]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: Conditionally reschedule when kvm_mmu_slot_remove_write_access() takes...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235 return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251 return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266 return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271 return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276 return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303 *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308 *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313 return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318 return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325 }
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399 }
400
401 /*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 return false;
474
475 return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
503 */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506 u64 old_spte = *sptep;
507 bool ret = false;
508
509 WARN_ON(!is_rmap_spte(new_spte));
510
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
515
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
518 else
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
529 if (!shadow_accessed_mask)
530 return ret;
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537 return ret;
538 }
539
540 /*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
552 else
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572 }
573
574 /*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579 static void mmu_spte_clear_no_track(u64 *sptep)
580 {
581 __update_clear_spte_fast(sptep, 0ull);
582 }
583
584 static u64 mmu_spte_get_lockless(u64 *sptep)
585 {
586 return __get_spte_lockless(sptep);
587 }
588
589 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590 {
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
602 }
603
604 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605 {
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
614 }
615
616 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617 struct kmem_cache *base_cache, int min)
618 {
619 void *obj;
620
621 if (cache->nobjs >= min)
622 return 0;
623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625 if (!obj)
626 return -ENOMEM;
627 cache->objects[cache->nobjs++] = obj;
628 }
629 return 0;
630 }
631
632 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633 {
634 return cache->nobjs;
635 }
636
637 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
639 {
640 while (mc->nobjs)
641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
642 }
643
644 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645 int min)
646 {
647 void *page;
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652 page = (void *)__get_free_page(GFP_KERNEL);
653 if (!page)
654 return -ENOMEM;
655 cache->objects[cache->nobjs++] = page;
656 }
657 return 0;
658 }
659
660 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661 {
662 while (mc->nobjs)
663 free_page((unsigned long)mc->objects[--mc->nobjs]);
664 }
665
666 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
667 {
668 int r;
669
670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672 if (r)
673 goto out;
674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675 if (r)
676 goto out;
677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678 mmu_page_header_cache, 4);
679 out:
680 return r;
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
690 }
691
692 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
693 {
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
698 return p;
699 }
700
701 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
702 {
703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
704 }
705
706 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
707 {
708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
709 }
710
711 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712 {
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717 }
718
719 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720 {
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725 }
726
727 /*
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
730 */
731 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
734 {
735 unsigned long idx;
736
737 idx = gfn_to_index(gfn, slot->base_gfn, level);
738 return &slot->arch.lpage_info[level - 2][idx];
739 }
740
741 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742 {
743 struct kvm_memory_slot *slot;
744 struct kvm_lpage_info *linfo;
745 int i;
746
747 slot = gfn_to_memslot(kvm, gfn);
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
752 }
753 kvm->arch.indirect_shadow_pages++;
754 }
755
756 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757 {
758 struct kvm_memory_slot *slot;
759 struct kvm_lpage_info *linfo;
760 int i;
761
762 slot = gfn_to_memslot(kvm, gfn);
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
768 }
769 kvm->arch.indirect_shadow_pages--;
770 }
771
772 static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
775 {
776 struct kvm_memory_slot *slot;
777 struct kvm_lpage_info *linfo;
778
779 slot = gfn_to_memslot(kvm, gfn);
780 if (slot) {
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
783 }
784
785 return 1;
786 }
787
788 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
789 {
790 unsigned long page_size;
791 int i, ret = 0;
792
793 page_size = kvm_host_page_size(kvm, gfn);
794
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
803 return ret;
804 }
805
806 static struct kvm_memory_slot *
807 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
809 {
810 struct kvm_memory_slot *slot;
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818 }
819
820 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821 {
822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
823 }
824
825 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826 {
827 int host_level, level, max_level;
828
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
840
841 return level - 1;
842 }
843
844 /*
845 * Pte mapping structures:
846 *
847 * If pte_list bit zero is zero, then pte_list point to the spte.
848 *
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
851 *
852 * Returns the number of pte entries before the spte was added or zero if
853 * the spte was not added.
854 *
855 */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
858 {
859 struct pte_list_desc *desc;
860 int i, count = 0;
861
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
869 desc->sptes[1] = spte;
870 *pte_list = (unsigned long)desc | 1;
871 ++count;
872 } else {
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876 desc = desc->more;
877 count += PTE_LIST_EXT;
878 }
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
881 desc = desc->more;
882 }
883 for (i = 0; desc->sptes[i]; ++i)
884 ++count;
885 desc->sptes[i] = spte;
886 }
887 return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
893 {
894 int j;
895
896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897 ;
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
903 *pte_list = (unsigned long)desc->sptes[0];
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
916 int i;
917
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920 BUG();
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
925 BUG();
926 }
927 *pte_list = 0;
928 } else {
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931 prev_desc = NULL;
932 while (desc) {
933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934 if (desc->sptes[i] == spte) {
935 pte_list_desc_remove_entry(pte_list,
936 desc, i,
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
943 pr_err("pte_list_remove: %p many->many\n", spte);
944 BUG();
945 }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969 struct kvm_memory_slot *slot)
970 {
971 unsigned long idx;
972
973 idx = gfn_to_index(gfn, slot->base_gfn, level);
974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 }
976
977 /*
978 * Take gfn and return the reverse mapping to it.
979 */
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981 {
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
985 return __gfn_to_rmap(gfn, level, slot);
986 }
987
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
989 {
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994 }
995
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997 {
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005 }
1006
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1008 {
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017 }
1018
1019 /*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023 struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027 };
1028
1029 /*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037 {
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049 }
1050
1051 /*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1057 {
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078 }
1079
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1081 {
1082 if (mmu_spte_clear_track_bits(sptep))
1083 rmap_remove(kvm, sptep);
1084 }
1085
1086
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088 {
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098 }
1099
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101 {
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104 }
1105
1106 /*
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
1117 *
1118 * Return true if the spte is dropped.
1119 */
1120 static bool
1121 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122 {
1123 u64 spte = *sptep;
1124
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1134 }
1135
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
1138 spte = spte & ~PT_WRITABLE_MASK;
1139
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
1142 }
1143
1144 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145 bool pt_protect)
1146 {
1147 u64 *sptep;
1148 struct rmap_iterator iter;
1149 bool flush = false;
1150
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1156 }
1157
1158 sptep = rmap_get_next(&iter);
1159 }
1160
1161 return flush;
1162 }
1163
1164 /**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
1177 {
1178 unsigned long *rmapp;
1179
1180 while (mask) {
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
1183 __rmap_write_protect(kvm, rmapp, false);
1184
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
1188 }
1189
1190 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191 {
1192 struct kvm_memory_slot *slot;
1193 unsigned long *rmapp;
1194 int i;
1195 bool write_protected = false;
1196
1197 slot = gfn_to_memslot(kvm, gfn);
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
1202 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1203 }
1204
1205 return write_protected;
1206 }
1207
1208 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209 struct kvm_memory_slot *slot, unsigned long data)
1210 {
1211 u64 *sptep;
1212 struct rmap_iterator iter;
1213 int need_tlb_flush = 0;
1214
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
1220 need_tlb_flush = 1;
1221 }
1222
1223 return need_tlb_flush;
1224 }
1225
1226 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227 struct kvm_memory_slot *slot, unsigned long data)
1228 {
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 int need_flush = 0;
1232 u64 new_spte;
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
1243 need_flush = 1;
1244
1245 if (pte_write(*ptep)) {
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
1248 } else {
1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
1254 new_spte &= ~shadow_accessed_mask;
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
1259 }
1260 }
1261
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266 }
1267
1268 static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
1274 struct kvm_memory_slot *slot,
1275 unsigned long data))
1276 {
1277 int j;
1278 int ret = 0;
1279 struct kvm_memslots *slots;
1280 struct kvm_memory_slot *memslot;
1281
1282 slots = kvm_memslots(kvm);
1283
1284 kvm_for_each_memslot(memslot, slots) {
1285 unsigned long hva_start, hva_end;
1286 gfn_t gfn_start, gfn_end;
1287
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296 */
1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
1304
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311
1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
1316 }
1317 }
1318
1319 return ret;
1320 }
1321
1322 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325 struct kvm_memory_slot *slot,
1326 unsigned long data))
1327 {
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329 }
1330
1331 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332 {
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334 }
1335
1336 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337 {
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339 }
1340
1341 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342 {
1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344 }
1345
1346 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347 struct kvm_memory_slot *slot, unsigned long data)
1348 {
1349 u64 *sptep;
1350 struct rmap_iterator uninitialized_var(iter);
1351 int young = 0;
1352
1353 /*
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
1365
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep));
1369
1370 if (*sptep & shadow_accessed_mask) {
1371 young = 1;
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
1374 }
1375 }
1376 out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
1379 return young;
1380 }
1381
1382 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383 struct kvm_memory_slot *slot, unsigned long data)
1384 {
1385 u64 *sptep;
1386 struct rmap_iterator iter;
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep));
1400
1401 if (*sptep & shadow_accessed_mask) {
1402 young = 1;
1403 break;
1404 }
1405 }
1406 out:
1407 return young;
1408 }
1409
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1411
1412 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413 {
1414 unsigned long *rmapp;
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
1418
1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420
1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423 }
1424
1425 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426 {
1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428 }
1429
1430 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431 {
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433 }
1434
1435 #ifdef MMU_DEBUG
1436 static int is_empty_shadow_page(u64 *spt)
1437 {
1438 u64 *pos;
1439 u64 *end;
1440
1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442 if (is_shadow_present_pte(*pos)) {
1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
1444 pos, *pos);
1445 return 0;
1446 }
1447 return 1;
1448 }
1449 #endif
1450
1451 /*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458 {
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461 }
1462
1463 /*
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1468 */
1469 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1470 {
1471 ASSERT(is_empty_shadow_page(sp->spt));
1472 hlist_del(&sp->hash_link);
1473 if (!sp->role.direct)
1474 free_page((unsigned long)sp->gfns);
1475 }
1476
1477 /*
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1480 */
1481 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1482 {
1483 list_del(&sp->link);
1484 free_page((unsigned long)sp->spt);
1485 kmem_cache_free(mmu_page_header_cache, sp);
1486 }
1487
1488 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1489 {
1490 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1491 }
1492
1493 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1494 struct kvm_mmu_page *sp, u64 *parent_pte)
1495 {
1496 if (!parent_pte)
1497 return;
1498
1499 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1500 }
1501
1502 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1503 u64 *parent_pte)
1504 {
1505 pte_list_remove(parent_pte, &sp->parent_ptes);
1506 }
1507
1508 static void drop_parent_pte(struct kvm_mmu_page *sp,
1509 u64 *parent_pte)
1510 {
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1512 mmu_spte_clear_no_track(parent_pte);
1513 }
1514
1515 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516 u64 *parent_pte, int direct)
1517 {
1518 struct kvm_mmu_page *sp;
1519 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1521 if (!direct)
1522 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1525 sp->parent_ptes = 0;
1526 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1527 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1528 return sp;
1529 }
1530
1531 static void mark_unsync(u64 *spte);
1532 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1533 {
1534 pte_list_walk(&sp->parent_ptes, mark_unsync);
1535 }
1536
1537 static void mark_unsync(u64 *spte)
1538 {
1539 struct kvm_mmu_page *sp;
1540 unsigned int index;
1541
1542 sp = page_header(__pa(spte));
1543 index = spte - sp->spt;
1544 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1545 return;
1546 if (sp->unsync_children++)
1547 return;
1548 kvm_mmu_mark_parents_unsync(sp);
1549 }
1550
1551 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1552 struct kvm_mmu_page *sp)
1553 {
1554 return 1;
1555 }
1556
1557 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1558 {
1559 }
1560
1561 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1562 struct kvm_mmu_page *sp, u64 *spte,
1563 const void *pte)
1564 {
1565 WARN_ON(1);
1566 }
1567
1568 #define KVM_PAGE_ARRAY_NR 16
1569
1570 struct kvm_mmu_pages {
1571 struct mmu_page_and_offset {
1572 struct kvm_mmu_page *sp;
1573 unsigned int idx;
1574 } page[KVM_PAGE_ARRAY_NR];
1575 unsigned int nr;
1576 };
1577
1578 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1579 int idx)
1580 {
1581 int i;
1582
1583 if (sp->unsync)
1584 for (i=0; i < pvec->nr; i++)
1585 if (pvec->page[i].sp == sp)
1586 return 0;
1587
1588 pvec->page[pvec->nr].sp = sp;
1589 pvec->page[pvec->nr].idx = idx;
1590 pvec->nr++;
1591 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1592 }
1593
1594 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1595 struct kvm_mmu_pages *pvec)
1596 {
1597 int i, ret, nr_unsync_leaf = 0;
1598
1599 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1600 struct kvm_mmu_page *child;
1601 u64 ent = sp->spt[i];
1602
1603 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1604 goto clear_child_bitmap;
1605
1606 child = page_header(ent & PT64_BASE_ADDR_MASK);
1607
1608 if (child->unsync_children) {
1609 if (mmu_pages_add(pvec, child, i))
1610 return -ENOSPC;
1611
1612 ret = __mmu_unsync_walk(child, pvec);
1613 if (!ret)
1614 goto clear_child_bitmap;
1615 else if (ret > 0)
1616 nr_unsync_leaf += ret;
1617 else
1618 return ret;
1619 } else if (child->unsync) {
1620 nr_unsync_leaf++;
1621 if (mmu_pages_add(pvec, child, i))
1622 return -ENOSPC;
1623 } else
1624 goto clear_child_bitmap;
1625
1626 continue;
1627
1628 clear_child_bitmap:
1629 __clear_bit(i, sp->unsync_child_bitmap);
1630 sp->unsync_children--;
1631 WARN_ON((int)sp->unsync_children < 0);
1632 }
1633
1634
1635 return nr_unsync_leaf;
1636 }
1637
1638 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1639 struct kvm_mmu_pages *pvec)
1640 {
1641 if (!sp->unsync_children)
1642 return 0;
1643
1644 mmu_pages_add(pvec, sp, 0);
1645 return __mmu_unsync_walk(sp, pvec);
1646 }
1647
1648 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1649 {
1650 WARN_ON(!sp->unsync);
1651 trace_kvm_mmu_sync_page(sp);
1652 sp->unsync = 0;
1653 --kvm->stat.mmu_unsync;
1654 }
1655
1656 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1657 struct list_head *invalid_list);
1658 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1659 struct list_head *invalid_list);
1660
1661 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1662 hlist_for_each_entry(sp, pos, \
1663 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1664 if ((sp)->gfn != (gfn)) {} else
1665
1666 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1667 hlist_for_each_entry(sp, pos, \
1668 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1669 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1670 (sp)->role.invalid) {} else
1671
1672 /* @sp->gfn should be write-protected at the call site */
1673 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1674 struct list_head *invalid_list, bool clear_unsync)
1675 {
1676 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1677 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1678 return 1;
1679 }
1680
1681 if (clear_unsync)
1682 kvm_unlink_unsync_page(vcpu->kvm, sp);
1683
1684 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1685 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1686 return 1;
1687 }
1688
1689 kvm_mmu_flush_tlb(vcpu);
1690 return 0;
1691 }
1692
1693 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1694 struct kvm_mmu_page *sp)
1695 {
1696 LIST_HEAD(invalid_list);
1697 int ret;
1698
1699 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1700 if (ret)
1701 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1702
1703 return ret;
1704 }
1705
1706 #ifdef CONFIG_KVM_MMU_AUDIT
1707 #include "mmu_audit.c"
1708 #else
1709 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1710 static void mmu_audit_disable(void) { }
1711 #endif
1712
1713 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1714 struct list_head *invalid_list)
1715 {
1716 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1717 }
1718
1719 /* @gfn should be write-protected at the call site */
1720 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1721 {
1722 struct kvm_mmu_page *s;
1723 struct hlist_node *node;
1724 LIST_HEAD(invalid_list);
1725 bool flush = false;
1726
1727 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1728 if (!s->unsync)
1729 continue;
1730
1731 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1732 kvm_unlink_unsync_page(vcpu->kvm, s);
1733 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1734 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1735 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1736 continue;
1737 }
1738 flush = true;
1739 }
1740
1741 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1742 if (flush)
1743 kvm_mmu_flush_tlb(vcpu);
1744 }
1745
1746 struct mmu_page_path {
1747 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1748 unsigned int idx[PT64_ROOT_LEVEL-1];
1749 };
1750
1751 #define for_each_sp(pvec, sp, parents, i) \
1752 for (i = mmu_pages_next(&pvec, &parents, -1), \
1753 sp = pvec.page[i].sp; \
1754 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1755 i = mmu_pages_next(&pvec, &parents, i))
1756
1757 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1758 struct mmu_page_path *parents,
1759 int i)
1760 {
1761 int n;
1762
1763 for (n = i+1; n < pvec->nr; n++) {
1764 struct kvm_mmu_page *sp = pvec->page[n].sp;
1765
1766 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1767 parents->idx[0] = pvec->page[n].idx;
1768 return n;
1769 }
1770
1771 parents->parent[sp->role.level-2] = sp;
1772 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1773 }
1774
1775 return n;
1776 }
1777
1778 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1779 {
1780 struct kvm_mmu_page *sp;
1781 unsigned int level = 0;
1782
1783 do {
1784 unsigned int idx = parents->idx[level];
1785
1786 sp = parents->parent[level];
1787 if (!sp)
1788 return;
1789
1790 --sp->unsync_children;
1791 WARN_ON((int)sp->unsync_children < 0);
1792 __clear_bit(idx, sp->unsync_child_bitmap);
1793 level++;
1794 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1795 }
1796
1797 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1798 struct mmu_page_path *parents,
1799 struct kvm_mmu_pages *pvec)
1800 {
1801 parents->parent[parent->role.level-1] = NULL;
1802 pvec->nr = 0;
1803 }
1804
1805 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1806 struct kvm_mmu_page *parent)
1807 {
1808 int i;
1809 struct kvm_mmu_page *sp;
1810 struct mmu_page_path parents;
1811 struct kvm_mmu_pages pages;
1812 LIST_HEAD(invalid_list);
1813
1814 kvm_mmu_pages_init(parent, &parents, &pages);
1815 while (mmu_unsync_walk(parent, &pages)) {
1816 bool protected = false;
1817
1818 for_each_sp(pages, sp, parents, i)
1819 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1820
1821 if (protected)
1822 kvm_flush_remote_tlbs(vcpu->kvm);
1823
1824 for_each_sp(pages, sp, parents, i) {
1825 kvm_sync_page(vcpu, sp, &invalid_list);
1826 mmu_pages_clear_parents(&parents);
1827 }
1828 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1829 cond_resched_lock(&vcpu->kvm->mmu_lock);
1830 kvm_mmu_pages_init(parent, &parents, &pages);
1831 }
1832 }
1833
1834 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1835 {
1836 int i;
1837
1838 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1839 sp->spt[i] = 0ull;
1840 }
1841
1842 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1843 {
1844 sp->write_flooding_count = 0;
1845 }
1846
1847 static void clear_sp_write_flooding_count(u64 *spte)
1848 {
1849 struct kvm_mmu_page *sp = page_header(__pa(spte));
1850
1851 __clear_sp_write_flooding_count(sp);
1852 }
1853
1854 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1855 gfn_t gfn,
1856 gva_t gaddr,
1857 unsigned level,
1858 int direct,
1859 unsigned access,
1860 u64 *parent_pte)
1861 {
1862 union kvm_mmu_page_role role;
1863 unsigned quadrant;
1864 struct kvm_mmu_page *sp;
1865 struct hlist_node *node;
1866 bool need_sync = false;
1867
1868 role = vcpu->arch.mmu.base_role;
1869 role.level = level;
1870 role.direct = direct;
1871 if (role.direct)
1872 role.cr4_pae = 0;
1873 role.access = access;
1874 if (!vcpu->arch.mmu.direct_map
1875 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1876 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1877 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1878 role.quadrant = quadrant;
1879 }
1880 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1881 if (!need_sync && sp->unsync)
1882 need_sync = true;
1883
1884 if (sp->role.word != role.word)
1885 continue;
1886
1887 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1888 break;
1889
1890 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1891 if (sp->unsync_children) {
1892 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1893 kvm_mmu_mark_parents_unsync(sp);
1894 } else if (sp->unsync)
1895 kvm_mmu_mark_parents_unsync(sp);
1896
1897 __clear_sp_write_flooding_count(sp);
1898 trace_kvm_mmu_get_page(sp, false);
1899 return sp;
1900 }
1901 ++vcpu->kvm->stat.mmu_cache_miss;
1902 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1903 if (!sp)
1904 return sp;
1905 sp->gfn = gfn;
1906 sp->role = role;
1907 hlist_add_head(&sp->hash_link,
1908 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1909 if (!direct) {
1910 if (rmap_write_protect(vcpu->kvm, gfn))
1911 kvm_flush_remote_tlbs(vcpu->kvm);
1912 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1913 kvm_sync_pages(vcpu, gfn);
1914
1915 account_shadowed(vcpu->kvm, gfn);
1916 }
1917 init_shadow_page_table(sp);
1918 trace_kvm_mmu_get_page(sp, true);
1919 return sp;
1920 }
1921
1922 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1923 struct kvm_vcpu *vcpu, u64 addr)
1924 {
1925 iterator->addr = addr;
1926 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1927 iterator->level = vcpu->arch.mmu.shadow_root_level;
1928
1929 if (iterator->level == PT64_ROOT_LEVEL &&
1930 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1931 !vcpu->arch.mmu.direct_map)
1932 --iterator->level;
1933
1934 if (iterator->level == PT32E_ROOT_LEVEL) {
1935 iterator->shadow_addr
1936 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1937 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1938 --iterator->level;
1939 if (!iterator->shadow_addr)
1940 iterator->level = 0;
1941 }
1942 }
1943
1944 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1945 {
1946 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1947 return false;
1948
1949 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1950 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1951 return true;
1952 }
1953
1954 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1955 u64 spte)
1956 {
1957 if (is_last_spte(spte, iterator->level)) {
1958 iterator->level = 0;
1959 return;
1960 }
1961
1962 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1963 --iterator->level;
1964 }
1965
1966 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1967 {
1968 return __shadow_walk_next(iterator, *iterator->sptep);
1969 }
1970
1971 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1972 {
1973 u64 spte;
1974
1975 spte = __pa(sp->spt)
1976 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1977 | PT_WRITABLE_MASK | PT_USER_MASK;
1978 mmu_spte_set(sptep, spte);
1979 }
1980
1981 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1982 unsigned direct_access)
1983 {
1984 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1985 struct kvm_mmu_page *child;
1986
1987 /*
1988 * For the direct sp, if the guest pte's dirty bit
1989 * changed form clean to dirty, it will corrupt the
1990 * sp's access: allow writable in the read-only sp,
1991 * so we should update the spte at this point to get
1992 * a new sp with the correct access.
1993 */
1994 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1995 if (child->role.access == direct_access)
1996 return;
1997
1998 drop_parent_pte(child, sptep);
1999 kvm_flush_remote_tlbs(vcpu->kvm);
2000 }
2001 }
2002
2003 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2004 u64 *spte)
2005 {
2006 u64 pte;
2007 struct kvm_mmu_page *child;
2008
2009 pte = *spte;
2010 if (is_shadow_present_pte(pte)) {
2011 if (is_last_spte(pte, sp->role.level)) {
2012 drop_spte(kvm, spte);
2013 if (is_large_pte(pte))
2014 --kvm->stat.lpages;
2015 } else {
2016 child = page_header(pte & PT64_BASE_ADDR_MASK);
2017 drop_parent_pte(child, spte);
2018 }
2019 return true;
2020 }
2021
2022 if (is_mmio_spte(pte))
2023 mmu_spte_clear_no_track(spte);
2024
2025 return false;
2026 }
2027
2028 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2029 struct kvm_mmu_page *sp)
2030 {
2031 unsigned i;
2032
2033 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2034 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2035 }
2036
2037 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2038 {
2039 mmu_page_remove_parent_pte(sp, parent_pte);
2040 }
2041
2042 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2043 {
2044 u64 *sptep;
2045 struct rmap_iterator iter;
2046
2047 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2048 drop_parent_pte(sp, sptep);
2049 }
2050
2051 static int mmu_zap_unsync_children(struct kvm *kvm,
2052 struct kvm_mmu_page *parent,
2053 struct list_head *invalid_list)
2054 {
2055 int i, zapped = 0;
2056 struct mmu_page_path parents;
2057 struct kvm_mmu_pages pages;
2058
2059 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2060 return 0;
2061
2062 kvm_mmu_pages_init(parent, &parents, &pages);
2063 while (mmu_unsync_walk(parent, &pages)) {
2064 struct kvm_mmu_page *sp;
2065
2066 for_each_sp(pages, sp, parents, i) {
2067 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2068 mmu_pages_clear_parents(&parents);
2069 zapped++;
2070 }
2071 kvm_mmu_pages_init(parent, &parents, &pages);
2072 }
2073
2074 return zapped;
2075 }
2076
2077 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2078 struct list_head *invalid_list)
2079 {
2080 int ret;
2081
2082 trace_kvm_mmu_prepare_zap_page(sp);
2083 ++kvm->stat.mmu_shadow_zapped;
2084 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2085 kvm_mmu_page_unlink_children(kvm, sp);
2086 kvm_mmu_unlink_parents(kvm, sp);
2087 if (!sp->role.invalid && !sp->role.direct)
2088 unaccount_shadowed(kvm, sp->gfn);
2089 if (sp->unsync)
2090 kvm_unlink_unsync_page(kvm, sp);
2091 if (!sp->root_count) {
2092 /* Count self */
2093 ret++;
2094 list_move(&sp->link, invalid_list);
2095 kvm_mod_used_mmu_pages(kvm, -1);
2096 } else {
2097 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2098 kvm_reload_remote_mmus(kvm);
2099 }
2100
2101 sp->role.invalid = 1;
2102 return ret;
2103 }
2104
2105 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2106 struct list_head *invalid_list)
2107 {
2108 struct kvm_mmu_page *sp;
2109
2110 if (list_empty(invalid_list))
2111 return;
2112
2113 /*
2114 * wmb: make sure everyone sees our modifications to the page tables
2115 * rmb: make sure we see changes to vcpu->mode
2116 */
2117 smp_mb();
2118
2119 /*
2120 * Wait for all vcpus to exit guest mode and/or lockless shadow
2121 * page table walks.
2122 */
2123 kvm_flush_remote_tlbs(kvm);
2124
2125 do {
2126 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2127 WARN_ON(!sp->role.invalid || sp->root_count);
2128 kvm_mmu_isolate_page(sp);
2129 kvm_mmu_free_page(sp);
2130 } while (!list_empty(invalid_list));
2131 }
2132
2133 /*
2134 * Changing the number of mmu pages allocated to the vm
2135 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2136 */
2137 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2138 {
2139 LIST_HEAD(invalid_list);
2140 /*
2141 * If we set the number of mmu pages to be smaller be than the
2142 * number of actived pages , we must to free some mmu pages before we
2143 * change the value
2144 */
2145
2146 spin_lock(&kvm->mmu_lock);
2147
2148 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2149 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2150 !list_empty(&kvm->arch.active_mmu_pages)) {
2151 struct kvm_mmu_page *page;
2152
2153 page = container_of(kvm->arch.active_mmu_pages.prev,
2154 struct kvm_mmu_page, link);
2155 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2156 }
2157 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2158 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2159 }
2160
2161 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2162
2163 spin_unlock(&kvm->mmu_lock);
2164 }
2165
2166 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2167 {
2168 struct kvm_mmu_page *sp;
2169 struct hlist_node *node;
2170 LIST_HEAD(invalid_list);
2171 int r;
2172
2173 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2174 r = 0;
2175 spin_lock(&kvm->mmu_lock);
2176 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2177 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2178 sp->role.word);
2179 r = 1;
2180 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2181 }
2182 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2183 spin_unlock(&kvm->mmu_lock);
2184
2185 return r;
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2188
2189 /*
2190 * The function is based on mtrr_type_lookup() in
2191 * arch/x86/kernel/cpu/mtrr/generic.c
2192 */
2193 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2194 u64 start, u64 end)
2195 {
2196 int i;
2197 u64 base, mask;
2198 u8 prev_match, curr_match;
2199 int num_var_ranges = KVM_NR_VAR_MTRR;
2200
2201 if (!mtrr_state->enabled)
2202 return 0xFF;
2203
2204 /* Make end inclusive end, instead of exclusive */
2205 end--;
2206
2207 /* Look in fixed ranges. Just return the type as per start */
2208 if (mtrr_state->have_fixed && (start < 0x100000)) {
2209 int idx;
2210
2211 if (start < 0x80000) {
2212 idx = 0;
2213 idx += (start >> 16);
2214 return mtrr_state->fixed_ranges[idx];
2215 } else if (start < 0xC0000) {
2216 idx = 1 * 8;
2217 idx += ((start - 0x80000) >> 14);
2218 return mtrr_state->fixed_ranges[idx];
2219 } else if (start < 0x1000000) {
2220 idx = 3 * 8;
2221 idx += ((start - 0xC0000) >> 12);
2222 return mtrr_state->fixed_ranges[idx];
2223 }
2224 }
2225
2226 /*
2227 * Look in variable ranges
2228 * Look of multiple ranges matching this address and pick type
2229 * as per MTRR precedence
2230 */
2231 if (!(mtrr_state->enabled & 2))
2232 return mtrr_state->def_type;
2233
2234 prev_match = 0xFF;
2235 for (i = 0; i < num_var_ranges; ++i) {
2236 unsigned short start_state, end_state;
2237
2238 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2239 continue;
2240
2241 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2242 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2243 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2244 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2245
2246 start_state = ((start & mask) == (base & mask));
2247 end_state = ((end & mask) == (base & mask));
2248 if (start_state != end_state)
2249 return 0xFE;
2250
2251 if ((start & mask) != (base & mask))
2252 continue;
2253
2254 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2255 if (prev_match == 0xFF) {
2256 prev_match = curr_match;
2257 continue;
2258 }
2259
2260 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2261 curr_match == MTRR_TYPE_UNCACHABLE)
2262 return MTRR_TYPE_UNCACHABLE;
2263
2264 if ((prev_match == MTRR_TYPE_WRBACK &&
2265 curr_match == MTRR_TYPE_WRTHROUGH) ||
2266 (prev_match == MTRR_TYPE_WRTHROUGH &&
2267 curr_match == MTRR_TYPE_WRBACK)) {
2268 prev_match = MTRR_TYPE_WRTHROUGH;
2269 curr_match = MTRR_TYPE_WRTHROUGH;
2270 }
2271
2272 if (prev_match != curr_match)
2273 return MTRR_TYPE_UNCACHABLE;
2274 }
2275
2276 if (prev_match != 0xFF)
2277 return prev_match;
2278
2279 return mtrr_state->def_type;
2280 }
2281
2282 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2283 {
2284 u8 mtrr;
2285
2286 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2287 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2288 if (mtrr == 0xfe || mtrr == 0xff)
2289 mtrr = MTRR_TYPE_WRBACK;
2290 return mtrr;
2291 }
2292 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2293
2294 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2295 {
2296 trace_kvm_mmu_unsync_page(sp);
2297 ++vcpu->kvm->stat.mmu_unsync;
2298 sp->unsync = 1;
2299
2300 kvm_mmu_mark_parents_unsync(sp);
2301 }
2302
2303 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2304 {
2305 struct kvm_mmu_page *s;
2306 struct hlist_node *node;
2307
2308 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2309 if (s->unsync)
2310 continue;
2311 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2312 __kvm_unsync_page(vcpu, s);
2313 }
2314 }
2315
2316 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2317 bool can_unsync)
2318 {
2319 struct kvm_mmu_page *s;
2320 struct hlist_node *node;
2321 bool need_unsync = false;
2322
2323 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2324 if (!can_unsync)
2325 return 1;
2326
2327 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2328 return 1;
2329
2330 if (!need_unsync && !s->unsync) {
2331 need_unsync = true;
2332 }
2333 }
2334 if (need_unsync)
2335 kvm_unsync_pages(vcpu, gfn);
2336 return 0;
2337 }
2338
2339 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2340 unsigned pte_access, int level,
2341 gfn_t gfn, pfn_t pfn, bool speculative,
2342 bool can_unsync, bool host_writable)
2343 {
2344 u64 spte;
2345 int ret = 0;
2346
2347 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2348 return 0;
2349
2350 spte = PT_PRESENT_MASK;
2351 if (!speculative)
2352 spte |= shadow_accessed_mask;
2353
2354 if (pte_access & ACC_EXEC_MASK)
2355 spte |= shadow_x_mask;
2356 else
2357 spte |= shadow_nx_mask;
2358
2359 if (pte_access & ACC_USER_MASK)
2360 spte |= shadow_user_mask;
2361
2362 if (level > PT_PAGE_TABLE_LEVEL)
2363 spte |= PT_PAGE_SIZE_MASK;
2364 if (tdp_enabled)
2365 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2366 kvm_is_mmio_pfn(pfn));
2367
2368 if (host_writable)
2369 spte |= SPTE_HOST_WRITEABLE;
2370 else
2371 pte_access &= ~ACC_WRITE_MASK;
2372
2373 spte |= (u64)pfn << PAGE_SHIFT;
2374
2375 if (pte_access & ACC_WRITE_MASK) {
2376
2377 /*
2378 * Other vcpu creates new sp in the window between
2379 * mapping_level() and acquiring mmu-lock. We can
2380 * allow guest to retry the access, the mapping can
2381 * be fixed if guest refault.
2382 */
2383 if (level > PT_PAGE_TABLE_LEVEL &&
2384 has_wrprotected_page(vcpu->kvm, gfn, level))
2385 goto done;
2386
2387 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2388
2389 /*
2390 * Optimization: for pte sync, if spte was writable the hash
2391 * lookup is unnecessary (and expensive). Write protection
2392 * is responsibility of mmu_get_page / kvm_sync_page.
2393 * Same reasoning can be applied to dirty page accounting.
2394 */
2395 if (!can_unsync && is_writable_pte(*sptep))
2396 goto set_pte;
2397
2398 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2399 pgprintk("%s: found shadow page for %llx, marking ro\n",
2400 __func__, gfn);
2401 ret = 1;
2402 pte_access &= ~ACC_WRITE_MASK;
2403 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2404 }
2405 }
2406
2407 if (pte_access & ACC_WRITE_MASK)
2408 mark_page_dirty(vcpu->kvm, gfn);
2409
2410 set_pte:
2411 if (mmu_spte_update(sptep, spte))
2412 kvm_flush_remote_tlbs(vcpu->kvm);
2413 done:
2414 return ret;
2415 }
2416
2417 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2418 unsigned pt_access, unsigned pte_access,
2419 int write_fault, int *emulate, int level, gfn_t gfn,
2420 pfn_t pfn, bool speculative, bool host_writable)
2421 {
2422 int was_rmapped = 0;
2423 int rmap_count;
2424
2425 pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
2426 __func__, *sptep, pt_access,
2427 write_fault, gfn);
2428
2429 if (is_rmap_spte(*sptep)) {
2430 /*
2431 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2432 * the parent of the now unreachable PTE.
2433 */
2434 if (level > PT_PAGE_TABLE_LEVEL &&
2435 !is_large_pte(*sptep)) {
2436 struct kvm_mmu_page *child;
2437 u64 pte = *sptep;
2438
2439 child = page_header(pte & PT64_BASE_ADDR_MASK);
2440 drop_parent_pte(child, sptep);
2441 kvm_flush_remote_tlbs(vcpu->kvm);
2442 } else if (pfn != spte_to_pfn(*sptep)) {
2443 pgprintk("hfn old %llx new %llx\n",
2444 spte_to_pfn(*sptep), pfn);
2445 drop_spte(vcpu->kvm, sptep);
2446 kvm_flush_remote_tlbs(vcpu->kvm);
2447 } else
2448 was_rmapped = 1;
2449 }
2450
2451 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2452 true, host_writable)) {
2453 if (write_fault)
2454 *emulate = 1;
2455 kvm_mmu_flush_tlb(vcpu);
2456 }
2457
2458 if (unlikely(is_mmio_spte(*sptep) && emulate))
2459 *emulate = 1;
2460
2461 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2462 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2463 is_large_pte(*sptep)? "2MB" : "4kB",
2464 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2465 *sptep, sptep);
2466 if (!was_rmapped && is_large_pte(*sptep))
2467 ++vcpu->kvm->stat.lpages;
2468
2469 if (is_shadow_present_pte(*sptep)) {
2470 if (!was_rmapped) {
2471 rmap_count = rmap_add(vcpu, sptep, gfn);
2472 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2473 rmap_recycle(vcpu, sptep, gfn);
2474 }
2475 }
2476
2477 kvm_release_pfn_clean(pfn);
2478 }
2479
2480 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2481 {
2482 mmu_free_roots(vcpu);
2483 }
2484
2485 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2486 {
2487 int bit7;
2488
2489 bit7 = (gpte >> 7) & 1;
2490 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2491 }
2492
2493 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2494 bool no_dirty_log)
2495 {
2496 struct kvm_memory_slot *slot;
2497
2498 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2499 if (!slot)
2500 return KVM_PFN_ERR_FAULT;
2501
2502 return gfn_to_pfn_memslot_atomic(slot, gfn);
2503 }
2504
2505 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2506 struct kvm_mmu_page *sp, u64 *spte,
2507 u64 gpte)
2508 {
2509 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2510 goto no_present;
2511
2512 if (!is_present_gpte(gpte))
2513 goto no_present;
2514
2515 if (!(gpte & PT_ACCESSED_MASK))
2516 goto no_present;
2517
2518 return false;
2519
2520 no_present:
2521 drop_spte(vcpu->kvm, spte);
2522 return true;
2523 }
2524
2525 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2526 struct kvm_mmu_page *sp,
2527 u64 *start, u64 *end)
2528 {
2529 struct page *pages[PTE_PREFETCH_NUM];
2530 unsigned access = sp->role.access;
2531 int i, ret;
2532 gfn_t gfn;
2533
2534 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2535 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2536 return -1;
2537
2538 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2539 if (ret <= 0)
2540 return -1;
2541
2542 for (i = 0; i < ret; i++, gfn++, start++)
2543 mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
2544 sp->role.level, gfn, page_to_pfn(pages[i]),
2545 true, true);
2546
2547 return 0;
2548 }
2549
2550 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2551 struct kvm_mmu_page *sp, u64 *sptep)
2552 {
2553 u64 *spte, *start = NULL;
2554 int i;
2555
2556 WARN_ON(!sp->role.direct);
2557
2558 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2559 spte = sp->spt + i;
2560
2561 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2562 if (is_shadow_present_pte(*spte) || spte == sptep) {
2563 if (!start)
2564 continue;
2565 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2566 break;
2567 start = NULL;
2568 } else if (!start)
2569 start = spte;
2570 }
2571 }
2572
2573 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2574 {
2575 struct kvm_mmu_page *sp;
2576
2577 /*
2578 * Since it's no accessed bit on EPT, it's no way to
2579 * distinguish between actually accessed translations
2580 * and prefetched, so disable pte prefetch if EPT is
2581 * enabled.
2582 */
2583 if (!shadow_accessed_mask)
2584 return;
2585
2586 sp = page_header(__pa(sptep));
2587 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2588 return;
2589
2590 __direct_pte_prefetch(vcpu, sp, sptep);
2591 }
2592
2593 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2594 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2595 bool prefault)
2596 {
2597 struct kvm_shadow_walk_iterator iterator;
2598 struct kvm_mmu_page *sp;
2599 int emulate = 0;
2600 gfn_t pseudo_gfn;
2601
2602 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2603 if (iterator.level == level) {
2604 unsigned pte_access = ACC_ALL;
2605
2606 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2607 write, &emulate, level, gfn, pfn,
2608 prefault, map_writable);
2609 direct_pte_prefetch(vcpu, iterator.sptep);
2610 ++vcpu->stat.pf_fixed;
2611 break;
2612 }
2613
2614 if (!is_shadow_present_pte(*iterator.sptep)) {
2615 u64 base_addr = iterator.addr;
2616
2617 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2618 pseudo_gfn = base_addr >> PAGE_SHIFT;
2619 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2620 iterator.level - 1,
2621 1, ACC_ALL, iterator.sptep);
2622
2623 mmu_spte_set(iterator.sptep,
2624 __pa(sp->spt)
2625 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2626 | shadow_user_mask | shadow_x_mask
2627 | shadow_accessed_mask);
2628 }
2629 }
2630 return emulate;
2631 }
2632
2633 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2634 {
2635 siginfo_t info;
2636
2637 info.si_signo = SIGBUS;
2638 info.si_errno = 0;
2639 info.si_code = BUS_MCEERR_AR;
2640 info.si_addr = (void __user *)address;
2641 info.si_addr_lsb = PAGE_SHIFT;
2642
2643 send_sig_info(SIGBUS, &info, tsk);
2644 }
2645
2646 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2647 {
2648 /*
2649 * Do not cache the mmio info caused by writing the readonly gfn
2650 * into the spte otherwise read access on readonly gfn also can
2651 * caused mmio page fault and treat it as mmio access.
2652 * Return 1 to tell kvm to emulate it.
2653 */
2654 if (pfn == KVM_PFN_ERR_RO_FAULT)
2655 return 1;
2656
2657 if (pfn == KVM_PFN_ERR_HWPOISON) {
2658 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2659 return 0;
2660 }
2661
2662 return -EFAULT;
2663 }
2664
2665 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2666 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2667 {
2668 pfn_t pfn = *pfnp;
2669 gfn_t gfn = *gfnp;
2670 int level = *levelp;
2671
2672 /*
2673 * Check if it's a transparent hugepage. If this would be an
2674 * hugetlbfs page, level wouldn't be set to
2675 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2676 * here.
2677 */
2678 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2679 level == PT_PAGE_TABLE_LEVEL &&
2680 PageTransCompound(pfn_to_page(pfn)) &&
2681 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2682 unsigned long mask;
2683 /*
2684 * mmu_notifier_retry was successful and we hold the
2685 * mmu_lock here, so the pmd can't become splitting
2686 * from under us, and in turn
2687 * __split_huge_page_refcount() can't run from under
2688 * us and we can safely transfer the refcount from
2689 * PG_tail to PG_head as we switch the pfn to tail to
2690 * head.
2691 */
2692 *levelp = level = PT_DIRECTORY_LEVEL;
2693 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2694 VM_BUG_ON((gfn & mask) != (pfn & mask));
2695 if (pfn & mask) {
2696 gfn &= ~mask;
2697 *gfnp = gfn;
2698 kvm_release_pfn_clean(pfn);
2699 pfn &= ~mask;
2700 kvm_get_pfn(pfn);
2701 *pfnp = pfn;
2702 }
2703 }
2704 }
2705
2706 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2707 pfn_t pfn, unsigned access, int *ret_val)
2708 {
2709 bool ret = true;
2710
2711 /* The pfn is invalid, report the error! */
2712 if (unlikely(is_error_pfn(pfn))) {
2713 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2714 goto exit;
2715 }
2716
2717 if (unlikely(is_noslot_pfn(pfn)))
2718 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2719
2720 ret = false;
2721 exit:
2722 return ret;
2723 }
2724
2725 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2726 {
2727 /*
2728 * #PF can be fast only if the shadow page table is present and it
2729 * is caused by write-protect, that means we just need change the
2730 * W bit of the spte which can be done out of mmu-lock.
2731 */
2732 if (!(error_code & PFERR_PRESENT_MASK) ||
2733 !(error_code & PFERR_WRITE_MASK))
2734 return false;
2735
2736 return true;
2737 }
2738
2739 static bool
2740 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2741 {
2742 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2743 gfn_t gfn;
2744
2745 WARN_ON(!sp->role.direct);
2746
2747 /*
2748 * The gfn of direct spte is stable since it is calculated
2749 * by sp->gfn.
2750 */
2751 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2752
2753 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2754 mark_page_dirty(vcpu->kvm, gfn);
2755
2756 return true;
2757 }
2758
2759 /*
2760 * Return value:
2761 * - true: let the vcpu to access on the same address again.
2762 * - false: let the real page fault path to fix it.
2763 */
2764 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2765 u32 error_code)
2766 {
2767 struct kvm_shadow_walk_iterator iterator;
2768 bool ret = false;
2769 u64 spte = 0ull;
2770
2771 if (!page_fault_can_be_fast(vcpu, error_code))
2772 return false;
2773
2774 walk_shadow_page_lockless_begin(vcpu);
2775 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2776 if (!is_shadow_present_pte(spte) || iterator.level < level)
2777 break;
2778
2779 /*
2780 * If the mapping has been changed, let the vcpu fault on the
2781 * same address again.
2782 */
2783 if (!is_rmap_spte(spte)) {
2784 ret = true;
2785 goto exit;
2786 }
2787
2788 if (!is_last_spte(spte, level))
2789 goto exit;
2790
2791 /*
2792 * Check if it is a spurious fault caused by TLB lazily flushed.
2793 *
2794 * Need not check the access of upper level table entries since
2795 * they are always ACC_ALL.
2796 */
2797 if (is_writable_pte(spte)) {
2798 ret = true;
2799 goto exit;
2800 }
2801
2802 /*
2803 * Currently, to simplify the code, only the spte write-protected
2804 * by dirty-log can be fast fixed.
2805 */
2806 if (!spte_is_locklessly_modifiable(spte))
2807 goto exit;
2808
2809 /*
2810 * Currently, fast page fault only works for direct mapping since
2811 * the gfn is not stable for indirect shadow page.
2812 * See Documentation/virtual/kvm/locking.txt to get more detail.
2813 */
2814 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2815 exit:
2816 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2817 spte, ret);
2818 walk_shadow_page_lockless_end(vcpu);
2819
2820 return ret;
2821 }
2822
2823 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2824 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2825
2826 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2827 gfn_t gfn, bool prefault)
2828 {
2829 int r;
2830 int level;
2831 int force_pt_level;
2832 pfn_t pfn;
2833 unsigned long mmu_seq;
2834 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2835
2836 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2837 if (likely(!force_pt_level)) {
2838 level = mapping_level(vcpu, gfn);
2839 /*
2840 * This path builds a PAE pagetable - so we can map
2841 * 2mb pages at maximum. Therefore check if the level
2842 * is larger than that.
2843 */
2844 if (level > PT_DIRECTORY_LEVEL)
2845 level = PT_DIRECTORY_LEVEL;
2846
2847 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2848 } else
2849 level = PT_PAGE_TABLE_LEVEL;
2850
2851 if (fast_page_fault(vcpu, v, level, error_code))
2852 return 0;
2853
2854 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2855 smp_rmb();
2856
2857 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2858 return 0;
2859
2860 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2861 return r;
2862
2863 spin_lock(&vcpu->kvm->mmu_lock);
2864 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2865 goto out_unlock;
2866 kvm_mmu_free_some_pages(vcpu);
2867 if (likely(!force_pt_level))
2868 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2869 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2870 prefault);
2871 spin_unlock(&vcpu->kvm->mmu_lock);
2872
2873
2874 return r;
2875
2876 out_unlock:
2877 spin_unlock(&vcpu->kvm->mmu_lock);
2878 kvm_release_pfn_clean(pfn);
2879 return 0;
2880 }
2881
2882
2883 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2884 {
2885 int i;
2886 struct kvm_mmu_page *sp;
2887 LIST_HEAD(invalid_list);
2888
2889 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890 return;
2891 spin_lock(&vcpu->kvm->mmu_lock);
2892 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2893 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2894 vcpu->arch.mmu.direct_map)) {
2895 hpa_t root = vcpu->arch.mmu.root_hpa;
2896
2897 sp = page_header(root);
2898 --sp->root_count;
2899 if (!sp->root_count && sp->role.invalid) {
2900 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2901 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2902 }
2903 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2904 spin_unlock(&vcpu->kvm->mmu_lock);
2905 return;
2906 }
2907 for (i = 0; i < 4; ++i) {
2908 hpa_t root = vcpu->arch.mmu.pae_root[i];
2909
2910 if (root) {
2911 root &= PT64_BASE_ADDR_MASK;
2912 sp = page_header(root);
2913 --sp->root_count;
2914 if (!sp->root_count && sp->role.invalid)
2915 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2916 &invalid_list);
2917 }
2918 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2919 }
2920 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2921 spin_unlock(&vcpu->kvm->mmu_lock);
2922 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2923 }
2924
2925 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2926 {
2927 int ret = 0;
2928
2929 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2930 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2931 ret = 1;
2932 }
2933
2934 return ret;
2935 }
2936
2937 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2938 {
2939 struct kvm_mmu_page *sp;
2940 unsigned i;
2941
2942 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2943 spin_lock(&vcpu->kvm->mmu_lock);
2944 kvm_mmu_free_some_pages(vcpu);
2945 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2946 1, ACC_ALL, NULL);
2947 ++sp->root_count;
2948 spin_unlock(&vcpu->kvm->mmu_lock);
2949 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2950 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2951 for (i = 0; i < 4; ++i) {
2952 hpa_t root = vcpu->arch.mmu.pae_root[i];
2953
2954 ASSERT(!VALID_PAGE(root));
2955 spin_lock(&vcpu->kvm->mmu_lock);
2956 kvm_mmu_free_some_pages(vcpu);
2957 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2958 i << 30,
2959 PT32_ROOT_LEVEL, 1, ACC_ALL,
2960 NULL);
2961 root = __pa(sp->spt);
2962 ++sp->root_count;
2963 spin_unlock(&vcpu->kvm->mmu_lock);
2964 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2965 }
2966 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2967 } else
2968 BUG();
2969
2970 return 0;
2971 }
2972
2973 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2974 {
2975 struct kvm_mmu_page *sp;
2976 u64 pdptr, pm_mask;
2977 gfn_t root_gfn;
2978 int i;
2979
2980 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2981
2982 if (mmu_check_root(vcpu, root_gfn))
2983 return 1;
2984
2985 /*
2986 * Do we shadow a long mode page table? If so we need to
2987 * write-protect the guests page table root.
2988 */
2989 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2990 hpa_t root = vcpu->arch.mmu.root_hpa;
2991
2992 ASSERT(!VALID_PAGE(root));
2993
2994 spin_lock(&vcpu->kvm->mmu_lock);
2995 kvm_mmu_free_some_pages(vcpu);
2996 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2997 0, ACC_ALL, NULL);
2998 root = __pa(sp->spt);
2999 ++sp->root_count;
3000 spin_unlock(&vcpu->kvm->mmu_lock);
3001 vcpu->arch.mmu.root_hpa = root;
3002 return 0;
3003 }
3004
3005 /*
3006 * We shadow a 32 bit page table. This may be a legacy 2-level
3007 * or a PAE 3-level page table. In either case we need to be aware that
3008 * the shadow page table may be a PAE or a long mode page table.
3009 */
3010 pm_mask = PT_PRESENT_MASK;
3011 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3012 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3013
3014 for (i = 0; i < 4; ++i) {
3015 hpa_t root = vcpu->arch.mmu.pae_root[i];
3016
3017 ASSERT(!VALID_PAGE(root));
3018 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3019 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3020 if (!is_present_gpte(pdptr)) {
3021 vcpu->arch.mmu.pae_root[i] = 0;
3022 continue;
3023 }
3024 root_gfn = pdptr >> PAGE_SHIFT;
3025 if (mmu_check_root(vcpu, root_gfn))
3026 return 1;
3027 }
3028 spin_lock(&vcpu->kvm->mmu_lock);
3029 kvm_mmu_free_some_pages(vcpu);
3030 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3031 PT32_ROOT_LEVEL, 0,
3032 ACC_ALL, NULL);
3033 root = __pa(sp->spt);
3034 ++sp->root_count;
3035 spin_unlock(&vcpu->kvm->mmu_lock);
3036
3037 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3038 }
3039 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3040
3041 /*
3042 * If we shadow a 32 bit page table with a long mode page
3043 * table we enter this path.
3044 */
3045 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3046 if (vcpu->arch.mmu.lm_root == NULL) {
3047 /*
3048 * The additional page necessary for this is only
3049 * allocated on demand.
3050 */
3051
3052 u64 *lm_root;
3053
3054 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3055 if (lm_root == NULL)
3056 return 1;
3057
3058 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3059
3060 vcpu->arch.mmu.lm_root = lm_root;
3061 }
3062
3063 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3064 }
3065
3066 return 0;
3067 }
3068
3069 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3070 {
3071 if (vcpu->arch.mmu.direct_map)
3072 return mmu_alloc_direct_roots(vcpu);
3073 else
3074 return mmu_alloc_shadow_roots(vcpu);
3075 }
3076
3077 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3078 {
3079 int i;
3080 struct kvm_mmu_page *sp;
3081
3082 if (vcpu->arch.mmu.direct_map)
3083 return;
3084
3085 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3086 return;
3087
3088 vcpu_clear_mmio_info(vcpu, ~0ul);
3089 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3090 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3091 hpa_t root = vcpu->arch.mmu.root_hpa;
3092 sp = page_header(root);
3093 mmu_sync_children(vcpu, sp);
3094 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3095 return;
3096 }
3097 for (i = 0; i < 4; ++i) {
3098 hpa_t root = vcpu->arch.mmu.pae_root[i];
3099
3100 if (root && VALID_PAGE(root)) {
3101 root &= PT64_BASE_ADDR_MASK;
3102 sp = page_header(root);
3103 mmu_sync_children(vcpu, sp);
3104 }
3105 }
3106 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3107 }
3108
3109 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3110 {
3111 spin_lock(&vcpu->kvm->mmu_lock);
3112 mmu_sync_roots(vcpu);
3113 spin_unlock(&vcpu->kvm->mmu_lock);
3114 }
3115
3116 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3117 u32 access, struct x86_exception *exception)
3118 {
3119 if (exception)
3120 exception->error_code = 0;
3121 return vaddr;
3122 }
3123
3124 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3125 u32 access,
3126 struct x86_exception *exception)
3127 {
3128 if (exception)
3129 exception->error_code = 0;
3130 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3131 }
3132
3133 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3134 {
3135 if (direct)
3136 return vcpu_match_mmio_gpa(vcpu, addr);
3137
3138 return vcpu_match_mmio_gva(vcpu, addr);
3139 }
3140
3141
3142 /*
3143 * On direct hosts, the last spte is only allows two states
3144 * for mmio page fault:
3145 * - It is the mmio spte
3146 * - It is zapped or it is being zapped.
3147 *
3148 * This function completely checks the spte when the last spte
3149 * is not the mmio spte.
3150 */
3151 static bool check_direct_spte_mmio_pf(u64 spte)
3152 {
3153 return __check_direct_spte_mmio_pf(spte);
3154 }
3155
3156 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3157 {
3158 struct kvm_shadow_walk_iterator iterator;
3159 u64 spte = 0ull;
3160
3161 walk_shadow_page_lockless_begin(vcpu);
3162 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3163 if (!is_shadow_present_pte(spte))
3164 break;
3165 walk_shadow_page_lockless_end(vcpu);
3166
3167 return spte;
3168 }
3169
3170 /*
3171 * If it is a real mmio page fault, return 1 and emulat the instruction
3172 * directly, return 0 to let CPU fault again on the address, -1 is
3173 * returned if bug is detected.
3174 */
3175 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3176 {
3177 u64 spte;
3178
3179 if (quickly_check_mmio_pf(vcpu, addr, direct))
3180 return 1;
3181
3182 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3183
3184 if (is_mmio_spte(spte)) {
3185 gfn_t gfn = get_mmio_spte_gfn(spte);
3186 unsigned access = get_mmio_spte_access(spte);
3187
3188 if (direct)
3189 addr = 0;
3190
3191 trace_handle_mmio_page_fault(addr, gfn, access);
3192 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3193 return 1;
3194 }
3195
3196 /*
3197 * It's ok if the gva is remapped by other cpus on shadow guest,
3198 * it's a BUG if the gfn is not a mmio page.
3199 */
3200 if (direct && !check_direct_spte_mmio_pf(spte))
3201 return -1;
3202
3203 /*
3204 * If the page table is zapped by other cpus, let CPU fault again on
3205 * the address.
3206 */
3207 return 0;
3208 }
3209 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3210
3211 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3212 u32 error_code, bool direct)
3213 {
3214 int ret;
3215
3216 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3217 WARN_ON(ret < 0);
3218 return ret;
3219 }
3220
3221 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3222 u32 error_code, bool prefault)
3223 {
3224 gfn_t gfn;
3225 int r;
3226
3227 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3228
3229 if (unlikely(error_code & PFERR_RSVD_MASK))
3230 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3231
3232 r = mmu_topup_memory_caches(vcpu);
3233 if (r)
3234 return r;
3235
3236 ASSERT(vcpu);
3237 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3238
3239 gfn = gva >> PAGE_SHIFT;
3240
3241 return nonpaging_map(vcpu, gva & PAGE_MASK,
3242 error_code, gfn, prefault);
3243 }
3244
3245 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3246 {
3247 struct kvm_arch_async_pf arch;
3248
3249 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3250 arch.gfn = gfn;
3251 arch.direct_map = vcpu->arch.mmu.direct_map;
3252 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3253
3254 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3255 }
3256
3257 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3258 {
3259 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3260 kvm_event_needs_reinjection(vcpu)))
3261 return false;
3262
3263 return kvm_x86_ops->interrupt_allowed(vcpu);
3264 }
3265
3266 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3267 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3268 {
3269 bool async;
3270
3271 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3272
3273 if (!async)
3274 return false; /* *pfn has correct page already */
3275
3276 if (!prefault && can_do_async_pf(vcpu)) {
3277 trace_kvm_try_async_get_page(gva, gfn);
3278 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3279 trace_kvm_async_pf_doublefault(gva, gfn);
3280 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3281 return true;
3282 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3283 return true;
3284 }
3285
3286 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3287
3288 return false;
3289 }
3290
3291 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3292 bool prefault)
3293 {
3294 pfn_t pfn;
3295 int r;
3296 int level;
3297 int force_pt_level;
3298 gfn_t gfn = gpa >> PAGE_SHIFT;
3299 unsigned long mmu_seq;
3300 int write = error_code & PFERR_WRITE_MASK;
3301 bool map_writable;
3302
3303 ASSERT(vcpu);
3304 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3305
3306 if (unlikely(error_code & PFERR_RSVD_MASK))
3307 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3308
3309 r = mmu_topup_memory_caches(vcpu);
3310 if (r)
3311 return r;
3312
3313 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3314 if (likely(!force_pt_level)) {
3315 level = mapping_level(vcpu, gfn);
3316 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3317 } else
3318 level = PT_PAGE_TABLE_LEVEL;
3319
3320 if (fast_page_fault(vcpu, gpa, level, error_code))
3321 return 0;
3322
3323 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3324 smp_rmb();
3325
3326 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3327 return 0;
3328
3329 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3330 return r;
3331
3332 spin_lock(&vcpu->kvm->mmu_lock);
3333 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3334 goto out_unlock;
3335 kvm_mmu_free_some_pages(vcpu);
3336 if (likely(!force_pt_level))
3337 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3338 r = __direct_map(vcpu, gpa, write, map_writable,
3339 level, gfn, pfn, prefault);
3340 spin_unlock(&vcpu->kvm->mmu_lock);
3341
3342 return r;
3343
3344 out_unlock:
3345 spin_unlock(&vcpu->kvm->mmu_lock);
3346 kvm_release_pfn_clean(pfn);
3347 return 0;
3348 }
3349
3350 static void nonpaging_free(struct kvm_vcpu *vcpu)
3351 {
3352 mmu_free_roots(vcpu);
3353 }
3354
3355 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3356 struct kvm_mmu *context)
3357 {
3358 context->new_cr3 = nonpaging_new_cr3;
3359 context->page_fault = nonpaging_page_fault;
3360 context->gva_to_gpa = nonpaging_gva_to_gpa;
3361 context->free = nonpaging_free;
3362 context->sync_page = nonpaging_sync_page;
3363 context->invlpg = nonpaging_invlpg;
3364 context->update_pte = nonpaging_update_pte;
3365 context->root_level = 0;
3366 context->shadow_root_level = PT32E_ROOT_LEVEL;
3367 context->root_hpa = INVALID_PAGE;
3368 context->direct_map = true;
3369 context->nx = false;
3370 return 0;
3371 }
3372
3373 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3374 {
3375 ++vcpu->stat.tlb_flush;
3376 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3377 }
3378
3379 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3380 {
3381 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3382 mmu_free_roots(vcpu);
3383 }
3384
3385 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3386 {
3387 return kvm_read_cr3(vcpu);
3388 }
3389
3390 static void inject_page_fault(struct kvm_vcpu *vcpu,
3391 struct x86_exception *fault)
3392 {
3393 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3394 }
3395
3396 static void paging_free(struct kvm_vcpu *vcpu)
3397 {
3398 nonpaging_free(vcpu);
3399 }
3400
3401 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3402 {
3403 unsigned mask;
3404
3405 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3406
3407 mask = (unsigned)~ACC_WRITE_MASK;
3408 /* Allow write access to dirty gptes */
3409 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3410 *access &= mask;
3411 }
3412
3413 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3414 int *nr_present)
3415 {
3416 if (unlikely(is_mmio_spte(*sptep))) {
3417 if (gfn != get_mmio_spte_gfn(*sptep)) {
3418 mmu_spte_clear_no_track(sptep);
3419 return true;
3420 }
3421
3422 (*nr_present)++;
3423 mark_mmio_spte(sptep, gfn, access);
3424 return true;
3425 }
3426
3427 return false;
3428 }
3429
3430 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3431 {
3432 unsigned access;
3433
3434 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3435 access &= ~(gpte >> PT64_NX_SHIFT);
3436
3437 return access;
3438 }
3439
3440 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3441 {
3442 unsigned index;
3443
3444 index = level - 1;
3445 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3446 return mmu->last_pte_bitmap & (1 << index);
3447 }
3448
3449 #define PTTYPE 64
3450 #include "paging_tmpl.h"
3451 #undef PTTYPE
3452
3453 #define PTTYPE 32
3454 #include "paging_tmpl.h"
3455 #undef PTTYPE
3456
3457 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3458 struct kvm_mmu *context)
3459 {
3460 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3461 u64 exb_bit_rsvd = 0;
3462
3463 if (!context->nx)
3464 exb_bit_rsvd = rsvd_bits(63, 63);
3465 switch (context->root_level) {
3466 case PT32_ROOT_LEVEL:
3467 /* no rsvd bits for 2 level 4K page table entries */
3468 context->rsvd_bits_mask[0][1] = 0;
3469 context->rsvd_bits_mask[0][0] = 0;
3470 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3471
3472 if (!is_pse(vcpu)) {
3473 context->rsvd_bits_mask[1][1] = 0;
3474 break;
3475 }
3476
3477 if (is_cpuid_PSE36())
3478 /* 36bits PSE 4MB page */
3479 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3480 else
3481 /* 32 bits PSE 4MB page */
3482 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3483 break;
3484 case PT32E_ROOT_LEVEL:
3485 context->rsvd_bits_mask[0][2] =
3486 rsvd_bits(maxphyaddr, 63) |
3487 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3488 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3489 rsvd_bits(maxphyaddr, 62); /* PDE */
3490 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3491 rsvd_bits(maxphyaddr, 62); /* PTE */
3492 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3493 rsvd_bits(maxphyaddr, 62) |
3494 rsvd_bits(13, 20); /* large page */
3495 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3496 break;
3497 case PT64_ROOT_LEVEL:
3498 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3499 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3500 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3501 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3502 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3503 rsvd_bits(maxphyaddr, 51);
3504 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3505 rsvd_bits(maxphyaddr, 51);
3506 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3507 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3508 rsvd_bits(maxphyaddr, 51) |
3509 rsvd_bits(13, 29);
3510 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3511 rsvd_bits(maxphyaddr, 51) |
3512 rsvd_bits(13, 20); /* large page */
3513 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3514 break;
3515 }
3516 }
3517
3518 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3519 {
3520 unsigned bit, byte, pfec;
3521 u8 map;
3522 bool fault, x, w, u, wf, uf, ff, smep;
3523
3524 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3525 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3526 pfec = byte << 1;
3527 map = 0;
3528 wf = pfec & PFERR_WRITE_MASK;
3529 uf = pfec & PFERR_USER_MASK;
3530 ff = pfec & PFERR_FETCH_MASK;
3531 for (bit = 0; bit < 8; ++bit) {
3532 x = bit & ACC_EXEC_MASK;
3533 w = bit & ACC_WRITE_MASK;
3534 u = bit & ACC_USER_MASK;
3535
3536 /* Not really needed: !nx will cause pte.nx to fault */
3537 x |= !mmu->nx;
3538 /* Allow supervisor writes if !cr0.wp */
3539 w |= !is_write_protection(vcpu) && !uf;
3540 /* Disallow supervisor fetches of user code if cr4.smep */
3541 x &= !(smep && u && !uf);
3542
3543 fault = (ff && !x) || (uf && !u) || (wf && !w);
3544 map |= fault << bit;
3545 }
3546 mmu->permissions[byte] = map;
3547 }
3548 }
3549
3550 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3551 {
3552 u8 map;
3553 unsigned level, root_level = mmu->root_level;
3554 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3555
3556 if (root_level == PT32E_ROOT_LEVEL)
3557 --root_level;
3558 /* PT_PAGE_TABLE_LEVEL always terminates */
3559 map = 1 | (1 << ps_set_index);
3560 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3561 if (level <= PT_PDPE_LEVEL
3562 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3563 map |= 1 << (ps_set_index | (level - 1));
3564 }
3565 mmu->last_pte_bitmap = map;
3566 }
3567
3568 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3569 struct kvm_mmu *context,
3570 int level)
3571 {
3572 context->nx = is_nx(vcpu);
3573 context->root_level = level;
3574
3575 reset_rsvds_bits_mask(vcpu, context);
3576 update_permission_bitmask(vcpu, context);
3577 update_last_pte_bitmap(vcpu, context);
3578
3579 ASSERT(is_pae(vcpu));
3580 context->new_cr3 = paging_new_cr3;
3581 context->page_fault = paging64_page_fault;
3582 context->gva_to_gpa = paging64_gva_to_gpa;
3583 context->sync_page = paging64_sync_page;
3584 context->invlpg = paging64_invlpg;
3585 context->update_pte = paging64_update_pte;
3586 context->free = paging_free;
3587 context->shadow_root_level = level;
3588 context->root_hpa = INVALID_PAGE;
3589 context->direct_map = false;
3590 return 0;
3591 }
3592
3593 static int paging64_init_context(struct kvm_vcpu *vcpu,
3594 struct kvm_mmu *context)
3595 {
3596 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3597 }
3598
3599 static int paging32_init_context(struct kvm_vcpu *vcpu,
3600 struct kvm_mmu *context)
3601 {
3602 context->nx = false;
3603 context->root_level = PT32_ROOT_LEVEL;
3604
3605 reset_rsvds_bits_mask(vcpu, context);
3606 update_permission_bitmask(vcpu, context);
3607 update_last_pte_bitmap(vcpu, context);
3608
3609 context->new_cr3 = paging_new_cr3;
3610 context->page_fault = paging32_page_fault;
3611 context->gva_to_gpa = paging32_gva_to_gpa;
3612 context->free = paging_free;
3613 context->sync_page = paging32_sync_page;
3614 context->invlpg = paging32_invlpg;
3615 context->update_pte = paging32_update_pte;
3616 context->shadow_root_level = PT32E_ROOT_LEVEL;
3617 context->root_hpa = INVALID_PAGE;
3618 context->direct_map = false;
3619 return 0;
3620 }
3621
3622 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3623 struct kvm_mmu *context)
3624 {
3625 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3626 }
3627
3628 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3629 {
3630 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3631
3632 context->base_role.word = 0;
3633 context->new_cr3 = nonpaging_new_cr3;
3634 context->page_fault = tdp_page_fault;
3635 context->free = nonpaging_free;
3636 context->sync_page = nonpaging_sync_page;
3637 context->invlpg = nonpaging_invlpg;
3638 context->update_pte = nonpaging_update_pte;
3639 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3640 context->root_hpa = INVALID_PAGE;
3641 context->direct_map = true;
3642 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3643 context->get_cr3 = get_cr3;
3644 context->get_pdptr = kvm_pdptr_read;
3645 context->inject_page_fault = kvm_inject_page_fault;
3646
3647 if (!is_paging(vcpu)) {
3648 context->nx = false;
3649 context->gva_to_gpa = nonpaging_gva_to_gpa;
3650 context->root_level = 0;
3651 } else if (is_long_mode(vcpu)) {
3652 context->nx = is_nx(vcpu);
3653 context->root_level = PT64_ROOT_LEVEL;
3654 reset_rsvds_bits_mask(vcpu, context);
3655 context->gva_to_gpa = paging64_gva_to_gpa;
3656 } else if (is_pae(vcpu)) {
3657 context->nx = is_nx(vcpu);
3658 context->root_level = PT32E_ROOT_LEVEL;
3659 reset_rsvds_bits_mask(vcpu, context);
3660 context->gva_to_gpa = paging64_gva_to_gpa;
3661 } else {
3662 context->nx = false;
3663 context->root_level = PT32_ROOT_LEVEL;
3664 reset_rsvds_bits_mask(vcpu, context);
3665 context->gva_to_gpa = paging32_gva_to_gpa;
3666 }
3667
3668 update_permission_bitmask(vcpu, context);
3669 update_last_pte_bitmap(vcpu, context);
3670
3671 return 0;
3672 }
3673
3674 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3675 {
3676 int r;
3677 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3678 ASSERT(vcpu);
3679 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3680
3681 if (!is_paging(vcpu))
3682 r = nonpaging_init_context(vcpu, context);
3683 else if (is_long_mode(vcpu))
3684 r = paging64_init_context(vcpu, context);
3685 else if (is_pae(vcpu))
3686 r = paging32E_init_context(vcpu, context);
3687 else
3688 r = paging32_init_context(vcpu, context);
3689
3690 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3691 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3692 vcpu->arch.mmu.base_role.smep_andnot_wp
3693 = smep && !is_write_protection(vcpu);
3694
3695 return r;
3696 }
3697 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3698
3699 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3700 {
3701 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3702
3703 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3704 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3705 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3706 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3707
3708 return r;
3709 }
3710
3711 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3712 {
3713 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3714
3715 g_context->get_cr3 = get_cr3;
3716 g_context->get_pdptr = kvm_pdptr_read;
3717 g_context->inject_page_fault = kvm_inject_page_fault;
3718
3719 /*
3720 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3721 * translation of l2_gpa to l1_gpa addresses is done using the
3722 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3723 * functions between mmu and nested_mmu are swapped.
3724 */
3725 if (!is_paging(vcpu)) {
3726 g_context->nx = false;
3727 g_context->root_level = 0;
3728 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3729 } else if (is_long_mode(vcpu)) {
3730 g_context->nx = is_nx(vcpu);
3731 g_context->root_level = PT64_ROOT_LEVEL;
3732 reset_rsvds_bits_mask(vcpu, g_context);
3733 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3734 } else if (is_pae(vcpu)) {
3735 g_context->nx = is_nx(vcpu);
3736 g_context->root_level = PT32E_ROOT_LEVEL;
3737 reset_rsvds_bits_mask(vcpu, g_context);
3738 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3739 } else {
3740 g_context->nx = false;
3741 g_context->root_level = PT32_ROOT_LEVEL;
3742 reset_rsvds_bits_mask(vcpu, g_context);
3743 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3744 }
3745
3746 update_permission_bitmask(vcpu, g_context);
3747 update_last_pte_bitmap(vcpu, g_context);
3748
3749 return 0;
3750 }
3751
3752 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3753 {
3754 if (mmu_is_nested(vcpu))
3755 return init_kvm_nested_mmu(vcpu);
3756 else if (tdp_enabled)
3757 return init_kvm_tdp_mmu(vcpu);
3758 else
3759 return init_kvm_softmmu(vcpu);
3760 }
3761
3762 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3763 {
3764 ASSERT(vcpu);
3765 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3766 /* mmu.free() should set root_hpa = INVALID_PAGE */
3767 vcpu->arch.mmu.free(vcpu);
3768 }
3769
3770 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3771 {
3772 destroy_kvm_mmu(vcpu);
3773 return init_kvm_mmu(vcpu);
3774 }
3775 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3776
3777 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3778 {
3779 int r;
3780
3781 r = mmu_topup_memory_caches(vcpu);
3782 if (r)
3783 goto out;
3784 r = mmu_alloc_roots(vcpu);
3785 spin_lock(&vcpu->kvm->mmu_lock);
3786 mmu_sync_roots(vcpu);
3787 spin_unlock(&vcpu->kvm->mmu_lock);
3788 if (r)
3789 goto out;
3790 /* set_cr3() should ensure TLB has been flushed */
3791 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3792 out:
3793 return r;
3794 }
3795 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3796
3797 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3798 {
3799 mmu_free_roots(vcpu);
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3802
3803 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3804 struct kvm_mmu_page *sp, u64 *spte,
3805 const void *new)
3806 {
3807 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3808 ++vcpu->kvm->stat.mmu_pde_zapped;
3809 return;
3810 }
3811
3812 ++vcpu->kvm->stat.mmu_pte_updated;
3813 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3814 }
3815
3816 static bool need_remote_flush(u64 old, u64 new)
3817 {
3818 if (!is_shadow_present_pte(old))
3819 return false;
3820 if (!is_shadow_present_pte(new))
3821 return true;
3822 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3823 return true;
3824 old ^= PT64_NX_MASK;
3825 new ^= PT64_NX_MASK;
3826 return (old & ~new & PT64_PERM_MASK) != 0;
3827 }
3828
3829 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3830 bool remote_flush, bool local_flush)
3831 {
3832 if (zap_page)
3833 return;
3834
3835 if (remote_flush)
3836 kvm_flush_remote_tlbs(vcpu->kvm);
3837 else if (local_flush)
3838 kvm_mmu_flush_tlb(vcpu);
3839 }
3840
3841 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3842 const u8 *new, int *bytes)
3843 {
3844 u64 gentry;
3845 int r;
3846
3847 /*
3848 * Assume that the pte write on a page table of the same type
3849 * as the current vcpu paging mode since we update the sptes only
3850 * when they have the same mode.
3851 */
3852 if (is_pae(vcpu) && *bytes == 4) {
3853 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3854 *gpa &= ~(gpa_t)7;
3855 *bytes = 8;
3856 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3857 if (r)
3858 gentry = 0;
3859 new = (const u8 *)&gentry;
3860 }
3861
3862 switch (*bytes) {
3863 case 4:
3864 gentry = *(const u32 *)new;
3865 break;
3866 case 8:
3867 gentry = *(const u64 *)new;
3868 break;
3869 default:
3870 gentry = 0;
3871 break;
3872 }
3873
3874 return gentry;
3875 }
3876
3877 /*
3878 * If we're seeing too many writes to a page, it may no longer be a page table,
3879 * or we may be forking, in which case it is better to unmap the page.
3880 */
3881 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3882 {
3883 /*
3884 * Skip write-flooding detected for the sp whose level is 1, because
3885 * it can become unsync, then the guest page is not write-protected.
3886 */
3887 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3888 return false;
3889
3890 return ++sp->write_flooding_count >= 3;
3891 }
3892
3893 /*
3894 * Misaligned accesses are too much trouble to fix up; also, they usually
3895 * indicate a page is not used as a page table.
3896 */
3897 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3898 int bytes)
3899 {
3900 unsigned offset, pte_size, misaligned;
3901
3902 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3903 gpa, bytes, sp->role.word);
3904
3905 offset = offset_in_page(gpa);
3906 pte_size = sp->role.cr4_pae ? 8 : 4;
3907
3908 /*
3909 * Sometimes, the OS only writes the last one bytes to update status
3910 * bits, for example, in linux, andb instruction is used in clear_bit().
3911 */
3912 if (!(offset & (pte_size - 1)) && bytes == 1)
3913 return false;
3914
3915 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3916 misaligned |= bytes < 4;
3917
3918 return misaligned;
3919 }
3920
3921 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3922 {
3923 unsigned page_offset, quadrant;
3924 u64 *spte;
3925 int level;
3926
3927 page_offset = offset_in_page(gpa);
3928 level = sp->role.level;
3929 *nspte = 1;
3930 if (!sp->role.cr4_pae) {
3931 page_offset <<= 1; /* 32->64 */
3932 /*
3933 * A 32-bit pde maps 4MB while the shadow pdes map
3934 * only 2MB. So we need to double the offset again
3935 * and zap two pdes instead of one.
3936 */
3937 if (level == PT32_ROOT_LEVEL) {
3938 page_offset &= ~7; /* kill rounding error */
3939 page_offset <<= 1;
3940 *nspte = 2;
3941 }
3942 quadrant = page_offset >> PAGE_SHIFT;
3943 page_offset &= ~PAGE_MASK;
3944 if (quadrant != sp->role.quadrant)
3945 return NULL;
3946 }
3947
3948 spte = &sp->spt[page_offset / sizeof(*spte)];
3949 return spte;
3950 }
3951
3952 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3953 const u8 *new, int bytes)
3954 {
3955 gfn_t gfn = gpa >> PAGE_SHIFT;
3956 union kvm_mmu_page_role mask = { .word = 0 };
3957 struct kvm_mmu_page *sp;
3958 struct hlist_node *node;
3959 LIST_HEAD(invalid_list);
3960 u64 entry, gentry, *spte;
3961 int npte;
3962 bool remote_flush, local_flush, zap_page;
3963
3964 /*
3965 * If we don't have indirect shadow pages, it means no page is
3966 * write-protected, so we can exit simply.
3967 */
3968 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3969 return;
3970
3971 zap_page = remote_flush = local_flush = false;
3972
3973 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3974
3975 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3976
3977 /*
3978 * No need to care whether allocation memory is successful
3979 * or not since pte prefetch is skiped if it does not have
3980 * enough objects in the cache.
3981 */
3982 mmu_topup_memory_caches(vcpu);
3983
3984 spin_lock(&vcpu->kvm->mmu_lock);
3985 ++vcpu->kvm->stat.mmu_pte_write;
3986 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3987
3988 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3989 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3990 if (detect_write_misaligned(sp, gpa, bytes) ||
3991 detect_write_flooding(sp)) {
3992 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3993 &invalid_list);
3994 ++vcpu->kvm->stat.mmu_flooded;
3995 continue;
3996 }
3997
3998 spte = get_written_sptes(sp, gpa, &npte);
3999 if (!spte)
4000 continue;
4001
4002 local_flush = true;
4003 while (npte--) {
4004 entry = *spte;
4005 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4006 if (gentry &&
4007 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4008 & mask.word) && rmap_can_add(vcpu))
4009 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4010 if (!remote_flush && need_remote_flush(entry, *spte))
4011 remote_flush = true;
4012 ++spte;
4013 }
4014 }
4015 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4016 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4017 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4018 spin_unlock(&vcpu->kvm->mmu_lock);
4019 }
4020
4021 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4022 {
4023 gpa_t gpa;
4024 int r;
4025
4026 if (vcpu->arch.mmu.direct_map)
4027 return 0;
4028
4029 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4030
4031 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4032
4033 return r;
4034 }
4035 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4036
4037 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4038 {
4039 LIST_HEAD(invalid_list);
4040
4041 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4042 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4043 struct kvm_mmu_page *sp;
4044
4045 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4046 struct kvm_mmu_page, link);
4047 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4048 ++vcpu->kvm->stat.mmu_recycled;
4049 }
4050 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4051 }
4052
4053 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4054 {
4055 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4056 return vcpu_match_mmio_gpa(vcpu, addr);
4057
4058 return vcpu_match_mmio_gva(vcpu, addr);
4059 }
4060
4061 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4062 void *insn, int insn_len)
4063 {
4064 int r, emulation_type = EMULTYPE_RETRY;
4065 enum emulation_result er;
4066
4067 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4068 if (r < 0)
4069 goto out;
4070
4071 if (!r) {
4072 r = 1;
4073 goto out;
4074 }
4075
4076 if (is_mmio_page_fault(vcpu, cr2))
4077 emulation_type = 0;
4078
4079 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4080
4081 switch (er) {
4082 case EMULATE_DONE:
4083 return 1;
4084 case EMULATE_DO_MMIO:
4085 ++vcpu->stat.mmio_exits;
4086 /* fall through */
4087 case EMULATE_FAIL:
4088 return 0;
4089 default:
4090 BUG();
4091 }
4092 out:
4093 return r;
4094 }
4095 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4096
4097 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4098 {
4099 vcpu->arch.mmu.invlpg(vcpu, gva);
4100 kvm_mmu_flush_tlb(vcpu);
4101 ++vcpu->stat.invlpg;
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4104
4105 void kvm_enable_tdp(void)
4106 {
4107 tdp_enabled = true;
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4110
4111 void kvm_disable_tdp(void)
4112 {
4113 tdp_enabled = false;
4114 }
4115 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4116
4117 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4118 {
4119 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4120 if (vcpu->arch.mmu.lm_root != NULL)
4121 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4122 }
4123
4124 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4125 {
4126 struct page *page;
4127 int i;
4128
4129 ASSERT(vcpu);
4130
4131 /*
4132 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4133 * Therefore we need to allocate shadow page tables in the first
4134 * 4GB of memory, which happens to fit the DMA32 zone.
4135 */
4136 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4137 if (!page)
4138 return -ENOMEM;
4139
4140 vcpu->arch.mmu.pae_root = page_address(page);
4141 for (i = 0; i < 4; ++i)
4142 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4143
4144 return 0;
4145 }
4146
4147 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4148 {
4149 ASSERT(vcpu);
4150
4151 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4152 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4153 vcpu->arch.mmu.translate_gpa = translate_gpa;
4154 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4155
4156 return alloc_mmu_pages(vcpu);
4157 }
4158
4159 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4160 {
4161 ASSERT(vcpu);
4162 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4163
4164 return init_kvm_mmu(vcpu);
4165 }
4166
4167 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4168 {
4169 struct kvm_memory_slot *memslot;
4170 gfn_t last_gfn;
4171 int i;
4172
4173 memslot = id_to_memslot(kvm->memslots, slot);
4174 last_gfn = memslot->base_gfn + memslot->npages - 1;
4175
4176 spin_lock(&kvm->mmu_lock);
4177
4178 for (i = PT_PAGE_TABLE_LEVEL;
4179 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4180 unsigned long *rmapp;
4181 unsigned long last_index, index;
4182
4183 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4184 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4185
4186 for (index = 0; index <= last_index; ++index, ++rmapp) {
4187 if (*rmapp)
4188 __rmap_write_protect(kvm, rmapp, false);
4189
4190 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4191 kvm_flush_remote_tlbs(kvm);
4192 cond_resched_lock(&kvm->mmu_lock);
4193 }
4194 }
4195 }
4196
4197 kvm_flush_remote_tlbs(kvm);
4198 spin_unlock(&kvm->mmu_lock);
4199 }
4200
4201 void kvm_mmu_zap_all(struct kvm *kvm)
4202 {
4203 struct kvm_mmu_page *sp, *node;
4204 LIST_HEAD(invalid_list);
4205
4206 spin_lock(&kvm->mmu_lock);
4207 restart:
4208 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4209 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4210 goto restart;
4211
4212 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4213 spin_unlock(&kvm->mmu_lock);
4214 }
4215
4216 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4217 struct list_head *invalid_list)
4218 {
4219 struct kvm_mmu_page *page;
4220
4221 if (list_empty(&kvm->arch.active_mmu_pages))
4222 return;
4223
4224 page = container_of(kvm->arch.active_mmu_pages.prev,
4225 struct kvm_mmu_page, link);
4226 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4227 }
4228
4229 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4230 {
4231 struct kvm *kvm;
4232 int nr_to_scan = sc->nr_to_scan;
4233
4234 if (nr_to_scan == 0)
4235 goto out;
4236
4237 raw_spin_lock(&kvm_lock);
4238
4239 list_for_each_entry(kvm, &vm_list, vm_list) {
4240 int idx;
4241 LIST_HEAD(invalid_list);
4242
4243 /*
4244 * Never scan more than sc->nr_to_scan VM instances.
4245 * Will not hit this condition practically since we do not try
4246 * to shrink more than one VM and it is very unlikely to see
4247 * !n_used_mmu_pages so many times.
4248 */
4249 if (!nr_to_scan--)
4250 break;
4251 /*
4252 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4253 * here. We may skip a VM instance errorneosly, but we do not
4254 * want to shrink a VM that only started to populate its MMU
4255 * anyway.
4256 */
4257 if (!kvm->arch.n_used_mmu_pages)
4258 continue;
4259
4260 idx = srcu_read_lock(&kvm->srcu);
4261 spin_lock(&kvm->mmu_lock);
4262
4263 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4264 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4265
4266 spin_unlock(&kvm->mmu_lock);
4267 srcu_read_unlock(&kvm->srcu, idx);
4268
4269 list_move_tail(&kvm->vm_list, &vm_list);
4270 break;
4271 }
4272
4273 raw_spin_unlock(&kvm_lock);
4274
4275 out:
4276 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4277 }
4278
4279 static struct shrinker mmu_shrinker = {
4280 .shrink = mmu_shrink,
4281 .seeks = DEFAULT_SEEKS * 10,
4282 };
4283
4284 static void mmu_destroy_caches(void)
4285 {
4286 if (pte_list_desc_cache)
4287 kmem_cache_destroy(pte_list_desc_cache);
4288 if (mmu_page_header_cache)
4289 kmem_cache_destroy(mmu_page_header_cache);
4290 }
4291
4292 int kvm_mmu_module_init(void)
4293 {
4294 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4295 sizeof(struct pte_list_desc),
4296 0, 0, NULL);
4297 if (!pte_list_desc_cache)
4298 goto nomem;
4299
4300 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4301 sizeof(struct kvm_mmu_page),
4302 0, 0, NULL);
4303 if (!mmu_page_header_cache)
4304 goto nomem;
4305
4306 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4307 goto nomem;
4308
4309 register_shrinker(&mmu_shrinker);
4310
4311 return 0;
4312
4313 nomem:
4314 mmu_destroy_caches();
4315 return -ENOMEM;
4316 }
4317
4318 /*
4319 * Caculate mmu pages needed for kvm.
4320 */
4321 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4322 {
4323 unsigned int nr_mmu_pages;
4324 unsigned int nr_pages = 0;
4325 struct kvm_memslots *slots;
4326 struct kvm_memory_slot *memslot;
4327
4328 slots = kvm_memslots(kvm);
4329
4330 kvm_for_each_memslot(memslot, slots)
4331 nr_pages += memslot->npages;
4332
4333 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4334 nr_mmu_pages = max(nr_mmu_pages,
4335 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4336
4337 return nr_mmu_pages;
4338 }
4339
4340 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4341 {
4342 struct kvm_shadow_walk_iterator iterator;
4343 u64 spte;
4344 int nr_sptes = 0;
4345
4346 walk_shadow_page_lockless_begin(vcpu);
4347 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4348 sptes[iterator.level-1] = spte;
4349 nr_sptes++;
4350 if (!is_shadow_present_pte(spte))
4351 break;
4352 }
4353 walk_shadow_page_lockless_end(vcpu);
4354
4355 return nr_sptes;
4356 }
4357 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4358
4359 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4360 {
4361 ASSERT(vcpu);
4362
4363 destroy_kvm_mmu(vcpu);
4364 free_mmu_pages(vcpu);
4365 mmu_free_memory_caches(vcpu);
4366 }
4367
4368 void kvm_mmu_module_exit(void)
4369 {
4370 mmu_destroy_caches();
4371 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4372 unregister_shrinker(&mmu_shrinker);
4373 mmu_audit_disable();
4374 }