head, &iter, sptep)
1826 if (is_accessed_spte(*sptep))
1827 return 1;
1828 return 0;
1829 }
1830
1831 #define RMAP_RECYCLE_THRESHOLD 1000
1832
1833 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1834 {
1835 struct kvm_rmap_head *rmap_head;
1836 struct kvm_mmu_page *sp;
1837
1838 sp = page_header(__pa(spte));
1839
1840 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1841
1842 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1843 kvm_flush_remote_tlbs(vcpu->kvm);
1844 }
1845
1846 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1847 {
1848 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1849 }
1850
1851 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1852 {
1853 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1854 }
1855
1856 #ifdef MMU_DEBUG
1857 static int is_empty_shadow_page(u64 *spt)
1858 {
1859 u64 *pos;
1860 u64 *end;
1861
1862 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1863 if (is_shadow_present_pte(*pos)) {
1864 printk(KERN_ERR "%s: %p %llx\n", __func__,
1865 pos, *pos);
1866 return 0;
1867 }
1868 return 1;
1869 }
1870 #endif
1871
1872 /*
1873 * This value is the sum of all of the kvm instances's
1874 * kvm->arch.n_used_mmu_pages values. We need a global,
1875 * aggregate version in order to make the slab shrinker
1876 * faster
1877 */
1878 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1879 {
1880 kvm->arch.n_used_mmu_pages += nr;
1881 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1882 }
1883
1884 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1885 {
1886 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1887 hlist_del(&sp->hash_link);
1888 list_del(&sp->link);
1889 free_page((unsigned long)sp->spt);
1890 if (!sp->role.direct)
1891 free_page((unsigned long)sp->gfns);
1892 kmem_cache_free(mmu_page_header_cache, sp);
1893 }
1894
1895 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1896 {
1897 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1898 }
1899
1900 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1901 struct kvm_mmu_page *sp, u64 *parent_pte)
1902 {
1903 if (!parent_pte)
1904 return;
1905
1906 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1907 }
1908
1909 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1910 u64 *parent_pte)
1911 {
1912 pte_list_remove(parent_pte, &sp->parent_ptes);
1913 }
1914
1915 static void drop_parent_pte(struct kvm_mmu_page *sp,
1916 u64 *parent_pte)
1917 {
1918 mmu_page_remove_parent_pte(sp, parent_pte);
1919 mmu_spte_clear_no_track(parent_pte);
1920 }
1921
1922 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1923 {
1924 struct kvm_mmu_page *sp;
1925
1926 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1927 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1928 if (!direct)
1929 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1930 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1931
1932 /*
1933 * The active_mmu_pages list is the FIFO list, do not move the
1934 * page until it is zapped. kvm_zap_obsolete_pages depends on
1935 * this feature. See the comments in kvm_zap_obsolete_pages().
1936 */
1937 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1938 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1939 return sp;
1940 }
1941
1942 static void mark_unsync(u64 *spte);
1943 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1944 {
1945 u64 *sptep;
1946 struct rmap_iterator iter;
1947
1948 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1949 mark_unsync(sptep);
1950 }
1951 }
1952
1953 static void mark_unsync(u64 *spte)
1954 {
1955 struct kvm_mmu_page *sp;
1956 unsigned int index;
1957
1958 sp = page_header(__pa(spte));
1959 index = spte - sp->spt;
1960 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1961 return;
1962 if (sp->unsync_children++)
1963 return;
1964 kvm_mmu_mark_parents_unsync(sp);
1965 }
1966
1967 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1968 struct kvm_mmu_page *sp)
1969 {
1970 return 0;
1971 }
1972
1973 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1974 {
1975 }
1976
1977 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1978 struct kvm_mmu_page *sp, u64 *spte,
1979 const void *pte)
1980 {
1981 WARN_ON(1);
1982 }
1983
1984 #define KVM_PAGE_ARRAY_NR 16
1985
1986 struct kvm_mmu_pages {
1987 struct mmu_page_and_offset {
1988 struct kvm_mmu_page *sp;
1989 unsigned int idx;
1990 } page[KVM_PAGE_ARRAY_NR];
1991 unsigned int nr;
1992 };
1993
1994 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1995 int idx)
1996 {
1997 int i;
1998
1999 if (sp->unsync)
2000 for (i=0; i < pvec->nr; i++)
2001 if (pvec->page[i].sp == sp)
2002 return 0;
2003
2004 pvec->page[pvec->nr].sp = sp;
2005 pvec->page[pvec->nr].idx = idx;
2006 pvec->nr++;
2007 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2008 }
2009
2010 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2011 {
2012 --sp->unsync_children;
2013 WARN_ON((int)sp->unsync_children < 0);
2014 __clear_bit(idx, sp->unsync_child_bitmap);
2015 }
2016
2017 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2018 struct kvm_mmu_pages *pvec)
2019 {
2020 int i, ret, nr_unsync_leaf = 0;
2021
2022 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2023 struct kvm_mmu_page *child;
2024 u64 ent = sp->spt[i];
2025
2026 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2027 clear_unsync_child_bit(sp, i);
2028 continue;
2029 }
2030
2031 child = page_header(ent & PT64_BASE_ADDR_MASK);
2032
2033 if (child->unsync_children) {
2034 if (mmu_pages_add(pvec, child, i))
2035 return -ENOSPC;
2036
2037 ret = __mmu_unsync_walk(child, pvec);
2038 if (!ret) {
2039 clear_unsync_child_bit(sp, i);
2040 continue;
2041 } else if (ret > 0) {
2042 nr_unsync_leaf += ret;
2043 } else
2044 return ret;
2045 } else if (child->unsync) {
2046 nr_unsync_leaf++;
2047 if (mmu_pages_add(pvec, child, i))
2048 return -ENOSPC;
2049 } else
2050 clear_unsync_child_bit(sp, i);
2051 }
2052
2053 return nr_unsync_leaf;
2054 }
2055
2056 #define INVALID_INDEX (-1)
2057
2058 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2059 struct kvm_mmu_pages *pvec)
2060 {
2061 pvec->nr = 0;
2062 if (!sp->unsync_children)
2063 return 0;
2064
2065 mmu_pages_add(pvec, sp, INVALID_INDEX);
2066 return __mmu_unsync_walk(sp, pvec);
2067 }
2068
2069 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2070 {
2071 WARN_ON(!sp->unsync);
2072 trace_kvm_mmu_sync_page(sp);
2073 sp->unsync = 0;
2074 --kvm->stat.mmu_unsync;
2075 }
2076
2077 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2078 struct list_head *invalid_list);
2079 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2080 struct list_head *invalid_list);
2081
2082 /*
2083 * NOTE: we should pay more attention on the zapped-obsolete page
2084 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2085 * since it has been deleted from active_mmu_pages but still can be found
2086 * at hast list.
2087 *
2088 * for_each_valid_sp() has skipped that kind of pages.
2089 */
2090 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2091 hlist_for_each_entry(_sp, \
2092 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2093 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2094 } else
2095
2096 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2097 for_each_valid_sp(_kvm, _sp, _gfn) \
2098 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2099
2100 /* @sp->gfn should be write-protected at the call site */
2101 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2102 struct list_head *invalid_list)
2103 {
2104 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2105 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2106 return false;
2107 }
2108
2109 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2110 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2111 return false;
2112 }
2113
2114 return true;
2115 }
2116
2117 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2118 struct list_head *invalid_list,
2119 bool remote_flush, bool local_flush)
2120 {
2121 if (!list_empty(invalid_list)) {
2122 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2123 return;
2124 }
2125
2126 if (remote_flush)
2127 kvm_flush_remote_tlbs(vcpu->kvm);
2128 else if (local_flush)
2129 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2130 }
2131
2132 #ifdef CONFIG_KVM_MMU_AUDIT
2133 #include "mmu_audit.c"
2134 #else
2135 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2136 static void mmu_audit_disable(void) { }
2137 #endif
2138
2139 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2140 {
2141 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2142 }
2143
2144 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2145 struct list_head *invalid_list)
2146 {
2147 kvm_unlink_unsync_page(vcpu->kvm, sp);
2148 return __kvm_sync_page(vcpu, sp, invalid_list);
2149 }
2150
2151 /* @gfn should be write-protected at the call site */
2152 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2153 struct list_head *invalid_list)
2154 {
2155 struct kvm_mmu_page *s;
2156 bool ret = false;
2157
2158 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2159 if (!s->unsync)
2160 continue;
2161
2162 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2163 ret |= kvm_sync_page(vcpu, s, invalid_list);
2164 }
2165
2166 return ret;
2167 }
2168
2169 struct mmu_page_path {
2170 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2171 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2172 };
2173
2174 #define for_each_sp(pvec, sp, parents, i) \
2175 for (i = mmu_pages_first(&pvec, &parents); \
2176 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2177 i = mmu_pages_next(&pvec, &parents, i))
2178
2179 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2180 struct mmu_page_path *parents,
2181 int i)
2182 {
2183 int n;
2184
2185 for (n = i+1; n < pvec->nr; n++) {
2186 struct kvm_mmu_page *sp = pvec->page[n].sp;
2187 unsigned idx = pvec->page[n].idx;
2188 int level = sp->role.level;
2189
2190 parents->idx[level-1] = idx;
2191 if (level == PT_PAGE_TABLE_LEVEL)
2192 break;
2193
2194 parents->parent[level-2] = sp;
2195 }
2196
2197 return n;
2198 }
2199
2200 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2201 struct mmu_page_path *parents)
2202 {
2203 struct kvm_mmu_page *sp;
2204 int level;
2205
2206 if (pvec->nr == 0)
2207 return 0;
2208
2209 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2210
2211 sp = pvec->page[0].sp;
2212 level = sp->role.level;
2213 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2214
2215 parents->parent[level-2] = sp;
2216
2217 /* Also set up a sentinel. Further entries in pvec are all
2218 * children of sp, so this element is never overwritten.
2219 */
2220 parents->parent[level-1] = NULL;
2221 return mmu_pages_next(pvec, parents, 0);
2222 }
2223
2224 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2225 {
2226 struct kvm_mmu_page *sp;
2227 unsigned int level = 0;
2228
2229 do {
2230 unsigned int idx = parents->idx[level];
2231 sp = parents->parent[level];
2232 if (!sp)
2233 return;
2234
2235 WARN_ON(idx == INVALID_INDEX);
2236 clear_unsync_child_bit(sp, idx);
2237 level++;
2238 } while (!sp->unsync_children);
2239 }
2240
2241 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2242 struct kvm_mmu_page *parent)
2243 {
2244 int i;
2245 struct kvm_mmu_page *sp;
2246 struct mmu_page_path parents;
2247 struct kvm_mmu_pages pages;
2248 LIST_HEAD(invalid_list);
2249 bool flush = false;
2250
2251 while (mmu_unsync_walk(parent, &pages)) {
2252 bool protected = false;
2253
2254 for_each_sp(pages, sp, parents, i)
2255 protected |= rmap_write_protect(vcpu, sp->gfn);
2256
2257 if (protected) {
2258 kvm_flush_remote_tlbs(vcpu->kvm);
2259 flush = false;
2260 }
2261
2262 for_each_sp(pages, sp, parents, i) {
2263 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2264 mmu_pages_clear_parents(&parents);
2265 }
2266 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2267 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2268 cond_resched_lock(&vcpu->kvm->mmu_lock);
2269 flush = false;
2270 }
2271 }
2272
2273 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2274 }
2275
2276 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2277 {
2278 atomic_set(&sp->write_flooding_count, 0);
2279 }
2280
2281 static void clear_sp_write_flooding_count(u64 *spte)
2282 {
2283 struct kvm_mmu_page *sp = page_header(__pa(spte));
2284
2285 __clear_sp_write_flooding_count(sp);
2286 }
2287
2288 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2289 gfn_t gfn,
2290 gva_t gaddr,
2291 unsigned level,
2292 int direct,
2293 unsigned access)
2294 {
2295 union kvm_mmu_page_role role;
2296 unsigned quadrant;
2297 struct kvm_mmu_page *sp;
2298 bool need_sync = false;
2299 bool flush = false;
2300 int collisions = 0;
2301 LIST_HEAD(invalid_list);
2302
2303 role = vcpu->arch.mmu.base_role;
2304 role.level = level;
2305 role.direct = direct;
2306 if (role.direct)
2307 role.cr4_pae = 0;
2308 role.access = access;
2309 if (!vcpu->arch.mmu.direct_map
2310 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2311 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2312 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2313 role.quadrant = quadrant;
2314 }
2315 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2316 if (sp->gfn != gfn) {
2317 collisions++;
2318 continue;
2319 }
2320
2321 if (!need_sync && sp->unsync)
2322 need_sync = true;
2323
2324 if (sp->role.word != role.word)
2325 continue;
2326
2327 if (sp->unsync) {
2328 /* The page is good, but __kvm_sync_page might still end
2329 * up zapping it. If so, break in order to rebuild it.
2330 */
2331 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2332 break;
2333
2334 WARN_ON(!list_empty(&invalid_list));
2335 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2336 }
2337
2338 if (sp->unsync_children)
2339 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2340
2341 __clear_sp_write_flooding_count(sp);
2342 trace_kvm_mmu_get_page(sp, false);
2343 goto out;
2344 }
2345
2346 ++vcpu->kvm->stat.mmu_cache_miss;
2347
2348 sp = kvm_mmu_alloc_page(vcpu, direct);
2349
2350 sp->gfn = gfn;
2351 sp->role = role;
2352 hlist_add_head(&sp->hash_link,
2353 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2354 if (!direct) {
2355 /*
2356 * we should do write protection before syncing pages
2357 * otherwise the content of the synced shadow page may
2358 * be inconsistent with guest page table.
2359 */
2360 account_shadowed(vcpu->kvm, sp);
2361 if (level == PT_PAGE_TABLE_LEVEL &&
2362 rmap_write_protect(vcpu, gfn))
2363 kvm_flush_remote_tlbs(vcpu->kvm);
2364
2365 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2366 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2367 }
2368 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2369 clear_page(sp->spt);
2370 trace_kvm_mmu_get_page(sp, true);
2371
2372 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2373 out:
2374 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2375 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2376 return sp;
2377 }
2378
2379 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2380 struct kvm_vcpu *vcpu, u64 addr)
2381 {
2382 iterator->addr = addr;
2383 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2384 iterator->level = vcpu->arch.mmu.shadow_root_level;
2385
2386 if (iterator->level == PT64_ROOT_4LEVEL &&
2387 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2388 !vcpu->arch.mmu.direct_map)
2389 --iterator->level;
2390
2391 if (iterator->level == PT32E_ROOT_LEVEL) {
2392 iterator->shadow_addr
2393 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2394 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2395 --iterator->level;
2396 if (!iterator->shadow_addr)
2397 iterator->level = 0;
2398 }
2399 }
2400
2401 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2402 {
2403 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2404 return false;
2405
2406 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2407 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2408 return true;
2409 }
2410
2411 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2412 u64 spte)
2413 {
2414 if (is_last_spte(spte, iterator->level)) {
2415 iterator->level = 0;
2416 return;
2417 }
2418
2419 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2420 --iterator->level;
2421 }
2422
2423 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2424 {
2425 return __shadow_walk_next(iterator, *iterator->sptep);
2426 }
2427
2428 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2429 struct kvm_mmu_page *sp)
2430 {
2431 u64 spte;
2432
2433 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2434
2435 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2436 shadow_user_mask | shadow_x_mask;
2437
2438 if (sp_ad_disabled(sp))
2439 spte |= shadow_acc_track_value;
2440 else
2441 spte |= shadow_accessed_mask;
2442
2443 mmu_spte_set(sptep, spte);
2444
2445 mmu_page_add_parent_pte(vcpu, sp, sptep);
2446
2447 if (sp->unsync_children || sp->unsync)
2448 mark_unsync(sptep);
2449 }
2450
2451 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2452 unsigned direct_access)
2453 {
2454 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2455 struct kvm_mmu_page *child;
2456
2457 /*
2458 * For the direct sp, if the guest pte's dirty bit
2459 * changed form clean to dirty, it will corrupt the
2460 * sp's access: allow writable in the read-only sp,
2461 * so we should update the spte at this point to get
2462 * a new sp with the correct access.
2463 */
2464 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2465 if (child->role.access == direct_access)
2466 return;
2467
2468 drop_parent_pte(child, sptep);
2469 kvm_flush_remote_tlbs(vcpu->kvm);
2470 }
2471 }
2472
2473 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2474 u64 *spte)
2475 {
2476 u64 pte;
2477 struct kvm_mmu_page *child;
2478
2479 pte = *spte;
2480 if (is_shadow_present_pte(pte)) {
2481 if (is_last_spte(pte, sp->role.level)) {
2482 drop_spte(kvm, spte);
2483 if (is_large_pte(pte))
2484 --kvm->stat.lpages;
2485 } else {
2486 child = page_header(pte & PT64_BASE_ADDR_MASK);
2487 drop_parent_pte(child, spte);
2488 }
2489 return true;
2490 }
2491
2492 if (is_mmio_spte(pte))
2493 mmu_spte_clear_no_track(spte);
2494
2495 return false;
2496 }
2497
2498 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2499 struct kvm_mmu_page *sp)
2500 {
2501 unsigned i;
2502
2503 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2504 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2505 }
2506
2507 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2508 {
2509 u64 *sptep;
2510 struct rmap_iterator iter;
2511
2512 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2513 drop_parent_pte(sp, sptep);
2514 }
2515
2516 static int mmu_zap_unsync_children(struct kvm *kvm,
2517 struct kvm_mmu_page *parent,
2518 struct list_head *invalid_list)
2519 {
2520 int i, zapped = 0;
2521 struct mmu_page_path parents;
2522 struct kvm_mmu_pages pages;
2523
2524 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2525 return 0;
2526
2527 while (mmu_unsync_walk(parent, &pages)) {
2528 struct kvm_mmu_page *sp;
2529
2530 for_each_sp(pages, sp, parents, i) {
2531 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2532 mmu_pages_clear_parents(&parents);
2533 zapped++;
2534 }
2535 }
2536
2537 return zapped;
2538 }
2539
2540 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2541 struct list_head *invalid_list)
2542 {
2543 int ret;
2544
2545 trace_kvm_mmu_prepare_zap_page(sp);
2546 ++kvm->stat.mmu_shadow_zapped;
2547 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2548 kvm_mmu_page_unlink_children(kvm, sp);
2549 kvm_mmu_unlink_parents(kvm, sp);
2550
2551 if (!sp->role.invalid && !sp->role.direct)
2552 unaccount_shadowed(kvm, sp);
2553
2554 if (sp->unsync)
2555 kvm_unlink_unsync_page(kvm, sp);
2556 if (!sp->root_count) {
2557 /* Count self */
2558 ret++;
2559 list_move(&sp->link, invalid_list);
2560 kvm_mod_used_mmu_pages(kvm, -1);
2561 } else {
2562 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2563
2564 /*
2565 * The obsolete pages can not be used on any vcpus.
2566 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2567 */
2568 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2569 kvm_reload_remote_mmus(kvm);
2570 }
2571
2572 sp->role.invalid = 1;
2573 return ret;
2574 }
2575
2576 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2577 struct list_head *invalid_list)
2578 {
2579 struct kvm_mmu_page *sp, *nsp;
2580
2581 if (list_empty(invalid_list))
2582 return;
2583
2584 /*
2585 * We need to make sure everyone sees our modifications to
2586 * the page tables and see changes to vcpu->mode here. The barrier
2587 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2588 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2589 *
2590 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2591 * guest mode and/or lockless shadow page table walks.
2592 */
2593 kvm_flush_remote_tlbs(kvm);
2594
2595 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2596 WARN_ON(!sp->role.invalid || sp->root_count);
2597 kvm_mmu_free_page(sp);
2598 }
2599 }
2600
2601 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2602 struct list_head *invalid_list)
2603 {
2604 struct kvm_mmu_page *sp;
2605
2606 if (list_empty(&kvm->arch.active_mmu_pages))
2607 return false;
2608
2609 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2610 struct kvm_mmu_page, link);
2611 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2612 }
2613
2614 /*
2615 * Changing the number of mmu pages allocated to the vm
2616 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2617 */
2618 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2619 {
2620 LIST_HEAD(invalid_list);
2621
2622 spin_lock(&kvm->mmu_lock);
2623
2624 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2625 /* Need to free some mmu pages to achieve the goal. */
2626 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2627 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2628 break;
2629
2630 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2631 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2632 }
2633
2634 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2635
2636 spin_unlock(&kvm->mmu_lock);
2637 }
2638
2639 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2640 {
2641 struct kvm_mmu_page *sp;
2642 LIST_HEAD(invalid_list);
2643 int r;
2644
2645 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2646 r = 0;
2647 spin_lock(&kvm->mmu_lock);
2648 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2649 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2650 sp->role.word);
2651 r = 1;
2652 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2653 }
2654 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2655 spin_unlock(&kvm->mmu_lock);
2656
2657 return r;
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2660
2661 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2662 {
2663 trace_kvm_mmu_unsync_page(sp);
2664 ++vcpu->kvm->stat.mmu_unsync;
2665 sp->unsync = 1;
2666
2667 kvm_mmu_mark_parents_unsync(sp);
2668 }
2669
2670 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2671 bool can_unsync)
2672 {
2673 struct kvm_mmu_page *sp;
2674
2675 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2676 return true;
2677
2678 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2679 if (!can_unsync)
2680 return true;
2681
2682 if (sp->unsync)
2683 continue;
2684
2685 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2686 kvm_unsync_page(vcpu, sp);
2687 }
2688
2689 return false;
2690 }
2691
2692 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2693 {
2694 if (pfn_valid(pfn))
2695 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2696
2697 return true;
2698 }
2699
2700 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2701 unsigned pte_access, int level,
2702 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2703 bool can_unsync, bool host_writable)
2704 {
2705 u64 spte = 0;
2706 int ret = 0;
2707 struct kvm_mmu_page *sp;
2708
2709 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2710 return 0;
2711
2712 sp = page_header(__pa(sptep));
2713 if (sp_ad_disabled(sp))
2714 spte |= shadow_acc_track_value;
2715
2716 /*
2717 * For the EPT case, shadow_present_mask is 0 if hardware
2718 * supports exec-only page table entries. In that case,
2719 * ACC_USER_MASK and shadow_user_mask are used to represent
2720 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2721 */
2722 spte |= shadow_present_mask;
2723 if (!speculative)
2724 spte |= spte_shadow_accessed_mask(spte);
2725
2726 if (pte_access & ACC_EXEC_MASK)
2727 spte |= shadow_x_mask;
2728 else
2729 spte |= shadow_nx_mask;
2730
2731 if (pte_access & ACC_USER_MASK)
2732 spte |= shadow_user_mask;
2733
2734 if (level > PT_PAGE_TABLE_LEVEL)
2735 spte |= PT_PAGE_SIZE_MASK;
2736 if (tdp_enabled)
2737 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2738 kvm_is_mmio_pfn(pfn));
2739
2740 if (host_writable)
2741 spte |= SPTE_HOST_WRITEABLE;
2742 else
2743 pte_access &= ~ACC_WRITE_MASK;
2744
2745 spte |= (u64)pfn << PAGE_SHIFT;
2746
2747 if (pte_access & ACC_WRITE_MASK) {
2748
2749 /*
2750 * Other vcpu creates new sp in the window between
2751 * mapping_level() and acquiring mmu-lock. We can
2752 * allow guest to retry the access, the mapping can
2753 * be fixed if guest refault.
2754 */
2755 if (level > PT_PAGE_TABLE_LEVEL &&
2756 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2757 goto done;
2758
2759 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2760
2761 /*
2762 * Optimization: for pte sync, if spte was writable the hash
2763 * lookup is unnecessary (and expensive). Write protection
2764 * is responsibility of mmu_get_page / kvm_sync_page.
2765 * Same reasoning can be applied to dirty page accounting.
2766 */
2767 if (!can_unsync && is_writable_pte(*sptep))
2768 goto set_pte;
2769
2770 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2771 pgprintk("%s: found shadow page for %llx, marking ro\n",
2772 __func__, gfn);
2773 ret = 1;
2774 pte_access &= ~ACC_WRITE_MASK;
2775 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2776 }
2777 }
2778
2779 if (pte_access & ACC_WRITE_MASK) {
2780 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2781 spte |= spte_shadow_dirty_mask(spte);
2782 }
2783
2784 if (speculative)
2785 spte = mark_spte_for_access_track(spte);
2786
2787 set_pte:
2788 if (mmu_spte_update(sptep, spte))
2789 kvm_flush_remote_tlbs(vcpu->kvm);
2790 done:
2791 return ret;
2792 }
2793
2794 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2795 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2796 bool speculative, bool host_writable)
2797 {
2798 int was_rmapped = 0;
2799 int rmap_count;
2800 bool emulate = false;
2801
2802 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2803 *sptep, write_fault, gfn);
2804
2805 if (is_shadow_present_pte(*sptep)) {
2806 /*
2807 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2808 * the parent of the now unreachable PTE.
2809 */
2810 if (level > PT_PAGE_TABLE_LEVEL &&
2811 !is_large_pte(*sptep)) {
2812 struct kvm_mmu_page *child;
2813 u64 pte = *sptep;
2814
2815 child = page_header(pte & PT64_BASE_ADDR_MASK);
2816 drop_parent_pte(child, sptep);
2817 kvm_flush_remote_tlbs(vcpu->kvm);
2818 } else if (pfn != spte_to_pfn(*sptep)) {
2819 pgprintk("hfn old %llx new %llx\n",
2820 spte_to_pfn(*sptep), pfn);
2821 drop_spte(vcpu->kvm, sptep);
2822 kvm_flush_remote_tlbs(vcpu->kvm);
2823 } else
2824 was_rmapped = 1;
2825 }
2826
2827 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2828 true, host_writable)) {
2829 if (write_fault)
2830 emulate = true;
2831 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2832 }
2833
2834 if (unlikely(is_mmio_spte(*sptep)))
2835 emulate = true;
2836
2837 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2838 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2839 is_large_pte(*sptep)? "2MB" : "4kB",
2840 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2841 *sptep, sptep);
2842 if (!was_rmapped && is_large_pte(*sptep))
2843 ++vcpu->kvm->stat.lpages;
2844
2845 if (is_shadow_present_pte(*sptep)) {
2846 if (!was_rmapped) {
2847 rmap_count = rmap_add(vcpu, sptep, gfn);
2848 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2849 rmap_recycle(vcpu, sptep, gfn);
2850 }
2851 }
2852
2853 kvm_release_pfn_clean(pfn);
2854
2855 return emulate;
2856 }
2857
2858 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2859 bool no_dirty_log)
2860 {
2861 struct kvm_memory_slot *slot;
2862
2863 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2864 if (!slot)
2865 return KVM_PFN_ERR_FAULT;
2866
2867 return gfn_to_pfn_memslot_atomic(slot, gfn);
2868 }
2869
2870 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2871 struct kvm_mmu_page *sp,
2872 u64 *start, u64 *end)
2873 {
2874 struct page *pages[PTE_PREFETCH_NUM];
2875 struct kvm_memory_slot *slot;
2876 unsigned access = sp->role.access;
2877 int i, ret;
2878 gfn_t gfn;
2879
2880 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2881 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2882 if (!slot)
2883 return -1;
2884
2885 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2886 if (ret <= 0)
2887 return -1;
2888
2889 for (i = 0; i < ret; i++, gfn++, start++)
2890 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2891 page_to_pfn(pages[i]), true, true);
2892
2893 return 0;
2894 }
2895
2896 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2897 struct kvm_mmu_page *sp, u64 *sptep)
2898 {
2899 u64 *spte, *start = NULL;
2900 int i;
2901
2902 WARN_ON(!sp->role.direct);
2903
2904 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2905 spte = sp->spt + i;
2906
2907 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2908 if (is_shadow_present_pte(*spte) || spte == sptep) {
2909 if (!start)
2910 continue;
2911 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2912 break;
2913 start = NULL;
2914 } else if (!start)
2915 start = spte;
2916 }
2917 }
2918
2919 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2920 {
2921 struct kvm_mmu_page *sp;
2922
2923 sp = page_header(__pa(sptep));
2924
2925 /*
2926 * Without accessed bits, there's no way to distinguish between
2927 * actually accessed translations and prefetched, so disable pte
2928 * prefetch if accessed bits aren't available.
2929 */
2930 if (sp_ad_disabled(sp))
2931 return;
2932
2933 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2934 return;
2935
2936 __direct_pte_prefetch(vcpu, sp, sptep);
2937 }
2938
2939 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2940 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2941 {
2942 struct kvm_shadow_walk_iterator iterator;
2943 struct kvm_mmu_page *sp;
2944 int emulate = 0;
2945 gfn_t pseudo_gfn;
2946
2947 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2948 return 0;
2949
2950 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2951 if (iterator.level == level) {
2952 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2953 write, level, gfn, pfn, prefault,
2954 map_writable);
2955 direct_pte_prefetch(vcpu, iterator.sptep);
2956 ++vcpu->stat.pf_fixed;
2957 break;
2958 }
2959
2960 drop_large_spte(vcpu, iterator.sptep);
2961 if (!is_shadow_present_pte(*iterator.sptep)) {
2962 u64 base_addr = iterator.addr;
2963
2964 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2965 pseudo_gfn = base_addr >> PAGE_SHIFT;
2966 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2967 iterator.level - 1, 1, ACC_ALL);
2968
2969 link_shadow_page(vcpu, iterator.sptep, sp);
2970 }
2971 }
2972 return emulate;
2973 }
2974
2975 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2976 {
2977 siginfo_t info;
2978
2979 info.si_signo = SIGBUS;
2980 info.si_errno = 0;
2981 info.si_code = BUS_MCEERR_AR;
2982 info.si_addr = (void __user *)address;
2983 info.si_addr_lsb = PAGE_SHIFT;
2984
2985 send_sig_info(SIGBUS, &info, tsk);
2986 }
2987
2988 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2989 {
2990 /*
2991 * Do not cache the mmio info caused by writing the readonly gfn
2992 * into the spte otherwise read access on readonly gfn also can
2993 * caused mmio page fault and treat it as mmio access.
2994 * Return 1 to tell kvm to emulate it.
2995 */
2996 if (pfn == KVM_PFN_ERR_RO_FAULT)
2997 return 1;
2998
2999 if (pfn == KVM_PFN_ERR_HWPOISON) {
3000 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3001 return 0;
3002 }
3003
3004 return -EFAULT;
3005 }
3006
3007 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3008 gfn_t *gfnp, kvm_pfn_t *pfnp,
3009 int *levelp)
3010 {
3011 kvm_pfn_t pfn = *pfnp;
3012 gfn_t gfn = *gfnp;
3013 int level = *levelp;
3014
3015 /*
3016 * Check if it's a transparent hugepage. If this would be an
3017 * hugetlbfs page, level wouldn't be set to
3018 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3019 * here.
3020 */
3021 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3022 level == PT_PAGE_TABLE_LEVEL &&
3023 PageTransCompoundMap(pfn_to_page(pfn)) &&
3024 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3025 unsigned long mask;
3026 /*
3027 * mmu_notifier_retry was successful and we hold the
3028 * mmu_lock here, so the pmd can't become splitting
3029 * from under us, and in turn
3030 * __split_huge_page_refcount() can't run from under
3031 * us and we can safely transfer the refcount from
3032 * PG_tail to PG_head as we switch the pfn to tail to
3033 * head.
3034 */
3035 *levelp = level = PT_DIRECTORY_LEVEL;
3036 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3037 VM_BUG_ON((gfn & mask) != (pfn & mask));
3038 if (pfn & mask) {
3039 gfn &= ~mask;
3040 *gfnp = gfn;
3041 kvm_release_pfn_clean(pfn);
3042 pfn &= ~mask;
3043 kvm_get_pfn(pfn);
3044 *pfnp = pfn;
3045 }
3046 }
3047 }
3048
3049 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3050 kvm_pfn_t pfn, unsigned access, int *ret_val)
3051 {
3052 /* The pfn is invalid, report the error! */
3053 if (unlikely(is_error_pfn(pfn))) {
3054 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3055 return true;
3056 }
3057
3058 if (unlikely(is_noslot_pfn(pfn)))
3059 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3060
3061 return false;
3062 }
3063
3064 static bool page_fault_can_be_fast(u32 error_code)
3065 {
3066 /*
3067 * Do not fix the mmio spte with invalid generation number which
3068 * need to be updated by slow page fault path.
3069 */
3070 if (unlikely(error_code & PFERR_RSVD_MASK))
3071 return false;
3072
3073 /* See if the page fault is due to an NX violation */
3074 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3075 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3076 return false;
3077
3078 /*
3079 * #PF can be fast if:
3080 * 1. The shadow page table entry is not present, which could mean that
3081 * the fault is potentially caused by access tracking (if enabled).
3082 * 2. The shadow page table entry is present and the fault
3083 * is caused by write-protect, that means we just need change the W
3084 * bit of the spte which can be done out of mmu-lock.
3085 *
3086 * However, if access tracking is disabled we know that a non-present
3087 * page must be a genuine page fault where we have to create a new SPTE.
3088 * So, if access tracking is disabled, we return true only for write
3089 * accesses to a present page.
3090 */
3091
3092 return shadow_acc_track_mask != 0 ||
3093 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3094 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3095 }
3096
3097 /*
3098 * Returns true if the SPTE was fixed successfully. Otherwise,
3099 * someone else modified the SPTE from its original value.
3100 */
3101 static bool
3102 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3103 u64 *sptep, u64 old_spte, u64 new_spte)
3104 {
3105 gfn_t gfn;
3106
3107 WARN_ON(!sp->role.direct);
3108
3109 /*
3110 * Theoretically we could also set dirty bit (and flush TLB) here in
3111 * order to eliminate unnecessary PML logging. See comments in
3112 * set_spte. But fast_page_fault is very unlikely to happen with PML
3113 * enabled, so we do not do this. This might result in the same GPA
3114 * to be logged in PML buffer again when the write really happens, and
3115 * eventually to be called by mark_page_dirty twice. But it's also no
3116 * harm. This also avoids the TLB flush needed after setting dirty bit
3117 * so non-PML cases won't be impacted.
3118 *
3119 * Compare with set_spte where instead shadow_dirty_mask is set.
3120 */
3121 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3122 return false;
3123
3124 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3125 /*
3126 * The gfn of direct spte is stable since it is
3127 * calculated by sp->gfn.
3128 */
3129 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3130 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3131 }
3132
3133 return true;
3134 }
3135
3136 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3137 {
3138 if (fault_err_code & PFERR_FETCH_MASK)
3139 return is_executable_pte(spte);
3140
3141 if (fault_err_code & PFERR_WRITE_MASK)
3142 return is_writable_pte(spte);
3143
3144 /* Fault was on Read access */
3145 return spte & PT_PRESENT_MASK;
3146 }
3147
3148 /*
3149 * Return value:
3150 * - true: let the vcpu to access on the same address again.
3151 * - false: let the real page fault path to fix it.
3152 */
3153 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3154 u32 error_code)
3155 {
3156 struct kvm_shadow_walk_iterator iterator;
3157 struct kvm_mmu_page *sp;
3158 bool fault_handled = false;
3159 u64 spte = 0ull;
3160 uint retry_count = 0;
3161
3162 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3163 return false;
3164
3165 if (!page_fault_can_be_fast(error_code))
3166 return false;
3167
3168 walk_shadow_page_lockless_begin(vcpu);
3169
3170 do {
3171 u64 new_spte;
3172
3173 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3174 if (!is_shadow_present_pte(spte) ||
3175 iterator.level < level)
3176 break;
3177
3178 sp = page_header(__pa(iterator.sptep));
3179 if (!is_last_spte(spte, sp->role.level))
3180 break;
3181
3182 /*
3183 * Check whether the memory access that caused the fault would
3184 * still cause it if it were to be performed right now. If not,
3185 * then this is a spurious fault caused by TLB lazily flushed,
3186 * or some other CPU has already fixed the PTE after the
3187 * current CPU took the fault.
3188 *
3189 * Need not check the access of upper level table entries since
3190 * they are always ACC_ALL.
3191 */
3192 if (is_access_allowed(error_code, spte)) {
3193 fault_handled = true;
3194 break;
3195 }
3196
3197 new_spte = spte;
3198
3199 if (is_access_track_spte(spte))
3200 new_spte = restore_acc_track_spte(new_spte);
3201
3202 /*
3203 * Currently, to simplify the code, write-protection can
3204 * be removed in the fast path only if the SPTE was
3205 * write-protected for dirty-logging or access tracking.
3206 */
3207 if ((error_code & PFERR_WRITE_MASK) &&
3208 spte_can_locklessly_be_made_writable(spte))
3209 {
3210 new_spte |= PT_WRITABLE_MASK;
3211
3212 /*
3213 * Do not fix write-permission on the large spte. Since
3214 * we only dirty the first page into the dirty-bitmap in
3215 * fast_pf_fix_direct_spte(), other pages are missed
3216 * if its slot has dirty logging enabled.
3217 *
3218 * Instead, we let the slow page fault path create a
3219 * normal spte to fix the access.
3220 *
3221 * See the comments in kvm_arch_commit_memory_region().
3222 */
3223 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3224 break;
3225 }
3226
3227 /* Verify that the fault can be handled in the fast path */
3228 if (new_spte == spte ||
3229 !is_access_allowed(error_code, new_spte))
3230 break;
3231
3232 /*
3233 * Currently, fast page fault only works for direct mapping
3234 * since the gfn is not stable for indirect shadow page. See
3235 * Documentation/virtual/kvm/locking.txt to get more detail.
3236 */
3237 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3238 iterator.sptep, spte,
3239 new_spte);
3240 if (fault_handled)
3241 break;
3242
3243 if (++retry_count > 4) {
3244 printk_once(KERN_WARNING
3245 "kvm: Fast #PF retrying more than 4 times.\n");
3246 break;
3247 }
3248
3249 } while (true);
3250
3251 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3252 spte, fault_handled);
3253 walk_shadow_page_lockless_end(vcpu);
3254
3255 return fault_handled;
3256 }
3257
3258 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3259 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3260 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3261
3262 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3263 gfn_t gfn, bool prefault)
3264 {
3265 int r;
3266 int level;
3267 bool force_pt_level = false;
3268 kvm_pfn_t pfn;
3269 unsigned long mmu_seq;
3270 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3271
3272 level = mapping_level(vcpu, gfn, &force_pt_level);
3273 if (likely(!force_pt_level)) {
3274 /*
3275 * This path builds a PAE pagetable - so we can map
3276 * 2mb pages at maximum. Therefore check if the level
3277 * is larger than that.
3278 */
3279 if (level > PT_DIRECTORY_LEVEL)
3280 level = PT_DIRECTORY_LEVEL;
3281
3282 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3283 }
3284
3285 if (fast_page_fault(vcpu, v, level, error_code))
3286 return 0;
3287
3288 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3289 smp_rmb();
3290
3291 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3292 return 0;
3293
3294 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3295 return r;
3296
3297 spin_lock(&vcpu->kvm->mmu_lock);
3298 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3299 goto out_unlock;
3300 if (make_mmu_pages_available(vcpu) < 0)
3301 goto out_unlock;
3302 if (likely(!force_pt_level))
3303 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3304 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3305 spin_unlock(&vcpu->kvm->mmu_lock);
3306
3307 return r;
3308
3309 out_unlock:
3310 spin_unlock(&vcpu->kvm->mmu_lock);
3311 kvm_release_pfn_clean(pfn);
3312 return 0;
3313 }
3314
3315
3316 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3317 {
3318 int i;
3319 struct kvm_mmu_page *sp;
3320 LIST_HEAD(invalid_list);
3321
3322 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3323 return;
3324
3325 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3326 (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3327 vcpu->arch.mmu.direct_map)) {
3328 hpa_t root = vcpu->arch.mmu.root_hpa;
3329
3330 spin_lock(&vcpu->kvm->mmu_lock);
3331 sp = page_header(root);
3332 --sp->root_count;
3333 if (!sp->root_count && sp->role.invalid) {
3334 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3335 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3336 }
3337 spin_unlock(&vcpu->kvm->mmu_lock);
3338 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3339 return;
3340 }
3341
3342 spin_lock(&vcpu->kvm->mmu_lock);
3343 for (i = 0; i < 4; ++i) {
3344 hpa_t root = vcpu->arch.mmu.pae_root[i];
3345
3346 if (root) {
3347 root &= PT64_BASE_ADDR_MASK;
3348 sp = page_header(root);
3349 --sp->root_count;
3350 if (!sp->root_count && sp->role.invalid)
3351 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3352 &invalid_list);
3353 }
3354 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3355 }
3356 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3357 spin_unlock(&vcpu->kvm->mmu_lock);
3358 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3359 }
3360
3361 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3362 {
3363 int ret = 0;
3364
3365 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3366 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3367 ret = 1;
3368 }
3369
3370 return ret;
3371 }
3372
3373 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3374 {
3375 struct kvm_mmu_page *sp;
3376 unsigned i;
3377
3378 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3379 spin_lock(&vcpu->kvm->mmu_lock);
3380 if(make_mmu_pages_available(vcpu) < 0) {
3381 spin_unlock(&vcpu->kvm->mmu_lock);
3382 return 1;
3383 }
3384 sp = kvm_mmu_get_page(vcpu, 0, 0,
3385 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3386 ++sp->root_count;
3387 spin_unlock(&vcpu->kvm->mmu_lock);
3388 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3389 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3390 for (i = 0; i < 4; ++i) {
3391 hpa_t root = vcpu->arch.mmu.pae_root[i];
3392
3393 MMU_WARN_ON(VALID_PAGE(root));
3394 spin_lock(&vcpu->kvm->mmu_lock);
3395 if (make_mmu_pages_available(vcpu) < 0) {
3396 spin_unlock(&vcpu->kvm->mmu_lock);
3397 return 1;
3398 }
3399 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3400 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3401 root = __pa(sp->spt);
3402 ++sp->root_count;
3403 spin_unlock(&vcpu->kvm->mmu_lock);
3404 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3405 }
3406 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3407 } else
3408 BUG();
3409
3410 return 0;
3411 }
3412
3413 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3414 {
3415 struct kvm_mmu_page *sp;
3416 u64 pdptr, pm_mask;
3417 gfn_t root_gfn;
3418 int i;
3419
3420 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3421
3422 if (mmu_check_root(vcpu, root_gfn))
3423 return 1;
3424
3425 /*
3426 * Do we shadow a long mode page table? If so we need to
3427 * write-protect the guests page table root.
3428 */
3429 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3430 hpa_t root = vcpu->arch.mmu.root_hpa;
3431
3432 MMU_WARN_ON(VALID_PAGE(root));
3433
3434 spin_lock(&vcpu->kvm->mmu_lock);
3435 if (make_mmu_pages_available(vcpu) < 0) {
3436 spin_unlock(&vcpu->kvm->mmu_lock);
3437 return 1;
3438 }
3439 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3440 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3441 root = __pa(sp->spt);
3442 ++sp->root_count;
3443 spin_unlock(&vcpu->kvm->mmu_lock);
3444 vcpu->arch.mmu.root_hpa = root;
3445 return 0;
3446 }
3447
3448 /*
3449 * We shadow a 32 bit page table. This may be a legacy 2-level
3450 * or a PAE 3-level page table. In either case we need to be aware that
3451 * the shadow page table may be a PAE or a long mode page table.
3452 */
3453 pm_mask = PT_PRESENT_MASK;
3454 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3455 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3456
3457 for (i = 0; i < 4; ++i) {
3458 hpa_t root = vcpu->arch.mmu.pae_root[i];
3459
3460 MMU_WARN_ON(VALID_PAGE(root));
3461 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3462 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3463 if (!(pdptr & PT_PRESENT_MASK)) {
3464 vcpu->arch.mmu.pae_root[i] = 0;
3465 continue;
3466 }
3467 root_gfn = pdptr >> PAGE_SHIFT;
3468 if (mmu_check_root(vcpu, root_gfn))
3469 return 1;
3470 }
3471 spin_lock(&vcpu->kvm->mmu_lock);
3472 if (make_mmu_pages_available(vcpu) < 0) {
3473 spin_unlock(&vcpu->kvm->mmu_lock);
3474 return 1;
3475 }
3476 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3477 0, ACC_ALL);
3478 root = __pa(sp->spt);
3479 ++sp->root_count;
3480 spin_unlock(&vcpu->kvm->mmu_lock);
3481
3482 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3483 }
3484 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3485
3486 /*
3487 * If we shadow a 32 bit page table with a long mode page
3488 * table we enter this path.
3489 */
3490 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3491 if (vcpu->arch.mmu.lm_root == NULL) {
3492 /*
3493 * The additional page necessary for this is only
3494 * allocated on demand.
3495 */
3496
3497 u64 *lm_root;
3498
3499 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3500 if (lm_root == NULL)
3501 return 1;
3502
3503 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3504
3505 vcpu->arch.mmu.lm_root = lm_root;
3506 }
3507
3508 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3509 }
3510
3511 return 0;
3512 }
3513
3514 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3515 {
3516 if (vcpu->arch.mmu.direct_map)
3517 return mmu_alloc_direct_roots(vcpu);
3518 else
3519 return mmu_alloc_shadow_roots(vcpu);
3520 }
3521
3522 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3523 {
3524 int i;
3525 struct kvm_mmu_page *sp;
3526
3527 if (vcpu->arch.mmu.direct_map)
3528 return;
3529
3530 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3531 return;
3532
3533 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3534 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3535 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3536 hpa_t root = vcpu->arch.mmu.root_hpa;
3537 sp = page_header(root);
3538 mmu_sync_children(vcpu, sp);
3539 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3540 return;
3541 }
3542 for (i = 0; i < 4; ++i) {
3543 hpa_t root = vcpu->arch.mmu.pae_root[i];
3544
3545 if (root && VALID_PAGE(root)) {
3546 root &= PT64_BASE_ADDR_MASK;
3547 sp = page_header(root);
3548 mmu_sync_children(vcpu, sp);
3549 }
3550 }
3551 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3552 }
3553
3554 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3555 {
3556 spin_lock(&vcpu->kvm->mmu_lock);
3557 mmu_sync_roots(vcpu);
3558 spin_unlock(&vcpu->kvm->mmu_lock);
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3561
3562 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3563 u32 access, struct x86_exception *exception)
3564 {
3565 if (exception)
3566 exception->error_code = 0;
3567 return vaddr;
3568 }
3569
3570 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3571 u32 access,
3572 struct x86_exception *exception)
3573 {
3574 if (exception)
3575 exception->error_code = 0;
3576 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3577 }
3578
3579 static bool
3580 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3581 {
3582 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3583
3584 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3585 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3586 }
3587
3588 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3589 {
3590 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3591 }
3592
3593 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3594 {
3595 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3596 }
3597
3598 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3599 {
3600 /*
3601 * A nested guest cannot use the MMIO cache if it is using nested
3602 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3603 */
3604 if (mmu_is_nested(vcpu))
3605 return false;
3606
3607 if (direct)
3608 return vcpu_match_mmio_gpa(vcpu, addr);
3609
3610 return vcpu_match_mmio_gva(vcpu, addr);
3611 }
3612
3613 /* return true if reserved bit is detected on spte. */
3614 static bool
3615 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3616 {
3617 struct kvm_shadow_walk_iterator iterator;
3618 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3619 int root, leaf;
3620 bool reserved = false;
3621
3622 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3623 goto exit;
3624
3625 walk_shadow_page_lockless_begin(vcpu);
3626
3627 for (shadow_walk_init(&iterator, vcpu, addr),
3628 leaf = root = iterator.level;
3629 shadow_walk_okay(&iterator);
3630 __shadow_walk_next(&iterator, spte)) {
3631 spte = mmu_spte_get_lockless(iterator.sptep);
3632
3633 sptes[leaf - 1] = spte;
3634 leaf--;
3635
3636 if (!is_shadow_present_pte(spte))
3637 break;
3638
3639 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3640 iterator.level);
3641 }
3642
3643 walk_shadow_page_lockless_end(vcpu);
3644
3645 if (reserved) {
3646 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3647 __func__, addr);
3648 while (root > leaf) {
3649 pr_err("------ spte 0x%llx level %d.\n",
3650 sptes[root - 1], root);
3651 root--;
3652 }
3653 }
3654 exit:
3655 *sptep = spte;
3656 return reserved;
3657 }
3658
3659 /*
3660 * Return values of handle_mmio_page_fault:
3661 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
3662 * directly.
3663 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
3664 * fault path update the mmio spte.
3665 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
3666 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
3667 */
3668 enum {
3669 RET_MMIO_PF_EMULATE = 1,
3670 RET_MMIO_PF_INVALID = 2,
3671 RET_MMIO_PF_RETRY = 0,
3672 RET_MMIO_PF_BUG = -1
3673 };
3674
3675 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3676 {
3677 u64 spte;
3678 bool reserved;
3679
3680 if (mmio_info_in_cache(vcpu, addr, direct))
3681 return RET_MMIO_PF_EMULATE;
3682
3683 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3684 if (WARN_ON(reserved))
3685 return RET_MMIO_PF_BUG;
3686
3687 if (is_mmio_spte(spte)) {
3688 gfn_t gfn = get_mmio_spte_gfn(spte);
3689 unsigned access = get_mmio_spte_access(spte);
3690
3691 if (!check_mmio_spte(vcpu, spte))
3692 return RET_MMIO_PF_INVALID;
3693
3694 if (direct)
3695 addr = 0;
3696
3697 trace_handle_mmio_page_fault(addr, gfn, access);
3698 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3699 return RET_MMIO_PF_EMULATE;
3700 }
3701
3702 /*
3703 * If the page table is zapped by other cpus, let CPU fault again on
3704 * the address.
3705 */
3706 return RET_MMIO_PF_RETRY;
3707 }
3708 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3709
3710 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3711 u32 error_code, gfn_t gfn)
3712 {
3713 if (unlikely(error_code & PFERR_RSVD_MASK))
3714 return false;
3715
3716 if (!(error_code & PFERR_PRESENT_MASK) ||
3717 !(error_code & PFERR_WRITE_MASK))
3718 return false;
3719
3720 /*
3721 * guest is writing the page which is write tracked which can
3722 * not be fixed by page fault handler.
3723 */
3724 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3725 return true;
3726
3727 return false;
3728 }
3729
3730 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3731 {
3732 struct kvm_shadow_walk_iterator iterator;
3733 u64 spte;
3734
3735 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3736 return;
3737
3738 walk_shadow_page_lockless_begin(vcpu);
3739 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3740 clear_sp_write_flooding_count(iterator.sptep);
3741 if (!is_shadow_present_pte(spte))
3742 break;
3743 }
3744 walk_shadow_page_lockless_end(vcpu);
3745 }
3746
3747 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3748 u32 error_code, bool prefault)
3749 {
3750 gfn_t gfn = gva >> PAGE_SHIFT;
3751 int r;
3752
3753 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3754
3755 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3756 return 1;
3757
3758 r = mmu_topup_memory_caches(vcpu);
3759 if (r)
3760 return r;
3761
3762 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3763
3764
3765 return nonpaging_map(vcpu, gva & PAGE_MASK,
3766 error_code, gfn, prefault);
3767 }
3768
3769 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3770 {
3771 struct kvm_arch_async_pf arch;
3772
3773 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3774 arch.gfn = gfn;
3775 arch.direct_map = vcpu->arch.mmu.direct_map;
3776 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3777
3778 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3779 }
3780
3781 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3782 {
3783 if (unlikely(!lapic_in_kernel(vcpu) ||
3784 kvm_event_needs_reinjection(vcpu)))
3785 return false;
3786
3787 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3788 return false;
3789
3790 return kvm_x86_ops->interrupt_allowed(vcpu);
3791 }
3792
3793 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3794 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3795 {
3796 struct kvm_memory_slot *slot;
3797 bool async;
3798
3799 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3800 async = false;
3801 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3802 if (!async)
3803 return false; /* *pfn has correct page already */
3804
3805 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3806 trace_kvm_try_async_get_page(gva, gfn);
3807 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3808 trace_kvm_async_pf_doublefault(gva, gfn);
3809 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3810 return true;
3811 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3812 return true;
3813 }
3814
3815 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3816 return false;
3817 }
3818
3819 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3820 u64 fault_address, char *insn, int insn_len,
3821 bool need_unprotect)
3822 {
3823 int r = 1;
3824
3825 switch (vcpu->arch.apf.host_apf_reason) {
3826 default:
3827 trace_kvm_page_fault(fault_address, error_code);
3828
3829 if (need_unprotect && kvm_event_needs_reinjection(vcpu))
3830 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3831 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3832 insn_len);
3833 break;
3834 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3835 vcpu->arch.apf.host_apf_reason = 0;
3836 local_irq_disable();
3837 kvm_async_pf_task_wait(fault_address);
3838 local_irq_enable();
3839 break;
3840 case KVM_PV_REASON_PAGE_READY:
3841 vcpu->arch.apf.host_apf_reason = 0;
3842 local_irq_disable();
3843 kvm_async_pf_task_wake(fault_address);
3844 local_irq_enable();
3845 break;
3846 }
3847 return r;
3848 }
3849 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3850
3851 static bool
3852 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3853 {
3854 int page_num = KVM_PAGES_PER_HPAGE(level);
3855
3856 gfn &= ~(page_num - 1);
3857
3858 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3859 }
3860
3861 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3862 bool prefault)
3863 {
3864 kvm_pfn_t pfn;
3865 int r;
3866 int level;
3867 bool force_pt_level;
3868 gfn_t gfn = gpa >> PAGE_SHIFT;
3869 unsigned long mmu_seq;
3870 int write = error_code & PFERR_WRITE_MASK;
3871 bool map_writable;
3872
3873 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3874
3875 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3876 return 1;
3877
3878 r = mmu_topup_memory_caches(vcpu);
3879 if (r)
3880 return r;
3881
3882 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3883 PT_DIRECTORY_LEVEL);
3884 level = mapping_level(vcpu, gfn, &force_pt_level);
3885 if (likely(!force_pt_level)) {
3886 if (level > PT_DIRECTORY_LEVEL &&
3887 !check_hugepage_cache_consistency(vcpu, gfn, level))
3888 level = PT_DIRECTORY_LEVEL;
3889 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3890 }
3891
3892 if (fast_page_fault(vcpu, gpa, level, error_code))
3893 return 0;
3894
3895 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3896 smp_rmb();
3897
3898 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3899 return 0;
3900
3901 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3902 return r;
3903
3904 spin_lock(&vcpu->kvm->mmu_lock);
3905 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3906 goto out_unlock;
3907 if (make_mmu_pages_available(vcpu) < 0)
3908 goto out_unlock;
3909 if (likely(!force_pt_level))
3910 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3911 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3912 spin_unlock(&vcpu->kvm->mmu_lock);
3913
3914 return r;
3915
3916 out_unlock:
3917 spin_unlock(&vcpu->kvm->mmu_lock);
3918 kvm_release_pfn_clean(pfn);
3919 return 0;
3920 }
3921
3922 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3923 struct kvm_mmu *context)
3924 {
3925 context->page_fault = nonpaging_page_fault;
3926 context->gva_to_gpa = nonpaging_gva_to_gpa;
3927 context->sync_page = nonpaging_sync_page;
3928 context->invlpg = nonpaging_invlpg;
3929 context->update_pte = nonpaging_update_pte;
3930 context->root_level = 0;
3931 context->shadow_root_level = PT32E_ROOT_LEVEL;
3932 context->root_hpa = INVALID_PAGE;
3933 context->direct_map = true;
3934 context->nx = false;
3935 }
3936
3937 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3938 {
3939 mmu_free_roots(vcpu);
3940 }
3941
3942 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3943 {
3944 return kvm_read_cr3(vcpu);
3945 }
3946
3947 static void inject_page_fault(struct kvm_vcpu *vcpu,
3948 struct x86_exception *fault)
3949 {
3950 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3951 }
3952
3953 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3954 unsigned access, int *nr_present)
3955 {
3956 if (unlikely(is_mmio_spte(*sptep))) {
3957 if (gfn != get_mmio_spte_gfn(*sptep)) {
3958 mmu_spte_clear_no_track(sptep);
3959 return true;
3960 }
3961
3962 (*nr_present)++;
3963 mark_mmio_spte(vcpu, sptep, gfn, access);
3964 return true;
3965 }
3966
3967 return false;
3968 }
3969
3970 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3971 unsigned level, unsigned gpte)
3972 {
3973 /*
3974 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3975 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3976 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3977 */
3978 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3979
3980 /*
3981 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3982 * If it is clear, there are no large pages at this level, so clear
3983 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3984 */
3985 gpte &= level - mmu->last_nonleaf_level;
3986
3987 return gpte & PT_PAGE_SIZE_MASK;
3988 }
3989
3990 #define PTTYPE_EPT 18 /* arbitrary */
3991 #define PTTYPE PTTYPE_EPT
3992 #include "paging_tmpl.h"
3993 #undef PTTYPE
3994
3995 #define PTTYPE 64
3996 #include "paging_tmpl.h"
3997 #undef PTTYPE
3998
3999 #define PTTYPE 32
4000 #include "paging_tmpl.h"
4001 #undef PTTYPE
4002
4003 static void
4004 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4005 struct rsvd_bits_validate *rsvd_check,
4006 int maxphyaddr, int level, bool nx, bool gbpages,
4007 bool pse, bool amd)
4008 {
4009 u64 exb_bit_rsvd = 0;
4010 u64 gbpages_bit_rsvd = 0;
4011 u64 nonleaf_bit8_rsvd = 0;
4012
4013 rsvd_check->bad_mt_xwr = 0;
4014
4015 if (!nx)
4016 exb_bit_rsvd = rsvd_bits(63, 63);
4017 if (!gbpages)
4018 gbpages_bit_rsvd = rsvd_bits(7, 7);
4019
4020 /*
4021 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4022 * leaf entries) on AMD CPUs only.
4023 */
4024 if (amd)
4025 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4026
4027 switch (level) {
4028 case PT32_ROOT_LEVEL:
4029 /* no rsvd bits for 2 level 4K page table entries */
4030 rsvd_check->rsvd_bits_mask[0][1] = 0;
4031 rsvd_check->rsvd_bits_mask[0][0] = 0;
4032 rsvd_check->rsvd_bits_mask[1][0] =
4033 rsvd_check->rsvd_bits_mask[0][0];
4034
4035 if (!pse) {
4036 rsvd_check->rsvd_bits_mask[1][1] = 0;
4037 break;
4038 }
4039
4040 if (is_cpuid_PSE36())
4041 /* 36bits PSE 4MB page */
4042 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4043 else
4044 /* 32 bits PSE 4MB page */
4045 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4046 break;
4047 case PT32E_ROOT_LEVEL:
4048 rsvd_check->rsvd_bits_mask[0][2] =
4049 rsvd_bits(maxphyaddr, 63) |
4050 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4051 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4052 rsvd_bits(maxphyaddr, 62); /* PDE */
4053 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4054 rsvd_bits(maxphyaddr, 62); /* PTE */
4055 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4056 rsvd_bits(maxphyaddr, 62) |
4057 rsvd_bits(13, 20); /* large page */
4058 rsvd_check->rsvd_bits_mask[1][0] =
4059 rsvd_check->rsvd_bits_mask[0][0];
4060 break;
4061 case PT64_ROOT_5LEVEL:
4062 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4063 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4064 rsvd_bits(maxphyaddr, 51);
4065 rsvd_check->rsvd_bits_mask[1][4] =
4066 rsvd_check->rsvd_bits_mask[0][4];
4067 case PT64_ROOT_4LEVEL:
4068 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4069 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4070 rsvd_bits(maxphyaddr, 51);
4071 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4072 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4073 rsvd_bits(maxphyaddr, 51);
4074 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4075 rsvd_bits(maxphyaddr, 51);
4076 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4077 rsvd_bits(maxphyaddr, 51);
4078 rsvd_check->rsvd_bits_mask[1][3] =
4079 rsvd_check->rsvd_bits_mask[0][3];
4080 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4081 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4082 rsvd_bits(13, 29);
4083 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4084 rsvd_bits(maxphyaddr, 51) |
4085 rsvd_bits(13, 20); /* large page */
4086 rsvd_check->rsvd_bits_mask[1][0] =
4087 rsvd_check->rsvd_bits_mask[0][0];
4088 break;
4089 }
4090 }
4091
4092 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4093 struct kvm_mmu *context)
4094 {
4095 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4096 cpuid_maxphyaddr(vcpu), context->root_level,
4097 context->nx,
4098 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4099 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4100 }
4101
4102 static void
4103 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4104 int maxphyaddr, bool execonly)
4105 {
4106 u64 bad_mt_xwr;
4107
4108 rsvd_check->rsvd_bits_mask[0][4] =
4109 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4110 rsvd_check->rsvd_bits_mask[0][3] =
4111 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4112 rsvd_check->rsvd_bits_mask[0][2] =
4113 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4114 rsvd_check->rsvd_bits_mask[0][1] =
4115 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4116 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4117
4118 /* large page */
4119 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4120 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4121 rsvd_check->rsvd_bits_mask[1][2] =
4122 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4123 rsvd_check->rsvd_bits_mask[1][1] =
4124 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4125 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4126
4127 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4128 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4129 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4130 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4131 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4132 if (!execonly) {
4133 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4134 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4135 }
4136 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4137 }
4138
4139 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4140 struct kvm_mmu *context, bool execonly)
4141 {
4142 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4143 cpuid_maxphyaddr(vcpu), execonly);
4144 }
4145
4146 /*
4147 * the page table on host is the shadow page table for the page
4148 * table in guest or amd nested guest, its mmu features completely
4149 * follow the features in guest.
4150 */
4151 void
4152 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4153 {
4154 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4155
4156 /*
4157 * Passing "true" to the last argument is okay; it adds a check
4158 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4159 */
4160 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4161 boot_cpu_data.x86_phys_bits,
4162 context->shadow_root_level, uses_nx,
4163 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4164 is_pse(vcpu), true);
4165 }
4166 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4167
4168 static inline bool boot_cpu_is_amd(void)
4169 {
4170 WARN_ON_ONCE(!tdp_enabled);
4171 return shadow_x_mask == 0;
4172 }
4173
4174 /*
4175 * the direct page table on host, use as much mmu features as
4176 * possible, however, kvm currently does not do execution-protection.
4177 */
4178 static void
4179 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4180 struct kvm_mmu *context)
4181 {
4182 if (boot_cpu_is_amd())
4183 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4184 boot_cpu_data.x86_phys_bits,
4185 context->shadow_root_level, false,
4186 boot_cpu_has(X86_FEATURE_GBPAGES),
4187 true, true);
4188 else
4189 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4190 boot_cpu_data.x86_phys_bits,
4191 false);
4192
4193 }
4194
4195 /*
4196 * as the comments in reset_shadow_zero_bits_mask() except it
4197 * is the shadow page table for intel nested guest.
4198 */
4199 static void
4200 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4201 struct kvm_mmu *context, bool execonly)
4202 {
4203 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4204 boot_cpu_data.x86_phys_bits, execonly);
4205 }
4206
4207 #define BYTE_MASK(access) \
4208 ((1 & (access) ? 2 : 0) | \
4209 (2 & (access) ? 4 : 0) | \
4210 (3 & (access) ? 8 : 0) | \
4211 (4 & (access) ? 16 : 0) | \
4212 (5 & (access) ? 32 : 0) | \
4213 (6 & (access) ? 64 : 0) | \
4214 (7 & (access) ? 128 : 0))
4215
4216
4217 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4218 struct kvm_mmu *mmu, bool ept)
4219 {
4220 unsigned byte;
4221
4222 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4223 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4224 const u8 u = BYTE_MASK(ACC_USER_MASK);
4225
4226 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4227 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4228 bool cr0_wp = is_write_protection(vcpu);
4229
4230 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4231 unsigned pfec = byte << 1;
4232
4233 /*
4234 * Each "*f" variable has a 1 bit for each UWX value
4235 * that causes a fault with the given PFEC.
4236 */
4237
4238 /* Faults from writes to non-writable pages */
4239 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4240 /* Faults from user mode accesses to supervisor pages */
4241 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4242 /* Faults from fetches of non-executable pages*/
4243 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4244 /* Faults from kernel mode fetches of user pages */
4245 u8 smepf = 0;
4246 /* Faults from kernel mode accesses of user pages */
4247 u8 smapf = 0;
4248
4249 if (!ept) {
4250 /* Faults from kernel mode accesses to user pages */
4251 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4252
4253 /* Not really needed: !nx will cause pte.nx to fault */
4254 if (!mmu->nx)
4255 ff = 0;
4256
4257 /* Allow supervisor writes if !cr0.wp */
4258 if (!cr0_wp)
4259 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4260
4261 /* Disallow supervisor fetches of user code if cr4.smep */
4262 if (cr4_smep)
4263 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4264
4265 /*
4266 * SMAP:kernel-mode data accesses from user-mode
4267 * mappings should fault. A fault is considered
4268 * as a SMAP violation if all of the following
4269 * conditions are ture:
4270 * - X86_CR4_SMAP is set in CR4
4271 * - A user page is accessed
4272 * - The access is not a fetch
4273 * - Page fault in kernel mode
4274 * - if CPL = 3 or X86_EFLAGS_AC is clear
4275 *
4276 * Here, we cover the first three conditions.
4277 * The fourth is computed dynamically in permission_fault();
4278 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4279 * *not* subject to SMAP restrictions.
4280 */
4281 if (cr4_smap)
4282 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4283 }
4284
4285 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4286 }
4287 }
4288
4289 /*
4290 * PKU is an additional mechanism by which the paging controls access to
4291 * user-mode addresses based on the value in the PKRU register. Protection
4292 * key violations are reported through a bit in the page fault error code.
4293 * Unlike other bits of the error code, the PK bit is not known at the
4294 * call site of e.g. gva_to_gpa; it must be computed directly in
4295 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4296 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4297 *
4298 * In particular the following conditions come from the error code, the
4299 * page tables and the machine state:
4300 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4301 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4302 * - PK is always zero if U=0 in the page tables
4303 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4304 *
4305 * The PKRU bitmask caches the result of these four conditions. The error
4306 * code (minus the P bit) and the page table's U bit form an index into the
4307 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4308 * with the two bits of the PKRU register corresponding to the protection key.
4309 * For the first three conditions above the bits will be 00, thus masking
4310 * away both AD and WD. For all reads or if the last condition holds, WD
4311 * only will be masked away.
4312 */
4313 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4314 bool ept)
4315 {
4316 unsigned bit;
4317 bool wp;
4318
4319 if (ept) {
4320 mmu->pkru_mask = 0;
4321 return;
4322 }
4323
4324 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4325 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4326 mmu->pkru_mask = 0;
4327 return;
4328 }
4329
4330 wp = is_write_protection(vcpu);
4331
4332 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4333 unsigned pfec, pkey_bits;
4334 bool check_pkey, check_write, ff, uf, wf, pte_user;
4335
4336 pfec = bit << 1;
4337 ff = pfec & PFERR_FETCH_MASK;
4338 uf = pfec & PFERR_USER_MASK;
4339 wf = pfec & PFERR_WRITE_MASK;
4340
4341 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4342 pte_user = pfec & PFERR_RSVD_MASK;
4343
4344 /*
4345 * Only need to check the access which is not an
4346 * instruction fetch and is to a user page.
4347 */
4348 check_pkey = (!ff && pte_user);
4349 /*
4350 * write access is controlled by PKRU if it is a
4351 * user access or CR0.WP = 1.
4352 */
4353 check_write = check_pkey && wf && (uf || wp);
4354
4355 /* PKRU.AD stops both read and write access. */
4356 pkey_bits = !!check_pkey;
4357 /* PKRU.WD stops write access. */
4358 pkey_bits |= (!!check_write) << 1;
4359
4360 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4361 }
4362 }
4363
4364 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4365 {
4366 unsigned root_level = mmu->root_level;
4367
4368 mmu->last_nonleaf_level = root_level;
4369 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4370 mmu->last_nonleaf_level++;
4371 }
4372
4373 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4374 struct kvm_mmu *context,
4375 int level)
4376 {
4377 context->nx = is_nx(vcpu);
4378 context->root_level = level;
4379
4380 reset_rsvds_bits_mask(vcpu, context);
4381 update_permission_bitmask(vcpu, context, false);
4382 update_pkru_bitmask(vcpu, context, false);
4383 update_last_nonleaf_level(vcpu, context);
4384
4385 MMU_WARN_ON(!is_pae(vcpu));
4386 context->page_fault = paging64_page_fault;
4387 context->gva_to_gpa = paging64_gva_to_gpa;
4388 context->sync_page = paging64_sync_page;
4389 context->invlpg = paging64_invlpg;
4390 context->update_pte = paging64_update_pte;
4391 context->shadow_root_level = level;
4392 context->root_hpa = INVALID_PAGE;
4393 context->direct_map = false;
4394 }
4395
4396 static void paging64_init_context(struct kvm_vcpu *vcpu,
4397 struct kvm_mmu *context)
4398 {
4399 int root_level = is_la57_mode(vcpu) ?
4400 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4401
4402 paging64_init_context_common(vcpu, context, root_level);
4403 }
4404
4405 static void paging32_init_context(struct kvm_vcpu *vcpu,
4406 struct kvm_mmu *context)
4407 {
4408 context->nx = false;
4409 context->root_level = PT32_ROOT_LEVEL;
4410
4411 reset_rsvds_bits_mask(vcpu, context);
4412 update_permission_bitmask(vcpu, context, false);
4413 update_pkru_bitmask(vcpu, context, false);
4414 update_last_nonleaf_level(vcpu, context);
4415
4416 context->page_fault = paging32_page_fault;
4417 context->gva_to_gpa = paging32_gva_to_gpa;
4418 context->sync_page = paging32_sync_page;
4419 context->invlpg = paging32_invlpg;
4420 context->update_pte = paging32_update_pte;
4421 context->shadow_root_level = PT32E_ROOT_LEVEL;
4422 context->root_hpa = INVALID_PAGE;
4423 context->direct_map = false;
4424 }
4425
4426 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4427 struct kvm_mmu *context)
4428 {
4429 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4430 }
4431
4432 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4433 {
4434 struct kvm_mmu *context = &vcpu->arch.mmu;
4435
4436 context->base_role.word = 0;
4437 context->base_role.smm = is_smm(vcpu);
4438 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4439 context->page_fault = tdp_page_fault;
4440 context->sync_page = nonpaging_sync_page;
4441 context->invlpg = nonpaging_invlpg;
4442 context->update_pte = nonpaging_update_pte;
4443 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4444 context->root_hpa = INVALID_PAGE;
4445 context->direct_map = true;
4446 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4447 context->get_cr3 = get_cr3;
4448 context->get_pdptr = kvm_pdptr_read;
4449 context->inject_page_fault = kvm_inject_page_fault;
4450
4451 if (!is_paging(vcpu)) {
4452 context->nx = false;
4453 context->gva_to_gpa = nonpaging_gva_to_gpa;
4454 context->root_level = 0;
4455 } else if (is_long_mode(vcpu)) {
4456 context->nx = is_nx(vcpu);
4457 context->root_level = is_la57_mode(vcpu) ?
4458 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4459 reset_rsvds_bits_mask(vcpu, context);
4460 context->gva_to_gpa = paging64_gva_to_gpa;
4461 } else if (is_pae(vcpu)) {
4462 context->nx = is_nx(vcpu);
4463 context->root_level = PT32E_ROOT_LEVEL;
4464 reset_rsvds_bits_mask(vcpu, context);
4465 context->gva_to_gpa = paging64_gva_to_gpa;
4466 } else {
4467 context->nx = false;
4468 context->root_level = PT32_ROOT_LEVEL;
4469 reset_rsvds_bits_mask(vcpu, context);
4470 context->gva_to_gpa = paging32_gva_to_gpa;
4471 }
4472
4473 update_permission_bitmask(vcpu, context, false);
4474 update_pkru_bitmask(vcpu, context, false);
4475 update_last_nonleaf_level(vcpu, context);
4476 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4477 }
4478
4479 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4480 {
4481 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4482 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4483 struct kvm_mmu *context = &vcpu->arch.mmu;
4484
4485 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4486
4487 if (!is_paging(vcpu))
4488 nonpaging_init_context(vcpu, context);
4489 else if (is_long_mode(vcpu))
4490 paging64_init_context(vcpu, context);
4491 else if (is_pae(vcpu))
4492 paging32E_init_context(vcpu, context);
4493 else
4494 paging32_init_context(vcpu, context);
4495
4496 context->base_role.nxe = is_nx(vcpu);
4497 context->base_role.cr4_pae = !!is_pae(vcpu);
4498 context->base_role.cr0_wp = is_write_protection(vcpu);
4499 context->base_role.smep_andnot_wp
4500 = smep && !is_write_protection(vcpu);
4501 context->base_role.smap_andnot_wp
4502 = smap && !is_write_protection(vcpu);
4503 context->base_role.smm = is_smm(vcpu);
4504 reset_shadow_zero_bits_mask(vcpu, context);
4505 }
4506 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4507
4508 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4509 bool accessed_dirty)
4510 {
4511 struct kvm_mmu *context = &vcpu->arch.mmu;
4512
4513 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4514
4515 context->shadow_root_level = PT64_ROOT_4LEVEL;
4516
4517 context->nx = true;
4518 context->ept_ad = accessed_dirty;
4519 context->page_fault = ept_page_fault;
4520 context->gva_to_gpa = ept_gva_to_gpa;
4521 context->sync_page = ept_sync_page;
4522 context->invlpg = ept_invlpg;
4523 context->update_pte = ept_update_pte;
4524 context->root_level = PT64_ROOT_4LEVEL;
4525 context->root_hpa = INVALID_PAGE;
4526 context->direct_map = false;
4527 context->base_role.ad_disabled = !accessed_dirty;
4528
4529 update_permission_bitmask(vcpu, context, true);
4530 update_pkru_bitmask(vcpu, context, true);
4531 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4532 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4533 }
4534 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4535
4536 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4537 {
4538 struct kvm_mmu *context = &vcpu->arch.mmu;
4539
4540 kvm_init_shadow_mmu(vcpu);
4541 context->set_cr3 = kvm_x86_ops->set_cr3;
4542 context->get_cr3 = get_cr3;
4543 context->get_pdptr = kvm_pdptr_read;
4544 context->inject_page_fault = kvm_inject_page_fault;
4545 }
4546
4547 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4548 {
4549 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4550
4551 g_context->get_cr3 = get_cr3;
4552 g_context->get_pdptr = kvm_pdptr_read;
4553 g_context->inject_page_fault = kvm_inject_page_fault;
4554
4555 /*
4556 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4557 * L1's nested page tables (e.g. EPT12). The nested translation
4558 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4559 * L2's page tables as the first level of translation and L1's
4560 * nested page tables as the second level of translation. Basically
4561 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4562 */
4563 if (!is_paging(vcpu)) {
4564 g_context->nx = false;
4565 g_context->root_level = 0;
4566 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4567 } else if (is_long_mode(vcpu)) {
4568 g_context->nx = is_nx(vcpu);
4569 g_context->root_level = is_la57_mode(vcpu) ?
4570 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4571 reset_rsvds_bits_mask(vcpu, g_context);
4572 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4573 } else if (is_pae(vcpu)) {
4574 g_context->nx = is_nx(vcpu);
4575 g_context->root_level = PT32E_ROOT_LEVEL;
4576 reset_rsvds_bits_mask(vcpu, g_context);
4577 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4578 } else {
4579 g_context->nx = false;
4580 g_context->root_level = PT32_ROOT_LEVEL;
4581 reset_rsvds_bits_mask(vcpu, g_context);
4582 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4583 }
4584
4585 update_permission_bitmask(vcpu, g_context, false);
4586 update_pkru_bitmask(vcpu, g_context, false);
4587 update_last_nonleaf_level(vcpu, g_context);
4588 }
4589
4590 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4591 {
4592 if (mmu_is_nested(vcpu))
4593 init_kvm_nested_mmu(vcpu);
4594 else if (tdp_enabled)
4595 init_kvm_tdp_mmu(vcpu);
4596 else
4597 init_kvm_softmmu(vcpu);
4598 }
4599
4600 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4601 {
4602 kvm_mmu_unload(vcpu);
4603 init_kvm_mmu(vcpu);
4604 }
4605 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4606
4607 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4608 {
4609 int r;
4610
4611 r = mmu_topup_memory_caches(vcpu);
4612 if (r)
4613 goto out;
4614 r = mmu_alloc_roots(vcpu);
4615 kvm_mmu_sync_roots(vcpu);
4616 if (r)
4617 goto out;
4618 /* set_cr3() should ensure TLB has been flushed */
4619 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4620 out:
4621 return r;
4622 }
4623 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4624
4625 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4626 {
4627 mmu_free_roots(vcpu);
4628 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4629 }
4630 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4631
4632 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4633 struct kvm_mmu_page *sp, u64 *spte,
4634 const void *new)
4635 {
4636 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4637 ++vcpu->kvm->stat.mmu_pde_zapped;
4638 return;
4639 }
4640
4641 ++vcpu->kvm->stat.mmu_pte_updated;
4642 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4643 }
4644
4645 static bool need_remote_flush(u64 old, u64 new)
4646 {
4647 if (!is_shadow_present_pte(old))
4648 return false;
4649 if (!is_shadow_present_pte(new))
4650 return true;
4651 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4652 return true;
4653 old ^= shadow_nx_mask;
4654 new ^= shadow_nx_mask;
4655 return (old & ~new & PT64_PERM_MASK) != 0;
4656 }
4657
4658 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4659 const u8 *new, int *bytes)
4660 {
4661 u64 gentry;
4662 int r;
4663
4664 /*
4665 * Assume that the pte write on a page table of the same type
4666 * as the current vcpu paging mode since we update the sptes only
4667 * when they have the same mode.
4668 */
4669 if (is_pae(vcpu) && *bytes == 4) {
4670 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4671 *gpa &= ~(gpa_t)7;
4672 *bytes = 8;
4673 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4674 if (r)
4675 gentry = 0;
4676 new = (const u8 *)&gentry;
4677 }
4678
4679 switch (*bytes) {
4680 case 4:
4681 gentry = *(const u32 *)new;
4682 break;
4683 case 8:
4684 gentry = *(const u64 *)new;
4685 break;
4686 default:
4687 gentry = 0;
4688 break;
4689 }
4690
4691 return gentry;
4692 }
4693
4694 /*
4695 * If we're seeing too many writes to a page, it may no longer be a page table,
4696 * or we may be forking, in which case it is better to unmap the page.
4697 */
4698 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4699 {
4700 /*
4701 * Skip write-flooding detected for the sp whose level is 1, because
4702 * it can become unsync, then the guest page is not write-protected.
4703 */
4704 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4705 return false;
4706
4707 atomic_inc(&sp->write_flooding_count);
4708 return atomic_read(&sp->write_flooding_count) >= 3;
4709 }
4710
4711 /*
4712 * Misaligned accesses are too much trouble to fix up; also, they usually
4713 * indicate a page is not used as a page table.
4714 */
4715 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4716 int bytes)
4717 {
4718 unsigned offset, pte_size, misaligned;
4719
4720 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4721 gpa, bytes, sp->role.word);
4722
4723 offset = offset_in_page(gpa);
4724 pte_size = sp->role.cr4_pae ? 8 : 4;
4725
4726 /*
4727 * Sometimes, the OS only writes the last one bytes to update status
4728 * bits, for example, in linux, andb instruction is used in clear_bit().
4729 */
4730 if (!(offset & (pte_size - 1)) && bytes == 1)
4731 return false;
4732
4733 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4734 misaligned |= bytes < 4;
4735
4736 return misaligned;
4737 }
4738
4739 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4740 {
4741 unsigned page_offset, quadrant;
4742 u64 *spte;
4743 int level;
4744
4745 page_offset = offset_in_page(gpa);
4746 level = sp->role.level;
4747 *nspte = 1;
4748 if (!sp->role.cr4_pae) {
4749 page_offset <<= 1; /* 32->64 */
4750 /*
4751 * A 32-bit pde maps 4MB while the shadow pdes map
4752 * only 2MB. So we need to double the offset again
4753 * and zap two pdes instead of one.
4754 */
4755 if (level == PT32_ROOT_LEVEL) {
4756 page_offset &= ~7; /* kill rounding error */
4757 page_offset <<= 1;
4758 *nspte = 2;
4759 }
4760 quadrant = page_offset >> PAGE_SHIFT;
4761 page_offset &= ~PAGE_MASK;
4762 if (quadrant != sp->role.quadrant)
4763 return NULL;
4764 }
4765
4766 spte = &sp->spt[page_offset / sizeof(*spte)];
4767 return spte;
4768 }
4769
4770 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4771 const u8 *new, int bytes,
4772 struct kvm_page_track_notifier_node *node)
4773 {
4774 gfn_t gfn = gpa >> PAGE_SHIFT;
4775 struct kvm_mmu_page *sp;
4776 LIST_HEAD(invalid_list);
4777 u64 entry, gentry, *spte;
4778 int npte;
4779 bool remote_flush, local_flush;
4780 union kvm_mmu_page_role mask = { };
4781
4782 mask.cr0_wp = 1;
4783 mask.cr4_pae = 1;
4784 mask.nxe = 1;
4785 mask.smep_andnot_wp = 1;
4786 mask.smap_andnot_wp = 1;
4787 mask.smm = 1;
4788 mask.ad_disabled = 1;
4789
4790 /*
4791 * If we don't have indirect shadow pages, it means no page is
4792 * write-protected, so we can exit simply.
4793 */
4794 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4795 return;
4796
4797 remote_flush = local_flush = false;
4798
4799 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4800
4801 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4802
4803 /*
4804 * No need to care whether allocation memory is successful
4805 * or not since pte prefetch is skiped if it does not have
4806 * enough objects in the cache.
4807 */
4808 mmu_topup_memory_caches(vcpu);
4809
4810 spin_lock(&vcpu->kvm->mmu_lock);
4811 ++vcpu->kvm->stat.mmu_pte_write;
4812 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4813
4814 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4815 if (detect_write_misaligned(sp, gpa, bytes) ||
4816 detect_write_flooding(sp)) {
4817 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4818 ++vcpu->kvm->stat.mmu_flooded;
4819 continue;
4820 }
4821
4822 spte = get_written_sptes(sp, gpa, &npte);
4823 if (!spte)
4824 continue;
4825
4826 local_flush = true;
4827 while (npte--) {
4828 entry = *spte;
4829 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4830 if (gentry &&
4831 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4832 & mask.word) && rmap_can_add(vcpu))
4833 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4834 if (need_remote_flush(entry, *spte))
4835 remote_flush = true;
4836 ++spte;
4837 }
4838 }
4839 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4840 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4841 spin_unlock(&vcpu->kvm->mmu_lock);
4842 }
4843
4844 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4845 {
4846 gpa_t gpa;
4847 int r;
4848
4849 if (vcpu->arch.mmu.direct_map)
4850 return 0;
4851
4852 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4853
4854 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4855
4856 return r;
4857 }
4858 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4859
4860 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4861 {
4862 LIST_HEAD(invalid_list);
4863
4864 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4865 return 0;
4866
4867 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4868 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4869 break;
4870
4871 ++vcpu->kvm->stat.mmu_recycled;
4872 }
4873 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4874
4875 if (!kvm_mmu_available_pages(vcpu->kvm))
4876 return -ENOSPC;
4877 return 0;
4878 }
4879
4880 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4881 void *insn, int insn_len)
4882 {
4883 int r, emulation_type = EMULTYPE_RETRY;
4884 enum emulation_result er;
4885 bool direct = vcpu->arch.mmu.direct_map;
4886
4887 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4888 if (vcpu->arch.mmu.direct_map) {
4889 vcpu->arch.gpa_available = true;
4890 vcpu->arch.gpa_val = cr2;
4891 }
4892
4893 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4894 r = handle_mmio_page_fault(vcpu, cr2, direct);
4895 if (r == RET_MMIO_PF_EMULATE) {
4896 emulation_type = 0;
4897 goto emulate;
4898 }
4899 if (r == RET_MMIO_PF_RETRY)
4900 return 1;
4901 if (r < 0)
4902 return r;
4903 /* Must be RET_MMIO_PF_INVALID. */
4904 }
4905
4906 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4907 false);
4908 if (r < 0)
4909 return r;
4910 if (!r)
4911 return 1;
4912
4913 /*
4914 * Before emulating the instruction, check if the error code
4915 * was due to a RO violation while translating the guest page.
4916 * This can occur when using nested virtualization with nested
4917 * paging in both guests. If true, we simply unprotect the page
4918 * and resume the guest.
4919 */
4920 if (vcpu->arch.mmu.direct_map &&
4921 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4922 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4923 return 1;
4924 }
4925
4926 if (mmio_info_in_cache(vcpu, cr2, direct))
4927 emulation_type = 0;
4928 emulate:
4929 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4930
4931 switch (er) {
4932 case EMULATE_DONE:
4933 return 1;
4934 case EMULATE_USER_EXIT:
4935 ++vcpu->stat.mmio_exits;
4936 /* fall through */
4937 case EMULATE_FAIL:
4938 return 0;
4939 default:
4940 BUG();
4941 }
4942 }
4943 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4944
4945 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4946 {
4947 vcpu->arch.mmu.invlpg(vcpu, gva);
4948 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4949 ++vcpu->stat.invlpg;
4950 }
4951 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4952
4953 void kvm_enable_tdp(void)
4954 {
4955 tdp_enabled = true;
4956 }
4957 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4958
4959 void kvm_disable_tdp(void)
4960 {
4961 tdp_enabled = false;
4962 }
4963 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4964
4965 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4966 {
4967 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4968 if (vcpu->arch.mmu.lm_root != NULL)
4969 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4970 }
4971
4972 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4973 {
4974 struct page *page;
4975 int i;
4976
4977 /*
4978 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4979 * Therefore we need to allocate shadow page tables in the first
4980 * 4GB of memory, which happens to fit the DMA32 zone.
4981 */
4982 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4983 if (!page)
4984 return -ENOMEM;
4985
4986 vcpu->arch.mmu.pae_root = page_address(page);
4987 for (i = 0; i < 4; ++i)
4988 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4989
4990 return 0;
4991 }
4992
4993 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4994 {
4995 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4996 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4997 vcpu->arch.mmu.translate_gpa = translate_gpa;
4998 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4999
5000 return alloc_mmu_pages(vcpu);
5001 }
5002
5003 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5004 {
5005 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5006
5007 init_kvm_mmu(vcpu);
5008 }
5009
5010 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5011 struct kvm_memory_slot *slot,
5012 struct kvm_page_track_notifier_node *node)
5013 {
5014 kvm_mmu_invalidate_zap_all_pages(kvm);
5015 }
5016
5017 void kvm_mmu_init_vm(struct kvm *kvm)
5018 {
5019 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5020
5021 node->track_write = kvm_mmu_pte_write;
5022 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5023 kvm_page_track_register_notifier(kvm, node);
5024 }
5025
5026 void kvm_mmu_uninit_vm(struct kvm *kvm)
5027 {
5028 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5029
5030 kvm_page_track_unregister_notifier(kvm, node);
5031 }
5032
5033 /* The return value indicates if tlb flush on all vcpus is needed. */
5034 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5035
5036 /* The caller should hold mmu-lock before calling this function. */
5037 static bool
5038 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5039 slot_level_handler fn, int start_level, int end_level,
5040 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5041 {
5042 struct slot_rmap_walk_iterator iterator;
5043 bool flush = false;
5044
5045 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5046 end_gfn, &iterator) {
5047 if (iterator.rmap)
5048 flush |= fn(kvm, iterator.rmap);
5049
5050 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5051 if (flush && lock_flush_tlb) {
5052 kvm_flush_remote_tlbs(kvm);
5053 flush = false;
5054 }
5055 cond_resched_lock(&kvm->mmu_lock);
5056 }
5057 }
5058
5059 if (flush && lock_flush_tlb) {
5060 kvm_flush_remote_tlbs(kvm);
5061 flush = false;
5062 }
5063
5064 return flush;
5065 }
5066
5067 static bool
5068 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5069 slot_level_handler fn, int start_level, int end_level,
5070 bool lock_flush_tlb)
5071 {
5072 return slot_handle_level_range(kvm, memslot, fn, start_level,
5073 end_level, memslot->base_gfn,
5074 memslot->base_gfn + memslot->npages - 1,
5075 lock_flush_tlb);
5076 }
5077
5078 static bool
5079 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5080 slot_level_handler fn, bool lock_flush_tlb)
5081 {
5082 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5083 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5084 }
5085
5086 static bool
5087 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5088 slot_level_handler fn, bool lock_flush_tlb)
5089 {
5090 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5091 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5092 }
5093
5094 static bool
5095 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5096 slot_level_handler fn, bool lock_flush_tlb)
5097 {
5098 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5099 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5100 }
5101
5102 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5103 {
5104 struct kvm_memslots *slots;
5105 struct kvm_memory_slot *memslot;
5106 int i;
5107
5108 spin_lock(&kvm->mmu_lock);
5109 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5110 slots = __kvm_memslots(kvm, i);
5111 kvm_for_each_memslot(memslot, slots) {
5112 gfn_t start, end;
5113
5114 start = max(gfn_start, memslot->base_gfn);
5115 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5116 if (start >= end)
5117 continue;
5118
5119 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5120 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5121 start, end - 1, true);
5122 }
5123 }
5124
5125 spin_unlock(&kvm->mmu_lock);
5126 }
5127
5128 static bool slot_rmap_write_protect(struct kvm *kvm,
5129 struct kvm_rmap_head *rmap_head)
5130 {
5131 return __rmap_write_protect(kvm, rmap_head, false);
5132 }
5133
5134 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5135 struct kvm_memory_slot *memslot)
5136 {
5137 bool flush;
5138
5139 spin_lock(&kvm->mmu_lock);
5140 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5141 false);
5142 spin_unlock(&kvm->mmu_lock);
5143
5144 /*
5145 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5146 * which do tlb flush out of mmu-lock should be serialized by
5147 * kvm->slots_lock otherwise tlb flush would be missed.
5148 */
5149 lockdep_assert_held(&kvm->slots_lock);
5150
5151 /*
5152 * We can flush all the TLBs out of the mmu lock without TLB
5153 * corruption since we just change the spte from writable to
5154 * readonly so that we only need to care the case of changing
5155 * spte from present to present (changing the spte from present
5156 * to nonpresent will flush all the TLBs immediately), in other
5157 * words, the only case we care is mmu_spte_update() where we
5158 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5159 * instead of PT_WRITABLE_MASK, that means it does not depend
5160 * on PT_WRITABLE_MASK anymore.
5161 */
5162 if (flush)
5163 kvm_flush_remote_tlbs(kvm);
5164 }
5165
5166 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5167 struct kvm_rmap_head *rmap_head)
5168 {
5169 u64 *sptep;
5170 struct rmap_iterator iter;
5171 int need_tlb_flush = 0;
5172 kvm_pfn_t pfn;
5173 struct kvm_mmu_page *sp;
5174
5175 restart:
5176 for_each_rmap_spte(rmap_head, &iter, sptep) {
5177 sp = page_header(__pa(sptep));
5178 pfn = spte_to_pfn(*sptep);
5179
5180 /*
5181 * We cannot do huge page mapping for indirect shadow pages,
5182 * which are found on the last rmap (level = 1) when not using
5183 * tdp; such shadow pages are synced with the page table in
5184 * the guest, and the guest page table is using 4K page size
5185 * mapping if the indirect sp has level = 1.
5186 */
5187 if (sp->role.direct &&
5188 !kvm_is_reserved_pfn(pfn) &&
5189 PageTransCompoundMap(pfn_to_page(pfn))) {
5190 drop_spte(kvm, sptep);
5191 need_tlb_flush = 1;
5192 goto restart;
5193 }
5194 }
5195
5196 return need_tlb_flush;
5197 }
5198
5199 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5200 const struct kvm_memory_slot *memslot)
5201 {
5202 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5203 spin_lock(&kvm->mmu_lock);
5204 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5205 kvm_mmu_zap_collapsible_spte, true);
5206 spin_unlock(&kvm->mmu_lock);
5207 }
5208
5209 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5210 struct kvm_memory_slot *memslot)
5211 {
5212 bool flush;
5213
5214 spin_lock(&kvm->mmu_lock);
5215 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5216 spin_unlock(&kvm->mmu_lock);
5217
5218 lockdep_assert_held(&kvm->slots_lock);
5219
5220 /*
5221 * It's also safe to flush TLBs out of mmu lock here as currently this
5222 * function is only used for dirty logging, in which case flushing TLB
5223 * out of mmu lock also guarantees no dirty pages will be lost in
5224 * dirty_bitmap.
5225 */
5226 if (flush)
5227 kvm_flush_remote_tlbs(kvm);
5228 }
5229 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5230
5231 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5232 struct kvm_memory_slot *memslot)
5233 {
5234 bool flush;
5235
5236 spin_lock(&kvm->mmu_lock);
5237 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5238 false);
5239 spin_unlock(&kvm->mmu_lock);
5240
5241 /* see kvm_mmu_slot_remove_write_access */
5242 lockdep_assert_held(&kvm->slots_lock);
5243
5244 if (flush)
5245 kvm_flush_remote_tlbs(kvm);
5246 }
5247 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5248
5249 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5250 struct kvm_memory_slot *memslot)
5251 {
5252 bool flush;
5253
5254 spin_lock(&kvm->mmu_lock);
5255 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5256 spin_unlock(&kvm->mmu_lock);
5257
5258 lockdep_assert_held(&kvm->slots_lock);
5259
5260 /* see kvm_mmu_slot_leaf_clear_dirty */
5261 if (flush)
5262 kvm_flush_remote_tlbs(kvm);
5263 }
5264 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5265
5266 #define BATCH_ZAP_PAGES 10
5267 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5268 {
5269 struct kvm_mmu_page *sp, *node;
5270 int batch = 0;
5271
5272 restart:
5273 list_for_each_entry_safe_reverse(sp, node,
5274 &kvm->arch.active_mmu_pages, link) {
5275 int ret;
5276
5277 /*
5278 * No obsolete page exists before new created page since
5279 * active_mmu_pages is the FIFO list.
5280 */
5281 if (!is_obsolete_sp(kvm, sp))
5282 break;
5283
5284 /*
5285 * Since we are reversely walking the list and the invalid
5286 * list will be moved to the head, skip the invalid page
5287 * can help us to avoid the infinity list walking.
5288 */
5289 if (sp->role.invalid)
5290 continue;
5291
5292 /*
5293 * Need not flush tlb since we only zap the sp with invalid
5294 * generation number.
5295 */
5296 if (batch >= BATCH_ZAP_PAGES &&
5297 cond_resched_lock(&kvm->mmu_lock)) {
5298 batch = 0;
5299 goto restart;
5300 }
5301
5302 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5303 &kvm->arch.zapped_obsolete_pages);
5304 batch += ret;
5305
5306 if (ret)
5307 goto restart;
5308 }
5309
5310 /*
5311 * Should flush tlb before free page tables since lockless-walking
5312 * may use the pages.
5313 */
5314 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5315 }
5316
5317 /*
5318 * Fast invalidate all shadow pages and use lock-break technique
5319 * to zap obsolete pages.
5320 *
5321 * It's required when memslot is being deleted or VM is being
5322 * destroyed, in these cases, we should ensure that KVM MMU does
5323 * not use any resource of the being-deleted slot or all slots
5324 * after calling the function.
5325 */
5326 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5327 {
5328 spin_lock(&kvm->mmu_lock);
5329 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5330 kvm->arch.mmu_valid_gen++;
5331
5332 /*
5333 * Notify all vcpus to reload its shadow page table
5334 * and flush TLB. Then all vcpus will switch to new
5335 * shadow page table with the new mmu_valid_gen.
5336 *
5337 * Note: we should do this under the protection of
5338 * mmu-lock, otherwise, vcpu would purge shadow page
5339 * but miss tlb flush.
5340 */
5341 kvm_reload_remote_mmus(kvm);
5342
5343 kvm_zap_obsolete_pages(kvm);
5344 spin_unlock(&kvm->mmu_lock);
5345 }
5346
5347 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5348 {
5349 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5350 }
5351
5352 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5353 {
5354 /*
5355 * The very rare case: if the generation-number is round,
5356 * zap all shadow pages.
5357 */
5358 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5359 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5360 kvm_mmu_invalidate_zap_all_pages(kvm);
5361 }
5362 }
5363
5364 static unsigned long
5365 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5366 {
5367 struct kvm *kvm;
5368 int nr_to_scan = sc->nr_to_scan;
5369 unsigned long freed = 0;
5370
5371 spin_lock(&kvm_lock);
5372
5373 list_for_each_entry(kvm, &vm_list, vm_list) {
5374 int idx;
5375 LIST_HEAD(invalid_list);
5376
5377 /*
5378 * Never scan more than sc->nr_to_scan VM instances.
5379 * Will not hit this condition practically since we do not try
5380 * to shrink more than one VM and it is very unlikely to see
5381 * !n_used_mmu_pages so many times.
5382 */
5383 if (!nr_to_scan--)
5384 break;
5385 /*
5386 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5387 * here. We may skip a VM instance errorneosly, but we do not
5388 * want to shrink a VM that only started to populate its MMU
5389 * anyway.
5390 */
5391 if (!kvm->arch.n_used_mmu_pages &&
5392 !kvm_has_zapped_obsolete_pages(kvm))
5393 continue;
5394
5395 idx = srcu_read_lock(&kvm->srcu);
5396 spin_lock(&kvm->mmu_lock);
5397
5398 if (kvm_has_zapped_obsolete_pages(kvm)) {
5399 kvm_mmu_commit_zap_page(kvm,
5400 &kvm->arch.zapped_obsolete_pages);
5401 goto unlock;
5402 }
5403
5404 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5405 freed++;
5406 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5407
5408 unlock:
5409 spin_unlock(&kvm->mmu_lock);
5410 srcu_read_unlock(&kvm->srcu, idx);
5411
5412 /*
5413 * unfair on small ones
5414 * per-vm shrinkers cry out
5415 * sadness comes quickly
5416 */
5417 list_move_tail(&kvm->vm_list, &vm_list);
5418 break;
5419 }
5420
5421 spin_unlock(&kvm_lock);
5422 return freed;
5423 }
5424
5425 static unsigned long
5426 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5427 {
5428 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5429 }
5430
5431 static struct shrinker mmu_shrinker = {
5432 .count_objects = mmu_shrink_count,
5433 .scan_objects = mmu_shrink_scan,
5434 .seeks = DEFAULT_SEEKS * 10,
5435 };
5436
5437 static void mmu_destroy_caches(void)
5438 {
5439 if (pte_list_desc_cache)
5440 kmem_cache_destroy(pte_list_desc_cache);
5441 if (mmu_page_header_cache)
5442 kmem_cache_destroy(mmu_page_header_cache);
5443 }
5444
5445 int kvm_mmu_module_init(void)
5446 {
5447 kvm_mmu_clear_all_pte_masks();
5448
5449 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5450 sizeof(struct pte_list_desc),
5451 0, 0, NULL);
5452 if (!pte_list_desc_cache)
5453 goto nomem;
5454
5455 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5456 sizeof(struct kvm_mmu_page),
5457 0, 0, NULL);
5458 if (!mmu_page_header_cache)
5459 goto nomem;
5460
5461 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5462 goto nomem;
5463
5464 register_shrinker(&mmu_shrinker);
5465
5466 return 0;
5467
5468 nomem:
5469 mmu_destroy_caches();
5470 return -ENOMEM;
5471 }
5472
5473 /*
5474 * Caculate mmu pages needed for kvm.
5475 */
5476 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5477 {
5478 unsigned int nr_mmu_pages;
5479 unsigned int nr_pages = 0;
5480 struct kvm_memslots *slots;
5481 struct kvm_memory_slot *memslot;
5482 int i;
5483
5484 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5485 slots = __kvm_memslots(kvm, i);
5486
5487 kvm_for_each_memslot(memslot, slots)
5488 nr_pages += memslot->npages;
5489 }
5490
5491 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5492 nr_mmu_pages = max(nr_mmu_pages,
5493 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5494
5495 return nr_mmu_pages;
5496 }
5497
5498 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5499 {
5500 kvm_mmu_unload(vcpu);
5501 free_mmu_pages(vcpu);
5502 mmu_free_memory_caches(vcpu);
5503 }
5504
5505 void kvm_mmu_module_exit(void)
5506 {
5507 mmu_destroy_caches();
5508 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5509 unregister_shrinker(&mmu_shrinker);
5510 mmu_audit_disable();
5511 }