]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: Make kvm_mmu_slot_remove_write_access() rmap based
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204 trace_mark_mmio_spte(sptep, gfn, access);
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235 return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251 return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266 return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271 return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276 return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
283 if (is_large_pte(pte))
284 return 1;
285 return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303 *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308 *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313 return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318 return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325 }
326 #else
327 union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349 union split_spte *ssptep, sspte;
350
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
382 count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
396 count_spte_clear(sptep, spte);
397
398 return orig.spte;
399 }
400
401 /*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414 retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 return false;
474
475 return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
503 */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506 u64 old_spte = *sptep;
507 bool ret = false;
508
509 WARN_ON(!is_rmap_spte(new_spte));
510
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
515
516 if (!spte_has_volatile_bits(old_spte))
517 __update_clear_spte_fast(sptep, new_spte);
518 else
519 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
529 if (!shadow_accessed_mask)
530 return ret;
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537 return ret;
538 }
539
540 /*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
551 __update_clear_spte_fast(sptep, 0ull);
552 else
553 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572 }
573
574 /*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579 static void mmu_spte_clear_no_track(u64 *sptep)
580 {
581 __update_clear_spte_fast(sptep, 0ull);
582 }
583
584 static u64 mmu_spte_get_lockless(u64 *sptep)
585 {
586 return __get_spte_lockless(sptep);
587 }
588
589 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590 {
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
602 }
603
604 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605 {
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
614 }
615
616 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617 struct kmem_cache *base_cache, int min)
618 {
619 void *obj;
620
621 if (cache->nobjs >= min)
622 return 0;
623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625 if (!obj)
626 return -ENOMEM;
627 cache->objects[cache->nobjs++] = obj;
628 }
629 return 0;
630 }
631
632 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633 {
634 return cache->nobjs;
635 }
636
637 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
639 {
640 while (mc->nobjs)
641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
642 }
643
644 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645 int min)
646 {
647 void *page;
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652 page = (void *)__get_free_page(GFP_KERNEL);
653 if (!page)
654 return -ENOMEM;
655 cache->objects[cache->nobjs++] = page;
656 }
657 return 0;
658 }
659
660 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661 {
662 while (mc->nobjs)
663 free_page((unsigned long)mc->objects[--mc->nobjs]);
664 }
665
666 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
667 {
668 int r;
669
670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672 if (r)
673 goto out;
674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675 if (r)
676 goto out;
677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678 mmu_page_header_cache, 4);
679 out:
680 return r;
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
690 }
691
692 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
693 {
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
698 return p;
699 }
700
701 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
702 {
703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
704 }
705
706 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
707 {
708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
709 }
710
711 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712 {
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717 }
718
719 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720 {
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725 }
726
727 /*
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
730 */
731 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
734 {
735 unsigned long idx;
736
737 idx = gfn_to_index(gfn, slot->base_gfn, level);
738 return &slot->arch.lpage_info[level - 2][idx];
739 }
740
741 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742 {
743 struct kvm_memory_slot *slot;
744 struct kvm_lpage_info *linfo;
745 int i;
746
747 slot = gfn_to_memslot(kvm, gfn);
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
752 }
753 kvm->arch.indirect_shadow_pages++;
754 }
755
756 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757 {
758 struct kvm_memory_slot *slot;
759 struct kvm_lpage_info *linfo;
760 int i;
761
762 slot = gfn_to_memslot(kvm, gfn);
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
768 }
769 kvm->arch.indirect_shadow_pages--;
770 }
771
772 static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
775 {
776 struct kvm_memory_slot *slot;
777 struct kvm_lpage_info *linfo;
778
779 slot = gfn_to_memslot(kvm, gfn);
780 if (slot) {
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
783 }
784
785 return 1;
786 }
787
788 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
789 {
790 unsigned long page_size;
791 int i, ret = 0;
792
793 page_size = kvm_host_page_size(kvm, gfn);
794
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
803 return ret;
804 }
805
806 static struct kvm_memory_slot *
807 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
809 {
810 struct kvm_memory_slot *slot;
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818 }
819
820 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821 {
822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
823 }
824
825 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826 {
827 int host_level, level, max_level;
828
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
840
841 return level - 1;
842 }
843
844 /*
845 * Pte mapping structures:
846 *
847 * If pte_list bit zero is zero, then pte_list point to the spte.
848 *
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
851 *
852 * Returns the number of pte entries before the spte was added or zero if
853 * the spte was not added.
854 *
855 */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
858 {
859 struct pte_list_desc *desc;
860 int i, count = 0;
861
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
869 desc->sptes[1] = spte;
870 *pte_list = (unsigned long)desc | 1;
871 ++count;
872 } else {
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876 desc = desc->more;
877 count += PTE_LIST_EXT;
878 }
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
881 desc = desc->more;
882 }
883 for (i = 0; desc->sptes[i]; ++i)
884 ++count;
885 desc->sptes[i] = spte;
886 }
887 return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
893 {
894 int j;
895
896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897 ;
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
903 *pte_list = (unsigned long)desc->sptes[0];
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
916 int i;
917
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920 BUG();
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
925 BUG();
926 }
927 *pte_list = 0;
928 } else {
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931 prev_desc = NULL;
932 while (desc) {
933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934 if (desc->sptes[i] == spte) {
935 pte_list_desc_remove_entry(pte_list,
936 desc, i,
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
943 pr_err("pte_list_remove: %p many->many\n", spte);
944 BUG();
945 }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969 struct kvm_memory_slot *slot)
970 {
971 unsigned long idx;
972
973 idx = gfn_to_index(gfn, slot->base_gfn, level);
974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 }
976
977 /*
978 * Take gfn and return the reverse mapping to it.
979 */
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981 {
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
985 return __gfn_to_rmap(gfn, level, slot);
986 }
987
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
989 {
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994 }
995
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997 {
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005 }
1006
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1008 {
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017 }
1018
1019 /*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023 struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027 };
1028
1029 /*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037 {
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049 }
1050
1051 /*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1057 {
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078 }
1079
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1081 {
1082 if (mmu_spte_clear_track_bits(sptep))
1083 rmap_remove(kvm, sptep);
1084 }
1085
1086
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088 {
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098 }
1099
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101 {
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104 }
1105
1106 /*
1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
1117 *
1118 * Return true if the spte is dropped.
1119 */
1120 static bool
1121 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122 {
1123 u64 spte = *sptep;
1124
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1134 }
1135
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
1138 spte = spte & ~PT_WRITABLE_MASK;
1139
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
1142 }
1143
1144 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145 bool pt_protect)
1146 {
1147 u64 *sptep;
1148 struct rmap_iterator iter;
1149 bool flush = false;
1150
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1156 }
1157
1158 sptep = rmap_get_next(&iter);
1159 }
1160
1161 return flush;
1162 }
1163
1164 /**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
1177 {
1178 unsigned long *rmapp;
1179
1180 while (mask) {
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
1183 __rmap_write_protect(kvm, rmapp, false);
1184
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
1188 }
1189
1190 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191 {
1192 struct kvm_memory_slot *slot;
1193 unsigned long *rmapp;
1194 int i;
1195 bool write_protected = false;
1196
1197 slot = gfn_to_memslot(kvm, gfn);
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
1202 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1203 }
1204
1205 return write_protected;
1206 }
1207
1208 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209 struct kvm_memory_slot *slot, unsigned long data)
1210 {
1211 u64 *sptep;
1212 struct rmap_iterator iter;
1213 int need_tlb_flush = 0;
1214
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
1220 need_tlb_flush = 1;
1221 }
1222
1223 return need_tlb_flush;
1224 }
1225
1226 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227 struct kvm_memory_slot *slot, unsigned long data)
1228 {
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 int need_flush = 0;
1232 u64 new_spte;
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
1243 need_flush = 1;
1244
1245 if (pte_write(*ptep)) {
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
1248 } else {
1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
1254 new_spte &= ~shadow_accessed_mask;
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
1259 }
1260 }
1261
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266 }
1267
1268 static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
1274 struct kvm_memory_slot *slot,
1275 unsigned long data))
1276 {
1277 int j;
1278 int ret = 0;
1279 struct kvm_memslots *slots;
1280 struct kvm_memory_slot *memslot;
1281
1282 slots = kvm_memslots(kvm);
1283
1284 kvm_for_each_memslot(memslot, slots) {
1285 unsigned long hva_start, hva_end;
1286 gfn_t gfn_start, gfn_end;
1287
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296 */
1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
1304
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311
1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
1316 }
1317 }
1318
1319 return ret;
1320 }
1321
1322 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325 struct kvm_memory_slot *slot,
1326 unsigned long data))
1327 {
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329 }
1330
1331 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332 {
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334 }
1335
1336 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337 {
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339 }
1340
1341 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342 {
1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344 }
1345
1346 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347 struct kvm_memory_slot *slot, unsigned long data)
1348 {
1349 u64 *sptep;
1350 struct rmap_iterator uninitialized_var(iter);
1351 int young = 0;
1352
1353 /*
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
1365
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
1368 BUG_ON(!is_shadow_present_pte(*sptep));
1369
1370 if (*sptep & shadow_accessed_mask) {
1371 young = 1;
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
1374 }
1375 }
1376 out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
1379 return young;
1380 }
1381
1382 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383 struct kvm_memory_slot *slot, unsigned long data)
1384 {
1385 u64 *sptep;
1386 struct rmap_iterator iter;
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
1399 BUG_ON(!is_shadow_present_pte(*sptep));
1400
1401 if (*sptep & shadow_accessed_mask) {
1402 young = 1;
1403 break;
1404 }
1405 }
1406 out:
1407 return young;
1408 }
1409
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1411
1412 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413 {
1414 unsigned long *rmapp;
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
1418
1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420
1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423 }
1424
1425 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426 {
1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428 }
1429
1430 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431 {
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433 }
1434
1435 #ifdef MMU_DEBUG
1436 static int is_empty_shadow_page(u64 *spt)
1437 {
1438 u64 *pos;
1439 u64 *end;
1440
1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442 if (is_shadow_present_pte(*pos)) {
1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
1444 pos, *pos);
1445 return 0;
1446 }
1447 return 1;
1448 }
1449 #endif
1450
1451 /*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458 {
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461 }
1462
1463 /*
1464 * Remove the sp from shadow page cache, after call it,
1465 * we can not find this sp from the cache, and the shadow
1466 * page table is still valid.
1467 * It should be under the protection of mmu lock.
1468 */
1469 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1470 {
1471 ASSERT(is_empty_shadow_page(sp->spt));
1472 hlist_del(&sp->hash_link);
1473 if (!sp->role.direct)
1474 free_page((unsigned long)sp->gfns);
1475 }
1476
1477 /*
1478 * Free the shadow page table and the sp, we can do it
1479 * out of the protection of mmu lock.
1480 */
1481 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1482 {
1483 list_del(&sp->link);
1484 free_page((unsigned long)sp->spt);
1485 kmem_cache_free(mmu_page_header_cache, sp);
1486 }
1487
1488 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1489 {
1490 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1491 }
1492
1493 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1494 struct kvm_mmu_page *sp, u64 *parent_pte)
1495 {
1496 if (!parent_pte)
1497 return;
1498
1499 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1500 }
1501
1502 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1503 u64 *parent_pte)
1504 {
1505 pte_list_remove(parent_pte, &sp->parent_ptes);
1506 }
1507
1508 static void drop_parent_pte(struct kvm_mmu_page *sp,
1509 u64 *parent_pte)
1510 {
1511 mmu_page_remove_parent_pte(sp, parent_pte);
1512 mmu_spte_clear_no_track(parent_pte);
1513 }
1514
1515 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516 u64 *parent_pte, int direct)
1517 {
1518 struct kvm_mmu_page *sp;
1519 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1521 if (!direct)
1522 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1525 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1526 sp->parent_ptes = 0;
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529 return sp;
1530 }
1531
1532 static void mark_unsync(u64 *spte);
1533 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1534 {
1535 pte_list_walk(&sp->parent_ptes, mark_unsync);
1536 }
1537
1538 static void mark_unsync(u64 *spte)
1539 {
1540 struct kvm_mmu_page *sp;
1541 unsigned int index;
1542
1543 sp = page_header(__pa(spte));
1544 index = spte - sp->spt;
1545 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1546 return;
1547 if (sp->unsync_children++)
1548 return;
1549 kvm_mmu_mark_parents_unsync(sp);
1550 }
1551
1552 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1553 struct kvm_mmu_page *sp)
1554 {
1555 return 1;
1556 }
1557
1558 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1559 {
1560 }
1561
1562 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563 struct kvm_mmu_page *sp, u64 *spte,
1564 const void *pte)
1565 {
1566 WARN_ON(1);
1567 }
1568
1569 #define KVM_PAGE_ARRAY_NR 16
1570
1571 struct kvm_mmu_pages {
1572 struct mmu_page_and_offset {
1573 struct kvm_mmu_page *sp;
1574 unsigned int idx;
1575 } page[KVM_PAGE_ARRAY_NR];
1576 unsigned int nr;
1577 };
1578
1579 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580 int idx)
1581 {
1582 int i;
1583
1584 if (sp->unsync)
1585 for (i=0; i < pvec->nr; i++)
1586 if (pvec->page[i].sp == sp)
1587 return 0;
1588
1589 pvec->page[pvec->nr].sp = sp;
1590 pvec->page[pvec->nr].idx = idx;
1591 pvec->nr++;
1592 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1593 }
1594
1595 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596 struct kvm_mmu_pages *pvec)
1597 {
1598 int i, ret, nr_unsync_leaf = 0;
1599
1600 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1601 struct kvm_mmu_page *child;
1602 u64 ent = sp->spt[i];
1603
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1606
1607 child = page_header(ent & PT64_BASE_ADDR_MASK);
1608
1609 if (child->unsync_children) {
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1612
1613 ret = __mmu_unsync_walk(child, pvec);
1614 if (!ret)
1615 goto clear_child_bitmap;
1616 else if (ret > 0)
1617 nr_unsync_leaf += ret;
1618 else
1619 return ret;
1620 } else if (child->unsync) {
1621 nr_unsync_leaf++;
1622 if (mmu_pages_add(pvec, child, i))
1623 return -ENOSPC;
1624 } else
1625 goto clear_child_bitmap;
1626
1627 continue;
1628
1629 clear_child_bitmap:
1630 __clear_bit(i, sp->unsync_child_bitmap);
1631 sp->unsync_children--;
1632 WARN_ON((int)sp->unsync_children < 0);
1633 }
1634
1635
1636 return nr_unsync_leaf;
1637 }
1638
1639 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1641 {
1642 if (!sp->unsync_children)
1643 return 0;
1644
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
1647 }
1648
1649 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1650 {
1651 WARN_ON(!sp->unsync);
1652 trace_kvm_mmu_sync_page(sp);
1653 sp->unsync = 0;
1654 --kvm->stat.mmu_unsync;
1655 }
1656
1657 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658 struct list_head *invalid_list);
1659 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660 struct list_head *invalid_list);
1661
1662 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1666
1667 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1672
1673 /* @sp->gfn should be write-protected at the call site */
1674 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1675 struct list_head *invalid_list, bool clear_unsync)
1676 {
1677 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1678 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1679 return 1;
1680 }
1681
1682 if (clear_unsync)
1683 kvm_unlink_unsync_page(vcpu->kvm, sp);
1684
1685 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1686 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1687 return 1;
1688 }
1689
1690 kvm_mmu_flush_tlb(vcpu);
1691 return 0;
1692 }
1693
1694 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1696 {
1697 LIST_HEAD(invalid_list);
1698 int ret;
1699
1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1701 if (ret)
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703
1704 return ret;
1705 }
1706
1707 #ifdef CONFIG_KVM_MMU_AUDIT
1708 #include "mmu_audit.c"
1709 #else
1710 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711 static void mmu_audit_disable(void) { }
1712 #endif
1713
1714 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list)
1716 {
1717 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1718 }
1719
1720 /* @gfn should be write-protected at the call site */
1721 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1722 {
1723 struct kvm_mmu_page *s;
1724 struct hlist_node *node;
1725 LIST_HEAD(invalid_list);
1726 bool flush = false;
1727
1728 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1729 if (!s->unsync)
1730 continue;
1731
1732 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1733 kvm_unlink_unsync_page(vcpu->kvm, s);
1734 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1735 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1736 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1737 continue;
1738 }
1739 flush = true;
1740 }
1741
1742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1743 if (flush)
1744 kvm_mmu_flush_tlb(vcpu);
1745 }
1746
1747 struct mmu_page_path {
1748 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749 unsigned int idx[PT64_ROOT_LEVEL-1];
1750 };
1751
1752 #define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1757
1758 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759 struct mmu_page_path *parents,
1760 int i)
1761 {
1762 int n;
1763
1764 for (n = i+1; n < pvec->nr; n++) {
1765 struct kvm_mmu_page *sp = pvec->page[n].sp;
1766
1767 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768 parents->idx[0] = pvec->page[n].idx;
1769 return n;
1770 }
1771
1772 parents->parent[sp->role.level-2] = sp;
1773 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1774 }
1775
1776 return n;
1777 }
1778
1779 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1780 {
1781 struct kvm_mmu_page *sp;
1782 unsigned int level = 0;
1783
1784 do {
1785 unsigned int idx = parents->idx[level];
1786
1787 sp = parents->parent[level];
1788 if (!sp)
1789 return;
1790
1791 --sp->unsync_children;
1792 WARN_ON((int)sp->unsync_children < 0);
1793 __clear_bit(idx, sp->unsync_child_bitmap);
1794 level++;
1795 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1796 }
1797
1798 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799 struct mmu_page_path *parents,
1800 struct kvm_mmu_pages *pvec)
1801 {
1802 parents->parent[parent->role.level-1] = NULL;
1803 pvec->nr = 0;
1804 }
1805
1806 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807 struct kvm_mmu_page *parent)
1808 {
1809 int i;
1810 struct kvm_mmu_page *sp;
1811 struct mmu_page_path parents;
1812 struct kvm_mmu_pages pages;
1813 LIST_HEAD(invalid_list);
1814
1815 kvm_mmu_pages_init(parent, &parents, &pages);
1816 while (mmu_unsync_walk(parent, &pages)) {
1817 bool protected = false;
1818
1819 for_each_sp(pages, sp, parents, i)
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1821
1822 if (protected)
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824
1825 for_each_sp(pages, sp, parents, i) {
1826 kvm_sync_page(vcpu, sp, &invalid_list);
1827 mmu_pages_clear_parents(&parents);
1828 }
1829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1830 cond_resched_lock(&vcpu->kvm->mmu_lock);
1831 kvm_mmu_pages_init(parent, &parents, &pages);
1832 }
1833 }
1834
1835 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1836 {
1837 int i;
1838
1839 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840 sp->spt[i] = 0ull;
1841 }
1842
1843 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1844 {
1845 sp->write_flooding_count = 0;
1846 }
1847
1848 static void clear_sp_write_flooding_count(u64 *spte)
1849 {
1850 struct kvm_mmu_page *sp = page_header(__pa(spte));
1851
1852 __clear_sp_write_flooding_count(sp);
1853 }
1854
1855 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856 gfn_t gfn,
1857 gva_t gaddr,
1858 unsigned level,
1859 int direct,
1860 unsigned access,
1861 u64 *parent_pte)
1862 {
1863 union kvm_mmu_page_role role;
1864 unsigned quadrant;
1865 struct kvm_mmu_page *sp;
1866 struct hlist_node *node;
1867 bool need_sync = false;
1868
1869 role = vcpu->arch.mmu.base_role;
1870 role.level = level;
1871 role.direct = direct;
1872 if (role.direct)
1873 role.cr4_pae = 0;
1874 role.access = access;
1875 if (!vcpu->arch.mmu.direct_map
1876 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1877 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879 role.quadrant = quadrant;
1880 }
1881 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1882 if (!need_sync && sp->unsync)
1883 need_sync = true;
1884
1885 if (sp->role.word != role.word)
1886 continue;
1887
1888 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889 break;
1890
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892 if (sp->unsync_children) {
1893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1894 kvm_mmu_mark_parents_unsync(sp);
1895 } else if (sp->unsync)
1896 kvm_mmu_mark_parents_unsync(sp);
1897
1898 __clear_sp_write_flooding_count(sp);
1899 trace_kvm_mmu_get_page(sp, false);
1900 return sp;
1901 }
1902 ++vcpu->kvm->stat.mmu_cache_miss;
1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1904 if (!sp)
1905 return sp;
1906 sp->gfn = gfn;
1907 sp->role = role;
1908 hlist_add_head(&sp->hash_link,
1909 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1910 if (!direct) {
1911 if (rmap_write_protect(vcpu->kvm, gfn))
1912 kvm_flush_remote_tlbs(vcpu->kvm);
1913 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914 kvm_sync_pages(vcpu, gfn);
1915
1916 account_shadowed(vcpu->kvm, gfn);
1917 }
1918 init_shadow_page_table(sp);
1919 trace_kvm_mmu_get_page(sp, true);
1920 return sp;
1921 }
1922
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1925 {
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
1929
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1934
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1942 }
1943 }
1944
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946 {
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
1949
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1953 }
1954
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
1957 {
1958 if (is_last_spte(spte, iterator->level)) {
1959 iterator->level = 0;
1960 return;
1961 }
1962
1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964 --iterator->level;
1965 }
1966
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968 {
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1970 }
1971
1972 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973 {
1974 u64 spte;
1975
1976 spte = __pa(sp->spt)
1977 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK | PT_USER_MASK;
1979 mmu_spte_set(sptep, spte);
1980 }
1981
1982 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1984 {
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1987
1988 /*
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1994 */
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1998
1999 drop_parent_pte(child, sptep);
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2001 }
2002 }
2003
2004 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005 u64 *spte)
2006 {
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2009
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
2012 if (is_last_spte(pte, sp->role.level)) {
2013 drop_spte(kvm, spte);
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
2018 drop_parent_pte(child, spte);
2019 }
2020 return true;
2021 }
2022
2023 if (is_mmio_spte(pte))
2024 mmu_spte_clear_no_track(spte);
2025
2026 return false;
2027 }
2028
2029 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030 struct kvm_mmu_page *sp)
2031 {
2032 unsigned i;
2033
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2036 }
2037
2038 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2039 {
2040 mmu_page_remove_parent_pte(sp, parent_pte);
2041 }
2042
2043 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2044 {
2045 u64 *sptep;
2046 struct rmap_iterator iter;
2047
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
2050 }
2051
2052 static int mmu_zap_unsync_children(struct kvm *kvm,
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
2055 {
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
2059
2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061 return 0;
2062
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2066
2067 for_each_sp(pages, sp, parents, i) {
2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069 mmu_pages_clear_parents(&parents);
2070 zapped++;
2071 }
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2073 }
2074
2075 return zapped;
2076 }
2077
2078 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
2080 {
2081 int ret;
2082
2083 trace_kvm_mmu_prepare_zap_page(sp);
2084 ++kvm->stat.mmu_shadow_zapped;
2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086 kvm_mmu_page_unlink_children(kvm, sp);
2087 kvm_mmu_unlink_parents(kvm, sp);
2088 if (!sp->role.invalid && !sp->role.direct)
2089 unaccount_shadowed(kvm, sp->gfn);
2090 if (sp->unsync)
2091 kvm_unlink_unsync_page(kvm, sp);
2092 if (!sp->root_count) {
2093 /* Count self */
2094 ret++;
2095 list_move(&sp->link, invalid_list);
2096 kvm_mod_used_mmu_pages(kvm, -1);
2097 } else {
2098 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2099 kvm_reload_remote_mmus(kvm);
2100 }
2101
2102 sp->role.invalid = 1;
2103 return ret;
2104 }
2105
2106 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107 struct list_head *invalid_list)
2108 {
2109 struct kvm_mmu_page *sp;
2110
2111 if (list_empty(invalid_list))
2112 return;
2113
2114 /*
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2117 */
2118 smp_mb();
2119
2120 /*
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2122 * page table walks.
2123 */
2124 kvm_flush_remote_tlbs(kvm);
2125
2126 do {
2127 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128 WARN_ON(!sp->role.invalid || sp->root_count);
2129 kvm_mmu_isolate_page(sp);
2130 kvm_mmu_free_page(sp);
2131 } while (!list_empty(invalid_list));
2132 }
2133
2134 /*
2135 * Changing the number of mmu pages allocated to the vm
2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2137 */
2138 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2139 {
2140 LIST_HEAD(invalid_list);
2141 /*
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2144 * change the value
2145 */
2146
2147 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2148 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2149 !list_empty(&kvm->arch.active_mmu_pages)) {
2150 struct kvm_mmu_page *page;
2151
2152 page = container_of(kvm->arch.active_mmu_pages.prev,
2153 struct kvm_mmu_page, link);
2154 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2155 }
2156 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2157 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2158 }
2159
2160 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2161 }
2162
2163 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2164 {
2165 struct kvm_mmu_page *sp;
2166 struct hlist_node *node;
2167 LIST_HEAD(invalid_list);
2168 int r;
2169
2170 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2171 r = 0;
2172 spin_lock(&kvm->mmu_lock);
2173 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2174 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2175 sp->role.word);
2176 r = 1;
2177 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2178 }
2179 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2180 spin_unlock(&kvm->mmu_lock);
2181
2182 return r;
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2185
2186 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2187 {
2188 int slot = memslot_id(kvm, gfn);
2189 struct kvm_mmu_page *sp = page_header(__pa(pte));
2190
2191 __set_bit(slot, sp->slot_bitmap);
2192 }
2193
2194 /*
2195 * The function is based on mtrr_type_lookup() in
2196 * arch/x86/kernel/cpu/mtrr/generic.c
2197 */
2198 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2199 u64 start, u64 end)
2200 {
2201 int i;
2202 u64 base, mask;
2203 u8 prev_match, curr_match;
2204 int num_var_ranges = KVM_NR_VAR_MTRR;
2205
2206 if (!mtrr_state->enabled)
2207 return 0xFF;
2208
2209 /* Make end inclusive end, instead of exclusive */
2210 end--;
2211
2212 /* Look in fixed ranges. Just return the type as per start */
2213 if (mtrr_state->have_fixed && (start < 0x100000)) {
2214 int idx;
2215
2216 if (start < 0x80000) {
2217 idx = 0;
2218 idx += (start >> 16);
2219 return mtrr_state->fixed_ranges[idx];
2220 } else if (start < 0xC0000) {
2221 idx = 1 * 8;
2222 idx += ((start - 0x80000) >> 14);
2223 return mtrr_state->fixed_ranges[idx];
2224 } else if (start < 0x1000000) {
2225 idx = 3 * 8;
2226 idx += ((start - 0xC0000) >> 12);
2227 return mtrr_state->fixed_ranges[idx];
2228 }
2229 }
2230
2231 /*
2232 * Look in variable ranges
2233 * Look of multiple ranges matching this address and pick type
2234 * as per MTRR precedence
2235 */
2236 if (!(mtrr_state->enabled & 2))
2237 return mtrr_state->def_type;
2238
2239 prev_match = 0xFF;
2240 for (i = 0; i < num_var_ranges; ++i) {
2241 unsigned short start_state, end_state;
2242
2243 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2244 continue;
2245
2246 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2247 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2248 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2249 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2250
2251 start_state = ((start & mask) == (base & mask));
2252 end_state = ((end & mask) == (base & mask));
2253 if (start_state != end_state)
2254 return 0xFE;
2255
2256 if ((start & mask) != (base & mask))
2257 continue;
2258
2259 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2260 if (prev_match == 0xFF) {
2261 prev_match = curr_match;
2262 continue;
2263 }
2264
2265 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2266 curr_match == MTRR_TYPE_UNCACHABLE)
2267 return MTRR_TYPE_UNCACHABLE;
2268
2269 if ((prev_match == MTRR_TYPE_WRBACK &&
2270 curr_match == MTRR_TYPE_WRTHROUGH) ||
2271 (prev_match == MTRR_TYPE_WRTHROUGH &&
2272 curr_match == MTRR_TYPE_WRBACK)) {
2273 prev_match = MTRR_TYPE_WRTHROUGH;
2274 curr_match = MTRR_TYPE_WRTHROUGH;
2275 }
2276
2277 if (prev_match != curr_match)
2278 return MTRR_TYPE_UNCACHABLE;
2279 }
2280
2281 if (prev_match != 0xFF)
2282 return prev_match;
2283
2284 return mtrr_state->def_type;
2285 }
2286
2287 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2288 {
2289 u8 mtrr;
2290
2291 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2292 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2293 if (mtrr == 0xfe || mtrr == 0xff)
2294 mtrr = MTRR_TYPE_WRBACK;
2295 return mtrr;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2298
2299 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2300 {
2301 trace_kvm_mmu_unsync_page(sp);
2302 ++vcpu->kvm->stat.mmu_unsync;
2303 sp->unsync = 1;
2304
2305 kvm_mmu_mark_parents_unsync(sp);
2306 }
2307
2308 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2309 {
2310 struct kvm_mmu_page *s;
2311 struct hlist_node *node;
2312
2313 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2314 if (s->unsync)
2315 continue;
2316 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2317 __kvm_unsync_page(vcpu, s);
2318 }
2319 }
2320
2321 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2322 bool can_unsync)
2323 {
2324 struct kvm_mmu_page *s;
2325 struct hlist_node *node;
2326 bool need_unsync = false;
2327
2328 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2329 if (!can_unsync)
2330 return 1;
2331
2332 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2333 return 1;
2334
2335 if (!need_unsync && !s->unsync) {
2336 need_unsync = true;
2337 }
2338 }
2339 if (need_unsync)
2340 kvm_unsync_pages(vcpu, gfn);
2341 return 0;
2342 }
2343
2344 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2345 unsigned pte_access, int level,
2346 gfn_t gfn, pfn_t pfn, bool speculative,
2347 bool can_unsync, bool host_writable)
2348 {
2349 u64 spte;
2350 int ret = 0;
2351
2352 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2353 return 0;
2354
2355 spte = PT_PRESENT_MASK;
2356 if (!speculative)
2357 spte |= shadow_accessed_mask;
2358
2359 if (pte_access & ACC_EXEC_MASK)
2360 spte |= shadow_x_mask;
2361 else
2362 spte |= shadow_nx_mask;
2363
2364 if (pte_access & ACC_USER_MASK)
2365 spte |= shadow_user_mask;
2366
2367 if (level > PT_PAGE_TABLE_LEVEL)
2368 spte |= PT_PAGE_SIZE_MASK;
2369 if (tdp_enabled)
2370 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2371 kvm_is_mmio_pfn(pfn));
2372
2373 if (host_writable)
2374 spte |= SPTE_HOST_WRITEABLE;
2375 else
2376 pte_access &= ~ACC_WRITE_MASK;
2377
2378 spte |= (u64)pfn << PAGE_SHIFT;
2379
2380 if (pte_access & ACC_WRITE_MASK) {
2381
2382 /*
2383 * Other vcpu creates new sp in the window between
2384 * mapping_level() and acquiring mmu-lock. We can
2385 * allow guest to retry the access, the mapping can
2386 * be fixed if guest refault.
2387 */
2388 if (level > PT_PAGE_TABLE_LEVEL &&
2389 has_wrprotected_page(vcpu->kvm, gfn, level))
2390 goto done;
2391
2392 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2393
2394 /*
2395 * Optimization: for pte sync, if spte was writable the hash
2396 * lookup is unnecessary (and expensive). Write protection
2397 * is responsibility of mmu_get_page / kvm_sync_page.
2398 * Same reasoning can be applied to dirty page accounting.
2399 */
2400 if (!can_unsync && is_writable_pte(*sptep))
2401 goto set_pte;
2402
2403 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2404 pgprintk("%s: found shadow page for %llx, marking ro\n",
2405 __func__, gfn);
2406 ret = 1;
2407 pte_access &= ~ACC_WRITE_MASK;
2408 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2409 }
2410 }
2411
2412 if (pte_access & ACC_WRITE_MASK)
2413 mark_page_dirty(vcpu->kvm, gfn);
2414
2415 set_pte:
2416 if (mmu_spte_update(sptep, spte))
2417 kvm_flush_remote_tlbs(vcpu->kvm);
2418 done:
2419 return ret;
2420 }
2421
2422 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2423 unsigned pt_access, unsigned pte_access,
2424 int write_fault, int *emulate, int level, gfn_t gfn,
2425 pfn_t pfn, bool speculative, bool host_writable)
2426 {
2427 int was_rmapped = 0;
2428 int rmap_count;
2429
2430 pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
2431 __func__, *sptep, pt_access,
2432 write_fault, gfn);
2433
2434 if (is_rmap_spte(*sptep)) {
2435 /*
2436 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2437 * the parent of the now unreachable PTE.
2438 */
2439 if (level > PT_PAGE_TABLE_LEVEL &&
2440 !is_large_pte(*sptep)) {
2441 struct kvm_mmu_page *child;
2442 u64 pte = *sptep;
2443
2444 child = page_header(pte & PT64_BASE_ADDR_MASK);
2445 drop_parent_pte(child, sptep);
2446 kvm_flush_remote_tlbs(vcpu->kvm);
2447 } else if (pfn != spte_to_pfn(*sptep)) {
2448 pgprintk("hfn old %llx new %llx\n",
2449 spte_to_pfn(*sptep), pfn);
2450 drop_spte(vcpu->kvm, sptep);
2451 kvm_flush_remote_tlbs(vcpu->kvm);
2452 } else
2453 was_rmapped = 1;
2454 }
2455
2456 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2457 true, host_writable)) {
2458 if (write_fault)
2459 *emulate = 1;
2460 kvm_mmu_flush_tlb(vcpu);
2461 }
2462
2463 if (unlikely(is_mmio_spte(*sptep) && emulate))
2464 *emulate = 1;
2465
2466 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2467 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2468 is_large_pte(*sptep)? "2MB" : "4kB",
2469 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2470 *sptep, sptep);
2471 if (!was_rmapped && is_large_pte(*sptep))
2472 ++vcpu->kvm->stat.lpages;
2473
2474 if (is_shadow_present_pte(*sptep)) {
2475 page_header_update_slot(vcpu->kvm, sptep, gfn);
2476 if (!was_rmapped) {
2477 rmap_count = rmap_add(vcpu, sptep, gfn);
2478 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2479 rmap_recycle(vcpu, sptep, gfn);
2480 }
2481 }
2482
2483 kvm_release_pfn_clean(pfn);
2484 }
2485
2486 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2487 {
2488 mmu_free_roots(vcpu);
2489 }
2490
2491 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2492 {
2493 int bit7;
2494
2495 bit7 = (gpte >> 7) & 1;
2496 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2497 }
2498
2499 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2500 bool no_dirty_log)
2501 {
2502 struct kvm_memory_slot *slot;
2503
2504 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2505 if (!slot)
2506 return KVM_PFN_ERR_FAULT;
2507
2508 return gfn_to_pfn_memslot_atomic(slot, gfn);
2509 }
2510
2511 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2512 struct kvm_mmu_page *sp, u64 *spte,
2513 u64 gpte)
2514 {
2515 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2516 goto no_present;
2517
2518 if (!is_present_gpte(gpte))
2519 goto no_present;
2520
2521 if (!(gpte & PT_ACCESSED_MASK))
2522 goto no_present;
2523
2524 return false;
2525
2526 no_present:
2527 drop_spte(vcpu->kvm, spte);
2528 return true;
2529 }
2530
2531 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2532 struct kvm_mmu_page *sp,
2533 u64 *start, u64 *end)
2534 {
2535 struct page *pages[PTE_PREFETCH_NUM];
2536 unsigned access = sp->role.access;
2537 int i, ret;
2538 gfn_t gfn;
2539
2540 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2541 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2542 return -1;
2543
2544 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2545 if (ret <= 0)
2546 return -1;
2547
2548 for (i = 0; i < ret; i++, gfn++, start++)
2549 mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
2550 sp->role.level, gfn, page_to_pfn(pages[i]),
2551 true, true);
2552
2553 return 0;
2554 }
2555
2556 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2557 struct kvm_mmu_page *sp, u64 *sptep)
2558 {
2559 u64 *spte, *start = NULL;
2560 int i;
2561
2562 WARN_ON(!sp->role.direct);
2563
2564 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2565 spte = sp->spt + i;
2566
2567 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2568 if (is_shadow_present_pte(*spte) || spte == sptep) {
2569 if (!start)
2570 continue;
2571 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2572 break;
2573 start = NULL;
2574 } else if (!start)
2575 start = spte;
2576 }
2577 }
2578
2579 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2580 {
2581 struct kvm_mmu_page *sp;
2582
2583 /*
2584 * Since it's no accessed bit on EPT, it's no way to
2585 * distinguish between actually accessed translations
2586 * and prefetched, so disable pte prefetch if EPT is
2587 * enabled.
2588 */
2589 if (!shadow_accessed_mask)
2590 return;
2591
2592 sp = page_header(__pa(sptep));
2593 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2594 return;
2595
2596 __direct_pte_prefetch(vcpu, sp, sptep);
2597 }
2598
2599 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2600 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2601 bool prefault)
2602 {
2603 struct kvm_shadow_walk_iterator iterator;
2604 struct kvm_mmu_page *sp;
2605 int emulate = 0;
2606 gfn_t pseudo_gfn;
2607
2608 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2609 if (iterator.level == level) {
2610 unsigned pte_access = ACC_ALL;
2611
2612 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2613 write, &emulate, level, gfn, pfn,
2614 prefault, map_writable);
2615 direct_pte_prefetch(vcpu, iterator.sptep);
2616 ++vcpu->stat.pf_fixed;
2617 break;
2618 }
2619
2620 if (!is_shadow_present_pte(*iterator.sptep)) {
2621 u64 base_addr = iterator.addr;
2622
2623 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2624 pseudo_gfn = base_addr >> PAGE_SHIFT;
2625 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2626 iterator.level - 1,
2627 1, ACC_ALL, iterator.sptep);
2628
2629 mmu_spte_set(iterator.sptep,
2630 __pa(sp->spt)
2631 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2632 | shadow_user_mask | shadow_x_mask
2633 | shadow_accessed_mask);
2634 }
2635 }
2636 return emulate;
2637 }
2638
2639 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2640 {
2641 siginfo_t info;
2642
2643 info.si_signo = SIGBUS;
2644 info.si_errno = 0;
2645 info.si_code = BUS_MCEERR_AR;
2646 info.si_addr = (void __user *)address;
2647 info.si_addr_lsb = PAGE_SHIFT;
2648
2649 send_sig_info(SIGBUS, &info, tsk);
2650 }
2651
2652 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2653 {
2654 /*
2655 * Do not cache the mmio info caused by writing the readonly gfn
2656 * into the spte otherwise read access on readonly gfn also can
2657 * caused mmio page fault and treat it as mmio access.
2658 * Return 1 to tell kvm to emulate it.
2659 */
2660 if (pfn == KVM_PFN_ERR_RO_FAULT)
2661 return 1;
2662
2663 if (pfn == KVM_PFN_ERR_HWPOISON) {
2664 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2665 return 0;
2666 }
2667
2668 return -EFAULT;
2669 }
2670
2671 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2672 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2673 {
2674 pfn_t pfn = *pfnp;
2675 gfn_t gfn = *gfnp;
2676 int level = *levelp;
2677
2678 /*
2679 * Check if it's a transparent hugepage. If this would be an
2680 * hugetlbfs page, level wouldn't be set to
2681 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2682 * here.
2683 */
2684 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2685 level == PT_PAGE_TABLE_LEVEL &&
2686 PageTransCompound(pfn_to_page(pfn)) &&
2687 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2688 unsigned long mask;
2689 /*
2690 * mmu_notifier_retry was successful and we hold the
2691 * mmu_lock here, so the pmd can't become splitting
2692 * from under us, and in turn
2693 * __split_huge_page_refcount() can't run from under
2694 * us and we can safely transfer the refcount from
2695 * PG_tail to PG_head as we switch the pfn to tail to
2696 * head.
2697 */
2698 *levelp = level = PT_DIRECTORY_LEVEL;
2699 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2700 VM_BUG_ON((gfn & mask) != (pfn & mask));
2701 if (pfn & mask) {
2702 gfn &= ~mask;
2703 *gfnp = gfn;
2704 kvm_release_pfn_clean(pfn);
2705 pfn &= ~mask;
2706 kvm_get_pfn(pfn);
2707 *pfnp = pfn;
2708 }
2709 }
2710 }
2711
2712 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2713 pfn_t pfn, unsigned access, int *ret_val)
2714 {
2715 bool ret = true;
2716
2717 /* The pfn is invalid, report the error! */
2718 if (unlikely(is_error_pfn(pfn))) {
2719 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2720 goto exit;
2721 }
2722
2723 if (unlikely(is_noslot_pfn(pfn)))
2724 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2725
2726 ret = false;
2727 exit:
2728 return ret;
2729 }
2730
2731 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2732 {
2733 /*
2734 * #PF can be fast only if the shadow page table is present and it
2735 * is caused by write-protect, that means we just need change the
2736 * W bit of the spte which can be done out of mmu-lock.
2737 */
2738 if (!(error_code & PFERR_PRESENT_MASK) ||
2739 !(error_code & PFERR_WRITE_MASK))
2740 return false;
2741
2742 return true;
2743 }
2744
2745 static bool
2746 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2747 {
2748 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2749 gfn_t gfn;
2750
2751 WARN_ON(!sp->role.direct);
2752
2753 /*
2754 * The gfn of direct spte is stable since it is calculated
2755 * by sp->gfn.
2756 */
2757 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2758
2759 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2760 mark_page_dirty(vcpu->kvm, gfn);
2761
2762 return true;
2763 }
2764
2765 /*
2766 * Return value:
2767 * - true: let the vcpu to access on the same address again.
2768 * - false: let the real page fault path to fix it.
2769 */
2770 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2771 u32 error_code)
2772 {
2773 struct kvm_shadow_walk_iterator iterator;
2774 bool ret = false;
2775 u64 spte = 0ull;
2776
2777 if (!page_fault_can_be_fast(vcpu, error_code))
2778 return false;
2779
2780 walk_shadow_page_lockless_begin(vcpu);
2781 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2782 if (!is_shadow_present_pte(spte) || iterator.level < level)
2783 break;
2784
2785 /*
2786 * If the mapping has been changed, let the vcpu fault on the
2787 * same address again.
2788 */
2789 if (!is_rmap_spte(spte)) {
2790 ret = true;
2791 goto exit;
2792 }
2793
2794 if (!is_last_spte(spte, level))
2795 goto exit;
2796
2797 /*
2798 * Check if it is a spurious fault caused by TLB lazily flushed.
2799 *
2800 * Need not check the access of upper level table entries since
2801 * they are always ACC_ALL.
2802 */
2803 if (is_writable_pte(spte)) {
2804 ret = true;
2805 goto exit;
2806 }
2807
2808 /*
2809 * Currently, to simplify the code, only the spte write-protected
2810 * by dirty-log can be fast fixed.
2811 */
2812 if (!spte_is_locklessly_modifiable(spte))
2813 goto exit;
2814
2815 /*
2816 * Currently, fast page fault only works for direct mapping since
2817 * the gfn is not stable for indirect shadow page.
2818 * See Documentation/virtual/kvm/locking.txt to get more detail.
2819 */
2820 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2821 exit:
2822 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2823 spte, ret);
2824 walk_shadow_page_lockless_end(vcpu);
2825
2826 return ret;
2827 }
2828
2829 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2830 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2831
2832 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2833 gfn_t gfn, bool prefault)
2834 {
2835 int r;
2836 int level;
2837 int force_pt_level;
2838 pfn_t pfn;
2839 unsigned long mmu_seq;
2840 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2841
2842 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2843 if (likely(!force_pt_level)) {
2844 level = mapping_level(vcpu, gfn);
2845 /*
2846 * This path builds a PAE pagetable - so we can map
2847 * 2mb pages at maximum. Therefore check if the level
2848 * is larger than that.
2849 */
2850 if (level > PT_DIRECTORY_LEVEL)
2851 level = PT_DIRECTORY_LEVEL;
2852
2853 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2854 } else
2855 level = PT_PAGE_TABLE_LEVEL;
2856
2857 if (fast_page_fault(vcpu, v, level, error_code))
2858 return 0;
2859
2860 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2861 smp_rmb();
2862
2863 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2864 return 0;
2865
2866 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2867 return r;
2868
2869 spin_lock(&vcpu->kvm->mmu_lock);
2870 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2871 goto out_unlock;
2872 kvm_mmu_free_some_pages(vcpu);
2873 if (likely(!force_pt_level))
2874 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2875 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2876 prefault);
2877 spin_unlock(&vcpu->kvm->mmu_lock);
2878
2879
2880 return r;
2881
2882 out_unlock:
2883 spin_unlock(&vcpu->kvm->mmu_lock);
2884 kvm_release_pfn_clean(pfn);
2885 return 0;
2886 }
2887
2888
2889 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2890 {
2891 int i;
2892 struct kvm_mmu_page *sp;
2893 LIST_HEAD(invalid_list);
2894
2895 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2896 return;
2897 spin_lock(&vcpu->kvm->mmu_lock);
2898 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2899 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2900 vcpu->arch.mmu.direct_map)) {
2901 hpa_t root = vcpu->arch.mmu.root_hpa;
2902
2903 sp = page_header(root);
2904 --sp->root_count;
2905 if (!sp->root_count && sp->role.invalid) {
2906 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2907 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2908 }
2909 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2910 spin_unlock(&vcpu->kvm->mmu_lock);
2911 return;
2912 }
2913 for (i = 0; i < 4; ++i) {
2914 hpa_t root = vcpu->arch.mmu.pae_root[i];
2915
2916 if (root) {
2917 root &= PT64_BASE_ADDR_MASK;
2918 sp = page_header(root);
2919 --sp->root_count;
2920 if (!sp->root_count && sp->role.invalid)
2921 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2922 &invalid_list);
2923 }
2924 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2925 }
2926 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2927 spin_unlock(&vcpu->kvm->mmu_lock);
2928 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2929 }
2930
2931 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2932 {
2933 int ret = 0;
2934
2935 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2936 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2937 ret = 1;
2938 }
2939
2940 return ret;
2941 }
2942
2943 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2944 {
2945 struct kvm_mmu_page *sp;
2946 unsigned i;
2947
2948 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2949 spin_lock(&vcpu->kvm->mmu_lock);
2950 kvm_mmu_free_some_pages(vcpu);
2951 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2952 1, ACC_ALL, NULL);
2953 ++sp->root_count;
2954 spin_unlock(&vcpu->kvm->mmu_lock);
2955 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2956 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2957 for (i = 0; i < 4; ++i) {
2958 hpa_t root = vcpu->arch.mmu.pae_root[i];
2959
2960 ASSERT(!VALID_PAGE(root));
2961 spin_lock(&vcpu->kvm->mmu_lock);
2962 kvm_mmu_free_some_pages(vcpu);
2963 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2964 i << 30,
2965 PT32_ROOT_LEVEL, 1, ACC_ALL,
2966 NULL);
2967 root = __pa(sp->spt);
2968 ++sp->root_count;
2969 spin_unlock(&vcpu->kvm->mmu_lock);
2970 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2971 }
2972 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2973 } else
2974 BUG();
2975
2976 return 0;
2977 }
2978
2979 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2980 {
2981 struct kvm_mmu_page *sp;
2982 u64 pdptr, pm_mask;
2983 gfn_t root_gfn;
2984 int i;
2985
2986 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2987
2988 if (mmu_check_root(vcpu, root_gfn))
2989 return 1;
2990
2991 /*
2992 * Do we shadow a long mode page table? If so we need to
2993 * write-protect the guests page table root.
2994 */
2995 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2996 hpa_t root = vcpu->arch.mmu.root_hpa;
2997
2998 ASSERT(!VALID_PAGE(root));
2999
3000 spin_lock(&vcpu->kvm->mmu_lock);
3001 kvm_mmu_free_some_pages(vcpu);
3002 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3003 0, ACC_ALL, NULL);
3004 root = __pa(sp->spt);
3005 ++sp->root_count;
3006 spin_unlock(&vcpu->kvm->mmu_lock);
3007 vcpu->arch.mmu.root_hpa = root;
3008 return 0;
3009 }
3010
3011 /*
3012 * We shadow a 32 bit page table. This may be a legacy 2-level
3013 * or a PAE 3-level page table. In either case we need to be aware that
3014 * the shadow page table may be a PAE or a long mode page table.
3015 */
3016 pm_mask = PT_PRESENT_MASK;
3017 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3018 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3019
3020 for (i = 0; i < 4; ++i) {
3021 hpa_t root = vcpu->arch.mmu.pae_root[i];
3022
3023 ASSERT(!VALID_PAGE(root));
3024 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3025 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3026 if (!is_present_gpte(pdptr)) {
3027 vcpu->arch.mmu.pae_root[i] = 0;
3028 continue;
3029 }
3030 root_gfn = pdptr >> PAGE_SHIFT;
3031 if (mmu_check_root(vcpu, root_gfn))
3032 return 1;
3033 }
3034 spin_lock(&vcpu->kvm->mmu_lock);
3035 kvm_mmu_free_some_pages(vcpu);
3036 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3037 PT32_ROOT_LEVEL, 0,
3038 ACC_ALL, NULL);
3039 root = __pa(sp->spt);
3040 ++sp->root_count;
3041 spin_unlock(&vcpu->kvm->mmu_lock);
3042
3043 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3044 }
3045 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3046
3047 /*
3048 * If we shadow a 32 bit page table with a long mode page
3049 * table we enter this path.
3050 */
3051 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3052 if (vcpu->arch.mmu.lm_root == NULL) {
3053 /*
3054 * The additional page necessary for this is only
3055 * allocated on demand.
3056 */
3057
3058 u64 *lm_root;
3059
3060 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3061 if (lm_root == NULL)
3062 return 1;
3063
3064 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3065
3066 vcpu->arch.mmu.lm_root = lm_root;
3067 }
3068
3069 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3070 }
3071
3072 return 0;
3073 }
3074
3075 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3076 {
3077 if (vcpu->arch.mmu.direct_map)
3078 return mmu_alloc_direct_roots(vcpu);
3079 else
3080 return mmu_alloc_shadow_roots(vcpu);
3081 }
3082
3083 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3084 {
3085 int i;
3086 struct kvm_mmu_page *sp;
3087
3088 if (vcpu->arch.mmu.direct_map)
3089 return;
3090
3091 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3092 return;
3093
3094 vcpu_clear_mmio_info(vcpu, ~0ul);
3095 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3096 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3097 hpa_t root = vcpu->arch.mmu.root_hpa;
3098 sp = page_header(root);
3099 mmu_sync_children(vcpu, sp);
3100 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3101 return;
3102 }
3103 for (i = 0; i < 4; ++i) {
3104 hpa_t root = vcpu->arch.mmu.pae_root[i];
3105
3106 if (root && VALID_PAGE(root)) {
3107 root &= PT64_BASE_ADDR_MASK;
3108 sp = page_header(root);
3109 mmu_sync_children(vcpu, sp);
3110 }
3111 }
3112 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3113 }
3114
3115 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3116 {
3117 spin_lock(&vcpu->kvm->mmu_lock);
3118 mmu_sync_roots(vcpu);
3119 spin_unlock(&vcpu->kvm->mmu_lock);
3120 }
3121
3122 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3123 u32 access, struct x86_exception *exception)
3124 {
3125 if (exception)
3126 exception->error_code = 0;
3127 return vaddr;
3128 }
3129
3130 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3131 u32 access,
3132 struct x86_exception *exception)
3133 {
3134 if (exception)
3135 exception->error_code = 0;
3136 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3137 }
3138
3139 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3140 {
3141 if (direct)
3142 return vcpu_match_mmio_gpa(vcpu, addr);
3143
3144 return vcpu_match_mmio_gva(vcpu, addr);
3145 }
3146
3147
3148 /*
3149 * On direct hosts, the last spte is only allows two states
3150 * for mmio page fault:
3151 * - It is the mmio spte
3152 * - It is zapped or it is being zapped.
3153 *
3154 * This function completely checks the spte when the last spte
3155 * is not the mmio spte.
3156 */
3157 static bool check_direct_spte_mmio_pf(u64 spte)
3158 {
3159 return __check_direct_spte_mmio_pf(spte);
3160 }
3161
3162 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3163 {
3164 struct kvm_shadow_walk_iterator iterator;
3165 u64 spte = 0ull;
3166
3167 walk_shadow_page_lockless_begin(vcpu);
3168 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3169 if (!is_shadow_present_pte(spte))
3170 break;
3171 walk_shadow_page_lockless_end(vcpu);
3172
3173 return spte;
3174 }
3175
3176 /*
3177 * If it is a real mmio page fault, return 1 and emulat the instruction
3178 * directly, return 0 to let CPU fault again on the address, -1 is
3179 * returned if bug is detected.
3180 */
3181 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3182 {
3183 u64 spte;
3184
3185 if (quickly_check_mmio_pf(vcpu, addr, direct))
3186 return 1;
3187
3188 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3189
3190 if (is_mmio_spte(spte)) {
3191 gfn_t gfn = get_mmio_spte_gfn(spte);
3192 unsigned access = get_mmio_spte_access(spte);
3193
3194 if (direct)
3195 addr = 0;
3196
3197 trace_handle_mmio_page_fault(addr, gfn, access);
3198 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3199 return 1;
3200 }
3201
3202 /*
3203 * It's ok if the gva is remapped by other cpus on shadow guest,
3204 * it's a BUG if the gfn is not a mmio page.
3205 */
3206 if (direct && !check_direct_spte_mmio_pf(spte))
3207 return -1;
3208
3209 /*
3210 * If the page table is zapped by other cpus, let CPU fault again on
3211 * the address.
3212 */
3213 return 0;
3214 }
3215 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3216
3217 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3218 u32 error_code, bool direct)
3219 {
3220 int ret;
3221
3222 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3223 WARN_ON(ret < 0);
3224 return ret;
3225 }
3226
3227 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3228 u32 error_code, bool prefault)
3229 {
3230 gfn_t gfn;
3231 int r;
3232
3233 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3234
3235 if (unlikely(error_code & PFERR_RSVD_MASK))
3236 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3237
3238 r = mmu_topup_memory_caches(vcpu);
3239 if (r)
3240 return r;
3241
3242 ASSERT(vcpu);
3243 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3244
3245 gfn = gva >> PAGE_SHIFT;
3246
3247 return nonpaging_map(vcpu, gva & PAGE_MASK,
3248 error_code, gfn, prefault);
3249 }
3250
3251 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3252 {
3253 struct kvm_arch_async_pf arch;
3254
3255 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3256 arch.gfn = gfn;
3257 arch.direct_map = vcpu->arch.mmu.direct_map;
3258 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3259
3260 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3261 }
3262
3263 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3264 {
3265 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3266 kvm_event_needs_reinjection(vcpu)))
3267 return false;
3268
3269 return kvm_x86_ops->interrupt_allowed(vcpu);
3270 }
3271
3272 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3273 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3274 {
3275 bool async;
3276
3277 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3278
3279 if (!async)
3280 return false; /* *pfn has correct page already */
3281
3282 if (!prefault && can_do_async_pf(vcpu)) {
3283 trace_kvm_try_async_get_page(gva, gfn);
3284 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3285 trace_kvm_async_pf_doublefault(gva, gfn);
3286 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3287 return true;
3288 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3289 return true;
3290 }
3291
3292 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3293
3294 return false;
3295 }
3296
3297 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3298 bool prefault)
3299 {
3300 pfn_t pfn;
3301 int r;
3302 int level;
3303 int force_pt_level;
3304 gfn_t gfn = gpa >> PAGE_SHIFT;
3305 unsigned long mmu_seq;
3306 int write = error_code & PFERR_WRITE_MASK;
3307 bool map_writable;
3308
3309 ASSERT(vcpu);
3310 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3311
3312 if (unlikely(error_code & PFERR_RSVD_MASK))
3313 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3314
3315 r = mmu_topup_memory_caches(vcpu);
3316 if (r)
3317 return r;
3318
3319 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3320 if (likely(!force_pt_level)) {
3321 level = mapping_level(vcpu, gfn);
3322 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3323 } else
3324 level = PT_PAGE_TABLE_LEVEL;
3325
3326 if (fast_page_fault(vcpu, gpa, level, error_code))
3327 return 0;
3328
3329 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3330 smp_rmb();
3331
3332 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3333 return 0;
3334
3335 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3336 return r;
3337
3338 spin_lock(&vcpu->kvm->mmu_lock);
3339 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3340 goto out_unlock;
3341 kvm_mmu_free_some_pages(vcpu);
3342 if (likely(!force_pt_level))
3343 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3344 r = __direct_map(vcpu, gpa, write, map_writable,
3345 level, gfn, pfn, prefault);
3346 spin_unlock(&vcpu->kvm->mmu_lock);
3347
3348 return r;
3349
3350 out_unlock:
3351 spin_unlock(&vcpu->kvm->mmu_lock);
3352 kvm_release_pfn_clean(pfn);
3353 return 0;
3354 }
3355
3356 static void nonpaging_free(struct kvm_vcpu *vcpu)
3357 {
3358 mmu_free_roots(vcpu);
3359 }
3360
3361 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3362 struct kvm_mmu *context)
3363 {
3364 context->new_cr3 = nonpaging_new_cr3;
3365 context->page_fault = nonpaging_page_fault;
3366 context->gva_to_gpa = nonpaging_gva_to_gpa;
3367 context->free = nonpaging_free;
3368 context->sync_page = nonpaging_sync_page;
3369 context->invlpg = nonpaging_invlpg;
3370 context->update_pte = nonpaging_update_pte;
3371 context->root_level = 0;
3372 context->shadow_root_level = PT32E_ROOT_LEVEL;
3373 context->root_hpa = INVALID_PAGE;
3374 context->direct_map = true;
3375 context->nx = false;
3376 return 0;
3377 }
3378
3379 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3380 {
3381 ++vcpu->stat.tlb_flush;
3382 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3383 }
3384
3385 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3386 {
3387 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3388 mmu_free_roots(vcpu);
3389 }
3390
3391 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3392 {
3393 return kvm_read_cr3(vcpu);
3394 }
3395
3396 static void inject_page_fault(struct kvm_vcpu *vcpu,
3397 struct x86_exception *fault)
3398 {
3399 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3400 }
3401
3402 static void paging_free(struct kvm_vcpu *vcpu)
3403 {
3404 nonpaging_free(vcpu);
3405 }
3406
3407 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3408 {
3409 unsigned mask;
3410
3411 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3412
3413 mask = (unsigned)~ACC_WRITE_MASK;
3414 /* Allow write access to dirty gptes */
3415 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3416 *access &= mask;
3417 }
3418
3419 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3420 int *nr_present)
3421 {
3422 if (unlikely(is_mmio_spte(*sptep))) {
3423 if (gfn != get_mmio_spte_gfn(*sptep)) {
3424 mmu_spte_clear_no_track(sptep);
3425 return true;
3426 }
3427
3428 (*nr_present)++;
3429 mark_mmio_spte(sptep, gfn, access);
3430 return true;
3431 }
3432
3433 return false;
3434 }
3435
3436 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3437 {
3438 unsigned access;
3439
3440 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3441 access &= ~(gpte >> PT64_NX_SHIFT);
3442
3443 return access;
3444 }
3445
3446 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3447 {
3448 unsigned index;
3449
3450 index = level - 1;
3451 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3452 return mmu->last_pte_bitmap & (1 << index);
3453 }
3454
3455 #define PTTYPE 64
3456 #include "paging_tmpl.h"
3457 #undef PTTYPE
3458
3459 #define PTTYPE 32
3460 #include "paging_tmpl.h"
3461 #undef PTTYPE
3462
3463 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3464 struct kvm_mmu *context)
3465 {
3466 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3467 u64 exb_bit_rsvd = 0;
3468
3469 if (!context->nx)
3470 exb_bit_rsvd = rsvd_bits(63, 63);
3471 switch (context->root_level) {
3472 case PT32_ROOT_LEVEL:
3473 /* no rsvd bits for 2 level 4K page table entries */
3474 context->rsvd_bits_mask[0][1] = 0;
3475 context->rsvd_bits_mask[0][0] = 0;
3476 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3477
3478 if (!is_pse(vcpu)) {
3479 context->rsvd_bits_mask[1][1] = 0;
3480 break;
3481 }
3482
3483 if (is_cpuid_PSE36())
3484 /* 36bits PSE 4MB page */
3485 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3486 else
3487 /* 32 bits PSE 4MB page */
3488 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3489 break;
3490 case PT32E_ROOT_LEVEL:
3491 context->rsvd_bits_mask[0][2] =
3492 rsvd_bits(maxphyaddr, 63) |
3493 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3494 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3495 rsvd_bits(maxphyaddr, 62); /* PDE */
3496 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3497 rsvd_bits(maxphyaddr, 62); /* PTE */
3498 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3499 rsvd_bits(maxphyaddr, 62) |
3500 rsvd_bits(13, 20); /* large page */
3501 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3502 break;
3503 case PT64_ROOT_LEVEL:
3504 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3505 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3506 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3507 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3508 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3509 rsvd_bits(maxphyaddr, 51);
3510 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3511 rsvd_bits(maxphyaddr, 51);
3512 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3513 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3514 rsvd_bits(maxphyaddr, 51) |
3515 rsvd_bits(13, 29);
3516 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3517 rsvd_bits(maxphyaddr, 51) |
3518 rsvd_bits(13, 20); /* large page */
3519 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3520 break;
3521 }
3522 }
3523
3524 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3525 {
3526 unsigned bit, byte, pfec;
3527 u8 map;
3528 bool fault, x, w, u, wf, uf, ff, smep;
3529
3530 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3531 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3532 pfec = byte << 1;
3533 map = 0;
3534 wf = pfec & PFERR_WRITE_MASK;
3535 uf = pfec & PFERR_USER_MASK;
3536 ff = pfec & PFERR_FETCH_MASK;
3537 for (bit = 0; bit < 8; ++bit) {
3538 x = bit & ACC_EXEC_MASK;
3539 w = bit & ACC_WRITE_MASK;
3540 u = bit & ACC_USER_MASK;
3541
3542 /* Not really needed: !nx will cause pte.nx to fault */
3543 x |= !mmu->nx;
3544 /* Allow supervisor writes if !cr0.wp */
3545 w |= !is_write_protection(vcpu) && !uf;
3546 /* Disallow supervisor fetches of user code if cr4.smep */
3547 x &= !(smep && u && !uf);
3548
3549 fault = (ff && !x) || (uf && !u) || (wf && !w);
3550 map |= fault << bit;
3551 }
3552 mmu->permissions[byte] = map;
3553 }
3554 }
3555
3556 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3557 {
3558 u8 map;
3559 unsigned level, root_level = mmu->root_level;
3560 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3561
3562 if (root_level == PT32E_ROOT_LEVEL)
3563 --root_level;
3564 /* PT_PAGE_TABLE_LEVEL always terminates */
3565 map = 1 | (1 << ps_set_index);
3566 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3567 if (level <= PT_PDPE_LEVEL
3568 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3569 map |= 1 << (ps_set_index | (level - 1));
3570 }
3571 mmu->last_pte_bitmap = map;
3572 }
3573
3574 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3575 struct kvm_mmu *context,
3576 int level)
3577 {
3578 context->nx = is_nx(vcpu);
3579 context->root_level = level;
3580
3581 reset_rsvds_bits_mask(vcpu, context);
3582 update_permission_bitmask(vcpu, context);
3583 update_last_pte_bitmap(vcpu, context);
3584
3585 ASSERT(is_pae(vcpu));
3586 context->new_cr3 = paging_new_cr3;
3587 context->page_fault = paging64_page_fault;
3588 context->gva_to_gpa = paging64_gva_to_gpa;
3589 context->sync_page = paging64_sync_page;
3590 context->invlpg = paging64_invlpg;
3591 context->update_pte = paging64_update_pte;
3592 context->free = paging_free;
3593 context->shadow_root_level = level;
3594 context->root_hpa = INVALID_PAGE;
3595 context->direct_map = false;
3596 return 0;
3597 }
3598
3599 static int paging64_init_context(struct kvm_vcpu *vcpu,
3600 struct kvm_mmu *context)
3601 {
3602 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3603 }
3604
3605 static int paging32_init_context(struct kvm_vcpu *vcpu,
3606 struct kvm_mmu *context)
3607 {
3608 context->nx = false;
3609 context->root_level = PT32_ROOT_LEVEL;
3610
3611 reset_rsvds_bits_mask(vcpu, context);
3612 update_permission_bitmask(vcpu, context);
3613 update_last_pte_bitmap(vcpu, context);
3614
3615 context->new_cr3 = paging_new_cr3;
3616 context->page_fault = paging32_page_fault;
3617 context->gva_to_gpa = paging32_gva_to_gpa;
3618 context->free = paging_free;
3619 context->sync_page = paging32_sync_page;
3620 context->invlpg = paging32_invlpg;
3621 context->update_pte = paging32_update_pte;
3622 context->shadow_root_level = PT32E_ROOT_LEVEL;
3623 context->root_hpa = INVALID_PAGE;
3624 context->direct_map = false;
3625 return 0;
3626 }
3627
3628 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3629 struct kvm_mmu *context)
3630 {
3631 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3632 }
3633
3634 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3635 {
3636 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3637
3638 context->base_role.word = 0;
3639 context->new_cr3 = nonpaging_new_cr3;
3640 context->page_fault = tdp_page_fault;
3641 context->free = nonpaging_free;
3642 context->sync_page = nonpaging_sync_page;
3643 context->invlpg = nonpaging_invlpg;
3644 context->update_pte = nonpaging_update_pte;
3645 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3646 context->root_hpa = INVALID_PAGE;
3647 context->direct_map = true;
3648 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3649 context->get_cr3 = get_cr3;
3650 context->get_pdptr = kvm_pdptr_read;
3651 context->inject_page_fault = kvm_inject_page_fault;
3652
3653 if (!is_paging(vcpu)) {
3654 context->nx = false;
3655 context->gva_to_gpa = nonpaging_gva_to_gpa;
3656 context->root_level = 0;
3657 } else if (is_long_mode(vcpu)) {
3658 context->nx = is_nx(vcpu);
3659 context->root_level = PT64_ROOT_LEVEL;
3660 reset_rsvds_bits_mask(vcpu, context);
3661 context->gva_to_gpa = paging64_gva_to_gpa;
3662 } else if (is_pae(vcpu)) {
3663 context->nx = is_nx(vcpu);
3664 context->root_level = PT32E_ROOT_LEVEL;
3665 reset_rsvds_bits_mask(vcpu, context);
3666 context->gva_to_gpa = paging64_gva_to_gpa;
3667 } else {
3668 context->nx = false;
3669 context->root_level = PT32_ROOT_LEVEL;
3670 reset_rsvds_bits_mask(vcpu, context);
3671 context->gva_to_gpa = paging32_gva_to_gpa;
3672 }
3673
3674 update_permission_bitmask(vcpu, context);
3675 update_last_pte_bitmap(vcpu, context);
3676
3677 return 0;
3678 }
3679
3680 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3681 {
3682 int r;
3683 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3684 ASSERT(vcpu);
3685 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3686
3687 if (!is_paging(vcpu))
3688 r = nonpaging_init_context(vcpu, context);
3689 else if (is_long_mode(vcpu))
3690 r = paging64_init_context(vcpu, context);
3691 else if (is_pae(vcpu))
3692 r = paging32E_init_context(vcpu, context);
3693 else
3694 r = paging32_init_context(vcpu, context);
3695
3696 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3697 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3698 vcpu->arch.mmu.base_role.smep_andnot_wp
3699 = smep && !is_write_protection(vcpu);
3700
3701 return r;
3702 }
3703 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3704
3705 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3706 {
3707 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3708
3709 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3710 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3711 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3712 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3713
3714 return r;
3715 }
3716
3717 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3718 {
3719 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3720
3721 g_context->get_cr3 = get_cr3;
3722 g_context->get_pdptr = kvm_pdptr_read;
3723 g_context->inject_page_fault = kvm_inject_page_fault;
3724
3725 /*
3726 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3727 * translation of l2_gpa to l1_gpa addresses is done using the
3728 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3729 * functions between mmu and nested_mmu are swapped.
3730 */
3731 if (!is_paging(vcpu)) {
3732 g_context->nx = false;
3733 g_context->root_level = 0;
3734 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3735 } else if (is_long_mode(vcpu)) {
3736 g_context->nx = is_nx(vcpu);
3737 g_context->root_level = PT64_ROOT_LEVEL;
3738 reset_rsvds_bits_mask(vcpu, g_context);
3739 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3740 } else if (is_pae(vcpu)) {
3741 g_context->nx = is_nx(vcpu);
3742 g_context->root_level = PT32E_ROOT_LEVEL;
3743 reset_rsvds_bits_mask(vcpu, g_context);
3744 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3745 } else {
3746 g_context->nx = false;
3747 g_context->root_level = PT32_ROOT_LEVEL;
3748 reset_rsvds_bits_mask(vcpu, g_context);
3749 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3750 }
3751
3752 update_permission_bitmask(vcpu, g_context);
3753 update_last_pte_bitmap(vcpu, g_context);
3754
3755 return 0;
3756 }
3757
3758 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3759 {
3760 if (mmu_is_nested(vcpu))
3761 return init_kvm_nested_mmu(vcpu);
3762 else if (tdp_enabled)
3763 return init_kvm_tdp_mmu(vcpu);
3764 else
3765 return init_kvm_softmmu(vcpu);
3766 }
3767
3768 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3769 {
3770 ASSERT(vcpu);
3771 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3772 /* mmu.free() should set root_hpa = INVALID_PAGE */
3773 vcpu->arch.mmu.free(vcpu);
3774 }
3775
3776 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3777 {
3778 destroy_kvm_mmu(vcpu);
3779 return init_kvm_mmu(vcpu);
3780 }
3781 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3782
3783 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3784 {
3785 int r;
3786
3787 r = mmu_topup_memory_caches(vcpu);
3788 if (r)
3789 goto out;
3790 r = mmu_alloc_roots(vcpu);
3791 spin_lock(&vcpu->kvm->mmu_lock);
3792 mmu_sync_roots(vcpu);
3793 spin_unlock(&vcpu->kvm->mmu_lock);
3794 if (r)
3795 goto out;
3796 /* set_cr3() should ensure TLB has been flushed */
3797 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3798 out:
3799 return r;
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3802
3803 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3804 {
3805 mmu_free_roots(vcpu);
3806 }
3807 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3808
3809 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3810 struct kvm_mmu_page *sp, u64 *spte,
3811 const void *new)
3812 {
3813 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3814 ++vcpu->kvm->stat.mmu_pde_zapped;
3815 return;
3816 }
3817
3818 ++vcpu->kvm->stat.mmu_pte_updated;
3819 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3820 }
3821
3822 static bool need_remote_flush(u64 old, u64 new)
3823 {
3824 if (!is_shadow_present_pte(old))
3825 return false;
3826 if (!is_shadow_present_pte(new))
3827 return true;
3828 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3829 return true;
3830 old ^= PT64_NX_MASK;
3831 new ^= PT64_NX_MASK;
3832 return (old & ~new & PT64_PERM_MASK) != 0;
3833 }
3834
3835 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3836 bool remote_flush, bool local_flush)
3837 {
3838 if (zap_page)
3839 return;
3840
3841 if (remote_flush)
3842 kvm_flush_remote_tlbs(vcpu->kvm);
3843 else if (local_flush)
3844 kvm_mmu_flush_tlb(vcpu);
3845 }
3846
3847 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3848 const u8 *new, int *bytes)
3849 {
3850 u64 gentry;
3851 int r;
3852
3853 /*
3854 * Assume that the pte write on a page table of the same type
3855 * as the current vcpu paging mode since we update the sptes only
3856 * when they have the same mode.
3857 */
3858 if (is_pae(vcpu) && *bytes == 4) {
3859 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3860 *gpa &= ~(gpa_t)7;
3861 *bytes = 8;
3862 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3863 if (r)
3864 gentry = 0;
3865 new = (const u8 *)&gentry;
3866 }
3867
3868 switch (*bytes) {
3869 case 4:
3870 gentry = *(const u32 *)new;
3871 break;
3872 case 8:
3873 gentry = *(const u64 *)new;
3874 break;
3875 default:
3876 gentry = 0;
3877 break;
3878 }
3879
3880 return gentry;
3881 }
3882
3883 /*
3884 * If we're seeing too many writes to a page, it may no longer be a page table,
3885 * or we may be forking, in which case it is better to unmap the page.
3886 */
3887 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3888 {
3889 /*
3890 * Skip write-flooding detected for the sp whose level is 1, because
3891 * it can become unsync, then the guest page is not write-protected.
3892 */
3893 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3894 return false;
3895
3896 return ++sp->write_flooding_count >= 3;
3897 }
3898
3899 /*
3900 * Misaligned accesses are too much trouble to fix up; also, they usually
3901 * indicate a page is not used as a page table.
3902 */
3903 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3904 int bytes)
3905 {
3906 unsigned offset, pte_size, misaligned;
3907
3908 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3909 gpa, bytes, sp->role.word);
3910
3911 offset = offset_in_page(gpa);
3912 pte_size = sp->role.cr4_pae ? 8 : 4;
3913
3914 /*
3915 * Sometimes, the OS only writes the last one bytes to update status
3916 * bits, for example, in linux, andb instruction is used in clear_bit().
3917 */
3918 if (!(offset & (pte_size - 1)) && bytes == 1)
3919 return false;
3920
3921 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3922 misaligned |= bytes < 4;
3923
3924 return misaligned;
3925 }
3926
3927 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3928 {
3929 unsigned page_offset, quadrant;
3930 u64 *spte;
3931 int level;
3932
3933 page_offset = offset_in_page(gpa);
3934 level = sp->role.level;
3935 *nspte = 1;
3936 if (!sp->role.cr4_pae) {
3937 page_offset <<= 1; /* 32->64 */
3938 /*
3939 * A 32-bit pde maps 4MB while the shadow pdes map
3940 * only 2MB. So we need to double the offset again
3941 * and zap two pdes instead of one.
3942 */
3943 if (level == PT32_ROOT_LEVEL) {
3944 page_offset &= ~7; /* kill rounding error */
3945 page_offset <<= 1;
3946 *nspte = 2;
3947 }
3948 quadrant = page_offset >> PAGE_SHIFT;
3949 page_offset &= ~PAGE_MASK;
3950 if (quadrant != sp->role.quadrant)
3951 return NULL;
3952 }
3953
3954 spte = &sp->spt[page_offset / sizeof(*spte)];
3955 return spte;
3956 }
3957
3958 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3959 const u8 *new, int bytes)
3960 {
3961 gfn_t gfn = gpa >> PAGE_SHIFT;
3962 union kvm_mmu_page_role mask = { .word = 0 };
3963 struct kvm_mmu_page *sp;
3964 struct hlist_node *node;
3965 LIST_HEAD(invalid_list);
3966 u64 entry, gentry, *spte;
3967 int npte;
3968 bool remote_flush, local_flush, zap_page;
3969
3970 /*
3971 * If we don't have indirect shadow pages, it means no page is
3972 * write-protected, so we can exit simply.
3973 */
3974 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3975 return;
3976
3977 zap_page = remote_flush = local_flush = false;
3978
3979 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3980
3981 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3982
3983 /*
3984 * No need to care whether allocation memory is successful
3985 * or not since pte prefetch is skiped if it does not have
3986 * enough objects in the cache.
3987 */
3988 mmu_topup_memory_caches(vcpu);
3989
3990 spin_lock(&vcpu->kvm->mmu_lock);
3991 ++vcpu->kvm->stat.mmu_pte_write;
3992 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3993
3994 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3995 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3996 if (detect_write_misaligned(sp, gpa, bytes) ||
3997 detect_write_flooding(sp)) {
3998 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3999 &invalid_list);
4000 ++vcpu->kvm->stat.mmu_flooded;
4001 continue;
4002 }
4003
4004 spte = get_written_sptes(sp, gpa, &npte);
4005 if (!spte)
4006 continue;
4007
4008 local_flush = true;
4009 while (npte--) {
4010 entry = *spte;
4011 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4012 if (gentry &&
4013 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4014 & mask.word) && rmap_can_add(vcpu))
4015 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4016 if (!remote_flush && need_remote_flush(entry, *spte))
4017 remote_flush = true;
4018 ++spte;
4019 }
4020 }
4021 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4022 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4023 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4024 spin_unlock(&vcpu->kvm->mmu_lock);
4025 }
4026
4027 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4028 {
4029 gpa_t gpa;
4030 int r;
4031
4032 if (vcpu->arch.mmu.direct_map)
4033 return 0;
4034
4035 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4036
4037 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4038
4039 return r;
4040 }
4041 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4042
4043 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4044 {
4045 LIST_HEAD(invalid_list);
4046
4047 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4048 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4049 struct kvm_mmu_page *sp;
4050
4051 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4052 struct kvm_mmu_page, link);
4053 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4054 ++vcpu->kvm->stat.mmu_recycled;
4055 }
4056 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4057 }
4058
4059 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4060 {
4061 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4062 return vcpu_match_mmio_gpa(vcpu, addr);
4063
4064 return vcpu_match_mmio_gva(vcpu, addr);
4065 }
4066
4067 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4068 void *insn, int insn_len)
4069 {
4070 int r, emulation_type = EMULTYPE_RETRY;
4071 enum emulation_result er;
4072
4073 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4074 if (r < 0)
4075 goto out;
4076
4077 if (!r) {
4078 r = 1;
4079 goto out;
4080 }
4081
4082 if (is_mmio_page_fault(vcpu, cr2))
4083 emulation_type = 0;
4084
4085 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4086
4087 switch (er) {
4088 case EMULATE_DONE:
4089 return 1;
4090 case EMULATE_DO_MMIO:
4091 ++vcpu->stat.mmio_exits;
4092 /* fall through */
4093 case EMULATE_FAIL:
4094 return 0;
4095 default:
4096 BUG();
4097 }
4098 out:
4099 return r;
4100 }
4101 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4102
4103 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4104 {
4105 vcpu->arch.mmu.invlpg(vcpu, gva);
4106 kvm_mmu_flush_tlb(vcpu);
4107 ++vcpu->stat.invlpg;
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4110
4111 void kvm_enable_tdp(void)
4112 {
4113 tdp_enabled = true;
4114 }
4115 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4116
4117 void kvm_disable_tdp(void)
4118 {
4119 tdp_enabled = false;
4120 }
4121 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4122
4123 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4124 {
4125 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4126 if (vcpu->arch.mmu.lm_root != NULL)
4127 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4128 }
4129
4130 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4131 {
4132 struct page *page;
4133 int i;
4134
4135 ASSERT(vcpu);
4136
4137 /*
4138 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4139 * Therefore we need to allocate shadow page tables in the first
4140 * 4GB of memory, which happens to fit the DMA32 zone.
4141 */
4142 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4143 if (!page)
4144 return -ENOMEM;
4145
4146 vcpu->arch.mmu.pae_root = page_address(page);
4147 for (i = 0; i < 4; ++i)
4148 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4149
4150 return 0;
4151 }
4152
4153 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4154 {
4155 ASSERT(vcpu);
4156
4157 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4158 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4159 vcpu->arch.mmu.translate_gpa = translate_gpa;
4160 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4161
4162 return alloc_mmu_pages(vcpu);
4163 }
4164
4165 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4166 {
4167 ASSERT(vcpu);
4168 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4169
4170 return init_kvm_mmu(vcpu);
4171 }
4172
4173 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4174 {
4175 struct kvm_memory_slot *memslot;
4176 gfn_t last_gfn;
4177 int i;
4178
4179 memslot = id_to_memslot(kvm->memslots, slot);
4180 last_gfn = memslot->base_gfn + memslot->npages - 1;
4181
4182 for (i = PT_PAGE_TABLE_LEVEL;
4183 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4184 unsigned long *rmapp;
4185 unsigned long last_index, index;
4186
4187 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4188 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4189
4190 for (index = 0; index <= last_index; ++index, ++rmapp) {
4191 if (*rmapp)
4192 __rmap_write_protect(kvm, rmapp, false);
4193 }
4194 }
4195
4196 kvm_flush_remote_tlbs(kvm);
4197 }
4198
4199 void kvm_mmu_zap_all(struct kvm *kvm)
4200 {
4201 struct kvm_mmu_page *sp, *node;
4202 LIST_HEAD(invalid_list);
4203
4204 spin_lock(&kvm->mmu_lock);
4205 restart:
4206 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4207 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4208 goto restart;
4209
4210 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4211 spin_unlock(&kvm->mmu_lock);
4212 }
4213
4214 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4215 struct list_head *invalid_list)
4216 {
4217 struct kvm_mmu_page *page;
4218
4219 if (list_empty(&kvm->arch.active_mmu_pages))
4220 return;
4221
4222 page = container_of(kvm->arch.active_mmu_pages.prev,
4223 struct kvm_mmu_page, link);
4224 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4225 }
4226
4227 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4228 {
4229 struct kvm *kvm;
4230 int nr_to_scan = sc->nr_to_scan;
4231
4232 if (nr_to_scan == 0)
4233 goto out;
4234
4235 raw_spin_lock(&kvm_lock);
4236
4237 list_for_each_entry(kvm, &vm_list, vm_list) {
4238 int idx;
4239 LIST_HEAD(invalid_list);
4240
4241 /*
4242 * Never scan more than sc->nr_to_scan VM instances.
4243 * Will not hit this condition practically since we do not try
4244 * to shrink more than one VM and it is very unlikely to see
4245 * !n_used_mmu_pages so many times.
4246 */
4247 if (!nr_to_scan--)
4248 break;
4249 /*
4250 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4251 * here. We may skip a VM instance errorneosly, but we do not
4252 * want to shrink a VM that only started to populate its MMU
4253 * anyway.
4254 */
4255 if (!kvm->arch.n_used_mmu_pages)
4256 continue;
4257
4258 idx = srcu_read_lock(&kvm->srcu);
4259 spin_lock(&kvm->mmu_lock);
4260
4261 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4262 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4263
4264 spin_unlock(&kvm->mmu_lock);
4265 srcu_read_unlock(&kvm->srcu, idx);
4266
4267 list_move_tail(&kvm->vm_list, &vm_list);
4268 break;
4269 }
4270
4271 raw_spin_unlock(&kvm_lock);
4272
4273 out:
4274 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4275 }
4276
4277 static struct shrinker mmu_shrinker = {
4278 .shrink = mmu_shrink,
4279 .seeks = DEFAULT_SEEKS * 10,
4280 };
4281
4282 static void mmu_destroy_caches(void)
4283 {
4284 if (pte_list_desc_cache)
4285 kmem_cache_destroy(pte_list_desc_cache);
4286 if (mmu_page_header_cache)
4287 kmem_cache_destroy(mmu_page_header_cache);
4288 }
4289
4290 int kvm_mmu_module_init(void)
4291 {
4292 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4293 sizeof(struct pte_list_desc),
4294 0, 0, NULL);
4295 if (!pte_list_desc_cache)
4296 goto nomem;
4297
4298 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4299 sizeof(struct kvm_mmu_page),
4300 0, 0, NULL);
4301 if (!mmu_page_header_cache)
4302 goto nomem;
4303
4304 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4305 goto nomem;
4306
4307 register_shrinker(&mmu_shrinker);
4308
4309 return 0;
4310
4311 nomem:
4312 mmu_destroy_caches();
4313 return -ENOMEM;
4314 }
4315
4316 /*
4317 * Caculate mmu pages needed for kvm.
4318 */
4319 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4320 {
4321 unsigned int nr_mmu_pages;
4322 unsigned int nr_pages = 0;
4323 struct kvm_memslots *slots;
4324 struct kvm_memory_slot *memslot;
4325
4326 slots = kvm_memslots(kvm);
4327
4328 kvm_for_each_memslot(memslot, slots)
4329 nr_pages += memslot->npages;
4330
4331 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4332 nr_mmu_pages = max(nr_mmu_pages,
4333 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4334
4335 return nr_mmu_pages;
4336 }
4337
4338 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4339 {
4340 struct kvm_shadow_walk_iterator iterator;
4341 u64 spte;
4342 int nr_sptes = 0;
4343
4344 walk_shadow_page_lockless_begin(vcpu);
4345 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4346 sptes[iterator.level-1] = spte;
4347 nr_sptes++;
4348 if (!is_shadow_present_pte(spte))
4349 break;
4350 }
4351 walk_shadow_page_lockless_end(vcpu);
4352
4353 return nr_sptes;
4354 }
4355 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4356
4357 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4358 {
4359 ASSERT(vcpu);
4360
4361 destroy_kvm_mmu(vcpu);
4362 free_mmu_pages(vcpu);
4363 mmu_free_memory_caches(vcpu);
4364 }
4365
4366 void kvm_mmu_module_exit(void)
4367 {
4368 mmu_destroy_caches();
4369 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4370 unregister_shrinker(&mmu_shrinker);
4371 mmu_audit_disable();
4372 }