]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/mmu.c
Merge tag 'char-misc-4.15-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 /*
52 * When setting this variable to true it enables Two-Dimensional-Paging
53 * where the hardware walks 2 page tables:
54 * 1. the guest-virtual to guest-physical
55 * 2. while doing 1. it walks guest-physical to host-physical
56 * If the hardware supports that we don't need to do shadow paging.
57 */
58 bool tdp_enabled = false;
59
60 enum {
61 AUDIT_PRE_PAGE_FAULT,
62 AUDIT_POST_PAGE_FAULT,
63 AUDIT_PRE_PTE_WRITE,
64 AUDIT_POST_PTE_WRITE,
65 AUDIT_PRE_SYNC,
66 AUDIT_POST_SYNC
67 };
68
69 #undef MMU_DEBUG
70
71 #ifdef MMU_DEBUG
72 static bool dbg = 0;
73 module_param(dbg, bool, 0644);
74
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77 #define MMU_WARN_ON(x) WARN_ON(x)
78 #else
79 #define pgprintk(x...) do { } while (0)
80 #define rmap_printk(x...) do { } while (0)
81 #define MMU_WARN_ON(x) do { } while (0)
82 #endif
83
84 #define PTE_PREFETCH_NUM 8
85
86 #define PT_FIRST_AVAIL_BITS_SHIFT 10
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
88
89 #define PT64_LEVEL_BITS 9
90
91 #define PT64_LEVEL_SHIFT(level) \
92 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
93
94 #define PT64_INDEX(address, level)\
95 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
96
97
98 #define PT32_LEVEL_BITS 10
99
100 #define PT32_LEVEL_SHIFT(level) \
101 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
102
103 #define PT32_LVL_OFFSET_MASK(level) \
104 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
105 * PT32_LEVEL_BITS))) - 1))
106
107 #define PT32_INDEX(address, level)\
108 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
112 #define PT64_DIR_BASE_ADDR_MASK \
113 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114 #define PT64_LVL_ADDR_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
117 #define PT64_LVL_OFFSET_MASK(level) \
118 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
119 * PT64_LEVEL_BITS))) - 1))
120
121 #define PT32_BASE_ADDR_MASK PAGE_MASK
122 #define PT32_DIR_BASE_ADDR_MASK \
123 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
124 #define PT32_LVL_ADDR_MASK(level) \
125 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
127
128 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
129 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
130
131 #define ACC_EXEC_MASK 1
132 #define ACC_WRITE_MASK PT_WRITABLE_MASK
133 #define ACC_USER_MASK PT_USER_MASK
134 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
135
136 /* The mask for the R/X bits in EPT PTEs */
137 #define PT64_EPT_READABLE_MASK 0x1ull
138 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
139
140 #include <trace/events/kvm.h>
141
142 #define CREATE_TRACE_POINTS
143 #include "mmutrace.h"
144
145 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
146 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
147
148 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
149
150 /* make pte_list_desc fit well in cache line */
151 #define PTE_LIST_EXT 3
152
153 /*
154 * Return values of handle_mmio_page_fault and mmu.page_fault:
155 * RET_PF_RETRY: let CPU fault again on the address.
156 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
157 *
158 * For handle_mmio_page_fault only:
159 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
160 */
161 enum {
162 RET_PF_RETRY = 0,
163 RET_PF_EMULATE = 1,
164 RET_PF_INVALID = 2,
165 };
166
167 struct pte_list_desc {
168 u64 *sptes[PTE_LIST_EXT];
169 struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173 u64 addr;
174 hpa_t shadow_addr;
175 u64 *sptep;
176 int level;
177 unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
181 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
182 shadow_walk_okay(&(_walker)); \
183 shadow_walk_next(&(_walker)))
184
185 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
186 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
187 shadow_walk_okay(&(_walker)) && \
188 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
189 __shadow_walk_next(&(_walker), spte))
190
191 static struct kmem_cache *pte_list_desc_cache;
192 static struct kmem_cache *mmu_page_header_cache;
193 static struct percpu_counter kvm_total_used_mmu_pages;
194
195 static u64 __read_mostly shadow_nx_mask;
196 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
197 static u64 __read_mostly shadow_user_mask;
198 static u64 __read_mostly shadow_accessed_mask;
199 static u64 __read_mostly shadow_dirty_mask;
200 static u64 __read_mostly shadow_mmio_mask;
201 static u64 __read_mostly shadow_mmio_value;
202 static u64 __read_mostly shadow_present_mask;
203 static u64 __read_mostly shadow_me_mask;
204
205 /*
206 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
207 * Non-present SPTEs with shadow_acc_track_value set are in place for access
208 * tracking.
209 */
210 static u64 __read_mostly shadow_acc_track_mask;
211 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
212
213 /*
214 * The mask/shift to use for saving the original R/X bits when marking the PTE
215 * as not-present for access tracking purposes. We do not save the W bit as the
216 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
217 * restored only when a write is attempted to the page.
218 */
219 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
220 PT64_EPT_EXECUTABLE_MASK;
221 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
222
223 static void mmu_spte_set(u64 *sptep, u64 spte);
224 static void mmu_free_roots(struct kvm_vcpu *vcpu);
225
226 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
227 {
228 BUG_ON((mmio_mask & mmio_value) != mmio_value);
229 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
230 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
231 }
232 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
233
234 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
235 {
236 return sp->role.ad_disabled;
237 }
238
239 static inline bool spte_ad_enabled(u64 spte)
240 {
241 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
242 return !(spte & shadow_acc_track_value);
243 }
244
245 static inline u64 spte_shadow_accessed_mask(u64 spte)
246 {
247 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
248 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
249 }
250
251 static inline u64 spte_shadow_dirty_mask(u64 spte)
252 {
253 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
254 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
255 }
256
257 static inline bool is_access_track_spte(u64 spte)
258 {
259 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
260 }
261
262 /*
263 * the low bit of the generation number is always presumed to be zero.
264 * This disables mmio caching during memslot updates. The concept is
265 * similar to a seqcount but instead of retrying the access we just punt
266 * and ignore the cache.
267 *
268 * spte bits 3-11 are used as bits 1-9 of the generation number,
269 * the bits 52-61 are used as bits 10-19 of the generation number.
270 */
271 #define MMIO_SPTE_GEN_LOW_SHIFT 2
272 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
273
274 #define MMIO_GEN_SHIFT 20
275 #define MMIO_GEN_LOW_SHIFT 10
276 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
277 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
278
279 static u64 generation_mmio_spte_mask(unsigned int gen)
280 {
281 u64 mask;
282
283 WARN_ON(gen & ~MMIO_GEN_MASK);
284
285 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
286 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
287 return mask;
288 }
289
290 static unsigned int get_mmio_spte_generation(u64 spte)
291 {
292 unsigned int gen;
293
294 spte &= ~shadow_mmio_mask;
295
296 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
297 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
298 return gen;
299 }
300
301 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
302 {
303 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
304 }
305
306 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
307 unsigned access)
308 {
309 unsigned int gen = kvm_current_mmio_generation(vcpu);
310 u64 mask = generation_mmio_spte_mask(gen);
311
312 access &= ACC_WRITE_MASK | ACC_USER_MASK;
313 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
314
315 trace_mark_mmio_spte(sptep, gfn, access, gen);
316 mmu_spte_set(sptep, mask);
317 }
318
319 static bool is_mmio_spte(u64 spte)
320 {
321 return (spte & shadow_mmio_mask) == shadow_mmio_value;
322 }
323
324 static gfn_t get_mmio_spte_gfn(u64 spte)
325 {
326 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
327 return (spte & ~mask) >> PAGE_SHIFT;
328 }
329
330 static unsigned get_mmio_spte_access(u64 spte)
331 {
332 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
333 return (spte & ~mask) & ~PAGE_MASK;
334 }
335
336 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
337 kvm_pfn_t pfn, unsigned access)
338 {
339 if (unlikely(is_noslot_pfn(pfn))) {
340 mark_mmio_spte(vcpu, sptep, gfn, access);
341 return true;
342 }
343
344 return false;
345 }
346
347 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
348 {
349 unsigned int kvm_gen, spte_gen;
350
351 kvm_gen = kvm_current_mmio_generation(vcpu);
352 spte_gen = get_mmio_spte_generation(spte);
353
354 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
355 return likely(kvm_gen == spte_gen);
356 }
357
358 /*
359 * Sets the shadow PTE masks used by the MMU.
360 *
361 * Assumptions:
362 * - Setting either @accessed_mask or @dirty_mask requires setting both
363 * - At least one of @accessed_mask or @acc_track_mask must be set
364 */
365 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
366 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
367 u64 acc_track_mask, u64 me_mask)
368 {
369 BUG_ON(!dirty_mask != !accessed_mask);
370 BUG_ON(!accessed_mask && !acc_track_mask);
371 BUG_ON(acc_track_mask & shadow_acc_track_value);
372
373 shadow_user_mask = user_mask;
374 shadow_accessed_mask = accessed_mask;
375 shadow_dirty_mask = dirty_mask;
376 shadow_nx_mask = nx_mask;
377 shadow_x_mask = x_mask;
378 shadow_present_mask = p_mask;
379 shadow_acc_track_mask = acc_track_mask;
380 shadow_me_mask = me_mask;
381 }
382 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
383
384 void kvm_mmu_clear_all_pte_masks(void)
385 {
386 shadow_user_mask = 0;
387 shadow_accessed_mask = 0;
388 shadow_dirty_mask = 0;
389 shadow_nx_mask = 0;
390 shadow_x_mask = 0;
391 shadow_mmio_mask = 0;
392 shadow_present_mask = 0;
393 shadow_acc_track_mask = 0;
394 }
395
396 static int is_cpuid_PSE36(void)
397 {
398 return 1;
399 }
400
401 static int is_nx(struct kvm_vcpu *vcpu)
402 {
403 return vcpu->arch.efer & EFER_NX;
404 }
405
406 static int is_shadow_present_pte(u64 pte)
407 {
408 return (pte != 0) && !is_mmio_spte(pte);
409 }
410
411 static int is_large_pte(u64 pte)
412 {
413 return pte & PT_PAGE_SIZE_MASK;
414 }
415
416 static int is_last_spte(u64 pte, int level)
417 {
418 if (level == PT_PAGE_TABLE_LEVEL)
419 return 1;
420 if (is_large_pte(pte))
421 return 1;
422 return 0;
423 }
424
425 static bool is_executable_pte(u64 spte)
426 {
427 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
428 }
429
430 static kvm_pfn_t spte_to_pfn(u64 pte)
431 {
432 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
433 }
434
435 static gfn_t pse36_gfn_delta(u32 gpte)
436 {
437 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
438
439 return (gpte & PT32_DIR_PSE36_MASK) << shift;
440 }
441
442 #ifdef CONFIG_X86_64
443 static void __set_spte(u64 *sptep, u64 spte)
444 {
445 WRITE_ONCE(*sptep, spte);
446 }
447
448 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
449 {
450 WRITE_ONCE(*sptep, spte);
451 }
452
453 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
454 {
455 return xchg(sptep, spte);
456 }
457
458 static u64 __get_spte_lockless(u64 *sptep)
459 {
460 return READ_ONCE(*sptep);
461 }
462 #else
463 union split_spte {
464 struct {
465 u32 spte_low;
466 u32 spte_high;
467 };
468 u64 spte;
469 };
470
471 static void count_spte_clear(u64 *sptep, u64 spte)
472 {
473 struct kvm_mmu_page *sp = page_header(__pa(sptep));
474
475 if (is_shadow_present_pte(spte))
476 return;
477
478 /* Ensure the spte is completely set before we increase the count */
479 smp_wmb();
480 sp->clear_spte_count++;
481 }
482
483 static void __set_spte(u64 *sptep, u64 spte)
484 {
485 union split_spte *ssptep, sspte;
486
487 ssptep = (union split_spte *)sptep;
488 sspte = (union split_spte)spte;
489
490 ssptep->spte_high = sspte.spte_high;
491
492 /*
493 * If we map the spte from nonpresent to present, We should store
494 * the high bits firstly, then set present bit, so cpu can not
495 * fetch this spte while we are setting the spte.
496 */
497 smp_wmb();
498
499 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
500 }
501
502 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
503 {
504 union split_spte *ssptep, sspte;
505
506 ssptep = (union split_spte *)sptep;
507 sspte = (union split_spte)spte;
508
509 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
510
511 /*
512 * If we map the spte from present to nonpresent, we should clear
513 * present bit firstly to avoid vcpu fetch the old high bits.
514 */
515 smp_wmb();
516
517 ssptep->spte_high = sspte.spte_high;
518 count_spte_clear(sptep, spte);
519 }
520
521 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
522 {
523 union split_spte *ssptep, sspte, orig;
524
525 ssptep = (union split_spte *)sptep;
526 sspte = (union split_spte)spte;
527
528 /* xchg acts as a barrier before the setting of the high bits */
529 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
530 orig.spte_high = ssptep->spte_high;
531 ssptep->spte_high = sspte.spte_high;
532 count_spte_clear(sptep, spte);
533
534 return orig.spte;
535 }
536
537 /*
538 * The idea using the light way get the spte on x86_32 guest is from
539 * gup_get_pte(arch/x86/mm/gup.c).
540 *
541 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
542 * coalesces them and we are running out of the MMU lock. Therefore
543 * we need to protect against in-progress updates of the spte.
544 *
545 * Reading the spte while an update is in progress may get the old value
546 * for the high part of the spte. The race is fine for a present->non-present
547 * change (because the high part of the spte is ignored for non-present spte),
548 * but for a present->present change we must reread the spte.
549 *
550 * All such changes are done in two steps (present->non-present and
551 * non-present->present), hence it is enough to count the number of
552 * present->non-present updates: if it changed while reading the spte,
553 * we might have hit the race. This is done using clear_spte_count.
554 */
555 static u64 __get_spte_lockless(u64 *sptep)
556 {
557 struct kvm_mmu_page *sp = page_header(__pa(sptep));
558 union split_spte spte, *orig = (union split_spte *)sptep;
559 int count;
560
561 retry:
562 count = sp->clear_spte_count;
563 smp_rmb();
564
565 spte.spte_low = orig->spte_low;
566 smp_rmb();
567
568 spte.spte_high = orig->spte_high;
569 smp_rmb();
570
571 if (unlikely(spte.spte_low != orig->spte_low ||
572 count != sp->clear_spte_count))
573 goto retry;
574
575 return spte.spte;
576 }
577 #endif
578
579 static bool spte_can_locklessly_be_made_writable(u64 spte)
580 {
581 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
582 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
583 }
584
585 static bool spte_has_volatile_bits(u64 spte)
586 {
587 if (!is_shadow_present_pte(spte))
588 return false;
589
590 /*
591 * Always atomically update spte if it can be updated
592 * out of mmu-lock, it can ensure dirty bit is not lost,
593 * also, it can help us to get a stable is_writable_pte()
594 * to ensure tlb flush is not missed.
595 */
596 if (spte_can_locklessly_be_made_writable(spte) ||
597 is_access_track_spte(spte))
598 return true;
599
600 if (spte_ad_enabled(spte)) {
601 if ((spte & shadow_accessed_mask) == 0 ||
602 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
603 return true;
604 }
605
606 return false;
607 }
608
609 static bool is_accessed_spte(u64 spte)
610 {
611 u64 accessed_mask = spte_shadow_accessed_mask(spte);
612
613 return accessed_mask ? spte & accessed_mask
614 : !is_access_track_spte(spte);
615 }
616
617 static bool is_dirty_spte(u64 spte)
618 {
619 u64 dirty_mask = spte_shadow_dirty_mask(spte);
620
621 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
622 }
623
624 /* Rules for using mmu_spte_set:
625 * Set the sptep from nonpresent to present.
626 * Note: the sptep being assigned *must* be either not present
627 * or in a state where the hardware will not attempt to update
628 * the spte.
629 */
630 static void mmu_spte_set(u64 *sptep, u64 new_spte)
631 {
632 WARN_ON(is_shadow_present_pte(*sptep));
633 __set_spte(sptep, new_spte);
634 }
635
636 /*
637 * Update the SPTE (excluding the PFN), but do not track changes in its
638 * accessed/dirty status.
639 */
640 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
641 {
642 u64 old_spte = *sptep;
643
644 WARN_ON(!is_shadow_present_pte(new_spte));
645
646 if (!is_shadow_present_pte(old_spte)) {
647 mmu_spte_set(sptep, new_spte);
648 return old_spte;
649 }
650
651 if (!spte_has_volatile_bits(old_spte))
652 __update_clear_spte_fast(sptep, new_spte);
653 else
654 old_spte = __update_clear_spte_slow(sptep, new_spte);
655
656 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
657
658 return old_spte;
659 }
660
661 /* Rules for using mmu_spte_update:
662 * Update the state bits, it means the mapped pfn is not changed.
663 *
664 * Whenever we overwrite a writable spte with a read-only one we
665 * should flush remote TLBs. Otherwise rmap_write_protect
666 * will find a read-only spte, even though the writable spte
667 * might be cached on a CPU's TLB, the return value indicates this
668 * case.
669 *
670 * Returns true if the TLB needs to be flushed
671 */
672 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
673 {
674 bool flush = false;
675 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
676
677 if (!is_shadow_present_pte(old_spte))
678 return false;
679
680 /*
681 * For the spte updated out of mmu-lock is safe, since
682 * we always atomically update it, see the comments in
683 * spte_has_volatile_bits().
684 */
685 if (spte_can_locklessly_be_made_writable(old_spte) &&
686 !is_writable_pte(new_spte))
687 flush = true;
688
689 /*
690 * Flush TLB when accessed/dirty states are changed in the page tables,
691 * to guarantee consistency between TLB and page tables.
692 */
693
694 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
695 flush = true;
696 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
697 }
698
699 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
700 flush = true;
701 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
702 }
703
704 return flush;
705 }
706
707 /*
708 * Rules for using mmu_spte_clear_track_bits:
709 * It sets the sptep from present to nonpresent, and track the
710 * state bits, it is used to clear the last level sptep.
711 * Returns non-zero if the PTE was previously valid.
712 */
713 static int mmu_spte_clear_track_bits(u64 *sptep)
714 {
715 kvm_pfn_t pfn;
716 u64 old_spte = *sptep;
717
718 if (!spte_has_volatile_bits(old_spte))
719 __update_clear_spte_fast(sptep, 0ull);
720 else
721 old_spte = __update_clear_spte_slow(sptep, 0ull);
722
723 if (!is_shadow_present_pte(old_spte))
724 return 0;
725
726 pfn = spte_to_pfn(old_spte);
727
728 /*
729 * KVM does not hold the refcount of the page used by
730 * kvm mmu, before reclaiming the page, we should
731 * unmap it from mmu first.
732 */
733 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
734
735 if (is_accessed_spte(old_spte))
736 kvm_set_pfn_accessed(pfn);
737
738 if (is_dirty_spte(old_spte))
739 kvm_set_pfn_dirty(pfn);
740
741 return 1;
742 }
743
744 /*
745 * Rules for using mmu_spte_clear_no_track:
746 * Directly clear spte without caring the state bits of sptep,
747 * it is used to set the upper level spte.
748 */
749 static void mmu_spte_clear_no_track(u64 *sptep)
750 {
751 __update_clear_spte_fast(sptep, 0ull);
752 }
753
754 static u64 mmu_spte_get_lockless(u64 *sptep)
755 {
756 return __get_spte_lockless(sptep);
757 }
758
759 static u64 mark_spte_for_access_track(u64 spte)
760 {
761 if (spte_ad_enabled(spte))
762 return spte & ~shadow_accessed_mask;
763
764 if (is_access_track_spte(spte))
765 return spte;
766
767 /*
768 * Making an Access Tracking PTE will result in removal of write access
769 * from the PTE. So, verify that we will be able to restore the write
770 * access in the fast page fault path later on.
771 */
772 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
773 !spte_can_locklessly_be_made_writable(spte),
774 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
775
776 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
777 shadow_acc_track_saved_bits_shift),
778 "kvm: Access Tracking saved bit locations are not zero\n");
779
780 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
781 shadow_acc_track_saved_bits_shift;
782 spte &= ~shadow_acc_track_mask;
783
784 return spte;
785 }
786
787 /* Restore an acc-track PTE back to a regular PTE */
788 static u64 restore_acc_track_spte(u64 spte)
789 {
790 u64 new_spte = spte;
791 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
792 & shadow_acc_track_saved_bits_mask;
793
794 WARN_ON_ONCE(spte_ad_enabled(spte));
795 WARN_ON_ONCE(!is_access_track_spte(spte));
796
797 new_spte &= ~shadow_acc_track_mask;
798 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
799 shadow_acc_track_saved_bits_shift);
800 new_spte |= saved_bits;
801
802 return new_spte;
803 }
804
805 /* Returns the Accessed status of the PTE and resets it at the same time. */
806 static bool mmu_spte_age(u64 *sptep)
807 {
808 u64 spte = mmu_spte_get_lockless(sptep);
809
810 if (!is_accessed_spte(spte))
811 return false;
812
813 if (spte_ad_enabled(spte)) {
814 clear_bit((ffs(shadow_accessed_mask) - 1),
815 (unsigned long *)sptep);
816 } else {
817 /*
818 * Capture the dirty status of the page, so that it doesn't get
819 * lost when the SPTE is marked for access tracking.
820 */
821 if (is_writable_pte(spte))
822 kvm_set_pfn_dirty(spte_to_pfn(spte));
823
824 spte = mark_spte_for_access_track(spte);
825 mmu_spte_update_no_track(sptep, spte);
826 }
827
828 return true;
829 }
830
831 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
832 {
833 /*
834 * Prevent page table teardown by making any free-er wait during
835 * kvm_flush_remote_tlbs() IPI to all active vcpus.
836 */
837 local_irq_disable();
838
839 /*
840 * Make sure a following spte read is not reordered ahead of the write
841 * to vcpu->mode.
842 */
843 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
844 }
845
846 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
847 {
848 /*
849 * Make sure the write to vcpu->mode is not reordered in front of
850 * reads to sptes. If it does, kvm_commit_zap_page() can see us
851 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
852 */
853 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
854 local_irq_enable();
855 }
856
857 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
858 struct kmem_cache *base_cache, int min)
859 {
860 void *obj;
861
862 if (cache->nobjs >= min)
863 return 0;
864 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
865 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
866 if (!obj)
867 return -ENOMEM;
868 cache->objects[cache->nobjs++] = obj;
869 }
870 return 0;
871 }
872
873 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
874 {
875 return cache->nobjs;
876 }
877
878 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
879 struct kmem_cache *cache)
880 {
881 while (mc->nobjs)
882 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
883 }
884
885 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
886 int min)
887 {
888 void *page;
889
890 if (cache->nobjs >= min)
891 return 0;
892 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
893 page = (void *)__get_free_page(GFP_KERNEL);
894 if (!page)
895 return -ENOMEM;
896 cache->objects[cache->nobjs++] = page;
897 }
898 return 0;
899 }
900
901 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
902 {
903 while (mc->nobjs)
904 free_page((unsigned long)mc->objects[--mc->nobjs]);
905 }
906
907 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
908 {
909 int r;
910
911 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
912 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
913 if (r)
914 goto out;
915 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
916 if (r)
917 goto out;
918 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
919 mmu_page_header_cache, 4);
920 out:
921 return r;
922 }
923
924 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
925 {
926 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
927 pte_list_desc_cache);
928 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
929 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
930 mmu_page_header_cache);
931 }
932
933 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
934 {
935 void *p;
936
937 BUG_ON(!mc->nobjs);
938 p = mc->objects[--mc->nobjs];
939 return p;
940 }
941
942 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
943 {
944 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
945 }
946
947 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
948 {
949 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
950 }
951
952 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
953 {
954 if (!sp->role.direct)
955 return sp->gfns[index];
956
957 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
958 }
959
960 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
961 {
962 if (sp->role.direct)
963 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
964 else
965 sp->gfns[index] = gfn;
966 }
967
968 /*
969 * Return the pointer to the large page information for a given gfn,
970 * handling slots that are not large page aligned.
971 */
972 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
973 struct kvm_memory_slot *slot,
974 int level)
975 {
976 unsigned long idx;
977
978 idx = gfn_to_index(gfn, slot->base_gfn, level);
979 return &slot->arch.lpage_info[level - 2][idx];
980 }
981
982 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
983 gfn_t gfn, int count)
984 {
985 struct kvm_lpage_info *linfo;
986 int i;
987
988 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
989 linfo = lpage_info_slot(gfn, slot, i);
990 linfo->disallow_lpage += count;
991 WARN_ON(linfo->disallow_lpage < 0);
992 }
993 }
994
995 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
996 {
997 update_gfn_disallow_lpage_count(slot, gfn, 1);
998 }
999
1000 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1001 {
1002 update_gfn_disallow_lpage_count(slot, gfn, -1);
1003 }
1004
1005 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1006 {
1007 struct kvm_memslots *slots;
1008 struct kvm_memory_slot *slot;
1009 gfn_t gfn;
1010
1011 kvm->arch.indirect_shadow_pages++;
1012 gfn = sp->gfn;
1013 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1014 slot = __gfn_to_memslot(slots, gfn);
1015
1016 /* the non-leaf shadow pages are keeping readonly. */
1017 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1019 KVM_PAGE_TRACK_WRITE);
1020
1021 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1022 }
1023
1024 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1025 {
1026 struct kvm_memslots *slots;
1027 struct kvm_memory_slot *slot;
1028 gfn_t gfn;
1029
1030 kvm->arch.indirect_shadow_pages--;
1031 gfn = sp->gfn;
1032 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1033 slot = __gfn_to_memslot(slots, gfn);
1034 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1035 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1036 KVM_PAGE_TRACK_WRITE);
1037
1038 kvm_mmu_gfn_allow_lpage(slot, gfn);
1039 }
1040
1041 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
1043 {
1044 struct kvm_lpage_info *linfo;
1045
1046 if (slot) {
1047 linfo = lpage_info_slot(gfn, slot, level);
1048 return !!linfo->disallow_lpage;
1049 }
1050
1051 return true;
1052 }
1053
1054 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1055 int level)
1056 {
1057 struct kvm_memory_slot *slot;
1058
1059 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1060 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1061 }
1062
1063 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1064 {
1065 unsigned long page_size;
1066 int i, ret = 0;
1067
1068 page_size = kvm_host_page_size(kvm, gfn);
1069
1070 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1071 if (page_size >= KVM_HPAGE_SIZE(i))
1072 ret = i;
1073 else
1074 break;
1075 }
1076
1077 return ret;
1078 }
1079
1080 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1081 bool no_dirty_log)
1082 {
1083 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1084 return false;
1085 if (no_dirty_log && slot->dirty_bitmap)
1086 return false;
1087
1088 return true;
1089 }
1090
1091 static struct kvm_memory_slot *
1092 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1093 bool no_dirty_log)
1094 {
1095 struct kvm_memory_slot *slot;
1096
1097 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1098 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1099 slot = NULL;
1100
1101 return slot;
1102 }
1103
1104 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1105 bool *force_pt_level)
1106 {
1107 int host_level, level, max_level;
1108 struct kvm_memory_slot *slot;
1109
1110 if (unlikely(*force_pt_level))
1111 return PT_PAGE_TABLE_LEVEL;
1112
1113 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1114 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1115 if (unlikely(*force_pt_level))
1116 return PT_PAGE_TABLE_LEVEL;
1117
1118 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1119
1120 if (host_level == PT_PAGE_TABLE_LEVEL)
1121 return host_level;
1122
1123 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1124
1125 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1126 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1127 break;
1128
1129 return level - 1;
1130 }
1131
1132 /*
1133 * About rmap_head encoding:
1134 *
1135 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1136 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1137 * pte_list_desc containing more mappings.
1138 */
1139
1140 /*
1141 * Returns the number of pointers in the rmap chain, not counting the new one.
1142 */
1143 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1144 struct kvm_rmap_head *rmap_head)
1145 {
1146 struct pte_list_desc *desc;
1147 int i, count = 0;
1148
1149 if (!rmap_head->val) {
1150 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1151 rmap_head->val = (unsigned long)spte;
1152 } else if (!(rmap_head->val & 1)) {
1153 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1154 desc = mmu_alloc_pte_list_desc(vcpu);
1155 desc->sptes[0] = (u64 *)rmap_head->val;
1156 desc->sptes[1] = spte;
1157 rmap_head->val = (unsigned long)desc | 1;
1158 ++count;
1159 } else {
1160 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1161 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1162 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1163 desc = desc->more;
1164 count += PTE_LIST_EXT;
1165 }
1166 if (desc->sptes[PTE_LIST_EXT-1]) {
1167 desc->more = mmu_alloc_pte_list_desc(vcpu);
1168 desc = desc->more;
1169 }
1170 for (i = 0; desc->sptes[i]; ++i)
1171 ++count;
1172 desc->sptes[i] = spte;
1173 }
1174 return count;
1175 }
1176
1177 static void
1178 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1179 struct pte_list_desc *desc, int i,
1180 struct pte_list_desc *prev_desc)
1181 {
1182 int j;
1183
1184 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1185 ;
1186 desc->sptes[i] = desc->sptes[j];
1187 desc->sptes[j] = NULL;
1188 if (j != 0)
1189 return;
1190 if (!prev_desc && !desc->more)
1191 rmap_head->val = (unsigned long)desc->sptes[0];
1192 else
1193 if (prev_desc)
1194 prev_desc->more = desc->more;
1195 else
1196 rmap_head->val = (unsigned long)desc->more | 1;
1197 mmu_free_pte_list_desc(desc);
1198 }
1199
1200 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1201 {
1202 struct pte_list_desc *desc;
1203 struct pte_list_desc *prev_desc;
1204 int i;
1205
1206 if (!rmap_head->val) {
1207 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1208 BUG();
1209 } else if (!(rmap_head->val & 1)) {
1210 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1211 if ((u64 *)rmap_head->val != spte) {
1212 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1213 BUG();
1214 }
1215 rmap_head->val = 0;
1216 } else {
1217 rmap_printk("pte_list_remove: %p many->many\n", spte);
1218 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1219 prev_desc = NULL;
1220 while (desc) {
1221 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1222 if (desc->sptes[i] == spte) {
1223 pte_list_desc_remove_entry(rmap_head,
1224 desc, i, prev_desc);
1225 return;
1226 }
1227 }
1228 prev_desc = desc;
1229 desc = desc->more;
1230 }
1231 pr_err("pte_list_remove: %p many->many\n", spte);
1232 BUG();
1233 }
1234 }
1235
1236 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1237 struct kvm_memory_slot *slot)
1238 {
1239 unsigned long idx;
1240
1241 idx = gfn_to_index(gfn, slot->base_gfn, level);
1242 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1243 }
1244
1245 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1246 struct kvm_mmu_page *sp)
1247 {
1248 struct kvm_memslots *slots;
1249 struct kvm_memory_slot *slot;
1250
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
1253 return __gfn_to_rmap(gfn, sp->role.level, slot);
1254 }
1255
1256 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1257 {
1258 struct kvm_mmu_memory_cache *cache;
1259
1260 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1261 return mmu_memory_cache_free_objects(cache);
1262 }
1263
1264 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1265 {
1266 struct kvm_mmu_page *sp;
1267 struct kvm_rmap_head *rmap_head;
1268
1269 sp = page_header(__pa(spte));
1270 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1271 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1272 return pte_list_add(vcpu, spte, rmap_head);
1273 }
1274
1275 static void rmap_remove(struct kvm *kvm, u64 *spte)
1276 {
1277 struct kvm_mmu_page *sp;
1278 gfn_t gfn;
1279 struct kvm_rmap_head *rmap_head;
1280
1281 sp = page_header(__pa(spte));
1282 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1283 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1284 pte_list_remove(spte, rmap_head);
1285 }
1286
1287 /*
1288 * Used by the following functions to iterate through the sptes linked by a
1289 * rmap. All fields are private and not assumed to be used outside.
1290 */
1291 struct rmap_iterator {
1292 /* private fields */
1293 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1294 int pos; /* index of the sptep */
1295 };
1296
1297 /*
1298 * Iteration must be started by this function. This should also be used after
1299 * removing/dropping sptes from the rmap link because in such cases the
1300 * information in the itererator may not be valid.
1301 *
1302 * Returns sptep if found, NULL otherwise.
1303 */
1304 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1305 struct rmap_iterator *iter)
1306 {
1307 u64 *sptep;
1308
1309 if (!rmap_head->val)
1310 return NULL;
1311
1312 if (!(rmap_head->val & 1)) {
1313 iter->desc = NULL;
1314 sptep = (u64 *)rmap_head->val;
1315 goto out;
1316 }
1317
1318 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1319 iter->pos = 0;
1320 sptep = iter->desc->sptes[iter->pos];
1321 out:
1322 BUG_ON(!is_shadow_present_pte(*sptep));
1323 return sptep;
1324 }
1325
1326 /*
1327 * Must be used with a valid iterator: e.g. after rmap_get_first().
1328 *
1329 * Returns sptep if found, NULL otherwise.
1330 */
1331 static u64 *rmap_get_next(struct rmap_iterator *iter)
1332 {
1333 u64 *sptep;
1334
1335 if (iter->desc) {
1336 if (iter->pos < PTE_LIST_EXT - 1) {
1337 ++iter->pos;
1338 sptep = iter->desc->sptes[iter->pos];
1339 if (sptep)
1340 goto out;
1341 }
1342
1343 iter->desc = iter->desc->more;
1344
1345 if (iter->desc) {
1346 iter->pos = 0;
1347 /* desc->sptes[0] cannot be NULL */
1348 sptep = iter->desc->sptes[iter->pos];
1349 goto out;
1350 }
1351 }
1352
1353 return NULL;
1354 out:
1355 BUG_ON(!is_shadow_present_pte(*sptep));
1356 return sptep;
1357 }
1358
1359 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1360 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1361 _spte_; _spte_ = rmap_get_next(_iter_))
1362
1363 static void drop_spte(struct kvm *kvm, u64 *sptep)
1364 {
1365 if (mmu_spte_clear_track_bits(sptep))
1366 rmap_remove(kvm, sptep);
1367 }
1368
1369
1370 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1371 {
1372 if (is_large_pte(*sptep)) {
1373 WARN_ON(page_header(__pa(sptep))->role.level ==
1374 PT_PAGE_TABLE_LEVEL);
1375 drop_spte(kvm, sptep);
1376 --kvm->stat.lpages;
1377 return true;
1378 }
1379
1380 return false;
1381 }
1382
1383 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1384 {
1385 if (__drop_large_spte(vcpu->kvm, sptep))
1386 kvm_flush_remote_tlbs(vcpu->kvm);
1387 }
1388
1389 /*
1390 * Write-protect on the specified @sptep, @pt_protect indicates whether
1391 * spte write-protection is caused by protecting shadow page table.
1392 *
1393 * Note: write protection is difference between dirty logging and spte
1394 * protection:
1395 * - for dirty logging, the spte can be set to writable at anytime if
1396 * its dirty bitmap is properly set.
1397 * - for spte protection, the spte can be writable only after unsync-ing
1398 * shadow page.
1399 *
1400 * Return true if tlb need be flushed.
1401 */
1402 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1403 {
1404 u64 spte = *sptep;
1405
1406 if (!is_writable_pte(spte) &&
1407 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1408 return false;
1409
1410 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1411
1412 if (pt_protect)
1413 spte &= ~SPTE_MMU_WRITEABLE;
1414 spte = spte & ~PT_WRITABLE_MASK;
1415
1416 return mmu_spte_update(sptep, spte);
1417 }
1418
1419 static bool __rmap_write_protect(struct kvm *kvm,
1420 struct kvm_rmap_head *rmap_head,
1421 bool pt_protect)
1422 {
1423 u64 *sptep;
1424 struct rmap_iterator iter;
1425 bool flush = false;
1426
1427 for_each_rmap_spte(rmap_head, &iter, sptep)
1428 flush |= spte_write_protect(sptep, pt_protect);
1429
1430 return flush;
1431 }
1432
1433 static bool spte_clear_dirty(u64 *sptep)
1434 {
1435 u64 spte = *sptep;
1436
1437 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1438
1439 spte &= ~shadow_dirty_mask;
1440
1441 return mmu_spte_update(sptep, spte);
1442 }
1443
1444 static bool wrprot_ad_disabled_spte(u64 *sptep)
1445 {
1446 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1447 (unsigned long *)sptep);
1448 if (was_writable)
1449 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1450
1451 return was_writable;
1452 }
1453
1454 /*
1455 * Gets the GFN ready for another round of dirty logging by clearing the
1456 * - D bit on ad-enabled SPTEs, and
1457 * - W bit on ad-disabled SPTEs.
1458 * Returns true iff any D or W bits were cleared.
1459 */
1460 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1461 {
1462 u64 *sptep;
1463 struct rmap_iterator iter;
1464 bool flush = false;
1465
1466 for_each_rmap_spte(rmap_head, &iter, sptep)
1467 if (spte_ad_enabled(*sptep))
1468 flush |= spte_clear_dirty(sptep);
1469 else
1470 flush |= wrprot_ad_disabled_spte(sptep);
1471
1472 return flush;
1473 }
1474
1475 static bool spte_set_dirty(u64 *sptep)
1476 {
1477 u64 spte = *sptep;
1478
1479 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1480
1481 spte |= shadow_dirty_mask;
1482
1483 return mmu_spte_update(sptep, spte);
1484 }
1485
1486 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1487 {
1488 u64 *sptep;
1489 struct rmap_iterator iter;
1490 bool flush = false;
1491
1492 for_each_rmap_spte(rmap_head, &iter, sptep)
1493 if (spte_ad_enabled(*sptep))
1494 flush |= spte_set_dirty(sptep);
1495
1496 return flush;
1497 }
1498
1499 /**
1500 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1501 * @kvm: kvm instance
1502 * @slot: slot to protect
1503 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1504 * @mask: indicates which pages we should protect
1505 *
1506 * Used when we do not need to care about huge page mappings: e.g. during dirty
1507 * logging we do not have any such mappings.
1508 */
1509 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1510 struct kvm_memory_slot *slot,
1511 gfn_t gfn_offset, unsigned long mask)
1512 {
1513 struct kvm_rmap_head *rmap_head;
1514
1515 while (mask) {
1516 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1517 PT_PAGE_TABLE_LEVEL, slot);
1518 __rmap_write_protect(kvm, rmap_head, false);
1519
1520 /* clear the first set bit */
1521 mask &= mask - 1;
1522 }
1523 }
1524
1525 /**
1526 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1527 * protect the page if the D-bit isn't supported.
1528 * @kvm: kvm instance
1529 * @slot: slot to clear D-bit
1530 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1531 * @mask: indicates which pages we should clear D-bit
1532 *
1533 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1534 */
1535 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1536 struct kvm_memory_slot *slot,
1537 gfn_t gfn_offset, unsigned long mask)
1538 {
1539 struct kvm_rmap_head *rmap_head;
1540
1541 while (mask) {
1542 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1543 PT_PAGE_TABLE_LEVEL, slot);
1544 __rmap_clear_dirty(kvm, rmap_head);
1545
1546 /* clear the first set bit */
1547 mask &= mask - 1;
1548 }
1549 }
1550 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1551
1552 /**
1553 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1554 * PT level pages.
1555 *
1556 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1557 * enable dirty logging for them.
1558 *
1559 * Used when we do not need to care about huge page mappings: e.g. during dirty
1560 * logging we do not have any such mappings.
1561 */
1562 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1563 struct kvm_memory_slot *slot,
1564 gfn_t gfn_offset, unsigned long mask)
1565 {
1566 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1567 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1568 mask);
1569 else
1570 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1571 }
1572
1573 /**
1574 * kvm_arch_write_log_dirty - emulate dirty page logging
1575 * @vcpu: Guest mode vcpu
1576 *
1577 * Emulate arch specific page modification logging for the
1578 * nested hypervisor
1579 */
1580 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1581 {
1582 if (kvm_x86_ops->write_log_dirty)
1583 return kvm_x86_ops->write_log_dirty(vcpu);
1584
1585 return 0;
1586 }
1587
1588 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1589 struct kvm_memory_slot *slot, u64 gfn)
1590 {
1591 struct kvm_rmap_head *rmap_head;
1592 int i;
1593 bool write_protected = false;
1594
1595 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1596 rmap_head = __gfn_to_rmap(gfn, i, slot);
1597 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1598 }
1599
1600 return write_protected;
1601 }
1602
1603 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1604 {
1605 struct kvm_memory_slot *slot;
1606
1607 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1608 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1609 }
1610
1611 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1612 {
1613 u64 *sptep;
1614 struct rmap_iterator iter;
1615 bool flush = false;
1616
1617 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1618 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1619
1620 drop_spte(kvm, sptep);
1621 flush = true;
1622 }
1623
1624 return flush;
1625 }
1626
1627 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1628 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1629 unsigned long data)
1630 {
1631 return kvm_zap_rmapp(kvm, rmap_head);
1632 }
1633
1634 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1635 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1636 unsigned long data)
1637 {
1638 u64 *sptep;
1639 struct rmap_iterator iter;
1640 int need_flush = 0;
1641 u64 new_spte;
1642 pte_t *ptep = (pte_t *)data;
1643 kvm_pfn_t new_pfn;
1644
1645 WARN_ON(pte_huge(*ptep));
1646 new_pfn = pte_pfn(*ptep);
1647
1648 restart:
1649 for_each_rmap_spte(rmap_head, &iter, sptep) {
1650 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1651 sptep, *sptep, gfn, level);
1652
1653 need_flush = 1;
1654
1655 if (pte_write(*ptep)) {
1656 drop_spte(kvm, sptep);
1657 goto restart;
1658 } else {
1659 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1660 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1661
1662 new_spte &= ~PT_WRITABLE_MASK;
1663 new_spte &= ~SPTE_HOST_WRITEABLE;
1664
1665 new_spte = mark_spte_for_access_track(new_spte);
1666
1667 mmu_spte_clear_track_bits(sptep);
1668 mmu_spte_set(sptep, new_spte);
1669 }
1670 }
1671
1672 if (need_flush)
1673 kvm_flush_remote_tlbs(kvm);
1674
1675 return 0;
1676 }
1677
1678 struct slot_rmap_walk_iterator {
1679 /* input fields. */
1680 struct kvm_memory_slot *slot;
1681 gfn_t start_gfn;
1682 gfn_t end_gfn;
1683 int start_level;
1684 int end_level;
1685
1686 /* output fields. */
1687 gfn_t gfn;
1688 struct kvm_rmap_head *rmap;
1689 int level;
1690
1691 /* private field. */
1692 struct kvm_rmap_head *end_rmap;
1693 };
1694
1695 static void
1696 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1697 {
1698 iterator->level = level;
1699 iterator->gfn = iterator->start_gfn;
1700 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1701 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1702 iterator->slot);
1703 }
1704
1705 static void
1706 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1707 struct kvm_memory_slot *slot, int start_level,
1708 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1709 {
1710 iterator->slot = slot;
1711 iterator->start_level = start_level;
1712 iterator->end_level = end_level;
1713 iterator->start_gfn = start_gfn;
1714 iterator->end_gfn = end_gfn;
1715
1716 rmap_walk_init_level(iterator, iterator->start_level);
1717 }
1718
1719 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1720 {
1721 return !!iterator->rmap;
1722 }
1723
1724 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1725 {
1726 if (++iterator->rmap <= iterator->end_rmap) {
1727 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1728 return;
1729 }
1730
1731 if (++iterator->level > iterator->end_level) {
1732 iterator->rmap = NULL;
1733 return;
1734 }
1735
1736 rmap_walk_init_level(iterator, iterator->level);
1737 }
1738
1739 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1740 _start_gfn, _end_gfn, _iter_) \
1741 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1742 _end_level_, _start_gfn, _end_gfn); \
1743 slot_rmap_walk_okay(_iter_); \
1744 slot_rmap_walk_next(_iter_))
1745
1746 static int kvm_handle_hva_range(struct kvm *kvm,
1747 unsigned long start,
1748 unsigned long end,
1749 unsigned long data,
1750 int (*handler)(struct kvm *kvm,
1751 struct kvm_rmap_head *rmap_head,
1752 struct kvm_memory_slot *slot,
1753 gfn_t gfn,
1754 int level,
1755 unsigned long data))
1756 {
1757 struct kvm_memslots *slots;
1758 struct kvm_memory_slot *memslot;
1759 struct slot_rmap_walk_iterator iterator;
1760 int ret = 0;
1761 int i;
1762
1763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1764 slots = __kvm_memslots(kvm, i);
1765 kvm_for_each_memslot(memslot, slots) {
1766 unsigned long hva_start, hva_end;
1767 gfn_t gfn_start, gfn_end;
1768
1769 hva_start = max(start, memslot->userspace_addr);
1770 hva_end = min(end, memslot->userspace_addr +
1771 (memslot->npages << PAGE_SHIFT));
1772 if (hva_start >= hva_end)
1773 continue;
1774 /*
1775 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1776 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1777 */
1778 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1779 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1780
1781 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1782 PT_MAX_HUGEPAGE_LEVEL,
1783 gfn_start, gfn_end - 1,
1784 &iterator)
1785 ret |= handler(kvm, iterator.rmap, memslot,
1786 iterator.gfn, iterator.level, data);
1787 }
1788 }
1789
1790 return ret;
1791 }
1792
1793 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1794 unsigned long data,
1795 int (*handler)(struct kvm *kvm,
1796 struct kvm_rmap_head *rmap_head,
1797 struct kvm_memory_slot *slot,
1798 gfn_t gfn, int level,
1799 unsigned long data))
1800 {
1801 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1802 }
1803
1804 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1805 {
1806 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1807 }
1808
1809 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1810 {
1811 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1812 }
1813
1814 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1815 {
1816 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1817 }
1818
1819 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1820 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1821 unsigned long data)
1822 {
1823 u64 *sptep;
1824 struct rmap_iterator uninitialized_var(iter);
1825 int young = 0;
1826
1827 for_each_rmap_spte(rmap_head, &iter, sptep)
1828 young |= mmu_spte_age(sptep);
1829
1830 trace_kvm_age_page(gfn, level, slot, young);
1831 return young;
1832 }
1833
1834 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1835 struct kvm_memory_slot *slot, gfn_t gfn,
1836 int level, unsigned long data)
1837 {
1838 u64 *sptep;
1839 struct rmap_iterator iter;
1840
1841 for_each_rmap_spte(rmap_head, &iter, sptep)
1842 if (is_accessed_spte(*sptep))
1843 return 1;
1844 return 0;
1845 }
1846
1847 #define RMAP_RECYCLE_THRESHOLD 1000
1848
1849 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1850 {
1851 struct kvm_rmap_head *rmap_head;
1852 struct kvm_mmu_page *sp;
1853
1854 sp = page_header(__pa(spte));
1855
1856 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1857
1858 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1859 kvm_flush_remote_tlbs(vcpu->kvm);
1860 }
1861
1862 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1863 {
1864 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1865 }
1866
1867 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1868 {
1869 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1870 }
1871
1872 #ifdef MMU_DEBUG
1873 static int is_empty_shadow_page(u64 *spt)
1874 {
1875 u64 *pos;
1876 u64 *end;
1877
1878 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1879 if (is_shadow_present_pte(*pos)) {
1880 printk(KERN_ERR "%s: %p %llx\n", __func__,
1881 pos, *pos);
1882 return 0;
1883 }
1884 return 1;
1885 }
1886 #endif
1887
1888 /*
1889 * This value is the sum of all of the kvm instances's
1890 * kvm->arch.n_used_mmu_pages values. We need a global,
1891 * aggregate version in order to make the slab shrinker
1892 * faster
1893 */
1894 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1895 {
1896 kvm->arch.n_used_mmu_pages += nr;
1897 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1898 }
1899
1900 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1901 {
1902 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1903 hlist_del(&sp->hash_link);
1904 list_del(&sp->link);
1905 free_page((unsigned long)sp->spt);
1906 if (!sp->role.direct)
1907 free_page((unsigned long)sp->gfns);
1908 kmem_cache_free(mmu_page_header_cache, sp);
1909 }
1910
1911 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1912 {
1913 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1914 }
1915
1916 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1917 struct kvm_mmu_page *sp, u64 *parent_pte)
1918 {
1919 if (!parent_pte)
1920 return;
1921
1922 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1923 }
1924
1925 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1926 u64 *parent_pte)
1927 {
1928 pte_list_remove(parent_pte, &sp->parent_ptes);
1929 }
1930
1931 static void drop_parent_pte(struct kvm_mmu_page *sp,
1932 u64 *parent_pte)
1933 {
1934 mmu_page_remove_parent_pte(sp, parent_pte);
1935 mmu_spte_clear_no_track(parent_pte);
1936 }
1937
1938 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1939 {
1940 struct kvm_mmu_page *sp;
1941
1942 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1943 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1944 if (!direct)
1945 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1946 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1947
1948 /*
1949 * The active_mmu_pages list is the FIFO list, do not move the
1950 * page until it is zapped. kvm_zap_obsolete_pages depends on
1951 * this feature. See the comments in kvm_zap_obsolete_pages().
1952 */
1953 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1954 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1955 return sp;
1956 }
1957
1958 static void mark_unsync(u64 *spte);
1959 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1960 {
1961 u64 *sptep;
1962 struct rmap_iterator iter;
1963
1964 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1965 mark_unsync(sptep);
1966 }
1967 }
1968
1969 static void mark_unsync(u64 *spte)
1970 {
1971 struct kvm_mmu_page *sp;
1972 unsigned int index;
1973
1974 sp = page_header(__pa(spte));
1975 index = spte - sp->spt;
1976 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1977 return;
1978 if (sp->unsync_children++)
1979 return;
1980 kvm_mmu_mark_parents_unsync(sp);
1981 }
1982
1983 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1984 struct kvm_mmu_page *sp)
1985 {
1986 return 0;
1987 }
1988
1989 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1990 {
1991 }
1992
1993 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1994 struct kvm_mmu_page *sp, u64 *spte,
1995 const void *pte)
1996 {
1997 WARN_ON(1);
1998 }
1999
2000 #define KVM_PAGE_ARRAY_NR 16
2001
2002 struct kvm_mmu_pages {
2003 struct mmu_page_and_offset {
2004 struct kvm_mmu_page *sp;
2005 unsigned int idx;
2006 } page[KVM_PAGE_ARRAY_NR];
2007 unsigned int nr;
2008 };
2009
2010 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2011 int idx)
2012 {
2013 int i;
2014
2015 if (sp->unsync)
2016 for (i=0; i < pvec->nr; i++)
2017 if (pvec->page[i].sp == sp)
2018 return 0;
2019
2020 pvec->page[pvec->nr].sp = sp;
2021 pvec->page[pvec->nr].idx = idx;
2022 pvec->nr++;
2023 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2024 }
2025
2026 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2027 {
2028 --sp->unsync_children;
2029 WARN_ON((int)sp->unsync_children < 0);
2030 __clear_bit(idx, sp->unsync_child_bitmap);
2031 }
2032
2033 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2034 struct kvm_mmu_pages *pvec)
2035 {
2036 int i, ret, nr_unsync_leaf = 0;
2037
2038 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2039 struct kvm_mmu_page *child;
2040 u64 ent = sp->spt[i];
2041
2042 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2043 clear_unsync_child_bit(sp, i);
2044 continue;
2045 }
2046
2047 child = page_header(ent & PT64_BASE_ADDR_MASK);
2048
2049 if (child->unsync_children) {
2050 if (mmu_pages_add(pvec, child, i))
2051 return -ENOSPC;
2052
2053 ret = __mmu_unsync_walk(child, pvec);
2054 if (!ret) {
2055 clear_unsync_child_bit(sp, i);
2056 continue;
2057 } else if (ret > 0) {
2058 nr_unsync_leaf += ret;
2059 } else
2060 return ret;
2061 } else if (child->unsync) {
2062 nr_unsync_leaf++;
2063 if (mmu_pages_add(pvec, child, i))
2064 return -ENOSPC;
2065 } else
2066 clear_unsync_child_bit(sp, i);
2067 }
2068
2069 return nr_unsync_leaf;
2070 }
2071
2072 #define INVALID_INDEX (-1)
2073
2074 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2075 struct kvm_mmu_pages *pvec)
2076 {
2077 pvec->nr = 0;
2078 if (!sp->unsync_children)
2079 return 0;
2080
2081 mmu_pages_add(pvec, sp, INVALID_INDEX);
2082 return __mmu_unsync_walk(sp, pvec);
2083 }
2084
2085 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2086 {
2087 WARN_ON(!sp->unsync);
2088 trace_kvm_mmu_sync_page(sp);
2089 sp->unsync = 0;
2090 --kvm->stat.mmu_unsync;
2091 }
2092
2093 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2094 struct list_head *invalid_list);
2095 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2096 struct list_head *invalid_list);
2097
2098 /*
2099 * NOTE: we should pay more attention on the zapped-obsolete page
2100 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2101 * since it has been deleted from active_mmu_pages but still can be found
2102 * at hast list.
2103 *
2104 * for_each_valid_sp() has skipped that kind of pages.
2105 */
2106 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2107 hlist_for_each_entry(_sp, \
2108 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2109 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2110 } else
2111
2112 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2113 for_each_valid_sp(_kvm, _sp, _gfn) \
2114 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2115
2116 /* @sp->gfn should be write-protected at the call site */
2117 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2118 struct list_head *invalid_list)
2119 {
2120 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2121 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2122 return false;
2123 }
2124
2125 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2126 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2127 return false;
2128 }
2129
2130 return true;
2131 }
2132
2133 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2134 struct list_head *invalid_list,
2135 bool remote_flush, bool local_flush)
2136 {
2137 if (!list_empty(invalid_list)) {
2138 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2139 return;
2140 }
2141
2142 if (remote_flush)
2143 kvm_flush_remote_tlbs(vcpu->kvm);
2144 else if (local_flush)
2145 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2146 }
2147
2148 #ifdef CONFIG_KVM_MMU_AUDIT
2149 #include "mmu_audit.c"
2150 #else
2151 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2152 static void mmu_audit_disable(void) { }
2153 #endif
2154
2155 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2156 {
2157 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2158 }
2159
2160 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2161 struct list_head *invalid_list)
2162 {
2163 kvm_unlink_unsync_page(vcpu->kvm, sp);
2164 return __kvm_sync_page(vcpu, sp, invalid_list);
2165 }
2166
2167 /* @gfn should be write-protected at the call site */
2168 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2169 struct list_head *invalid_list)
2170 {
2171 struct kvm_mmu_page *s;
2172 bool ret = false;
2173
2174 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2175 if (!s->unsync)
2176 continue;
2177
2178 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2179 ret |= kvm_sync_page(vcpu, s, invalid_list);
2180 }
2181
2182 return ret;
2183 }
2184
2185 struct mmu_page_path {
2186 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2187 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2188 };
2189
2190 #define for_each_sp(pvec, sp, parents, i) \
2191 for (i = mmu_pages_first(&pvec, &parents); \
2192 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2193 i = mmu_pages_next(&pvec, &parents, i))
2194
2195 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2196 struct mmu_page_path *parents,
2197 int i)
2198 {
2199 int n;
2200
2201 for (n = i+1; n < pvec->nr; n++) {
2202 struct kvm_mmu_page *sp = pvec->page[n].sp;
2203 unsigned idx = pvec->page[n].idx;
2204 int level = sp->role.level;
2205
2206 parents->idx[level-1] = idx;
2207 if (level == PT_PAGE_TABLE_LEVEL)
2208 break;
2209
2210 parents->parent[level-2] = sp;
2211 }
2212
2213 return n;
2214 }
2215
2216 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2217 struct mmu_page_path *parents)
2218 {
2219 struct kvm_mmu_page *sp;
2220 int level;
2221
2222 if (pvec->nr == 0)
2223 return 0;
2224
2225 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2226
2227 sp = pvec->page[0].sp;
2228 level = sp->role.level;
2229 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2230
2231 parents->parent[level-2] = sp;
2232
2233 /* Also set up a sentinel. Further entries in pvec are all
2234 * children of sp, so this element is never overwritten.
2235 */
2236 parents->parent[level-1] = NULL;
2237 return mmu_pages_next(pvec, parents, 0);
2238 }
2239
2240 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2241 {
2242 struct kvm_mmu_page *sp;
2243 unsigned int level = 0;
2244
2245 do {
2246 unsigned int idx = parents->idx[level];
2247 sp = parents->parent[level];
2248 if (!sp)
2249 return;
2250
2251 WARN_ON(idx == INVALID_INDEX);
2252 clear_unsync_child_bit(sp, idx);
2253 level++;
2254 } while (!sp->unsync_children);
2255 }
2256
2257 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2258 struct kvm_mmu_page *parent)
2259 {
2260 int i;
2261 struct kvm_mmu_page *sp;
2262 struct mmu_page_path parents;
2263 struct kvm_mmu_pages pages;
2264 LIST_HEAD(invalid_list);
2265 bool flush = false;
2266
2267 while (mmu_unsync_walk(parent, &pages)) {
2268 bool protected = false;
2269
2270 for_each_sp(pages, sp, parents, i)
2271 protected |= rmap_write_protect(vcpu, sp->gfn);
2272
2273 if (protected) {
2274 kvm_flush_remote_tlbs(vcpu->kvm);
2275 flush = false;
2276 }
2277
2278 for_each_sp(pages, sp, parents, i) {
2279 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2280 mmu_pages_clear_parents(&parents);
2281 }
2282 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2283 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2284 cond_resched_lock(&vcpu->kvm->mmu_lock);
2285 flush = false;
2286 }
2287 }
2288
2289 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2290 }
2291
2292 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2293 {
2294 atomic_set(&sp->write_flooding_count, 0);
2295 }
2296
2297 static void clear_sp_write_flooding_count(u64 *spte)
2298 {
2299 struct kvm_mmu_page *sp = page_header(__pa(spte));
2300
2301 __clear_sp_write_flooding_count(sp);
2302 }
2303
2304 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2305 gfn_t gfn,
2306 gva_t gaddr,
2307 unsigned level,
2308 int direct,
2309 unsigned access)
2310 {
2311 union kvm_mmu_page_role role;
2312 unsigned quadrant;
2313 struct kvm_mmu_page *sp;
2314 bool need_sync = false;
2315 bool flush = false;
2316 int collisions = 0;
2317 LIST_HEAD(invalid_list);
2318
2319 role = vcpu->arch.mmu.base_role;
2320 role.level = level;
2321 role.direct = direct;
2322 if (role.direct)
2323 role.cr4_pae = 0;
2324 role.access = access;
2325 if (!vcpu->arch.mmu.direct_map
2326 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2327 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2328 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2329 role.quadrant = quadrant;
2330 }
2331 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2332 if (sp->gfn != gfn) {
2333 collisions++;
2334 continue;
2335 }
2336
2337 if (!need_sync && sp->unsync)
2338 need_sync = true;
2339
2340 if (sp->role.word != role.word)
2341 continue;
2342
2343 if (sp->unsync) {
2344 /* The page is good, but __kvm_sync_page might still end
2345 * up zapping it. If so, break in order to rebuild it.
2346 */
2347 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2348 break;
2349
2350 WARN_ON(!list_empty(&invalid_list));
2351 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2352 }
2353
2354 if (sp->unsync_children)
2355 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2356
2357 __clear_sp_write_flooding_count(sp);
2358 trace_kvm_mmu_get_page(sp, false);
2359 goto out;
2360 }
2361
2362 ++vcpu->kvm->stat.mmu_cache_miss;
2363
2364 sp = kvm_mmu_alloc_page(vcpu, direct);
2365
2366 sp->gfn = gfn;
2367 sp->role = role;
2368 hlist_add_head(&sp->hash_link,
2369 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2370 if (!direct) {
2371 /*
2372 * we should do write protection before syncing pages
2373 * otherwise the content of the synced shadow page may
2374 * be inconsistent with guest page table.
2375 */
2376 account_shadowed(vcpu->kvm, sp);
2377 if (level == PT_PAGE_TABLE_LEVEL &&
2378 rmap_write_protect(vcpu, gfn))
2379 kvm_flush_remote_tlbs(vcpu->kvm);
2380
2381 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2382 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2383 }
2384 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2385 clear_page(sp->spt);
2386 trace_kvm_mmu_get_page(sp, true);
2387
2388 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2389 out:
2390 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2391 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2392 return sp;
2393 }
2394
2395 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396 struct kvm_vcpu *vcpu, u64 addr)
2397 {
2398 iterator->addr = addr;
2399 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2400 iterator->level = vcpu->arch.mmu.shadow_root_level;
2401
2402 if (iterator->level == PT64_ROOT_4LEVEL &&
2403 vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
2404 !vcpu->arch.mmu.direct_map)
2405 --iterator->level;
2406
2407 if (iterator->level == PT32E_ROOT_LEVEL) {
2408 iterator->shadow_addr
2409 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2410 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2411 --iterator->level;
2412 if (!iterator->shadow_addr)
2413 iterator->level = 0;
2414 }
2415 }
2416
2417 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2418 {
2419 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2420 return false;
2421
2422 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2423 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2424 return true;
2425 }
2426
2427 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2428 u64 spte)
2429 {
2430 if (is_last_spte(spte, iterator->level)) {
2431 iterator->level = 0;
2432 return;
2433 }
2434
2435 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2436 --iterator->level;
2437 }
2438
2439 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2440 {
2441 __shadow_walk_next(iterator, *iterator->sptep);
2442 }
2443
2444 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2445 struct kvm_mmu_page *sp)
2446 {
2447 u64 spte;
2448
2449 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2450
2451 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2452 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2453
2454 if (sp_ad_disabled(sp))
2455 spte |= shadow_acc_track_value;
2456 else
2457 spte |= shadow_accessed_mask;
2458
2459 mmu_spte_set(sptep, spte);
2460
2461 mmu_page_add_parent_pte(vcpu, sp, sptep);
2462
2463 if (sp->unsync_children || sp->unsync)
2464 mark_unsync(sptep);
2465 }
2466
2467 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2468 unsigned direct_access)
2469 {
2470 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2471 struct kvm_mmu_page *child;
2472
2473 /*
2474 * For the direct sp, if the guest pte's dirty bit
2475 * changed form clean to dirty, it will corrupt the
2476 * sp's access: allow writable in the read-only sp,
2477 * so we should update the spte at this point to get
2478 * a new sp with the correct access.
2479 */
2480 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2481 if (child->role.access == direct_access)
2482 return;
2483
2484 drop_parent_pte(child, sptep);
2485 kvm_flush_remote_tlbs(vcpu->kvm);
2486 }
2487 }
2488
2489 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2490 u64 *spte)
2491 {
2492 u64 pte;
2493 struct kvm_mmu_page *child;
2494
2495 pte = *spte;
2496 if (is_shadow_present_pte(pte)) {
2497 if (is_last_spte(pte, sp->role.level)) {
2498 drop_spte(kvm, spte);
2499 if (is_large_pte(pte))
2500 --kvm->stat.lpages;
2501 } else {
2502 child = page_header(pte & PT64_BASE_ADDR_MASK);
2503 drop_parent_pte(child, spte);
2504 }
2505 return true;
2506 }
2507
2508 if (is_mmio_spte(pte))
2509 mmu_spte_clear_no_track(spte);
2510
2511 return false;
2512 }
2513
2514 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2515 struct kvm_mmu_page *sp)
2516 {
2517 unsigned i;
2518
2519 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2520 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2521 }
2522
2523 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2524 {
2525 u64 *sptep;
2526 struct rmap_iterator iter;
2527
2528 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2529 drop_parent_pte(sp, sptep);
2530 }
2531
2532 static int mmu_zap_unsync_children(struct kvm *kvm,
2533 struct kvm_mmu_page *parent,
2534 struct list_head *invalid_list)
2535 {
2536 int i, zapped = 0;
2537 struct mmu_page_path parents;
2538 struct kvm_mmu_pages pages;
2539
2540 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2541 return 0;
2542
2543 while (mmu_unsync_walk(parent, &pages)) {
2544 struct kvm_mmu_page *sp;
2545
2546 for_each_sp(pages, sp, parents, i) {
2547 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2548 mmu_pages_clear_parents(&parents);
2549 zapped++;
2550 }
2551 }
2552
2553 return zapped;
2554 }
2555
2556 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2557 struct list_head *invalid_list)
2558 {
2559 int ret;
2560
2561 trace_kvm_mmu_prepare_zap_page(sp);
2562 ++kvm->stat.mmu_shadow_zapped;
2563 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2564 kvm_mmu_page_unlink_children(kvm, sp);
2565 kvm_mmu_unlink_parents(kvm, sp);
2566
2567 if (!sp->role.invalid && !sp->role.direct)
2568 unaccount_shadowed(kvm, sp);
2569
2570 if (sp->unsync)
2571 kvm_unlink_unsync_page(kvm, sp);
2572 if (!sp->root_count) {
2573 /* Count self */
2574 ret++;
2575 list_move(&sp->link, invalid_list);
2576 kvm_mod_used_mmu_pages(kvm, -1);
2577 } else {
2578 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2579
2580 /*
2581 * The obsolete pages can not be used on any vcpus.
2582 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2583 */
2584 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2585 kvm_reload_remote_mmus(kvm);
2586 }
2587
2588 sp->role.invalid = 1;
2589 return ret;
2590 }
2591
2592 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2593 struct list_head *invalid_list)
2594 {
2595 struct kvm_mmu_page *sp, *nsp;
2596
2597 if (list_empty(invalid_list))
2598 return;
2599
2600 /*
2601 * We need to make sure everyone sees our modifications to
2602 * the page tables and see changes to vcpu->mode here. The barrier
2603 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2604 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2605 *
2606 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2607 * guest mode and/or lockless shadow page table walks.
2608 */
2609 kvm_flush_remote_tlbs(kvm);
2610
2611 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2612 WARN_ON(!sp->role.invalid || sp->root_count);
2613 kvm_mmu_free_page(sp);
2614 }
2615 }
2616
2617 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2618 struct list_head *invalid_list)
2619 {
2620 struct kvm_mmu_page *sp;
2621
2622 if (list_empty(&kvm->arch.active_mmu_pages))
2623 return false;
2624
2625 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2626 struct kvm_mmu_page, link);
2627 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2628 }
2629
2630 /*
2631 * Changing the number of mmu pages allocated to the vm
2632 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2633 */
2634 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2635 {
2636 LIST_HEAD(invalid_list);
2637
2638 spin_lock(&kvm->mmu_lock);
2639
2640 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2641 /* Need to free some mmu pages to achieve the goal. */
2642 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2643 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2644 break;
2645
2646 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2647 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2648 }
2649
2650 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2651
2652 spin_unlock(&kvm->mmu_lock);
2653 }
2654
2655 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2656 {
2657 struct kvm_mmu_page *sp;
2658 LIST_HEAD(invalid_list);
2659 int r;
2660
2661 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2662 r = 0;
2663 spin_lock(&kvm->mmu_lock);
2664 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2665 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2666 sp->role.word);
2667 r = 1;
2668 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2669 }
2670 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2671 spin_unlock(&kvm->mmu_lock);
2672
2673 return r;
2674 }
2675 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2676
2677 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2678 {
2679 trace_kvm_mmu_unsync_page(sp);
2680 ++vcpu->kvm->stat.mmu_unsync;
2681 sp->unsync = 1;
2682
2683 kvm_mmu_mark_parents_unsync(sp);
2684 }
2685
2686 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2687 bool can_unsync)
2688 {
2689 struct kvm_mmu_page *sp;
2690
2691 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2692 return true;
2693
2694 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2695 if (!can_unsync)
2696 return true;
2697
2698 if (sp->unsync)
2699 continue;
2700
2701 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2702 kvm_unsync_page(vcpu, sp);
2703 }
2704
2705 return false;
2706 }
2707
2708 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2709 {
2710 if (pfn_valid(pfn))
2711 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2712
2713 return true;
2714 }
2715
2716 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2717 unsigned pte_access, int level,
2718 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2719 bool can_unsync, bool host_writable)
2720 {
2721 u64 spte = 0;
2722 int ret = 0;
2723 struct kvm_mmu_page *sp;
2724
2725 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2726 return 0;
2727
2728 sp = page_header(__pa(sptep));
2729 if (sp_ad_disabled(sp))
2730 spte |= shadow_acc_track_value;
2731
2732 /*
2733 * For the EPT case, shadow_present_mask is 0 if hardware
2734 * supports exec-only page table entries. In that case,
2735 * ACC_USER_MASK and shadow_user_mask are used to represent
2736 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2737 */
2738 spte |= shadow_present_mask;
2739 if (!speculative)
2740 spte |= spte_shadow_accessed_mask(spte);
2741
2742 if (pte_access & ACC_EXEC_MASK)
2743 spte |= shadow_x_mask;
2744 else
2745 spte |= shadow_nx_mask;
2746
2747 if (pte_access & ACC_USER_MASK)
2748 spte |= shadow_user_mask;
2749
2750 if (level > PT_PAGE_TABLE_LEVEL)
2751 spte |= PT_PAGE_SIZE_MASK;
2752 if (tdp_enabled)
2753 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2754 kvm_is_mmio_pfn(pfn));
2755
2756 if (host_writable)
2757 spte |= SPTE_HOST_WRITEABLE;
2758 else
2759 pte_access &= ~ACC_WRITE_MASK;
2760
2761 spte |= (u64)pfn << PAGE_SHIFT;
2762 spte |= shadow_me_mask;
2763
2764 if (pte_access & ACC_WRITE_MASK) {
2765
2766 /*
2767 * Other vcpu creates new sp in the window between
2768 * mapping_level() and acquiring mmu-lock. We can
2769 * allow guest to retry the access, the mapping can
2770 * be fixed if guest refault.
2771 */
2772 if (level > PT_PAGE_TABLE_LEVEL &&
2773 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2774 goto done;
2775
2776 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2777
2778 /*
2779 * Optimization: for pte sync, if spte was writable the hash
2780 * lookup is unnecessary (and expensive). Write protection
2781 * is responsibility of mmu_get_page / kvm_sync_page.
2782 * Same reasoning can be applied to dirty page accounting.
2783 */
2784 if (!can_unsync && is_writable_pte(*sptep))
2785 goto set_pte;
2786
2787 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2788 pgprintk("%s: found shadow page for %llx, marking ro\n",
2789 __func__, gfn);
2790 ret = 1;
2791 pte_access &= ~ACC_WRITE_MASK;
2792 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2793 }
2794 }
2795
2796 if (pte_access & ACC_WRITE_MASK) {
2797 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2798 spte |= spte_shadow_dirty_mask(spte);
2799 }
2800
2801 if (speculative)
2802 spte = mark_spte_for_access_track(spte);
2803
2804 set_pte:
2805 if (mmu_spte_update(sptep, spte))
2806 kvm_flush_remote_tlbs(vcpu->kvm);
2807 done:
2808 return ret;
2809 }
2810
2811 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2812 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2813 bool speculative, bool host_writable)
2814 {
2815 int was_rmapped = 0;
2816 int rmap_count;
2817 int ret = RET_PF_RETRY;
2818
2819 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2820 *sptep, write_fault, gfn);
2821
2822 if (is_shadow_present_pte(*sptep)) {
2823 /*
2824 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2825 * the parent of the now unreachable PTE.
2826 */
2827 if (level > PT_PAGE_TABLE_LEVEL &&
2828 !is_large_pte(*sptep)) {
2829 struct kvm_mmu_page *child;
2830 u64 pte = *sptep;
2831
2832 child = page_header(pte & PT64_BASE_ADDR_MASK);
2833 drop_parent_pte(child, sptep);
2834 kvm_flush_remote_tlbs(vcpu->kvm);
2835 } else if (pfn != spte_to_pfn(*sptep)) {
2836 pgprintk("hfn old %llx new %llx\n",
2837 spte_to_pfn(*sptep), pfn);
2838 drop_spte(vcpu->kvm, sptep);
2839 kvm_flush_remote_tlbs(vcpu->kvm);
2840 } else
2841 was_rmapped = 1;
2842 }
2843
2844 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2845 true, host_writable)) {
2846 if (write_fault)
2847 ret = RET_PF_EMULATE;
2848 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2849 }
2850
2851 if (unlikely(is_mmio_spte(*sptep)))
2852 ret = RET_PF_EMULATE;
2853
2854 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2855 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2856 is_large_pte(*sptep)? "2MB" : "4kB",
2857 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2858 *sptep, sptep);
2859 if (!was_rmapped && is_large_pte(*sptep))
2860 ++vcpu->kvm->stat.lpages;
2861
2862 if (is_shadow_present_pte(*sptep)) {
2863 if (!was_rmapped) {
2864 rmap_count = rmap_add(vcpu, sptep, gfn);
2865 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2866 rmap_recycle(vcpu, sptep, gfn);
2867 }
2868 }
2869
2870 kvm_release_pfn_clean(pfn);
2871
2872 return ret;
2873 }
2874
2875 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2876 bool no_dirty_log)
2877 {
2878 struct kvm_memory_slot *slot;
2879
2880 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2881 if (!slot)
2882 return KVM_PFN_ERR_FAULT;
2883
2884 return gfn_to_pfn_memslot_atomic(slot, gfn);
2885 }
2886
2887 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2888 struct kvm_mmu_page *sp,
2889 u64 *start, u64 *end)
2890 {
2891 struct page *pages[PTE_PREFETCH_NUM];
2892 struct kvm_memory_slot *slot;
2893 unsigned access = sp->role.access;
2894 int i, ret;
2895 gfn_t gfn;
2896
2897 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2898 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2899 if (!slot)
2900 return -1;
2901
2902 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2903 if (ret <= 0)
2904 return -1;
2905
2906 for (i = 0; i < ret; i++, gfn++, start++)
2907 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2908 page_to_pfn(pages[i]), true, true);
2909
2910 return 0;
2911 }
2912
2913 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2914 struct kvm_mmu_page *sp, u64 *sptep)
2915 {
2916 u64 *spte, *start = NULL;
2917 int i;
2918
2919 WARN_ON(!sp->role.direct);
2920
2921 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2922 spte = sp->spt + i;
2923
2924 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2925 if (is_shadow_present_pte(*spte) || spte == sptep) {
2926 if (!start)
2927 continue;
2928 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2929 break;
2930 start = NULL;
2931 } else if (!start)
2932 start = spte;
2933 }
2934 }
2935
2936 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2937 {
2938 struct kvm_mmu_page *sp;
2939
2940 sp = page_header(__pa(sptep));
2941
2942 /*
2943 * Without accessed bits, there's no way to distinguish between
2944 * actually accessed translations and prefetched, so disable pte
2945 * prefetch if accessed bits aren't available.
2946 */
2947 if (sp_ad_disabled(sp))
2948 return;
2949
2950 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2951 return;
2952
2953 __direct_pte_prefetch(vcpu, sp, sptep);
2954 }
2955
2956 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2957 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2958 {
2959 struct kvm_shadow_walk_iterator iterator;
2960 struct kvm_mmu_page *sp;
2961 int emulate = 0;
2962 gfn_t pseudo_gfn;
2963
2964 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2965 return 0;
2966
2967 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2968 if (iterator.level == level) {
2969 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2970 write, level, gfn, pfn, prefault,
2971 map_writable);
2972 direct_pte_prefetch(vcpu, iterator.sptep);
2973 ++vcpu->stat.pf_fixed;
2974 break;
2975 }
2976
2977 drop_large_spte(vcpu, iterator.sptep);
2978 if (!is_shadow_present_pte(*iterator.sptep)) {
2979 u64 base_addr = iterator.addr;
2980
2981 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2982 pseudo_gfn = base_addr >> PAGE_SHIFT;
2983 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2984 iterator.level - 1, 1, ACC_ALL);
2985
2986 link_shadow_page(vcpu, iterator.sptep, sp);
2987 }
2988 }
2989 return emulate;
2990 }
2991
2992 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2993 {
2994 siginfo_t info;
2995
2996 info.si_signo = SIGBUS;
2997 info.si_errno = 0;
2998 info.si_code = BUS_MCEERR_AR;
2999 info.si_addr = (void __user *)address;
3000 info.si_addr_lsb = PAGE_SHIFT;
3001
3002 send_sig_info(SIGBUS, &info, tsk);
3003 }
3004
3005 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3006 {
3007 /*
3008 * Do not cache the mmio info caused by writing the readonly gfn
3009 * into the spte otherwise read access on readonly gfn also can
3010 * caused mmio page fault and treat it as mmio access.
3011 */
3012 if (pfn == KVM_PFN_ERR_RO_FAULT)
3013 return RET_PF_EMULATE;
3014
3015 if (pfn == KVM_PFN_ERR_HWPOISON) {
3016 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3017 return RET_PF_RETRY;
3018 }
3019
3020 return -EFAULT;
3021 }
3022
3023 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3024 gfn_t *gfnp, kvm_pfn_t *pfnp,
3025 int *levelp)
3026 {
3027 kvm_pfn_t pfn = *pfnp;
3028 gfn_t gfn = *gfnp;
3029 int level = *levelp;
3030
3031 /*
3032 * Check if it's a transparent hugepage. If this would be an
3033 * hugetlbfs page, level wouldn't be set to
3034 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3035 * here.
3036 */
3037 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3038 level == PT_PAGE_TABLE_LEVEL &&
3039 PageTransCompoundMap(pfn_to_page(pfn)) &&
3040 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3041 unsigned long mask;
3042 /*
3043 * mmu_notifier_retry was successful and we hold the
3044 * mmu_lock here, so the pmd can't become splitting
3045 * from under us, and in turn
3046 * __split_huge_page_refcount() can't run from under
3047 * us and we can safely transfer the refcount from
3048 * PG_tail to PG_head as we switch the pfn to tail to
3049 * head.
3050 */
3051 *levelp = level = PT_DIRECTORY_LEVEL;
3052 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3053 VM_BUG_ON((gfn & mask) != (pfn & mask));
3054 if (pfn & mask) {
3055 gfn &= ~mask;
3056 *gfnp = gfn;
3057 kvm_release_pfn_clean(pfn);
3058 pfn &= ~mask;
3059 kvm_get_pfn(pfn);
3060 *pfnp = pfn;
3061 }
3062 }
3063 }
3064
3065 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3066 kvm_pfn_t pfn, unsigned access, int *ret_val)
3067 {
3068 /* The pfn is invalid, report the error! */
3069 if (unlikely(is_error_pfn(pfn))) {
3070 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3071 return true;
3072 }
3073
3074 if (unlikely(is_noslot_pfn(pfn)))
3075 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3076
3077 return false;
3078 }
3079
3080 static bool page_fault_can_be_fast(u32 error_code)
3081 {
3082 /*
3083 * Do not fix the mmio spte with invalid generation number which
3084 * need to be updated by slow page fault path.
3085 */
3086 if (unlikely(error_code & PFERR_RSVD_MASK))
3087 return false;
3088
3089 /* See if the page fault is due to an NX violation */
3090 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3091 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3092 return false;
3093
3094 /*
3095 * #PF can be fast if:
3096 * 1. The shadow page table entry is not present, which could mean that
3097 * the fault is potentially caused by access tracking (if enabled).
3098 * 2. The shadow page table entry is present and the fault
3099 * is caused by write-protect, that means we just need change the W
3100 * bit of the spte which can be done out of mmu-lock.
3101 *
3102 * However, if access tracking is disabled we know that a non-present
3103 * page must be a genuine page fault where we have to create a new SPTE.
3104 * So, if access tracking is disabled, we return true only for write
3105 * accesses to a present page.
3106 */
3107
3108 return shadow_acc_track_mask != 0 ||
3109 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3110 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3111 }
3112
3113 /*
3114 * Returns true if the SPTE was fixed successfully. Otherwise,
3115 * someone else modified the SPTE from its original value.
3116 */
3117 static bool
3118 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3119 u64 *sptep, u64 old_spte, u64 new_spte)
3120 {
3121 gfn_t gfn;
3122
3123 WARN_ON(!sp->role.direct);
3124
3125 /*
3126 * Theoretically we could also set dirty bit (and flush TLB) here in
3127 * order to eliminate unnecessary PML logging. See comments in
3128 * set_spte. But fast_page_fault is very unlikely to happen with PML
3129 * enabled, so we do not do this. This might result in the same GPA
3130 * to be logged in PML buffer again when the write really happens, and
3131 * eventually to be called by mark_page_dirty twice. But it's also no
3132 * harm. This also avoids the TLB flush needed after setting dirty bit
3133 * so non-PML cases won't be impacted.
3134 *
3135 * Compare with set_spte where instead shadow_dirty_mask is set.
3136 */
3137 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3138 return false;
3139
3140 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3141 /*
3142 * The gfn of direct spte is stable since it is
3143 * calculated by sp->gfn.
3144 */
3145 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3146 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3147 }
3148
3149 return true;
3150 }
3151
3152 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3153 {
3154 if (fault_err_code & PFERR_FETCH_MASK)
3155 return is_executable_pte(spte);
3156
3157 if (fault_err_code & PFERR_WRITE_MASK)
3158 return is_writable_pte(spte);
3159
3160 /* Fault was on Read access */
3161 return spte & PT_PRESENT_MASK;
3162 }
3163
3164 /*
3165 * Return value:
3166 * - true: let the vcpu to access on the same address again.
3167 * - false: let the real page fault path to fix it.
3168 */
3169 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3170 u32 error_code)
3171 {
3172 struct kvm_shadow_walk_iterator iterator;
3173 struct kvm_mmu_page *sp;
3174 bool fault_handled = false;
3175 u64 spte = 0ull;
3176 uint retry_count = 0;
3177
3178 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3179 return false;
3180
3181 if (!page_fault_can_be_fast(error_code))
3182 return false;
3183
3184 walk_shadow_page_lockless_begin(vcpu);
3185
3186 do {
3187 u64 new_spte;
3188
3189 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3190 if (!is_shadow_present_pte(spte) ||
3191 iterator.level < level)
3192 break;
3193
3194 sp = page_header(__pa(iterator.sptep));
3195 if (!is_last_spte(spte, sp->role.level))
3196 break;
3197
3198 /*
3199 * Check whether the memory access that caused the fault would
3200 * still cause it if it were to be performed right now. If not,
3201 * then this is a spurious fault caused by TLB lazily flushed,
3202 * or some other CPU has already fixed the PTE after the
3203 * current CPU took the fault.
3204 *
3205 * Need not check the access of upper level table entries since
3206 * they are always ACC_ALL.
3207 */
3208 if (is_access_allowed(error_code, spte)) {
3209 fault_handled = true;
3210 break;
3211 }
3212
3213 new_spte = spte;
3214
3215 if (is_access_track_spte(spte))
3216 new_spte = restore_acc_track_spte(new_spte);
3217
3218 /*
3219 * Currently, to simplify the code, write-protection can
3220 * be removed in the fast path only if the SPTE was
3221 * write-protected for dirty-logging or access tracking.
3222 */
3223 if ((error_code & PFERR_WRITE_MASK) &&
3224 spte_can_locklessly_be_made_writable(spte))
3225 {
3226 new_spte |= PT_WRITABLE_MASK;
3227
3228 /*
3229 * Do not fix write-permission on the large spte. Since
3230 * we only dirty the first page into the dirty-bitmap in
3231 * fast_pf_fix_direct_spte(), other pages are missed
3232 * if its slot has dirty logging enabled.
3233 *
3234 * Instead, we let the slow page fault path create a
3235 * normal spte to fix the access.
3236 *
3237 * See the comments in kvm_arch_commit_memory_region().
3238 */
3239 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3240 break;
3241 }
3242
3243 /* Verify that the fault can be handled in the fast path */
3244 if (new_spte == spte ||
3245 !is_access_allowed(error_code, new_spte))
3246 break;
3247
3248 /*
3249 * Currently, fast page fault only works for direct mapping
3250 * since the gfn is not stable for indirect shadow page. See
3251 * Documentation/virtual/kvm/locking.txt to get more detail.
3252 */
3253 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3254 iterator.sptep, spte,
3255 new_spte);
3256 if (fault_handled)
3257 break;
3258
3259 if (++retry_count > 4) {
3260 printk_once(KERN_WARNING
3261 "kvm: Fast #PF retrying more than 4 times.\n");
3262 break;
3263 }
3264
3265 } while (true);
3266
3267 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3268 spte, fault_handled);
3269 walk_shadow_page_lockless_end(vcpu);
3270
3271 return fault_handled;
3272 }
3273
3274 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3275 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3276 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3277
3278 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3279 gfn_t gfn, bool prefault)
3280 {
3281 int r;
3282 int level;
3283 bool force_pt_level = false;
3284 kvm_pfn_t pfn;
3285 unsigned long mmu_seq;
3286 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3287
3288 level = mapping_level(vcpu, gfn, &force_pt_level);
3289 if (likely(!force_pt_level)) {
3290 /*
3291 * This path builds a PAE pagetable - so we can map
3292 * 2mb pages at maximum. Therefore check if the level
3293 * is larger than that.
3294 */
3295 if (level > PT_DIRECTORY_LEVEL)
3296 level = PT_DIRECTORY_LEVEL;
3297
3298 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3299 }
3300
3301 if (fast_page_fault(vcpu, v, level, error_code))
3302 return RET_PF_RETRY;
3303
3304 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3305 smp_rmb();
3306
3307 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3308 return RET_PF_RETRY;
3309
3310 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3311 return r;
3312
3313 spin_lock(&vcpu->kvm->mmu_lock);
3314 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3315 goto out_unlock;
3316 if (make_mmu_pages_available(vcpu) < 0)
3317 goto out_unlock;
3318 if (likely(!force_pt_level))
3319 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3320 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3321 spin_unlock(&vcpu->kvm->mmu_lock);
3322
3323 return r;
3324
3325 out_unlock:
3326 spin_unlock(&vcpu->kvm->mmu_lock);
3327 kvm_release_pfn_clean(pfn);
3328 return RET_PF_RETRY;
3329 }
3330
3331
3332 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3333 {
3334 int i;
3335 struct kvm_mmu_page *sp;
3336 LIST_HEAD(invalid_list);
3337
3338 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3339 return;
3340
3341 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL &&
3342 (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL ||
3343 vcpu->arch.mmu.direct_map)) {
3344 hpa_t root = vcpu->arch.mmu.root_hpa;
3345
3346 spin_lock(&vcpu->kvm->mmu_lock);
3347 sp = page_header(root);
3348 --sp->root_count;
3349 if (!sp->root_count && sp->role.invalid) {
3350 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3351 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3352 }
3353 spin_unlock(&vcpu->kvm->mmu_lock);
3354 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3355 return;
3356 }
3357
3358 spin_lock(&vcpu->kvm->mmu_lock);
3359 for (i = 0; i < 4; ++i) {
3360 hpa_t root = vcpu->arch.mmu.pae_root[i];
3361
3362 if (root) {
3363 root &= PT64_BASE_ADDR_MASK;
3364 sp = page_header(root);
3365 --sp->root_count;
3366 if (!sp->root_count && sp->role.invalid)
3367 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3368 &invalid_list);
3369 }
3370 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3371 }
3372 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3373 spin_unlock(&vcpu->kvm->mmu_lock);
3374 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3375 }
3376
3377 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3378 {
3379 int ret = 0;
3380
3381 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3382 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3383 ret = 1;
3384 }
3385
3386 return ret;
3387 }
3388
3389 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3390 {
3391 struct kvm_mmu_page *sp;
3392 unsigned i;
3393
3394 if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
3395 spin_lock(&vcpu->kvm->mmu_lock);
3396 if(make_mmu_pages_available(vcpu) < 0) {
3397 spin_unlock(&vcpu->kvm->mmu_lock);
3398 return -ENOSPC;
3399 }
3400 sp = kvm_mmu_get_page(vcpu, 0, 0,
3401 vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
3402 ++sp->root_count;
3403 spin_unlock(&vcpu->kvm->mmu_lock);
3404 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3405 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3406 for (i = 0; i < 4; ++i) {
3407 hpa_t root = vcpu->arch.mmu.pae_root[i];
3408
3409 MMU_WARN_ON(VALID_PAGE(root));
3410 spin_lock(&vcpu->kvm->mmu_lock);
3411 if (make_mmu_pages_available(vcpu) < 0) {
3412 spin_unlock(&vcpu->kvm->mmu_lock);
3413 return -ENOSPC;
3414 }
3415 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3416 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3417 root = __pa(sp->spt);
3418 ++sp->root_count;
3419 spin_unlock(&vcpu->kvm->mmu_lock);
3420 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3421 }
3422 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3423 } else
3424 BUG();
3425
3426 return 0;
3427 }
3428
3429 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3430 {
3431 struct kvm_mmu_page *sp;
3432 u64 pdptr, pm_mask;
3433 gfn_t root_gfn;
3434 int i;
3435
3436 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3437
3438 if (mmu_check_root(vcpu, root_gfn))
3439 return 1;
3440
3441 /*
3442 * Do we shadow a long mode page table? If so we need to
3443 * write-protect the guests page table root.
3444 */
3445 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3446 hpa_t root = vcpu->arch.mmu.root_hpa;
3447
3448 MMU_WARN_ON(VALID_PAGE(root));
3449
3450 spin_lock(&vcpu->kvm->mmu_lock);
3451 if (make_mmu_pages_available(vcpu) < 0) {
3452 spin_unlock(&vcpu->kvm->mmu_lock);
3453 return -ENOSPC;
3454 }
3455 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3456 vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
3457 root = __pa(sp->spt);
3458 ++sp->root_count;
3459 spin_unlock(&vcpu->kvm->mmu_lock);
3460 vcpu->arch.mmu.root_hpa = root;
3461 return 0;
3462 }
3463
3464 /*
3465 * We shadow a 32 bit page table. This may be a legacy 2-level
3466 * or a PAE 3-level page table. In either case we need to be aware that
3467 * the shadow page table may be a PAE or a long mode page table.
3468 */
3469 pm_mask = PT_PRESENT_MASK;
3470 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
3471 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3472
3473 for (i = 0; i < 4; ++i) {
3474 hpa_t root = vcpu->arch.mmu.pae_root[i];
3475
3476 MMU_WARN_ON(VALID_PAGE(root));
3477 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3478 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3479 if (!(pdptr & PT_PRESENT_MASK)) {
3480 vcpu->arch.mmu.pae_root[i] = 0;
3481 continue;
3482 }
3483 root_gfn = pdptr >> PAGE_SHIFT;
3484 if (mmu_check_root(vcpu, root_gfn))
3485 return 1;
3486 }
3487 spin_lock(&vcpu->kvm->mmu_lock);
3488 if (make_mmu_pages_available(vcpu) < 0) {
3489 spin_unlock(&vcpu->kvm->mmu_lock);
3490 return -ENOSPC;
3491 }
3492 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3493 0, ACC_ALL);
3494 root = __pa(sp->spt);
3495 ++sp->root_count;
3496 spin_unlock(&vcpu->kvm->mmu_lock);
3497
3498 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3499 }
3500 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3501
3502 /*
3503 * If we shadow a 32 bit page table with a long mode page
3504 * table we enter this path.
3505 */
3506 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
3507 if (vcpu->arch.mmu.lm_root == NULL) {
3508 /*
3509 * The additional page necessary for this is only
3510 * allocated on demand.
3511 */
3512
3513 u64 *lm_root;
3514
3515 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3516 if (lm_root == NULL)
3517 return 1;
3518
3519 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3520
3521 vcpu->arch.mmu.lm_root = lm_root;
3522 }
3523
3524 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3525 }
3526
3527 return 0;
3528 }
3529
3530 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3531 {
3532 if (vcpu->arch.mmu.direct_map)
3533 return mmu_alloc_direct_roots(vcpu);
3534 else
3535 return mmu_alloc_shadow_roots(vcpu);
3536 }
3537
3538 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3539 {
3540 int i;
3541 struct kvm_mmu_page *sp;
3542
3543 if (vcpu->arch.mmu.direct_map)
3544 return;
3545
3546 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3547 return;
3548
3549 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3550 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3551 if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
3552 hpa_t root = vcpu->arch.mmu.root_hpa;
3553 sp = page_header(root);
3554 mmu_sync_children(vcpu, sp);
3555 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3556 return;
3557 }
3558 for (i = 0; i < 4; ++i) {
3559 hpa_t root = vcpu->arch.mmu.pae_root[i];
3560
3561 if (root && VALID_PAGE(root)) {
3562 root &= PT64_BASE_ADDR_MASK;
3563 sp = page_header(root);
3564 mmu_sync_children(vcpu, sp);
3565 }
3566 }
3567 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3568 }
3569
3570 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3571 {
3572 spin_lock(&vcpu->kvm->mmu_lock);
3573 mmu_sync_roots(vcpu);
3574 spin_unlock(&vcpu->kvm->mmu_lock);
3575 }
3576 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3577
3578 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3579 u32 access, struct x86_exception *exception)
3580 {
3581 if (exception)
3582 exception->error_code = 0;
3583 return vaddr;
3584 }
3585
3586 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3587 u32 access,
3588 struct x86_exception *exception)
3589 {
3590 if (exception)
3591 exception->error_code = 0;
3592 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3593 }
3594
3595 static bool
3596 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3597 {
3598 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3599
3600 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3601 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3602 }
3603
3604 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3605 {
3606 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3607 }
3608
3609 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3610 {
3611 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3612 }
3613
3614 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3615 {
3616 /*
3617 * A nested guest cannot use the MMIO cache if it is using nested
3618 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3619 */
3620 if (mmu_is_nested(vcpu))
3621 return false;
3622
3623 if (direct)
3624 return vcpu_match_mmio_gpa(vcpu, addr);
3625
3626 return vcpu_match_mmio_gva(vcpu, addr);
3627 }
3628
3629 /* return true if reserved bit is detected on spte. */
3630 static bool
3631 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3632 {
3633 struct kvm_shadow_walk_iterator iterator;
3634 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3635 int root, leaf;
3636 bool reserved = false;
3637
3638 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3639 goto exit;
3640
3641 walk_shadow_page_lockless_begin(vcpu);
3642
3643 for (shadow_walk_init(&iterator, vcpu, addr),
3644 leaf = root = iterator.level;
3645 shadow_walk_okay(&iterator);
3646 __shadow_walk_next(&iterator, spte)) {
3647 spte = mmu_spte_get_lockless(iterator.sptep);
3648
3649 sptes[leaf - 1] = spte;
3650 leaf--;
3651
3652 if (!is_shadow_present_pte(spte))
3653 break;
3654
3655 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3656 iterator.level);
3657 }
3658
3659 walk_shadow_page_lockless_end(vcpu);
3660
3661 if (reserved) {
3662 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3663 __func__, addr);
3664 while (root > leaf) {
3665 pr_err("------ spte 0x%llx level %d.\n",
3666 sptes[root - 1], root);
3667 root--;
3668 }
3669 }
3670 exit:
3671 *sptep = spte;
3672 return reserved;
3673 }
3674
3675 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3676 {
3677 u64 spte;
3678 bool reserved;
3679
3680 if (mmio_info_in_cache(vcpu, addr, direct))
3681 return RET_PF_EMULATE;
3682
3683 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3684 if (WARN_ON(reserved))
3685 return -EINVAL;
3686
3687 if (is_mmio_spte(spte)) {
3688 gfn_t gfn = get_mmio_spte_gfn(spte);
3689 unsigned access = get_mmio_spte_access(spte);
3690
3691 if (!check_mmio_spte(vcpu, spte))
3692 return RET_PF_INVALID;
3693
3694 if (direct)
3695 addr = 0;
3696
3697 trace_handle_mmio_page_fault(addr, gfn, access);
3698 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3699 return RET_PF_EMULATE;
3700 }
3701
3702 /*
3703 * If the page table is zapped by other cpus, let CPU fault again on
3704 * the address.
3705 */
3706 return RET_PF_RETRY;
3707 }
3708 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3709
3710 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3711 u32 error_code, gfn_t gfn)
3712 {
3713 if (unlikely(error_code & PFERR_RSVD_MASK))
3714 return false;
3715
3716 if (!(error_code & PFERR_PRESENT_MASK) ||
3717 !(error_code & PFERR_WRITE_MASK))
3718 return false;
3719
3720 /*
3721 * guest is writing the page which is write tracked which can
3722 * not be fixed by page fault handler.
3723 */
3724 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3725 return true;
3726
3727 return false;
3728 }
3729
3730 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3731 {
3732 struct kvm_shadow_walk_iterator iterator;
3733 u64 spte;
3734
3735 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3736 return;
3737
3738 walk_shadow_page_lockless_begin(vcpu);
3739 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3740 clear_sp_write_flooding_count(iterator.sptep);
3741 if (!is_shadow_present_pte(spte))
3742 break;
3743 }
3744 walk_shadow_page_lockless_end(vcpu);
3745 }
3746
3747 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3748 u32 error_code, bool prefault)
3749 {
3750 gfn_t gfn = gva >> PAGE_SHIFT;
3751 int r;
3752
3753 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3754
3755 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3756 return RET_PF_EMULATE;
3757
3758 r = mmu_topup_memory_caches(vcpu);
3759 if (r)
3760 return r;
3761
3762 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3763
3764
3765 return nonpaging_map(vcpu, gva & PAGE_MASK,
3766 error_code, gfn, prefault);
3767 }
3768
3769 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3770 {
3771 struct kvm_arch_async_pf arch;
3772
3773 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3774 arch.gfn = gfn;
3775 arch.direct_map = vcpu->arch.mmu.direct_map;
3776 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3777
3778 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3779 }
3780
3781 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3782 {
3783 if (unlikely(!lapic_in_kernel(vcpu) ||
3784 kvm_event_needs_reinjection(vcpu) ||
3785 vcpu->arch.exception.pending))
3786 return false;
3787
3788 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
3789 return false;
3790
3791 return kvm_x86_ops->interrupt_allowed(vcpu);
3792 }
3793
3794 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3795 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3796 {
3797 struct kvm_memory_slot *slot;
3798 bool async;
3799
3800 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3801 async = false;
3802 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3803 if (!async)
3804 return false; /* *pfn has correct page already */
3805
3806 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3807 trace_kvm_try_async_get_page(gva, gfn);
3808 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3809 trace_kvm_async_pf_doublefault(gva, gfn);
3810 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3811 return true;
3812 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3813 return true;
3814 }
3815
3816 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3817 return false;
3818 }
3819
3820 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3821 u64 fault_address, char *insn, int insn_len)
3822 {
3823 int r = 1;
3824
3825 switch (vcpu->arch.apf.host_apf_reason) {
3826 default:
3827 trace_kvm_page_fault(fault_address, error_code);
3828
3829 if (kvm_event_needs_reinjection(vcpu))
3830 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3831 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3832 insn_len);
3833 break;
3834 case KVM_PV_REASON_PAGE_NOT_PRESENT:
3835 vcpu->arch.apf.host_apf_reason = 0;
3836 local_irq_disable();
3837 kvm_async_pf_task_wait(fault_address, 0);
3838 local_irq_enable();
3839 break;
3840 case KVM_PV_REASON_PAGE_READY:
3841 vcpu->arch.apf.host_apf_reason = 0;
3842 local_irq_disable();
3843 kvm_async_pf_task_wake(fault_address);
3844 local_irq_enable();
3845 break;
3846 }
3847 return r;
3848 }
3849 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3850
3851 static bool
3852 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3853 {
3854 int page_num = KVM_PAGES_PER_HPAGE(level);
3855
3856 gfn &= ~(page_num - 1);
3857
3858 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3859 }
3860
3861 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3862 bool prefault)
3863 {
3864 kvm_pfn_t pfn;
3865 int r;
3866 int level;
3867 bool force_pt_level;
3868 gfn_t gfn = gpa >> PAGE_SHIFT;
3869 unsigned long mmu_seq;
3870 int write = error_code & PFERR_WRITE_MASK;
3871 bool map_writable;
3872
3873 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3874
3875 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3876 return RET_PF_EMULATE;
3877
3878 r = mmu_topup_memory_caches(vcpu);
3879 if (r)
3880 return r;
3881
3882 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3883 PT_DIRECTORY_LEVEL);
3884 level = mapping_level(vcpu, gfn, &force_pt_level);
3885 if (likely(!force_pt_level)) {
3886 if (level > PT_DIRECTORY_LEVEL &&
3887 !check_hugepage_cache_consistency(vcpu, gfn, level))
3888 level = PT_DIRECTORY_LEVEL;
3889 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3890 }
3891
3892 if (fast_page_fault(vcpu, gpa, level, error_code))
3893 return RET_PF_RETRY;
3894
3895 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3896 smp_rmb();
3897
3898 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3899 return RET_PF_RETRY;
3900
3901 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3902 return r;
3903
3904 spin_lock(&vcpu->kvm->mmu_lock);
3905 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3906 goto out_unlock;
3907 if (make_mmu_pages_available(vcpu) < 0)
3908 goto out_unlock;
3909 if (likely(!force_pt_level))
3910 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3911 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3912 spin_unlock(&vcpu->kvm->mmu_lock);
3913
3914 return r;
3915
3916 out_unlock:
3917 spin_unlock(&vcpu->kvm->mmu_lock);
3918 kvm_release_pfn_clean(pfn);
3919 return RET_PF_RETRY;
3920 }
3921
3922 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3923 struct kvm_mmu *context)
3924 {
3925 context->page_fault = nonpaging_page_fault;
3926 context->gva_to_gpa = nonpaging_gva_to_gpa;
3927 context->sync_page = nonpaging_sync_page;
3928 context->invlpg = nonpaging_invlpg;
3929 context->update_pte = nonpaging_update_pte;
3930 context->root_level = 0;
3931 context->shadow_root_level = PT32E_ROOT_LEVEL;
3932 context->root_hpa = INVALID_PAGE;
3933 context->direct_map = true;
3934 context->nx = false;
3935 }
3936
3937 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3938 {
3939 mmu_free_roots(vcpu);
3940 }
3941
3942 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3943 {
3944 return kvm_read_cr3(vcpu);
3945 }
3946
3947 static void inject_page_fault(struct kvm_vcpu *vcpu,
3948 struct x86_exception *fault)
3949 {
3950 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3951 }
3952
3953 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3954 unsigned access, int *nr_present)
3955 {
3956 if (unlikely(is_mmio_spte(*sptep))) {
3957 if (gfn != get_mmio_spte_gfn(*sptep)) {
3958 mmu_spte_clear_no_track(sptep);
3959 return true;
3960 }
3961
3962 (*nr_present)++;
3963 mark_mmio_spte(vcpu, sptep, gfn, access);
3964 return true;
3965 }
3966
3967 return false;
3968 }
3969
3970 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3971 unsigned level, unsigned gpte)
3972 {
3973 /*
3974 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3975 * If it is clear, there are no large pages at this level, so clear
3976 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3977 */
3978 gpte &= level - mmu->last_nonleaf_level;
3979
3980 /*
3981 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3982 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3983 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3984 */
3985 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3986
3987 return gpte & PT_PAGE_SIZE_MASK;
3988 }
3989
3990 #define PTTYPE_EPT 18 /* arbitrary */
3991 #define PTTYPE PTTYPE_EPT
3992 #include "paging_tmpl.h"
3993 #undef PTTYPE
3994
3995 #define PTTYPE 64
3996 #include "paging_tmpl.h"
3997 #undef PTTYPE
3998
3999 #define PTTYPE 32
4000 #include "paging_tmpl.h"
4001 #undef PTTYPE
4002
4003 static void
4004 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4005 struct rsvd_bits_validate *rsvd_check,
4006 int maxphyaddr, int level, bool nx, bool gbpages,
4007 bool pse, bool amd)
4008 {
4009 u64 exb_bit_rsvd = 0;
4010 u64 gbpages_bit_rsvd = 0;
4011 u64 nonleaf_bit8_rsvd = 0;
4012
4013 rsvd_check->bad_mt_xwr = 0;
4014
4015 if (!nx)
4016 exb_bit_rsvd = rsvd_bits(63, 63);
4017 if (!gbpages)
4018 gbpages_bit_rsvd = rsvd_bits(7, 7);
4019
4020 /*
4021 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4022 * leaf entries) on AMD CPUs only.
4023 */
4024 if (amd)
4025 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4026
4027 switch (level) {
4028 case PT32_ROOT_LEVEL:
4029 /* no rsvd bits for 2 level 4K page table entries */
4030 rsvd_check->rsvd_bits_mask[0][1] = 0;
4031 rsvd_check->rsvd_bits_mask[0][0] = 0;
4032 rsvd_check->rsvd_bits_mask[1][0] =
4033 rsvd_check->rsvd_bits_mask[0][0];
4034
4035 if (!pse) {
4036 rsvd_check->rsvd_bits_mask[1][1] = 0;
4037 break;
4038 }
4039
4040 if (is_cpuid_PSE36())
4041 /* 36bits PSE 4MB page */
4042 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4043 else
4044 /* 32 bits PSE 4MB page */
4045 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4046 break;
4047 case PT32E_ROOT_LEVEL:
4048 rsvd_check->rsvd_bits_mask[0][2] =
4049 rsvd_bits(maxphyaddr, 63) |
4050 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4051 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4052 rsvd_bits(maxphyaddr, 62); /* PDE */
4053 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4054 rsvd_bits(maxphyaddr, 62); /* PTE */
4055 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4056 rsvd_bits(maxphyaddr, 62) |
4057 rsvd_bits(13, 20); /* large page */
4058 rsvd_check->rsvd_bits_mask[1][0] =
4059 rsvd_check->rsvd_bits_mask[0][0];
4060 break;
4061 case PT64_ROOT_5LEVEL:
4062 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4063 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4064 rsvd_bits(maxphyaddr, 51);
4065 rsvd_check->rsvd_bits_mask[1][4] =
4066 rsvd_check->rsvd_bits_mask[0][4];
4067 case PT64_ROOT_4LEVEL:
4068 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4069 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4070 rsvd_bits(maxphyaddr, 51);
4071 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4072 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4073 rsvd_bits(maxphyaddr, 51);
4074 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4075 rsvd_bits(maxphyaddr, 51);
4076 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4077 rsvd_bits(maxphyaddr, 51);
4078 rsvd_check->rsvd_bits_mask[1][3] =
4079 rsvd_check->rsvd_bits_mask[0][3];
4080 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4081 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4082 rsvd_bits(13, 29);
4083 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4084 rsvd_bits(maxphyaddr, 51) |
4085 rsvd_bits(13, 20); /* large page */
4086 rsvd_check->rsvd_bits_mask[1][0] =
4087 rsvd_check->rsvd_bits_mask[0][0];
4088 break;
4089 }
4090 }
4091
4092 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4093 struct kvm_mmu *context)
4094 {
4095 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4096 cpuid_maxphyaddr(vcpu), context->root_level,
4097 context->nx,
4098 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4099 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4100 }
4101
4102 static void
4103 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4104 int maxphyaddr, bool execonly)
4105 {
4106 u64 bad_mt_xwr;
4107
4108 rsvd_check->rsvd_bits_mask[0][4] =
4109 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4110 rsvd_check->rsvd_bits_mask[0][3] =
4111 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4112 rsvd_check->rsvd_bits_mask[0][2] =
4113 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4114 rsvd_check->rsvd_bits_mask[0][1] =
4115 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4116 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4117
4118 /* large page */
4119 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4120 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4121 rsvd_check->rsvd_bits_mask[1][2] =
4122 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4123 rsvd_check->rsvd_bits_mask[1][1] =
4124 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4125 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4126
4127 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4128 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4129 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4130 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4131 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4132 if (!execonly) {
4133 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4134 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4135 }
4136 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4137 }
4138
4139 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4140 struct kvm_mmu *context, bool execonly)
4141 {
4142 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4143 cpuid_maxphyaddr(vcpu), execonly);
4144 }
4145
4146 /*
4147 * the page table on host is the shadow page table for the page
4148 * table in guest or amd nested guest, its mmu features completely
4149 * follow the features in guest.
4150 */
4151 void
4152 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4153 {
4154 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4155 struct rsvd_bits_validate *shadow_zero_check;
4156 int i;
4157
4158 /*
4159 * Passing "true" to the last argument is okay; it adds a check
4160 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4161 */
4162 shadow_zero_check = &context->shadow_zero_check;
4163 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4164 boot_cpu_data.x86_phys_bits,
4165 context->shadow_root_level, uses_nx,
4166 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4167 is_pse(vcpu), true);
4168
4169 if (!shadow_me_mask)
4170 return;
4171
4172 for (i = context->shadow_root_level; --i >= 0;) {
4173 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4174 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4175 }
4176
4177 }
4178 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4179
4180 static inline bool boot_cpu_is_amd(void)
4181 {
4182 WARN_ON_ONCE(!tdp_enabled);
4183 return shadow_x_mask == 0;
4184 }
4185
4186 /*
4187 * the direct page table on host, use as much mmu features as
4188 * possible, however, kvm currently does not do execution-protection.
4189 */
4190 static void
4191 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4192 struct kvm_mmu *context)
4193 {
4194 struct rsvd_bits_validate *shadow_zero_check;
4195 int i;
4196
4197 shadow_zero_check = &context->shadow_zero_check;
4198
4199 if (boot_cpu_is_amd())
4200 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4201 boot_cpu_data.x86_phys_bits,
4202 context->shadow_root_level, false,
4203 boot_cpu_has(X86_FEATURE_GBPAGES),
4204 true, true);
4205 else
4206 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4207 boot_cpu_data.x86_phys_bits,
4208 false);
4209
4210 if (!shadow_me_mask)
4211 return;
4212
4213 for (i = context->shadow_root_level; --i >= 0;) {
4214 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4215 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4216 }
4217 }
4218
4219 /*
4220 * as the comments in reset_shadow_zero_bits_mask() except it
4221 * is the shadow page table for intel nested guest.
4222 */
4223 static void
4224 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4225 struct kvm_mmu *context, bool execonly)
4226 {
4227 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4228 boot_cpu_data.x86_phys_bits, execonly);
4229 }
4230
4231 #define BYTE_MASK(access) \
4232 ((1 & (access) ? 2 : 0) | \
4233 (2 & (access) ? 4 : 0) | \
4234 (3 & (access) ? 8 : 0) | \
4235 (4 & (access) ? 16 : 0) | \
4236 (5 & (access) ? 32 : 0) | \
4237 (6 & (access) ? 64 : 0) | \
4238 (7 & (access) ? 128 : 0))
4239
4240
4241 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4242 struct kvm_mmu *mmu, bool ept)
4243 {
4244 unsigned byte;
4245
4246 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4247 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4248 const u8 u = BYTE_MASK(ACC_USER_MASK);
4249
4250 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4251 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4252 bool cr0_wp = is_write_protection(vcpu);
4253
4254 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4255 unsigned pfec = byte << 1;
4256
4257 /*
4258 * Each "*f" variable has a 1 bit for each UWX value
4259 * that causes a fault with the given PFEC.
4260 */
4261
4262 /* Faults from writes to non-writable pages */
4263 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4264 /* Faults from user mode accesses to supervisor pages */
4265 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4266 /* Faults from fetches of non-executable pages*/
4267 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4268 /* Faults from kernel mode fetches of user pages */
4269 u8 smepf = 0;
4270 /* Faults from kernel mode accesses of user pages */
4271 u8 smapf = 0;
4272
4273 if (!ept) {
4274 /* Faults from kernel mode accesses to user pages */
4275 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4276
4277 /* Not really needed: !nx will cause pte.nx to fault */
4278 if (!mmu->nx)
4279 ff = 0;
4280
4281 /* Allow supervisor writes if !cr0.wp */
4282 if (!cr0_wp)
4283 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4284
4285 /* Disallow supervisor fetches of user code if cr4.smep */
4286 if (cr4_smep)
4287 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4288
4289 /*
4290 * SMAP:kernel-mode data accesses from user-mode
4291 * mappings should fault. A fault is considered
4292 * as a SMAP violation if all of the following
4293 * conditions are ture:
4294 * - X86_CR4_SMAP is set in CR4
4295 * - A user page is accessed
4296 * - The access is not a fetch
4297 * - Page fault in kernel mode
4298 * - if CPL = 3 or X86_EFLAGS_AC is clear
4299 *
4300 * Here, we cover the first three conditions.
4301 * The fourth is computed dynamically in permission_fault();
4302 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4303 * *not* subject to SMAP restrictions.
4304 */
4305 if (cr4_smap)
4306 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4307 }
4308
4309 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4310 }
4311 }
4312
4313 /*
4314 * PKU is an additional mechanism by which the paging controls access to
4315 * user-mode addresses based on the value in the PKRU register. Protection
4316 * key violations are reported through a bit in the page fault error code.
4317 * Unlike other bits of the error code, the PK bit is not known at the
4318 * call site of e.g. gva_to_gpa; it must be computed directly in
4319 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4320 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4321 *
4322 * In particular the following conditions come from the error code, the
4323 * page tables and the machine state:
4324 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4325 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4326 * - PK is always zero if U=0 in the page tables
4327 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4328 *
4329 * The PKRU bitmask caches the result of these four conditions. The error
4330 * code (minus the P bit) and the page table's U bit form an index into the
4331 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4332 * with the two bits of the PKRU register corresponding to the protection key.
4333 * For the first three conditions above the bits will be 00, thus masking
4334 * away both AD and WD. For all reads or if the last condition holds, WD
4335 * only will be masked away.
4336 */
4337 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4338 bool ept)
4339 {
4340 unsigned bit;
4341 bool wp;
4342
4343 if (ept) {
4344 mmu->pkru_mask = 0;
4345 return;
4346 }
4347
4348 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4349 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4350 mmu->pkru_mask = 0;
4351 return;
4352 }
4353
4354 wp = is_write_protection(vcpu);
4355
4356 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4357 unsigned pfec, pkey_bits;
4358 bool check_pkey, check_write, ff, uf, wf, pte_user;
4359
4360 pfec = bit << 1;
4361 ff = pfec & PFERR_FETCH_MASK;
4362 uf = pfec & PFERR_USER_MASK;
4363 wf = pfec & PFERR_WRITE_MASK;
4364
4365 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4366 pte_user = pfec & PFERR_RSVD_MASK;
4367
4368 /*
4369 * Only need to check the access which is not an
4370 * instruction fetch and is to a user page.
4371 */
4372 check_pkey = (!ff && pte_user);
4373 /*
4374 * write access is controlled by PKRU if it is a
4375 * user access or CR0.WP = 1.
4376 */
4377 check_write = check_pkey && wf && (uf || wp);
4378
4379 /* PKRU.AD stops both read and write access. */
4380 pkey_bits = !!check_pkey;
4381 /* PKRU.WD stops write access. */
4382 pkey_bits |= (!!check_write) << 1;
4383
4384 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4385 }
4386 }
4387
4388 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4389 {
4390 unsigned root_level = mmu->root_level;
4391
4392 mmu->last_nonleaf_level = root_level;
4393 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4394 mmu->last_nonleaf_level++;
4395 }
4396
4397 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4398 struct kvm_mmu *context,
4399 int level)
4400 {
4401 context->nx = is_nx(vcpu);
4402 context->root_level = level;
4403
4404 reset_rsvds_bits_mask(vcpu, context);
4405 update_permission_bitmask(vcpu, context, false);
4406 update_pkru_bitmask(vcpu, context, false);
4407 update_last_nonleaf_level(vcpu, context);
4408
4409 MMU_WARN_ON(!is_pae(vcpu));
4410 context->page_fault = paging64_page_fault;
4411 context->gva_to_gpa = paging64_gva_to_gpa;
4412 context->sync_page = paging64_sync_page;
4413 context->invlpg = paging64_invlpg;
4414 context->update_pte = paging64_update_pte;
4415 context->shadow_root_level = level;
4416 context->root_hpa = INVALID_PAGE;
4417 context->direct_map = false;
4418 }
4419
4420 static void paging64_init_context(struct kvm_vcpu *vcpu,
4421 struct kvm_mmu *context)
4422 {
4423 int root_level = is_la57_mode(vcpu) ?
4424 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4425
4426 paging64_init_context_common(vcpu, context, root_level);
4427 }
4428
4429 static void paging32_init_context(struct kvm_vcpu *vcpu,
4430 struct kvm_mmu *context)
4431 {
4432 context->nx = false;
4433 context->root_level = PT32_ROOT_LEVEL;
4434
4435 reset_rsvds_bits_mask(vcpu, context);
4436 update_permission_bitmask(vcpu, context, false);
4437 update_pkru_bitmask(vcpu, context, false);
4438 update_last_nonleaf_level(vcpu, context);
4439
4440 context->page_fault = paging32_page_fault;
4441 context->gva_to_gpa = paging32_gva_to_gpa;
4442 context->sync_page = paging32_sync_page;
4443 context->invlpg = paging32_invlpg;
4444 context->update_pte = paging32_update_pte;
4445 context->shadow_root_level = PT32E_ROOT_LEVEL;
4446 context->root_hpa = INVALID_PAGE;
4447 context->direct_map = false;
4448 }
4449
4450 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4451 struct kvm_mmu *context)
4452 {
4453 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4454 }
4455
4456 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4457 {
4458 struct kvm_mmu *context = &vcpu->arch.mmu;
4459
4460 context->base_role.word = 0;
4461 context->base_role.smm = is_smm(vcpu);
4462 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4463 context->page_fault = tdp_page_fault;
4464 context->sync_page = nonpaging_sync_page;
4465 context->invlpg = nonpaging_invlpg;
4466 context->update_pte = nonpaging_update_pte;
4467 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
4468 context->root_hpa = INVALID_PAGE;
4469 context->direct_map = true;
4470 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4471 context->get_cr3 = get_cr3;
4472 context->get_pdptr = kvm_pdptr_read;
4473 context->inject_page_fault = kvm_inject_page_fault;
4474
4475 if (!is_paging(vcpu)) {
4476 context->nx = false;
4477 context->gva_to_gpa = nonpaging_gva_to_gpa;
4478 context->root_level = 0;
4479 } else if (is_long_mode(vcpu)) {
4480 context->nx = is_nx(vcpu);
4481 context->root_level = is_la57_mode(vcpu) ?
4482 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4483 reset_rsvds_bits_mask(vcpu, context);
4484 context->gva_to_gpa = paging64_gva_to_gpa;
4485 } else if (is_pae(vcpu)) {
4486 context->nx = is_nx(vcpu);
4487 context->root_level = PT32E_ROOT_LEVEL;
4488 reset_rsvds_bits_mask(vcpu, context);
4489 context->gva_to_gpa = paging64_gva_to_gpa;
4490 } else {
4491 context->nx = false;
4492 context->root_level = PT32_ROOT_LEVEL;
4493 reset_rsvds_bits_mask(vcpu, context);
4494 context->gva_to_gpa = paging32_gva_to_gpa;
4495 }
4496
4497 update_permission_bitmask(vcpu, context, false);
4498 update_pkru_bitmask(vcpu, context, false);
4499 update_last_nonleaf_level(vcpu, context);
4500 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4501 }
4502
4503 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4504 {
4505 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4506 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4507 struct kvm_mmu *context = &vcpu->arch.mmu;
4508
4509 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4510
4511 if (!is_paging(vcpu))
4512 nonpaging_init_context(vcpu, context);
4513 else if (is_long_mode(vcpu))
4514 paging64_init_context(vcpu, context);
4515 else if (is_pae(vcpu))
4516 paging32E_init_context(vcpu, context);
4517 else
4518 paging32_init_context(vcpu, context);
4519
4520 context->base_role.nxe = is_nx(vcpu);
4521 context->base_role.cr4_pae = !!is_pae(vcpu);
4522 context->base_role.cr0_wp = is_write_protection(vcpu);
4523 context->base_role.smep_andnot_wp
4524 = smep && !is_write_protection(vcpu);
4525 context->base_role.smap_andnot_wp
4526 = smap && !is_write_protection(vcpu);
4527 context->base_role.smm = is_smm(vcpu);
4528 reset_shadow_zero_bits_mask(vcpu, context);
4529 }
4530 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4531
4532 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4533 bool accessed_dirty)
4534 {
4535 struct kvm_mmu *context = &vcpu->arch.mmu;
4536
4537 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4538
4539 context->shadow_root_level = PT64_ROOT_4LEVEL;
4540
4541 context->nx = true;
4542 context->ept_ad = accessed_dirty;
4543 context->page_fault = ept_page_fault;
4544 context->gva_to_gpa = ept_gva_to_gpa;
4545 context->sync_page = ept_sync_page;
4546 context->invlpg = ept_invlpg;
4547 context->update_pte = ept_update_pte;
4548 context->root_level = PT64_ROOT_4LEVEL;
4549 context->root_hpa = INVALID_PAGE;
4550 context->direct_map = false;
4551 context->base_role.ad_disabled = !accessed_dirty;
4552
4553 update_permission_bitmask(vcpu, context, true);
4554 update_pkru_bitmask(vcpu, context, true);
4555 update_last_nonleaf_level(vcpu, context);
4556 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4557 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4558 }
4559 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4560
4561 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4562 {
4563 struct kvm_mmu *context = &vcpu->arch.mmu;
4564
4565 kvm_init_shadow_mmu(vcpu);
4566 context->set_cr3 = kvm_x86_ops->set_cr3;
4567 context->get_cr3 = get_cr3;
4568 context->get_pdptr = kvm_pdptr_read;
4569 context->inject_page_fault = kvm_inject_page_fault;
4570 }
4571
4572 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4573 {
4574 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4575
4576 g_context->get_cr3 = get_cr3;
4577 g_context->get_pdptr = kvm_pdptr_read;
4578 g_context->inject_page_fault = kvm_inject_page_fault;
4579
4580 /*
4581 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4582 * L1's nested page tables (e.g. EPT12). The nested translation
4583 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4584 * L2's page tables as the first level of translation and L1's
4585 * nested page tables as the second level of translation. Basically
4586 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4587 */
4588 if (!is_paging(vcpu)) {
4589 g_context->nx = false;
4590 g_context->root_level = 0;
4591 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4592 } else if (is_long_mode(vcpu)) {
4593 g_context->nx = is_nx(vcpu);
4594 g_context->root_level = is_la57_mode(vcpu) ?
4595 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4596 reset_rsvds_bits_mask(vcpu, g_context);
4597 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4598 } else if (is_pae(vcpu)) {
4599 g_context->nx = is_nx(vcpu);
4600 g_context->root_level = PT32E_ROOT_LEVEL;
4601 reset_rsvds_bits_mask(vcpu, g_context);
4602 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4603 } else {
4604 g_context->nx = false;
4605 g_context->root_level = PT32_ROOT_LEVEL;
4606 reset_rsvds_bits_mask(vcpu, g_context);
4607 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4608 }
4609
4610 update_permission_bitmask(vcpu, g_context, false);
4611 update_pkru_bitmask(vcpu, g_context, false);
4612 update_last_nonleaf_level(vcpu, g_context);
4613 }
4614
4615 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4616 {
4617 if (mmu_is_nested(vcpu))
4618 init_kvm_nested_mmu(vcpu);
4619 else if (tdp_enabled)
4620 init_kvm_tdp_mmu(vcpu);
4621 else
4622 init_kvm_softmmu(vcpu);
4623 }
4624
4625 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4626 {
4627 kvm_mmu_unload(vcpu);
4628 init_kvm_mmu(vcpu);
4629 }
4630 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4631
4632 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4633 {
4634 int r;
4635
4636 r = mmu_topup_memory_caches(vcpu);
4637 if (r)
4638 goto out;
4639 r = mmu_alloc_roots(vcpu);
4640 kvm_mmu_sync_roots(vcpu);
4641 if (r)
4642 goto out;
4643 /* set_cr3() should ensure TLB has been flushed */
4644 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4645 out:
4646 return r;
4647 }
4648 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4649
4650 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4651 {
4652 mmu_free_roots(vcpu);
4653 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4654 }
4655 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4656
4657 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4658 struct kvm_mmu_page *sp, u64 *spte,
4659 const void *new)
4660 {
4661 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4662 ++vcpu->kvm->stat.mmu_pde_zapped;
4663 return;
4664 }
4665
4666 ++vcpu->kvm->stat.mmu_pte_updated;
4667 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4668 }
4669
4670 static bool need_remote_flush(u64 old, u64 new)
4671 {
4672 if (!is_shadow_present_pte(old))
4673 return false;
4674 if (!is_shadow_present_pte(new))
4675 return true;
4676 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4677 return true;
4678 old ^= shadow_nx_mask;
4679 new ^= shadow_nx_mask;
4680 return (old & ~new & PT64_PERM_MASK) != 0;
4681 }
4682
4683 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4684 const u8 *new, int *bytes)
4685 {
4686 u64 gentry;
4687 int r;
4688
4689 /*
4690 * Assume that the pte write on a page table of the same type
4691 * as the current vcpu paging mode since we update the sptes only
4692 * when they have the same mode.
4693 */
4694 if (is_pae(vcpu) && *bytes == 4) {
4695 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4696 *gpa &= ~(gpa_t)7;
4697 *bytes = 8;
4698 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4699 if (r)
4700 gentry = 0;
4701 new = (const u8 *)&gentry;
4702 }
4703
4704 switch (*bytes) {
4705 case 4:
4706 gentry = *(const u32 *)new;
4707 break;
4708 case 8:
4709 gentry = *(const u64 *)new;
4710 break;
4711 default:
4712 gentry = 0;
4713 break;
4714 }
4715
4716 return gentry;
4717 }
4718
4719 /*
4720 * If we're seeing too many writes to a page, it may no longer be a page table,
4721 * or we may be forking, in which case it is better to unmap the page.
4722 */
4723 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4724 {
4725 /*
4726 * Skip write-flooding detected for the sp whose level is 1, because
4727 * it can become unsync, then the guest page is not write-protected.
4728 */
4729 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4730 return false;
4731
4732 atomic_inc(&sp->write_flooding_count);
4733 return atomic_read(&sp->write_flooding_count) >= 3;
4734 }
4735
4736 /*
4737 * Misaligned accesses are too much trouble to fix up; also, they usually
4738 * indicate a page is not used as a page table.
4739 */
4740 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4741 int bytes)
4742 {
4743 unsigned offset, pte_size, misaligned;
4744
4745 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4746 gpa, bytes, sp->role.word);
4747
4748 offset = offset_in_page(gpa);
4749 pte_size = sp->role.cr4_pae ? 8 : 4;
4750
4751 /*
4752 * Sometimes, the OS only writes the last one bytes to update status
4753 * bits, for example, in linux, andb instruction is used in clear_bit().
4754 */
4755 if (!(offset & (pte_size - 1)) && bytes == 1)
4756 return false;
4757
4758 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4759 misaligned |= bytes < 4;
4760
4761 return misaligned;
4762 }
4763
4764 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4765 {
4766 unsigned page_offset, quadrant;
4767 u64 *spte;
4768 int level;
4769
4770 page_offset = offset_in_page(gpa);
4771 level = sp->role.level;
4772 *nspte = 1;
4773 if (!sp->role.cr4_pae) {
4774 page_offset <<= 1; /* 32->64 */
4775 /*
4776 * A 32-bit pde maps 4MB while the shadow pdes map
4777 * only 2MB. So we need to double the offset again
4778 * and zap two pdes instead of one.
4779 */
4780 if (level == PT32_ROOT_LEVEL) {
4781 page_offset &= ~7; /* kill rounding error */
4782 page_offset <<= 1;
4783 *nspte = 2;
4784 }
4785 quadrant = page_offset >> PAGE_SHIFT;
4786 page_offset &= ~PAGE_MASK;
4787 if (quadrant != sp->role.quadrant)
4788 return NULL;
4789 }
4790
4791 spte = &sp->spt[page_offset / sizeof(*spte)];
4792 return spte;
4793 }
4794
4795 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4796 const u8 *new, int bytes,
4797 struct kvm_page_track_notifier_node *node)
4798 {
4799 gfn_t gfn = gpa >> PAGE_SHIFT;
4800 struct kvm_mmu_page *sp;
4801 LIST_HEAD(invalid_list);
4802 u64 entry, gentry, *spte;
4803 int npte;
4804 bool remote_flush, local_flush;
4805 union kvm_mmu_page_role mask = { };
4806
4807 mask.cr0_wp = 1;
4808 mask.cr4_pae = 1;
4809 mask.nxe = 1;
4810 mask.smep_andnot_wp = 1;
4811 mask.smap_andnot_wp = 1;
4812 mask.smm = 1;
4813 mask.ad_disabled = 1;
4814
4815 /*
4816 * If we don't have indirect shadow pages, it means no page is
4817 * write-protected, so we can exit simply.
4818 */
4819 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4820 return;
4821
4822 remote_flush = local_flush = false;
4823
4824 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4825
4826 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4827
4828 /*
4829 * No need to care whether allocation memory is successful
4830 * or not since pte prefetch is skiped if it does not have
4831 * enough objects in the cache.
4832 */
4833 mmu_topup_memory_caches(vcpu);
4834
4835 spin_lock(&vcpu->kvm->mmu_lock);
4836 ++vcpu->kvm->stat.mmu_pte_write;
4837 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4838
4839 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4840 if (detect_write_misaligned(sp, gpa, bytes) ||
4841 detect_write_flooding(sp)) {
4842 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4843 ++vcpu->kvm->stat.mmu_flooded;
4844 continue;
4845 }
4846
4847 spte = get_written_sptes(sp, gpa, &npte);
4848 if (!spte)
4849 continue;
4850
4851 local_flush = true;
4852 while (npte--) {
4853 entry = *spte;
4854 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4855 if (gentry &&
4856 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4857 & mask.word) && rmap_can_add(vcpu))
4858 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4859 if (need_remote_flush(entry, *spte))
4860 remote_flush = true;
4861 ++spte;
4862 }
4863 }
4864 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4865 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4866 spin_unlock(&vcpu->kvm->mmu_lock);
4867 }
4868
4869 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4870 {
4871 gpa_t gpa;
4872 int r;
4873
4874 if (vcpu->arch.mmu.direct_map)
4875 return 0;
4876
4877 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4878
4879 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4880
4881 return r;
4882 }
4883 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4884
4885 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
4886 {
4887 LIST_HEAD(invalid_list);
4888
4889 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4890 return 0;
4891
4892 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4893 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4894 break;
4895
4896 ++vcpu->kvm->stat.mmu_recycled;
4897 }
4898 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4899
4900 if (!kvm_mmu_available_pages(vcpu->kvm))
4901 return -ENOSPC;
4902 return 0;
4903 }
4904
4905 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4906 void *insn, int insn_len)
4907 {
4908 int r, emulation_type = EMULTYPE_RETRY;
4909 enum emulation_result er;
4910 bool direct = vcpu->arch.mmu.direct_map;
4911
4912 /* With shadow page tables, fault_address contains a GVA or nGPA. */
4913 if (vcpu->arch.mmu.direct_map) {
4914 vcpu->arch.gpa_available = true;
4915 vcpu->arch.gpa_val = cr2;
4916 }
4917
4918 r = RET_PF_INVALID;
4919 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4920 r = handle_mmio_page_fault(vcpu, cr2, direct);
4921 if (r == RET_PF_EMULATE) {
4922 emulation_type = 0;
4923 goto emulate;
4924 }
4925 }
4926
4927 if (r == RET_PF_INVALID) {
4928 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4929 false);
4930 WARN_ON(r == RET_PF_INVALID);
4931 }
4932
4933 if (r == RET_PF_RETRY)
4934 return 1;
4935 if (r < 0)
4936 return r;
4937
4938 /*
4939 * Before emulating the instruction, check if the error code
4940 * was due to a RO violation while translating the guest page.
4941 * This can occur when using nested virtualization with nested
4942 * paging in both guests. If true, we simply unprotect the page
4943 * and resume the guest.
4944 */
4945 if (vcpu->arch.mmu.direct_map &&
4946 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
4947 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4948 return 1;
4949 }
4950
4951 if (mmio_info_in_cache(vcpu, cr2, direct))
4952 emulation_type = 0;
4953 emulate:
4954 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4955
4956 switch (er) {
4957 case EMULATE_DONE:
4958 return 1;
4959 case EMULATE_USER_EXIT:
4960 ++vcpu->stat.mmio_exits;
4961 /* fall through */
4962 case EMULATE_FAIL:
4963 return 0;
4964 default:
4965 BUG();
4966 }
4967 }
4968 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4969
4970 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4971 {
4972 vcpu->arch.mmu.invlpg(vcpu, gva);
4973 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4974 ++vcpu->stat.invlpg;
4975 }
4976 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4977
4978 void kvm_enable_tdp(void)
4979 {
4980 tdp_enabled = true;
4981 }
4982 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4983
4984 void kvm_disable_tdp(void)
4985 {
4986 tdp_enabled = false;
4987 }
4988 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4989
4990 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4991 {
4992 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4993 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4994 }
4995
4996 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4997 {
4998 struct page *page;
4999 int i;
5000
5001 /*
5002 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5003 * Therefore we need to allocate shadow page tables in the first
5004 * 4GB of memory, which happens to fit the DMA32 zone.
5005 */
5006 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5007 if (!page)
5008 return -ENOMEM;
5009
5010 vcpu->arch.mmu.pae_root = page_address(page);
5011 for (i = 0; i < 4; ++i)
5012 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
5013
5014 return 0;
5015 }
5016
5017 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5018 {
5019 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5020 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5021 vcpu->arch.mmu.translate_gpa = translate_gpa;
5022 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5023
5024 return alloc_mmu_pages(vcpu);
5025 }
5026
5027 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
5028 {
5029 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
5030
5031 init_kvm_mmu(vcpu);
5032 }
5033
5034 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5035 struct kvm_memory_slot *slot,
5036 struct kvm_page_track_notifier_node *node)
5037 {
5038 kvm_mmu_invalidate_zap_all_pages(kvm);
5039 }
5040
5041 void kvm_mmu_init_vm(struct kvm *kvm)
5042 {
5043 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5044
5045 node->track_write = kvm_mmu_pte_write;
5046 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5047 kvm_page_track_register_notifier(kvm, node);
5048 }
5049
5050 void kvm_mmu_uninit_vm(struct kvm *kvm)
5051 {
5052 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5053
5054 kvm_page_track_unregister_notifier(kvm, node);
5055 }
5056
5057 /* The return value indicates if tlb flush on all vcpus is needed. */
5058 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5059
5060 /* The caller should hold mmu-lock before calling this function. */
5061 static bool
5062 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5063 slot_level_handler fn, int start_level, int end_level,
5064 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5065 {
5066 struct slot_rmap_walk_iterator iterator;
5067 bool flush = false;
5068
5069 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5070 end_gfn, &iterator) {
5071 if (iterator.rmap)
5072 flush |= fn(kvm, iterator.rmap);
5073
5074 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5075 if (flush && lock_flush_tlb) {
5076 kvm_flush_remote_tlbs(kvm);
5077 flush = false;
5078 }
5079 cond_resched_lock(&kvm->mmu_lock);
5080 }
5081 }
5082
5083 if (flush && lock_flush_tlb) {
5084 kvm_flush_remote_tlbs(kvm);
5085 flush = false;
5086 }
5087
5088 return flush;
5089 }
5090
5091 static bool
5092 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5093 slot_level_handler fn, int start_level, int end_level,
5094 bool lock_flush_tlb)
5095 {
5096 return slot_handle_level_range(kvm, memslot, fn, start_level,
5097 end_level, memslot->base_gfn,
5098 memslot->base_gfn + memslot->npages - 1,
5099 lock_flush_tlb);
5100 }
5101
5102 static bool
5103 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5104 slot_level_handler fn, bool lock_flush_tlb)
5105 {
5106 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5107 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5108 }
5109
5110 static bool
5111 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5112 slot_level_handler fn, bool lock_flush_tlb)
5113 {
5114 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5115 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5116 }
5117
5118 static bool
5119 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5120 slot_level_handler fn, bool lock_flush_tlb)
5121 {
5122 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5123 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5124 }
5125
5126 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5127 {
5128 struct kvm_memslots *slots;
5129 struct kvm_memory_slot *memslot;
5130 int i;
5131
5132 spin_lock(&kvm->mmu_lock);
5133 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5134 slots = __kvm_memslots(kvm, i);
5135 kvm_for_each_memslot(memslot, slots) {
5136 gfn_t start, end;
5137
5138 start = max(gfn_start, memslot->base_gfn);
5139 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5140 if (start >= end)
5141 continue;
5142
5143 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5144 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5145 start, end - 1, true);
5146 }
5147 }
5148
5149 spin_unlock(&kvm->mmu_lock);
5150 }
5151
5152 static bool slot_rmap_write_protect(struct kvm *kvm,
5153 struct kvm_rmap_head *rmap_head)
5154 {
5155 return __rmap_write_protect(kvm, rmap_head, false);
5156 }
5157
5158 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5159 struct kvm_memory_slot *memslot)
5160 {
5161 bool flush;
5162
5163 spin_lock(&kvm->mmu_lock);
5164 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5165 false);
5166 spin_unlock(&kvm->mmu_lock);
5167
5168 /*
5169 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5170 * which do tlb flush out of mmu-lock should be serialized by
5171 * kvm->slots_lock otherwise tlb flush would be missed.
5172 */
5173 lockdep_assert_held(&kvm->slots_lock);
5174
5175 /*
5176 * We can flush all the TLBs out of the mmu lock without TLB
5177 * corruption since we just change the spte from writable to
5178 * readonly so that we only need to care the case of changing
5179 * spte from present to present (changing the spte from present
5180 * to nonpresent will flush all the TLBs immediately), in other
5181 * words, the only case we care is mmu_spte_update() where we
5182 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5183 * instead of PT_WRITABLE_MASK, that means it does not depend
5184 * on PT_WRITABLE_MASK anymore.
5185 */
5186 if (flush)
5187 kvm_flush_remote_tlbs(kvm);
5188 }
5189
5190 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5191 struct kvm_rmap_head *rmap_head)
5192 {
5193 u64 *sptep;
5194 struct rmap_iterator iter;
5195 int need_tlb_flush = 0;
5196 kvm_pfn_t pfn;
5197 struct kvm_mmu_page *sp;
5198
5199 restart:
5200 for_each_rmap_spte(rmap_head, &iter, sptep) {
5201 sp = page_header(__pa(sptep));
5202 pfn = spte_to_pfn(*sptep);
5203
5204 /*
5205 * We cannot do huge page mapping for indirect shadow pages,
5206 * which are found on the last rmap (level = 1) when not using
5207 * tdp; such shadow pages are synced with the page table in
5208 * the guest, and the guest page table is using 4K page size
5209 * mapping if the indirect sp has level = 1.
5210 */
5211 if (sp->role.direct &&
5212 !kvm_is_reserved_pfn(pfn) &&
5213 PageTransCompoundMap(pfn_to_page(pfn))) {
5214 drop_spte(kvm, sptep);
5215 need_tlb_flush = 1;
5216 goto restart;
5217 }
5218 }
5219
5220 return need_tlb_flush;
5221 }
5222
5223 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5224 const struct kvm_memory_slot *memslot)
5225 {
5226 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5227 spin_lock(&kvm->mmu_lock);
5228 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5229 kvm_mmu_zap_collapsible_spte, true);
5230 spin_unlock(&kvm->mmu_lock);
5231 }
5232
5233 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5234 struct kvm_memory_slot *memslot)
5235 {
5236 bool flush;
5237
5238 spin_lock(&kvm->mmu_lock);
5239 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5240 spin_unlock(&kvm->mmu_lock);
5241
5242 lockdep_assert_held(&kvm->slots_lock);
5243
5244 /*
5245 * It's also safe to flush TLBs out of mmu lock here as currently this
5246 * function is only used for dirty logging, in which case flushing TLB
5247 * out of mmu lock also guarantees no dirty pages will be lost in
5248 * dirty_bitmap.
5249 */
5250 if (flush)
5251 kvm_flush_remote_tlbs(kvm);
5252 }
5253 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5254
5255 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5256 struct kvm_memory_slot *memslot)
5257 {
5258 bool flush;
5259
5260 spin_lock(&kvm->mmu_lock);
5261 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5262 false);
5263 spin_unlock(&kvm->mmu_lock);
5264
5265 /* see kvm_mmu_slot_remove_write_access */
5266 lockdep_assert_held(&kvm->slots_lock);
5267
5268 if (flush)
5269 kvm_flush_remote_tlbs(kvm);
5270 }
5271 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5272
5273 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5274 struct kvm_memory_slot *memslot)
5275 {
5276 bool flush;
5277
5278 spin_lock(&kvm->mmu_lock);
5279 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5280 spin_unlock(&kvm->mmu_lock);
5281
5282 lockdep_assert_held(&kvm->slots_lock);
5283
5284 /* see kvm_mmu_slot_leaf_clear_dirty */
5285 if (flush)
5286 kvm_flush_remote_tlbs(kvm);
5287 }
5288 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5289
5290 #define BATCH_ZAP_PAGES 10
5291 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5292 {
5293 struct kvm_mmu_page *sp, *node;
5294 int batch = 0;
5295
5296 restart:
5297 list_for_each_entry_safe_reverse(sp, node,
5298 &kvm->arch.active_mmu_pages, link) {
5299 int ret;
5300
5301 /*
5302 * No obsolete page exists before new created page since
5303 * active_mmu_pages is the FIFO list.
5304 */
5305 if (!is_obsolete_sp(kvm, sp))
5306 break;
5307
5308 /*
5309 * Since we are reversely walking the list and the invalid
5310 * list will be moved to the head, skip the invalid page
5311 * can help us to avoid the infinity list walking.
5312 */
5313 if (sp->role.invalid)
5314 continue;
5315
5316 /*
5317 * Need not flush tlb since we only zap the sp with invalid
5318 * generation number.
5319 */
5320 if (batch >= BATCH_ZAP_PAGES &&
5321 cond_resched_lock(&kvm->mmu_lock)) {
5322 batch = 0;
5323 goto restart;
5324 }
5325
5326 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5327 &kvm->arch.zapped_obsolete_pages);
5328 batch += ret;
5329
5330 if (ret)
5331 goto restart;
5332 }
5333
5334 /*
5335 * Should flush tlb before free page tables since lockless-walking
5336 * may use the pages.
5337 */
5338 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5339 }
5340
5341 /*
5342 * Fast invalidate all shadow pages and use lock-break technique
5343 * to zap obsolete pages.
5344 *
5345 * It's required when memslot is being deleted or VM is being
5346 * destroyed, in these cases, we should ensure that KVM MMU does
5347 * not use any resource of the being-deleted slot or all slots
5348 * after calling the function.
5349 */
5350 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5351 {
5352 spin_lock(&kvm->mmu_lock);
5353 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5354 kvm->arch.mmu_valid_gen++;
5355
5356 /*
5357 * Notify all vcpus to reload its shadow page table
5358 * and flush TLB. Then all vcpus will switch to new
5359 * shadow page table with the new mmu_valid_gen.
5360 *
5361 * Note: we should do this under the protection of
5362 * mmu-lock, otherwise, vcpu would purge shadow page
5363 * but miss tlb flush.
5364 */
5365 kvm_reload_remote_mmus(kvm);
5366
5367 kvm_zap_obsolete_pages(kvm);
5368 spin_unlock(&kvm->mmu_lock);
5369 }
5370
5371 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5372 {
5373 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5374 }
5375
5376 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5377 {
5378 /*
5379 * The very rare case: if the generation-number is round,
5380 * zap all shadow pages.
5381 */
5382 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5383 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5384 kvm_mmu_invalidate_zap_all_pages(kvm);
5385 }
5386 }
5387
5388 static unsigned long
5389 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5390 {
5391 struct kvm *kvm;
5392 int nr_to_scan = sc->nr_to_scan;
5393 unsigned long freed = 0;
5394
5395 spin_lock(&kvm_lock);
5396
5397 list_for_each_entry(kvm, &vm_list, vm_list) {
5398 int idx;
5399 LIST_HEAD(invalid_list);
5400
5401 /*
5402 * Never scan more than sc->nr_to_scan VM instances.
5403 * Will not hit this condition practically since we do not try
5404 * to shrink more than one VM and it is very unlikely to see
5405 * !n_used_mmu_pages so many times.
5406 */
5407 if (!nr_to_scan--)
5408 break;
5409 /*
5410 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5411 * here. We may skip a VM instance errorneosly, but we do not
5412 * want to shrink a VM that only started to populate its MMU
5413 * anyway.
5414 */
5415 if (!kvm->arch.n_used_mmu_pages &&
5416 !kvm_has_zapped_obsolete_pages(kvm))
5417 continue;
5418
5419 idx = srcu_read_lock(&kvm->srcu);
5420 spin_lock(&kvm->mmu_lock);
5421
5422 if (kvm_has_zapped_obsolete_pages(kvm)) {
5423 kvm_mmu_commit_zap_page(kvm,
5424 &kvm->arch.zapped_obsolete_pages);
5425 goto unlock;
5426 }
5427
5428 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5429 freed++;
5430 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5431
5432 unlock:
5433 spin_unlock(&kvm->mmu_lock);
5434 srcu_read_unlock(&kvm->srcu, idx);
5435
5436 /*
5437 * unfair on small ones
5438 * per-vm shrinkers cry out
5439 * sadness comes quickly
5440 */
5441 list_move_tail(&kvm->vm_list, &vm_list);
5442 break;
5443 }
5444
5445 spin_unlock(&kvm_lock);
5446 return freed;
5447 }
5448
5449 static unsigned long
5450 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5451 {
5452 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5453 }
5454
5455 static struct shrinker mmu_shrinker = {
5456 .count_objects = mmu_shrink_count,
5457 .scan_objects = mmu_shrink_scan,
5458 .seeks = DEFAULT_SEEKS * 10,
5459 };
5460
5461 static void mmu_destroy_caches(void)
5462 {
5463 kmem_cache_destroy(pte_list_desc_cache);
5464 kmem_cache_destroy(mmu_page_header_cache);
5465 }
5466
5467 int kvm_mmu_module_init(void)
5468 {
5469 int ret = -ENOMEM;
5470
5471 kvm_mmu_clear_all_pte_masks();
5472
5473 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5474 sizeof(struct pte_list_desc),
5475 0, SLAB_ACCOUNT, NULL);
5476 if (!pte_list_desc_cache)
5477 goto out;
5478
5479 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5480 sizeof(struct kvm_mmu_page),
5481 0, SLAB_ACCOUNT, NULL);
5482 if (!mmu_page_header_cache)
5483 goto out;
5484
5485 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5486 goto out;
5487
5488 ret = register_shrinker(&mmu_shrinker);
5489 if (ret)
5490 goto out;
5491
5492 return 0;
5493
5494 out:
5495 mmu_destroy_caches();
5496 return ret;
5497 }
5498
5499 /*
5500 * Caculate mmu pages needed for kvm.
5501 */
5502 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5503 {
5504 unsigned int nr_mmu_pages;
5505 unsigned int nr_pages = 0;
5506 struct kvm_memslots *slots;
5507 struct kvm_memory_slot *memslot;
5508 int i;
5509
5510 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5511 slots = __kvm_memslots(kvm, i);
5512
5513 kvm_for_each_memslot(memslot, slots)
5514 nr_pages += memslot->npages;
5515 }
5516
5517 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5518 nr_mmu_pages = max(nr_mmu_pages,
5519 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5520
5521 return nr_mmu_pages;
5522 }
5523
5524 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5525 {
5526 kvm_mmu_unload(vcpu);
5527 free_mmu_pages(vcpu);
5528 mmu_free_memory_caches(vcpu);
5529 }
5530
5531 void kvm_mmu_module_exit(void)
5532 {
5533 mmu_destroy_caches();
5534 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5535 unregister_shrinker(&mmu_shrinker);
5536 mmu_audit_disable();
5537 }