]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: improve write flooding detected
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
66 "post pte write",
67 "pre sync",
68 "post sync"
69 };
70
71 #undef MMU_DEBUG
72
73 #ifdef MMU_DEBUG
74
75 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
76 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
77
78 #else
79
80 #define pgprintk(x...) do { } while (0)
81 #define rmap_printk(x...) do { } while (0)
82
83 #endif
84
85 #ifdef MMU_DEBUG
86 static int dbg = 0;
87 module_param(dbg, bool, 0644);
88 #endif
89
90 static int oos_shadow = 1;
91 module_param(oos_shadow, bool, 0644);
92
93 #ifndef MMU_DEBUG
94 #define ASSERT(x) do { } while (0)
95 #else
96 #define ASSERT(x) \
97 if (!(x)) { \
98 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
99 __FILE__, __LINE__, #x); \
100 }
101 #endif
102
103 #define PTE_PREFETCH_NUM 8
104
105 #define PT_FIRST_AVAIL_BITS_SHIFT 9
106 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
107
108 #define PT64_LEVEL_BITS 9
109
110 #define PT64_LEVEL_SHIFT(level) \
111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113 #define PT64_INDEX(address, level)\
114 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115
116
117 #define PT32_LEVEL_BITS 10
118
119 #define PT32_LEVEL_SHIFT(level) \
120 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
121
122 #define PT32_LVL_OFFSET_MASK(level) \
123 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT32_LEVEL_BITS))) - 1))
125
126 #define PT32_INDEX(address, level)\
127 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
128
129
130 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
131 #define PT64_DIR_BASE_ADDR_MASK \
132 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
133 #define PT64_LVL_ADDR_MASK(level) \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
135 * PT64_LEVEL_BITS))) - 1))
136 #define PT64_LVL_OFFSET_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
139
140 #define PT32_BASE_ADDR_MASK PAGE_MASK
141 #define PT32_DIR_BASE_ADDR_MASK \
142 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
143 #define PT32_LVL_ADDR_MASK(level) \
144 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
145 * PT32_LEVEL_BITS))) - 1))
146
147 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
148 | PT64_NX_MASK)
149
150 #define PTE_LIST_EXT 4
151
152 #define ACC_EXEC_MASK 1
153 #define ACC_WRITE_MASK PT_WRITABLE_MASK
154 #define ACC_USER_MASK PT_USER_MASK
155 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
156
157 #include <trace/events/kvm.h>
158
159 #define CREATE_TRACE_POINTS
160 #include "mmutrace.h"
161
162 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
163
164 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
165
166 struct pte_list_desc {
167 u64 *sptes[PTE_LIST_EXT];
168 struct pte_list_desc *more;
169 };
170
171 struct kvm_shadow_walk_iterator {
172 u64 addr;
173 hpa_t shadow_addr;
174 u64 *sptep;
175 int level;
176 unsigned index;
177 };
178
179 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
180 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
181 shadow_walk_okay(&(_walker)); \
182 shadow_walk_next(&(_walker)))
183
184 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
185 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
186 shadow_walk_okay(&(_walker)) && \
187 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
188 __shadow_walk_next(&(_walker), spte))
189
190 static struct kmem_cache *pte_list_desc_cache;
191 static struct kmem_cache *mmu_page_header_cache;
192 static struct percpu_counter kvm_total_used_mmu_pages;
193
194 static u64 __read_mostly shadow_nx_mask;
195 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
196 static u64 __read_mostly shadow_user_mask;
197 static u64 __read_mostly shadow_accessed_mask;
198 static u64 __read_mostly shadow_dirty_mask;
199 static u64 __read_mostly shadow_mmio_mask;
200
201 static void mmu_spte_set(u64 *sptep, u64 spte);
202
203 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
204 {
205 shadow_mmio_mask = mmio_mask;
206 }
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
208
209 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
210 {
211 access &= ACC_WRITE_MASK | ACC_USER_MASK;
212
213 trace_mark_mmio_spte(sptep, gfn, access);
214 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
215 }
216
217 static bool is_mmio_spte(u64 spte)
218 {
219 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
220 }
221
222 static gfn_t get_mmio_spte_gfn(u64 spte)
223 {
224 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
225 }
226
227 static unsigned get_mmio_spte_access(u64 spte)
228 {
229 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
230 }
231
232 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
233 {
234 if (unlikely(is_noslot_pfn(pfn))) {
235 mark_mmio_spte(sptep, gfn, access);
236 return true;
237 }
238
239 return false;
240 }
241
242 static inline u64 rsvd_bits(int s, int e)
243 {
244 return ((1ULL << (e - s + 1)) - 1) << s;
245 }
246
247 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
248 u64 dirty_mask, u64 nx_mask, u64 x_mask)
249 {
250 shadow_user_mask = user_mask;
251 shadow_accessed_mask = accessed_mask;
252 shadow_dirty_mask = dirty_mask;
253 shadow_nx_mask = nx_mask;
254 shadow_x_mask = x_mask;
255 }
256 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
257
258 static int is_cpuid_PSE36(void)
259 {
260 return 1;
261 }
262
263 static int is_nx(struct kvm_vcpu *vcpu)
264 {
265 return vcpu->arch.efer & EFER_NX;
266 }
267
268 static int is_shadow_present_pte(u64 pte)
269 {
270 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
271 }
272
273 static int is_large_pte(u64 pte)
274 {
275 return pte & PT_PAGE_SIZE_MASK;
276 }
277
278 static int is_dirty_gpte(unsigned long pte)
279 {
280 return pte & PT_DIRTY_MASK;
281 }
282
283 static int is_rmap_spte(u64 pte)
284 {
285 return is_shadow_present_pte(pte);
286 }
287
288 static int is_last_spte(u64 pte, int level)
289 {
290 if (level == PT_PAGE_TABLE_LEVEL)
291 return 1;
292 if (is_large_pte(pte))
293 return 1;
294 return 0;
295 }
296
297 static pfn_t spte_to_pfn(u64 pte)
298 {
299 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
300 }
301
302 static gfn_t pse36_gfn_delta(u32 gpte)
303 {
304 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
305
306 return (gpte & PT32_DIR_PSE36_MASK) << shift;
307 }
308
309 #ifdef CONFIG_X86_64
310 static void __set_spte(u64 *sptep, u64 spte)
311 {
312 *sptep = spte;
313 }
314
315 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
316 {
317 *sptep = spte;
318 }
319
320 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
321 {
322 return xchg(sptep, spte);
323 }
324
325 static u64 __get_spte_lockless(u64 *sptep)
326 {
327 return ACCESS_ONCE(*sptep);
328 }
329
330 static bool __check_direct_spte_mmio_pf(u64 spte)
331 {
332 /* It is valid if the spte is zapped. */
333 return spte == 0ull;
334 }
335 #else
336 union split_spte {
337 struct {
338 u32 spte_low;
339 u32 spte_high;
340 };
341 u64 spte;
342 };
343
344 static void count_spte_clear(u64 *sptep, u64 spte)
345 {
346 struct kvm_mmu_page *sp = page_header(__pa(sptep));
347
348 if (is_shadow_present_pte(spte))
349 return;
350
351 /* Ensure the spte is completely set before we increase the count */
352 smp_wmb();
353 sp->clear_spte_count++;
354 }
355
356 static void __set_spte(u64 *sptep, u64 spte)
357 {
358 union split_spte *ssptep, sspte;
359
360 ssptep = (union split_spte *)sptep;
361 sspte = (union split_spte)spte;
362
363 ssptep->spte_high = sspte.spte_high;
364
365 /*
366 * If we map the spte from nonpresent to present, We should store
367 * the high bits firstly, then set present bit, so cpu can not
368 * fetch this spte while we are setting the spte.
369 */
370 smp_wmb();
371
372 ssptep->spte_low = sspte.spte_low;
373 }
374
375 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
376 {
377 union split_spte *ssptep, sspte;
378
379 ssptep = (union split_spte *)sptep;
380 sspte = (union split_spte)spte;
381
382 ssptep->spte_low = sspte.spte_low;
383
384 /*
385 * If we map the spte from present to nonpresent, we should clear
386 * present bit firstly to avoid vcpu fetch the old high bits.
387 */
388 smp_wmb();
389
390 ssptep->spte_high = sspte.spte_high;
391 count_spte_clear(sptep, spte);
392 }
393
394 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
395 {
396 union split_spte *ssptep, sspte, orig;
397
398 ssptep = (union split_spte *)sptep;
399 sspte = (union split_spte)spte;
400
401 /* xchg acts as a barrier before the setting of the high bits */
402 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
403 orig.spte_high = ssptep->spte_high;
404 ssptep->spte_high = sspte.spte_high;
405 count_spte_clear(sptep, spte);
406
407 return orig.spte;
408 }
409
410 /*
411 * The idea using the light way get the spte on x86_32 guest is from
412 * gup_get_pte(arch/x86/mm/gup.c).
413 * The difference is we can not catch the spte tlb flush if we leave
414 * guest mode, so we emulate it by increase clear_spte_count when spte
415 * is cleared.
416 */
417 static u64 __get_spte_lockless(u64 *sptep)
418 {
419 struct kvm_mmu_page *sp = page_header(__pa(sptep));
420 union split_spte spte, *orig = (union split_spte *)sptep;
421 int count;
422
423 retry:
424 count = sp->clear_spte_count;
425 smp_rmb();
426
427 spte.spte_low = orig->spte_low;
428 smp_rmb();
429
430 spte.spte_high = orig->spte_high;
431 smp_rmb();
432
433 if (unlikely(spte.spte_low != orig->spte_low ||
434 count != sp->clear_spte_count))
435 goto retry;
436
437 return spte.spte;
438 }
439
440 static bool __check_direct_spte_mmio_pf(u64 spte)
441 {
442 union split_spte sspte = (union split_spte)spte;
443 u32 high_mmio_mask = shadow_mmio_mask >> 32;
444
445 /* It is valid if the spte is zapped. */
446 if (spte == 0ull)
447 return true;
448
449 /* It is valid if the spte is being zapped. */
450 if (sspte.spte_low == 0ull &&
451 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
452 return true;
453
454 return false;
455 }
456 #endif
457
458 static bool spte_has_volatile_bits(u64 spte)
459 {
460 if (!shadow_accessed_mask)
461 return false;
462
463 if (!is_shadow_present_pte(spte))
464 return false;
465
466 if ((spte & shadow_accessed_mask) &&
467 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
468 return false;
469
470 return true;
471 }
472
473 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
474 {
475 return (old_spte & bit_mask) && !(new_spte & bit_mask);
476 }
477
478 /* Rules for using mmu_spte_set:
479 * Set the sptep from nonpresent to present.
480 * Note: the sptep being assigned *must* be either not present
481 * or in a state where the hardware will not attempt to update
482 * the spte.
483 */
484 static void mmu_spte_set(u64 *sptep, u64 new_spte)
485 {
486 WARN_ON(is_shadow_present_pte(*sptep));
487 __set_spte(sptep, new_spte);
488 }
489
490 /* Rules for using mmu_spte_update:
491 * Update the state bits, it means the mapped pfn is not changged.
492 */
493 static void mmu_spte_update(u64 *sptep, u64 new_spte)
494 {
495 u64 mask, old_spte = *sptep;
496
497 WARN_ON(!is_rmap_spte(new_spte));
498
499 if (!is_shadow_present_pte(old_spte))
500 return mmu_spte_set(sptep, new_spte);
501
502 new_spte |= old_spte & shadow_dirty_mask;
503
504 mask = shadow_accessed_mask;
505 if (is_writable_pte(old_spte))
506 mask |= shadow_dirty_mask;
507
508 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
509 __update_clear_spte_fast(sptep, new_spte);
510 else
511 old_spte = __update_clear_spte_slow(sptep, new_spte);
512
513 if (!shadow_accessed_mask)
514 return;
515
516 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
518 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
519 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
520 }
521
522 /*
523 * Rules for using mmu_spte_clear_track_bits:
524 * It sets the sptep from present to nonpresent, and track the
525 * state bits, it is used to clear the last level sptep.
526 */
527 static int mmu_spte_clear_track_bits(u64 *sptep)
528 {
529 pfn_t pfn;
530 u64 old_spte = *sptep;
531
532 if (!spte_has_volatile_bits(old_spte))
533 __update_clear_spte_fast(sptep, 0ull);
534 else
535 old_spte = __update_clear_spte_slow(sptep, 0ull);
536
537 if (!is_rmap_spte(old_spte))
538 return 0;
539
540 pfn = spte_to_pfn(old_spte);
541 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
542 kvm_set_pfn_accessed(pfn);
543 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
544 kvm_set_pfn_dirty(pfn);
545 return 1;
546 }
547
548 /*
549 * Rules for using mmu_spte_clear_no_track:
550 * Directly clear spte without caring the state bits of sptep,
551 * it is used to set the upper level spte.
552 */
553 static void mmu_spte_clear_no_track(u64 *sptep)
554 {
555 __update_clear_spte_fast(sptep, 0ull);
556 }
557
558 static u64 mmu_spte_get_lockless(u64 *sptep)
559 {
560 return __get_spte_lockless(sptep);
561 }
562
563 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
564 {
565 rcu_read_lock();
566 atomic_inc(&vcpu->kvm->arch.reader_counter);
567
568 /* Increase the counter before walking shadow page table */
569 smp_mb__after_atomic_inc();
570 }
571
572 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
573 {
574 /* Decrease the counter after walking shadow page table finished */
575 smp_mb__before_atomic_dec();
576 atomic_dec(&vcpu->kvm->arch.reader_counter);
577 rcu_read_unlock();
578 }
579
580 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
581 struct kmem_cache *base_cache, int min)
582 {
583 void *obj;
584
585 if (cache->nobjs >= min)
586 return 0;
587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
589 if (!obj)
590 return -ENOMEM;
591 cache->objects[cache->nobjs++] = obj;
592 }
593 return 0;
594 }
595
596 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597 {
598 return cache->nobjs;
599 }
600
601 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602 struct kmem_cache *cache)
603 {
604 while (mc->nobjs)
605 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
606 }
607
608 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
609 int min)
610 {
611 void *page;
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
616 page = (void *)__get_free_page(GFP_KERNEL);
617 if (!page)
618 return -ENOMEM;
619 cache->objects[cache->nobjs++] = page;
620 }
621 return 0;
622 }
623
624 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625 {
626 while (mc->nobjs)
627 free_page((unsigned long)mc->objects[--mc->nobjs]);
628 }
629
630 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
631 {
632 int r;
633
634 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
635 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
636 if (r)
637 goto out;
638 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
639 if (r)
640 goto out;
641 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
642 mmu_page_header_cache, 4);
643 out:
644 return r;
645 }
646
647 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648 {
649 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650 pte_list_desc_cache);
651 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
652 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653 mmu_page_header_cache);
654 }
655
656 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
657 size_t size)
658 {
659 void *p;
660
661 BUG_ON(!mc->nobjs);
662 p = mc->objects[--mc->nobjs];
663 return p;
664 }
665
666 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
667 {
668 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
669 sizeof(struct pte_list_desc));
670 }
671
672 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
673 {
674 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
675 }
676
677 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
678 {
679 if (!sp->role.direct)
680 return sp->gfns[index];
681
682 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
683 }
684
685 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
686 {
687 if (sp->role.direct)
688 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
689 else
690 sp->gfns[index] = gfn;
691 }
692
693 /*
694 * Return the pointer to the large page information for a given gfn,
695 * handling slots that are not large page aligned.
696 */
697 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
698 struct kvm_memory_slot *slot,
699 int level)
700 {
701 unsigned long idx;
702
703 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
704 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
705 return &slot->lpage_info[level - 2][idx];
706 }
707
708 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
709 {
710 struct kvm_memory_slot *slot;
711 struct kvm_lpage_info *linfo;
712 int i;
713
714 slot = gfn_to_memslot(kvm, gfn);
715 for (i = PT_DIRECTORY_LEVEL;
716 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
717 linfo = lpage_info_slot(gfn, slot, i);
718 linfo->write_count += 1;
719 }
720 kvm->arch.indirect_shadow_pages++;
721 }
722
723 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
724 {
725 struct kvm_memory_slot *slot;
726 struct kvm_lpage_info *linfo;
727 int i;
728
729 slot = gfn_to_memslot(kvm, gfn);
730 for (i = PT_DIRECTORY_LEVEL;
731 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
732 linfo = lpage_info_slot(gfn, slot, i);
733 linfo->write_count -= 1;
734 WARN_ON(linfo->write_count < 0);
735 }
736 kvm->arch.indirect_shadow_pages--;
737 }
738
739 static int has_wrprotected_page(struct kvm *kvm,
740 gfn_t gfn,
741 int level)
742 {
743 struct kvm_memory_slot *slot;
744 struct kvm_lpage_info *linfo;
745
746 slot = gfn_to_memslot(kvm, gfn);
747 if (slot) {
748 linfo = lpage_info_slot(gfn, slot, level);
749 return linfo->write_count;
750 }
751
752 return 1;
753 }
754
755 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
756 {
757 unsigned long page_size;
758 int i, ret = 0;
759
760 page_size = kvm_host_page_size(kvm, gfn);
761
762 for (i = PT_PAGE_TABLE_LEVEL;
763 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
764 if (page_size >= KVM_HPAGE_SIZE(i))
765 ret = i;
766 else
767 break;
768 }
769
770 return ret;
771 }
772
773 static struct kvm_memory_slot *
774 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
775 bool no_dirty_log)
776 {
777 struct kvm_memory_slot *slot;
778
779 slot = gfn_to_memslot(vcpu->kvm, gfn);
780 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
781 (no_dirty_log && slot->dirty_bitmap))
782 slot = NULL;
783
784 return slot;
785 }
786
787 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
788 {
789 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
790 }
791
792 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
793 {
794 int host_level, level, max_level;
795
796 host_level = host_mapping_level(vcpu->kvm, large_gfn);
797
798 if (host_level == PT_PAGE_TABLE_LEVEL)
799 return host_level;
800
801 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
802 kvm_x86_ops->get_lpage_level() : host_level;
803
804 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
805 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
806 break;
807
808 return level - 1;
809 }
810
811 /*
812 * Pte mapping structures:
813 *
814 * If pte_list bit zero is zero, then pte_list point to the spte.
815 *
816 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
817 * pte_list_desc containing more mappings.
818 *
819 * Returns the number of pte entries before the spte was added or zero if
820 * the spte was not added.
821 *
822 */
823 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
824 unsigned long *pte_list)
825 {
826 struct pte_list_desc *desc;
827 int i, count = 0;
828
829 if (!*pte_list) {
830 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
831 *pte_list = (unsigned long)spte;
832 } else if (!(*pte_list & 1)) {
833 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
834 desc = mmu_alloc_pte_list_desc(vcpu);
835 desc->sptes[0] = (u64 *)*pte_list;
836 desc->sptes[1] = spte;
837 *pte_list = (unsigned long)desc | 1;
838 ++count;
839 } else {
840 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
841 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
842 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
843 desc = desc->more;
844 count += PTE_LIST_EXT;
845 }
846 if (desc->sptes[PTE_LIST_EXT-1]) {
847 desc->more = mmu_alloc_pte_list_desc(vcpu);
848 desc = desc->more;
849 }
850 for (i = 0; desc->sptes[i]; ++i)
851 ++count;
852 desc->sptes[i] = spte;
853 }
854 return count;
855 }
856
857 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
858 {
859 struct pte_list_desc *desc;
860 u64 *prev_spte;
861 int i;
862
863 if (!*pte_list)
864 return NULL;
865 else if (!(*pte_list & 1)) {
866 if (!spte)
867 return (u64 *)*pte_list;
868 return NULL;
869 }
870 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
871 prev_spte = NULL;
872 while (desc) {
873 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
874 if (prev_spte == spte)
875 return desc->sptes[i];
876 prev_spte = desc->sptes[i];
877 }
878 desc = desc->more;
879 }
880 return NULL;
881 }
882
883 static void
884 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
885 int i, struct pte_list_desc *prev_desc)
886 {
887 int j;
888
889 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
890 ;
891 desc->sptes[i] = desc->sptes[j];
892 desc->sptes[j] = NULL;
893 if (j != 0)
894 return;
895 if (!prev_desc && !desc->more)
896 *pte_list = (unsigned long)desc->sptes[0];
897 else
898 if (prev_desc)
899 prev_desc->more = desc->more;
900 else
901 *pte_list = (unsigned long)desc->more | 1;
902 mmu_free_pte_list_desc(desc);
903 }
904
905 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
906 {
907 struct pte_list_desc *desc;
908 struct pte_list_desc *prev_desc;
909 int i;
910
911 if (!*pte_list) {
912 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
913 BUG();
914 } else if (!(*pte_list & 1)) {
915 rmap_printk("pte_list_remove: %p 1->0\n", spte);
916 if ((u64 *)*pte_list != spte) {
917 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
918 BUG();
919 }
920 *pte_list = 0;
921 } else {
922 rmap_printk("pte_list_remove: %p many->many\n", spte);
923 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
924 prev_desc = NULL;
925 while (desc) {
926 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
927 if (desc->sptes[i] == spte) {
928 pte_list_desc_remove_entry(pte_list,
929 desc, i,
930 prev_desc);
931 return;
932 }
933 prev_desc = desc;
934 desc = desc->more;
935 }
936 pr_err("pte_list_remove: %p many->many\n", spte);
937 BUG();
938 }
939 }
940
941 typedef void (*pte_list_walk_fn) (u64 *spte);
942 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
943 {
944 struct pte_list_desc *desc;
945 int i;
946
947 if (!*pte_list)
948 return;
949
950 if (!(*pte_list & 1))
951 return fn((u64 *)*pte_list);
952
953 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
954 while (desc) {
955 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
956 fn(desc->sptes[i]);
957 desc = desc->more;
958 }
959 }
960
961 /*
962 * Take gfn and return the reverse mapping to it.
963 */
964 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965 {
966 struct kvm_memory_slot *slot;
967 struct kvm_lpage_info *linfo;
968
969 slot = gfn_to_memslot(kvm, gfn);
970 if (likely(level == PT_PAGE_TABLE_LEVEL))
971 return &slot->rmap[gfn - slot->base_gfn];
972
973 linfo = lpage_info_slot(gfn, slot, level);
974
975 return &linfo->rmap_pde;
976 }
977
978 static bool rmap_can_add(struct kvm_vcpu *vcpu)
979 {
980 struct kvm_mmu_memory_cache *cache;
981
982 cache = &vcpu->arch.mmu_pte_list_desc_cache;
983 return mmu_memory_cache_free_objects(cache);
984 }
985
986 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
987 {
988 struct kvm_mmu_page *sp;
989 unsigned long *rmapp;
990
991 sp = page_header(__pa(spte));
992 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
993 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
994 return pte_list_add(vcpu, spte, rmapp);
995 }
996
997 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
998 {
999 return pte_list_next(rmapp, spte);
1000 }
1001
1002 static void rmap_remove(struct kvm *kvm, u64 *spte)
1003 {
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012 }
1013
1014 static void drop_spte(struct kvm *kvm, u64 *sptep)
1015 {
1016 if (mmu_spte_clear_track_bits(sptep))
1017 rmap_remove(kvm, sptep);
1018 }
1019
1020 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1021 {
1022 unsigned long *rmapp;
1023 u64 *spte;
1024 int i, write_protected = 0;
1025
1026 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
1027
1028 spte = rmap_next(kvm, rmapp, NULL);
1029 while (spte) {
1030 BUG_ON(!spte);
1031 BUG_ON(!(*spte & PT_PRESENT_MASK));
1032 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1033 if (is_writable_pte(*spte)) {
1034 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1035 write_protected = 1;
1036 }
1037 spte = rmap_next(kvm, rmapp, spte);
1038 }
1039
1040 /* check for huge page mappings */
1041 for (i = PT_DIRECTORY_LEVEL;
1042 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1043 rmapp = gfn_to_rmap(kvm, gfn, i);
1044 spte = rmap_next(kvm, rmapp, NULL);
1045 while (spte) {
1046 BUG_ON(!spte);
1047 BUG_ON(!(*spte & PT_PRESENT_MASK));
1048 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
1049 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1050 if (is_writable_pte(*spte)) {
1051 drop_spte(kvm, spte);
1052 --kvm->stat.lpages;
1053 spte = NULL;
1054 write_protected = 1;
1055 }
1056 spte = rmap_next(kvm, rmapp, spte);
1057 }
1058 }
1059
1060 return write_protected;
1061 }
1062
1063 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064 unsigned long data)
1065 {
1066 u64 *spte;
1067 int need_tlb_flush = 0;
1068
1069 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1072 drop_spte(kvm, spte);
1073 need_tlb_flush = 1;
1074 }
1075 return need_tlb_flush;
1076 }
1077
1078 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 unsigned long data)
1080 {
1081 int need_flush = 0;
1082 u64 *spte, new_spte;
1083 pte_t *ptep = (pte_t *)data;
1084 pfn_t new_pfn;
1085
1086 WARN_ON(pte_huge(*ptep));
1087 new_pfn = pte_pfn(*ptep);
1088 spte = rmap_next(kvm, rmapp, NULL);
1089 while (spte) {
1090 BUG_ON(!is_shadow_present_pte(*spte));
1091 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092 need_flush = 1;
1093 if (pte_write(*ptep)) {
1094 drop_spte(kvm, spte);
1095 spte = rmap_next(kvm, rmapp, NULL);
1096 } else {
1097 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100 new_spte &= ~PT_WRITABLE_MASK;
1101 new_spte &= ~SPTE_HOST_WRITEABLE;
1102 new_spte &= ~shadow_accessed_mask;
1103 mmu_spte_clear_track_bits(spte);
1104 mmu_spte_set(spte, new_spte);
1105 spte = rmap_next(kvm, rmapp, spte);
1106 }
1107 }
1108 if (need_flush)
1109 kvm_flush_remote_tlbs(kvm);
1110
1111 return 0;
1112 }
1113
1114 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115 unsigned long data,
1116 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1117 unsigned long data))
1118 {
1119 int i, j;
1120 int ret;
1121 int retval = 0;
1122 struct kvm_memslots *slots;
1123
1124 slots = kvm_memslots(kvm);
1125
1126 for (i = 0; i < slots->nmemslots; i++) {
1127 struct kvm_memory_slot *memslot = &slots->memslots[i];
1128 unsigned long start = memslot->userspace_addr;
1129 unsigned long end;
1130
1131 end = start + (memslot->npages << PAGE_SHIFT);
1132 if (hva >= start && hva < end) {
1133 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1134 gfn_t gfn = memslot->base_gfn + gfn_offset;
1135
1136 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1137
1138 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1139 struct kvm_lpage_info *linfo;
1140
1141 linfo = lpage_info_slot(gfn, memslot,
1142 PT_DIRECTORY_LEVEL + j);
1143 ret |= handler(kvm, &linfo->rmap_pde, data);
1144 }
1145 trace_kvm_age_page(hva, memslot, ret);
1146 retval |= ret;
1147 }
1148 }
1149
1150 return retval;
1151 }
1152
1153 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154 {
1155 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156 }
1157
1158 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159 {
1160 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1161 }
1162
1163 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164 unsigned long data)
1165 {
1166 u64 *spte;
1167 int young = 0;
1168
1169 /*
1170 * Emulate the accessed bit for EPT, by checking if this page has
1171 * an EPT mapping, and clearing it if it does. On the next access,
1172 * a new EPT mapping will be established.
1173 * This has some overhead, but not as much as the cost of swapping
1174 * out actively used pages or breaking up actively used hugepages.
1175 */
1176 if (!shadow_accessed_mask)
1177 return kvm_unmap_rmapp(kvm, rmapp, data);
1178
1179 spte = rmap_next(kvm, rmapp, NULL);
1180 while (spte) {
1181 int _young;
1182 u64 _spte = *spte;
1183 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184 _young = _spte & PT_ACCESSED_MASK;
1185 if (_young) {
1186 young = 1;
1187 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188 }
1189 spte = rmap_next(kvm, rmapp, spte);
1190 }
1191 return young;
1192 }
1193
1194 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195 unsigned long data)
1196 {
1197 u64 *spte;
1198 int young = 0;
1199
1200 /*
1201 * If there's no access bit in the secondary pte set by the
1202 * hardware it's up to gup-fast/gup to set the access bit in
1203 * the primary pte or in the page structure.
1204 */
1205 if (!shadow_accessed_mask)
1206 goto out;
1207
1208 spte = rmap_next(kvm, rmapp, NULL);
1209 while (spte) {
1210 u64 _spte = *spte;
1211 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212 young = _spte & PT_ACCESSED_MASK;
1213 if (young) {
1214 young = 1;
1215 break;
1216 }
1217 spte = rmap_next(kvm, rmapp, spte);
1218 }
1219 out:
1220 return young;
1221 }
1222
1223 #define RMAP_RECYCLE_THRESHOLD 1000
1224
1225 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1226 {
1227 unsigned long *rmapp;
1228 struct kvm_mmu_page *sp;
1229
1230 sp = page_header(__pa(spte));
1231
1232 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1233
1234 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1235 kvm_flush_remote_tlbs(vcpu->kvm);
1236 }
1237
1238 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239 {
1240 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1241 }
1242
1243 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244 {
1245 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246 }
1247
1248 #ifdef MMU_DEBUG
1249 static int is_empty_shadow_page(u64 *spt)
1250 {
1251 u64 *pos;
1252 u64 *end;
1253
1254 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1255 if (is_shadow_present_pte(*pos)) {
1256 printk(KERN_ERR "%s: %p %llx\n", __func__,
1257 pos, *pos);
1258 return 0;
1259 }
1260 return 1;
1261 }
1262 #endif
1263
1264 /*
1265 * This value is the sum of all of the kvm instances's
1266 * kvm->arch.n_used_mmu_pages values. We need a global,
1267 * aggregate version in order to make the slab shrinker
1268 * faster
1269 */
1270 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271 {
1272 kvm->arch.n_used_mmu_pages += nr;
1273 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274 }
1275
1276 /*
1277 * Remove the sp from shadow page cache, after call it,
1278 * we can not find this sp from the cache, and the shadow
1279 * page table is still valid.
1280 * It should be under the protection of mmu lock.
1281 */
1282 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1283 {
1284 ASSERT(is_empty_shadow_page(sp->spt));
1285 hlist_del(&sp->hash_link);
1286 if (!sp->role.direct)
1287 free_page((unsigned long)sp->gfns);
1288 }
1289
1290 /*
1291 * Free the shadow page table and the sp, we can do it
1292 * out of the protection of mmu lock.
1293 */
1294 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295 {
1296 list_del(&sp->link);
1297 free_page((unsigned long)sp->spt);
1298 kmem_cache_free(mmu_page_header_cache, sp);
1299 }
1300
1301 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302 {
1303 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1304 }
1305
1306 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1307 struct kvm_mmu_page *sp, u64 *parent_pte)
1308 {
1309 if (!parent_pte)
1310 return;
1311
1312 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1313 }
1314
1315 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1316 u64 *parent_pte)
1317 {
1318 pte_list_remove(parent_pte, &sp->parent_ptes);
1319 }
1320
1321 static void drop_parent_pte(struct kvm_mmu_page *sp,
1322 u64 *parent_pte)
1323 {
1324 mmu_page_remove_parent_pte(sp, parent_pte);
1325 mmu_spte_clear_no_track(parent_pte);
1326 }
1327
1328 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329 u64 *parent_pte, int direct)
1330 {
1331 struct kvm_mmu_page *sp;
1332 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333 sizeof *sp);
1334 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335 if (!direct)
1336 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337 PAGE_SIZE);
1338 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1341 sp->parent_ptes = 0;
1342 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344 return sp;
1345 }
1346
1347 static void mark_unsync(u64 *spte);
1348 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1349 {
1350 pte_list_walk(&sp->parent_ptes, mark_unsync);
1351 }
1352
1353 static void mark_unsync(u64 *spte)
1354 {
1355 struct kvm_mmu_page *sp;
1356 unsigned int index;
1357
1358 sp = page_header(__pa(spte));
1359 index = spte - sp->spt;
1360 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1361 return;
1362 if (sp->unsync_children++)
1363 return;
1364 kvm_mmu_mark_parents_unsync(sp);
1365 }
1366
1367 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1368 struct kvm_mmu_page *sp)
1369 {
1370 return 1;
1371 }
1372
1373 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374 {
1375 }
1376
1377 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378 struct kvm_mmu_page *sp, u64 *spte,
1379 const void *pte)
1380 {
1381 WARN_ON(1);
1382 }
1383
1384 #define KVM_PAGE_ARRAY_NR 16
1385
1386 struct kvm_mmu_pages {
1387 struct mmu_page_and_offset {
1388 struct kvm_mmu_page *sp;
1389 unsigned int idx;
1390 } page[KVM_PAGE_ARRAY_NR];
1391 unsigned int nr;
1392 };
1393
1394 #define for_each_unsync_children(bitmap, idx) \
1395 for (idx = find_first_bit(bitmap, 512); \
1396 idx < 512; \
1397 idx = find_next_bit(bitmap, 512, idx+1))
1398
1399 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1400 int idx)
1401 {
1402 int i;
1403
1404 if (sp->unsync)
1405 for (i=0; i < pvec->nr; i++)
1406 if (pvec->page[i].sp == sp)
1407 return 0;
1408
1409 pvec->page[pvec->nr].sp = sp;
1410 pvec->page[pvec->nr].idx = idx;
1411 pvec->nr++;
1412 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1413 }
1414
1415 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1416 struct kvm_mmu_pages *pvec)
1417 {
1418 int i, ret, nr_unsync_leaf = 0;
1419
1420 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1421 struct kvm_mmu_page *child;
1422 u64 ent = sp->spt[i];
1423
1424 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1425 goto clear_child_bitmap;
1426
1427 child = page_header(ent & PT64_BASE_ADDR_MASK);
1428
1429 if (child->unsync_children) {
1430 if (mmu_pages_add(pvec, child, i))
1431 return -ENOSPC;
1432
1433 ret = __mmu_unsync_walk(child, pvec);
1434 if (!ret)
1435 goto clear_child_bitmap;
1436 else if (ret > 0)
1437 nr_unsync_leaf += ret;
1438 else
1439 return ret;
1440 } else if (child->unsync) {
1441 nr_unsync_leaf++;
1442 if (mmu_pages_add(pvec, child, i))
1443 return -ENOSPC;
1444 } else
1445 goto clear_child_bitmap;
1446
1447 continue;
1448
1449 clear_child_bitmap:
1450 __clear_bit(i, sp->unsync_child_bitmap);
1451 sp->unsync_children--;
1452 WARN_ON((int)sp->unsync_children < 0);
1453 }
1454
1455
1456 return nr_unsync_leaf;
1457 }
1458
1459 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1460 struct kvm_mmu_pages *pvec)
1461 {
1462 if (!sp->unsync_children)
1463 return 0;
1464
1465 mmu_pages_add(pvec, sp, 0);
1466 return __mmu_unsync_walk(sp, pvec);
1467 }
1468
1469 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1470 {
1471 WARN_ON(!sp->unsync);
1472 trace_kvm_mmu_sync_page(sp);
1473 sp->unsync = 0;
1474 --kvm->stat.mmu_unsync;
1475 }
1476
1477 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1478 struct list_head *invalid_list);
1479 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1480 struct list_head *invalid_list);
1481
1482 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1483 hlist_for_each_entry(sp, pos, \
1484 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1485 if ((sp)->gfn != (gfn)) {} else
1486
1487 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1488 hlist_for_each_entry(sp, pos, \
1489 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1490 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1491 (sp)->role.invalid) {} else
1492
1493 /* @sp->gfn should be write-protected at the call site */
1494 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1495 struct list_head *invalid_list, bool clear_unsync)
1496 {
1497 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1498 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1499 return 1;
1500 }
1501
1502 if (clear_unsync)
1503 kvm_unlink_unsync_page(vcpu->kvm, sp);
1504
1505 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1506 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1507 return 1;
1508 }
1509
1510 kvm_mmu_flush_tlb(vcpu);
1511 return 0;
1512 }
1513
1514 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1515 struct kvm_mmu_page *sp)
1516 {
1517 LIST_HEAD(invalid_list);
1518 int ret;
1519
1520 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1521 if (ret)
1522 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1523
1524 return ret;
1525 }
1526
1527 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1528 struct list_head *invalid_list)
1529 {
1530 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1531 }
1532
1533 /* @gfn should be write-protected at the call site */
1534 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1535 {
1536 struct kvm_mmu_page *s;
1537 struct hlist_node *node;
1538 LIST_HEAD(invalid_list);
1539 bool flush = false;
1540
1541 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1542 if (!s->unsync)
1543 continue;
1544
1545 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1546 kvm_unlink_unsync_page(vcpu->kvm, s);
1547 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1548 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1549 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1550 continue;
1551 }
1552 flush = true;
1553 }
1554
1555 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1556 if (flush)
1557 kvm_mmu_flush_tlb(vcpu);
1558 }
1559
1560 struct mmu_page_path {
1561 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1562 unsigned int idx[PT64_ROOT_LEVEL-1];
1563 };
1564
1565 #define for_each_sp(pvec, sp, parents, i) \
1566 for (i = mmu_pages_next(&pvec, &parents, -1), \
1567 sp = pvec.page[i].sp; \
1568 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1569 i = mmu_pages_next(&pvec, &parents, i))
1570
1571 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1572 struct mmu_page_path *parents,
1573 int i)
1574 {
1575 int n;
1576
1577 for (n = i+1; n < pvec->nr; n++) {
1578 struct kvm_mmu_page *sp = pvec->page[n].sp;
1579
1580 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1581 parents->idx[0] = pvec->page[n].idx;
1582 return n;
1583 }
1584
1585 parents->parent[sp->role.level-2] = sp;
1586 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1587 }
1588
1589 return n;
1590 }
1591
1592 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1593 {
1594 struct kvm_mmu_page *sp;
1595 unsigned int level = 0;
1596
1597 do {
1598 unsigned int idx = parents->idx[level];
1599
1600 sp = parents->parent[level];
1601 if (!sp)
1602 return;
1603
1604 --sp->unsync_children;
1605 WARN_ON((int)sp->unsync_children < 0);
1606 __clear_bit(idx, sp->unsync_child_bitmap);
1607 level++;
1608 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1609 }
1610
1611 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1612 struct mmu_page_path *parents,
1613 struct kvm_mmu_pages *pvec)
1614 {
1615 parents->parent[parent->role.level-1] = NULL;
1616 pvec->nr = 0;
1617 }
1618
1619 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1620 struct kvm_mmu_page *parent)
1621 {
1622 int i;
1623 struct kvm_mmu_page *sp;
1624 struct mmu_page_path parents;
1625 struct kvm_mmu_pages pages;
1626 LIST_HEAD(invalid_list);
1627
1628 kvm_mmu_pages_init(parent, &parents, &pages);
1629 while (mmu_unsync_walk(parent, &pages)) {
1630 int protected = 0;
1631
1632 for_each_sp(pages, sp, parents, i)
1633 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1634
1635 if (protected)
1636 kvm_flush_remote_tlbs(vcpu->kvm);
1637
1638 for_each_sp(pages, sp, parents, i) {
1639 kvm_sync_page(vcpu, sp, &invalid_list);
1640 mmu_pages_clear_parents(&parents);
1641 }
1642 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1643 cond_resched_lock(&vcpu->kvm->mmu_lock);
1644 kvm_mmu_pages_init(parent, &parents, &pages);
1645 }
1646 }
1647
1648 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1649 {
1650 int i;
1651
1652 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1653 sp->spt[i] = 0ull;
1654 }
1655
1656 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1657 {
1658 sp->write_flooding_count = 0;
1659 }
1660
1661 static void clear_sp_write_flooding_count(u64 *spte)
1662 {
1663 struct kvm_mmu_page *sp = page_header(__pa(spte));
1664
1665 __clear_sp_write_flooding_count(sp);
1666 }
1667
1668 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1669 gfn_t gfn,
1670 gva_t gaddr,
1671 unsigned level,
1672 int direct,
1673 unsigned access,
1674 u64 *parent_pte)
1675 {
1676 union kvm_mmu_page_role role;
1677 unsigned quadrant;
1678 struct kvm_mmu_page *sp;
1679 struct hlist_node *node;
1680 bool need_sync = false;
1681
1682 role = vcpu->arch.mmu.base_role;
1683 role.level = level;
1684 role.direct = direct;
1685 if (role.direct)
1686 role.cr4_pae = 0;
1687 role.access = access;
1688 if (!vcpu->arch.mmu.direct_map
1689 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1690 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1691 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1692 role.quadrant = quadrant;
1693 }
1694 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1695 if (!need_sync && sp->unsync)
1696 need_sync = true;
1697
1698 if (sp->role.word != role.word)
1699 continue;
1700
1701 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1702 break;
1703
1704 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1705 if (sp->unsync_children) {
1706 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1707 kvm_mmu_mark_parents_unsync(sp);
1708 } else if (sp->unsync)
1709 kvm_mmu_mark_parents_unsync(sp);
1710
1711 __clear_sp_write_flooding_count(sp);
1712 trace_kvm_mmu_get_page(sp, false);
1713 return sp;
1714 }
1715 ++vcpu->kvm->stat.mmu_cache_miss;
1716 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1717 if (!sp)
1718 return sp;
1719 sp->gfn = gfn;
1720 sp->role = role;
1721 hlist_add_head(&sp->hash_link,
1722 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1723 if (!direct) {
1724 if (rmap_write_protect(vcpu->kvm, gfn))
1725 kvm_flush_remote_tlbs(vcpu->kvm);
1726 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1727 kvm_sync_pages(vcpu, gfn);
1728
1729 account_shadowed(vcpu->kvm, gfn);
1730 }
1731 init_shadow_page_table(sp);
1732 trace_kvm_mmu_get_page(sp, true);
1733 return sp;
1734 }
1735
1736 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1737 struct kvm_vcpu *vcpu, u64 addr)
1738 {
1739 iterator->addr = addr;
1740 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1741 iterator->level = vcpu->arch.mmu.shadow_root_level;
1742
1743 if (iterator->level == PT64_ROOT_LEVEL &&
1744 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1745 !vcpu->arch.mmu.direct_map)
1746 --iterator->level;
1747
1748 if (iterator->level == PT32E_ROOT_LEVEL) {
1749 iterator->shadow_addr
1750 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1751 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1752 --iterator->level;
1753 if (!iterator->shadow_addr)
1754 iterator->level = 0;
1755 }
1756 }
1757
1758 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1759 {
1760 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1761 return false;
1762
1763 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1764 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1765 return true;
1766 }
1767
1768 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1769 u64 spte)
1770 {
1771 if (is_last_spte(spte, iterator->level)) {
1772 iterator->level = 0;
1773 return;
1774 }
1775
1776 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1777 --iterator->level;
1778 }
1779
1780 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1781 {
1782 return __shadow_walk_next(iterator, *iterator->sptep);
1783 }
1784
1785 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1786 {
1787 u64 spte;
1788
1789 spte = __pa(sp->spt)
1790 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1791 | PT_WRITABLE_MASK | PT_USER_MASK;
1792 mmu_spte_set(sptep, spte);
1793 }
1794
1795 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1796 {
1797 if (is_large_pte(*sptep)) {
1798 drop_spte(vcpu->kvm, sptep);
1799 kvm_flush_remote_tlbs(vcpu->kvm);
1800 }
1801 }
1802
1803 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1804 unsigned direct_access)
1805 {
1806 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1807 struct kvm_mmu_page *child;
1808
1809 /*
1810 * For the direct sp, if the guest pte's dirty bit
1811 * changed form clean to dirty, it will corrupt the
1812 * sp's access: allow writable in the read-only sp,
1813 * so we should update the spte at this point to get
1814 * a new sp with the correct access.
1815 */
1816 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1817 if (child->role.access == direct_access)
1818 return;
1819
1820 drop_parent_pte(child, sptep);
1821 kvm_flush_remote_tlbs(vcpu->kvm);
1822 }
1823 }
1824
1825 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1826 u64 *spte)
1827 {
1828 u64 pte;
1829 struct kvm_mmu_page *child;
1830
1831 pte = *spte;
1832 if (is_shadow_present_pte(pte)) {
1833 if (is_last_spte(pte, sp->role.level)) {
1834 drop_spte(kvm, spte);
1835 if (is_large_pte(pte))
1836 --kvm->stat.lpages;
1837 } else {
1838 child = page_header(pte & PT64_BASE_ADDR_MASK);
1839 drop_parent_pte(child, spte);
1840 }
1841 return true;
1842 }
1843
1844 if (is_mmio_spte(pte))
1845 mmu_spte_clear_no_track(spte);
1846
1847 return false;
1848 }
1849
1850 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1851 struct kvm_mmu_page *sp)
1852 {
1853 unsigned i;
1854
1855 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1856 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1857 }
1858
1859 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1860 {
1861 mmu_page_remove_parent_pte(sp, parent_pte);
1862 }
1863
1864 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1865 {
1866 u64 *parent_pte;
1867
1868 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1869 drop_parent_pte(sp, parent_pte);
1870 }
1871
1872 static int mmu_zap_unsync_children(struct kvm *kvm,
1873 struct kvm_mmu_page *parent,
1874 struct list_head *invalid_list)
1875 {
1876 int i, zapped = 0;
1877 struct mmu_page_path parents;
1878 struct kvm_mmu_pages pages;
1879
1880 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1881 return 0;
1882
1883 kvm_mmu_pages_init(parent, &parents, &pages);
1884 while (mmu_unsync_walk(parent, &pages)) {
1885 struct kvm_mmu_page *sp;
1886
1887 for_each_sp(pages, sp, parents, i) {
1888 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1889 mmu_pages_clear_parents(&parents);
1890 zapped++;
1891 }
1892 kvm_mmu_pages_init(parent, &parents, &pages);
1893 }
1894
1895 return zapped;
1896 }
1897
1898 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1899 struct list_head *invalid_list)
1900 {
1901 int ret;
1902
1903 trace_kvm_mmu_prepare_zap_page(sp);
1904 ++kvm->stat.mmu_shadow_zapped;
1905 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1906 kvm_mmu_page_unlink_children(kvm, sp);
1907 kvm_mmu_unlink_parents(kvm, sp);
1908 if (!sp->role.invalid && !sp->role.direct)
1909 unaccount_shadowed(kvm, sp->gfn);
1910 if (sp->unsync)
1911 kvm_unlink_unsync_page(kvm, sp);
1912 if (!sp->root_count) {
1913 /* Count self */
1914 ret++;
1915 list_move(&sp->link, invalid_list);
1916 kvm_mod_used_mmu_pages(kvm, -1);
1917 } else {
1918 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1919 kvm_reload_remote_mmus(kvm);
1920 }
1921
1922 sp->role.invalid = 1;
1923 return ret;
1924 }
1925
1926 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1927 {
1928 struct kvm_mmu_page *sp;
1929
1930 list_for_each_entry(sp, invalid_list, link)
1931 kvm_mmu_isolate_page(sp);
1932 }
1933
1934 static void free_pages_rcu(struct rcu_head *head)
1935 {
1936 struct kvm_mmu_page *next, *sp;
1937
1938 sp = container_of(head, struct kvm_mmu_page, rcu);
1939 while (sp) {
1940 if (!list_empty(&sp->link))
1941 next = list_first_entry(&sp->link,
1942 struct kvm_mmu_page, link);
1943 else
1944 next = NULL;
1945 kvm_mmu_free_page(sp);
1946 sp = next;
1947 }
1948 }
1949
1950 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1951 struct list_head *invalid_list)
1952 {
1953 struct kvm_mmu_page *sp;
1954
1955 if (list_empty(invalid_list))
1956 return;
1957
1958 kvm_flush_remote_tlbs(kvm);
1959
1960 if (atomic_read(&kvm->arch.reader_counter)) {
1961 kvm_mmu_isolate_pages(invalid_list);
1962 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1963 list_del_init(invalid_list);
1964
1965 trace_kvm_mmu_delay_free_pages(sp);
1966 call_rcu(&sp->rcu, free_pages_rcu);
1967 return;
1968 }
1969
1970 do {
1971 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1972 WARN_ON(!sp->role.invalid || sp->root_count);
1973 kvm_mmu_isolate_page(sp);
1974 kvm_mmu_free_page(sp);
1975 } while (!list_empty(invalid_list));
1976
1977 }
1978
1979 /*
1980 * Changing the number of mmu pages allocated to the vm
1981 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1982 */
1983 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1984 {
1985 LIST_HEAD(invalid_list);
1986 /*
1987 * If we set the number of mmu pages to be smaller be than the
1988 * number of actived pages , we must to free some mmu pages before we
1989 * change the value
1990 */
1991
1992 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1993 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1994 !list_empty(&kvm->arch.active_mmu_pages)) {
1995 struct kvm_mmu_page *page;
1996
1997 page = container_of(kvm->arch.active_mmu_pages.prev,
1998 struct kvm_mmu_page, link);
1999 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2000 }
2001 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2002 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2003 }
2004
2005 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2006 }
2007
2008 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2009 {
2010 struct kvm_mmu_page *sp;
2011 struct hlist_node *node;
2012 LIST_HEAD(invalid_list);
2013 int r;
2014
2015 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2016 r = 0;
2017 spin_lock(&kvm->mmu_lock);
2018 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2019 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2020 sp->role.word);
2021 r = 1;
2022 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2023 }
2024 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2025 spin_unlock(&kvm->mmu_lock);
2026
2027 return r;
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2030
2031 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
2032 {
2033 struct kvm_mmu_page *sp;
2034 struct hlist_node *node;
2035 LIST_HEAD(invalid_list);
2036
2037 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2038 pgprintk("%s: zap %llx %x\n",
2039 __func__, gfn, sp->role.word);
2040 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2041 }
2042 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2043 }
2044
2045 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2046 {
2047 int slot = memslot_id(kvm, gfn);
2048 struct kvm_mmu_page *sp = page_header(__pa(pte));
2049
2050 __set_bit(slot, sp->slot_bitmap);
2051 }
2052
2053 /*
2054 * The function is based on mtrr_type_lookup() in
2055 * arch/x86/kernel/cpu/mtrr/generic.c
2056 */
2057 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2058 u64 start, u64 end)
2059 {
2060 int i;
2061 u64 base, mask;
2062 u8 prev_match, curr_match;
2063 int num_var_ranges = KVM_NR_VAR_MTRR;
2064
2065 if (!mtrr_state->enabled)
2066 return 0xFF;
2067
2068 /* Make end inclusive end, instead of exclusive */
2069 end--;
2070
2071 /* Look in fixed ranges. Just return the type as per start */
2072 if (mtrr_state->have_fixed && (start < 0x100000)) {
2073 int idx;
2074
2075 if (start < 0x80000) {
2076 idx = 0;
2077 idx += (start >> 16);
2078 return mtrr_state->fixed_ranges[idx];
2079 } else if (start < 0xC0000) {
2080 idx = 1 * 8;
2081 idx += ((start - 0x80000) >> 14);
2082 return mtrr_state->fixed_ranges[idx];
2083 } else if (start < 0x1000000) {
2084 idx = 3 * 8;
2085 idx += ((start - 0xC0000) >> 12);
2086 return mtrr_state->fixed_ranges[idx];
2087 }
2088 }
2089
2090 /*
2091 * Look in variable ranges
2092 * Look of multiple ranges matching this address and pick type
2093 * as per MTRR precedence
2094 */
2095 if (!(mtrr_state->enabled & 2))
2096 return mtrr_state->def_type;
2097
2098 prev_match = 0xFF;
2099 for (i = 0; i < num_var_ranges; ++i) {
2100 unsigned short start_state, end_state;
2101
2102 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2103 continue;
2104
2105 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2106 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2107 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2108 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2109
2110 start_state = ((start & mask) == (base & mask));
2111 end_state = ((end & mask) == (base & mask));
2112 if (start_state != end_state)
2113 return 0xFE;
2114
2115 if ((start & mask) != (base & mask))
2116 continue;
2117
2118 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2119 if (prev_match == 0xFF) {
2120 prev_match = curr_match;
2121 continue;
2122 }
2123
2124 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2125 curr_match == MTRR_TYPE_UNCACHABLE)
2126 return MTRR_TYPE_UNCACHABLE;
2127
2128 if ((prev_match == MTRR_TYPE_WRBACK &&
2129 curr_match == MTRR_TYPE_WRTHROUGH) ||
2130 (prev_match == MTRR_TYPE_WRTHROUGH &&
2131 curr_match == MTRR_TYPE_WRBACK)) {
2132 prev_match = MTRR_TYPE_WRTHROUGH;
2133 curr_match = MTRR_TYPE_WRTHROUGH;
2134 }
2135
2136 if (prev_match != curr_match)
2137 return MTRR_TYPE_UNCACHABLE;
2138 }
2139
2140 if (prev_match != 0xFF)
2141 return prev_match;
2142
2143 return mtrr_state->def_type;
2144 }
2145
2146 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2147 {
2148 u8 mtrr;
2149
2150 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2151 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2152 if (mtrr == 0xfe || mtrr == 0xff)
2153 mtrr = MTRR_TYPE_WRBACK;
2154 return mtrr;
2155 }
2156 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2157
2158 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2159 {
2160 trace_kvm_mmu_unsync_page(sp);
2161 ++vcpu->kvm->stat.mmu_unsync;
2162 sp->unsync = 1;
2163
2164 kvm_mmu_mark_parents_unsync(sp);
2165 }
2166
2167 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2168 {
2169 struct kvm_mmu_page *s;
2170 struct hlist_node *node;
2171
2172 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2173 if (s->unsync)
2174 continue;
2175 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2176 __kvm_unsync_page(vcpu, s);
2177 }
2178 }
2179
2180 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2181 bool can_unsync)
2182 {
2183 struct kvm_mmu_page *s;
2184 struct hlist_node *node;
2185 bool need_unsync = false;
2186
2187 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2188 if (!can_unsync)
2189 return 1;
2190
2191 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2192 return 1;
2193
2194 if (!need_unsync && !s->unsync) {
2195 if (!oos_shadow)
2196 return 1;
2197 need_unsync = true;
2198 }
2199 }
2200 if (need_unsync)
2201 kvm_unsync_pages(vcpu, gfn);
2202 return 0;
2203 }
2204
2205 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2206 unsigned pte_access, int user_fault,
2207 int write_fault, int level,
2208 gfn_t gfn, pfn_t pfn, bool speculative,
2209 bool can_unsync, bool host_writable)
2210 {
2211 u64 spte, entry = *sptep;
2212 int ret = 0;
2213
2214 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2215 return 0;
2216
2217 spte = PT_PRESENT_MASK;
2218 if (!speculative)
2219 spte |= shadow_accessed_mask;
2220
2221 if (pte_access & ACC_EXEC_MASK)
2222 spte |= shadow_x_mask;
2223 else
2224 spte |= shadow_nx_mask;
2225 if (pte_access & ACC_USER_MASK)
2226 spte |= shadow_user_mask;
2227 if (level > PT_PAGE_TABLE_LEVEL)
2228 spte |= PT_PAGE_SIZE_MASK;
2229 if (tdp_enabled)
2230 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2231 kvm_is_mmio_pfn(pfn));
2232
2233 if (host_writable)
2234 spte |= SPTE_HOST_WRITEABLE;
2235 else
2236 pte_access &= ~ACC_WRITE_MASK;
2237
2238 spte |= (u64)pfn << PAGE_SHIFT;
2239
2240 if ((pte_access & ACC_WRITE_MASK)
2241 || (!vcpu->arch.mmu.direct_map && write_fault
2242 && !is_write_protection(vcpu) && !user_fault)) {
2243
2244 if (level > PT_PAGE_TABLE_LEVEL &&
2245 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2246 ret = 1;
2247 drop_spte(vcpu->kvm, sptep);
2248 goto done;
2249 }
2250
2251 spte |= PT_WRITABLE_MASK;
2252
2253 if (!vcpu->arch.mmu.direct_map
2254 && !(pte_access & ACC_WRITE_MASK)) {
2255 spte &= ~PT_USER_MASK;
2256 /*
2257 * If we converted a user page to a kernel page,
2258 * so that the kernel can write to it when cr0.wp=0,
2259 * then we should prevent the kernel from executing it
2260 * if SMEP is enabled.
2261 */
2262 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2263 spte |= PT64_NX_MASK;
2264 }
2265
2266 /*
2267 * Optimization: for pte sync, if spte was writable the hash
2268 * lookup is unnecessary (and expensive). Write protection
2269 * is responsibility of mmu_get_page / kvm_sync_page.
2270 * Same reasoning can be applied to dirty page accounting.
2271 */
2272 if (!can_unsync && is_writable_pte(*sptep))
2273 goto set_pte;
2274
2275 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2276 pgprintk("%s: found shadow page for %llx, marking ro\n",
2277 __func__, gfn);
2278 ret = 1;
2279 pte_access &= ~ACC_WRITE_MASK;
2280 if (is_writable_pte(spte))
2281 spte &= ~PT_WRITABLE_MASK;
2282 }
2283 }
2284
2285 if (pte_access & ACC_WRITE_MASK)
2286 mark_page_dirty(vcpu->kvm, gfn);
2287
2288 set_pte:
2289 mmu_spte_update(sptep, spte);
2290 /*
2291 * If we overwrite a writable spte with a read-only one we
2292 * should flush remote TLBs. Otherwise rmap_write_protect
2293 * will find a read-only spte, even though the writable spte
2294 * might be cached on a CPU's TLB.
2295 */
2296 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2297 kvm_flush_remote_tlbs(vcpu->kvm);
2298 done:
2299 return ret;
2300 }
2301
2302 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2303 unsigned pt_access, unsigned pte_access,
2304 int user_fault, int write_fault,
2305 int *emulate, int level, gfn_t gfn,
2306 pfn_t pfn, bool speculative,
2307 bool host_writable)
2308 {
2309 int was_rmapped = 0;
2310 int rmap_count;
2311
2312 pgprintk("%s: spte %llx access %x write_fault %d"
2313 " user_fault %d gfn %llx\n",
2314 __func__, *sptep, pt_access,
2315 write_fault, user_fault, gfn);
2316
2317 if (is_rmap_spte(*sptep)) {
2318 /*
2319 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2320 * the parent of the now unreachable PTE.
2321 */
2322 if (level > PT_PAGE_TABLE_LEVEL &&
2323 !is_large_pte(*sptep)) {
2324 struct kvm_mmu_page *child;
2325 u64 pte = *sptep;
2326
2327 child = page_header(pte & PT64_BASE_ADDR_MASK);
2328 drop_parent_pte(child, sptep);
2329 kvm_flush_remote_tlbs(vcpu->kvm);
2330 } else if (pfn != spte_to_pfn(*sptep)) {
2331 pgprintk("hfn old %llx new %llx\n",
2332 spte_to_pfn(*sptep), pfn);
2333 drop_spte(vcpu->kvm, sptep);
2334 kvm_flush_remote_tlbs(vcpu->kvm);
2335 } else
2336 was_rmapped = 1;
2337 }
2338
2339 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2340 level, gfn, pfn, speculative, true,
2341 host_writable)) {
2342 if (write_fault)
2343 *emulate = 1;
2344 kvm_mmu_flush_tlb(vcpu);
2345 }
2346
2347 if (unlikely(is_mmio_spte(*sptep) && emulate))
2348 *emulate = 1;
2349
2350 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2351 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2352 is_large_pte(*sptep)? "2MB" : "4kB",
2353 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2354 *sptep, sptep);
2355 if (!was_rmapped && is_large_pte(*sptep))
2356 ++vcpu->kvm->stat.lpages;
2357
2358 if (is_shadow_present_pte(*sptep)) {
2359 page_header_update_slot(vcpu->kvm, sptep, gfn);
2360 if (!was_rmapped) {
2361 rmap_count = rmap_add(vcpu, sptep, gfn);
2362 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2363 rmap_recycle(vcpu, sptep, gfn);
2364 }
2365 }
2366 kvm_release_pfn_clean(pfn);
2367 }
2368
2369 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2370 {
2371 }
2372
2373 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2374 bool no_dirty_log)
2375 {
2376 struct kvm_memory_slot *slot;
2377 unsigned long hva;
2378
2379 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2380 if (!slot) {
2381 get_page(fault_page);
2382 return page_to_pfn(fault_page);
2383 }
2384
2385 hva = gfn_to_hva_memslot(slot, gfn);
2386
2387 return hva_to_pfn_atomic(vcpu->kvm, hva);
2388 }
2389
2390 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2391 struct kvm_mmu_page *sp,
2392 u64 *start, u64 *end)
2393 {
2394 struct page *pages[PTE_PREFETCH_NUM];
2395 unsigned access = sp->role.access;
2396 int i, ret;
2397 gfn_t gfn;
2398
2399 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2400 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2401 return -1;
2402
2403 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2404 if (ret <= 0)
2405 return -1;
2406
2407 for (i = 0; i < ret; i++, gfn++, start++)
2408 mmu_set_spte(vcpu, start, ACC_ALL,
2409 access, 0, 0, NULL,
2410 sp->role.level, gfn,
2411 page_to_pfn(pages[i]), true, true);
2412
2413 return 0;
2414 }
2415
2416 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2417 struct kvm_mmu_page *sp, u64 *sptep)
2418 {
2419 u64 *spte, *start = NULL;
2420 int i;
2421
2422 WARN_ON(!sp->role.direct);
2423
2424 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2425 spte = sp->spt + i;
2426
2427 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2428 if (is_shadow_present_pte(*spte) || spte == sptep) {
2429 if (!start)
2430 continue;
2431 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2432 break;
2433 start = NULL;
2434 } else if (!start)
2435 start = spte;
2436 }
2437 }
2438
2439 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2440 {
2441 struct kvm_mmu_page *sp;
2442
2443 /*
2444 * Since it's no accessed bit on EPT, it's no way to
2445 * distinguish between actually accessed translations
2446 * and prefetched, so disable pte prefetch if EPT is
2447 * enabled.
2448 */
2449 if (!shadow_accessed_mask)
2450 return;
2451
2452 sp = page_header(__pa(sptep));
2453 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2454 return;
2455
2456 __direct_pte_prefetch(vcpu, sp, sptep);
2457 }
2458
2459 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2460 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2461 bool prefault)
2462 {
2463 struct kvm_shadow_walk_iterator iterator;
2464 struct kvm_mmu_page *sp;
2465 int emulate = 0;
2466 gfn_t pseudo_gfn;
2467
2468 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2469 if (iterator.level == level) {
2470 unsigned pte_access = ACC_ALL;
2471
2472 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2473 0, write, &emulate,
2474 level, gfn, pfn, prefault, map_writable);
2475 direct_pte_prefetch(vcpu, iterator.sptep);
2476 ++vcpu->stat.pf_fixed;
2477 break;
2478 }
2479
2480 if (!is_shadow_present_pte(*iterator.sptep)) {
2481 u64 base_addr = iterator.addr;
2482
2483 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2484 pseudo_gfn = base_addr >> PAGE_SHIFT;
2485 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2486 iterator.level - 1,
2487 1, ACC_ALL, iterator.sptep);
2488 if (!sp) {
2489 pgprintk("nonpaging_map: ENOMEM\n");
2490 kvm_release_pfn_clean(pfn);
2491 return -ENOMEM;
2492 }
2493
2494 mmu_spte_set(iterator.sptep,
2495 __pa(sp->spt)
2496 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2497 | shadow_user_mask | shadow_x_mask
2498 | shadow_accessed_mask);
2499 }
2500 }
2501 return emulate;
2502 }
2503
2504 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2505 {
2506 siginfo_t info;
2507
2508 info.si_signo = SIGBUS;
2509 info.si_errno = 0;
2510 info.si_code = BUS_MCEERR_AR;
2511 info.si_addr = (void __user *)address;
2512 info.si_addr_lsb = PAGE_SHIFT;
2513
2514 send_sig_info(SIGBUS, &info, tsk);
2515 }
2516
2517 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2518 {
2519 kvm_release_pfn_clean(pfn);
2520 if (is_hwpoison_pfn(pfn)) {
2521 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2522 return 0;
2523 }
2524
2525 return -EFAULT;
2526 }
2527
2528 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2529 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2530 {
2531 pfn_t pfn = *pfnp;
2532 gfn_t gfn = *gfnp;
2533 int level = *levelp;
2534
2535 /*
2536 * Check if it's a transparent hugepage. If this would be an
2537 * hugetlbfs page, level wouldn't be set to
2538 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2539 * here.
2540 */
2541 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2542 level == PT_PAGE_TABLE_LEVEL &&
2543 PageTransCompound(pfn_to_page(pfn)) &&
2544 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2545 unsigned long mask;
2546 /*
2547 * mmu_notifier_retry was successful and we hold the
2548 * mmu_lock here, so the pmd can't become splitting
2549 * from under us, and in turn
2550 * __split_huge_page_refcount() can't run from under
2551 * us and we can safely transfer the refcount from
2552 * PG_tail to PG_head as we switch the pfn to tail to
2553 * head.
2554 */
2555 *levelp = level = PT_DIRECTORY_LEVEL;
2556 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2557 VM_BUG_ON((gfn & mask) != (pfn & mask));
2558 if (pfn & mask) {
2559 gfn &= ~mask;
2560 *gfnp = gfn;
2561 kvm_release_pfn_clean(pfn);
2562 pfn &= ~mask;
2563 if (!get_page_unless_zero(pfn_to_page(pfn)))
2564 BUG();
2565 *pfnp = pfn;
2566 }
2567 }
2568 }
2569
2570 static bool mmu_invalid_pfn(pfn_t pfn)
2571 {
2572 return unlikely(is_invalid_pfn(pfn));
2573 }
2574
2575 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2576 pfn_t pfn, unsigned access, int *ret_val)
2577 {
2578 bool ret = true;
2579
2580 /* The pfn is invalid, report the error! */
2581 if (unlikely(is_invalid_pfn(pfn))) {
2582 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2583 goto exit;
2584 }
2585
2586 if (unlikely(is_noslot_pfn(pfn)))
2587 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2588
2589 ret = false;
2590 exit:
2591 return ret;
2592 }
2593
2594 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2595 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2596
2597 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2598 bool prefault)
2599 {
2600 int r;
2601 int level;
2602 int force_pt_level;
2603 pfn_t pfn;
2604 unsigned long mmu_seq;
2605 bool map_writable;
2606
2607 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2608 if (likely(!force_pt_level)) {
2609 level = mapping_level(vcpu, gfn);
2610 /*
2611 * This path builds a PAE pagetable - so we can map
2612 * 2mb pages at maximum. Therefore check if the level
2613 * is larger than that.
2614 */
2615 if (level > PT_DIRECTORY_LEVEL)
2616 level = PT_DIRECTORY_LEVEL;
2617
2618 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2619 } else
2620 level = PT_PAGE_TABLE_LEVEL;
2621
2622 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2623 smp_rmb();
2624
2625 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2626 return 0;
2627
2628 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2629 return r;
2630
2631 spin_lock(&vcpu->kvm->mmu_lock);
2632 if (mmu_notifier_retry(vcpu, mmu_seq))
2633 goto out_unlock;
2634 kvm_mmu_free_some_pages(vcpu);
2635 if (likely(!force_pt_level))
2636 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2637 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2638 prefault);
2639 spin_unlock(&vcpu->kvm->mmu_lock);
2640
2641
2642 return r;
2643
2644 out_unlock:
2645 spin_unlock(&vcpu->kvm->mmu_lock);
2646 kvm_release_pfn_clean(pfn);
2647 return 0;
2648 }
2649
2650
2651 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2652 {
2653 int i;
2654 struct kvm_mmu_page *sp;
2655 LIST_HEAD(invalid_list);
2656
2657 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2658 return;
2659 spin_lock(&vcpu->kvm->mmu_lock);
2660 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2661 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2662 vcpu->arch.mmu.direct_map)) {
2663 hpa_t root = vcpu->arch.mmu.root_hpa;
2664
2665 sp = page_header(root);
2666 --sp->root_count;
2667 if (!sp->root_count && sp->role.invalid) {
2668 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2669 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2670 }
2671 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2672 spin_unlock(&vcpu->kvm->mmu_lock);
2673 return;
2674 }
2675 for (i = 0; i < 4; ++i) {
2676 hpa_t root = vcpu->arch.mmu.pae_root[i];
2677
2678 if (root) {
2679 root &= PT64_BASE_ADDR_MASK;
2680 sp = page_header(root);
2681 --sp->root_count;
2682 if (!sp->root_count && sp->role.invalid)
2683 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2684 &invalid_list);
2685 }
2686 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2687 }
2688 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2689 spin_unlock(&vcpu->kvm->mmu_lock);
2690 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2691 }
2692
2693 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2694 {
2695 int ret = 0;
2696
2697 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2698 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2699 ret = 1;
2700 }
2701
2702 return ret;
2703 }
2704
2705 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2706 {
2707 struct kvm_mmu_page *sp;
2708 unsigned i;
2709
2710 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2711 spin_lock(&vcpu->kvm->mmu_lock);
2712 kvm_mmu_free_some_pages(vcpu);
2713 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2714 1, ACC_ALL, NULL);
2715 ++sp->root_count;
2716 spin_unlock(&vcpu->kvm->mmu_lock);
2717 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2718 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2719 for (i = 0; i < 4; ++i) {
2720 hpa_t root = vcpu->arch.mmu.pae_root[i];
2721
2722 ASSERT(!VALID_PAGE(root));
2723 spin_lock(&vcpu->kvm->mmu_lock);
2724 kvm_mmu_free_some_pages(vcpu);
2725 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2726 i << 30,
2727 PT32_ROOT_LEVEL, 1, ACC_ALL,
2728 NULL);
2729 root = __pa(sp->spt);
2730 ++sp->root_count;
2731 spin_unlock(&vcpu->kvm->mmu_lock);
2732 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2733 }
2734 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2735 } else
2736 BUG();
2737
2738 return 0;
2739 }
2740
2741 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2742 {
2743 struct kvm_mmu_page *sp;
2744 u64 pdptr, pm_mask;
2745 gfn_t root_gfn;
2746 int i;
2747
2748 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2749
2750 if (mmu_check_root(vcpu, root_gfn))
2751 return 1;
2752
2753 /*
2754 * Do we shadow a long mode page table? If so we need to
2755 * write-protect the guests page table root.
2756 */
2757 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2758 hpa_t root = vcpu->arch.mmu.root_hpa;
2759
2760 ASSERT(!VALID_PAGE(root));
2761
2762 spin_lock(&vcpu->kvm->mmu_lock);
2763 kvm_mmu_free_some_pages(vcpu);
2764 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2765 0, ACC_ALL, NULL);
2766 root = __pa(sp->spt);
2767 ++sp->root_count;
2768 spin_unlock(&vcpu->kvm->mmu_lock);
2769 vcpu->arch.mmu.root_hpa = root;
2770 return 0;
2771 }
2772
2773 /*
2774 * We shadow a 32 bit page table. This may be a legacy 2-level
2775 * or a PAE 3-level page table. In either case we need to be aware that
2776 * the shadow page table may be a PAE or a long mode page table.
2777 */
2778 pm_mask = PT_PRESENT_MASK;
2779 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2780 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2781
2782 for (i = 0; i < 4; ++i) {
2783 hpa_t root = vcpu->arch.mmu.pae_root[i];
2784
2785 ASSERT(!VALID_PAGE(root));
2786 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2787 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2788 if (!is_present_gpte(pdptr)) {
2789 vcpu->arch.mmu.pae_root[i] = 0;
2790 continue;
2791 }
2792 root_gfn = pdptr >> PAGE_SHIFT;
2793 if (mmu_check_root(vcpu, root_gfn))
2794 return 1;
2795 }
2796 spin_lock(&vcpu->kvm->mmu_lock);
2797 kvm_mmu_free_some_pages(vcpu);
2798 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2799 PT32_ROOT_LEVEL, 0,
2800 ACC_ALL, NULL);
2801 root = __pa(sp->spt);
2802 ++sp->root_count;
2803 spin_unlock(&vcpu->kvm->mmu_lock);
2804
2805 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2806 }
2807 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2808
2809 /*
2810 * If we shadow a 32 bit page table with a long mode page
2811 * table we enter this path.
2812 */
2813 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2814 if (vcpu->arch.mmu.lm_root == NULL) {
2815 /*
2816 * The additional page necessary for this is only
2817 * allocated on demand.
2818 */
2819
2820 u64 *lm_root;
2821
2822 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2823 if (lm_root == NULL)
2824 return 1;
2825
2826 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2827
2828 vcpu->arch.mmu.lm_root = lm_root;
2829 }
2830
2831 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2832 }
2833
2834 return 0;
2835 }
2836
2837 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2838 {
2839 if (vcpu->arch.mmu.direct_map)
2840 return mmu_alloc_direct_roots(vcpu);
2841 else
2842 return mmu_alloc_shadow_roots(vcpu);
2843 }
2844
2845 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2846 {
2847 int i;
2848 struct kvm_mmu_page *sp;
2849
2850 if (vcpu->arch.mmu.direct_map)
2851 return;
2852
2853 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2854 return;
2855
2856 vcpu_clear_mmio_info(vcpu, ~0ul);
2857 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2858 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2859 hpa_t root = vcpu->arch.mmu.root_hpa;
2860 sp = page_header(root);
2861 mmu_sync_children(vcpu, sp);
2862 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2863 return;
2864 }
2865 for (i = 0; i < 4; ++i) {
2866 hpa_t root = vcpu->arch.mmu.pae_root[i];
2867
2868 if (root && VALID_PAGE(root)) {
2869 root &= PT64_BASE_ADDR_MASK;
2870 sp = page_header(root);
2871 mmu_sync_children(vcpu, sp);
2872 }
2873 }
2874 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2875 }
2876
2877 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2878 {
2879 spin_lock(&vcpu->kvm->mmu_lock);
2880 mmu_sync_roots(vcpu);
2881 spin_unlock(&vcpu->kvm->mmu_lock);
2882 }
2883
2884 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2885 u32 access, struct x86_exception *exception)
2886 {
2887 if (exception)
2888 exception->error_code = 0;
2889 return vaddr;
2890 }
2891
2892 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2893 u32 access,
2894 struct x86_exception *exception)
2895 {
2896 if (exception)
2897 exception->error_code = 0;
2898 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2899 }
2900
2901 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2902 {
2903 if (direct)
2904 return vcpu_match_mmio_gpa(vcpu, addr);
2905
2906 return vcpu_match_mmio_gva(vcpu, addr);
2907 }
2908
2909
2910 /*
2911 * On direct hosts, the last spte is only allows two states
2912 * for mmio page fault:
2913 * - It is the mmio spte
2914 * - It is zapped or it is being zapped.
2915 *
2916 * This function completely checks the spte when the last spte
2917 * is not the mmio spte.
2918 */
2919 static bool check_direct_spte_mmio_pf(u64 spte)
2920 {
2921 return __check_direct_spte_mmio_pf(spte);
2922 }
2923
2924 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2925 {
2926 struct kvm_shadow_walk_iterator iterator;
2927 u64 spte = 0ull;
2928
2929 walk_shadow_page_lockless_begin(vcpu);
2930 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2931 if (!is_shadow_present_pte(spte))
2932 break;
2933 walk_shadow_page_lockless_end(vcpu);
2934
2935 return spte;
2936 }
2937
2938 /*
2939 * If it is a real mmio page fault, return 1 and emulat the instruction
2940 * directly, return 0 to let CPU fault again on the address, -1 is
2941 * returned if bug is detected.
2942 */
2943 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2944 {
2945 u64 spte;
2946
2947 if (quickly_check_mmio_pf(vcpu, addr, direct))
2948 return 1;
2949
2950 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2951
2952 if (is_mmio_spte(spte)) {
2953 gfn_t gfn = get_mmio_spte_gfn(spte);
2954 unsigned access = get_mmio_spte_access(spte);
2955
2956 if (direct)
2957 addr = 0;
2958
2959 trace_handle_mmio_page_fault(addr, gfn, access);
2960 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2961 return 1;
2962 }
2963
2964 /*
2965 * It's ok if the gva is remapped by other cpus on shadow guest,
2966 * it's a BUG if the gfn is not a mmio page.
2967 */
2968 if (direct && !check_direct_spte_mmio_pf(spte))
2969 return -1;
2970
2971 /*
2972 * If the page table is zapped by other cpus, let CPU fault again on
2973 * the address.
2974 */
2975 return 0;
2976 }
2977 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2978
2979 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2980 u32 error_code, bool direct)
2981 {
2982 int ret;
2983
2984 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2985 WARN_ON(ret < 0);
2986 return ret;
2987 }
2988
2989 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2990 u32 error_code, bool prefault)
2991 {
2992 gfn_t gfn;
2993 int r;
2994
2995 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2996
2997 if (unlikely(error_code & PFERR_RSVD_MASK))
2998 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2999
3000 r = mmu_topup_memory_caches(vcpu);
3001 if (r)
3002 return r;
3003
3004 ASSERT(vcpu);
3005 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3006
3007 gfn = gva >> PAGE_SHIFT;
3008
3009 return nonpaging_map(vcpu, gva & PAGE_MASK,
3010 error_code & PFERR_WRITE_MASK, gfn, prefault);
3011 }
3012
3013 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3014 {
3015 struct kvm_arch_async_pf arch;
3016
3017 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3018 arch.gfn = gfn;
3019 arch.direct_map = vcpu->arch.mmu.direct_map;
3020 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3021
3022 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3023 }
3024
3025 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3026 {
3027 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3028 kvm_event_needs_reinjection(vcpu)))
3029 return false;
3030
3031 return kvm_x86_ops->interrupt_allowed(vcpu);
3032 }
3033
3034 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3035 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3036 {
3037 bool async;
3038
3039 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3040
3041 if (!async)
3042 return false; /* *pfn has correct page already */
3043
3044 put_page(pfn_to_page(*pfn));
3045
3046 if (!prefault && can_do_async_pf(vcpu)) {
3047 trace_kvm_try_async_get_page(gva, gfn);
3048 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3049 trace_kvm_async_pf_doublefault(gva, gfn);
3050 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3051 return true;
3052 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3053 return true;
3054 }
3055
3056 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3057
3058 return false;
3059 }
3060
3061 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3062 bool prefault)
3063 {
3064 pfn_t pfn;
3065 int r;
3066 int level;
3067 int force_pt_level;
3068 gfn_t gfn = gpa >> PAGE_SHIFT;
3069 unsigned long mmu_seq;
3070 int write = error_code & PFERR_WRITE_MASK;
3071 bool map_writable;
3072
3073 ASSERT(vcpu);
3074 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3075
3076 if (unlikely(error_code & PFERR_RSVD_MASK))
3077 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3078
3079 r = mmu_topup_memory_caches(vcpu);
3080 if (r)
3081 return r;
3082
3083 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3084 if (likely(!force_pt_level)) {
3085 level = mapping_level(vcpu, gfn);
3086 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3087 } else
3088 level = PT_PAGE_TABLE_LEVEL;
3089
3090 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3091 smp_rmb();
3092
3093 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3094 return 0;
3095
3096 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3097 return r;
3098
3099 spin_lock(&vcpu->kvm->mmu_lock);
3100 if (mmu_notifier_retry(vcpu, mmu_seq))
3101 goto out_unlock;
3102 kvm_mmu_free_some_pages(vcpu);
3103 if (likely(!force_pt_level))
3104 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3105 r = __direct_map(vcpu, gpa, write, map_writable,
3106 level, gfn, pfn, prefault);
3107 spin_unlock(&vcpu->kvm->mmu_lock);
3108
3109 return r;
3110
3111 out_unlock:
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113 kvm_release_pfn_clean(pfn);
3114 return 0;
3115 }
3116
3117 static void nonpaging_free(struct kvm_vcpu *vcpu)
3118 {
3119 mmu_free_roots(vcpu);
3120 }
3121
3122 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3123 struct kvm_mmu *context)
3124 {
3125 context->new_cr3 = nonpaging_new_cr3;
3126 context->page_fault = nonpaging_page_fault;
3127 context->gva_to_gpa = nonpaging_gva_to_gpa;
3128 context->free = nonpaging_free;
3129 context->sync_page = nonpaging_sync_page;
3130 context->invlpg = nonpaging_invlpg;
3131 context->update_pte = nonpaging_update_pte;
3132 context->root_level = 0;
3133 context->shadow_root_level = PT32E_ROOT_LEVEL;
3134 context->root_hpa = INVALID_PAGE;
3135 context->direct_map = true;
3136 context->nx = false;
3137 return 0;
3138 }
3139
3140 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3141 {
3142 ++vcpu->stat.tlb_flush;
3143 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3144 }
3145
3146 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3147 {
3148 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3149 mmu_free_roots(vcpu);
3150 }
3151
3152 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3153 {
3154 return kvm_read_cr3(vcpu);
3155 }
3156
3157 static void inject_page_fault(struct kvm_vcpu *vcpu,
3158 struct x86_exception *fault)
3159 {
3160 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3161 }
3162
3163 static void paging_free(struct kvm_vcpu *vcpu)
3164 {
3165 nonpaging_free(vcpu);
3166 }
3167
3168 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3169 {
3170 int bit7;
3171
3172 bit7 = (gpte >> 7) & 1;
3173 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3174 }
3175
3176 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3177 int *nr_present)
3178 {
3179 if (unlikely(is_mmio_spte(*sptep))) {
3180 if (gfn != get_mmio_spte_gfn(*sptep)) {
3181 mmu_spte_clear_no_track(sptep);
3182 return true;
3183 }
3184
3185 (*nr_present)++;
3186 mark_mmio_spte(sptep, gfn, access);
3187 return true;
3188 }
3189
3190 return false;
3191 }
3192
3193 #define PTTYPE 64
3194 #include "paging_tmpl.h"
3195 #undef PTTYPE
3196
3197 #define PTTYPE 32
3198 #include "paging_tmpl.h"
3199 #undef PTTYPE
3200
3201 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3202 struct kvm_mmu *context,
3203 int level)
3204 {
3205 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3206 u64 exb_bit_rsvd = 0;
3207
3208 if (!context->nx)
3209 exb_bit_rsvd = rsvd_bits(63, 63);
3210 switch (level) {
3211 case PT32_ROOT_LEVEL:
3212 /* no rsvd bits for 2 level 4K page table entries */
3213 context->rsvd_bits_mask[0][1] = 0;
3214 context->rsvd_bits_mask[0][0] = 0;
3215 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3216
3217 if (!is_pse(vcpu)) {
3218 context->rsvd_bits_mask[1][1] = 0;
3219 break;
3220 }
3221
3222 if (is_cpuid_PSE36())
3223 /* 36bits PSE 4MB page */
3224 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3225 else
3226 /* 32 bits PSE 4MB page */
3227 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3228 break;
3229 case PT32E_ROOT_LEVEL:
3230 context->rsvd_bits_mask[0][2] =
3231 rsvd_bits(maxphyaddr, 63) |
3232 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3233 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3234 rsvd_bits(maxphyaddr, 62); /* PDE */
3235 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3236 rsvd_bits(maxphyaddr, 62); /* PTE */
3237 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3238 rsvd_bits(maxphyaddr, 62) |
3239 rsvd_bits(13, 20); /* large page */
3240 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3241 break;
3242 case PT64_ROOT_LEVEL:
3243 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3244 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3245 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3246 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3247 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3248 rsvd_bits(maxphyaddr, 51);
3249 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3250 rsvd_bits(maxphyaddr, 51);
3251 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3252 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3253 rsvd_bits(maxphyaddr, 51) |
3254 rsvd_bits(13, 29);
3255 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3256 rsvd_bits(maxphyaddr, 51) |
3257 rsvd_bits(13, 20); /* large page */
3258 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3259 break;
3260 }
3261 }
3262
3263 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3264 struct kvm_mmu *context,
3265 int level)
3266 {
3267 context->nx = is_nx(vcpu);
3268
3269 reset_rsvds_bits_mask(vcpu, context, level);
3270
3271 ASSERT(is_pae(vcpu));
3272 context->new_cr3 = paging_new_cr3;
3273 context->page_fault = paging64_page_fault;
3274 context->gva_to_gpa = paging64_gva_to_gpa;
3275 context->sync_page = paging64_sync_page;
3276 context->invlpg = paging64_invlpg;
3277 context->update_pte = paging64_update_pte;
3278 context->free = paging_free;
3279 context->root_level = level;
3280 context->shadow_root_level = level;
3281 context->root_hpa = INVALID_PAGE;
3282 context->direct_map = false;
3283 return 0;
3284 }
3285
3286 static int paging64_init_context(struct kvm_vcpu *vcpu,
3287 struct kvm_mmu *context)
3288 {
3289 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3290 }
3291
3292 static int paging32_init_context(struct kvm_vcpu *vcpu,
3293 struct kvm_mmu *context)
3294 {
3295 context->nx = false;
3296
3297 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3298
3299 context->new_cr3 = paging_new_cr3;
3300 context->page_fault = paging32_page_fault;
3301 context->gva_to_gpa = paging32_gva_to_gpa;
3302 context->free = paging_free;
3303 context->sync_page = paging32_sync_page;
3304 context->invlpg = paging32_invlpg;
3305 context->update_pte = paging32_update_pte;
3306 context->root_level = PT32_ROOT_LEVEL;
3307 context->shadow_root_level = PT32E_ROOT_LEVEL;
3308 context->root_hpa = INVALID_PAGE;
3309 context->direct_map = false;
3310 return 0;
3311 }
3312
3313 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3314 struct kvm_mmu *context)
3315 {
3316 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3317 }
3318
3319 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3320 {
3321 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3322
3323 context->base_role.word = 0;
3324 context->new_cr3 = nonpaging_new_cr3;
3325 context->page_fault = tdp_page_fault;
3326 context->free = nonpaging_free;
3327 context->sync_page = nonpaging_sync_page;
3328 context->invlpg = nonpaging_invlpg;
3329 context->update_pte = nonpaging_update_pte;
3330 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3331 context->root_hpa = INVALID_PAGE;
3332 context->direct_map = true;
3333 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3334 context->get_cr3 = get_cr3;
3335 context->get_pdptr = kvm_pdptr_read;
3336 context->inject_page_fault = kvm_inject_page_fault;
3337 context->nx = is_nx(vcpu);
3338
3339 if (!is_paging(vcpu)) {
3340 context->nx = false;
3341 context->gva_to_gpa = nonpaging_gva_to_gpa;
3342 context->root_level = 0;
3343 } else if (is_long_mode(vcpu)) {
3344 context->nx = is_nx(vcpu);
3345 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3346 context->gva_to_gpa = paging64_gva_to_gpa;
3347 context->root_level = PT64_ROOT_LEVEL;
3348 } else if (is_pae(vcpu)) {
3349 context->nx = is_nx(vcpu);
3350 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3351 context->gva_to_gpa = paging64_gva_to_gpa;
3352 context->root_level = PT32E_ROOT_LEVEL;
3353 } else {
3354 context->nx = false;
3355 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3356 context->gva_to_gpa = paging32_gva_to_gpa;
3357 context->root_level = PT32_ROOT_LEVEL;
3358 }
3359
3360 return 0;
3361 }
3362
3363 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3364 {
3365 int r;
3366 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3367 ASSERT(vcpu);
3368 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3369
3370 if (!is_paging(vcpu))
3371 r = nonpaging_init_context(vcpu, context);
3372 else if (is_long_mode(vcpu))
3373 r = paging64_init_context(vcpu, context);
3374 else if (is_pae(vcpu))
3375 r = paging32E_init_context(vcpu, context);
3376 else
3377 r = paging32_init_context(vcpu, context);
3378
3379 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3380 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3381 vcpu->arch.mmu.base_role.smep_andnot_wp
3382 = smep && !is_write_protection(vcpu);
3383
3384 return r;
3385 }
3386 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3387
3388 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3389 {
3390 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3391
3392 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3393 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3394 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3395 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3396
3397 return r;
3398 }
3399
3400 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3401 {
3402 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3403
3404 g_context->get_cr3 = get_cr3;
3405 g_context->get_pdptr = kvm_pdptr_read;
3406 g_context->inject_page_fault = kvm_inject_page_fault;
3407
3408 /*
3409 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3410 * translation of l2_gpa to l1_gpa addresses is done using the
3411 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3412 * functions between mmu and nested_mmu are swapped.
3413 */
3414 if (!is_paging(vcpu)) {
3415 g_context->nx = false;
3416 g_context->root_level = 0;
3417 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3418 } else if (is_long_mode(vcpu)) {
3419 g_context->nx = is_nx(vcpu);
3420 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3421 g_context->root_level = PT64_ROOT_LEVEL;
3422 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3423 } else if (is_pae(vcpu)) {
3424 g_context->nx = is_nx(vcpu);
3425 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3426 g_context->root_level = PT32E_ROOT_LEVEL;
3427 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3428 } else {
3429 g_context->nx = false;
3430 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3431 g_context->root_level = PT32_ROOT_LEVEL;
3432 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3433 }
3434
3435 return 0;
3436 }
3437
3438 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3439 {
3440 if (mmu_is_nested(vcpu))
3441 return init_kvm_nested_mmu(vcpu);
3442 else if (tdp_enabled)
3443 return init_kvm_tdp_mmu(vcpu);
3444 else
3445 return init_kvm_softmmu(vcpu);
3446 }
3447
3448 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3449 {
3450 ASSERT(vcpu);
3451 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3452 /* mmu.free() should set root_hpa = INVALID_PAGE */
3453 vcpu->arch.mmu.free(vcpu);
3454 }
3455
3456 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3457 {
3458 destroy_kvm_mmu(vcpu);
3459 return init_kvm_mmu(vcpu);
3460 }
3461 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3462
3463 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3464 {
3465 int r;
3466
3467 r = mmu_topup_memory_caches(vcpu);
3468 if (r)
3469 goto out;
3470 r = mmu_alloc_roots(vcpu);
3471 spin_lock(&vcpu->kvm->mmu_lock);
3472 mmu_sync_roots(vcpu);
3473 spin_unlock(&vcpu->kvm->mmu_lock);
3474 if (r)
3475 goto out;
3476 /* set_cr3() should ensure TLB has been flushed */
3477 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3478 out:
3479 return r;
3480 }
3481 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3482
3483 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3484 {
3485 mmu_free_roots(vcpu);
3486 }
3487 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3488
3489 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3490 struct kvm_mmu_page *sp, u64 *spte,
3491 const void *new)
3492 {
3493 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3494 ++vcpu->kvm->stat.mmu_pde_zapped;
3495 return;
3496 }
3497
3498 ++vcpu->kvm->stat.mmu_pte_updated;
3499 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3500 }
3501
3502 static bool need_remote_flush(u64 old, u64 new)
3503 {
3504 if (!is_shadow_present_pte(old))
3505 return false;
3506 if (!is_shadow_present_pte(new))
3507 return true;
3508 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3509 return true;
3510 old ^= PT64_NX_MASK;
3511 new ^= PT64_NX_MASK;
3512 return (old & ~new & PT64_PERM_MASK) != 0;
3513 }
3514
3515 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3516 bool remote_flush, bool local_flush)
3517 {
3518 if (zap_page)
3519 return;
3520
3521 if (remote_flush)
3522 kvm_flush_remote_tlbs(vcpu->kvm);
3523 else if (local_flush)
3524 kvm_mmu_flush_tlb(vcpu);
3525 }
3526
3527 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3528 const u8 *new, int *bytes)
3529 {
3530 u64 gentry;
3531 int r;
3532
3533 /*
3534 * Assume that the pte write on a page table of the same type
3535 * as the current vcpu paging mode since we update the sptes only
3536 * when they have the same mode.
3537 */
3538 if (is_pae(vcpu) && *bytes == 4) {
3539 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3540 *gpa &= ~(gpa_t)7;
3541 *bytes = 8;
3542 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3543 if (r)
3544 gentry = 0;
3545 new = (const u8 *)&gentry;
3546 }
3547
3548 switch (*bytes) {
3549 case 4:
3550 gentry = *(const u32 *)new;
3551 break;
3552 case 8:
3553 gentry = *(const u64 *)new;
3554 break;
3555 default:
3556 gentry = 0;
3557 break;
3558 }
3559
3560 return gentry;
3561 }
3562
3563 /*
3564 * If we're seeing too many writes to a page, it may no longer be a page table,
3565 * or we may be forking, in which case it is better to unmap the page.
3566 */
3567 static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
3568 {
3569 /*
3570 * Skip write-flooding detected for the sp whose level is 1, because
3571 * it can become unsync, then the guest page is not write-protected.
3572 */
3573 if (sp->role.level == 1)
3574 return false;
3575
3576 return ++sp->write_flooding_count >= 3;
3577 }
3578
3579 /*
3580 * Misaligned accesses are too much trouble to fix up; also, they usually
3581 * indicate a page is not used as a page table.
3582 */
3583 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3584 int bytes)
3585 {
3586 unsigned offset, pte_size, misaligned;
3587
3588 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3589 gpa, bytes, sp->role.word);
3590
3591 offset = offset_in_page(gpa);
3592 pte_size = sp->role.cr4_pae ? 8 : 4;
3593
3594 /*
3595 * Sometimes, the OS only writes the last one bytes to update status
3596 * bits, for example, in linux, andb instruction is used in clear_bit().
3597 */
3598 if (!(offset & (pte_size - 1)) && bytes == 1)
3599 return false;
3600
3601 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3602 misaligned |= bytes < 4;
3603
3604 return misaligned;
3605 }
3606
3607 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3608 {
3609 unsigned page_offset, quadrant;
3610 u64 *spte;
3611 int level;
3612
3613 page_offset = offset_in_page(gpa);
3614 level = sp->role.level;
3615 *nspte = 1;
3616 if (!sp->role.cr4_pae) {
3617 page_offset <<= 1; /* 32->64 */
3618 /*
3619 * A 32-bit pde maps 4MB while the shadow pdes map
3620 * only 2MB. So we need to double the offset again
3621 * and zap two pdes instead of one.
3622 */
3623 if (level == PT32_ROOT_LEVEL) {
3624 page_offset &= ~7; /* kill rounding error */
3625 page_offset <<= 1;
3626 *nspte = 2;
3627 }
3628 quadrant = page_offset >> PAGE_SHIFT;
3629 page_offset &= ~PAGE_MASK;
3630 if (quadrant != sp->role.quadrant)
3631 return NULL;
3632 }
3633
3634 spte = &sp->spt[page_offset / sizeof(*spte)];
3635 return spte;
3636 }
3637
3638 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3639 const u8 *new, int bytes)
3640 {
3641 gfn_t gfn = gpa >> PAGE_SHIFT;
3642 union kvm_mmu_page_role mask = { .word = 0 };
3643 struct kvm_mmu_page *sp;
3644 struct hlist_node *node;
3645 LIST_HEAD(invalid_list);
3646 u64 entry, gentry, *spte;
3647 int npte;
3648 bool remote_flush, local_flush, zap_page;
3649
3650 /*
3651 * If we don't have indirect shadow pages, it means no page is
3652 * write-protected, so we can exit simply.
3653 */
3654 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3655 return;
3656
3657 zap_page = remote_flush = local_flush = false;
3658
3659 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3660
3661 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3662
3663 /*
3664 * No need to care whether allocation memory is successful
3665 * or not since pte prefetch is skiped if it does not have
3666 * enough objects in the cache.
3667 */
3668 mmu_topup_memory_caches(vcpu);
3669
3670 spin_lock(&vcpu->kvm->mmu_lock);
3671 ++vcpu->kvm->stat.mmu_pte_write;
3672 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3673
3674 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3675 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3676 spte = get_written_sptes(sp, gpa, &npte);
3677
3678 if (detect_write_misaligned(sp, gpa, bytes) ||
3679 detect_write_flooding(sp, spte)) {
3680 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3681 &invalid_list);
3682 ++vcpu->kvm->stat.mmu_flooded;
3683 continue;
3684 }
3685
3686 spte = get_written_sptes(sp, gpa, &npte);
3687 if (!spte)
3688 continue;
3689
3690 local_flush = true;
3691 while (npte--) {
3692 entry = *spte;
3693 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3694 if (gentry &&
3695 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3696 & mask.word) && rmap_can_add(vcpu))
3697 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3698 if (!remote_flush && need_remote_flush(entry, *spte))
3699 remote_flush = true;
3700 ++spte;
3701 }
3702 }
3703 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3704 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3705 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3706 spin_unlock(&vcpu->kvm->mmu_lock);
3707 }
3708
3709 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3710 {
3711 gpa_t gpa;
3712 int r;
3713
3714 if (vcpu->arch.mmu.direct_map)
3715 return 0;
3716
3717 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3718
3719 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3720
3721 return r;
3722 }
3723 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3724
3725 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3726 {
3727 LIST_HEAD(invalid_list);
3728
3729 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3730 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3731 struct kvm_mmu_page *sp;
3732
3733 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3734 struct kvm_mmu_page, link);
3735 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3736 ++vcpu->kvm->stat.mmu_recycled;
3737 }
3738 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3739 }
3740
3741 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3742 {
3743 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3744 return vcpu_match_mmio_gpa(vcpu, addr);
3745
3746 return vcpu_match_mmio_gva(vcpu, addr);
3747 }
3748
3749 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3750 void *insn, int insn_len)
3751 {
3752 int r, emulation_type = EMULTYPE_RETRY;
3753 enum emulation_result er;
3754
3755 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3756 if (r < 0)
3757 goto out;
3758
3759 if (!r) {
3760 r = 1;
3761 goto out;
3762 }
3763
3764 if (is_mmio_page_fault(vcpu, cr2))
3765 emulation_type = 0;
3766
3767 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3768
3769 switch (er) {
3770 case EMULATE_DONE:
3771 return 1;
3772 case EMULATE_DO_MMIO:
3773 ++vcpu->stat.mmio_exits;
3774 /* fall through */
3775 case EMULATE_FAIL:
3776 return 0;
3777 default:
3778 BUG();
3779 }
3780 out:
3781 return r;
3782 }
3783 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3784
3785 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3786 {
3787 vcpu->arch.mmu.invlpg(vcpu, gva);
3788 kvm_mmu_flush_tlb(vcpu);
3789 ++vcpu->stat.invlpg;
3790 }
3791 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3792
3793 void kvm_enable_tdp(void)
3794 {
3795 tdp_enabled = true;
3796 }
3797 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3798
3799 void kvm_disable_tdp(void)
3800 {
3801 tdp_enabled = false;
3802 }
3803 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3804
3805 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3806 {
3807 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3808 if (vcpu->arch.mmu.lm_root != NULL)
3809 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3810 }
3811
3812 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3813 {
3814 struct page *page;
3815 int i;
3816
3817 ASSERT(vcpu);
3818
3819 /*
3820 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3821 * Therefore we need to allocate shadow page tables in the first
3822 * 4GB of memory, which happens to fit the DMA32 zone.
3823 */
3824 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3825 if (!page)
3826 return -ENOMEM;
3827
3828 vcpu->arch.mmu.pae_root = page_address(page);
3829 for (i = 0; i < 4; ++i)
3830 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3831
3832 return 0;
3833 }
3834
3835 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3836 {
3837 ASSERT(vcpu);
3838 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3839
3840 return alloc_mmu_pages(vcpu);
3841 }
3842
3843 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3844 {
3845 ASSERT(vcpu);
3846 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3847
3848 return init_kvm_mmu(vcpu);
3849 }
3850
3851 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3852 {
3853 struct kvm_mmu_page *sp;
3854
3855 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3856 int i;
3857 u64 *pt;
3858
3859 if (!test_bit(slot, sp->slot_bitmap))
3860 continue;
3861
3862 pt = sp->spt;
3863 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3864 if (!is_shadow_present_pte(pt[i]) ||
3865 !is_last_spte(pt[i], sp->role.level))
3866 continue;
3867
3868 if (is_large_pte(pt[i])) {
3869 drop_spte(kvm, &pt[i]);
3870 --kvm->stat.lpages;
3871 continue;
3872 }
3873
3874 /* avoid RMW */
3875 if (is_writable_pte(pt[i]))
3876 mmu_spte_update(&pt[i],
3877 pt[i] & ~PT_WRITABLE_MASK);
3878 }
3879 }
3880 kvm_flush_remote_tlbs(kvm);
3881 }
3882
3883 void kvm_mmu_zap_all(struct kvm *kvm)
3884 {
3885 struct kvm_mmu_page *sp, *node;
3886 LIST_HEAD(invalid_list);
3887
3888 spin_lock(&kvm->mmu_lock);
3889 restart:
3890 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3891 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3892 goto restart;
3893
3894 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3895 spin_unlock(&kvm->mmu_lock);
3896 }
3897
3898 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3899 struct list_head *invalid_list)
3900 {
3901 struct kvm_mmu_page *page;
3902
3903 page = container_of(kvm->arch.active_mmu_pages.prev,
3904 struct kvm_mmu_page, link);
3905 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3906 }
3907
3908 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3909 {
3910 struct kvm *kvm;
3911 struct kvm *kvm_freed = NULL;
3912 int nr_to_scan = sc->nr_to_scan;
3913
3914 if (nr_to_scan == 0)
3915 goto out;
3916
3917 raw_spin_lock(&kvm_lock);
3918
3919 list_for_each_entry(kvm, &vm_list, vm_list) {
3920 int idx, freed_pages;
3921 LIST_HEAD(invalid_list);
3922
3923 idx = srcu_read_lock(&kvm->srcu);
3924 spin_lock(&kvm->mmu_lock);
3925 if (!kvm_freed && nr_to_scan > 0 &&
3926 kvm->arch.n_used_mmu_pages > 0) {
3927 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3928 &invalid_list);
3929 kvm_freed = kvm;
3930 }
3931 nr_to_scan--;
3932
3933 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3934 spin_unlock(&kvm->mmu_lock);
3935 srcu_read_unlock(&kvm->srcu, idx);
3936 }
3937 if (kvm_freed)
3938 list_move_tail(&kvm_freed->vm_list, &vm_list);
3939
3940 raw_spin_unlock(&kvm_lock);
3941
3942 out:
3943 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3944 }
3945
3946 static struct shrinker mmu_shrinker = {
3947 .shrink = mmu_shrink,
3948 .seeks = DEFAULT_SEEKS * 10,
3949 };
3950
3951 static void mmu_destroy_caches(void)
3952 {
3953 if (pte_list_desc_cache)
3954 kmem_cache_destroy(pte_list_desc_cache);
3955 if (mmu_page_header_cache)
3956 kmem_cache_destroy(mmu_page_header_cache);
3957 }
3958
3959 int kvm_mmu_module_init(void)
3960 {
3961 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3962 sizeof(struct pte_list_desc),
3963 0, 0, NULL);
3964 if (!pte_list_desc_cache)
3965 goto nomem;
3966
3967 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3968 sizeof(struct kvm_mmu_page),
3969 0, 0, NULL);
3970 if (!mmu_page_header_cache)
3971 goto nomem;
3972
3973 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3974 goto nomem;
3975
3976 register_shrinker(&mmu_shrinker);
3977
3978 return 0;
3979
3980 nomem:
3981 mmu_destroy_caches();
3982 return -ENOMEM;
3983 }
3984
3985 /*
3986 * Caculate mmu pages needed for kvm.
3987 */
3988 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3989 {
3990 int i;
3991 unsigned int nr_mmu_pages;
3992 unsigned int nr_pages = 0;
3993 struct kvm_memslots *slots;
3994
3995 slots = kvm_memslots(kvm);
3996
3997 for (i = 0; i < slots->nmemslots; i++)
3998 nr_pages += slots->memslots[i].npages;
3999
4000 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4001 nr_mmu_pages = max(nr_mmu_pages,
4002 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4003
4004 return nr_mmu_pages;
4005 }
4006
4007 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
4008 unsigned len)
4009 {
4010 if (len > buffer->len)
4011 return NULL;
4012 return buffer->ptr;
4013 }
4014
4015 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
4016 unsigned len)
4017 {
4018 void *ret;
4019
4020 ret = pv_mmu_peek_buffer(buffer, len);
4021 if (!ret)
4022 return ret;
4023 buffer->ptr += len;
4024 buffer->len -= len;
4025 buffer->processed += len;
4026 return ret;
4027 }
4028
4029 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
4030 gpa_t addr, gpa_t value)
4031 {
4032 int bytes = 8;
4033 int r;
4034
4035 if (!is_long_mode(vcpu) && !is_pae(vcpu))
4036 bytes = 4;
4037
4038 r = mmu_topup_memory_caches(vcpu);
4039 if (r)
4040 return r;
4041
4042 if (!emulator_write_phys(vcpu, addr, &value, bytes))
4043 return -EFAULT;
4044
4045 return 1;
4046 }
4047
4048 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
4049 {
4050 (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
4051 return 1;
4052 }
4053
4054 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
4055 {
4056 spin_lock(&vcpu->kvm->mmu_lock);
4057 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
4058 spin_unlock(&vcpu->kvm->mmu_lock);
4059 return 1;
4060 }
4061
4062 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
4063 struct kvm_pv_mmu_op_buffer *buffer)
4064 {
4065 struct kvm_mmu_op_header *header;
4066
4067 header = pv_mmu_peek_buffer(buffer, sizeof *header);
4068 if (!header)
4069 return 0;
4070 switch (header->op) {
4071 case KVM_MMU_OP_WRITE_PTE: {
4072 struct kvm_mmu_op_write_pte *wpte;
4073
4074 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
4075 if (!wpte)
4076 return 0;
4077 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
4078 wpte->pte_val);
4079 }
4080 case KVM_MMU_OP_FLUSH_TLB: {
4081 struct kvm_mmu_op_flush_tlb *ftlb;
4082
4083 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
4084 if (!ftlb)
4085 return 0;
4086 return kvm_pv_mmu_flush_tlb(vcpu);
4087 }
4088 case KVM_MMU_OP_RELEASE_PT: {
4089 struct kvm_mmu_op_release_pt *rpt;
4090
4091 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
4092 if (!rpt)
4093 return 0;
4094 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
4095 }
4096 default: return 0;
4097 }
4098 }
4099
4100 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
4101 gpa_t addr, unsigned long *ret)
4102 {
4103 int r;
4104 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
4105
4106 buffer->ptr = buffer->buf;
4107 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
4108 buffer->processed = 0;
4109
4110 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
4111 if (r)
4112 goto out;
4113
4114 while (buffer->len) {
4115 r = kvm_pv_mmu_op_one(vcpu, buffer);
4116 if (r < 0)
4117 goto out;
4118 if (r == 0)
4119 break;
4120 }
4121
4122 r = 1;
4123 out:
4124 *ret = buffer->processed;
4125 return r;
4126 }
4127
4128 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4129 {
4130 struct kvm_shadow_walk_iterator iterator;
4131 u64 spte;
4132 int nr_sptes = 0;
4133
4134 walk_shadow_page_lockless_begin(vcpu);
4135 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4136 sptes[iterator.level-1] = spte;
4137 nr_sptes++;
4138 if (!is_shadow_present_pte(spte))
4139 break;
4140 }
4141 walk_shadow_page_lockless_end(vcpu);
4142
4143 return nr_sptes;
4144 }
4145 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4146
4147 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4148 {
4149 ASSERT(vcpu);
4150
4151 destroy_kvm_mmu(vcpu);
4152 free_mmu_pages(vcpu);
4153 mmu_free_memory_caches(vcpu);
4154 }
4155
4156 #ifdef CONFIG_KVM_MMU_AUDIT
4157 #include "mmu_audit.c"
4158 #else
4159 static void mmu_audit_disable(void) { }
4160 #endif
4161
4162 void kvm_mmu_module_exit(void)
4163 {
4164 mmu_destroy_caches();
4165 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4166 unregister_shrinker(&mmu_shrinker);
4167 mmu_audit_disable();
4168 }