]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: remove oos_shadow parameter
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 char *audit_point_name[] = {
63 "pre page fault",
64 "post page fault",
65 "pre pte write",
66 "post pte write",
67 "pre sync",
68 "post sync"
69 };
70
71 #ifdef CONFIG_KVM_MMU_AUDIT
72 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point);
73 #else
74 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
75 #endif
76
77 #undef MMU_DEBUG
78
79 #ifdef MMU_DEBUG
80
81 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
82 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
83
84 #else
85
86 #define pgprintk(x...) do { } while (0)
87 #define rmap_printk(x...) do { } while (0)
88
89 #endif
90
91 #ifdef MMU_DEBUG
92 static int dbg = 0;
93 module_param(dbg, bool, 0644);
94 #endif
95
96 #ifndef MMU_DEBUG
97 #define ASSERT(x) do { } while (0)
98 #else
99 #define ASSERT(x) \
100 if (!(x)) { \
101 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
102 __FILE__, __LINE__, #x); \
103 }
104 #endif
105
106 #define PTE_PREFETCH_NUM 8
107
108 #define PT_FIRST_AVAIL_BITS_SHIFT 9
109 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
110
111 #define PT64_LEVEL_BITS 9
112
113 #define PT64_LEVEL_SHIFT(level) \
114 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
115
116 #define PT64_INDEX(address, level)\
117 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120 #define PT32_LEVEL_BITS 10
121
122 #define PT32_LEVEL_SHIFT(level) \
123 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125 #define PT32_LVL_OFFSET_MASK(level) \
126 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
128
129 #define PT32_INDEX(address, level)\
130 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
131
132
133 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
134 #define PT64_DIR_BASE_ADDR_MASK \
135 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
136 #define PT64_LVL_ADDR_MASK(level) \
137 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
138 * PT64_LEVEL_BITS))) - 1))
139 #define PT64_LVL_OFFSET_MASK(level) \
140 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 * PT64_LEVEL_BITS))) - 1))
142
143 #define PT32_BASE_ADDR_MASK PAGE_MASK
144 #define PT32_DIR_BASE_ADDR_MASK \
145 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
146 #define PT32_LVL_ADDR_MASK(level) \
147 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
148 * PT32_LEVEL_BITS))) - 1))
149
150 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
151 | PT64_NX_MASK)
152
153 #define PTE_LIST_EXT 4
154
155 #define ACC_EXEC_MASK 1
156 #define ACC_WRITE_MASK PT_WRITABLE_MASK
157 #define ACC_USER_MASK PT_USER_MASK
158 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
159
160 #include <trace/events/kvm.h>
161
162 #define CREATE_TRACE_POINTS
163 #include "mmutrace.h"
164
165 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
166
167 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
168
169 struct pte_list_desc {
170 u64 *sptes[PTE_LIST_EXT];
171 struct pte_list_desc *more;
172 };
173
174 struct kvm_shadow_walk_iterator {
175 u64 addr;
176 hpa_t shadow_addr;
177 u64 *sptep;
178 int level;
179 unsigned index;
180 };
181
182 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
183 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
184 shadow_walk_okay(&(_walker)); \
185 shadow_walk_next(&(_walker)))
186
187 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
188 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
189 shadow_walk_okay(&(_walker)) && \
190 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
191 __shadow_walk_next(&(_walker), spte))
192
193 static struct kmem_cache *pte_list_desc_cache;
194 static struct kmem_cache *mmu_page_header_cache;
195 static struct percpu_counter kvm_total_used_mmu_pages;
196
197 static u64 __read_mostly shadow_nx_mask;
198 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
199 static u64 __read_mostly shadow_user_mask;
200 static u64 __read_mostly shadow_accessed_mask;
201 static u64 __read_mostly shadow_dirty_mask;
202 static u64 __read_mostly shadow_mmio_mask;
203
204 static void mmu_spte_set(u64 *sptep, u64 spte);
205
206 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
207 {
208 shadow_mmio_mask = mmio_mask;
209 }
210 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
211
212 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
213 {
214 access &= ACC_WRITE_MASK | ACC_USER_MASK;
215
216 trace_mark_mmio_spte(sptep, gfn, access);
217 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
218 }
219
220 static bool is_mmio_spte(u64 spte)
221 {
222 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
223 }
224
225 static gfn_t get_mmio_spte_gfn(u64 spte)
226 {
227 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
228 }
229
230 static unsigned get_mmio_spte_access(u64 spte)
231 {
232 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
233 }
234
235 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
236 {
237 if (unlikely(is_noslot_pfn(pfn))) {
238 mark_mmio_spte(sptep, gfn, access);
239 return true;
240 }
241
242 return false;
243 }
244
245 static inline u64 rsvd_bits(int s, int e)
246 {
247 return ((1ULL << (e - s + 1)) - 1) << s;
248 }
249
250 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
251 u64 dirty_mask, u64 nx_mask, u64 x_mask)
252 {
253 shadow_user_mask = user_mask;
254 shadow_accessed_mask = accessed_mask;
255 shadow_dirty_mask = dirty_mask;
256 shadow_nx_mask = nx_mask;
257 shadow_x_mask = x_mask;
258 }
259 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
260
261 static int is_cpuid_PSE36(void)
262 {
263 return 1;
264 }
265
266 static int is_nx(struct kvm_vcpu *vcpu)
267 {
268 return vcpu->arch.efer & EFER_NX;
269 }
270
271 static int is_shadow_present_pte(u64 pte)
272 {
273 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
274 }
275
276 static int is_large_pte(u64 pte)
277 {
278 return pte & PT_PAGE_SIZE_MASK;
279 }
280
281 static int is_dirty_gpte(unsigned long pte)
282 {
283 return pte & PT_DIRTY_MASK;
284 }
285
286 static int is_rmap_spte(u64 pte)
287 {
288 return is_shadow_present_pte(pte);
289 }
290
291 static int is_last_spte(u64 pte, int level)
292 {
293 if (level == PT_PAGE_TABLE_LEVEL)
294 return 1;
295 if (is_large_pte(pte))
296 return 1;
297 return 0;
298 }
299
300 static pfn_t spte_to_pfn(u64 pte)
301 {
302 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
303 }
304
305 static gfn_t pse36_gfn_delta(u32 gpte)
306 {
307 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
308
309 return (gpte & PT32_DIR_PSE36_MASK) << shift;
310 }
311
312 #ifdef CONFIG_X86_64
313 static void __set_spte(u64 *sptep, u64 spte)
314 {
315 *sptep = spte;
316 }
317
318 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
319 {
320 *sptep = spte;
321 }
322
323 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
324 {
325 return xchg(sptep, spte);
326 }
327
328 static u64 __get_spte_lockless(u64 *sptep)
329 {
330 return ACCESS_ONCE(*sptep);
331 }
332
333 static bool __check_direct_spte_mmio_pf(u64 spte)
334 {
335 /* It is valid if the spte is zapped. */
336 return spte == 0ull;
337 }
338 #else
339 union split_spte {
340 struct {
341 u32 spte_low;
342 u32 spte_high;
343 };
344 u64 spte;
345 };
346
347 static void count_spte_clear(u64 *sptep, u64 spte)
348 {
349 struct kvm_mmu_page *sp = page_header(__pa(sptep));
350
351 if (is_shadow_present_pte(spte))
352 return;
353
354 /* Ensure the spte is completely set before we increase the count */
355 smp_wmb();
356 sp->clear_spte_count++;
357 }
358
359 static void __set_spte(u64 *sptep, u64 spte)
360 {
361 union split_spte *ssptep, sspte;
362
363 ssptep = (union split_spte *)sptep;
364 sspte = (union split_spte)spte;
365
366 ssptep->spte_high = sspte.spte_high;
367
368 /*
369 * If we map the spte from nonpresent to present, We should store
370 * the high bits firstly, then set present bit, so cpu can not
371 * fetch this spte while we are setting the spte.
372 */
373 smp_wmb();
374
375 ssptep->spte_low = sspte.spte_low;
376 }
377
378 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
379 {
380 union split_spte *ssptep, sspte;
381
382 ssptep = (union split_spte *)sptep;
383 sspte = (union split_spte)spte;
384
385 ssptep->spte_low = sspte.spte_low;
386
387 /*
388 * If we map the spte from present to nonpresent, we should clear
389 * present bit firstly to avoid vcpu fetch the old high bits.
390 */
391 smp_wmb();
392
393 ssptep->spte_high = sspte.spte_high;
394 count_spte_clear(sptep, spte);
395 }
396
397 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
398 {
399 union split_spte *ssptep, sspte, orig;
400
401 ssptep = (union split_spte *)sptep;
402 sspte = (union split_spte)spte;
403
404 /* xchg acts as a barrier before the setting of the high bits */
405 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
406 orig.spte_high = ssptep->spte_high;
407 ssptep->spte_high = sspte.spte_high;
408 count_spte_clear(sptep, spte);
409
410 return orig.spte;
411 }
412
413 /*
414 * The idea using the light way get the spte on x86_32 guest is from
415 * gup_get_pte(arch/x86/mm/gup.c).
416 * The difference is we can not catch the spte tlb flush if we leave
417 * guest mode, so we emulate it by increase clear_spte_count when spte
418 * is cleared.
419 */
420 static u64 __get_spte_lockless(u64 *sptep)
421 {
422 struct kvm_mmu_page *sp = page_header(__pa(sptep));
423 union split_spte spte, *orig = (union split_spte *)sptep;
424 int count;
425
426 retry:
427 count = sp->clear_spte_count;
428 smp_rmb();
429
430 spte.spte_low = orig->spte_low;
431 smp_rmb();
432
433 spte.spte_high = orig->spte_high;
434 smp_rmb();
435
436 if (unlikely(spte.spte_low != orig->spte_low ||
437 count != sp->clear_spte_count))
438 goto retry;
439
440 return spte.spte;
441 }
442
443 static bool __check_direct_spte_mmio_pf(u64 spte)
444 {
445 union split_spte sspte = (union split_spte)spte;
446 u32 high_mmio_mask = shadow_mmio_mask >> 32;
447
448 /* It is valid if the spte is zapped. */
449 if (spte == 0ull)
450 return true;
451
452 /* It is valid if the spte is being zapped. */
453 if (sspte.spte_low == 0ull &&
454 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
455 return true;
456
457 return false;
458 }
459 #endif
460
461 static bool spte_has_volatile_bits(u64 spte)
462 {
463 if (!shadow_accessed_mask)
464 return false;
465
466 if (!is_shadow_present_pte(spte))
467 return false;
468
469 if ((spte & shadow_accessed_mask) &&
470 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
471 return false;
472
473 return true;
474 }
475
476 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
477 {
478 return (old_spte & bit_mask) && !(new_spte & bit_mask);
479 }
480
481 /* Rules for using mmu_spte_set:
482 * Set the sptep from nonpresent to present.
483 * Note: the sptep being assigned *must* be either not present
484 * or in a state where the hardware will not attempt to update
485 * the spte.
486 */
487 static void mmu_spte_set(u64 *sptep, u64 new_spte)
488 {
489 WARN_ON(is_shadow_present_pte(*sptep));
490 __set_spte(sptep, new_spte);
491 }
492
493 /* Rules for using mmu_spte_update:
494 * Update the state bits, it means the mapped pfn is not changged.
495 */
496 static void mmu_spte_update(u64 *sptep, u64 new_spte)
497 {
498 u64 mask, old_spte = *sptep;
499
500 WARN_ON(!is_rmap_spte(new_spte));
501
502 if (!is_shadow_present_pte(old_spte))
503 return mmu_spte_set(sptep, new_spte);
504
505 new_spte |= old_spte & shadow_dirty_mask;
506
507 mask = shadow_accessed_mask;
508 if (is_writable_pte(old_spte))
509 mask |= shadow_dirty_mask;
510
511 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
512 __update_clear_spte_fast(sptep, new_spte);
513 else
514 old_spte = __update_clear_spte_slow(sptep, new_spte);
515
516 if (!shadow_accessed_mask)
517 return;
518
519 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
520 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
521 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
522 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
523 }
524
525 /*
526 * Rules for using mmu_spte_clear_track_bits:
527 * It sets the sptep from present to nonpresent, and track the
528 * state bits, it is used to clear the last level sptep.
529 */
530 static int mmu_spte_clear_track_bits(u64 *sptep)
531 {
532 pfn_t pfn;
533 u64 old_spte = *sptep;
534
535 if (!spte_has_volatile_bits(old_spte))
536 __update_clear_spte_fast(sptep, 0ull);
537 else
538 old_spte = __update_clear_spte_slow(sptep, 0ull);
539
540 if (!is_rmap_spte(old_spte))
541 return 0;
542
543 pfn = spte_to_pfn(old_spte);
544 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
545 kvm_set_pfn_accessed(pfn);
546 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
547 kvm_set_pfn_dirty(pfn);
548 return 1;
549 }
550
551 /*
552 * Rules for using mmu_spte_clear_no_track:
553 * Directly clear spte without caring the state bits of sptep,
554 * it is used to set the upper level spte.
555 */
556 static void mmu_spte_clear_no_track(u64 *sptep)
557 {
558 __update_clear_spte_fast(sptep, 0ull);
559 }
560
561 static u64 mmu_spte_get_lockless(u64 *sptep)
562 {
563 return __get_spte_lockless(sptep);
564 }
565
566 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
567 {
568 rcu_read_lock();
569 atomic_inc(&vcpu->kvm->arch.reader_counter);
570
571 /* Increase the counter before walking shadow page table */
572 smp_mb__after_atomic_inc();
573 }
574
575 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
576 {
577 /* Decrease the counter after walking shadow page table finished */
578 smp_mb__before_atomic_dec();
579 atomic_dec(&vcpu->kvm->arch.reader_counter);
580 rcu_read_unlock();
581 }
582
583 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
584 struct kmem_cache *base_cache, int min)
585 {
586 void *obj;
587
588 if (cache->nobjs >= min)
589 return 0;
590 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
591 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
592 if (!obj)
593 return -ENOMEM;
594 cache->objects[cache->nobjs++] = obj;
595 }
596 return 0;
597 }
598
599 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
600 {
601 return cache->nobjs;
602 }
603
604 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
605 struct kmem_cache *cache)
606 {
607 while (mc->nobjs)
608 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
609 }
610
611 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
612 int min)
613 {
614 void *page;
615
616 if (cache->nobjs >= min)
617 return 0;
618 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
619 page = (void *)__get_free_page(GFP_KERNEL);
620 if (!page)
621 return -ENOMEM;
622 cache->objects[cache->nobjs++] = page;
623 }
624 return 0;
625 }
626
627 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
628 {
629 while (mc->nobjs)
630 free_page((unsigned long)mc->objects[--mc->nobjs]);
631 }
632
633 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
634 {
635 int r;
636
637 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
639 if (r)
640 goto out;
641 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
642 if (r)
643 goto out;
644 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
645 mmu_page_header_cache, 4);
646 out:
647 return r;
648 }
649
650 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
651 {
652 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
653 pte_list_desc_cache);
654 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
655 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
656 mmu_page_header_cache);
657 }
658
659 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
660 size_t size)
661 {
662 void *p;
663
664 BUG_ON(!mc->nobjs);
665 p = mc->objects[--mc->nobjs];
666 return p;
667 }
668
669 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
670 {
671 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
672 sizeof(struct pte_list_desc));
673 }
674
675 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
676 {
677 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
678 }
679
680 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
681 {
682 if (!sp->role.direct)
683 return sp->gfns[index];
684
685 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
686 }
687
688 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
689 {
690 if (sp->role.direct)
691 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
692 else
693 sp->gfns[index] = gfn;
694 }
695
696 /*
697 * Return the pointer to the large page information for a given gfn,
698 * handling slots that are not large page aligned.
699 */
700 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
701 struct kvm_memory_slot *slot,
702 int level)
703 {
704 unsigned long idx;
705
706 idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
707 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
708 return &slot->lpage_info[level - 2][idx];
709 }
710
711 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
712 {
713 struct kvm_memory_slot *slot;
714 struct kvm_lpage_info *linfo;
715 int i;
716
717 slot = gfn_to_memslot(kvm, gfn);
718 for (i = PT_DIRECTORY_LEVEL;
719 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
720 linfo = lpage_info_slot(gfn, slot, i);
721 linfo->write_count += 1;
722 }
723 kvm->arch.indirect_shadow_pages++;
724 }
725
726 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
727 {
728 struct kvm_memory_slot *slot;
729 struct kvm_lpage_info *linfo;
730 int i;
731
732 slot = gfn_to_memslot(kvm, gfn);
733 for (i = PT_DIRECTORY_LEVEL;
734 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
735 linfo = lpage_info_slot(gfn, slot, i);
736 linfo->write_count -= 1;
737 WARN_ON(linfo->write_count < 0);
738 }
739 kvm->arch.indirect_shadow_pages--;
740 }
741
742 static int has_wrprotected_page(struct kvm *kvm,
743 gfn_t gfn,
744 int level)
745 {
746 struct kvm_memory_slot *slot;
747 struct kvm_lpage_info *linfo;
748
749 slot = gfn_to_memslot(kvm, gfn);
750 if (slot) {
751 linfo = lpage_info_slot(gfn, slot, level);
752 return linfo->write_count;
753 }
754
755 return 1;
756 }
757
758 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
759 {
760 unsigned long page_size;
761 int i, ret = 0;
762
763 page_size = kvm_host_page_size(kvm, gfn);
764
765 for (i = PT_PAGE_TABLE_LEVEL;
766 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
767 if (page_size >= KVM_HPAGE_SIZE(i))
768 ret = i;
769 else
770 break;
771 }
772
773 return ret;
774 }
775
776 static struct kvm_memory_slot *
777 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
778 bool no_dirty_log)
779 {
780 struct kvm_memory_slot *slot;
781
782 slot = gfn_to_memslot(vcpu->kvm, gfn);
783 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
784 (no_dirty_log && slot->dirty_bitmap))
785 slot = NULL;
786
787 return slot;
788 }
789
790 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
791 {
792 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
793 }
794
795 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
796 {
797 int host_level, level, max_level;
798
799 host_level = host_mapping_level(vcpu->kvm, large_gfn);
800
801 if (host_level == PT_PAGE_TABLE_LEVEL)
802 return host_level;
803
804 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
805 kvm_x86_ops->get_lpage_level() : host_level;
806
807 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
808 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
809 break;
810
811 return level - 1;
812 }
813
814 /*
815 * Pte mapping structures:
816 *
817 * If pte_list bit zero is zero, then pte_list point to the spte.
818 *
819 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
820 * pte_list_desc containing more mappings.
821 *
822 * Returns the number of pte entries before the spte was added or zero if
823 * the spte was not added.
824 *
825 */
826 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
827 unsigned long *pte_list)
828 {
829 struct pte_list_desc *desc;
830 int i, count = 0;
831
832 if (!*pte_list) {
833 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
834 *pte_list = (unsigned long)spte;
835 } else if (!(*pte_list & 1)) {
836 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
837 desc = mmu_alloc_pte_list_desc(vcpu);
838 desc->sptes[0] = (u64 *)*pte_list;
839 desc->sptes[1] = spte;
840 *pte_list = (unsigned long)desc | 1;
841 ++count;
842 } else {
843 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
844 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
845 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
846 desc = desc->more;
847 count += PTE_LIST_EXT;
848 }
849 if (desc->sptes[PTE_LIST_EXT-1]) {
850 desc->more = mmu_alloc_pte_list_desc(vcpu);
851 desc = desc->more;
852 }
853 for (i = 0; desc->sptes[i]; ++i)
854 ++count;
855 desc->sptes[i] = spte;
856 }
857 return count;
858 }
859
860 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
861 {
862 struct pte_list_desc *desc;
863 u64 *prev_spte;
864 int i;
865
866 if (!*pte_list)
867 return NULL;
868 else if (!(*pte_list & 1)) {
869 if (!spte)
870 return (u64 *)*pte_list;
871 return NULL;
872 }
873 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
874 prev_spte = NULL;
875 while (desc) {
876 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
877 if (prev_spte == spte)
878 return desc->sptes[i];
879 prev_spte = desc->sptes[i];
880 }
881 desc = desc->more;
882 }
883 return NULL;
884 }
885
886 static void
887 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
888 int i, struct pte_list_desc *prev_desc)
889 {
890 int j;
891
892 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
893 ;
894 desc->sptes[i] = desc->sptes[j];
895 desc->sptes[j] = NULL;
896 if (j != 0)
897 return;
898 if (!prev_desc && !desc->more)
899 *pte_list = (unsigned long)desc->sptes[0];
900 else
901 if (prev_desc)
902 prev_desc->more = desc->more;
903 else
904 *pte_list = (unsigned long)desc->more | 1;
905 mmu_free_pte_list_desc(desc);
906 }
907
908 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
909 {
910 struct pte_list_desc *desc;
911 struct pte_list_desc *prev_desc;
912 int i;
913
914 if (!*pte_list) {
915 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
916 BUG();
917 } else if (!(*pte_list & 1)) {
918 rmap_printk("pte_list_remove: %p 1->0\n", spte);
919 if ((u64 *)*pte_list != spte) {
920 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
921 BUG();
922 }
923 *pte_list = 0;
924 } else {
925 rmap_printk("pte_list_remove: %p many->many\n", spte);
926 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
927 prev_desc = NULL;
928 while (desc) {
929 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
930 if (desc->sptes[i] == spte) {
931 pte_list_desc_remove_entry(pte_list,
932 desc, i,
933 prev_desc);
934 return;
935 }
936 prev_desc = desc;
937 desc = desc->more;
938 }
939 pr_err("pte_list_remove: %p many->many\n", spte);
940 BUG();
941 }
942 }
943
944 typedef void (*pte_list_walk_fn) (u64 *spte);
945 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
946 {
947 struct pte_list_desc *desc;
948 int i;
949
950 if (!*pte_list)
951 return;
952
953 if (!(*pte_list & 1))
954 return fn((u64 *)*pte_list);
955
956 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
957 while (desc) {
958 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
959 fn(desc->sptes[i]);
960 desc = desc->more;
961 }
962 }
963
964 static unsigned long *__gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level,
965 struct kvm_memory_slot *slot)
966 {
967 struct kvm_lpage_info *linfo;
968
969 if (likely(level == PT_PAGE_TABLE_LEVEL))
970 return &slot->rmap[gfn - slot->base_gfn];
971
972 linfo = lpage_info_slot(gfn, slot, level);
973 return &linfo->rmap_pde;
974 }
975
976 /*
977 * Take gfn and return the reverse mapping to it.
978 */
979 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
980 {
981 struct kvm_memory_slot *slot;
982
983 slot = gfn_to_memslot(kvm, gfn);
984 return __gfn_to_rmap(kvm, gfn, level, slot);
985 }
986
987 static bool rmap_can_add(struct kvm_vcpu *vcpu)
988 {
989 struct kvm_mmu_memory_cache *cache;
990
991 cache = &vcpu->arch.mmu_pte_list_desc_cache;
992 return mmu_memory_cache_free_objects(cache);
993 }
994
995 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
996 {
997 struct kvm_mmu_page *sp;
998 unsigned long *rmapp;
999
1000 sp = page_header(__pa(spte));
1001 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1002 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1003 return pte_list_add(vcpu, spte, rmapp);
1004 }
1005
1006 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
1007 {
1008 return pte_list_next(rmapp, spte);
1009 }
1010
1011 static void rmap_remove(struct kvm *kvm, u64 *spte)
1012 {
1013 struct kvm_mmu_page *sp;
1014 gfn_t gfn;
1015 unsigned long *rmapp;
1016
1017 sp = page_header(__pa(spte));
1018 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1019 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1020 pte_list_remove(spte, rmapp);
1021 }
1022
1023 static void drop_spte(struct kvm *kvm, u64 *sptep)
1024 {
1025 if (mmu_spte_clear_track_bits(sptep))
1026 rmap_remove(kvm, sptep);
1027 }
1028
1029 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1030 struct kvm_memory_slot *slot)
1031 {
1032 unsigned long *rmapp;
1033 u64 *spte;
1034 int i, write_protected = 0;
1035
1036 rmapp = __gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL, slot);
1037 spte = rmap_next(kvm, rmapp, NULL);
1038 while (spte) {
1039 BUG_ON(!(*spte & PT_PRESENT_MASK));
1040 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1041 if (is_writable_pte(*spte)) {
1042 mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1043 write_protected = 1;
1044 }
1045 spte = rmap_next(kvm, rmapp, spte);
1046 }
1047
1048 /* check for huge page mappings */
1049 for (i = PT_DIRECTORY_LEVEL;
1050 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1051 rmapp = __gfn_to_rmap(kvm, gfn, i, slot);
1052 spte = rmap_next(kvm, rmapp, NULL);
1053 while (spte) {
1054 BUG_ON(!(*spte & PT_PRESENT_MASK));
1055 BUG_ON(!is_large_pte(*spte));
1056 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1057 if (is_writable_pte(*spte)) {
1058 drop_spte(kvm, spte);
1059 --kvm->stat.lpages;
1060 spte = NULL;
1061 write_protected = 1;
1062 }
1063 spte = rmap_next(kvm, rmapp, spte);
1064 }
1065 }
1066
1067 return write_protected;
1068 }
1069
1070 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1071 {
1072 struct kvm_memory_slot *slot;
1073
1074 slot = gfn_to_memslot(kvm, gfn);
1075 return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1076 }
1077
1078 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079 unsigned long data)
1080 {
1081 u64 *spte;
1082 int need_tlb_flush = 0;
1083
1084 while ((spte = rmap_next(kvm, rmapp, NULL))) {
1085 BUG_ON(!(*spte & PT_PRESENT_MASK));
1086 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1087 drop_spte(kvm, spte);
1088 need_tlb_flush = 1;
1089 }
1090 return need_tlb_flush;
1091 }
1092
1093 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1094 unsigned long data)
1095 {
1096 int need_flush = 0;
1097 u64 *spte, new_spte;
1098 pte_t *ptep = (pte_t *)data;
1099 pfn_t new_pfn;
1100
1101 WARN_ON(pte_huge(*ptep));
1102 new_pfn = pte_pfn(*ptep);
1103 spte = rmap_next(kvm, rmapp, NULL);
1104 while (spte) {
1105 BUG_ON(!is_shadow_present_pte(*spte));
1106 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1107 need_flush = 1;
1108 if (pte_write(*ptep)) {
1109 drop_spte(kvm, spte);
1110 spte = rmap_next(kvm, rmapp, NULL);
1111 } else {
1112 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1113 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1114
1115 new_spte &= ~PT_WRITABLE_MASK;
1116 new_spte &= ~SPTE_HOST_WRITEABLE;
1117 new_spte &= ~shadow_accessed_mask;
1118 mmu_spte_clear_track_bits(spte);
1119 mmu_spte_set(spte, new_spte);
1120 spte = rmap_next(kvm, rmapp, spte);
1121 }
1122 }
1123 if (need_flush)
1124 kvm_flush_remote_tlbs(kvm);
1125
1126 return 0;
1127 }
1128
1129 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1130 unsigned long data,
1131 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1132 unsigned long data))
1133 {
1134 int j;
1135 int ret;
1136 int retval = 0;
1137 struct kvm_memslots *slots;
1138 struct kvm_memory_slot *memslot;
1139
1140 slots = kvm_memslots(kvm);
1141
1142 kvm_for_each_memslot(memslot, slots) {
1143 unsigned long start = memslot->userspace_addr;
1144 unsigned long end;
1145
1146 end = start + (memslot->npages << PAGE_SHIFT);
1147 if (hva >= start && hva < end) {
1148 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1149 gfn_t gfn = memslot->base_gfn + gfn_offset;
1150
1151 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1152
1153 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1154 struct kvm_lpage_info *linfo;
1155
1156 linfo = lpage_info_slot(gfn, memslot,
1157 PT_DIRECTORY_LEVEL + j);
1158 ret |= handler(kvm, &linfo->rmap_pde, data);
1159 }
1160 trace_kvm_age_page(hva, memslot, ret);
1161 retval |= ret;
1162 }
1163 }
1164
1165 return retval;
1166 }
1167
1168 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1169 {
1170 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1171 }
1172
1173 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1174 {
1175 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1176 }
1177
1178 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1179 unsigned long data)
1180 {
1181 u64 *spte;
1182 int young = 0;
1183
1184 /*
1185 * Emulate the accessed bit for EPT, by checking if this page has
1186 * an EPT mapping, and clearing it if it does. On the next access,
1187 * a new EPT mapping will be established.
1188 * This has some overhead, but not as much as the cost of swapping
1189 * out actively used pages or breaking up actively used hugepages.
1190 */
1191 if (!shadow_accessed_mask)
1192 return kvm_unmap_rmapp(kvm, rmapp, data);
1193
1194 spte = rmap_next(kvm, rmapp, NULL);
1195 while (spte) {
1196 int _young;
1197 u64 _spte = *spte;
1198 BUG_ON(!(_spte & PT_PRESENT_MASK));
1199 _young = _spte & PT_ACCESSED_MASK;
1200 if (_young) {
1201 young = 1;
1202 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1203 }
1204 spte = rmap_next(kvm, rmapp, spte);
1205 }
1206 return young;
1207 }
1208
1209 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1210 unsigned long data)
1211 {
1212 u64 *spte;
1213 int young = 0;
1214
1215 /*
1216 * If there's no access bit in the secondary pte set by the
1217 * hardware it's up to gup-fast/gup to set the access bit in
1218 * the primary pte or in the page structure.
1219 */
1220 if (!shadow_accessed_mask)
1221 goto out;
1222
1223 spte = rmap_next(kvm, rmapp, NULL);
1224 while (spte) {
1225 u64 _spte = *spte;
1226 BUG_ON(!(_spte & PT_PRESENT_MASK));
1227 young = _spte & PT_ACCESSED_MASK;
1228 if (young) {
1229 young = 1;
1230 break;
1231 }
1232 spte = rmap_next(kvm, rmapp, spte);
1233 }
1234 out:
1235 return young;
1236 }
1237
1238 #define RMAP_RECYCLE_THRESHOLD 1000
1239
1240 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1241 {
1242 unsigned long *rmapp;
1243 struct kvm_mmu_page *sp;
1244
1245 sp = page_header(__pa(spte));
1246
1247 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1248
1249 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1250 kvm_flush_remote_tlbs(vcpu->kvm);
1251 }
1252
1253 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1254 {
1255 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1256 }
1257
1258 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1259 {
1260 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1261 }
1262
1263 #ifdef MMU_DEBUG
1264 static int is_empty_shadow_page(u64 *spt)
1265 {
1266 u64 *pos;
1267 u64 *end;
1268
1269 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1270 if (is_shadow_present_pte(*pos)) {
1271 printk(KERN_ERR "%s: %p %llx\n", __func__,
1272 pos, *pos);
1273 return 0;
1274 }
1275 return 1;
1276 }
1277 #endif
1278
1279 /*
1280 * This value is the sum of all of the kvm instances's
1281 * kvm->arch.n_used_mmu_pages values. We need a global,
1282 * aggregate version in order to make the slab shrinker
1283 * faster
1284 */
1285 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1286 {
1287 kvm->arch.n_used_mmu_pages += nr;
1288 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1289 }
1290
1291 /*
1292 * Remove the sp from shadow page cache, after call it,
1293 * we can not find this sp from the cache, and the shadow
1294 * page table is still valid.
1295 * It should be under the protection of mmu lock.
1296 */
1297 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1298 {
1299 ASSERT(is_empty_shadow_page(sp->spt));
1300 hlist_del(&sp->hash_link);
1301 if (!sp->role.direct)
1302 free_page((unsigned long)sp->gfns);
1303 }
1304
1305 /*
1306 * Free the shadow page table and the sp, we can do it
1307 * out of the protection of mmu lock.
1308 */
1309 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1310 {
1311 list_del(&sp->link);
1312 free_page((unsigned long)sp->spt);
1313 kmem_cache_free(mmu_page_header_cache, sp);
1314 }
1315
1316 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1317 {
1318 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1319 }
1320
1321 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1322 struct kvm_mmu_page *sp, u64 *parent_pte)
1323 {
1324 if (!parent_pte)
1325 return;
1326
1327 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1328 }
1329
1330 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1331 u64 *parent_pte)
1332 {
1333 pte_list_remove(parent_pte, &sp->parent_ptes);
1334 }
1335
1336 static void drop_parent_pte(struct kvm_mmu_page *sp,
1337 u64 *parent_pte)
1338 {
1339 mmu_page_remove_parent_pte(sp, parent_pte);
1340 mmu_spte_clear_no_track(parent_pte);
1341 }
1342
1343 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1344 u64 *parent_pte, int direct)
1345 {
1346 struct kvm_mmu_page *sp;
1347 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1348 sizeof *sp);
1349 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1350 if (!direct)
1351 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1352 PAGE_SIZE);
1353 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1354 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1355 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1356 sp->parent_ptes = 0;
1357 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1358 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1359 return sp;
1360 }
1361
1362 static void mark_unsync(u64 *spte);
1363 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1364 {
1365 pte_list_walk(&sp->parent_ptes, mark_unsync);
1366 }
1367
1368 static void mark_unsync(u64 *spte)
1369 {
1370 struct kvm_mmu_page *sp;
1371 unsigned int index;
1372
1373 sp = page_header(__pa(spte));
1374 index = spte - sp->spt;
1375 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1376 return;
1377 if (sp->unsync_children++)
1378 return;
1379 kvm_mmu_mark_parents_unsync(sp);
1380 }
1381
1382 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1383 struct kvm_mmu_page *sp)
1384 {
1385 return 1;
1386 }
1387
1388 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1389 {
1390 }
1391
1392 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1393 struct kvm_mmu_page *sp, u64 *spte,
1394 const void *pte)
1395 {
1396 WARN_ON(1);
1397 }
1398
1399 #define KVM_PAGE_ARRAY_NR 16
1400
1401 struct kvm_mmu_pages {
1402 struct mmu_page_and_offset {
1403 struct kvm_mmu_page *sp;
1404 unsigned int idx;
1405 } page[KVM_PAGE_ARRAY_NR];
1406 unsigned int nr;
1407 };
1408
1409 #define for_each_unsync_children(bitmap, idx) \
1410 for (idx = find_first_bit(bitmap, 512); \
1411 idx < 512; \
1412 idx = find_next_bit(bitmap, 512, idx+1))
1413
1414 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1415 int idx)
1416 {
1417 int i;
1418
1419 if (sp->unsync)
1420 for (i=0; i < pvec->nr; i++)
1421 if (pvec->page[i].sp == sp)
1422 return 0;
1423
1424 pvec->page[pvec->nr].sp = sp;
1425 pvec->page[pvec->nr].idx = idx;
1426 pvec->nr++;
1427 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1428 }
1429
1430 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1431 struct kvm_mmu_pages *pvec)
1432 {
1433 int i, ret, nr_unsync_leaf = 0;
1434
1435 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1436 struct kvm_mmu_page *child;
1437 u64 ent = sp->spt[i];
1438
1439 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1440 goto clear_child_bitmap;
1441
1442 child = page_header(ent & PT64_BASE_ADDR_MASK);
1443
1444 if (child->unsync_children) {
1445 if (mmu_pages_add(pvec, child, i))
1446 return -ENOSPC;
1447
1448 ret = __mmu_unsync_walk(child, pvec);
1449 if (!ret)
1450 goto clear_child_bitmap;
1451 else if (ret > 0)
1452 nr_unsync_leaf += ret;
1453 else
1454 return ret;
1455 } else if (child->unsync) {
1456 nr_unsync_leaf++;
1457 if (mmu_pages_add(pvec, child, i))
1458 return -ENOSPC;
1459 } else
1460 goto clear_child_bitmap;
1461
1462 continue;
1463
1464 clear_child_bitmap:
1465 __clear_bit(i, sp->unsync_child_bitmap);
1466 sp->unsync_children--;
1467 WARN_ON((int)sp->unsync_children < 0);
1468 }
1469
1470
1471 return nr_unsync_leaf;
1472 }
1473
1474 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1475 struct kvm_mmu_pages *pvec)
1476 {
1477 if (!sp->unsync_children)
1478 return 0;
1479
1480 mmu_pages_add(pvec, sp, 0);
1481 return __mmu_unsync_walk(sp, pvec);
1482 }
1483
1484 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1485 {
1486 WARN_ON(!sp->unsync);
1487 trace_kvm_mmu_sync_page(sp);
1488 sp->unsync = 0;
1489 --kvm->stat.mmu_unsync;
1490 }
1491
1492 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1493 struct list_head *invalid_list);
1494 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1495 struct list_head *invalid_list);
1496
1497 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1498 hlist_for_each_entry(sp, pos, \
1499 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1500 if ((sp)->gfn != (gfn)) {} else
1501
1502 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1503 hlist_for_each_entry(sp, pos, \
1504 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1505 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1506 (sp)->role.invalid) {} else
1507
1508 /* @sp->gfn should be write-protected at the call site */
1509 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1510 struct list_head *invalid_list, bool clear_unsync)
1511 {
1512 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1513 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1514 return 1;
1515 }
1516
1517 if (clear_unsync)
1518 kvm_unlink_unsync_page(vcpu->kvm, sp);
1519
1520 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1521 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1522 return 1;
1523 }
1524
1525 kvm_mmu_flush_tlb(vcpu);
1526 return 0;
1527 }
1528
1529 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1530 struct kvm_mmu_page *sp)
1531 {
1532 LIST_HEAD(invalid_list);
1533 int ret;
1534
1535 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1536 if (ret)
1537 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1538
1539 return ret;
1540 }
1541
1542 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1543 struct list_head *invalid_list)
1544 {
1545 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1546 }
1547
1548 /* @gfn should be write-protected at the call site */
1549 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1550 {
1551 struct kvm_mmu_page *s;
1552 struct hlist_node *node;
1553 LIST_HEAD(invalid_list);
1554 bool flush = false;
1555
1556 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1557 if (!s->unsync)
1558 continue;
1559
1560 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1561 kvm_unlink_unsync_page(vcpu->kvm, s);
1562 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1563 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1564 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1565 continue;
1566 }
1567 flush = true;
1568 }
1569
1570 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1571 if (flush)
1572 kvm_mmu_flush_tlb(vcpu);
1573 }
1574
1575 struct mmu_page_path {
1576 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1577 unsigned int idx[PT64_ROOT_LEVEL-1];
1578 };
1579
1580 #define for_each_sp(pvec, sp, parents, i) \
1581 for (i = mmu_pages_next(&pvec, &parents, -1), \
1582 sp = pvec.page[i].sp; \
1583 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1584 i = mmu_pages_next(&pvec, &parents, i))
1585
1586 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1587 struct mmu_page_path *parents,
1588 int i)
1589 {
1590 int n;
1591
1592 for (n = i+1; n < pvec->nr; n++) {
1593 struct kvm_mmu_page *sp = pvec->page[n].sp;
1594
1595 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1596 parents->idx[0] = pvec->page[n].idx;
1597 return n;
1598 }
1599
1600 parents->parent[sp->role.level-2] = sp;
1601 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1602 }
1603
1604 return n;
1605 }
1606
1607 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1608 {
1609 struct kvm_mmu_page *sp;
1610 unsigned int level = 0;
1611
1612 do {
1613 unsigned int idx = parents->idx[level];
1614
1615 sp = parents->parent[level];
1616 if (!sp)
1617 return;
1618
1619 --sp->unsync_children;
1620 WARN_ON((int)sp->unsync_children < 0);
1621 __clear_bit(idx, sp->unsync_child_bitmap);
1622 level++;
1623 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1624 }
1625
1626 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1627 struct mmu_page_path *parents,
1628 struct kvm_mmu_pages *pvec)
1629 {
1630 parents->parent[parent->role.level-1] = NULL;
1631 pvec->nr = 0;
1632 }
1633
1634 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1635 struct kvm_mmu_page *parent)
1636 {
1637 int i;
1638 struct kvm_mmu_page *sp;
1639 struct mmu_page_path parents;
1640 struct kvm_mmu_pages pages;
1641 LIST_HEAD(invalid_list);
1642
1643 kvm_mmu_pages_init(parent, &parents, &pages);
1644 while (mmu_unsync_walk(parent, &pages)) {
1645 int protected = 0;
1646
1647 for_each_sp(pages, sp, parents, i)
1648 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1649
1650 if (protected)
1651 kvm_flush_remote_tlbs(vcpu->kvm);
1652
1653 for_each_sp(pages, sp, parents, i) {
1654 kvm_sync_page(vcpu, sp, &invalid_list);
1655 mmu_pages_clear_parents(&parents);
1656 }
1657 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1658 cond_resched_lock(&vcpu->kvm->mmu_lock);
1659 kvm_mmu_pages_init(parent, &parents, &pages);
1660 }
1661 }
1662
1663 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1664 {
1665 int i;
1666
1667 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1668 sp->spt[i] = 0ull;
1669 }
1670
1671 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1672 {
1673 sp->write_flooding_count = 0;
1674 }
1675
1676 static void clear_sp_write_flooding_count(u64 *spte)
1677 {
1678 struct kvm_mmu_page *sp = page_header(__pa(spte));
1679
1680 __clear_sp_write_flooding_count(sp);
1681 }
1682
1683 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1684 gfn_t gfn,
1685 gva_t gaddr,
1686 unsigned level,
1687 int direct,
1688 unsigned access,
1689 u64 *parent_pte)
1690 {
1691 union kvm_mmu_page_role role;
1692 unsigned quadrant;
1693 struct kvm_mmu_page *sp;
1694 struct hlist_node *node;
1695 bool need_sync = false;
1696
1697 role = vcpu->arch.mmu.base_role;
1698 role.level = level;
1699 role.direct = direct;
1700 if (role.direct)
1701 role.cr4_pae = 0;
1702 role.access = access;
1703 if (!vcpu->arch.mmu.direct_map
1704 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1705 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1706 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1707 role.quadrant = quadrant;
1708 }
1709 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1710 if (!need_sync && sp->unsync)
1711 need_sync = true;
1712
1713 if (sp->role.word != role.word)
1714 continue;
1715
1716 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1717 break;
1718
1719 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1720 if (sp->unsync_children) {
1721 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1722 kvm_mmu_mark_parents_unsync(sp);
1723 } else if (sp->unsync)
1724 kvm_mmu_mark_parents_unsync(sp);
1725
1726 __clear_sp_write_flooding_count(sp);
1727 trace_kvm_mmu_get_page(sp, false);
1728 return sp;
1729 }
1730 ++vcpu->kvm->stat.mmu_cache_miss;
1731 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1732 if (!sp)
1733 return sp;
1734 sp->gfn = gfn;
1735 sp->role = role;
1736 hlist_add_head(&sp->hash_link,
1737 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1738 if (!direct) {
1739 if (rmap_write_protect(vcpu->kvm, gfn))
1740 kvm_flush_remote_tlbs(vcpu->kvm);
1741 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1742 kvm_sync_pages(vcpu, gfn);
1743
1744 account_shadowed(vcpu->kvm, gfn);
1745 }
1746 init_shadow_page_table(sp);
1747 trace_kvm_mmu_get_page(sp, true);
1748 return sp;
1749 }
1750
1751 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1752 struct kvm_vcpu *vcpu, u64 addr)
1753 {
1754 iterator->addr = addr;
1755 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1756 iterator->level = vcpu->arch.mmu.shadow_root_level;
1757
1758 if (iterator->level == PT64_ROOT_LEVEL &&
1759 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1760 !vcpu->arch.mmu.direct_map)
1761 --iterator->level;
1762
1763 if (iterator->level == PT32E_ROOT_LEVEL) {
1764 iterator->shadow_addr
1765 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1766 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1767 --iterator->level;
1768 if (!iterator->shadow_addr)
1769 iterator->level = 0;
1770 }
1771 }
1772
1773 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1774 {
1775 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1776 return false;
1777
1778 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1779 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1780 return true;
1781 }
1782
1783 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1784 u64 spte)
1785 {
1786 if (is_last_spte(spte, iterator->level)) {
1787 iterator->level = 0;
1788 return;
1789 }
1790
1791 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1792 --iterator->level;
1793 }
1794
1795 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1796 {
1797 return __shadow_walk_next(iterator, *iterator->sptep);
1798 }
1799
1800 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1801 {
1802 u64 spte;
1803
1804 spte = __pa(sp->spt)
1805 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1806 | PT_WRITABLE_MASK | PT_USER_MASK;
1807 mmu_spte_set(sptep, spte);
1808 }
1809
1810 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1811 {
1812 if (is_large_pte(*sptep)) {
1813 drop_spte(vcpu->kvm, sptep);
1814 kvm_flush_remote_tlbs(vcpu->kvm);
1815 }
1816 }
1817
1818 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1819 unsigned direct_access)
1820 {
1821 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1822 struct kvm_mmu_page *child;
1823
1824 /*
1825 * For the direct sp, if the guest pte's dirty bit
1826 * changed form clean to dirty, it will corrupt the
1827 * sp's access: allow writable in the read-only sp,
1828 * so we should update the spte at this point to get
1829 * a new sp with the correct access.
1830 */
1831 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1832 if (child->role.access == direct_access)
1833 return;
1834
1835 drop_parent_pte(child, sptep);
1836 kvm_flush_remote_tlbs(vcpu->kvm);
1837 }
1838 }
1839
1840 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1841 u64 *spte)
1842 {
1843 u64 pte;
1844 struct kvm_mmu_page *child;
1845
1846 pte = *spte;
1847 if (is_shadow_present_pte(pte)) {
1848 if (is_last_spte(pte, sp->role.level)) {
1849 drop_spte(kvm, spte);
1850 if (is_large_pte(pte))
1851 --kvm->stat.lpages;
1852 } else {
1853 child = page_header(pte & PT64_BASE_ADDR_MASK);
1854 drop_parent_pte(child, spte);
1855 }
1856 return true;
1857 }
1858
1859 if (is_mmio_spte(pte))
1860 mmu_spte_clear_no_track(spte);
1861
1862 return false;
1863 }
1864
1865 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1866 struct kvm_mmu_page *sp)
1867 {
1868 unsigned i;
1869
1870 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1871 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1872 }
1873
1874 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1875 {
1876 mmu_page_remove_parent_pte(sp, parent_pte);
1877 }
1878
1879 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1880 {
1881 u64 *parent_pte;
1882
1883 while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1884 drop_parent_pte(sp, parent_pte);
1885 }
1886
1887 static int mmu_zap_unsync_children(struct kvm *kvm,
1888 struct kvm_mmu_page *parent,
1889 struct list_head *invalid_list)
1890 {
1891 int i, zapped = 0;
1892 struct mmu_page_path parents;
1893 struct kvm_mmu_pages pages;
1894
1895 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1896 return 0;
1897
1898 kvm_mmu_pages_init(parent, &parents, &pages);
1899 while (mmu_unsync_walk(parent, &pages)) {
1900 struct kvm_mmu_page *sp;
1901
1902 for_each_sp(pages, sp, parents, i) {
1903 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1904 mmu_pages_clear_parents(&parents);
1905 zapped++;
1906 }
1907 kvm_mmu_pages_init(parent, &parents, &pages);
1908 }
1909
1910 return zapped;
1911 }
1912
1913 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1914 struct list_head *invalid_list)
1915 {
1916 int ret;
1917
1918 trace_kvm_mmu_prepare_zap_page(sp);
1919 ++kvm->stat.mmu_shadow_zapped;
1920 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1921 kvm_mmu_page_unlink_children(kvm, sp);
1922 kvm_mmu_unlink_parents(kvm, sp);
1923 if (!sp->role.invalid && !sp->role.direct)
1924 unaccount_shadowed(kvm, sp->gfn);
1925 if (sp->unsync)
1926 kvm_unlink_unsync_page(kvm, sp);
1927 if (!sp->root_count) {
1928 /* Count self */
1929 ret++;
1930 list_move(&sp->link, invalid_list);
1931 kvm_mod_used_mmu_pages(kvm, -1);
1932 } else {
1933 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1934 kvm_reload_remote_mmus(kvm);
1935 }
1936
1937 sp->role.invalid = 1;
1938 return ret;
1939 }
1940
1941 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1942 {
1943 struct kvm_mmu_page *sp;
1944
1945 list_for_each_entry(sp, invalid_list, link)
1946 kvm_mmu_isolate_page(sp);
1947 }
1948
1949 static void free_pages_rcu(struct rcu_head *head)
1950 {
1951 struct kvm_mmu_page *next, *sp;
1952
1953 sp = container_of(head, struct kvm_mmu_page, rcu);
1954 while (sp) {
1955 if (!list_empty(&sp->link))
1956 next = list_first_entry(&sp->link,
1957 struct kvm_mmu_page, link);
1958 else
1959 next = NULL;
1960 kvm_mmu_free_page(sp);
1961 sp = next;
1962 }
1963 }
1964
1965 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1966 struct list_head *invalid_list)
1967 {
1968 struct kvm_mmu_page *sp;
1969
1970 if (list_empty(invalid_list))
1971 return;
1972
1973 kvm_flush_remote_tlbs(kvm);
1974
1975 if (atomic_read(&kvm->arch.reader_counter)) {
1976 kvm_mmu_isolate_pages(invalid_list);
1977 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1978 list_del_init(invalid_list);
1979
1980 trace_kvm_mmu_delay_free_pages(sp);
1981 call_rcu(&sp->rcu, free_pages_rcu);
1982 return;
1983 }
1984
1985 do {
1986 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1987 WARN_ON(!sp->role.invalid || sp->root_count);
1988 kvm_mmu_isolate_page(sp);
1989 kvm_mmu_free_page(sp);
1990 } while (!list_empty(invalid_list));
1991
1992 }
1993
1994 /*
1995 * Changing the number of mmu pages allocated to the vm
1996 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1997 */
1998 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1999 {
2000 LIST_HEAD(invalid_list);
2001 /*
2002 * If we set the number of mmu pages to be smaller be than the
2003 * number of actived pages , we must to free some mmu pages before we
2004 * change the value
2005 */
2006
2007 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2008 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2009 !list_empty(&kvm->arch.active_mmu_pages)) {
2010 struct kvm_mmu_page *page;
2011
2012 page = container_of(kvm->arch.active_mmu_pages.prev,
2013 struct kvm_mmu_page, link);
2014 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2015 }
2016 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2017 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2018 }
2019
2020 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2021 }
2022
2023 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2024 {
2025 struct kvm_mmu_page *sp;
2026 struct hlist_node *node;
2027 LIST_HEAD(invalid_list);
2028 int r;
2029
2030 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2031 r = 0;
2032 spin_lock(&kvm->mmu_lock);
2033 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2034 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2035 sp->role.word);
2036 r = 1;
2037 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2038 }
2039 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2040 spin_unlock(&kvm->mmu_lock);
2041
2042 return r;
2043 }
2044 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2045
2046 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2047 {
2048 int slot = memslot_id(kvm, gfn);
2049 struct kvm_mmu_page *sp = page_header(__pa(pte));
2050
2051 __set_bit(slot, sp->slot_bitmap);
2052 }
2053
2054 /*
2055 * The function is based on mtrr_type_lookup() in
2056 * arch/x86/kernel/cpu/mtrr/generic.c
2057 */
2058 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2059 u64 start, u64 end)
2060 {
2061 int i;
2062 u64 base, mask;
2063 u8 prev_match, curr_match;
2064 int num_var_ranges = KVM_NR_VAR_MTRR;
2065
2066 if (!mtrr_state->enabled)
2067 return 0xFF;
2068
2069 /* Make end inclusive end, instead of exclusive */
2070 end--;
2071
2072 /* Look in fixed ranges. Just return the type as per start */
2073 if (mtrr_state->have_fixed && (start < 0x100000)) {
2074 int idx;
2075
2076 if (start < 0x80000) {
2077 idx = 0;
2078 idx += (start >> 16);
2079 return mtrr_state->fixed_ranges[idx];
2080 } else if (start < 0xC0000) {
2081 idx = 1 * 8;
2082 idx += ((start - 0x80000) >> 14);
2083 return mtrr_state->fixed_ranges[idx];
2084 } else if (start < 0x1000000) {
2085 idx = 3 * 8;
2086 idx += ((start - 0xC0000) >> 12);
2087 return mtrr_state->fixed_ranges[idx];
2088 }
2089 }
2090
2091 /*
2092 * Look in variable ranges
2093 * Look of multiple ranges matching this address and pick type
2094 * as per MTRR precedence
2095 */
2096 if (!(mtrr_state->enabled & 2))
2097 return mtrr_state->def_type;
2098
2099 prev_match = 0xFF;
2100 for (i = 0; i < num_var_ranges; ++i) {
2101 unsigned short start_state, end_state;
2102
2103 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2104 continue;
2105
2106 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2107 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2108 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2109 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2110
2111 start_state = ((start & mask) == (base & mask));
2112 end_state = ((end & mask) == (base & mask));
2113 if (start_state != end_state)
2114 return 0xFE;
2115
2116 if ((start & mask) != (base & mask))
2117 continue;
2118
2119 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2120 if (prev_match == 0xFF) {
2121 prev_match = curr_match;
2122 continue;
2123 }
2124
2125 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2126 curr_match == MTRR_TYPE_UNCACHABLE)
2127 return MTRR_TYPE_UNCACHABLE;
2128
2129 if ((prev_match == MTRR_TYPE_WRBACK &&
2130 curr_match == MTRR_TYPE_WRTHROUGH) ||
2131 (prev_match == MTRR_TYPE_WRTHROUGH &&
2132 curr_match == MTRR_TYPE_WRBACK)) {
2133 prev_match = MTRR_TYPE_WRTHROUGH;
2134 curr_match = MTRR_TYPE_WRTHROUGH;
2135 }
2136
2137 if (prev_match != curr_match)
2138 return MTRR_TYPE_UNCACHABLE;
2139 }
2140
2141 if (prev_match != 0xFF)
2142 return prev_match;
2143
2144 return mtrr_state->def_type;
2145 }
2146
2147 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2148 {
2149 u8 mtrr;
2150
2151 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2152 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2153 if (mtrr == 0xfe || mtrr == 0xff)
2154 mtrr = MTRR_TYPE_WRBACK;
2155 return mtrr;
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2158
2159 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2160 {
2161 trace_kvm_mmu_unsync_page(sp);
2162 ++vcpu->kvm->stat.mmu_unsync;
2163 sp->unsync = 1;
2164
2165 kvm_mmu_mark_parents_unsync(sp);
2166 }
2167
2168 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2169 {
2170 struct kvm_mmu_page *s;
2171 struct hlist_node *node;
2172
2173 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2174 if (s->unsync)
2175 continue;
2176 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2177 __kvm_unsync_page(vcpu, s);
2178 }
2179 }
2180
2181 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2182 bool can_unsync)
2183 {
2184 struct kvm_mmu_page *s;
2185 struct hlist_node *node;
2186 bool need_unsync = false;
2187
2188 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2189 if (!can_unsync)
2190 return 1;
2191
2192 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2193 return 1;
2194
2195 if (!need_unsync && !s->unsync) {
2196 need_unsync = true;
2197 }
2198 }
2199 if (need_unsync)
2200 kvm_unsync_pages(vcpu, gfn);
2201 return 0;
2202 }
2203
2204 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2205 unsigned pte_access, int user_fault,
2206 int write_fault, int level,
2207 gfn_t gfn, pfn_t pfn, bool speculative,
2208 bool can_unsync, bool host_writable)
2209 {
2210 u64 spte, entry = *sptep;
2211 int ret = 0;
2212
2213 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2214 return 0;
2215
2216 spte = PT_PRESENT_MASK;
2217 if (!speculative)
2218 spte |= shadow_accessed_mask;
2219
2220 if (pte_access & ACC_EXEC_MASK)
2221 spte |= shadow_x_mask;
2222 else
2223 spte |= shadow_nx_mask;
2224 if (pte_access & ACC_USER_MASK)
2225 spte |= shadow_user_mask;
2226 if (level > PT_PAGE_TABLE_LEVEL)
2227 spte |= PT_PAGE_SIZE_MASK;
2228 if (tdp_enabled)
2229 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2230 kvm_is_mmio_pfn(pfn));
2231
2232 if (host_writable)
2233 spte |= SPTE_HOST_WRITEABLE;
2234 else
2235 pte_access &= ~ACC_WRITE_MASK;
2236
2237 spte |= (u64)pfn << PAGE_SHIFT;
2238
2239 if ((pte_access & ACC_WRITE_MASK)
2240 || (!vcpu->arch.mmu.direct_map && write_fault
2241 && !is_write_protection(vcpu) && !user_fault)) {
2242
2243 if (level > PT_PAGE_TABLE_LEVEL &&
2244 has_wrprotected_page(vcpu->kvm, gfn, level)) {
2245 ret = 1;
2246 drop_spte(vcpu->kvm, sptep);
2247 goto done;
2248 }
2249
2250 spte |= PT_WRITABLE_MASK;
2251
2252 if (!vcpu->arch.mmu.direct_map
2253 && !(pte_access & ACC_WRITE_MASK)) {
2254 spte &= ~PT_USER_MASK;
2255 /*
2256 * If we converted a user page to a kernel page,
2257 * so that the kernel can write to it when cr0.wp=0,
2258 * then we should prevent the kernel from executing it
2259 * if SMEP is enabled.
2260 */
2261 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2262 spte |= PT64_NX_MASK;
2263 }
2264
2265 /*
2266 * Optimization: for pte sync, if spte was writable the hash
2267 * lookup is unnecessary (and expensive). Write protection
2268 * is responsibility of mmu_get_page / kvm_sync_page.
2269 * Same reasoning can be applied to dirty page accounting.
2270 */
2271 if (!can_unsync && is_writable_pte(*sptep))
2272 goto set_pte;
2273
2274 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2275 pgprintk("%s: found shadow page for %llx, marking ro\n",
2276 __func__, gfn);
2277 ret = 1;
2278 pte_access &= ~ACC_WRITE_MASK;
2279 if (is_writable_pte(spte))
2280 spte &= ~PT_WRITABLE_MASK;
2281 }
2282 }
2283
2284 if (pte_access & ACC_WRITE_MASK)
2285 mark_page_dirty(vcpu->kvm, gfn);
2286
2287 set_pte:
2288 mmu_spte_update(sptep, spte);
2289 /*
2290 * If we overwrite a writable spte with a read-only one we
2291 * should flush remote TLBs. Otherwise rmap_write_protect
2292 * will find a read-only spte, even though the writable spte
2293 * might be cached on a CPU's TLB.
2294 */
2295 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2296 kvm_flush_remote_tlbs(vcpu->kvm);
2297 done:
2298 return ret;
2299 }
2300
2301 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2302 unsigned pt_access, unsigned pte_access,
2303 int user_fault, int write_fault,
2304 int *emulate, int level, gfn_t gfn,
2305 pfn_t pfn, bool speculative,
2306 bool host_writable)
2307 {
2308 int was_rmapped = 0;
2309 int rmap_count;
2310
2311 pgprintk("%s: spte %llx access %x write_fault %d"
2312 " user_fault %d gfn %llx\n",
2313 __func__, *sptep, pt_access,
2314 write_fault, user_fault, gfn);
2315
2316 if (is_rmap_spte(*sptep)) {
2317 /*
2318 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2319 * the parent of the now unreachable PTE.
2320 */
2321 if (level > PT_PAGE_TABLE_LEVEL &&
2322 !is_large_pte(*sptep)) {
2323 struct kvm_mmu_page *child;
2324 u64 pte = *sptep;
2325
2326 child = page_header(pte & PT64_BASE_ADDR_MASK);
2327 drop_parent_pte(child, sptep);
2328 kvm_flush_remote_tlbs(vcpu->kvm);
2329 } else if (pfn != spte_to_pfn(*sptep)) {
2330 pgprintk("hfn old %llx new %llx\n",
2331 spte_to_pfn(*sptep), pfn);
2332 drop_spte(vcpu->kvm, sptep);
2333 kvm_flush_remote_tlbs(vcpu->kvm);
2334 } else
2335 was_rmapped = 1;
2336 }
2337
2338 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2339 level, gfn, pfn, speculative, true,
2340 host_writable)) {
2341 if (write_fault)
2342 *emulate = 1;
2343 kvm_mmu_flush_tlb(vcpu);
2344 }
2345
2346 if (unlikely(is_mmio_spte(*sptep) && emulate))
2347 *emulate = 1;
2348
2349 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2350 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2351 is_large_pte(*sptep)? "2MB" : "4kB",
2352 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2353 *sptep, sptep);
2354 if (!was_rmapped && is_large_pte(*sptep))
2355 ++vcpu->kvm->stat.lpages;
2356
2357 if (is_shadow_present_pte(*sptep)) {
2358 page_header_update_slot(vcpu->kvm, sptep, gfn);
2359 if (!was_rmapped) {
2360 rmap_count = rmap_add(vcpu, sptep, gfn);
2361 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2362 rmap_recycle(vcpu, sptep, gfn);
2363 }
2364 }
2365 kvm_release_pfn_clean(pfn);
2366 }
2367
2368 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2369 {
2370 }
2371
2372 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2373 bool no_dirty_log)
2374 {
2375 struct kvm_memory_slot *slot;
2376 unsigned long hva;
2377
2378 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2379 if (!slot) {
2380 get_page(fault_page);
2381 return page_to_pfn(fault_page);
2382 }
2383
2384 hva = gfn_to_hva_memslot(slot, gfn);
2385
2386 return hva_to_pfn_atomic(vcpu->kvm, hva);
2387 }
2388
2389 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2390 struct kvm_mmu_page *sp,
2391 u64 *start, u64 *end)
2392 {
2393 struct page *pages[PTE_PREFETCH_NUM];
2394 unsigned access = sp->role.access;
2395 int i, ret;
2396 gfn_t gfn;
2397
2398 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2399 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2400 return -1;
2401
2402 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2403 if (ret <= 0)
2404 return -1;
2405
2406 for (i = 0; i < ret; i++, gfn++, start++)
2407 mmu_set_spte(vcpu, start, ACC_ALL,
2408 access, 0, 0, NULL,
2409 sp->role.level, gfn,
2410 page_to_pfn(pages[i]), true, true);
2411
2412 return 0;
2413 }
2414
2415 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2416 struct kvm_mmu_page *sp, u64 *sptep)
2417 {
2418 u64 *spte, *start = NULL;
2419 int i;
2420
2421 WARN_ON(!sp->role.direct);
2422
2423 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2424 spte = sp->spt + i;
2425
2426 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2427 if (is_shadow_present_pte(*spte) || spte == sptep) {
2428 if (!start)
2429 continue;
2430 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2431 break;
2432 start = NULL;
2433 } else if (!start)
2434 start = spte;
2435 }
2436 }
2437
2438 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2439 {
2440 struct kvm_mmu_page *sp;
2441
2442 /*
2443 * Since it's no accessed bit on EPT, it's no way to
2444 * distinguish between actually accessed translations
2445 * and prefetched, so disable pte prefetch if EPT is
2446 * enabled.
2447 */
2448 if (!shadow_accessed_mask)
2449 return;
2450
2451 sp = page_header(__pa(sptep));
2452 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2453 return;
2454
2455 __direct_pte_prefetch(vcpu, sp, sptep);
2456 }
2457
2458 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2459 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2460 bool prefault)
2461 {
2462 struct kvm_shadow_walk_iterator iterator;
2463 struct kvm_mmu_page *sp;
2464 int emulate = 0;
2465 gfn_t pseudo_gfn;
2466
2467 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2468 if (iterator.level == level) {
2469 unsigned pte_access = ACC_ALL;
2470
2471 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2472 0, write, &emulate,
2473 level, gfn, pfn, prefault, map_writable);
2474 direct_pte_prefetch(vcpu, iterator.sptep);
2475 ++vcpu->stat.pf_fixed;
2476 break;
2477 }
2478
2479 if (!is_shadow_present_pte(*iterator.sptep)) {
2480 u64 base_addr = iterator.addr;
2481
2482 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2483 pseudo_gfn = base_addr >> PAGE_SHIFT;
2484 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2485 iterator.level - 1,
2486 1, ACC_ALL, iterator.sptep);
2487 if (!sp) {
2488 pgprintk("nonpaging_map: ENOMEM\n");
2489 kvm_release_pfn_clean(pfn);
2490 return -ENOMEM;
2491 }
2492
2493 mmu_spte_set(iterator.sptep,
2494 __pa(sp->spt)
2495 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2496 | shadow_user_mask | shadow_x_mask
2497 | shadow_accessed_mask);
2498 }
2499 }
2500 return emulate;
2501 }
2502
2503 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2504 {
2505 siginfo_t info;
2506
2507 info.si_signo = SIGBUS;
2508 info.si_errno = 0;
2509 info.si_code = BUS_MCEERR_AR;
2510 info.si_addr = (void __user *)address;
2511 info.si_addr_lsb = PAGE_SHIFT;
2512
2513 send_sig_info(SIGBUS, &info, tsk);
2514 }
2515
2516 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2517 {
2518 kvm_release_pfn_clean(pfn);
2519 if (is_hwpoison_pfn(pfn)) {
2520 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2521 return 0;
2522 }
2523
2524 return -EFAULT;
2525 }
2526
2527 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2528 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2529 {
2530 pfn_t pfn = *pfnp;
2531 gfn_t gfn = *gfnp;
2532 int level = *levelp;
2533
2534 /*
2535 * Check if it's a transparent hugepage. If this would be an
2536 * hugetlbfs page, level wouldn't be set to
2537 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2538 * here.
2539 */
2540 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2541 level == PT_PAGE_TABLE_LEVEL &&
2542 PageTransCompound(pfn_to_page(pfn)) &&
2543 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2544 unsigned long mask;
2545 /*
2546 * mmu_notifier_retry was successful and we hold the
2547 * mmu_lock here, so the pmd can't become splitting
2548 * from under us, and in turn
2549 * __split_huge_page_refcount() can't run from under
2550 * us and we can safely transfer the refcount from
2551 * PG_tail to PG_head as we switch the pfn to tail to
2552 * head.
2553 */
2554 *levelp = level = PT_DIRECTORY_LEVEL;
2555 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2556 VM_BUG_ON((gfn & mask) != (pfn & mask));
2557 if (pfn & mask) {
2558 gfn &= ~mask;
2559 *gfnp = gfn;
2560 kvm_release_pfn_clean(pfn);
2561 pfn &= ~mask;
2562 if (!get_page_unless_zero(pfn_to_page(pfn)))
2563 BUG();
2564 *pfnp = pfn;
2565 }
2566 }
2567 }
2568
2569 static bool mmu_invalid_pfn(pfn_t pfn)
2570 {
2571 return unlikely(is_invalid_pfn(pfn));
2572 }
2573
2574 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2575 pfn_t pfn, unsigned access, int *ret_val)
2576 {
2577 bool ret = true;
2578
2579 /* The pfn is invalid, report the error! */
2580 if (unlikely(is_invalid_pfn(pfn))) {
2581 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2582 goto exit;
2583 }
2584
2585 if (unlikely(is_noslot_pfn(pfn)))
2586 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2587
2588 ret = false;
2589 exit:
2590 return ret;
2591 }
2592
2593 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2594 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2595
2596 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2597 bool prefault)
2598 {
2599 int r;
2600 int level;
2601 int force_pt_level;
2602 pfn_t pfn;
2603 unsigned long mmu_seq;
2604 bool map_writable;
2605
2606 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2607 if (likely(!force_pt_level)) {
2608 level = mapping_level(vcpu, gfn);
2609 /*
2610 * This path builds a PAE pagetable - so we can map
2611 * 2mb pages at maximum. Therefore check if the level
2612 * is larger than that.
2613 */
2614 if (level > PT_DIRECTORY_LEVEL)
2615 level = PT_DIRECTORY_LEVEL;
2616
2617 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2618 } else
2619 level = PT_PAGE_TABLE_LEVEL;
2620
2621 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2622 smp_rmb();
2623
2624 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2625 return 0;
2626
2627 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2628 return r;
2629
2630 spin_lock(&vcpu->kvm->mmu_lock);
2631 if (mmu_notifier_retry(vcpu, mmu_seq))
2632 goto out_unlock;
2633 kvm_mmu_free_some_pages(vcpu);
2634 if (likely(!force_pt_level))
2635 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2636 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2637 prefault);
2638 spin_unlock(&vcpu->kvm->mmu_lock);
2639
2640
2641 return r;
2642
2643 out_unlock:
2644 spin_unlock(&vcpu->kvm->mmu_lock);
2645 kvm_release_pfn_clean(pfn);
2646 return 0;
2647 }
2648
2649
2650 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2651 {
2652 int i;
2653 struct kvm_mmu_page *sp;
2654 LIST_HEAD(invalid_list);
2655
2656 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2657 return;
2658 spin_lock(&vcpu->kvm->mmu_lock);
2659 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2660 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2661 vcpu->arch.mmu.direct_map)) {
2662 hpa_t root = vcpu->arch.mmu.root_hpa;
2663
2664 sp = page_header(root);
2665 --sp->root_count;
2666 if (!sp->root_count && sp->role.invalid) {
2667 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2668 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2669 }
2670 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2671 spin_unlock(&vcpu->kvm->mmu_lock);
2672 return;
2673 }
2674 for (i = 0; i < 4; ++i) {
2675 hpa_t root = vcpu->arch.mmu.pae_root[i];
2676
2677 if (root) {
2678 root &= PT64_BASE_ADDR_MASK;
2679 sp = page_header(root);
2680 --sp->root_count;
2681 if (!sp->root_count && sp->role.invalid)
2682 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2683 &invalid_list);
2684 }
2685 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2686 }
2687 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2688 spin_unlock(&vcpu->kvm->mmu_lock);
2689 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2690 }
2691
2692 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2693 {
2694 int ret = 0;
2695
2696 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2697 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2698 ret = 1;
2699 }
2700
2701 return ret;
2702 }
2703
2704 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2705 {
2706 struct kvm_mmu_page *sp;
2707 unsigned i;
2708
2709 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2710 spin_lock(&vcpu->kvm->mmu_lock);
2711 kvm_mmu_free_some_pages(vcpu);
2712 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2713 1, ACC_ALL, NULL);
2714 ++sp->root_count;
2715 spin_unlock(&vcpu->kvm->mmu_lock);
2716 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2717 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2718 for (i = 0; i < 4; ++i) {
2719 hpa_t root = vcpu->arch.mmu.pae_root[i];
2720
2721 ASSERT(!VALID_PAGE(root));
2722 spin_lock(&vcpu->kvm->mmu_lock);
2723 kvm_mmu_free_some_pages(vcpu);
2724 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2725 i << 30,
2726 PT32_ROOT_LEVEL, 1, ACC_ALL,
2727 NULL);
2728 root = __pa(sp->spt);
2729 ++sp->root_count;
2730 spin_unlock(&vcpu->kvm->mmu_lock);
2731 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2732 }
2733 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2734 } else
2735 BUG();
2736
2737 return 0;
2738 }
2739
2740 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2741 {
2742 struct kvm_mmu_page *sp;
2743 u64 pdptr, pm_mask;
2744 gfn_t root_gfn;
2745 int i;
2746
2747 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2748
2749 if (mmu_check_root(vcpu, root_gfn))
2750 return 1;
2751
2752 /*
2753 * Do we shadow a long mode page table? If so we need to
2754 * write-protect the guests page table root.
2755 */
2756 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2757 hpa_t root = vcpu->arch.mmu.root_hpa;
2758
2759 ASSERT(!VALID_PAGE(root));
2760
2761 spin_lock(&vcpu->kvm->mmu_lock);
2762 kvm_mmu_free_some_pages(vcpu);
2763 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2764 0, ACC_ALL, NULL);
2765 root = __pa(sp->spt);
2766 ++sp->root_count;
2767 spin_unlock(&vcpu->kvm->mmu_lock);
2768 vcpu->arch.mmu.root_hpa = root;
2769 return 0;
2770 }
2771
2772 /*
2773 * We shadow a 32 bit page table. This may be a legacy 2-level
2774 * or a PAE 3-level page table. In either case we need to be aware that
2775 * the shadow page table may be a PAE or a long mode page table.
2776 */
2777 pm_mask = PT_PRESENT_MASK;
2778 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2779 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2780
2781 for (i = 0; i < 4; ++i) {
2782 hpa_t root = vcpu->arch.mmu.pae_root[i];
2783
2784 ASSERT(!VALID_PAGE(root));
2785 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2786 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2787 if (!is_present_gpte(pdptr)) {
2788 vcpu->arch.mmu.pae_root[i] = 0;
2789 continue;
2790 }
2791 root_gfn = pdptr >> PAGE_SHIFT;
2792 if (mmu_check_root(vcpu, root_gfn))
2793 return 1;
2794 }
2795 spin_lock(&vcpu->kvm->mmu_lock);
2796 kvm_mmu_free_some_pages(vcpu);
2797 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2798 PT32_ROOT_LEVEL, 0,
2799 ACC_ALL, NULL);
2800 root = __pa(sp->spt);
2801 ++sp->root_count;
2802 spin_unlock(&vcpu->kvm->mmu_lock);
2803
2804 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2805 }
2806 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2807
2808 /*
2809 * If we shadow a 32 bit page table with a long mode page
2810 * table we enter this path.
2811 */
2812 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2813 if (vcpu->arch.mmu.lm_root == NULL) {
2814 /*
2815 * The additional page necessary for this is only
2816 * allocated on demand.
2817 */
2818
2819 u64 *lm_root;
2820
2821 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2822 if (lm_root == NULL)
2823 return 1;
2824
2825 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2826
2827 vcpu->arch.mmu.lm_root = lm_root;
2828 }
2829
2830 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2831 }
2832
2833 return 0;
2834 }
2835
2836 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2837 {
2838 if (vcpu->arch.mmu.direct_map)
2839 return mmu_alloc_direct_roots(vcpu);
2840 else
2841 return mmu_alloc_shadow_roots(vcpu);
2842 }
2843
2844 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2845 {
2846 int i;
2847 struct kvm_mmu_page *sp;
2848
2849 if (vcpu->arch.mmu.direct_map)
2850 return;
2851
2852 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2853 return;
2854
2855 vcpu_clear_mmio_info(vcpu, ~0ul);
2856 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2857 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2858 hpa_t root = vcpu->arch.mmu.root_hpa;
2859 sp = page_header(root);
2860 mmu_sync_children(vcpu, sp);
2861 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2862 return;
2863 }
2864 for (i = 0; i < 4; ++i) {
2865 hpa_t root = vcpu->arch.mmu.pae_root[i];
2866
2867 if (root && VALID_PAGE(root)) {
2868 root &= PT64_BASE_ADDR_MASK;
2869 sp = page_header(root);
2870 mmu_sync_children(vcpu, sp);
2871 }
2872 }
2873 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2874 }
2875
2876 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2877 {
2878 spin_lock(&vcpu->kvm->mmu_lock);
2879 mmu_sync_roots(vcpu);
2880 spin_unlock(&vcpu->kvm->mmu_lock);
2881 }
2882
2883 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2884 u32 access, struct x86_exception *exception)
2885 {
2886 if (exception)
2887 exception->error_code = 0;
2888 return vaddr;
2889 }
2890
2891 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2892 u32 access,
2893 struct x86_exception *exception)
2894 {
2895 if (exception)
2896 exception->error_code = 0;
2897 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2898 }
2899
2900 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2901 {
2902 if (direct)
2903 return vcpu_match_mmio_gpa(vcpu, addr);
2904
2905 return vcpu_match_mmio_gva(vcpu, addr);
2906 }
2907
2908
2909 /*
2910 * On direct hosts, the last spte is only allows two states
2911 * for mmio page fault:
2912 * - It is the mmio spte
2913 * - It is zapped or it is being zapped.
2914 *
2915 * This function completely checks the spte when the last spte
2916 * is not the mmio spte.
2917 */
2918 static bool check_direct_spte_mmio_pf(u64 spte)
2919 {
2920 return __check_direct_spte_mmio_pf(spte);
2921 }
2922
2923 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2924 {
2925 struct kvm_shadow_walk_iterator iterator;
2926 u64 spte = 0ull;
2927
2928 walk_shadow_page_lockless_begin(vcpu);
2929 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2930 if (!is_shadow_present_pte(spte))
2931 break;
2932 walk_shadow_page_lockless_end(vcpu);
2933
2934 return spte;
2935 }
2936
2937 /*
2938 * If it is a real mmio page fault, return 1 and emulat the instruction
2939 * directly, return 0 to let CPU fault again on the address, -1 is
2940 * returned if bug is detected.
2941 */
2942 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2943 {
2944 u64 spte;
2945
2946 if (quickly_check_mmio_pf(vcpu, addr, direct))
2947 return 1;
2948
2949 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2950
2951 if (is_mmio_spte(spte)) {
2952 gfn_t gfn = get_mmio_spte_gfn(spte);
2953 unsigned access = get_mmio_spte_access(spte);
2954
2955 if (direct)
2956 addr = 0;
2957
2958 trace_handle_mmio_page_fault(addr, gfn, access);
2959 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2960 return 1;
2961 }
2962
2963 /*
2964 * It's ok if the gva is remapped by other cpus on shadow guest,
2965 * it's a BUG if the gfn is not a mmio page.
2966 */
2967 if (direct && !check_direct_spte_mmio_pf(spte))
2968 return -1;
2969
2970 /*
2971 * If the page table is zapped by other cpus, let CPU fault again on
2972 * the address.
2973 */
2974 return 0;
2975 }
2976 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2977
2978 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2979 u32 error_code, bool direct)
2980 {
2981 int ret;
2982
2983 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2984 WARN_ON(ret < 0);
2985 return ret;
2986 }
2987
2988 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2989 u32 error_code, bool prefault)
2990 {
2991 gfn_t gfn;
2992 int r;
2993
2994 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2995
2996 if (unlikely(error_code & PFERR_RSVD_MASK))
2997 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2998
2999 r = mmu_topup_memory_caches(vcpu);
3000 if (r)
3001 return r;
3002
3003 ASSERT(vcpu);
3004 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3005
3006 gfn = gva >> PAGE_SHIFT;
3007
3008 return nonpaging_map(vcpu, gva & PAGE_MASK,
3009 error_code & PFERR_WRITE_MASK, gfn, prefault);
3010 }
3011
3012 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3013 {
3014 struct kvm_arch_async_pf arch;
3015
3016 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3017 arch.gfn = gfn;
3018 arch.direct_map = vcpu->arch.mmu.direct_map;
3019 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3020
3021 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3022 }
3023
3024 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3025 {
3026 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3027 kvm_event_needs_reinjection(vcpu)))
3028 return false;
3029
3030 return kvm_x86_ops->interrupt_allowed(vcpu);
3031 }
3032
3033 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3034 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3035 {
3036 bool async;
3037
3038 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3039
3040 if (!async)
3041 return false; /* *pfn has correct page already */
3042
3043 put_page(pfn_to_page(*pfn));
3044
3045 if (!prefault && can_do_async_pf(vcpu)) {
3046 trace_kvm_try_async_get_page(gva, gfn);
3047 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3048 trace_kvm_async_pf_doublefault(gva, gfn);
3049 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3050 return true;
3051 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3052 return true;
3053 }
3054
3055 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3056
3057 return false;
3058 }
3059
3060 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3061 bool prefault)
3062 {
3063 pfn_t pfn;
3064 int r;
3065 int level;
3066 int force_pt_level;
3067 gfn_t gfn = gpa >> PAGE_SHIFT;
3068 unsigned long mmu_seq;
3069 int write = error_code & PFERR_WRITE_MASK;
3070 bool map_writable;
3071
3072 ASSERT(vcpu);
3073 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3074
3075 if (unlikely(error_code & PFERR_RSVD_MASK))
3076 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3077
3078 r = mmu_topup_memory_caches(vcpu);
3079 if (r)
3080 return r;
3081
3082 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3083 if (likely(!force_pt_level)) {
3084 level = mapping_level(vcpu, gfn);
3085 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3086 } else
3087 level = PT_PAGE_TABLE_LEVEL;
3088
3089 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3090 smp_rmb();
3091
3092 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3093 return 0;
3094
3095 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3096 return r;
3097
3098 spin_lock(&vcpu->kvm->mmu_lock);
3099 if (mmu_notifier_retry(vcpu, mmu_seq))
3100 goto out_unlock;
3101 kvm_mmu_free_some_pages(vcpu);
3102 if (likely(!force_pt_level))
3103 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3104 r = __direct_map(vcpu, gpa, write, map_writable,
3105 level, gfn, pfn, prefault);
3106 spin_unlock(&vcpu->kvm->mmu_lock);
3107
3108 return r;
3109
3110 out_unlock:
3111 spin_unlock(&vcpu->kvm->mmu_lock);
3112 kvm_release_pfn_clean(pfn);
3113 return 0;
3114 }
3115
3116 static void nonpaging_free(struct kvm_vcpu *vcpu)
3117 {
3118 mmu_free_roots(vcpu);
3119 }
3120
3121 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3122 struct kvm_mmu *context)
3123 {
3124 context->new_cr3 = nonpaging_new_cr3;
3125 context->page_fault = nonpaging_page_fault;
3126 context->gva_to_gpa = nonpaging_gva_to_gpa;
3127 context->free = nonpaging_free;
3128 context->sync_page = nonpaging_sync_page;
3129 context->invlpg = nonpaging_invlpg;
3130 context->update_pte = nonpaging_update_pte;
3131 context->root_level = 0;
3132 context->shadow_root_level = PT32E_ROOT_LEVEL;
3133 context->root_hpa = INVALID_PAGE;
3134 context->direct_map = true;
3135 context->nx = false;
3136 return 0;
3137 }
3138
3139 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3140 {
3141 ++vcpu->stat.tlb_flush;
3142 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3143 }
3144
3145 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3146 {
3147 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3148 mmu_free_roots(vcpu);
3149 }
3150
3151 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3152 {
3153 return kvm_read_cr3(vcpu);
3154 }
3155
3156 static void inject_page_fault(struct kvm_vcpu *vcpu,
3157 struct x86_exception *fault)
3158 {
3159 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3160 }
3161
3162 static void paging_free(struct kvm_vcpu *vcpu)
3163 {
3164 nonpaging_free(vcpu);
3165 }
3166
3167 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3168 {
3169 int bit7;
3170
3171 bit7 = (gpte >> 7) & 1;
3172 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3173 }
3174
3175 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3176 int *nr_present)
3177 {
3178 if (unlikely(is_mmio_spte(*sptep))) {
3179 if (gfn != get_mmio_spte_gfn(*sptep)) {
3180 mmu_spte_clear_no_track(sptep);
3181 return true;
3182 }
3183
3184 (*nr_present)++;
3185 mark_mmio_spte(sptep, gfn, access);
3186 return true;
3187 }
3188
3189 return false;
3190 }
3191
3192 #define PTTYPE 64
3193 #include "paging_tmpl.h"
3194 #undef PTTYPE
3195
3196 #define PTTYPE 32
3197 #include "paging_tmpl.h"
3198 #undef PTTYPE
3199
3200 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3201 struct kvm_mmu *context,
3202 int level)
3203 {
3204 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3205 u64 exb_bit_rsvd = 0;
3206
3207 if (!context->nx)
3208 exb_bit_rsvd = rsvd_bits(63, 63);
3209 switch (level) {
3210 case PT32_ROOT_LEVEL:
3211 /* no rsvd bits for 2 level 4K page table entries */
3212 context->rsvd_bits_mask[0][1] = 0;
3213 context->rsvd_bits_mask[0][0] = 0;
3214 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3215
3216 if (!is_pse(vcpu)) {
3217 context->rsvd_bits_mask[1][1] = 0;
3218 break;
3219 }
3220
3221 if (is_cpuid_PSE36())
3222 /* 36bits PSE 4MB page */
3223 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3224 else
3225 /* 32 bits PSE 4MB page */
3226 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3227 break;
3228 case PT32E_ROOT_LEVEL:
3229 context->rsvd_bits_mask[0][2] =
3230 rsvd_bits(maxphyaddr, 63) |
3231 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3232 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3233 rsvd_bits(maxphyaddr, 62); /* PDE */
3234 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3235 rsvd_bits(maxphyaddr, 62); /* PTE */
3236 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3237 rsvd_bits(maxphyaddr, 62) |
3238 rsvd_bits(13, 20); /* large page */
3239 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3240 break;
3241 case PT64_ROOT_LEVEL:
3242 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3243 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3244 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3245 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3246 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3247 rsvd_bits(maxphyaddr, 51);
3248 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3249 rsvd_bits(maxphyaddr, 51);
3250 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3251 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3252 rsvd_bits(maxphyaddr, 51) |
3253 rsvd_bits(13, 29);
3254 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3255 rsvd_bits(maxphyaddr, 51) |
3256 rsvd_bits(13, 20); /* large page */
3257 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3258 break;
3259 }
3260 }
3261
3262 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3263 struct kvm_mmu *context,
3264 int level)
3265 {
3266 context->nx = is_nx(vcpu);
3267
3268 reset_rsvds_bits_mask(vcpu, context, level);
3269
3270 ASSERT(is_pae(vcpu));
3271 context->new_cr3 = paging_new_cr3;
3272 context->page_fault = paging64_page_fault;
3273 context->gva_to_gpa = paging64_gva_to_gpa;
3274 context->sync_page = paging64_sync_page;
3275 context->invlpg = paging64_invlpg;
3276 context->update_pte = paging64_update_pte;
3277 context->free = paging_free;
3278 context->root_level = level;
3279 context->shadow_root_level = level;
3280 context->root_hpa = INVALID_PAGE;
3281 context->direct_map = false;
3282 return 0;
3283 }
3284
3285 static int paging64_init_context(struct kvm_vcpu *vcpu,
3286 struct kvm_mmu *context)
3287 {
3288 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3289 }
3290
3291 static int paging32_init_context(struct kvm_vcpu *vcpu,
3292 struct kvm_mmu *context)
3293 {
3294 context->nx = false;
3295
3296 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3297
3298 context->new_cr3 = paging_new_cr3;
3299 context->page_fault = paging32_page_fault;
3300 context->gva_to_gpa = paging32_gva_to_gpa;
3301 context->free = paging_free;
3302 context->sync_page = paging32_sync_page;
3303 context->invlpg = paging32_invlpg;
3304 context->update_pte = paging32_update_pte;
3305 context->root_level = PT32_ROOT_LEVEL;
3306 context->shadow_root_level = PT32E_ROOT_LEVEL;
3307 context->root_hpa = INVALID_PAGE;
3308 context->direct_map = false;
3309 return 0;
3310 }
3311
3312 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3313 struct kvm_mmu *context)
3314 {
3315 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3316 }
3317
3318 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3319 {
3320 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3321
3322 context->base_role.word = 0;
3323 context->new_cr3 = nonpaging_new_cr3;
3324 context->page_fault = tdp_page_fault;
3325 context->free = nonpaging_free;
3326 context->sync_page = nonpaging_sync_page;
3327 context->invlpg = nonpaging_invlpg;
3328 context->update_pte = nonpaging_update_pte;
3329 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3330 context->root_hpa = INVALID_PAGE;
3331 context->direct_map = true;
3332 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3333 context->get_cr3 = get_cr3;
3334 context->get_pdptr = kvm_pdptr_read;
3335 context->inject_page_fault = kvm_inject_page_fault;
3336 context->nx = is_nx(vcpu);
3337
3338 if (!is_paging(vcpu)) {
3339 context->nx = false;
3340 context->gva_to_gpa = nonpaging_gva_to_gpa;
3341 context->root_level = 0;
3342 } else if (is_long_mode(vcpu)) {
3343 context->nx = is_nx(vcpu);
3344 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3345 context->gva_to_gpa = paging64_gva_to_gpa;
3346 context->root_level = PT64_ROOT_LEVEL;
3347 } else if (is_pae(vcpu)) {
3348 context->nx = is_nx(vcpu);
3349 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3350 context->gva_to_gpa = paging64_gva_to_gpa;
3351 context->root_level = PT32E_ROOT_LEVEL;
3352 } else {
3353 context->nx = false;
3354 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3355 context->gva_to_gpa = paging32_gva_to_gpa;
3356 context->root_level = PT32_ROOT_LEVEL;
3357 }
3358
3359 return 0;
3360 }
3361
3362 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3363 {
3364 int r;
3365 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3366 ASSERT(vcpu);
3367 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3368
3369 if (!is_paging(vcpu))
3370 r = nonpaging_init_context(vcpu, context);
3371 else if (is_long_mode(vcpu))
3372 r = paging64_init_context(vcpu, context);
3373 else if (is_pae(vcpu))
3374 r = paging32E_init_context(vcpu, context);
3375 else
3376 r = paging32_init_context(vcpu, context);
3377
3378 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3379 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3380 vcpu->arch.mmu.base_role.smep_andnot_wp
3381 = smep && !is_write_protection(vcpu);
3382
3383 return r;
3384 }
3385 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3386
3387 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3388 {
3389 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3390
3391 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3392 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3393 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3394 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3395
3396 return r;
3397 }
3398
3399 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3400 {
3401 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3402
3403 g_context->get_cr3 = get_cr3;
3404 g_context->get_pdptr = kvm_pdptr_read;
3405 g_context->inject_page_fault = kvm_inject_page_fault;
3406
3407 /*
3408 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3409 * translation of l2_gpa to l1_gpa addresses is done using the
3410 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3411 * functions between mmu and nested_mmu are swapped.
3412 */
3413 if (!is_paging(vcpu)) {
3414 g_context->nx = false;
3415 g_context->root_level = 0;
3416 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3417 } else if (is_long_mode(vcpu)) {
3418 g_context->nx = is_nx(vcpu);
3419 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3420 g_context->root_level = PT64_ROOT_LEVEL;
3421 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3422 } else if (is_pae(vcpu)) {
3423 g_context->nx = is_nx(vcpu);
3424 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3425 g_context->root_level = PT32E_ROOT_LEVEL;
3426 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3427 } else {
3428 g_context->nx = false;
3429 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3430 g_context->root_level = PT32_ROOT_LEVEL;
3431 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3432 }
3433
3434 return 0;
3435 }
3436
3437 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3438 {
3439 if (mmu_is_nested(vcpu))
3440 return init_kvm_nested_mmu(vcpu);
3441 else if (tdp_enabled)
3442 return init_kvm_tdp_mmu(vcpu);
3443 else
3444 return init_kvm_softmmu(vcpu);
3445 }
3446
3447 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3448 {
3449 ASSERT(vcpu);
3450 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3451 /* mmu.free() should set root_hpa = INVALID_PAGE */
3452 vcpu->arch.mmu.free(vcpu);
3453 }
3454
3455 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3456 {
3457 destroy_kvm_mmu(vcpu);
3458 return init_kvm_mmu(vcpu);
3459 }
3460 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3461
3462 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3463 {
3464 int r;
3465
3466 r = mmu_topup_memory_caches(vcpu);
3467 if (r)
3468 goto out;
3469 r = mmu_alloc_roots(vcpu);
3470 spin_lock(&vcpu->kvm->mmu_lock);
3471 mmu_sync_roots(vcpu);
3472 spin_unlock(&vcpu->kvm->mmu_lock);
3473 if (r)
3474 goto out;
3475 /* set_cr3() should ensure TLB has been flushed */
3476 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3477 out:
3478 return r;
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3481
3482 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3483 {
3484 mmu_free_roots(vcpu);
3485 }
3486 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3487
3488 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3489 struct kvm_mmu_page *sp, u64 *spte,
3490 const void *new)
3491 {
3492 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3493 ++vcpu->kvm->stat.mmu_pde_zapped;
3494 return;
3495 }
3496
3497 ++vcpu->kvm->stat.mmu_pte_updated;
3498 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3499 }
3500
3501 static bool need_remote_flush(u64 old, u64 new)
3502 {
3503 if (!is_shadow_present_pte(old))
3504 return false;
3505 if (!is_shadow_present_pte(new))
3506 return true;
3507 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3508 return true;
3509 old ^= PT64_NX_MASK;
3510 new ^= PT64_NX_MASK;
3511 return (old & ~new & PT64_PERM_MASK) != 0;
3512 }
3513
3514 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3515 bool remote_flush, bool local_flush)
3516 {
3517 if (zap_page)
3518 return;
3519
3520 if (remote_flush)
3521 kvm_flush_remote_tlbs(vcpu->kvm);
3522 else if (local_flush)
3523 kvm_mmu_flush_tlb(vcpu);
3524 }
3525
3526 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3527 const u8 *new, int *bytes)
3528 {
3529 u64 gentry;
3530 int r;
3531
3532 /*
3533 * Assume that the pte write on a page table of the same type
3534 * as the current vcpu paging mode since we update the sptes only
3535 * when they have the same mode.
3536 */
3537 if (is_pae(vcpu) && *bytes == 4) {
3538 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3539 *gpa &= ~(gpa_t)7;
3540 *bytes = 8;
3541 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3542 if (r)
3543 gentry = 0;
3544 new = (const u8 *)&gentry;
3545 }
3546
3547 switch (*bytes) {
3548 case 4:
3549 gentry = *(const u32 *)new;
3550 break;
3551 case 8:
3552 gentry = *(const u64 *)new;
3553 break;
3554 default:
3555 gentry = 0;
3556 break;
3557 }
3558
3559 return gentry;
3560 }
3561
3562 /*
3563 * If we're seeing too many writes to a page, it may no longer be a page table,
3564 * or we may be forking, in which case it is better to unmap the page.
3565 */
3566 static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
3567 {
3568 /*
3569 * Skip write-flooding detected for the sp whose level is 1, because
3570 * it can become unsync, then the guest page is not write-protected.
3571 */
3572 if (sp->role.level == 1)
3573 return false;
3574
3575 return ++sp->write_flooding_count >= 3;
3576 }
3577
3578 /*
3579 * Misaligned accesses are too much trouble to fix up; also, they usually
3580 * indicate a page is not used as a page table.
3581 */
3582 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3583 int bytes)
3584 {
3585 unsigned offset, pte_size, misaligned;
3586
3587 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3588 gpa, bytes, sp->role.word);
3589
3590 offset = offset_in_page(gpa);
3591 pte_size = sp->role.cr4_pae ? 8 : 4;
3592
3593 /*
3594 * Sometimes, the OS only writes the last one bytes to update status
3595 * bits, for example, in linux, andb instruction is used in clear_bit().
3596 */
3597 if (!(offset & (pte_size - 1)) && bytes == 1)
3598 return false;
3599
3600 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3601 misaligned |= bytes < 4;
3602
3603 return misaligned;
3604 }
3605
3606 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3607 {
3608 unsigned page_offset, quadrant;
3609 u64 *spte;
3610 int level;
3611
3612 page_offset = offset_in_page(gpa);
3613 level = sp->role.level;
3614 *nspte = 1;
3615 if (!sp->role.cr4_pae) {
3616 page_offset <<= 1; /* 32->64 */
3617 /*
3618 * A 32-bit pde maps 4MB while the shadow pdes map
3619 * only 2MB. So we need to double the offset again
3620 * and zap two pdes instead of one.
3621 */
3622 if (level == PT32_ROOT_LEVEL) {
3623 page_offset &= ~7; /* kill rounding error */
3624 page_offset <<= 1;
3625 *nspte = 2;
3626 }
3627 quadrant = page_offset >> PAGE_SHIFT;
3628 page_offset &= ~PAGE_MASK;
3629 if (quadrant != sp->role.quadrant)
3630 return NULL;
3631 }
3632
3633 spte = &sp->spt[page_offset / sizeof(*spte)];
3634 return spte;
3635 }
3636
3637 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3638 const u8 *new, int bytes)
3639 {
3640 gfn_t gfn = gpa >> PAGE_SHIFT;
3641 union kvm_mmu_page_role mask = { .word = 0 };
3642 struct kvm_mmu_page *sp;
3643 struct hlist_node *node;
3644 LIST_HEAD(invalid_list);
3645 u64 entry, gentry, *spte;
3646 int npte;
3647 bool remote_flush, local_flush, zap_page;
3648
3649 /*
3650 * If we don't have indirect shadow pages, it means no page is
3651 * write-protected, so we can exit simply.
3652 */
3653 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3654 return;
3655
3656 zap_page = remote_flush = local_flush = false;
3657
3658 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3659
3660 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3661
3662 /*
3663 * No need to care whether allocation memory is successful
3664 * or not since pte prefetch is skiped if it does not have
3665 * enough objects in the cache.
3666 */
3667 mmu_topup_memory_caches(vcpu);
3668
3669 spin_lock(&vcpu->kvm->mmu_lock);
3670 ++vcpu->kvm->stat.mmu_pte_write;
3671 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3672
3673 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3674 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3675 spte = get_written_sptes(sp, gpa, &npte);
3676
3677 if (detect_write_misaligned(sp, gpa, bytes) ||
3678 detect_write_flooding(sp, spte)) {
3679 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3680 &invalid_list);
3681 ++vcpu->kvm->stat.mmu_flooded;
3682 continue;
3683 }
3684
3685 spte = get_written_sptes(sp, gpa, &npte);
3686 if (!spte)
3687 continue;
3688
3689 local_flush = true;
3690 while (npte--) {
3691 entry = *spte;
3692 mmu_page_zap_pte(vcpu->kvm, sp, spte);
3693 if (gentry &&
3694 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3695 & mask.word) && rmap_can_add(vcpu))
3696 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3697 if (!remote_flush && need_remote_flush(entry, *spte))
3698 remote_flush = true;
3699 ++spte;
3700 }
3701 }
3702 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3703 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3704 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3705 spin_unlock(&vcpu->kvm->mmu_lock);
3706 }
3707
3708 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3709 {
3710 gpa_t gpa;
3711 int r;
3712
3713 if (vcpu->arch.mmu.direct_map)
3714 return 0;
3715
3716 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3717
3718 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3719
3720 return r;
3721 }
3722 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3723
3724 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3725 {
3726 LIST_HEAD(invalid_list);
3727
3728 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3729 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3730 struct kvm_mmu_page *sp;
3731
3732 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3733 struct kvm_mmu_page, link);
3734 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3735 ++vcpu->kvm->stat.mmu_recycled;
3736 }
3737 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3738 }
3739
3740 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3741 {
3742 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3743 return vcpu_match_mmio_gpa(vcpu, addr);
3744
3745 return vcpu_match_mmio_gva(vcpu, addr);
3746 }
3747
3748 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3749 void *insn, int insn_len)
3750 {
3751 int r, emulation_type = EMULTYPE_RETRY;
3752 enum emulation_result er;
3753
3754 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3755 if (r < 0)
3756 goto out;
3757
3758 if (!r) {
3759 r = 1;
3760 goto out;
3761 }
3762
3763 if (is_mmio_page_fault(vcpu, cr2))
3764 emulation_type = 0;
3765
3766 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3767
3768 switch (er) {
3769 case EMULATE_DONE:
3770 return 1;
3771 case EMULATE_DO_MMIO:
3772 ++vcpu->stat.mmio_exits;
3773 /* fall through */
3774 case EMULATE_FAIL:
3775 return 0;
3776 default:
3777 BUG();
3778 }
3779 out:
3780 return r;
3781 }
3782 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3783
3784 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3785 {
3786 vcpu->arch.mmu.invlpg(vcpu, gva);
3787 kvm_mmu_flush_tlb(vcpu);
3788 ++vcpu->stat.invlpg;
3789 }
3790 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3791
3792 void kvm_enable_tdp(void)
3793 {
3794 tdp_enabled = true;
3795 }
3796 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3797
3798 void kvm_disable_tdp(void)
3799 {
3800 tdp_enabled = false;
3801 }
3802 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3803
3804 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3805 {
3806 free_page((unsigned long)vcpu->arch.mmu.pae_root);
3807 if (vcpu->arch.mmu.lm_root != NULL)
3808 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3809 }
3810
3811 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3812 {
3813 struct page *page;
3814 int i;
3815
3816 ASSERT(vcpu);
3817
3818 /*
3819 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3820 * Therefore we need to allocate shadow page tables in the first
3821 * 4GB of memory, which happens to fit the DMA32 zone.
3822 */
3823 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3824 if (!page)
3825 return -ENOMEM;
3826
3827 vcpu->arch.mmu.pae_root = page_address(page);
3828 for (i = 0; i < 4; ++i)
3829 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3830
3831 return 0;
3832 }
3833
3834 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3835 {
3836 ASSERT(vcpu);
3837
3838 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3839 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3840 vcpu->arch.mmu.translate_gpa = translate_gpa;
3841 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3842
3843 return alloc_mmu_pages(vcpu);
3844 }
3845
3846 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3847 {
3848 ASSERT(vcpu);
3849 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3850
3851 return init_kvm_mmu(vcpu);
3852 }
3853
3854 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3855 {
3856 struct kvm_mmu_page *sp;
3857
3858 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3859 int i;
3860 u64 *pt;
3861
3862 if (!test_bit(slot, sp->slot_bitmap))
3863 continue;
3864
3865 pt = sp->spt;
3866 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3867 if (!is_shadow_present_pte(pt[i]) ||
3868 !is_last_spte(pt[i], sp->role.level))
3869 continue;
3870
3871 if (is_large_pte(pt[i])) {
3872 drop_spte(kvm, &pt[i]);
3873 --kvm->stat.lpages;
3874 continue;
3875 }
3876
3877 /* avoid RMW */
3878 if (is_writable_pte(pt[i]))
3879 mmu_spte_update(&pt[i],
3880 pt[i] & ~PT_WRITABLE_MASK);
3881 }
3882 }
3883 kvm_flush_remote_tlbs(kvm);
3884 }
3885
3886 void kvm_mmu_zap_all(struct kvm *kvm)
3887 {
3888 struct kvm_mmu_page *sp, *node;
3889 LIST_HEAD(invalid_list);
3890
3891 spin_lock(&kvm->mmu_lock);
3892 restart:
3893 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3894 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3895 goto restart;
3896
3897 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3898 spin_unlock(&kvm->mmu_lock);
3899 }
3900
3901 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3902 struct list_head *invalid_list)
3903 {
3904 struct kvm_mmu_page *page;
3905
3906 page = container_of(kvm->arch.active_mmu_pages.prev,
3907 struct kvm_mmu_page, link);
3908 return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3909 }
3910
3911 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3912 {
3913 struct kvm *kvm;
3914 struct kvm *kvm_freed = NULL;
3915 int nr_to_scan = sc->nr_to_scan;
3916
3917 if (nr_to_scan == 0)
3918 goto out;
3919
3920 raw_spin_lock(&kvm_lock);
3921
3922 list_for_each_entry(kvm, &vm_list, vm_list) {
3923 int idx, freed_pages;
3924 LIST_HEAD(invalid_list);
3925
3926 idx = srcu_read_lock(&kvm->srcu);
3927 spin_lock(&kvm->mmu_lock);
3928 if (!kvm_freed && nr_to_scan > 0 &&
3929 kvm->arch.n_used_mmu_pages > 0) {
3930 freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3931 &invalid_list);
3932 kvm_freed = kvm;
3933 }
3934 nr_to_scan--;
3935
3936 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3937 spin_unlock(&kvm->mmu_lock);
3938 srcu_read_unlock(&kvm->srcu, idx);
3939 }
3940 if (kvm_freed)
3941 list_move_tail(&kvm_freed->vm_list, &vm_list);
3942
3943 raw_spin_unlock(&kvm_lock);
3944
3945 out:
3946 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3947 }
3948
3949 static struct shrinker mmu_shrinker = {
3950 .shrink = mmu_shrink,
3951 .seeks = DEFAULT_SEEKS * 10,
3952 };
3953
3954 static void mmu_destroy_caches(void)
3955 {
3956 if (pte_list_desc_cache)
3957 kmem_cache_destroy(pte_list_desc_cache);
3958 if (mmu_page_header_cache)
3959 kmem_cache_destroy(mmu_page_header_cache);
3960 }
3961
3962 int kvm_mmu_module_init(void)
3963 {
3964 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3965 sizeof(struct pte_list_desc),
3966 0, 0, NULL);
3967 if (!pte_list_desc_cache)
3968 goto nomem;
3969
3970 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3971 sizeof(struct kvm_mmu_page),
3972 0, 0, NULL);
3973 if (!mmu_page_header_cache)
3974 goto nomem;
3975
3976 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3977 goto nomem;
3978
3979 register_shrinker(&mmu_shrinker);
3980
3981 return 0;
3982
3983 nomem:
3984 mmu_destroy_caches();
3985 return -ENOMEM;
3986 }
3987
3988 /*
3989 * Caculate mmu pages needed for kvm.
3990 */
3991 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3992 {
3993 unsigned int nr_mmu_pages;
3994 unsigned int nr_pages = 0;
3995 struct kvm_memslots *slots;
3996 struct kvm_memory_slot *memslot;
3997
3998 slots = kvm_memslots(kvm);
3999
4000 kvm_for_each_memslot(memslot, slots)
4001 nr_pages += memslot->npages;
4002
4003 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4004 nr_mmu_pages = max(nr_mmu_pages,
4005 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4006
4007 return nr_mmu_pages;
4008 }
4009
4010 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4011 {
4012 struct kvm_shadow_walk_iterator iterator;
4013 u64 spte;
4014 int nr_sptes = 0;
4015
4016 walk_shadow_page_lockless_begin(vcpu);
4017 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4018 sptes[iterator.level-1] = spte;
4019 nr_sptes++;
4020 if (!is_shadow_present_pte(spte))
4021 break;
4022 }
4023 walk_shadow_page_lockless_end(vcpu);
4024
4025 return nr_sptes;
4026 }
4027 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4028
4029 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4030 {
4031 ASSERT(vcpu);
4032
4033 destroy_kvm_mmu(vcpu);
4034 free_mmu_pages(vcpu);
4035 mmu_free_memory_caches(vcpu);
4036 }
4037
4038 #ifdef CONFIG_KVM_MMU_AUDIT
4039 #include "mmu_audit.c"
4040 #else
4041 static void mmu_audit_disable(void) { }
4042 #endif
4043
4044 void kvm_mmu_module_exit(void)
4045 {
4046 mmu_destroy_caches();
4047 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4048 unregister_shrinker(&mmu_shrinker);
4049 mmu_audit_disable();
4050 }