]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: don't drop spte if overwrite it from W to RO
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52 bool tdp_enabled = false;
53
54 enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64 "pre page fault",
65 "post page fault",
66 "pre pte write",
67 "post pte write",
68 "pre sync",
69 "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x) \
98 if (!(x)) { \
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
101 }
102 #endif
103
104 #define PTE_PREFETCH_NUM 8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_LEVEL_MASK(level) \
115 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
116
117 #define PT64_INDEX(address, level)\
118 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
119
120
121 #define PT32_LEVEL_BITS 10
122
123 #define PT32_LEVEL_SHIFT(level) \
124 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
125
126 #define PT32_LEVEL_MASK(level) \
127 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
128 #define PT32_LVL_OFFSET_MASK(level) \
129 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT32_LEVEL_BITS))) - 1))
131
132 #define PT32_INDEX(address, level)\
133 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
134
135
136 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
137 #define PT64_DIR_BASE_ADDR_MASK \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139 #define PT64_LVL_ADDR_MASK(level) \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 * PT64_LEVEL_BITS))) - 1))
142 #define PT64_LVL_OFFSET_MASK(level) \
143 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT64_LEVEL_BITS))) - 1))
145
146 #define PT32_BASE_ADDR_MASK PAGE_MASK
147 #define PT32_DIR_BASE_ADDR_MASK \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT32_LVL_ADDR_MASK(level) \
150 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 * PT32_LEVEL_BITS))) - 1))
152
153 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
154 | PT64_NX_MASK)
155
156 #define RMAP_EXT 4
157
158 #define ACC_EXEC_MASK 1
159 #define ACC_WRITE_MASK PT_WRITABLE_MASK
160 #define ACC_USER_MASK PT_USER_MASK
161 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
162
163 #include <trace/events/kvm.h>
164
165 #define CREATE_TRACE_POINTS
166 #include "mmutrace.h"
167
168 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
169
170 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
171
172 struct kvm_rmap_desc {
173 u64 *sptes[RMAP_EXT];
174 struct kvm_rmap_desc *more;
175 };
176
177 struct kvm_shadow_walk_iterator {
178 u64 addr;
179 hpa_t shadow_addr;
180 int level;
181 u64 *sptep;
182 unsigned index;
183 };
184
185 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
186 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
187 shadow_walk_okay(&(_walker)); \
188 shadow_walk_next(&(_walker)))
189
190 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
191
192 static struct kmem_cache *pte_chain_cache;
193 static struct kmem_cache *rmap_desc_cache;
194 static struct kmem_cache *mmu_page_header_cache;
195 static struct percpu_counter kvm_total_used_mmu_pages;
196
197 static u64 __read_mostly shadow_trap_nonpresent_pte;
198 static u64 __read_mostly shadow_notrap_nonpresent_pte;
199 static u64 __read_mostly shadow_nx_mask;
200 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
201 static u64 __read_mostly shadow_user_mask;
202 static u64 __read_mostly shadow_accessed_mask;
203 static u64 __read_mostly shadow_dirty_mask;
204
205 static inline u64 rsvd_bits(int s, int e)
206 {
207 return ((1ULL << (e - s + 1)) - 1) << s;
208 }
209
210 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
211 {
212 shadow_trap_nonpresent_pte = trap_pte;
213 shadow_notrap_nonpresent_pte = notrap_pte;
214 }
215 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
216
217 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
218 u64 dirty_mask, u64 nx_mask, u64 x_mask)
219 {
220 shadow_user_mask = user_mask;
221 shadow_accessed_mask = accessed_mask;
222 shadow_dirty_mask = dirty_mask;
223 shadow_nx_mask = nx_mask;
224 shadow_x_mask = x_mask;
225 }
226 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
227
228 static bool is_write_protection(struct kvm_vcpu *vcpu)
229 {
230 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
231 }
232
233 static int is_cpuid_PSE36(void)
234 {
235 return 1;
236 }
237
238 static int is_nx(struct kvm_vcpu *vcpu)
239 {
240 return vcpu->arch.efer & EFER_NX;
241 }
242
243 static int is_shadow_present_pte(u64 pte)
244 {
245 return pte != shadow_trap_nonpresent_pte
246 && pte != shadow_notrap_nonpresent_pte;
247 }
248
249 static int is_large_pte(u64 pte)
250 {
251 return pte & PT_PAGE_SIZE_MASK;
252 }
253
254 static int is_writable_pte(unsigned long pte)
255 {
256 return pte & PT_WRITABLE_MASK;
257 }
258
259 static int is_dirty_gpte(unsigned long pte)
260 {
261 return pte & PT_DIRTY_MASK;
262 }
263
264 static int is_rmap_spte(u64 pte)
265 {
266 return is_shadow_present_pte(pte);
267 }
268
269 static int is_last_spte(u64 pte, int level)
270 {
271 if (level == PT_PAGE_TABLE_LEVEL)
272 return 1;
273 if (is_large_pte(pte))
274 return 1;
275 return 0;
276 }
277
278 static pfn_t spte_to_pfn(u64 pte)
279 {
280 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
281 }
282
283 static gfn_t pse36_gfn_delta(u32 gpte)
284 {
285 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287 return (gpte & PT32_DIR_PSE36_MASK) << shift;
288 }
289
290 static void __set_spte(u64 *sptep, u64 spte)
291 {
292 set_64bit(sptep, spte);
293 }
294
295 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
296 {
297 #ifdef CONFIG_X86_64
298 return xchg(sptep, new_spte);
299 #else
300 u64 old_spte;
301
302 do {
303 old_spte = *sptep;
304 } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
305
306 return old_spte;
307 #endif
308 }
309
310 static bool spte_has_volatile_bits(u64 spte)
311 {
312 if (!shadow_accessed_mask)
313 return false;
314
315 if (!is_shadow_present_pte(spte))
316 return false;
317
318 if ((spte & shadow_accessed_mask) &&
319 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
320 return false;
321
322 return true;
323 }
324
325 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
326 {
327 return (old_spte & bit_mask) && !(new_spte & bit_mask);
328 }
329
330 static void update_spte(u64 *sptep, u64 new_spte)
331 {
332 u64 mask, old_spte = *sptep;
333
334 WARN_ON(!is_rmap_spte(new_spte));
335
336 new_spte |= old_spte & shadow_dirty_mask;
337
338 mask = shadow_accessed_mask;
339 if (is_writable_pte(old_spte))
340 mask |= shadow_dirty_mask;
341
342 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
343 __set_spte(sptep, new_spte);
344 else
345 old_spte = __xchg_spte(sptep, new_spte);
346
347 if (!shadow_accessed_mask)
348 return;
349
350 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
351 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
352 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
353 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
354 }
355
356 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
357 struct kmem_cache *base_cache, int min)
358 {
359 void *obj;
360
361 if (cache->nobjs >= min)
362 return 0;
363 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
364 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
365 if (!obj)
366 return -ENOMEM;
367 cache->objects[cache->nobjs++] = obj;
368 }
369 return 0;
370 }
371
372 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
373 struct kmem_cache *cache)
374 {
375 while (mc->nobjs)
376 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
377 }
378
379 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
380 int min)
381 {
382 struct page *page;
383
384 if (cache->nobjs >= min)
385 return 0;
386 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
387 page = alloc_page(GFP_KERNEL);
388 if (!page)
389 return -ENOMEM;
390 cache->objects[cache->nobjs++] = page_address(page);
391 }
392 return 0;
393 }
394
395 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
396 {
397 while (mc->nobjs)
398 free_page((unsigned long)mc->objects[--mc->nobjs]);
399 }
400
401 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
402 {
403 int r;
404
405 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
406 pte_chain_cache, 4);
407 if (r)
408 goto out;
409 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
410 rmap_desc_cache, 4 + PTE_PREFETCH_NUM);
411 if (r)
412 goto out;
413 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
414 if (r)
415 goto out;
416 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
417 mmu_page_header_cache, 4);
418 out:
419 return r;
420 }
421
422 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
423 {
424 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
425 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
426 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
427 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
428 mmu_page_header_cache);
429 }
430
431 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
432 size_t size)
433 {
434 void *p;
435
436 BUG_ON(!mc->nobjs);
437 p = mc->objects[--mc->nobjs];
438 return p;
439 }
440
441 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
442 {
443 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
444 sizeof(struct kvm_pte_chain));
445 }
446
447 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
448 {
449 kmem_cache_free(pte_chain_cache, pc);
450 }
451
452 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
453 {
454 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
455 sizeof(struct kvm_rmap_desc));
456 }
457
458 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
459 {
460 kmem_cache_free(rmap_desc_cache, rd);
461 }
462
463 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
464 {
465 if (!sp->role.direct)
466 return sp->gfns[index];
467
468 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
469 }
470
471 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
472 {
473 if (sp->role.direct)
474 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
475 else
476 sp->gfns[index] = gfn;
477 }
478
479 /*
480 * Return the pointer to the largepage write count for a given
481 * gfn, handling slots that are not large page aligned.
482 */
483 static int *slot_largepage_idx(gfn_t gfn,
484 struct kvm_memory_slot *slot,
485 int level)
486 {
487 unsigned long idx;
488
489 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
490 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
491 return &slot->lpage_info[level - 2][idx].write_count;
492 }
493
494 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
495 {
496 struct kvm_memory_slot *slot;
497 int *write_count;
498 int i;
499
500 slot = gfn_to_memslot(kvm, gfn);
501 for (i = PT_DIRECTORY_LEVEL;
502 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
503 write_count = slot_largepage_idx(gfn, slot, i);
504 *write_count += 1;
505 }
506 }
507
508 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
509 {
510 struct kvm_memory_slot *slot;
511 int *write_count;
512 int i;
513
514 slot = gfn_to_memslot(kvm, gfn);
515 for (i = PT_DIRECTORY_LEVEL;
516 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
517 write_count = slot_largepage_idx(gfn, slot, i);
518 *write_count -= 1;
519 WARN_ON(*write_count < 0);
520 }
521 }
522
523 static int has_wrprotected_page(struct kvm *kvm,
524 gfn_t gfn,
525 int level)
526 {
527 struct kvm_memory_slot *slot;
528 int *largepage_idx;
529
530 slot = gfn_to_memslot(kvm, gfn);
531 if (slot) {
532 largepage_idx = slot_largepage_idx(gfn, slot, level);
533 return *largepage_idx;
534 }
535
536 return 1;
537 }
538
539 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
540 {
541 unsigned long page_size;
542 int i, ret = 0;
543
544 page_size = kvm_host_page_size(kvm, gfn);
545
546 for (i = PT_PAGE_TABLE_LEVEL;
547 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
548 if (page_size >= KVM_HPAGE_SIZE(i))
549 ret = i;
550 else
551 break;
552 }
553
554 return ret;
555 }
556
557 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
558 {
559 struct kvm_memory_slot *slot;
560 int host_level, level, max_level;
561
562 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
563 if (slot && slot->dirty_bitmap)
564 return PT_PAGE_TABLE_LEVEL;
565
566 host_level = host_mapping_level(vcpu->kvm, large_gfn);
567
568 if (host_level == PT_PAGE_TABLE_LEVEL)
569 return host_level;
570
571 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
572 kvm_x86_ops->get_lpage_level() : host_level;
573
574 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
575 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
576 break;
577
578 return level - 1;
579 }
580
581 /*
582 * Take gfn and return the reverse mapping to it.
583 */
584
585 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
586 {
587 struct kvm_memory_slot *slot;
588 unsigned long idx;
589
590 slot = gfn_to_memslot(kvm, gfn);
591 if (likely(level == PT_PAGE_TABLE_LEVEL))
592 return &slot->rmap[gfn - slot->base_gfn];
593
594 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
595 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
596
597 return &slot->lpage_info[level - 2][idx].rmap_pde;
598 }
599
600 /*
601 * Reverse mapping data structures:
602 *
603 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
604 * that points to page_address(page).
605 *
606 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
607 * containing more mappings.
608 *
609 * Returns the number of rmap entries before the spte was added or zero if
610 * the spte was not added.
611 *
612 */
613 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
614 {
615 struct kvm_mmu_page *sp;
616 struct kvm_rmap_desc *desc;
617 unsigned long *rmapp;
618 int i, count = 0;
619
620 if (!is_rmap_spte(*spte))
621 return count;
622 sp = page_header(__pa(spte));
623 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
624 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
625 if (!*rmapp) {
626 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
627 *rmapp = (unsigned long)spte;
628 } else if (!(*rmapp & 1)) {
629 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
630 desc = mmu_alloc_rmap_desc(vcpu);
631 desc->sptes[0] = (u64 *)*rmapp;
632 desc->sptes[1] = spte;
633 *rmapp = (unsigned long)desc | 1;
634 ++count;
635 } else {
636 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
637 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
638 while (desc->sptes[RMAP_EXT-1] && desc->more) {
639 desc = desc->more;
640 count += RMAP_EXT;
641 }
642 if (desc->sptes[RMAP_EXT-1]) {
643 desc->more = mmu_alloc_rmap_desc(vcpu);
644 desc = desc->more;
645 }
646 for (i = 0; desc->sptes[i]; ++i)
647 ++count;
648 desc->sptes[i] = spte;
649 }
650 return count;
651 }
652
653 static void rmap_desc_remove_entry(unsigned long *rmapp,
654 struct kvm_rmap_desc *desc,
655 int i,
656 struct kvm_rmap_desc *prev_desc)
657 {
658 int j;
659
660 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
661 ;
662 desc->sptes[i] = desc->sptes[j];
663 desc->sptes[j] = NULL;
664 if (j != 0)
665 return;
666 if (!prev_desc && !desc->more)
667 *rmapp = (unsigned long)desc->sptes[0];
668 else
669 if (prev_desc)
670 prev_desc->more = desc->more;
671 else
672 *rmapp = (unsigned long)desc->more | 1;
673 mmu_free_rmap_desc(desc);
674 }
675
676 static void rmap_remove(struct kvm *kvm, u64 *spte)
677 {
678 struct kvm_rmap_desc *desc;
679 struct kvm_rmap_desc *prev_desc;
680 struct kvm_mmu_page *sp;
681 gfn_t gfn;
682 unsigned long *rmapp;
683 int i;
684
685 sp = page_header(__pa(spte));
686 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
687 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
688 if (!*rmapp) {
689 printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
690 BUG();
691 } else if (!(*rmapp & 1)) {
692 rmap_printk("rmap_remove: %p 1->0\n", spte);
693 if ((u64 *)*rmapp != spte) {
694 printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
695 BUG();
696 }
697 *rmapp = 0;
698 } else {
699 rmap_printk("rmap_remove: %p many->many\n", spte);
700 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
701 prev_desc = NULL;
702 while (desc) {
703 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
704 if (desc->sptes[i] == spte) {
705 rmap_desc_remove_entry(rmapp,
706 desc, i,
707 prev_desc);
708 return;
709 }
710 prev_desc = desc;
711 desc = desc->more;
712 }
713 pr_err("rmap_remove: %p many->many\n", spte);
714 BUG();
715 }
716 }
717
718 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
719 {
720 pfn_t pfn;
721 u64 old_spte = *sptep;
722
723 if (!spte_has_volatile_bits(old_spte))
724 __set_spte(sptep, new_spte);
725 else
726 old_spte = __xchg_spte(sptep, new_spte);
727
728 if (!is_rmap_spte(old_spte))
729 return 0;
730
731 pfn = spte_to_pfn(old_spte);
732 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
733 kvm_set_pfn_accessed(pfn);
734 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
735 kvm_set_pfn_dirty(pfn);
736 return 1;
737 }
738
739 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
740 {
741 if (set_spte_track_bits(sptep, new_spte))
742 rmap_remove(kvm, sptep);
743 }
744
745 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
746 {
747 struct kvm_rmap_desc *desc;
748 u64 *prev_spte;
749 int i;
750
751 if (!*rmapp)
752 return NULL;
753 else if (!(*rmapp & 1)) {
754 if (!spte)
755 return (u64 *)*rmapp;
756 return NULL;
757 }
758 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
759 prev_spte = NULL;
760 while (desc) {
761 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
762 if (prev_spte == spte)
763 return desc->sptes[i];
764 prev_spte = desc->sptes[i];
765 }
766 desc = desc->more;
767 }
768 return NULL;
769 }
770
771 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
772 {
773 unsigned long *rmapp;
774 u64 *spte;
775 int i, write_protected = 0;
776
777 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
778
779 spte = rmap_next(kvm, rmapp, NULL);
780 while (spte) {
781 BUG_ON(!spte);
782 BUG_ON(!(*spte & PT_PRESENT_MASK));
783 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
784 if (is_writable_pte(*spte)) {
785 update_spte(spte, *spte & ~PT_WRITABLE_MASK);
786 write_protected = 1;
787 }
788 spte = rmap_next(kvm, rmapp, spte);
789 }
790
791 /* check for huge page mappings */
792 for (i = PT_DIRECTORY_LEVEL;
793 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
794 rmapp = gfn_to_rmap(kvm, gfn, i);
795 spte = rmap_next(kvm, rmapp, NULL);
796 while (spte) {
797 BUG_ON(!spte);
798 BUG_ON(!(*spte & PT_PRESENT_MASK));
799 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
800 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
801 if (is_writable_pte(*spte)) {
802 drop_spte(kvm, spte,
803 shadow_trap_nonpresent_pte);
804 --kvm->stat.lpages;
805 spte = NULL;
806 write_protected = 1;
807 }
808 spte = rmap_next(kvm, rmapp, spte);
809 }
810 }
811
812 return write_protected;
813 }
814
815 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
816 unsigned long data)
817 {
818 u64 *spte;
819 int need_tlb_flush = 0;
820
821 while ((spte = rmap_next(kvm, rmapp, NULL))) {
822 BUG_ON(!(*spte & PT_PRESENT_MASK));
823 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
824 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
825 need_tlb_flush = 1;
826 }
827 return need_tlb_flush;
828 }
829
830 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
831 unsigned long data)
832 {
833 int need_flush = 0;
834 u64 *spte, new_spte;
835 pte_t *ptep = (pte_t *)data;
836 pfn_t new_pfn;
837
838 WARN_ON(pte_huge(*ptep));
839 new_pfn = pte_pfn(*ptep);
840 spte = rmap_next(kvm, rmapp, NULL);
841 while (spte) {
842 BUG_ON(!is_shadow_present_pte(*spte));
843 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
844 need_flush = 1;
845 if (pte_write(*ptep)) {
846 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
847 spte = rmap_next(kvm, rmapp, NULL);
848 } else {
849 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
850 new_spte |= (u64)new_pfn << PAGE_SHIFT;
851
852 new_spte &= ~PT_WRITABLE_MASK;
853 new_spte &= ~SPTE_HOST_WRITEABLE;
854 new_spte &= ~shadow_accessed_mask;
855 set_spte_track_bits(spte, new_spte);
856 spte = rmap_next(kvm, rmapp, spte);
857 }
858 }
859 if (need_flush)
860 kvm_flush_remote_tlbs(kvm);
861
862 return 0;
863 }
864
865 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
866 unsigned long data,
867 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
868 unsigned long data))
869 {
870 int i, j;
871 int ret;
872 int retval = 0;
873 struct kvm_memslots *slots;
874
875 slots = kvm_memslots(kvm);
876
877 for (i = 0; i < slots->nmemslots; i++) {
878 struct kvm_memory_slot *memslot = &slots->memslots[i];
879 unsigned long start = memslot->userspace_addr;
880 unsigned long end;
881
882 end = start + (memslot->npages << PAGE_SHIFT);
883 if (hva >= start && hva < end) {
884 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
885
886 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
887
888 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
889 unsigned long idx;
890 int sh;
891
892 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
893 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
894 (memslot->base_gfn >> sh);
895 ret |= handler(kvm,
896 &memslot->lpage_info[j][idx].rmap_pde,
897 data);
898 }
899 trace_kvm_age_page(hva, memslot, ret);
900 retval |= ret;
901 }
902 }
903
904 return retval;
905 }
906
907 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
908 {
909 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
910 }
911
912 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
913 {
914 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
915 }
916
917 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
918 unsigned long data)
919 {
920 u64 *spte;
921 int young = 0;
922
923 /*
924 * Emulate the accessed bit for EPT, by checking if this page has
925 * an EPT mapping, and clearing it if it does. On the next access,
926 * a new EPT mapping will be established.
927 * This has some overhead, but not as much as the cost of swapping
928 * out actively used pages or breaking up actively used hugepages.
929 */
930 if (!shadow_accessed_mask)
931 return kvm_unmap_rmapp(kvm, rmapp, data);
932
933 spte = rmap_next(kvm, rmapp, NULL);
934 while (spte) {
935 int _young;
936 u64 _spte = *spte;
937 BUG_ON(!(_spte & PT_PRESENT_MASK));
938 _young = _spte & PT_ACCESSED_MASK;
939 if (_young) {
940 young = 1;
941 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
942 }
943 spte = rmap_next(kvm, rmapp, spte);
944 }
945 return young;
946 }
947
948 #define RMAP_RECYCLE_THRESHOLD 1000
949
950 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
951 {
952 unsigned long *rmapp;
953 struct kvm_mmu_page *sp;
954
955 sp = page_header(__pa(spte));
956
957 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
958
959 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
960 kvm_flush_remote_tlbs(vcpu->kvm);
961 }
962
963 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
964 {
965 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
966 }
967
968 #ifdef MMU_DEBUG
969 static int is_empty_shadow_page(u64 *spt)
970 {
971 u64 *pos;
972 u64 *end;
973
974 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
975 if (is_shadow_present_pte(*pos)) {
976 printk(KERN_ERR "%s: %p %llx\n", __func__,
977 pos, *pos);
978 return 0;
979 }
980 return 1;
981 }
982 #endif
983
984 /*
985 * This value is the sum of all of the kvm instances's
986 * kvm->arch.n_used_mmu_pages values. We need a global,
987 * aggregate version in order to make the slab shrinker
988 * faster
989 */
990 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
991 {
992 kvm->arch.n_used_mmu_pages += nr;
993 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
994 }
995
996 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
997 {
998 ASSERT(is_empty_shadow_page(sp->spt));
999 hlist_del(&sp->hash_link);
1000 list_del(&sp->link);
1001 __free_page(virt_to_page(sp->spt));
1002 if (!sp->role.direct)
1003 __free_page(virt_to_page(sp->gfns));
1004 kmem_cache_free(mmu_page_header_cache, sp);
1005 kvm_mod_used_mmu_pages(kvm, -1);
1006 }
1007
1008 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1009 {
1010 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1011 }
1012
1013 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1014 u64 *parent_pte, int direct)
1015 {
1016 struct kvm_mmu_page *sp;
1017
1018 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
1019 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1020 if (!direct)
1021 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1022 PAGE_SIZE);
1023 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1024 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1025 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1026 sp->multimapped = 0;
1027 sp->parent_pte = parent_pte;
1028 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1029 return sp;
1030 }
1031
1032 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1033 struct kvm_mmu_page *sp, u64 *parent_pte)
1034 {
1035 struct kvm_pte_chain *pte_chain;
1036 struct hlist_node *node;
1037 int i;
1038
1039 if (!parent_pte)
1040 return;
1041 if (!sp->multimapped) {
1042 u64 *old = sp->parent_pte;
1043
1044 if (!old) {
1045 sp->parent_pte = parent_pte;
1046 return;
1047 }
1048 sp->multimapped = 1;
1049 pte_chain = mmu_alloc_pte_chain(vcpu);
1050 INIT_HLIST_HEAD(&sp->parent_ptes);
1051 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1052 pte_chain->parent_ptes[0] = old;
1053 }
1054 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1055 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1056 continue;
1057 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1058 if (!pte_chain->parent_ptes[i]) {
1059 pte_chain->parent_ptes[i] = parent_pte;
1060 return;
1061 }
1062 }
1063 pte_chain = mmu_alloc_pte_chain(vcpu);
1064 BUG_ON(!pte_chain);
1065 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1066 pte_chain->parent_ptes[0] = parent_pte;
1067 }
1068
1069 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1070 u64 *parent_pte)
1071 {
1072 struct kvm_pte_chain *pte_chain;
1073 struct hlist_node *node;
1074 int i;
1075
1076 if (!sp->multimapped) {
1077 BUG_ON(sp->parent_pte != parent_pte);
1078 sp->parent_pte = NULL;
1079 return;
1080 }
1081 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1082 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1083 if (!pte_chain->parent_ptes[i])
1084 break;
1085 if (pte_chain->parent_ptes[i] != parent_pte)
1086 continue;
1087 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1088 && pte_chain->parent_ptes[i + 1]) {
1089 pte_chain->parent_ptes[i]
1090 = pte_chain->parent_ptes[i + 1];
1091 ++i;
1092 }
1093 pte_chain->parent_ptes[i] = NULL;
1094 if (i == 0) {
1095 hlist_del(&pte_chain->link);
1096 mmu_free_pte_chain(pte_chain);
1097 if (hlist_empty(&sp->parent_ptes)) {
1098 sp->multimapped = 0;
1099 sp->parent_pte = NULL;
1100 }
1101 }
1102 return;
1103 }
1104 BUG();
1105 }
1106
1107 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1108 {
1109 struct kvm_pte_chain *pte_chain;
1110 struct hlist_node *node;
1111 struct kvm_mmu_page *parent_sp;
1112 int i;
1113
1114 if (!sp->multimapped && sp->parent_pte) {
1115 parent_sp = page_header(__pa(sp->parent_pte));
1116 fn(parent_sp, sp->parent_pte);
1117 return;
1118 }
1119
1120 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1121 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1122 u64 *spte = pte_chain->parent_ptes[i];
1123
1124 if (!spte)
1125 break;
1126 parent_sp = page_header(__pa(spte));
1127 fn(parent_sp, spte);
1128 }
1129 }
1130
1131 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1132 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1133 {
1134 mmu_parent_walk(sp, mark_unsync);
1135 }
1136
1137 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1138 {
1139 unsigned int index;
1140
1141 index = spte - sp->spt;
1142 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1143 return;
1144 if (sp->unsync_children++)
1145 return;
1146 kvm_mmu_mark_parents_unsync(sp);
1147 }
1148
1149 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1150 struct kvm_mmu_page *sp)
1151 {
1152 int i;
1153
1154 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1155 sp->spt[i] = shadow_trap_nonpresent_pte;
1156 }
1157
1158 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1159 struct kvm_mmu_page *sp, bool clear_unsync)
1160 {
1161 return 1;
1162 }
1163
1164 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1165 {
1166 }
1167
1168 #define KVM_PAGE_ARRAY_NR 16
1169
1170 struct kvm_mmu_pages {
1171 struct mmu_page_and_offset {
1172 struct kvm_mmu_page *sp;
1173 unsigned int idx;
1174 } page[KVM_PAGE_ARRAY_NR];
1175 unsigned int nr;
1176 };
1177
1178 #define for_each_unsync_children(bitmap, idx) \
1179 for (idx = find_first_bit(bitmap, 512); \
1180 idx < 512; \
1181 idx = find_next_bit(bitmap, 512, idx+1))
1182
1183 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1184 int idx)
1185 {
1186 int i;
1187
1188 if (sp->unsync)
1189 for (i=0; i < pvec->nr; i++)
1190 if (pvec->page[i].sp == sp)
1191 return 0;
1192
1193 pvec->page[pvec->nr].sp = sp;
1194 pvec->page[pvec->nr].idx = idx;
1195 pvec->nr++;
1196 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1197 }
1198
1199 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1200 struct kvm_mmu_pages *pvec)
1201 {
1202 int i, ret, nr_unsync_leaf = 0;
1203
1204 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1205 struct kvm_mmu_page *child;
1206 u64 ent = sp->spt[i];
1207
1208 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1209 goto clear_child_bitmap;
1210
1211 child = page_header(ent & PT64_BASE_ADDR_MASK);
1212
1213 if (child->unsync_children) {
1214 if (mmu_pages_add(pvec, child, i))
1215 return -ENOSPC;
1216
1217 ret = __mmu_unsync_walk(child, pvec);
1218 if (!ret)
1219 goto clear_child_bitmap;
1220 else if (ret > 0)
1221 nr_unsync_leaf += ret;
1222 else
1223 return ret;
1224 } else if (child->unsync) {
1225 nr_unsync_leaf++;
1226 if (mmu_pages_add(pvec, child, i))
1227 return -ENOSPC;
1228 } else
1229 goto clear_child_bitmap;
1230
1231 continue;
1232
1233 clear_child_bitmap:
1234 __clear_bit(i, sp->unsync_child_bitmap);
1235 sp->unsync_children--;
1236 WARN_ON((int)sp->unsync_children < 0);
1237 }
1238
1239
1240 return nr_unsync_leaf;
1241 }
1242
1243 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1244 struct kvm_mmu_pages *pvec)
1245 {
1246 if (!sp->unsync_children)
1247 return 0;
1248
1249 mmu_pages_add(pvec, sp, 0);
1250 return __mmu_unsync_walk(sp, pvec);
1251 }
1252
1253 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1254 {
1255 WARN_ON(!sp->unsync);
1256 trace_kvm_mmu_sync_page(sp);
1257 sp->unsync = 0;
1258 --kvm->stat.mmu_unsync;
1259 }
1260
1261 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1262 struct list_head *invalid_list);
1263 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1264 struct list_head *invalid_list);
1265
1266 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1267 hlist_for_each_entry(sp, pos, \
1268 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1269 if ((sp)->gfn != (gfn)) {} else
1270
1271 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1272 hlist_for_each_entry(sp, pos, \
1273 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1274 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1275 (sp)->role.invalid) {} else
1276
1277 /* @sp->gfn should be write-protected at the call site */
1278 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1279 struct list_head *invalid_list, bool clear_unsync)
1280 {
1281 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1282 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1283 return 1;
1284 }
1285
1286 if (clear_unsync)
1287 kvm_unlink_unsync_page(vcpu->kvm, sp);
1288
1289 if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1290 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1291 return 1;
1292 }
1293
1294 kvm_mmu_flush_tlb(vcpu);
1295 return 0;
1296 }
1297
1298 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1299 struct kvm_mmu_page *sp)
1300 {
1301 LIST_HEAD(invalid_list);
1302 int ret;
1303
1304 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1305 if (ret)
1306 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1307
1308 return ret;
1309 }
1310
1311 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1312 struct list_head *invalid_list)
1313 {
1314 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1315 }
1316
1317 /* @gfn should be write-protected at the call site */
1318 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1319 {
1320 struct kvm_mmu_page *s;
1321 struct hlist_node *node;
1322 LIST_HEAD(invalid_list);
1323 bool flush = false;
1324
1325 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1326 if (!s->unsync)
1327 continue;
1328
1329 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1330 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1331 (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1332 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1333 continue;
1334 }
1335 kvm_unlink_unsync_page(vcpu->kvm, s);
1336 flush = true;
1337 }
1338
1339 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1340 if (flush)
1341 kvm_mmu_flush_tlb(vcpu);
1342 }
1343
1344 struct mmu_page_path {
1345 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1346 unsigned int idx[PT64_ROOT_LEVEL-1];
1347 };
1348
1349 #define for_each_sp(pvec, sp, parents, i) \
1350 for (i = mmu_pages_next(&pvec, &parents, -1), \
1351 sp = pvec.page[i].sp; \
1352 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1353 i = mmu_pages_next(&pvec, &parents, i))
1354
1355 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1356 struct mmu_page_path *parents,
1357 int i)
1358 {
1359 int n;
1360
1361 for (n = i+1; n < pvec->nr; n++) {
1362 struct kvm_mmu_page *sp = pvec->page[n].sp;
1363
1364 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1365 parents->idx[0] = pvec->page[n].idx;
1366 return n;
1367 }
1368
1369 parents->parent[sp->role.level-2] = sp;
1370 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1371 }
1372
1373 return n;
1374 }
1375
1376 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1377 {
1378 struct kvm_mmu_page *sp;
1379 unsigned int level = 0;
1380
1381 do {
1382 unsigned int idx = parents->idx[level];
1383
1384 sp = parents->parent[level];
1385 if (!sp)
1386 return;
1387
1388 --sp->unsync_children;
1389 WARN_ON((int)sp->unsync_children < 0);
1390 __clear_bit(idx, sp->unsync_child_bitmap);
1391 level++;
1392 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1393 }
1394
1395 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1396 struct mmu_page_path *parents,
1397 struct kvm_mmu_pages *pvec)
1398 {
1399 parents->parent[parent->role.level-1] = NULL;
1400 pvec->nr = 0;
1401 }
1402
1403 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1404 struct kvm_mmu_page *parent)
1405 {
1406 int i;
1407 struct kvm_mmu_page *sp;
1408 struct mmu_page_path parents;
1409 struct kvm_mmu_pages pages;
1410 LIST_HEAD(invalid_list);
1411
1412 kvm_mmu_pages_init(parent, &parents, &pages);
1413 while (mmu_unsync_walk(parent, &pages)) {
1414 int protected = 0;
1415
1416 for_each_sp(pages, sp, parents, i)
1417 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1418
1419 if (protected)
1420 kvm_flush_remote_tlbs(vcpu->kvm);
1421
1422 for_each_sp(pages, sp, parents, i) {
1423 kvm_sync_page(vcpu, sp, &invalid_list);
1424 mmu_pages_clear_parents(&parents);
1425 }
1426 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1427 cond_resched_lock(&vcpu->kvm->mmu_lock);
1428 kvm_mmu_pages_init(parent, &parents, &pages);
1429 }
1430 }
1431
1432 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1433 gfn_t gfn,
1434 gva_t gaddr,
1435 unsigned level,
1436 int direct,
1437 unsigned access,
1438 u64 *parent_pte)
1439 {
1440 union kvm_mmu_page_role role;
1441 unsigned quadrant;
1442 struct kvm_mmu_page *sp;
1443 struct hlist_node *node;
1444 bool need_sync = false;
1445
1446 role = vcpu->arch.mmu.base_role;
1447 role.level = level;
1448 role.direct = direct;
1449 if (role.direct)
1450 role.cr4_pae = 0;
1451 role.access = access;
1452 if (!vcpu->arch.mmu.direct_map
1453 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1454 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1455 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1456 role.quadrant = quadrant;
1457 }
1458 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1459 if (!need_sync && sp->unsync)
1460 need_sync = true;
1461
1462 if (sp->role.word != role.word)
1463 continue;
1464
1465 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1466 break;
1467
1468 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1469 if (sp->unsync_children) {
1470 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1471 kvm_mmu_mark_parents_unsync(sp);
1472 } else if (sp->unsync)
1473 kvm_mmu_mark_parents_unsync(sp);
1474
1475 trace_kvm_mmu_get_page(sp, false);
1476 return sp;
1477 }
1478 ++vcpu->kvm->stat.mmu_cache_miss;
1479 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1480 if (!sp)
1481 return sp;
1482 sp->gfn = gfn;
1483 sp->role = role;
1484 hlist_add_head(&sp->hash_link,
1485 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1486 if (!direct) {
1487 if (rmap_write_protect(vcpu->kvm, gfn))
1488 kvm_flush_remote_tlbs(vcpu->kvm);
1489 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1490 kvm_sync_pages(vcpu, gfn);
1491
1492 account_shadowed(vcpu->kvm, gfn);
1493 }
1494 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1495 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1496 else
1497 nonpaging_prefetch_page(vcpu, sp);
1498 trace_kvm_mmu_get_page(sp, true);
1499 return sp;
1500 }
1501
1502 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1503 struct kvm_vcpu *vcpu, u64 addr)
1504 {
1505 iterator->addr = addr;
1506 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1507 iterator->level = vcpu->arch.mmu.shadow_root_level;
1508
1509 if (iterator->level == PT64_ROOT_LEVEL &&
1510 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1511 !vcpu->arch.mmu.direct_map)
1512 --iterator->level;
1513
1514 if (iterator->level == PT32E_ROOT_LEVEL) {
1515 iterator->shadow_addr
1516 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1517 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1518 --iterator->level;
1519 if (!iterator->shadow_addr)
1520 iterator->level = 0;
1521 }
1522 }
1523
1524 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1525 {
1526 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1527 return false;
1528
1529 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1530 if (is_large_pte(*iterator->sptep))
1531 return false;
1532
1533 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1534 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1535 return true;
1536 }
1537
1538 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1539 {
1540 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1541 --iterator->level;
1542 }
1543
1544 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1545 {
1546 u64 spte;
1547
1548 spte = __pa(sp->spt)
1549 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1550 | PT_WRITABLE_MASK | PT_USER_MASK;
1551 __set_spte(sptep, spte);
1552 }
1553
1554 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1555 {
1556 if (is_large_pte(*sptep)) {
1557 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1558 kvm_flush_remote_tlbs(vcpu->kvm);
1559 }
1560 }
1561
1562 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1563 unsigned direct_access)
1564 {
1565 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1566 struct kvm_mmu_page *child;
1567
1568 /*
1569 * For the direct sp, if the guest pte's dirty bit
1570 * changed form clean to dirty, it will corrupt the
1571 * sp's access: allow writable in the read-only sp,
1572 * so we should update the spte at this point to get
1573 * a new sp with the correct access.
1574 */
1575 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1576 if (child->role.access == direct_access)
1577 return;
1578
1579 mmu_page_remove_parent_pte(child, sptep);
1580 __set_spte(sptep, shadow_trap_nonpresent_pte);
1581 kvm_flush_remote_tlbs(vcpu->kvm);
1582 }
1583 }
1584
1585 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1586 struct kvm_mmu_page *sp)
1587 {
1588 unsigned i;
1589 u64 *pt;
1590 u64 ent;
1591
1592 pt = sp->spt;
1593
1594 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1595 ent = pt[i];
1596
1597 if (is_shadow_present_pte(ent)) {
1598 if (!is_last_spte(ent, sp->role.level)) {
1599 ent &= PT64_BASE_ADDR_MASK;
1600 mmu_page_remove_parent_pte(page_header(ent),
1601 &pt[i]);
1602 } else {
1603 if (is_large_pte(ent))
1604 --kvm->stat.lpages;
1605 drop_spte(kvm, &pt[i],
1606 shadow_trap_nonpresent_pte);
1607 }
1608 }
1609 pt[i] = shadow_trap_nonpresent_pte;
1610 }
1611 }
1612
1613 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1614 {
1615 mmu_page_remove_parent_pte(sp, parent_pte);
1616 }
1617
1618 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1619 {
1620 int i;
1621 struct kvm_vcpu *vcpu;
1622
1623 kvm_for_each_vcpu(i, vcpu, kvm)
1624 vcpu->arch.last_pte_updated = NULL;
1625 }
1626
1627 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1628 {
1629 u64 *parent_pte;
1630
1631 while (sp->multimapped || sp->parent_pte) {
1632 if (!sp->multimapped)
1633 parent_pte = sp->parent_pte;
1634 else {
1635 struct kvm_pte_chain *chain;
1636
1637 chain = container_of(sp->parent_ptes.first,
1638 struct kvm_pte_chain, link);
1639 parent_pte = chain->parent_ptes[0];
1640 }
1641 BUG_ON(!parent_pte);
1642 kvm_mmu_put_page(sp, parent_pte);
1643 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1644 }
1645 }
1646
1647 static int mmu_zap_unsync_children(struct kvm *kvm,
1648 struct kvm_mmu_page *parent,
1649 struct list_head *invalid_list)
1650 {
1651 int i, zapped = 0;
1652 struct mmu_page_path parents;
1653 struct kvm_mmu_pages pages;
1654
1655 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1656 return 0;
1657
1658 kvm_mmu_pages_init(parent, &parents, &pages);
1659 while (mmu_unsync_walk(parent, &pages)) {
1660 struct kvm_mmu_page *sp;
1661
1662 for_each_sp(pages, sp, parents, i) {
1663 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1664 mmu_pages_clear_parents(&parents);
1665 zapped++;
1666 }
1667 kvm_mmu_pages_init(parent, &parents, &pages);
1668 }
1669
1670 return zapped;
1671 }
1672
1673 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1674 struct list_head *invalid_list)
1675 {
1676 int ret;
1677
1678 trace_kvm_mmu_prepare_zap_page(sp);
1679 ++kvm->stat.mmu_shadow_zapped;
1680 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1681 kvm_mmu_page_unlink_children(kvm, sp);
1682 kvm_mmu_unlink_parents(kvm, sp);
1683 if (!sp->role.invalid && !sp->role.direct)
1684 unaccount_shadowed(kvm, sp->gfn);
1685 if (sp->unsync)
1686 kvm_unlink_unsync_page(kvm, sp);
1687 if (!sp->root_count) {
1688 /* Count self */
1689 ret++;
1690 list_move(&sp->link, invalid_list);
1691 } else {
1692 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1693 kvm_reload_remote_mmus(kvm);
1694 }
1695
1696 sp->role.invalid = 1;
1697 kvm_mmu_reset_last_pte_updated(kvm);
1698 return ret;
1699 }
1700
1701 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1702 struct list_head *invalid_list)
1703 {
1704 struct kvm_mmu_page *sp;
1705
1706 if (list_empty(invalid_list))
1707 return;
1708
1709 kvm_flush_remote_tlbs(kvm);
1710
1711 do {
1712 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1713 WARN_ON(!sp->role.invalid || sp->root_count);
1714 kvm_mmu_free_page(kvm, sp);
1715 } while (!list_empty(invalid_list));
1716
1717 }
1718
1719 /*
1720 * Changing the number of mmu pages allocated to the vm
1721 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1722 */
1723 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1724 {
1725 LIST_HEAD(invalid_list);
1726 /*
1727 * If we set the number of mmu pages to be smaller be than the
1728 * number of actived pages , we must to free some mmu pages before we
1729 * change the value
1730 */
1731
1732 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1733 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1734 !list_empty(&kvm->arch.active_mmu_pages)) {
1735 struct kvm_mmu_page *page;
1736
1737 page = container_of(kvm->arch.active_mmu_pages.prev,
1738 struct kvm_mmu_page, link);
1739 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1740 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1741 }
1742 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1743 }
1744
1745 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1746 }
1747
1748 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1749 {
1750 struct kvm_mmu_page *sp;
1751 struct hlist_node *node;
1752 LIST_HEAD(invalid_list);
1753 int r;
1754
1755 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1756 r = 0;
1757
1758 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1759 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1760 sp->role.word);
1761 r = 1;
1762 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1763 }
1764 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1765 return r;
1766 }
1767
1768 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1769 {
1770 struct kvm_mmu_page *sp;
1771 struct hlist_node *node;
1772 LIST_HEAD(invalid_list);
1773
1774 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1775 pgprintk("%s: zap %llx %x\n",
1776 __func__, gfn, sp->role.word);
1777 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1778 }
1779 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1780 }
1781
1782 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1783 {
1784 int slot = memslot_id(kvm, gfn);
1785 struct kvm_mmu_page *sp = page_header(__pa(pte));
1786
1787 __set_bit(slot, sp->slot_bitmap);
1788 }
1789
1790 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1791 {
1792 int i;
1793 u64 *pt = sp->spt;
1794
1795 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1796 return;
1797
1798 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1799 if (pt[i] == shadow_notrap_nonpresent_pte)
1800 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1801 }
1802 }
1803
1804 /*
1805 * The function is based on mtrr_type_lookup() in
1806 * arch/x86/kernel/cpu/mtrr/generic.c
1807 */
1808 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1809 u64 start, u64 end)
1810 {
1811 int i;
1812 u64 base, mask;
1813 u8 prev_match, curr_match;
1814 int num_var_ranges = KVM_NR_VAR_MTRR;
1815
1816 if (!mtrr_state->enabled)
1817 return 0xFF;
1818
1819 /* Make end inclusive end, instead of exclusive */
1820 end--;
1821
1822 /* Look in fixed ranges. Just return the type as per start */
1823 if (mtrr_state->have_fixed && (start < 0x100000)) {
1824 int idx;
1825
1826 if (start < 0x80000) {
1827 idx = 0;
1828 idx += (start >> 16);
1829 return mtrr_state->fixed_ranges[idx];
1830 } else if (start < 0xC0000) {
1831 idx = 1 * 8;
1832 idx += ((start - 0x80000) >> 14);
1833 return mtrr_state->fixed_ranges[idx];
1834 } else if (start < 0x1000000) {
1835 idx = 3 * 8;
1836 idx += ((start - 0xC0000) >> 12);
1837 return mtrr_state->fixed_ranges[idx];
1838 }
1839 }
1840
1841 /*
1842 * Look in variable ranges
1843 * Look of multiple ranges matching this address and pick type
1844 * as per MTRR precedence
1845 */
1846 if (!(mtrr_state->enabled & 2))
1847 return mtrr_state->def_type;
1848
1849 prev_match = 0xFF;
1850 for (i = 0; i < num_var_ranges; ++i) {
1851 unsigned short start_state, end_state;
1852
1853 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1854 continue;
1855
1856 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1857 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1858 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1859 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1860
1861 start_state = ((start & mask) == (base & mask));
1862 end_state = ((end & mask) == (base & mask));
1863 if (start_state != end_state)
1864 return 0xFE;
1865
1866 if ((start & mask) != (base & mask))
1867 continue;
1868
1869 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1870 if (prev_match == 0xFF) {
1871 prev_match = curr_match;
1872 continue;
1873 }
1874
1875 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1876 curr_match == MTRR_TYPE_UNCACHABLE)
1877 return MTRR_TYPE_UNCACHABLE;
1878
1879 if ((prev_match == MTRR_TYPE_WRBACK &&
1880 curr_match == MTRR_TYPE_WRTHROUGH) ||
1881 (prev_match == MTRR_TYPE_WRTHROUGH &&
1882 curr_match == MTRR_TYPE_WRBACK)) {
1883 prev_match = MTRR_TYPE_WRTHROUGH;
1884 curr_match = MTRR_TYPE_WRTHROUGH;
1885 }
1886
1887 if (prev_match != curr_match)
1888 return MTRR_TYPE_UNCACHABLE;
1889 }
1890
1891 if (prev_match != 0xFF)
1892 return prev_match;
1893
1894 return mtrr_state->def_type;
1895 }
1896
1897 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1898 {
1899 u8 mtrr;
1900
1901 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1902 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1903 if (mtrr == 0xfe || mtrr == 0xff)
1904 mtrr = MTRR_TYPE_WRBACK;
1905 return mtrr;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1908
1909 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1910 {
1911 trace_kvm_mmu_unsync_page(sp);
1912 ++vcpu->kvm->stat.mmu_unsync;
1913 sp->unsync = 1;
1914
1915 kvm_mmu_mark_parents_unsync(sp);
1916 mmu_convert_notrap(sp);
1917 }
1918
1919 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1920 {
1921 struct kvm_mmu_page *s;
1922 struct hlist_node *node;
1923
1924 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1925 if (s->unsync)
1926 continue;
1927 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1928 __kvm_unsync_page(vcpu, s);
1929 }
1930 }
1931
1932 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1933 bool can_unsync)
1934 {
1935 struct kvm_mmu_page *s;
1936 struct hlist_node *node;
1937 bool need_unsync = false;
1938
1939 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1940 if (!can_unsync)
1941 return 1;
1942
1943 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1944 return 1;
1945
1946 if (!need_unsync && !s->unsync) {
1947 if (!oos_shadow)
1948 return 1;
1949 need_unsync = true;
1950 }
1951 }
1952 if (need_unsync)
1953 kvm_unsync_pages(vcpu, gfn);
1954 return 0;
1955 }
1956
1957 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1958 unsigned pte_access, int user_fault,
1959 int write_fault, int dirty, int level,
1960 gfn_t gfn, pfn_t pfn, bool speculative,
1961 bool can_unsync, bool reset_host_protection)
1962 {
1963 u64 spte, entry = *sptep;
1964 int ret = 0;
1965
1966 /*
1967 * We don't set the accessed bit, since we sometimes want to see
1968 * whether the guest actually used the pte (in order to detect
1969 * demand paging).
1970 */
1971 spte = PT_PRESENT_MASK;
1972 if (!speculative)
1973 spte |= shadow_accessed_mask;
1974 if (!dirty)
1975 pte_access &= ~ACC_WRITE_MASK;
1976 if (pte_access & ACC_EXEC_MASK)
1977 spte |= shadow_x_mask;
1978 else
1979 spte |= shadow_nx_mask;
1980 if (pte_access & ACC_USER_MASK)
1981 spte |= shadow_user_mask;
1982 if (level > PT_PAGE_TABLE_LEVEL)
1983 spte |= PT_PAGE_SIZE_MASK;
1984 if (tdp_enabled)
1985 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1986 kvm_is_mmio_pfn(pfn));
1987
1988 if (reset_host_protection)
1989 spte |= SPTE_HOST_WRITEABLE;
1990
1991 spte |= (u64)pfn << PAGE_SHIFT;
1992
1993 if ((pte_access & ACC_WRITE_MASK)
1994 || (!vcpu->arch.mmu.direct_map && write_fault
1995 && !is_write_protection(vcpu) && !user_fault)) {
1996
1997 if (level > PT_PAGE_TABLE_LEVEL &&
1998 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1999 ret = 1;
2000 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2001 goto done;
2002 }
2003
2004 spte |= PT_WRITABLE_MASK;
2005
2006 if (!vcpu->arch.mmu.direct_map
2007 && !(pte_access & ACC_WRITE_MASK))
2008 spte &= ~PT_USER_MASK;
2009
2010 /*
2011 * Optimization: for pte sync, if spte was writable the hash
2012 * lookup is unnecessary (and expensive). Write protection
2013 * is responsibility of mmu_get_page / kvm_sync_page.
2014 * Same reasoning can be applied to dirty page accounting.
2015 */
2016 if (!can_unsync && is_writable_pte(*sptep))
2017 goto set_pte;
2018
2019 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2020 pgprintk("%s: found shadow page for %llx, marking ro\n",
2021 __func__, gfn);
2022 ret = 1;
2023 pte_access &= ~ACC_WRITE_MASK;
2024 if (is_writable_pte(spte))
2025 spte &= ~PT_WRITABLE_MASK;
2026 }
2027 }
2028
2029 if (pte_access & ACC_WRITE_MASK)
2030 mark_page_dirty(vcpu->kvm, gfn);
2031
2032 set_pte:
2033 update_spte(sptep, spte);
2034 /*
2035 * If we overwrite a writable spte with a read-only one we
2036 * should flush remote TLBs. Otherwise rmap_write_protect
2037 * will find a read-only spte, even though the writable spte
2038 * might be cached on a CPU's TLB.
2039 */
2040 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2041 kvm_flush_remote_tlbs(vcpu->kvm);
2042 done:
2043 return ret;
2044 }
2045
2046 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2047 unsigned pt_access, unsigned pte_access,
2048 int user_fault, int write_fault, int dirty,
2049 int *ptwrite, int level, gfn_t gfn,
2050 pfn_t pfn, bool speculative,
2051 bool reset_host_protection)
2052 {
2053 int was_rmapped = 0;
2054 int rmap_count;
2055
2056 pgprintk("%s: spte %llx access %x write_fault %d"
2057 " user_fault %d gfn %llx\n",
2058 __func__, *sptep, pt_access,
2059 write_fault, user_fault, gfn);
2060
2061 if (is_rmap_spte(*sptep)) {
2062 /*
2063 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2064 * the parent of the now unreachable PTE.
2065 */
2066 if (level > PT_PAGE_TABLE_LEVEL &&
2067 !is_large_pte(*sptep)) {
2068 struct kvm_mmu_page *child;
2069 u64 pte = *sptep;
2070
2071 child = page_header(pte & PT64_BASE_ADDR_MASK);
2072 mmu_page_remove_parent_pte(child, sptep);
2073 __set_spte(sptep, shadow_trap_nonpresent_pte);
2074 kvm_flush_remote_tlbs(vcpu->kvm);
2075 } else if (pfn != spte_to_pfn(*sptep)) {
2076 pgprintk("hfn old %llx new %llx\n",
2077 spte_to_pfn(*sptep), pfn);
2078 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2079 kvm_flush_remote_tlbs(vcpu->kvm);
2080 } else
2081 was_rmapped = 1;
2082 }
2083
2084 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2085 dirty, level, gfn, pfn, speculative, true,
2086 reset_host_protection)) {
2087 if (write_fault)
2088 *ptwrite = 1;
2089 kvm_mmu_flush_tlb(vcpu);
2090 }
2091
2092 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2093 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2094 is_large_pte(*sptep)? "2MB" : "4kB",
2095 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2096 *sptep, sptep);
2097 if (!was_rmapped && is_large_pte(*sptep))
2098 ++vcpu->kvm->stat.lpages;
2099
2100 page_header_update_slot(vcpu->kvm, sptep, gfn);
2101 if (!was_rmapped) {
2102 rmap_count = rmap_add(vcpu, sptep, gfn);
2103 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2104 rmap_recycle(vcpu, sptep, gfn);
2105 }
2106 kvm_release_pfn_clean(pfn);
2107 if (speculative) {
2108 vcpu->arch.last_pte_updated = sptep;
2109 vcpu->arch.last_pte_gfn = gfn;
2110 }
2111 }
2112
2113 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2114 {
2115 }
2116
2117 static struct kvm_memory_slot *
2118 pte_prefetch_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn, bool no_dirty_log)
2119 {
2120 struct kvm_memory_slot *slot;
2121
2122 slot = gfn_to_memslot(vcpu->kvm, gfn);
2123 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
2124 (no_dirty_log && slot->dirty_bitmap))
2125 slot = NULL;
2126
2127 return slot;
2128 }
2129
2130 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2131 bool no_dirty_log)
2132 {
2133 struct kvm_memory_slot *slot;
2134 unsigned long hva;
2135
2136 slot = pte_prefetch_gfn_to_memslot(vcpu, gfn, no_dirty_log);
2137 if (!slot) {
2138 get_page(bad_page);
2139 return page_to_pfn(bad_page);
2140 }
2141
2142 hva = gfn_to_hva_memslot(slot, gfn);
2143
2144 return hva_to_pfn_atomic(vcpu->kvm, hva);
2145 }
2146
2147 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2148 struct kvm_mmu_page *sp,
2149 u64 *start, u64 *end)
2150 {
2151 struct page *pages[PTE_PREFETCH_NUM];
2152 unsigned access = sp->role.access;
2153 int i, ret;
2154 gfn_t gfn;
2155
2156 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2157 if (!pte_prefetch_gfn_to_memslot(vcpu, gfn, access & ACC_WRITE_MASK))
2158 return -1;
2159
2160 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2161 if (ret <= 0)
2162 return -1;
2163
2164 for (i = 0; i < ret; i++, gfn++, start++)
2165 mmu_set_spte(vcpu, start, ACC_ALL,
2166 access, 0, 0, 1, NULL,
2167 sp->role.level, gfn,
2168 page_to_pfn(pages[i]), true, true);
2169
2170 return 0;
2171 }
2172
2173 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2174 struct kvm_mmu_page *sp, u64 *sptep)
2175 {
2176 u64 *spte, *start = NULL;
2177 int i;
2178
2179 WARN_ON(!sp->role.direct);
2180
2181 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2182 spte = sp->spt + i;
2183
2184 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2185 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2186 if (!start)
2187 continue;
2188 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2189 break;
2190 start = NULL;
2191 } else if (!start)
2192 start = spte;
2193 }
2194 }
2195
2196 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2197 {
2198 struct kvm_mmu_page *sp;
2199
2200 /*
2201 * Since it's no accessed bit on EPT, it's no way to
2202 * distinguish between actually accessed translations
2203 * and prefetched, so disable pte prefetch if EPT is
2204 * enabled.
2205 */
2206 if (!shadow_accessed_mask)
2207 return;
2208
2209 sp = page_header(__pa(sptep));
2210 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2211 return;
2212
2213 __direct_pte_prefetch(vcpu, sp, sptep);
2214 }
2215
2216 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2217 int map_writable, int level, gfn_t gfn, pfn_t pfn)
2218 {
2219 struct kvm_shadow_walk_iterator iterator;
2220 struct kvm_mmu_page *sp;
2221 int pt_write = 0;
2222 gfn_t pseudo_gfn;
2223
2224 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2225 if (iterator.level == level) {
2226 unsigned pte_access = ACC_ALL;
2227
2228 if (!map_writable)
2229 pte_access &= ~ACC_WRITE_MASK;
2230 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2231 0, write, 1, &pt_write,
2232 level, gfn, pfn, false, map_writable);
2233 direct_pte_prefetch(vcpu, iterator.sptep);
2234 ++vcpu->stat.pf_fixed;
2235 break;
2236 }
2237
2238 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2239 u64 base_addr = iterator.addr;
2240
2241 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2242 pseudo_gfn = base_addr >> PAGE_SHIFT;
2243 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2244 iterator.level - 1,
2245 1, ACC_ALL, iterator.sptep);
2246 if (!sp) {
2247 pgprintk("nonpaging_map: ENOMEM\n");
2248 kvm_release_pfn_clean(pfn);
2249 return -ENOMEM;
2250 }
2251
2252 __set_spte(iterator.sptep,
2253 __pa(sp->spt)
2254 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2255 | shadow_user_mask | shadow_x_mask
2256 | shadow_accessed_mask);
2257 }
2258 }
2259 return pt_write;
2260 }
2261
2262 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2263 {
2264 siginfo_t info;
2265
2266 info.si_signo = SIGBUS;
2267 info.si_errno = 0;
2268 info.si_code = BUS_MCEERR_AR;
2269 info.si_addr = (void __user *)address;
2270 info.si_addr_lsb = PAGE_SHIFT;
2271
2272 send_sig_info(SIGBUS, &info, tsk);
2273 }
2274
2275 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2276 {
2277 kvm_release_pfn_clean(pfn);
2278 if (is_hwpoison_pfn(pfn)) {
2279 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2280 return 0;
2281 } else if (is_fault_pfn(pfn))
2282 return -EFAULT;
2283
2284 return 1;
2285 }
2286
2287 static bool try_async_pf(struct kvm_vcpu *vcpu, bool no_apf, gfn_t gfn,
2288 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2289
2290 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2291 bool no_apf)
2292 {
2293 int r;
2294 int level;
2295 pfn_t pfn;
2296 unsigned long mmu_seq;
2297 bool map_writable;
2298
2299 level = mapping_level(vcpu, gfn);
2300
2301 /*
2302 * This path builds a PAE pagetable - so we can map 2mb pages at
2303 * maximum. Therefore check if the level is larger than that.
2304 */
2305 if (level > PT_DIRECTORY_LEVEL)
2306 level = PT_DIRECTORY_LEVEL;
2307
2308 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2309
2310 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2311 smp_rmb();
2312
2313 if (try_async_pf(vcpu, no_apf, gfn, v, &pfn, write, &map_writable))
2314 return 0;
2315
2316 /* mmio */
2317 if (is_error_pfn(pfn))
2318 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2319
2320 spin_lock(&vcpu->kvm->mmu_lock);
2321 if (mmu_notifier_retry(vcpu, mmu_seq))
2322 goto out_unlock;
2323 kvm_mmu_free_some_pages(vcpu);
2324 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn);
2325 spin_unlock(&vcpu->kvm->mmu_lock);
2326
2327
2328 return r;
2329
2330 out_unlock:
2331 spin_unlock(&vcpu->kvm->mmu_lock);
2332 kvm_release_pfn_clean(pfn);
2333 return 0;
2334 }
2335
2336
2337 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2338 {
2339 int i;
2340 struct kvm_mmu_page *sp;
2341 LIST_HEAD(invalid_list);
2342
2343 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2344 return;
2345 spin_lock(&vcpu->kvm->mmu_lock);
2346 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2347 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2348 vcpu->arch.mmu.direct_map)) {
2349 hpa_t root = vcpu->arch.mmu.root_hpa;
2350
2351 sp = page_header(root);
2352 --sp->root_count;
2353 if (!sp->root_count && sp->role.invalid) {
2354 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2355 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2356 }
2357 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2358 spin_unlock(&vcpu->kvm->mmu_lock);
2359 return;
2360 }
2361 for (i = 0; i < 4; ++i) {
2362 hpa_t root = vcpu->arch.mmu.pae_root[i];
2363
2364 if (root) {
2365 root &= PT64_BASE_ADDR_MASK;
2366 sp = page_header(root);
2367 --sp->root_count;
2368 if (!sp->root_count && sp->role.invalid)
2369 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2370 &invalid_list);
2371 }
2372 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2373 }
2374 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2375 spin_unlock(&vcpu->kvm->mmu_lock);
2376 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2377 }
2378
2379 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2380 {
2381 int ret = 0;
2382
2383 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2384 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2385 ret = 1;
2386 }
2387
2388 return ret;
2389 }
2390
2391 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2392 {
2393 struct kvm_mmu_page *sp;
2394 unsigned i;
2395
2396 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2397 spin_lock(&vcpu->kvm->mmu_lock);
2398 kvm_mmu_free_some_pages(vcpu);
2399 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2400 1, ACC_ALL, NULL);
2401 ++sp->root_count;
2402 spin_unlock(&vcpu->kvm->mmu_lock);
2403 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2404 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2405 for (i = 0; i < 4; ++i) {
2406 hpa_t root = vcpu->arch.mmu.pae_root[i];
2407
2408 ASSERT(!VALID_PAGE(root));
2409 spin_lock(&vcpu->kvm->mmu_lock);
2410 kvm_mmu_free_some_pages(vcpu);
2411 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2412 i << 30,
2413 PT32_ROOT_LEVEL, 1, ACC_ALL,
2414 NULL);
2415 root = __pa(sp->spt);
2416 ++sp->root_count;
2417 spin_unlock(&vcpu->kvm->mmu_lock);
2418 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2419 }
2420 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2421 } else
2422 BUG();
2423
2424 return 0;
2425 }
2426
2427 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2428 {
2429 struct kvm_mmu_page *sp;
2430 u64 pdptr, pm_mask;
2431 gfn_t root_gfn;
2432 int i;
2433
2434 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2435
2436 if (mmu_check_root(vcpu, root_gfn))
2437 return 1;
2438
2439 /*
2440 * Do we shadow a long mode page table? If so we need to
2441 * write-protect the guests page table root.
2442 */
2443 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2444 hpa_t root = vcpu->arch.mmu.root_hpa;
2445
2446 ASSERT(!VALID_PAGE(root));
2447
2448 spin_lock(&vcpu->kvm->mmu_lock);
2449 kvm_mmu_free_some_pages(vcpu);
2450 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2451 0, ACC_ALL, NULL);
2452 root = __pa(sp->spt);
2453 ++sp->root_count;
2454 spin_unlock(&vcpu->kvm->mmu_lock);
2455 vcpu->arch.mmu.root_hpa = root;
2456 return 0;
2457 }
2458
2459 /*
2460 * We shadow a 32 bit page table. This may be a legacy 2-level
2461 * or a PAE 3-level page table. In either case we need to be aware that
2462 * the shadow page table may be a PAE or a long mode page table.
2463 */
2464 pm_mask = PT_PRESENT_MASK;
2465 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2466 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2467
2468 for (i = 0; i < 4; ++i) {
2469 hpa_t root = vcpu->arch.mmu.pae_root[i];
2470
2471 ASSERT(!VALID_PAGE(root));
2472 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2473 pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2474 if (!is_present_gpte(pdptr)) {
2475 vcpu->arch.mmu.pae_root[i] = 0;
2476 continue;
2477 }
2478 root_gfn = pdptr >> PAGE_SHIFT;
2479 if (mmu_check_root(vcpu, root_gfn))
2480 return 1;
2481 }
2482 spin_lock(&vcpu->kvm->mmu_lock);
2483 kvm_mmu_free_some_pages(vcpu);
2484 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2485 PT32_ROOT_LEVEL, 0,
2486 ACC_ALL, NULL);
2487 root = __pa(sp->spt);
2488 ++sp->root_count;
2489 spin_unlock(&vcpu->kvm->mmu_lock);
2490
2491 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2492 }
2493 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2494
2495 /*
2496 * If we shadow a 32 bit page table with a long mode page
2497 * table we enter this path.
2498 */
2499 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2500 if (vcpu->arch.mmu.lm_root == NULL) {
2501 /*
2502 * The additional page necessary for this is only
2503 * allocated on demand.
2504 */
2505
2506 u64 *lm_root;
2507
2508 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2509 if (lm_root == NULL)
2510 return 1;
2511
2512 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2513
2514 vcpu->arch.mmu.lm_root = lm_root;
2515 }
2516
2517 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2518 }
2519
2520 return 0;
2521 }
2522
2523 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2524 {
2525 if (vcpu->arch.mmu.direct_map)
2526 return mmu_alloc_direct_roots(vcpu);
2527 else
2528 return mmu_alloc_shadow_roots(vcpu);
2529 }
2530
2531 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2532 {
2533 int i;
2534 struct kvm_mmu_page *sp;
2535
2536 if (vcpu->arch.mmu.direct_map)
2537 return;
2538
2539 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2540 return;
2541
2542 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2543 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2544 hpa_t root = vcpu->arch.mmu.root_hpa;
2545 sp = page_header(root);
2546 mmu_sync_children(vcpu, sp);
2547 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2548 return;
2549 }
2550 for (i = 0; i < 4; ++i) {
2551 hpa_t root = vcpu->arch.mmu.pae_root[i];
2552
2553 if (root && VALID_PAGE(root)) {
2554 root &= PT64_BASE_ADDR_MASK;
2555 sp = page_header(root);
2556 mmu_sync_children(vcpu, sp);
2557 }
2558 }
2559 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2560 }
2561
2562 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2563 {
2564 spin_lock(&vcpu->kvm->mmu_lock);
2565 mmu_sync_roots(vcpu);
2566 spin_unlock(&vcpu->kvm->mmu_lock);
2567 }
2568
2569 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2570 u32 access, u32 *error)
2571 {
2572 if (error)
2573 *error = 0;
2574 return vaddr;
2575 }
2576
2577 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2578 u32 access, u32 *error)
2579 {
2580 if (error)
2581 *error = 0;
2582 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2583 }
2584
2585 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2586 u32 error_code, bool no_apf)
2587 {
2588 gfn_t gfn;
2589 int r;
2590
2591 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2592 r = mmu_topup_memory_caches(vcpu);
2593 if (r)
2594 return r;
2595
2596 ASSERT(vcpu);
2597 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2598
2599 gfn = gva >> PAGE_SHIFT;
2600
2601 return nonpaging_map(vcpu, gva & PAGE_MASK,
2602 error_code & PFERR_WRITE_MASK, gfn, no_apf);
2603 }
2604
2605 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2606 {
2607 struct kvm_arch_async_pf arch;
2608 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2609 arch.gfn = gfn;
2610 arch.direct_map = vcpu->arch.mmu.direct_map;
2611
2612 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2613 }
2614
2615 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2616 {
2617 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2618 kvm_event_needs_reinjection(vcpu)))
2619 return false;
2620
2621 return kvm_x86_ops->interrupt_allowed(vcpu);
2622 }
2623
2624 static bool try_async_pf(struct kvm_vcpu *vcpu, bool no_apf, gfn_t gfn,
2625 gva_t gva, pfn_t *pfn, bool write, bool *writable)
2626 {
2627 bool async;
2628
2629 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2630
2631 if (!async)
2632 return false; /* *pfn has correct page already */
2633
2634 put_page(pfn_to_page(*pfn));
2635
2636 if (!no_apf && can_do_async_pf(vcpu)) {
2637 trace_kvm_try_async_get_page(gva, gfn);
2638 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2639 trace_kvm_async_pf_doublefault(gva, gfn);
2640 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2641 return true;
2642 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2643 return true;
2644 }
2645
2646 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2647
2648 return false;
2649 }
2650
2651 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2652 bool no_apf)
2653 {
2654 pfn_t pfn;
2655 int r;
2656 int level;
2657 gfn_t gfn = gpa >> PAGE_SHIFT;
2658 unsigned long mmu_seq;
2659 int write = error_code & PFERR_WRITE_MASK;
2660 bool map_writable;
2661
2662 ASSERT(vcpu);
2663 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2664
2665 r = mmu_topup_memory_caches(vcpu);
2666 if (r)
2667 return r;
2668
2669 level = mapping_level(vcpu, gfn);
2670
2671 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2672
2673 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2674 smp_rmb();
2675
2676 if (try_async_pf(vcpu, no_apf, gfn, gpa, &pfn, write, &map_writable))
2677 return 0;
2678
2679 /* mmio */
2680 if (is_error_pfn(pfn))
2681 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2682 spin_lock(&vcpu->kvm->mmu_lock);
2683 if (mmu_notifier_retry(vcpu, mmu_seq))
2684 goto out_unlock;
2685 kvm_mmu_free_some_pages(vcpu);
2686 r = __direct_map(vcpu, gpa, write, map_writable,
2687 level, gfn, pfn);
2688 spin_unlock(&vcpu->kvm->mmu_lock);
2689
2690 return r;
2691
2692 out_unlock:
2693 spin_unlock(&vcpu->kvm->mmu_lock);
2694 kvm_release_pfn_clean(pfn);
2695 return 0;
2696 }
2697
2698 static void nonpaging_free(struct kvm_vcpu *vcpu)
2699 {
2700 mmu_free_roots(vcpu);
2701 }
2702
2703 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2704 struct kvm_mmu *context)
2705 {
2706 context->new_cr3 = nonpaging_new_cr3;
2707 context->page_fault = nonpaging_page_fault;
2708 context->gva_to_gpa = nonpaging_gva_to_gpa;
2709 context->free = nonpaging_free;
2710 context->prefetch_page = nonpaging_prefetch_page;
2711 context->sync_page = nonpaging_sync_page;
2712 context->invlpg = nonpaging_invlpg;
2713 context->root_level = 0;
2714 context->shadow_root_level = PT32E_ROOT_LEVEL;
2715 context->root_hpa = INVALID_PAGE;
2716 context->direct_map = true;
2717 context->nx = false;
2718 return 0;
2719 }
2720
2721 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2722 {
2723 ++vcpu->stat.tlb_flush;
2724 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2725 }
2726
2727 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2728 {
2729 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2730 mmu_free_roots(vcpu);
2731 }
2732
2733 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2734 {
2735 return vcpu->arch.cr3;
2736 }
2737
2738 static void inject_page_fault(struct kvm_vcpu *vcpu)
2739 {
2740 vcpu->arch.mmu.inject_page_fault(vcpu);
2741 }
2742
2743 static void paging_free(struct kvm_vcpu *vcpu)
2744 {
2745 nonpaging_free(vcpu);
2746 }
2747
2748 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2749 {
2750 int bit7;
2751
2752 bit7 = (gpte >> 7) & 1;
2753 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2754 }
2755
2756 #define PTTYPE 64
2757 #include "paging_tmpl.h"
2758 #undef PTTYPE
2759
2760 #define PTTYPE 32
2761 #include "paging_tmpl.h"
2762 #undef PTTYPE
2763
2764 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2765 struct kvm_mmu *context,
2766 int level)
2767 {
2768 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2769 u64 exb_bit_rsvd = 0;
2770
2771 if (!context->nx)
2772 exb_bit_rsvd = rsvd_bits(63, 63);
2773 switch (level) {
2774 case PT32_ROOT_LEVEL:
2775 /* no rsvd bits for 2 level 4K page table entries */
2776 context->rsvd_bits_mask[0][1] = 0;
2777 context->rsvd_bits_mask[0][0] = 0;
2778 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2779
2780 if (!is_pse(vcpu)) {
2781 context->rsvd_bits_mask[1][1] = 0;
2782 break;
2783 }
2784
2785 if (is_cpuid_PSE36())
2786 /* 36bits PSE 4MB page */
2787 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2788 else
2789 /* 32 bits PSE 4MB page */
2790 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2791 break;
2792 case PT32E_ROOT_LEVEL:
2793 context->rsvd_bits_mask[0][2] =
2794 rsvd_bits(maxphyaddr, 63) |
2795 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2796 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2797 rsvd_bits(maxphyaddr, 62); /* PDE */
2798 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2799 rsvd_bits(maxphyaddr, 62); /* PTE */
2800 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2801 rsvd_bits(maxphyaddr, 62) |
2802 rsvd_bits(13, 20); /* large page */
2803 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2804 break;
2805 case PT64_ROOT_LEVEL:
2806 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2807 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2808 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2809 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2810 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2811 rsvd_bits(maxphyaddr, 51);
2812 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2813 rsvd_bits(maxphyaddr, 51);
2814 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2815 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2816 rsvd_bits(maxphyaddr, 51) |
2817 rsvd_bits(13, 29);
2818 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2819 rsvd_bits(maxphyaddr, 51) |
2820 rsvd_bits(13, 20); /* large page */
2821 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2822 break;
2823 }
2824 }
2825
2826 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2827 struct kvm_mmu *context,
2828 int level)
2829 {
2830 context->nx = is_nx(vcpu);
2831
2832 reset_rsvds_bits_mask(vcpu, context, level);
2833
2834 ASSERT(is_pae(vcpu));
2835 context->new_cr3 = paging_new_cr3;
2836 context->page_fault = paging64_page_fault;
2837 context->gva_to_gpa = paging64_gva_to_gpa;
2838 context->prefetch_page = paging64_prefetch_page;
2839 context->sync_page = paging64_sync_page;
2840 context->invlpg = paging64_invlpg;
2841 context->free = paging_free;
2842 context->root_level = level;
2843 context->shadow_root_level = level;
2844 context->root_hpa = INVALID_PAGE;
2845 context->direct_map = false;
2846 return 0;
2847 }
2848
2849 static int paging64_init_context(struct kvm_vcpu *vcpu,
2850 struct kvm_mmu *context)
2851 {
2852 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2853 }
2854
2855 static int paging32_init_context(struct kvm_vcpu *vcpu,
2856 struct kvm_mmu *context)
2857 {
2858 context->nx = false;
2859
2860 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2861
2862 context->new_cr3 = paging_new_cr3;
2863 context->page_fault = paging32_page_fault;
2864 context->gva_to_gpa = paging32_gva_to_gpa;
2865 context->free = paging_free;
2866 context->prefetch_page = paging32_prefetch_page;
2867 context->sync_page = paging32_sync_page;
2868 context->invlpg = paging32_invlpg;
2869 context->root_level = PT32_ROOT_LEVEL;
2870 context->shadow_root_level = PT32E_ROOT_LEVEL;
2871 context->root_hpa = INVALID_PAGE;
2872 context->direct_map = false;
2873 return 0;
2874 }
2875
2876 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2877 struct kvm_mmu *context)
2878 {
2879 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2880 }
2881
2882 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2883 {
2884 struct kvm_mmu *context = vcpu->arch.walk_mmu;
2885
2886 context->new_cr3 = nonpaging_new_cr3;
2887 context->page_fault = tdp_page_fault;
2888 context->free = nonpaging_free;
2889 context->prefetch_page = nonpaging_prefetch_page;
2890 context->sync_page = nonpaging_sync_page;
2891 context->invlpg = nonpaging_invlpg;
2892 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2893 context->root_hpa = INVALID_PAGE;
2894 context->direct_map = true;
2895 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2896 context->get_cr3 = get_cr3;
2897 context->inject_page_fault = kvm_inject_page_fault;
2898 context->nx = is_nx(vcpu);
2899
2900 if (!is_paging(vcpu)) {
2901 context->nx = false;
2902 context->gva_to_gpa = nonpaging_gva_to_gpa;
2903 context->root_level = 0;
2904 } else if (is_long_mode(vcpu)) {
2905 context->nx = is_nx(vcpu);
2906 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2907 context->gva_to_gpa = paging64_gva_to_gpa;
2908 context->root_level = PT64_ROOT_LEVEL;
2909 } else if (is_pae(vcpu)) {
2910 context->nx = is_nx(vcpu);
2911 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2912 context->gva_to_gpa = paging64_gva_to_gpa;
2913 context->root_level = PT32E_ROOT_LEVEL;
2914 } else {
2915 context->nx = false;
2916 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2917 context->gva_to_gpa = paging32_gva_to_gpa;
2918 context->root_level = PT32_ROOT_LEVEL;
2919 }
2920
2921 return 0;
2922 }
2923
2924 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2925 {
2926 int r;
2927 ASSERT(vcpu);
2928 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2929
2930 if (!is_paging(vcpu))
2931 r = nonpaging_init_context(vcpu, context);
2932 else if (is_long_mode(vcpu))
2933 r = paging64_init_context(vcpu, context);
2934 else if (is_pae(vcpu))
2935 r = paging32E_init_context(vcpu, context);
2936 else
2937 r = paging32_init_context(vcpu, context);
2938
2939 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2940 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2941
2942 return r;
2943 }
2944 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2945
2946 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2947 {
2948 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2949
2950 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
2951 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
2952 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2953
2954 return r;
2955 }
2956
2957 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2958 {
2959 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2960
2961 g_context->get_cr3 = get_cr3;
2962 g_context->inject_page_fault = kvm_inject_page_fault;
2963
2964 /*
2965 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2966 * translation of l2_gpa to l1_gpa addresses is done using the
2967 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2968 * functions between mmu and nested_mmu are swapped.
2969 */
2970 if (!is_paging(vcpu)) {
2971 g_context->nx = false;
2972 g_context->root_level = 0;
2973 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
2974 } else if (is_long_mode(vcpu)) {
2975 g_context->nx = is_nx(vcpu);
2976 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
2977 g_context->root_level = PT64_ROOT_LEVEL;
2978 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2979 } else if (is_pae(vcpu)) {
2980 g_context->nx = is_nx(vcpu);
2981 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
2982 g_context->root_level = PT32E_ROOT_LEVEL;
2983 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
2984 } else {
2985 g_context->nx = false;
2986 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
2987 g_context->root_level = PT32_ROOT_LEVEL;
2988 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
2989 }
2990
2991 return 0;
2992 }
2993
2994 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2995 {
2996 vcpu->arch.update_pte.pfn = bad_pfn;
2997
2998 if (mmu_is_nested(vcpu))
2999 return init_kvm_nested_mmu(vcpu);
3000 else if (tdp_enabled)
3001 return init_kvm_tdp_mmu(vcpu);
3002 else
3003 return init_kvm_softmmu(vcpu);
3004 }
3005
3006 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3007 {
3008 ASSERT(vcpu);
3009 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3010 /* mmu.free() should set root_hpa = INVALID_PAGE */
3011 vcpu->arch.mmu.free(vcpu);
3012 }
3013
3014 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3015 {
3016 destroy_kvm_mmu(vcpu);
3017 return init_kvm_mmu(vcpu);
3018 }
3019 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3020
3021 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3022 {
3023 int r;
3024
3025 r = mmu_topup_memory_caches(vcpu);
3026 if (r)
3027 goto out;
3028 r = mmu_alloc_roots(vcpu);
3029 spin_lock(&vcpu->kvm->mmu_lock);
3030 mmu_sync_roots(vcpu);
3031 spin_unlock(&vcpu->kvm->mmu_lock);
3032 if (r)
3033 goto out;
3034 /* set_cr3() should ensure TLB has been flushed */
3035 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3036 out:
3037 return r;
3038 }
3039 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3040
3041 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3042 {
3043 mmu_free_roots(vcpu);
3044 }
3045 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3046
3047 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
3048 struct kvm_mmu_page *sp,
3049 u64 *spte)
3050 {
3051 u64 pte;
3052 struct kvm_mmu_page *child;
3053
3054 pte = *spte;
3055 if (is_shadow_present_pte(pte)) {
3056 if (is_last_spte(pte, sp->role.level))
3057 drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
3058 else {
3059 child = page_header(pte & PT64_BASE_ADDR_MASK);
3060 mmu_page_remove_parent_pte(child, spte);
3061 }
3062 }
3063 __set_spte(spte, shadow_trap_nonpresent_pte);
3064 if (is_large_pte(pte))
3065 --vcpu->kvm->stat.lpages;
3066 }
3067
3068 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3069 struct kvm_mmu_page *sp,
3070 u64 *spte,
3071 const void *new)
3072 {
3073 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3074 ++vcpu->kvm->stat.mmu_pde_zapped;
3075 return;
3076 }
3077
3078 if (is_rsvd_bits_set(&vcpu->arch.mmu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
3079 return;
3080
3081 ++vcpu->kvm->stat.mmu_pte_updated;
3082 if (!sp->role.cr4_pae)
3083 paging32_update_pte(vcpu, sp, spte, new);
3084 else
3085 paging64_update_pte(vcpu, sp, spte, new);
3086 }
3087
3088 static bool need_remote_flush(u64 old, u64 new)
3089 {
3090 if (!is_shadow_present_pte(old))
3091 return false;
3092 if (!is_shadow_present_pte(new))
3093 return true;
3094 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3095 return true;
3096 old ^= PT64_NX_MASK;
3097 new ^= PT64_NX_MASK;
3098 return (old & ~new & PT64_PERM_MASK) != 0;
3099 }
3100
3101 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3102 bool remote_flush, bool local_flush)
3103 {
3104 if (zap_page)
3105 return;
3106
3107 if (remote_flush)
3108 kvm_flush_remote_tlbs(vcpu->kvm);
3109 else if (local_flush)
3110 kvm_mmu_flush_tlb(vcpu);
3111 }
3112
3113 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3114 {
3115 u64 *spte = vcpu->arch.last_pte_updated;
3116
3117 return !!(spte && (*spte & shadow_accessed_mask));
3118 }
3119
3120 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3121 u64 gpte)
3122 {
3123 gfn_t gfn;
3124 pfn_t pfn;
3125
3126 if (!is_present_gpte(gpte))
3127 return;
3128 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
3129
3130 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
3131 smp_rmb();
3132 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3133
3134 if (is_error_pfn(pfn)) {
3135 kvm_release_pfn_clean(pfn);
3136 return;
3137 }
3138 vcpu->arch.update_pte.gfn = gfn;
3139 vcpu->arch.update_pte.pfn = pfn;
3140 }
3141
3142 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3143 {
3144 u64 *spte = vcpu->arch.last_pte_updated;
3145
3146 if (spte
3147 && vcpu->arch.last_pte_gfn == gfn
3148 && shadow_accessed_mask
3149 && !(*spte & shadow_accessed_mask)
3150 && is_shadow_present_pte(*spte))
3151 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3152 }
3153
3154 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3155 const u8 *new, int bytes,
3156 bool guest_initiated)
3157 {
3158 gfn_t gfn = gpa >> PAGE_SHIFT;
3159 union kvm_mmu_page_role mask = { .word = 0 };
3160 struct kvm_mmu_page *sp;
3161 struct hlist_node *node;
3162 LIST_HEAD(invalid_list);
3163 u64 entry, gentry;
3164 u64 *spte;
3165 unsigned offset = offset_in_page(gpa);
3166 unsigned pte_size;
3167 unsigned page_offset;
3168 unsigned misaligned;
3169 unsigned quadrant;
3170 int level;
3171 int flooded = 0;
3172 int npte;
3173 int r;
3174 int invlpg_counter;
3175 bool remote_flush, local_flush, zap_page;
3176
3177 zap_page = remote_flush = local_flush = false;
3178
3179 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3180
3181 invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3182
3183 /*
3184 * Assume that the pte write on a page table of the same type
3185 * as the current vcpu paging mode. This is nearly always true
3186 * (might be false while changing modes). Note it is verified later
3187 * by update_pte().
3188 */
3189 if ((is_pae(vcpu) && bytes == 4) || !new) {
3190 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3191 if (is_pae(vcpu)) {
3192 gpa &= ~(gpa_t)7;
3193 bytes = 8;
3194 }
3195 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3196 if (r)
3197 gentry = 0;
3198 new = (const u8 *)&gentry;
3199 }
3200
3201 switch (bytes) {
3202 case 4:
3203 gentry = *(const u32 *)new;
3204 break;
3205 case 8:
3206 gentry = *(const u64 *)new;
3207 break;
3208 default:
3209 gentry = 0;
3210 break;
3211 }
3212
3213 mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
3214 spin_lock(&vcpu->kvm->mmu_lock);
3215 if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3216 gentry = 0;
3217 kvm_mmu_access_page(vcpu, gfn);
3218 kvm_mmu_free_some_pages(vcpu);
3219 ++vcpu->kvm->stat.mmu_pte_write;
3220 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3221 if (guest_initiated) {
3222 if (gfn == vcpu->arch.last_pt_write_gfn
3223 && !last_updated_pte_accessed(vcpu)) {
3224 ++vcpu->arch.last_pt_write_count;
3225 if (vcpu->arch.last_pt_write_count >= 3)
3226 flooded = 1;
3227 } else {
3228 vcpu->arch.last_pt_write_gfn = gfn;
3229 vcpu->arch.last_pt_write_count = 1;
3230 vcpu->arch.last_pte_updated = NULL;
3231 }
3232 }
3233
3234 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3235 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3236 pte_size = sp->role.cr4_pae ? 8 : 4;
3237 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3238 misaligned |= bytes < 4;
3239 if (misaligned || flooded) {
3240 /*
3241 * Misaligned accesses are too much trouble to fix
3242 * up; also, they usually indicate a page is not used
3243 * as a page table.
3244 *
3245 * If we're seeing too many writes to a page,
3246 * it may no longer be a page table, or we may be
3247 * forking, in which case it is better to unmap the
3248 * page.
3249 */
3250 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3251 gpa, bytes, sp->role.word);
3252 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3253 &invalid_list);
3254 ++vcpu->kvm->stat.mmu_flooded;
3255 continue;
3256 }
3257 page_offset = offset;
3258 level = sp->role.level;
3259 npte = 1;
3260 if (!sp->role.cr4_pae) {
3261 page_offset <<= 1; /* 32->64 */
3262 /*
3263 * A 32-bit pde maps 4MB while the shadow pdes map
3264 * only 2MB. So we need to double the offset again
3265 * and zap two pdes instead of one.
3266 */
3267 if (level == PT32_ROOT_LEVEL) {
3268 page_offset &= ~7; /* kill rounding error */
3269 page_offset <<= 1;
3270 npte = 2;
3271 }
3272 quadrant = page_offset >> PAGE_SHIFT;
3273 page_offset &= ~PAGE_MASK;
3274 if (quadrant != sp->role.quadrant)
3275 continue;
3276 }
3277 local_flush = true;
3278 spte = &sp->spt[page_offset / sizeof(*spte)];
3279 while (npte--) {
3280 entry = *spte;
3281 mmu_pte_write_zap_pte(vcpu, sp, spte);
3282 if (gentry &&
3283 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3284 & mask.word))
3285 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3286 if (!remote_flush && need_remote_flush(entry, *spte))
3287 remote_flush = true;
3288 ++spte;
3289 }
3290 }
3291 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3292 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3293 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3294 spin_unlock(&vcpu->kvm->mmu_lock);
3295 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
3296 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
3297 vcpu->arch.update_pte.pfn = bad_pfn;
3298 }
3299 }
3300
3301 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3302 {
3303 gpa_t gpa;
3304 int r;
3305
3306 if (vcpu->arch.mmu.direct_map)
3307 return 0;
3308
3309 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3310
3311 spin_lock(&vcpu->kvm->mmu_lock);
3312 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3313 spin_unlock(&vcpu->kvm->mmu_lock);
3314 return r;
3315 }
3316 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3317
3318 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3319 {
3320 LIST_HEAD(invalid_list);
3321
3322 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3323 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3324 struct kvm_mmu_page *sp;
3325
3326 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3327 struct kvm_mmu_page, link);
3328 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3329 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3330 ++vcpu->kvm->stat.mmu_recycled;
3331 }
3332 }
3333
3334 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
3335 {
3336 int r;
3337 enum emulation_result er;
3338
3339 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3340 if (r < 0)
3341 goto out;
3342
3343 if (!r) {
3344 r = 1;
3345 goto out;
3346 }
3347
3348 r = mmu_topup_memory_caches(vcpu);
3349 if (r)
3350 goto out;
3351
3352 er = emulate_instruction(vcpu, cr2, error_code, 0);
3353
3354 switch (er) {
3355 case EMULATE_DONE:
3356 return 1;
3357 case EMULATE_DO_MMIO:
3358 ++vcpu->stat.mmio_exits;
3359 /* fall through */
3360 case EMULATE_FAIL:
3361 return 0;
3362 default:
3363 BUG();
3364 }
3365 out:
3366 return r;
3367 }
3368 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3369
3370 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3371 {
3372 vcpu->arch.mmu.invlpg(vcpu, gva);
3373 kvm_mmu_flush_tlb(vcpu);
3374 ++vcpu->stat.invlpg;
3375 }
3376 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3377
3378 void kvm_enable_tdp(void)
3379 {
3380 tdp_enabled = true;
3381 }
3382 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3383
3384 void kvm_disable_tdp(void)
3385 {
3386 tdp_enabled = false;
3387 }
3388 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3389
3390 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3391 {
3392 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3393 if (vcpu->arch.mmu.lm_root != NULL)
3394 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3395 }
3396
3397 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3398 {
3399 struct page *page;
3400 int i;
3401
3402 ASSERT(vcpu);
3403
3404 /*
3405 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3406 * Therefore we need to allocate shadow page tables in the first
3407 * 4GB of memory, which happens to fit the DMA32 zone.
3408 */
3409 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3410 if (!page)
3411 return -ENOMEM;
3412
3413 vcpu->arch.mmu.pae_root = page_address(page);
3414 for (i = 0; i < 4; ++i)
3415 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3416
3417 return 0;
3418 }
3419
3420 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3421 {
3422 ASSERT(vcpu);
3423 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3424
3425 return alloc_mmu_pages(vcpu);
3426 }
3427
3428 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3429 {
3430 ASSERT(vcpu);
3431 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3432
3433 return init_kvm_mmu(vcpu);
3434 }
3435
3436 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3437 {
3438 struct kvm_mmu_page *sp;
3439
3440 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3441 int i;
3442 u64 *pt;
3443
3444 if (!test_bit(slot, sp->slot_bitmap))
3445 continue;
3446
3447 pt = sp->spt;
3448 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3449 /* avoid RMW */
3450 if (is_writable_pte(pt[i]))
3451 pt[i] &= ~PT_WRITABLE_MASK;
3452 }
3453 kvm_flush_remote_tlbs(kvm);
3454 }
3455
3456 void kvm_mmu_zap_all(struct kvm *kvm)
3457 {
3458 struct kvm_mmu_page *sp, *node;
3459 LIST_HEAD(invalid_list);
3460
3461 spin_lock(&kvm->mmu_lock);
3462 restart:
3463 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3464 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3465 goto restart;
3466
3467 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3468 spin_unlock(&kvm->mmu_lock);
3469 }
3470
3471 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3472 struct list_head *invalid_list)
3473 {
3474 struct kvm_mmu_page *page;
3475
3476 page = container_of(kvm->arch.active_mmu_pages.prev,
3477 struct kvm_mmu_page, link);
3478 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3479 }
3480
3481 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3482 {
3483 struct kvm *kvm;
3484 struct kvm *kvm_freed = NULL;
3485
3486 if (nr_to_scan == 0)
3487 goto out;
3488
3489 spin_lock(&kvm_lock);
3490
3491 list_for_each_entry(kvm, &vm_list, vm_list) {
3492 int idx, freed_pages;
3493 LIST_HEAD(invalid_list);
3494
3495 idx = srcu_read_lock(&kvm->srcu);
3496 spin_lock(&kvm->mmu_lock);
3497 if (!kvm_freed && nr_to_scan > 0 &&
3498 kvm->arch.n_used_mmu_pages > 0) {
3499 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3500 &invalid_list);
3501 kvm_freed = kvm;
3502 }
3503 nr_to_scan--;
3504
3505 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3506 spin_unlock(&kvm->mmu_lock);
3507 srcu_read_unlock(&kvm->srcu, idx);
3508 }
3509 if (kvm_freed)
3510 list_move_tail(&kvm_freed->vm_list, &vm_list);
3511
3512 spin_unlock(&kvm_lock);
3513
3514 out:
3515 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3516 }
3517
3518 static struct shrinker mmu_shrinker = {
3519 .shrink = mmu_shrink,
3520 .seeks = DEFAULT_SEEKS * 10,
3521 };
3522
3523 static void mmu_destroy_caches(void)
3524 {
3525 if (pte_chain_cache)
3526 kmem_cache_destroy(pte_chain_cache);
3527 if (rmap_desc_cache)
3528 kmem_cache_destroy(rmap_desc_cache);
3529 if (mmu_page_header_cache)
3530 kmem_cache_destroy(mmu_page_header_cache);
3531 }
3532
3533 void kvm_mmu_module_exit(void)
3534 {
3535 mmu_destroy_caches();
3536 percpu_counter_destroy(&kvm_total_used_mmu_pages);
3537 unregister_shrinker(&mmu_shrinker);
3538 }
3539
3540 int kvm_mmu_module_init(void)
3541 {
3542 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3543 sizeof(struct kvm_pte_chain),
3544 0, 0, NULL);
3545 if (!pte_chain_cache)
3546 goto nomem;
3547 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3548 sizeof(struct kvm_rmap_desc),
3549 0, 0, NULL);
3550 if (!rmap_desc_cache)
3551 goto nomem;
3552
3553 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3554 sizeof(struct kvm_mmu_page),
3555 0, 0, NULL);
3556 if (!mmu_page_header_cache)
3557 goto nomem;
3558
3559 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3560 goto nomem;
3561
3562 register_shrinker(&mmu_shrinker);
3563
3564 return 0;
3565
3566 nomem:
3567 mmu_destroy_caches();
3568 return -ENOMEM;
3569 }
3570
3571 /*
3572 * Caculate mmu pages needed for kvm.
3573 */
3574 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3575 {
3576 int i;
3577 unsigned int nr_mmu_pages;
3578 unsigned int nr_pages = 0;
3579 struct kvm_memslots *slots;
3580
3581 slots = kvm_memslots(kvm);
3582
3583 for (i = 0; i < slots->nmemslots; i++)
3584 nr_pages += slots->memslots[i].npages;
3585
3586 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3587 nr_mmu_pages = max(nr_mmu_pages,
3588 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3589
3590 return nr_mmu_pages;
3591 }
3592
3593 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3594 unsigned len)
3595 {
3596 if (len > buffer->len)
3597 return NULL;
3598 return buffer->ptr;
3599 }
3600
3601 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3602 unsigned len)
3603 {
3604 void *ret;
3605
3606 ret = pv_mmu_peek_buffer(buffer, len);
3607 if (!ret)
3608 return ret;
3609 buffer->ptr += len;
3610 buffer->len -= len;
3611 buffer->processed += len;
3612 return ret;
3613 }
3614
3615 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3616 gpa_t addr, gpa_t value)
3617 {
3618 int bytes = 8;
3619 int r;
3620
3621 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3622 bytes = 4;
3623
3624 r = mmu_topup_memory_caches(vcpu);
3625 if (r)
3626 return r;
3627
3628 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3629 return -EFAULT;
3630
3631 return 1;
3632 }
3633
3634 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3635 {
3636 (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3637 return 1;
3638 }
3639
3640 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3641 {
3642 spin_lock(&vcpu->kvm->mmu_lock);
3643 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3644 spin_unlock(&vcpu->kvm->mmu_lock);
3645 return 1;
3646 }
3647
3648 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3649 struct kvm_pv_mmu_op_buffer *buffer)
3650 {
3651 struct kvm_mmu_op_header *header;
3652
3653 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3654 if (!header)
3655 return 0;
3656 switch (header->op) {
3657 case KVM_MMU_OP_WRITE_PTE: {
3658 struct kvm_mmu_op_write_pte *wpte;
3659
3660 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3661 if (!wpte)
3662 return 0;
3663 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3664 wpte->pte_val);
3665 }
3666 case KVM_MMU_OP_FLUSH_TLB: {
3667 struct kvm_mmu_op_flush_tlb *ftlb;
3668
3669 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3670 if (!ftlb)
3671 return 0;
3672 return kvm_pv_mmu_flush_tlb(vcpu);
3673 }
3674 case KVM_MMU_OP_RELEASE_PT: {
3675 struct kvm_mmu_op_release_pt *rpt;
3676
3677 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3678 if (!rpt)
3679 return 0;
3680 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3681 }
3682 default: return 0;
3683 }
3684 }
3685
3686 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3687 gpa_t addr, unsigned long *ret)
3688 {
3689 int r;
3690 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3691
3692 buffer->ptr = buffer->buf;
3693 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3694 buffer->processed = 0;
3695
3696 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3697 if (r)
3698 goto out;
3699
3700 while (buffer->len) {
3701 r = kvm_pv_mmu_op_one(vcpu, buffer);
3702 if (r < 0)
3703 goto out;
3704 if (r == 0)
3705 break;
3706 }
3707
3708 r = 1;
3709 out:
3710 *ret = buffer->processed;
3711 return r;
3712 }
3713
3714 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3715 {
3716 struct kvm_shadow_walk_iterator iterator;
3717 int nr_sptes = 0;
3718
3719 spin_lock(&vcpu->kvm->mmu_lock);
3720 for_each_shadow_entry(vcpu, addr, iterator) {
3721 sptes[iterator.level-1] = *iterator.sptep;
3722 nr_sptes++;
3723 if (!is_shadow_present_pte(*iterator.sptep))
3724 break;
3725 }
3726 spin_unlock(&vcpu->kvm->mmu_lock);
3727
3728 return nr_sptes;
3729 }
3730 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3731
3732 #ifdef CONFIG_KVM_MMU_AUDIT
3733 #include "mmu_audit.c"
3734 #else
3735 static void mmu_audit_disable(void) { }
3736 #endif
3737
3738 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3739 {
3740 ASSERT(vcpu);
3741
3742 destroy_kvm_mmu(vcpu);
3743 free_mmu_pages(vcpu);
3744 mmu_free_memory_caches(vcpu);
3745 mmu_audit_disable();
3746 }