]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/mmu.c
Merge branch 'pm-pci'
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/moduleparam.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/hugetlb.h>
36 #include <linux/compiler.h>
37 #include <linux/srcu.h>
38 #include <linux/slab.h>
39 #include <linux/sched/signal.h>
40 #include <linux/uaccess.h>
41 #include <linux/hash.h>
42 #include <linux/kern_levels.h>
43
44 #include <asm/page.h>
45 #include <asm/cmpxchg.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49
50 /*
51 * When setting this variable to true it enables Two-Dimensional-Paging
52 * where the hardware walks 2 page tables:
53 * 1. the guest-virtual to guest-physical
54 * 2. while doing 1. it walks guest-physical to host-physical
55 * If the hardware supports that we don't need to do shadow paging.
56 */
57 bool tdp_enabled = false;
58
59 enum {
60 AUDIT_PRE_PAGE_FAULT,
61 AUDIT_POST_PAGE_FAULT,
62 AUDIT_PRE_PTE_WRITE,
63 AUDIT_POST_PTE_WRITE,
64 AUDIT_PRE_SYNC,
65 AUDIT_POST_SYNC
66 };
67
68 #undef MMU_DEBUG
69
70 #ifdef MMU_DEBUG
71 static bool dbg = 0;
72 module_param(dbg, bool, 0644);
73
74 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
75 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
76 #define MMU_WARN_ON(x) WARN_ON(x)
77 #else
78 #define pgprintk(x...) do { } while (0)
79 #define rmap_printk(x...) do { } while (0)
80 #define MMU_WARN_ON(x) do { } while (0)
81 #endif
82
83 #define PTE_PREFETCH_NUM 8
84
85 #define PT_FIRST_AVAIL_BITS_SHIFT 10
86 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
87
88 #define PT64_LEVEL_BITS 9
89
90 #define PT64_LEVEL_SHIFT(level) \
91 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
92
93 #define PT64_INDEX(address, level)\
94 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
95
96
97 #define PT32_LEVEL_BITS 10
98
99 #define PT32_LEVEL_SHIFT(level) \
100 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
101
102 #define PT32_LVL_OFFSET_MASK(level) \
103 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
104 * PT32_LEVEL_BITS))) - 1))
105
106 #define PT32_INDEX(address, level)\
107 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
108
109
110 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
111 #define PT64_DIR_BASE_ADDR_MASK \
112 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
113 #define PT64_LVL_ADDR_MASK(level) \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 * PT64_LEVEL_BITS))) - 1))
116 #define PT64_LVL_OFFSET_MASK(level) \
117 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
118 * PT64_LEVEL_BITS))) - 1))
119
120 #define PT32_BASE_ADDR_MASK PAGE_MASK
121 #define PT32_DIR_BASE_ADDR_MASK \
122 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123 #define PT32_LVL_ADDR_MASK(level) \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
125 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
128 | shadow_x_mask | shadow_nx_mask)
129
130 #define ACC_EXEC_MASK 1
131 #define ACC_WRITE_MASK PT_WRITABLE_MASK
132 #define ACC_USER_MASK PT_USER_MASK
133 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
134
135 /* The mask for the R/X bits in EPT PTEs */
136 #define PT64_EPT_READABLE_MASK 0x1ull
137 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
138
139 #include <trace/events/kvm.h>
140
141 #define CREATE_TRACE_POINTS
142 #include "mmutrace.h"
143
144 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
145 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
146
147 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
148
149 /* make pte_list_desc fit well in cache line */
150 #define PTE_LIST_EXT 3
151
152 struct pte_list_desc {
153 u64 *sptes[PTE_LIST_EXT];
154 struct pte_list_desc *more;
155 };
156
157 struct kvm_shadow_walk_iterator {
158 u64 addr;
159 hpa_t shadow_addr;
160 u64 *sptep;
161 int level;
162 unsigned index;
163 };
164
165 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)); \
168 shadow_walk_next(&(_walker)))
169
170 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)) && \
173 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
174 __shadow_walk_next(&(_walker), spte))
175
176 static struct kmem_cache *pte_list_desc_cache;
177 static struct kmem_cache *mmu_page_header_cache;
178 static struct percpu_counter kvm_total_used_mmu_pages;
179
180 static u64 __read_mostly shadow_nx_mask;
181 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
182 static u64 __read_mostly shadow_user_mask;
183 static u64 __read_mostly shadow_accessed_mask;
184 static u64 __read_mostly shadow_dirty_mask;
185 static u64 __read_mostly shadow_mmio_mask;
186 static u64 __read_mostly shadow_mmio_value;
187 static u64 __read_mostly shadow_present_mask;
188
189 /*
190 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
191 * Non-present SPTEs with shadow_acc_track_value set are in place for access
192 * tracking.
193 */
194 static u64 __read_mostly shadow_acc_track_mask;
195 static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
196
197 /*
198 * The mask/shift to use for saving the original R/X bits when marking the PTE
199 * as not-present for access tracking purposes. We do not save the W bit as the
200 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
201 * restored only when a write is attempted to the page.
202 */
203 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
204 PT64_EPT_EXECUTABLE_MASK;
205 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
206
207 static void mmu_spte_set(u64 *sptep, u64 spte);
208 static void mmu_free_roots(struct kvm_vcpu *vcpu);
209
210 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
211 {
212 BUG_ON((mmio_mask & mmio_value) != mmio_value);
213 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
214 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
215 }
216 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
217
218 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
219 {
220 return sp->role.ad_disabled;
221 }
222
223 static inline bool spte_ad_enabled(u64 spte)
224 {
225 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
226 return !(spte & shadow_acc_track_value);
227 }
228
229 static inline u64 spte_shadow_accessed_mask(u64 spte)
230 {
231 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
232 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
233 }
234
235 static inline u64 spte_shadow_dirty_mask(u64 spte)
236 {
237 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
238 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
239 }
240
241 static inline bool is_access_track_spte(u64 spte)
242 {
243 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
244 }
245
246 /*
247 * the low bit of the generation number is always presumed to be zero.
248 * This disables mmio caching during memslot updates. The concept is
249 * similar to a seqcount but instead of retrying the access we just punt
250 * and ignore the cache.
251 *
252 * spte bits 3-11 are used as bits 1-9 of the generation number,
253 * the bits 52-61 are used as bits 10-19 of the generation number.
254 */
255 #define MMIO_SPTE_GEN_LOW_SHIFT 2
256 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
257
258 #define MMIO_GEN_SHIFT 20
259 #define MMIO_GEN_LOW_SHIFT 10
260 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
261 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
262
263 static u64 generation_mmio_spte_mask(unsigned int gen)
264 {
265 u64 mask;
266
267 WARN_ON(gen & ~MMIO_GEN_MASK);
268
269 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
270 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
271 return mask;
272 }
273
274 static unsigned int get_mmio_spte_generation(u64 spte)
275 {
276 unsigned int gen;
277
278 spte &= ~shadow_mmio_mask;
279
280 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
281 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
282 return gen;
283 }
284
285 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
286 {
287 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
288 }
289
290 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
291 unsigned access)
292 {
293 unsigned int gen = kvm_current_mmio_generation(vcpu);
294 u64 mask = generation_mmio_spte_mask(gen);
295
296 access &= ACC_WRITE_MASK | ACC_USER_MASK;
297 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
298
299 trace_mark_mmio_spte(sptep, gfn, access, gen);
300 mmu_spte_set(sptep, mask);
301 }
302
303 static bool is_mmio_spte(u64 spte)
304 {
305 return (spte & shadow_mmio_mask) == shadow_mmio_value;
306 }
307
308 static gfn_t get_mmio_spte_gfn(u64 spte)
309 {
310 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
311 return (spte & ~mask) >> PAGE_SHIFT;
312 }
313
314 static unsigned get_mmio_spte_access(u64 spte)
315 {
316 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
317 return (spte & ~mask) & ~PAGE_MASK;
318 }
319
320 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
321 kvm_pfn_t pfn, unsigned access)
322 {
323 if (unlikely(is_noslot_pfn(pfn))) {
324 mark_mmio_spte(vcpu, sptep, gfn, access);
325 return true;
326 }
327
328 return false;
329 }
330
331 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
332 {
333 unsigned int kvm_gen, spte_gen;
334
335 kvm_gen = kvm_current_mmio_generation(vcpu);
336 spte_gen = get_mmio_spte_generation(spte);
337
338 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
339 return likely(kvm_gen == spte_gen);
340 }
341
342 /*
343 * Sets the shadow PTE masks used by the MMU.
344 *
345 * Assumptions:
346 * - Setting either @accessed_mask or @dirty_mask requires setting both
347 * - At least one of @accessed_mask or @acc_track_mask must be set
348 */
349 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
350 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
351 u64 acc_track_mask)
352 {
353 BUG_ON(!dirty_mask != !accessed_mask);
354 BUG_ON(!accessed_mask && !acc_track_mask);
355 BUG_ON(acc_track_mask & shadow_acc_track_value);
356
357 shadow_user_mask = user_mask;
358 shadow_accessed_mask = accessed_mask;
359 shadow_dirty_mask = dirty_mask;
360 shadow_nx_mask = nx_mask;
361 shadow_x_mask = x_mask;
362 shadow_present_mask = p_mask;
363 shadow_acc_track_mask = acc_track_mask;
364 }
365 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
366
367 void kvm_mmu_clear_all_pte_masks(void)
368 {
369 shadow_user_mask = 0;
370 shadow_accessed_mask = 0;
371 shadow_dirty_mask = 0;
372 shadow_nx_mask = 0;
373 shadow_x_mask = 0;
374 shadow_mmio_mask = 0;
375 shadow_present_mask = 0;
376 shadow_acc_track_mask = 0;
377 }
378
379 static int is_cpuid_PSE36(void)
380 {
381 return 1;
382 }
383
384 static int is_nx(struct kvm_vcpu *vcpu)
385 {
386 return vcpu->arch.efer & EFER_NX;
387 }
388
389 static int is_shadow_present_pte(u64 pte)
390 {
391 return (pte != 0) && !is_mmio_spte(pte);
392 }
393
394 static int is_large_pte(u64 pte)
395 {
396 return pte & PT_PAGE_SIZE_MASK;
397 }
398
399 static int is_last_spte(u64 pte, int level)
400 {
401 if (level == PT_PAGE_TABLE_LEVEL)
402 return 1;
403 if (is_large_pte(pte))
404 return 1;
405 return 0;
406 }
407
408 static bool is_executable_pte(u64 spte)
409 {
410 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
411 }
412
413 static kvm_pfn_t spte_to_pfn(u64 pte)
414 {
415 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
416 }
417
418 static gfn_t pse36_gfn_delta(u32 gpte)
419 {
420 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
421
422 return (gpte & PT32_DIR_PSE36_MASK) << shift;
423 }
424
425 #ifdef CONFIG_X86_64
426 static void __set_spte(u64 *sptep, u64 spte)
427 {
428 WRITE_ONCE(*sptep, spte);
429 }
430
431 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
432 {
433 WRITE_ONCE(*sptep, spte);
434 }
435
436 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
437 {
438 return xchg(sptep, spte);
439 }
440
441 static u64 __get_spte_lockless(u64 *sptep)
442 {
443 return ACCESS_ONCE(*sptep);
444 }
445 #else
446 union split_spte {
447 struct {
448 u32 spte_low;
449 u32 spte_high;
450 };
451 u64 spte;
452 };
453
454 static void count_spte_clear(u64 *sptep, u64 spte)
455 {
456 struct kvm_mmu_page *sp = page_header(__pa(sptep));
457
458 if (is_shadow_present_pte(spte))
459 return;
460
461 /* Ensure the spte is completely set before we increase the count */
462 smp_wmb();
463 sp->clear_spte_count++;
464 }
465
466 static void __set_spte(u64 *sptep, u64 spte)
467 {
468 union split_spte *ssptep, sspte;
469
470 ssptep = (union split_spte *)sptep;
471 sspte = (union split_spte)spte;
472
473 ssptep->spte_high = sspte.spte_high;
474
475 /*
476 * If we map the spte from nonpresent to present, We should store
477 * the high bits firstly, then set present bit, so cpu can not
478 * fetch this spte while we are setting the spte.
479 */
480 smp_wmb();
481
482 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
483 }
484
485 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
486 {
487 union split_spte *ssptep, sspte;
488
489 ssptep = (union split_spte *)sptep;
490 sspte = (union split_spte)spte;
491
492 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
493
494 /*
495 * If we map the spte from present to nonpresent, we should clear
496 * present bit firstly to avoid vcpu fetch the old high bits.
497 */
498 smp_wmb();
499
500 ssptep->spte_high = sspte.spte_high;
501 count_spte_clear(sptep, spte);
502 }
503
504 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
505 {
506 union split_spte *ssptep, sspte, orig;
507
508 ssptep = (union split_spte *)sptep;
509 sspte = (union split_spte)spte;
510
511 /* xchg acts as a barrier before the setting of the high bits */
512 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
513 orig.spte_high = ssptep->spte_high;
514 ssptep->spte_high = sspte.spte_high;
515 count_spte_clear(sptep, spte);
516
517 return orig.spte;
518 }
519
520 /*
521 * The idea using the light way get the spte on x86_32 guest is from
522 * gup_get_pte(arch/x86/mm/gup.c).
523 *
524 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
525 * coalesces them and we are running out of the MMU lock. Therefore
526 * we need to protect against in-progress updates of the spte.
527 *
528 * Reading the spte while an update is in progress may get the old value
529 * for the high part of the spte. The race is fine for a present->non-present
530 * change (because the high part of the spte is ignored for non-present spte),
531 * but for a present->present change we must reread the spte.
532 *
533 * All such changes are done in two steps (present->non-present and
534 * non-present->present), hence it is enough to count the number of
535 * present->non-present updates: if it changed while reading the spte,
536 * we might have hit the race. This is done using clear_spte_count.
537 */
538 static u64 __get_spte_lockless(u64 *sptep)
539 {
540 struct kvm_mmu_page *sp = page_header(__pa(sptep));
541 union split_spte spte, *orig = (union split_spte *)sptep;
542 int count;
543
544 retry:
545 count = sp->clear_spte_count;
546 smp_rmb();
547
548 spte.spte_low = orig->spte_low;
549 smp_rmb();
550
551 spte.spte_high = orig->spte_high;
552 smp_rmb();
553
554 if (unlikely(spte.spte_low != orig->spte_low ||
555 count != sp->clear_spte_count))
556 goto retry;
557
558 return spte.spte;
559 }
560 #endif
561
562 static bool spte_can_locklessly_be_made_writable(u64 spte)
563 {
564 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
565 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
566 }
567
568 static bool spte_has_volatile_bits(u64 spte)
569 {
570 if (!is_shadow_present_pte(spte))
571 return false;
572
573 /*
574 * Always atomically update spte if it can be updated
575 * out of mmu-lock, it can ensure dirty bit is not lost,
576 * also, it can help us to get a stable is_writable_pte()
577 * to ensure tlb flush is not missed.
578 */
579 if (spte_can_locklessly_be_made_writable(spte) ||
580 is_access_track_spte(spte))
581 return true;
582
583 if (spte_ad_enabled(spte)) {
584 if ((spte & shadow_accessed_mask) == 0 ||
585 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
586 return true;
587 }
588
589 return false;
590 }
591
592 static bool is_accessed_spte(u64 spte)
593 {
594 u64 accessed_mask = spte_shadow_accessed_mask(spte);
595
596 return accessed_mask ? spte & accessed_mask
597 : !is_access_track_spte(spte);
598 }
599
600 static bool is_dirty_spte(u64 spte)
601 {
602 u64 dirty_mask = spte_shadow_dirty_mask(spte);
603
604 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
605 }
606
607 /* Rules for using mmu_spte_set:
608 * Set the sptep from nonpresent to present.
609 * Note: the sptep being assigned *must* be either not present
610 * or in a state where the hardware will not attempt to update
611 * the spte.
612 */
613 static void mmu_spte_set(u64 *sptep, u64 new_spte)
614 {
615 WARN_ON(is_shadow_present_pte(*sptep));
616 __set_spte(sptep, new_spte);
617 }
618
619 /*
620 * Update the SPTE (excluding the PFN), but do not track changes in its
621 * accessed/dirty status.
622 */
623 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
624 {
625 u64 old_spte = *sptep;
626
627 WARN_ON(!is_shadow_present_pte(new_spte));
628
629 if (!is_shadow_present_pte(old_spte)) {
630 mmu_spte_set(sptep, new_spte);
631 return old_spte;
632 }
633
634 if (!spte_has_volatile_bits(old_spte))
635 __update_clear_spte_fast(sptep, new_spte);
636 else
637 old_spte = __update_clear_spte_slow(sptep, new_spte);
638
639 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
640
641 return old_spte;
642 }
643
644 /* Rules for using mmu_spte_update:
645 * Update the state bits, it means the mapped pfn is not changed.
646 *
647 * Whenever we overwrite a writable spte with a read-only one we
648 * should flush remote TLBs. Otherwise rmap_write_protect
649 * will find a read-only spte, even though the writable spte
650 * might be cached on a CPU's TLB, the return value indicates this
651 * case.
652 *
653 * Returns true if the TLB needs to be flushed
654 */
655 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
656 {
657 bool flush = false;
658 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
659
660 if (!is_shadow_present_pte(old_spte))
661 return false;
662
663 /*
664 * For the spte updated out of mmu-lock is safe, since
665 * we always atomically update it, see the comments in
666 * spte_has_volatile_bits().
667 */
668 if (spte_can_locklessly_be_made_writable(old_spte) &&
669 !is_writable_pte(new_spte))
670 flush = true;
671
672 /*
673 * Flush TLB when accessed/dirty states are changed in the page tables,
674 * to guarantee consistency between TLB and page tables.
675 */
676
677 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
678 flush = true;
679 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
680 }
681
682 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
683 flush = true;
684 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
685 }
686
687 return flush;
688 }
689
690 /*
691 * Rules for using mmu_spte_clear_track_bits:
692 * It sets the sptep from present to nonpresent, and track the
693 * state bits, it is used to clear the last level sptep.
694 * Returns non-zero if the PTE was previously valid.
695 */
696 static int mmu_spte_clear_track_bits(u64 *sptep)
697 {
698 kvm_pfn_t pfn;
699 u64 old_spte = *sptep;
700
701 if (!spte_has_volatile_bits(old_spte))
702 __update_clear_spte_fast(sptep, 0ull);
703 else
704 old_spte = __update_clear_spte_slow(sptep, 0ull);
705
706 if (!is_shadow_present_pte(old_spte))
707 return 0;
708
709 pfn = spte_to_pfn(old_spte);
710
711 /*
712 * KVM does not hold the refcount of the page used by
713 * kvm mmu, before reclaiming the page, we should
714 * unmap it from mmu first.
715 */
716 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
717
718 if (is_accessed_spte(old_spte))
719 kvm_set_pfn_accessed(pfn);
720
721 if (is_dirty_spte(old_spte))
722 kvm_set_pfn_dirty(pfn);
723
724 return 1;
725 }
726
727 /*
728 * Rules for using mmu_spte_clear_no_track:
729 * Directly clear spte without caring the state bits of sptep,
730 * it is used to set the upper level spte.
731 */
732 static void mmu_spte_clear_no_track(u64 *sptep)
733 {
734 __update_clear_spte_fast(sptep, 0ull);
735 }
736
737 static u64 mmu_spte_get_lockless(u64 *sptep)
738 {
739 return __get_spte_lockless(sptep);
740 }
741
742 static u64 mark_spte_for_access_track(u64 spte)
743 {
744 if (spte_ad_enabled(spte))
745 return spte & ~shadow_accessed_mask;
746
747 if (is_access_track_spte(spte))
748 return spte;
749
750 /*
751 * Making an Access Tracking PTE will result in removal of write access
752 * from the PTE. So, verify that we will be able to restore the write
753 * access in the fast page fault path later on.
754 */
755 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
756 !spte_can_locklessly_be_made_writable(spte),
757 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
758
759 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
760 shadow_acc_track_saved_bits_shift),
761 "kvm: Access Tracking saved bit locations are not zero\n");
762
763 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
764 shadow_acc_track_saved_bits_shift;
765 spte &= ~shadow_acc_track_mask;
766
767 return spte;
768 }
769
770 /* Restore an acc-track PTE back to a regular PTE */
771 static u64 restore_acc_track_spte(u64 spte)
772 {
773 u64 new_spte = spte;
774 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
775 & shadow_acc_track_saved_bits_mask;
776
777 WARN_ON_ONCE(spte_ad_enabled(spte));
778 WARN_ON_ONCE(!is_access_track_spte(spte));
779
780 new_spte &= ~shadow_acc_track_mask;
781 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
782 shadow_acc_track_saved_bits_shift);
783 new_spte |= saved_bits;
784
785 return new_spte;
786 }
787
788 /* Returns the Accessed status of the PTE and resets it at the same time. */
789 static bool mmu_spte_age(u64 *sptep)
790 {
791 u64 spte = mmu_spte_get_lockless(sptep);
792
793 if (!is_accessed_spte(spte))
794 return false;
795
796 if (spte_ad_enabled(spte)) {
797 clear_bit((ffs(shadow_accessed_mask) - 1),
798 (unsigned long *)sptep);
799 } else {
800 /*
801 * Capture the dirty status of the page, so that it doesn't get
802 * lost when the SPTE is marked for access tracking.
803 */
804 if (is_writable_pte(spte))
805 kvm_set_pfn_dirty(spte_to_pfn(spte));
806
807 spte = mark_spte_for_access_track(spte);
808 mmu_spte_update_no_track(sptep, spte);
809 }
810
811 return true;
812 }
813
814 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
815 {
816 /*
817 * Prevent page table teardown by making any free-er wait during
818 * kvm_flush_remote_tlbs() IPI to all active vcpus.
819 */
820 local_irq_disable();
821
822 /*
823 * Make sure a following spte read is not reordered ahead of the write
824 * to vcpu->mode.
825 */
826 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
827 }
828
829 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
830 {
831 /*
832 * Make sure the write to vcpu->mode is not reordered in front of
833 * reads to sptes. If it does, kvm_commit_zap_page() can see us
834 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
835 */
836 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
837 local_irq_enable();
838 }
839
840 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
841 struct kmem_cache *base_cache, int min)
842 {
843 void *obj;
844
845 if (cache->nobjs >= min)
846 return 0;
847 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
848 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
849 if (!obj)
850 return -ENOMEM;
851 cache->objects[cache->nobjs++] = obj;
852 }
853 return 0;
854 }
855
856 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
857 {
858 return cache->nobjs;
859 }
860
861 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
862 struct kmem_cache *cache)
863 {
864 while (mc->nobjs)
865 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
866 }
867
868 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
869 int min)
870 {
871 void *page;
872
873 if (cache->nobjs >= min)
874 return 0;
875 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
876 page = (void *)__get_free_page(GFP_KERNEL);
877 if (!page)
878 return -ENOMEM;
879 cache->objects[cache->nobjs++] = page;
880 }
881 return 0;
882 }
883
884 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
885 {
886 while (mc->nobjs)
887 free_page((unsigned long)mc->objects[--mc->nobjs]);
888 }
889
890 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
891 {
892 int r;
893
894 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
895 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
896 if (r)
897 goto out;
898 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
899 if (r)
900 goto out;
901 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
902 mmu_page_header_cache, 4);
903 out:
904 return r;
905 }
906
907 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
908 {
909 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
910 pte_list_desc_cache);
911 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
912 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
913 mmu_page_header_cache);
914 }
915
916 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
917 {
918 void *p;
919
920 BUG_ON(!mc->nobjs);
921 p = mc->objects[--mc->nobjs];
922 return p;
923 }
924
925 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
926 {
927 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
928 }
929
930 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
931 {
932 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
933 }
934
935 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
936 {
937 if (!sp->role.direct)
938 return sp->gfns[index];
939
940 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
941 }
942
943 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
944 {
945 if (sp->role.direct)
946 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
947 else
948 sp->gfns[index] = gfn;
949 }
950
951 /*
952 * Return the pointer to the large page information for a given gfn,
953 * handling slots that are not large page aligned.
954 */
955 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
956 struct kvm_memory_slot *slot,
957 int level)
958 {
959 unsigned long idx;
960
961 idx = gfn_to_index(gfn, slot->base_gfn, level);
962 return &slot->arch.lpage_info[level - 2][idx];
963 }
964
965 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
966 gfn_t gfn, int count)
967 {
968 struct kvm_lpage_info *linfo;
969 int i;
970
971 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
972 linfo = lpage_info_slot(gfn, slot, i);
973 linfo->disallow_lpage += count;
974 WARN_ON(linfo->disallow_lpage < 0);
975 }
976 }
977
978 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
979 {
980 update_gfn_disallow_lpage_count(slot, gfn, 1);
981 }
982
983 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
984 {
985 update_gfn_disallow_lpage_count(slot, gfn, -1);
986 }
987
988 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
989 {
990 struct kvm_memslots *slots;
991 struct kvm_memory_slot *slot;
992 gfn_t gfn;
993
994 kvm->arch.indirect_shadow_pages++;
995 gfn = sp->gfn;
996 slots = kvm_memslots_for_spte_role(kvm, sp->role);
997 slot = __gfn_to_memslot(slots, gfn);
998
999 /* the non-leaf shadow pages are keeping readonly. */
1000 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1001 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1002 KVM_PAGE_TRACK_WRITE);
1003
1004 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1005 }
1006
1007 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1008 {
1009 struct kvm_memslots *slots;
1010 struct kvm_memory_slot *slot;
1011 gfn_t gfn;
1012
1013 kvm->arch.indirect_shadow_pages--;
1014 gfn = sp->gfn;
1015 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1016 slot = __gfn_to_memslot(slots, gfn);
1017 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1018 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1019 KVM_PAGE_TRACK_WRITE);
1020
1021 kvm_mmu_gfn_allow_lpage(slot, gfn);
1022 }
1023
1024 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1025 struct kvm_memory_slot *slot)
1026 {
1027 struct kvm_lpage_info *linfo;
1028
1029 if (slot) {
1030 linfo = lpage_info_slot(gfn, slot, level);
1031 return !!linfo->disallow_lpage;
1032 }
1033
1034 return true;
1035 }
1036
1037 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1038 int level)
1039 {
1040 struct kvm_memory_slot *slot;
1041
1042 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1043 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1044 }
1045
1046 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1047 {
1048 unsigned long page_size;
1049 int i, ret = 0;
1050
1051 page_size = kvm_host_page_size(kvm, gfn);
1052
1053 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1054 if (page_size >= KVM_HPAGE_SIZE(i))
1055 ret = i;
1056 else
1057 break;
1058 }
1059
1060 return ret;
1061 }
1062
1063 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1064 bool no_dirty_log)
1065 {
1066 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1067 return false;
1068 if (no_dirty_log && slot->dirty_bitmap)
1069 return false;
1070
1071 return true;
1072 }
1073
1074 static struct kvm_memory_slot *
1075 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1076 bool no_dirty_log)
1077 {
1078 struct kvm_memory_slot *slot;
1079
1080 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1081 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1082 slot = NULL;
1083
1084 return slot;
1085 }
1086
1087 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1088 bool *force_pt_level)
1089 {
1090 int host_level, level, max_level;
1091 struct kvm_memory_slot *slot;
1092
1093 if (unlikely(*force_pt_level))
1094 return PT_PAGE_TABLE_LEVEL;
1095
1096 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1097 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1098 if (unlikely(*force_pt_level))
1099 return PT_PAGE_TABLE_LEVEL;
1100
1101 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1102
1103 if (host_level == PT_PAGE_TABLE_LEVEL)
1104 return host_level;
1105
1106 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1107
1108 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1109 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1110 break;
1111
1112 return level - 1;
1113 }
1114
1115 /*
1116 * About rmap_head encoding:
1117 *
1118 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1119 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1120 * pte_list_desc containing more mappings.
1121 */
1122
1123 /*
1124 * Returns the number of pointers in the rmap chain, not counting the new one.
1125 */
1126 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1127 struct kvm_rmap_head *rmap_head)
1128 {
1129 struct pte_list_desc *desc;
1130 int i, count = 0;
1131
1132 if (!rmap_head->val) {
1133 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1134 rmap_head->val = (unsigned long)spte;
1135 } else if (!(rmap_head->val & 1)) {
1136 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1137 desc = mmu_alloc_pte_list_desc(vcpu);
1138 desc->sptes[0] = (u64 *)rmap_head->val;
1139 desc->sptes[1] = spte;
1140 rmap_head->val = (unsigned long)desc | 1;
1141 ++count;
1142 } else {
1143 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1144 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1145 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1146 desc = desc->more;
1147 count += PTE_LIST_EXT;
1148 }
1149 if (desc->sptes[PTE_LIST_EXT-1]) {
1150 desc->more = mmu_alloc_pte_list_desc(vcpu);
1151 desc = desc->more;
1152 }
1153 for (i = 0; desc->sptes[i]; ++i)
1154 ++count;
1155 desc->sptes[i] = spte;
1156 }
1157 return count;
1158 }
1159
1160 static void
1161 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1162 struct pte_list_desc *desc, int i,
1163 struct pte_list_desc *prev_desc)
1164 {
1165 int j;
1166
1167 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1168 ;
1169 desc->sptes[i] = desc->sptes[j];
1170 desc->sptes[j] = NULL;
1171 if (j != 0)
1172 return;
1173 if (!prev_desc && !desc->more)
1174 rmap_head->val = (unsigned long)desc->sptes[0];
1175 else
1176 if (prev_desc)
1177 prev_desc->more = desc->more;
1178 else
1179 rmap_head->val = (unsigned long)desc->more | 1;
1180 mmu_free_pte_list_desc(desc);
1181 }
1182
1183 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1184 {
1185 struct pte_list_desc *desc;
1186 struct pte_list_desc *prev_desc;
1187 int i;
1188
1189 if (!rmap_head->val) {
1190 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1191 BUG();
1192 } else if (!(rmap_head->val & 1)) {
1193 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1194 if ((u64 *)rmap_head->val != spte) {
1195 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1196 BUG();
1197 }
1198 rmap_head->val = 0;
1199 } else {
1200 rmap_printk("pte_list_remove: %p many->many\n", spte);
1201 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1202 prev_desc = NULL;
1203 while (desc) {
1204 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1205 if (desc->sptes[i] == spte) {
1206 pte_list_desc_remove_entry(rmap_head,
1207 desc, i, prev_desc);
1208 return;
1209 }
1210 }
1211 prev_desc = desc;
1212 desc = desc->more;
1213 }
1214 pr_err("pte_list_remove: %p many->many\n", spte);
1215 BUG();
1216 }
1217 }
1218
1219 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1220 struct kvm_memory_slot *slot)
1221 {
1222 unsigned long idx;
1223
1224 idx = gfn_to_index(gfn, slot->base_gfn, level);
1225 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1226 }
1227
1228 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1229 struct kvm_mmu_page *sp)
1230 {
1231 struct kvm_memslots *slots;
1232 struct kvm_memory_slot *slot;
1233
1234 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1235 slot = __gfn_to_memslot(slots, gfn);
1236 return __gfn_to_rmap(gfn, sp->role.level, slot);
1237 }
1238
1239 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1240 {
1241 struct kvm_mmu_memory_cache *cache;
1242
1243 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1244 return mmu_memory_cache_free_objects(cache);
1245 }
1246
1247 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1248 {
1249 struct kvm_mmu_page *sp;
1250 struct kvm_rmap_head *rmap_head;
1251
1252 sp = page_header(__pa(spte));
1253 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1254 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1255 return pte_list_add(vcpu, spte, rmap_head);
1256 }
1257
1258 static void rmap_remove(struct kvm *kvm, u64 *spte)
1259 {
1260 struct kvm_mmu_page *sp;
1261 gfn_t gfn;
1262 struct kvm_rmap_head *rmap_head;
1263
1264 sp = page_header(__pa(spte));
1265 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1266 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1267 pte_list_remove(spte, rmap_head);
1268 }
1269
1270 /*
1271 * Used by the following functions to iterate through the sptes linked by a
1272 * rmap. All fields are private and not assumed to be used outside.
1273 */
1274 struct rmap_iterator {
1275 /* private fields */
1276 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1277 int pos; /* index of the sptep */
1278 };
1279
1280 /*
1281 * Iteration must be started by this function. This should also be used after
1282 * removing/dropping sptes from the rmap link because in such cases the
1283 * information in the itererator may not be valid.
1284 *
1285 * Returns sptep if found, NULL otherwise.
1286 */
1287 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1288 struct rmap_iterator *iter)
1289 {
1290 u64 *sptep;
1291
1292 if (!rmap_head->val)
1293 return NULL;
1294
1295 if (!(rmap_head->val & 1)) {
1296 iter->desc = NULL;
1297 sptep = (u64 *)rmap_head->val;
1298 goto out;
1299 }
1300
1301 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1302 iter->pos = 0;
1303 sptep = iter->desc->sptes[iter->pos];
1304 out:
1305 BUG_ON(!is_shadow_present_pte(*sptep));
1306 return sptep;
1307 }
1308
1309 /*
1310 * Must be used with a valid iterator: e.g. after rmap_get_first().
1311 *
1312 * Returns sptep if found, NULL otherwise.
1313 */
1314 static u64 *rmap_get_next(struct rmap_iterator *iter)
1315 {
1316 u64 *sptep;
1317
1318 if (iter->desc) {
1319 if (iter->pos < PTE_LIST_EXT - 1) {
1320 ++iter->pos;
1321 sptep = iter->desc->sptes[iter->pos];
1322 if (sptep)
1323 goto out;
1324 }
1325
1326 iter->desc = iter->desc->more;
1327
1328 if (iter->desc) {
1329 iter->pos = 0;
1330 /* desc->sptes[0] cannot be NULL */
1331 sptep = iter->desc->sptes[iter->pos];
1332 goto out;
1333 }
1334 }
1335
1336 return NULL;
1337 out:
1338 BUG_ON(!is_shadow_present_pte(*sptep));
1339 return sptep;
1340 }
1341
1342 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1343 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1344 _spte_; _spte_ = rmap_get_next(_iter_))
1345
1346 static void drop_spte(struct kvm *kvm, u64 *sptep)
1347 {
1348 if (mmu_spte_clear_track_bits(sptep))
1349 rmap_remove(kvm, sptep);
1350 }
1351
1352
1353 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1354 {
1355 if (is_large_pte(*sptep)) {
1356 WARN_ON(page_header(__pa(sptep))->role.level ==
1357 PT_PAGE_TABLE_LEVEL);
1358 drop_spte(kvm, sptep);
1359 --kvm->stat.lpages;
1360 return true;
1361 }
1362
1363 return false;
1364 }
1365
1366 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1367 {
1368 if (__drop_large_spte(vcpu->kvm, sptep))
1369 kvm_flush_remote_tlbs(vcpu->kvm);
1370 }
1371
1372 /*
1373 * Write-protect on the specified @sptep, @pt_protect indicates whether
1374 * spte write-protection is caused by protecting shadow page table.
1375 *
1376 * Note: write protection is difference between dirty logging and spte
1377 * protection:
1378 * - for dirty logging, the spte can be set to writable at anytime if
1379 * its dirty bitmap is properly set.
1380 * - for spte protection, the spte can be writable only after unsync-ing
1381 * shadow page.
1382 *
1383 * Return true if tlb need be flushed.
1384 */
1385 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1386 {
1387 u64 spte = *sptep;
1388
1389 if (!is_writable_pte(spte) &&
1390 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1391 return false;
1392
1393 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1394
1395 if (pt_protect)
1396 spte &= ~SPTE_MMU_WRITEABLE;
1397 spte = spte & ~PT_WRITABLE_MASK;
1398
1399 return mmu_spte_update(sptep, spte);
1400 }
1401
1402 static bool __rmap_write_protect(struct kvm *kvm,
1403 struct kvm_rmap_head *rmap_head,
1404 bool pt_protect)
1405 {
1406 u64 *sptep;
1407 struct rmap_iterator iter;
1408 bool flush = false;
1409
1410 for_each_rmap_spte(rmap_head, &iter, sptep)
1411 flush |= spte_write_protect(sptep, pt_protect);
1412
1413 return flush;
1414 }
1415
1416 static bool spte_clear_dirty(u64 *sptep)
1417 {
1418 u64 spte = *sptep;
1419
1420 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1421
1422 spte &= ~shadow_dirty_mask;
1423
1424 return mmu_spte_update(sptep, spte);
1425 }
1426
1427 static bool wrprot_ad_disabled_spte(u64 *sptep)
1428 {
1429 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1430 (unsigned long *)sptep);
1431 if (was_writable)
1432 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1433
1434 return was_writable;
1435 }
1436
1437 /*
1438 * Gets the GFN ready for another round of dirty logging by clearing the
1439 * - D bit on ad-enabled SPTEs, and
1440 * - W bit on ad-disabled SPTEs.
1441 * Returns true iff any D or W bits were cleared.
1442 */
1443 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1444 {
1445 u64 *sptep;
1446 struct rmap_iterator iter;
1447 bool flush = false;
1448
1449 for_each_rmap_spte(rmap_head, &iter, sptep)
1450 if (spte_ad_enabled(*sptep))
1451 flush |= spte_clear_dirty(sptep);
1452 else
1453 flush |= wrprot_ad_disabled_spte(sptep);
1454
1455 return flush;
1456 }
1457
1458 static bool spte_set_dirty(u64 *sptep)
1459 {
1460 u64 spte = *sptep;
1461
1462 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1463
1464 spte |= shadow_dirty_mask;
1465
1466 return mmu_spte_update(sptep, spte);
1467 }
1468
1469 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1470 {
1471 u64 *sptep;
1472 struct rmap_iterator iter;
1473 bool flush = false;
1474
1475 for_each_rmap_spte(rmap_head, &iter, sptep)
1476 if (spte_ad_enabled(*sptep))
1477 flush |= spte_set_dirty(sptep);
1478
1479 return flush;
1480 }
1481
1482 /**
1483 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1484 * @kvm: kvm instance
1485 * @slot: slot to protect
1486 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1487 * @mask: indicates which pages we should protect
1488 *
1489 * Used when we do not need to care about huge page mappings: e.g. during dirty
1490 * logging we do not have any such mappings.
1491 */
1492 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1493 struct kvm_memory_slot *slot,
1494 gfn_t gfn_offset, unsigned long mask)
1495 {
1496 struct kvm_rmap_head *rmap_head;
1497
1498 while (mask) {
1499 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1500 PT_PAGE_TABLE_LEVEL, slot);
1501 __rmap_write_protect(kvm, rmap_head, false);
1502
1503 /* clear the first set bit */
1504 mask &= mask - 1;
1505 }
1506 }
1507
1508 /**
1509 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1510 * protect the page if the D-bit isn't supported.
1511 * @kvm: kvm instance
1512 * @slot: slot to clear D-bit
1513 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1514 * @mask: indicates which pages we should clear D-bit
1515 *
1516 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1517 */
1518 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1519 struct kvm_memory_slot *slot,
1520 gfn_t gfn_offset, unsigned long mask)
1521 {
1522 struct kvm_rmap_head *rmap_head;
1523
1524 while (mask) {
1525 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1526 PT_PAGE_TABLE_LEVEL, slot);
1527 __rmap_clear_dirty(kvm, rmap_head);
1528
1529 /* clear the first set bit */
1530 mask &= mask - 1;
1531 }
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1534
1535 /**
1536 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1537 * PT level pages.
1538 *
1539 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1540 * enable dirty logging for them.
1541 *
1542 * Used when we do not need to care about huge page mappings: e.g. during dirty
1543 * logging we do not have any such mappings.
1544 */
1545 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1546 struct kvm_memory_slot *slot,
1547 gfn_t gfn_offset, unsigned long mask)
1548 {
1549 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1550 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1551 mask);
1552 else
1553 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1554 }
1555
1556 /**
1557 * kvm_arch_write_log_dirty - emulate dirty page logging
1558 * @vcpu: Guest mode vcpu
1559 *
1560 * Emulate arch specific page modification logging for the
1561 * nested hypervisor
1562 */
1563 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1564 {
1565 if (kvm_x86_ops->write_log_dirty)
1566 return kvm_x86_ops->write_log_dirty(vcpu);
1567
1568 return 0;
1569 }
1570
1571 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1572 struct kvm_memory_slot *slot, u64 gfn)
1573 {
1574 struct kvm_rmap_head *rmap_head;
1575 int i;
1576 bool write_protected = false;
1577
1578 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1579 rmap_head = __gfn_to_rmap(gfn, i, slot);
1580 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1581 }
1582
1583 return write_protected;
1584 }
1585
1586 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1587 {
1588 struct kvm_memory_slot *slot;
1589
1590 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1591 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1592 }
1593
1594 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1595 {
1596 u64 *sptep;
1597 struct rmap_iterator iter;
1598 bool flush = false;
1599
1600 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1601 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1602
1603 drop_spte(kvm, sptep);
1604 flush = true;
1605 }
1606
1607 return flush;
1608 }
1609
1610 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1611 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1612 unsigned long data)
1613 {
1614 return kvm_zap_rmapp(kvm, rmap_head);
1615 }
1616
1617 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1618 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1619 unsigned long data)
1620 {
1621 u64 *sptep;
1622 struct rmap_iterator iter;
1623 int need_flush = 0;
1624 u64 new_spte;
1625 pte_t *ptep = (pte_t *)data;
1626 kvm_pfn_t new_pfn;
1627
1628 WARN_ON(pte_huge(*ptep));
1629 new_pfn = pte_pfn(*ptep);
1630
1631 restart:
1632 for_each_rmap_spte(rmap_head, &iter, sptep) {
1633 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1634 sptep, *sptep, gfn, level);
1635
1636 need_flush = 1;
1637
1638 if (pte_write(*ptep)) {
1639 drop_spte(kvm, sptep);
1640 goto restart;
1641 } else {
1642 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1643 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1644
1645 new_spte &= ~PT_WRITABLE_MASK;
1646 new_spte &= ~SPTE_HOST_WRITEABLE;
1647
1648 new_spte = mark_spte_for_access_track(new_spte);
1649
1650 mmu_spte_clear_track_bits(sptep);
1651 mmu_spte_set(sptep, new_spte);
1652 }
1653 }
1654
1655 if (need_flush)
1656 kvm_flush_remote_tlbs(kvm);
1657
1658 return 0;
1659 }
1660
1661 struct slot_rmap_walk_iterator {
1662 /* input fields. */
1663 struct kvm_memory_slot *slot;
1664 gfn_t start_gfn;
1665 gfn_t end_gfn;
1666 int start_level;
1667 int end_level;
1668
1669 /* output fields. */
1670 gfn_t gfn;
1671 struct kvm_rmap_head *rmap;
1672 int level;
1673
1674 /* private field. */
1675 struct kvm_rmap_head *end_rmap;
1676 };
1677
1678 static void
1679 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1680 {
1681 iterator->level = level;
1682 iterator->gfn = iterator->start_gfn;
1683 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1684 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1685 iterator->slot);
1686 }
1687
1688 static void
1689 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1690 struct kvm_memory_slot *slot, int start_level,
1691 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1692 {
1693 iterator->slot = slot;
1694 iterator->start_level = start_level;
1695 iterator->end_level = end_level;
1696 iterator->start_gfn = start_gfn;
1697 iterator->end_gfn = end_gfn;
1698
1699 rmap_walk_init_level(iterator, iterator->start_level);
1700 }
1701
1702 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1703 {
1704 return !!iterator->rmap;
1705 }
1706
1707 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1708 {
1709 if (++iterator->rmap <= iterator->end_rmap) {
1710 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1711 return;
1712 }
1713
1714 if (++iterator->level > iterator->end_level) {
1715 iterator->rmap = NULL;
1716 return;
1717 }
1718
1719 rmap_walk_init_level(iterator, iterator->level);
1720 }
1721
1722 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1723 _start_gfn, _end_gfn, _iter_) \
1724 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1725 _end_level_, _start_gfn, _end_gfn); \
1726 slot_rmap_walk_okay(_iter_); \
1727 slot_rmap_walk_next(_iter_))
1728
1729 static int kvm_handle_hva_range(struct kvm *kvm,
1730 unsigned long start,
1731 unsigned long end,
1732 unsigned long data,
1733 int (*handler)(struct kvm *kvm,
1734 struct kvm_rmap_head *rmap_head,
1735 struct kvm_memory_slot *slot,
1736 gfn_t gfn,
1737 int level,
1738 unsigned long data))
1739 {
1740 struct kvm_memslots *slots;
1741 struct kvm_memory_slot *memslot;
1742 struct slot_rmap_walk_iterator iterator;
1743 int ret = 0;
1744 int i;
1745
1746 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1747 slots = __kvm_memslots(kvm, i);
1748 kvm_for_each_memslot(memslot, slots) {
1749 unsigned long hva_start, hva_end;
1750 gfn_t gfn_start, gfn_end;
1751
1752 hva_start = max(start, memslot->userspace_addr);
1753 hva_end = min(end, memslot->userspace_addr +
1754 (memslot->npages << PAGE_SHIFT));
1755 if (hva_start >= hva_end)
1756 continue;
1757 /*
1758 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1759 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1760 */
1761 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1762 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1763
1764 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1765 PT_MAX_HUGEPAGE_LEVEL,
1766 gfn_start, gfn_end - 1,
1767 &iterator)
1768 ret |= handler(kvm, iterator.rmap, memslot,
1769 iterator.gfn, iterator.level, data);
1770 }
1771 }
1772
1773 return ret;
1774 }
1775
1776 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1777 unsigned long data,
1778 int (*handler)(struct kvm *kvm,
1779 struct kvm_rmap_head *rmap_head,
1780 struct kvm_memory_slot *slot,
1781 gfn_t gfn, int level,
1782 unsigned long data))
1783 {
1784 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1785 }
1786
1787 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1788 {
1789 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1790 }
1791
1792 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1793 {
1794 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1795 }
1796
1797 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1798 {
1799 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1800 }
1801
1802 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1803 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804 unsigned long data)
1805 {
1806 u64 *sptep;
1807 struct rmap_iterator uninitialized_var(iter);
1808 int young = 0;
1809
1810 for_each_rmap_spte(rmap_head, &iter, sptep)
1811 young |= mmu_spte_age(sptep);
1812
1813 trace_kvm_age_page(gfn, level, slot, young);
1814 return young;
1815 }
1816
1817 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1818 struct kvm_memory_slot *slot, gfn_t gfn,
1819 int level, unsigned long data)
1820 {
1821 u64 *sptep;
1822 struct rmap_iterator iter;
1823
1824 for_each_rmap_spte(rmap_head, &iter, sptep)
1825 if (is_accessed_spte(*sptep))
1826 return 1;
1827 return 0;
1828 }
1829
1830 #define RMAP_RECYCLE_THRESHOLD 1000
1831
1832 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1833 {
1834 struct kvm_rmap_head *rmap_head;
1835 struct kvm_mmu_page *sp;
1836
1837 sp = page_header(__pa(spte));
1838
1839 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1840
1841 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1842 kvm_flush_remote_tlbs(vcpu->kvm);
1843 }
1844
1845 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1846 {
1847 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1848 }
1849
1850 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1851 {
1852 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1853 }
1854
1855 #ifdef MMU_DEBUG
1856 static int is_empty_shadow_page(u64 *spt)
1857 {
1858 u64 *pos;
1859 u64 *end;
1860
1861 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1862 if (is_shadow_present_pte(*pos)) {
1863 printk(KERN_ERR "%s: %p %llx\n", __func__,
1864 pos, *pos);
1865 return 0;
1866 }
1867 return 1;
1868 }
1869 #endif
1870
1871 /*
1872 * This value is the sum of all of the kvm instances's
1873 * kvm->arch.n_used_mmu_pages values. We need a global,
1874 * aggregate version in order to make the slab shrinker
1875 * faster
1876 */
1877 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1878 {
1879 kvm->arch.n_used_mmu_pages += nr;
1880 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1881 }
1882
1883 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1884 {
1885 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1886 hlist_del(&sp->hash_link);
1887 list_del(&sp->link);
1888 free_page((unsigned long)sp->spt);
1889 if (!sp->role.direct)
1890 free_page((unsigned long)sp->gfns);
1891 kmem_cache_free(mmu_page_header_cache, sp);
1892 }
1893
1894 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1895 {
1896 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1897 }
1898
1899 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1900 struct kvm_mmu_page *sp, u64 *parent_pte)
1901 {
1902 if (!parent_pte)
1903 return;
1904
1905 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1906 }
1907
1908 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1909 u64 *parent_pte)
1910 {
1911 pte_list_remove(parent_pte, &sp->parent_ptes);
1912 }
1913
1914 static void drop_parent_pte(struct kvm_mmu_page *sp,
1915 u64 *parent_pte)
1916 {
1917 mmu_page_remove_parent_pte(sp, parent_pte);
1918 mmu_spte_clear_no_track(parent_pte);
1919 }
1920
1921 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1922 {
1923 struct kvm_mmu_page *sp;
1924
1925 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1926 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1927 if (!direct)
1928 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1929 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1930
1931 /*
1932 * The active_mmu_pages list is the FIFO list, do not move the
1933 * page until it is zapped. kvm_zap_obsolete_pages depends on
1934 * this feature. See the comments in kvm_zap_obsolete_pages().
1935 */
1936 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1937 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1938 return sp;
1939 }
1940
1941 static void mark_unsync(u64 *spte);
1942 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1943 {
1944 u64 *sptep;
1945 struct rmap_iterator iter;
1946
1947 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1948 mark_unsync(sptep);
1949 }
1950 }
1951
1952 static void mark_unsync(u64 *spte)
1953 {
1954 struct kvm_mmu_page *sp;
1955 unsigned int index;
1956
1957 sp = page_header(__pa(spte));
1958 index = spte - sp->spt;
1959 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1960 return;
1961 if (sp->unsync_children++)
1962 return;
1963 kvm_mmu_mark_parents_unsync(sp);
1964 }
1965
1966 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1967 struct kvm_mmu_page *sp)
1968 {
1969 return 0;
1970 }
1971
1972 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1973 {
1974 }
1975
1976 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1977 struct kvm_mmu_page *sp, u64 *spte,
1978 const void *pte)
1979 {
1980 WARN_ON(1);
1981 }
1982
1983 #define KVM_PAGE_ARRAY_NR 16
1984
1985 struct kvm_mmu_pages {
1986 struct mmu_page_and_offset {
1987 struct kvm_mmu_page *sp;
1988 unsigned int idx;
1989 } page[KVM_PAGE_ARRAY_NR];
1990 unsigned int nr;
1991 };
1992
1993 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1994 int idx)
1995 {
1996 int i;
1997
1998 if (sp->unsync)
1999 for (i=0; i < pvec->nr; i++)
2000 if (pvec->page[i].sp == sp)
2001 return 0;
2002
2003 pvec->page[pvec->nr].sp = sp;
2004 pvec->page[pvec->nr].idx = idx;
2005 pvec->nr++;
2006 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2007 }
2008
2009 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2010 {
2011 --sp->unsync_children;
2012 WARN_ON((int)sp->unsync_children < 0);
2013 __clear_bit(idx, sp->unsync_child_bitmap);
2014 }
2015
2016 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2017 struct kvm_mmu_pages *pvec)
2018 {
2019 int i, ret, nr_unsync_leaf = 0;
2020
2021 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2022 struct kvm_mmu_page *child;
2023 u64 ent = sp->spt[i];
2024
2025 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2026 clear_unsync_child_bit(sp, i);
2027 continue;
2028 }
2029
2030 child = page_header(ent & PT64_BASE_ADDR_MASK);
2031
2032 if (child->unsync_children) {
2033 if (mmu_pages_add(pvec, child, i))
2034 return -ENOSPC;
2035
2036 ret = __mmu_unsync_walk(child, pvec);
2037 if (!ret) {
2038 clear_unsync_child_bit(sp, i);
2039 continue;
2040 } else if (ret > 0) {
2041 nr_unsync_leaf += ret;
2042 } else
2043 return ret;
2044 } else if (child->unsync) {
2045 nr_unsync_leaf++;
2046 if (mmu_pages_add(pvec, child, i))
2047 return -ENOSPC;
2048 } else
2049 clear_unsync_child_bit(sp, i);
2050 }
2051
2052 return nr_unsync_leaf;
2053 }
2054
2055 #define INVALID_INDEX (-1)
2056
2057 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2058 struct kvm_mmu_pages *pvec)
2059 {
2060 pvec->nr = 0;
2061 if (!sp->unsync_children)
2062 return 0;
2063
2064 mmu_pages_add(pvec, sp, INVALID_INDEX);
2065 return __mmu_unsync_walk(sp, pvec);
2066 }
2067
2068 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2069 {
2070 WARN_ON(!sp->unsync);
2071 trace_kvm_mmu_sync_page(sp);
2072 sp->unsync = 0;
2073 --kvm->stat.mmu_unsync;
2074 }
2075
2076 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2077 struct list_head *invalid_list);
2078 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2079 struct list_head *invalid_list);
2080
2081 /*
2082 * NOTE: we should pay more attention on the zapped-obsolete page
2083 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2084 * since it has been deleted from active_mmu_pages but still can be found
2085 * at hast list.
2086 *
2087 * for_each_valid_sp() has skipped that kind of pages.
2088 */
2089 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2090 hlist_for_each_entry(_sp, \
2091 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2092 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2093 } else
2094
2095 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2096 for_each_valid_sp(_kvm, _sp, _gfn) \
2097 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2098
2099 /* @sp->gfn should be write-protected at the call site */
2100 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2101 struct list_head *invalid_list)
2102 {
2103 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2104 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2105 return false;
2106 }
2107
2108 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
2109 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2110 return false;
2111 }
2112
2113 return true;
2114 }
2115
2116 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2117 struct list_head *invalid_list,
2118 bool remote_flush, bool local_flush)
2119 {
2120 if (!list_empty(invalid_list)) {
2121 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2122 return;
2123 }
2124
2125 if (remote_flush)
2126 kvm_flush_remote_tlbs(vcpu->kvm);
2127 else if (local_flush)
2128 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2129 }
2130
2131 #ifdef CONFIG_KVM_MMU_AUDIT
2132 #include "mmu_audit.c"
2133 #else
2134 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2135 static void mmu_audit_disable(void) { }
2136 #endif
2137
2138 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2139 {
2140 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2141 }
2142
2143 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2144 struct list_head *invalid_list)
2145 {
2146 kvm_unlink_unsync_page(vcpu->kvm, sp);
2147 return __kvm_sync_page(vcpu, sp, invalid_list);
2148 }
2149
2150 /* @gfn should be write-protected at the call site */
2151 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2152 struct list_head *invalid_list)
2153 {
2154 struct kvm_mmu_page *s;
2155 bool ret = false;
2156
2157 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2158 if (!s->unsync)
2159 continue;
2160
2161 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2162 ret |= kvm_sync_page(vcpu, s, invalid_list);
2163 }
2164
2165 return ret;
2166 }
2167
2168 struct mmu_page_path {
2169 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
2170 unsigned int idx[PT64_ROOT_LEVEL];
2171 };
2172
2173 #define for_each_sp(pvec, sp, parents, i) \
2174 for (i = mmu_pages_first(&pvec, &parents); \
2175 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2176 i = mmu_pages_next(&pvec, &parents, i))
2177
2178 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2179 struct mmu_page_path *parents,
2180 int i)
2181 {
2182 int n;
2183
2184 for (n = i+1; n < pvec->nr; n++) {
2185 struct kvm_mmu_page *sp = pvec->page[n].sp;
2186 unsigned idx = pvec->page[n].idx;
2187 int level = sp->role.level;
2188
2189 parents->idx[level-1] = idx;
2190 if (level == PT_PAGE_TABLE_LEVEL)
2191 break;
2192
2193 parents->parent[level-2] = sp;
2194 }
2195
2196 return n;
2197 }
2198
2199 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2200 struct mmu_page_path *parents)
2201 {
2202 struct kvm_mmu_page *sp;
2203 int level;
2204
2205 if (pvec->nr == 0)
2206 return 0;
2207
2208 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2209
2210 sp = pvec->page[0].sp;
2211 level = sp->role.level;
2212 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2213
2214 parents->parent[level-2] = sp;
2215
2216 /* Also set up a sentinel. Further entries in pvec are all
2217 * children of sp, so this element is never overwritten.
2218 */
2219 parents->parent[level-1] = NULL;
2220 return mmu_pages_next(pvec, parents, 0);
2221 }
2222
2223 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2224 {
2225 struct kvm_mmu_page *sp;
2226 unsigned int level = 0;
2227
2228 do {
2229 unsigned int idx = parents->idx[level];
2230 sp = parents->parent[level];
2231 if (!sp)
2232 return;
2233
2234 WARN_ON(idx == INVALID_INDEX);
2235 clear_unsync_child_bit(sp, idx);
2236 level++;
2237 } while (!sp->unsync_children);
2238 }
2239
2240 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2241 struct kvm_mmu_page *parent)
2242 {
2243 int i;
2244 struct kvm_mmu_page *sp;
2245 struct mmu_page_path parents;
2246 struct kvm_mmu_pages pages;
2247 LIST_HEAD(invalid_list);
2248 bool flush = false;
2249
2250 while (mmu_unsync_walk(parent, &pages)) {
2251 bool protected = false;
2252
2253 for_each_sp(pages, sp, parents, i)
2254 protected |= rmap_write_protect(vcpu, sp->gfn);
2255
2256 if (protected) {
2257 kvm_flush_remote_tlbs(vcpu->kvm);
2258 flush = false;
2259 }
2260
2261 for_each_sp(pages, sp, parents, i) {
2262 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2263 mmu_pages_clear_parents(&parents);
2264 }
2265 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2266 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2267 cond_resched_lock(&vcpu->kvm->mmu_lock);
2268 flush = false;
2269 }
2270 }
2271
2272 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2273 }
2274
2275 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2276 {
2277 atomic_set(&sp->write_flooding_count, 0);
2278 }
2279
2280 static void clear_sp_write_flooding_count(u64 *spte)
2281 {
2282 struct kvm_mmu_page *sp = page_header(__pa(spte));
2283
2284 __clear_sp_write_flooding_count(sp);
2285 }
2286
2287 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2288 gfn_t gfn,
2289 gva_t gaddr,
2290 unsigned level,
2291 int direct,
2292 unsigned access)
2293 {
2294 union kvm_mmu_page_role role;
2295 unsigned quadrant;
2296 struct kvm_mmu_page *sp;
2297 bool need_sync = false;
2298 bool flush = false;
2299 int collisions = 0;
2300 LIST_HEAD(invalid_list);
2301
2302 role = vcpu->arch.mmu.base_role;
2303 role.level = level;
2304 role.direct = direct;
2305 if (role.direct)
2306 role.cr4_pae = 0;
2307 role.access = access;
2308 if (!vcpu->arch.mmu.direct_map
2309 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2310 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2311 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2312 role.quadrant = quadrant;
2313 }
2314 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2315 if (sp->gfn != gfn) {
2316 collisions++;
2317 continue;
2318 }
2319
2320 if (!need_sync && sp->unsync)
2321 need_sync = true;
2322
2323 if (sp->role.word != role.word)
2324 continue;
2325
2326 if (sp->unsync) {
2327 /* The page is good, but __kvm_sync_page might still end
2328 * up zapping it. If so, break in order to rebuild it.
2329 */
2330 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2331 break;
2332
2333 WARN_ON(!list_empty(&invalid_list));
2334 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2335 }
2336
2337 if (sp->unsync_children)
2338 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2339
2340 __clear_sp_write_flooding_count(sp);
2341 trace_kvm_mmu_get_page(sp, false);
2342 goto out;
2343 }
2344
2345 ++vcpu->kvm->stat.mmu_cache_miss;
2346
2347 sp = kvm_mmu_alloc_page(vcpu, direct);
2348
2349 sp->gfn = gfn;
2350 sp->role = role;
2351 hlist_add_head(&sp->hash_link,
2352 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2353 if (!direct) {
2354 /*
2355 * we should do write protection before syncing pages
2356 * otherwise the content of the synced shadow page may
2357 * be inconsistent with guest page table.
2358 */
2359 account_shadowed(vcpu->kvm, sp);
2360 if (level == PT_PAGE_TABLE_LEVEL &&
2361 rmap_write_protect(vcpu, gfn))
2362 kvm_flush_remote_tlbs(vcpu->kvm);
2363
2364 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2365 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2366 }
2367 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2368 clear_page(sp->spt);
2369 trace_kvm_mmu_get_page(sp, true);
2370
2371 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2372 out:
2373 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2374 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2375 return sp;
2376 }
2377
2378 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2379 struct kvm_vcpu *vcpu, u64 addr)
2380 {
2381 iterator->addr = addr;
2382 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2383 iterator->level = vcpu->arch.mmu.shadow_root_level;
2384
2385 if (iterator->level == PT64_ROOT_LEVEL &&
2386 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2387 !vcpu->arch.mmu.direct_map)
2388 --iterator->level;
2389
2390 if (iterator->level == PT32E_ROOT_LEVEL) {
2391 iterator->shadow_addr
2392 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2393 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2394 --iterator->level;
2395 if (!iterator->shadow_addr)
2396 iterator->level = 0;
2397 }
2398 }
2399
2400 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2401 {
2402 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2403 return false;
2404
2405 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2406 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2407 return true;
2408 }
2409
2410 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2411 u64 spte)
2412 {
2413 if (is_last_spte(spte, iterator->level)) {
2414 iterator->level = 0;
2415 return;
2416 }
2417
2418 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2419 --iterator->level;
2420 }
2421
2422 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2423 {
2424 return __shadow_walk_next(iterator, *iterator->sptep);
2425 }
2426
2427 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2428 struct kvm_mmu_page *sp)
2429 {
2430 u64 spte;
2431
2432 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2433
2434 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2435 shadow_user_mask | shadow_x_mask;
2436
2437 if (sp_ad_disabled(sp))
2438 spte |= shadow_acc_track_value;
2439 else
2440 spte |= shadow_accessed_mask;
2441
2442 mmu_spte_set(sptep, spte);
2443
2444 mmu_page_add_parent_pte(vcpu, sp, sptep);
2445
2446 if (sp->unsync_children || sp->unsync)
2447 mark_unsync(sptep);
2448 }
2449
2450 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2451 unsigned direct_access)
2452 {
2453 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2454 struct kvm_mmu_page *child;
2455
2456 /*
2457 * For the direct sp, if the guest pte's dirty bit
2458 * changed form clean to dirty, it will corrupt the
2459 * sp's access: allow writable in the read-only sp,
2460 * so we should update the spte at this point to get
2461 * a new sp with the correct access.
2462 */
2463 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2464 if (child->role.access == direct_access)
2465 return;
2466
2467 drop_parent_pte(child, sptep);
2468 kvm_flush_remote_tlbs(vcpu->kvm);
2469 }
2470 }
2471
2472 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2473 u64 *spte)
2474 {
2475 u64 pte;
2476 struct kvm_mmu_page *child;
2477
2478 pte = *spte;
2479 if (is_shadow_present_pte(pte)) {
2480 if (is_last_spte(pte, sp->role.level)) {
2481 drop_spte(kvm, spte);
2482 if (is_large_pte(pte))
2483 --kvm->stat.lpages;
2484 } else {
2485 child = page_header(pte & PT64_BASE_ADDR_MASK);
2486 drop_parent_pte(child, spte);
2487 }
2488 return true;
2489 }
2490
2491 if (is_mmio_spte(pte))
2492 mmu_spte_clear_no_track(spte);
2493
2494 return false;
2495 }
2496
2497 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2498 struct kvm_mmu_page *sp)
2499 {
2500 unsigned i;
2501
2502 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2503 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2504 }
2505
2506 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2507 {
2508 u64 *sptep;
2509 struct rmap_iterator iter;
2510
2511 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2512 drop_parent_pte(sp, sptep);
2513 }
2514
2515 static int mmu_zap_unsync_children(struct kvm *kvm,
2516 struct kvm_mmu_page *parent,
2517 struct list_head *invalid_list)
2518 {
2519 int i, zapped = 0;
2520 struct mmu_page_path parents;
2521 struct kvm_mmu_pages pages;
2522
2523 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2524 return 0;
2525
2526 while (mmu_unsync_walk(parent, &pages)) {
2527 struct kvm_mmu_page *sp;
2528
2529 for_each_sp(pages, sp, parents, i) {
2530 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2531 mmu_pages_clear_parents(&parents);
2532 zapped++;
2533 }
2534 }
2535
2536 return zapped;
2537 }
2538
2539 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2540 struct list_head *invalid_list)
2541 {
2542 int ret;
2543
2544 trace_kvm_mmu_prepare_zap_page(sp);
2545 ++kvm->stat.mmu_shadow_zapped;
2546 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2547 kvm_mmu_page_unlink_children(kvm, sp);
2548 kvm_mmu_unlink_parents(kvm, sp);
2549
2550 if (!sp->role.invalid && !sp->role.direct)
2551 unaccount_shadowed(kvm, sp);
2552
2553 if (sp->unsync)
2554 kvm_unlink_unsync_page(kvm, sp);
2555 if (!sp->root_count) {
2556 /* Count self */
2557 ret++;
2558 list_move(&sp->link, invalid_list);
2559 kvm_mod_used_mmu_pages(kvm, -1);
2560 } else {
2561 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2562
2563 /*
2564 * The obsolete pages can not be used on any vcpus.
2565 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2566 */
2567 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2568 kvm_reload_remote_mmus(kvm);
2569 }
2570
2571 sp->role.invalid = 1;
2572 return ret;
2573 }
2574
2575 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2576 struct list_head *invalid_list)
2577 {
2578 struct kvm_mmu_page *sp, *nsp;
2579
2580 if (list_empty(invalid_list))
2581 return;
2582
2583 /*
2584 * We need to make sure everyone sees our modifications to
2585 * the page tables and see changes to vcpu->mode here. The barrier
2586 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2587 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2588 *
2589 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2590 * guest mode and/or lockless shadow page table walks.
2591 */
2592 kvm_flush_remote_tlbs(kvm);
2593
2594 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2595 WARN_ON(!sp->role.invalid || sp->root_count);
2596 kvm_mmu_free_page(sp);
2597 }
2598 }
2599
2600 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2601 struct list_head *invalid_list)
2602 {
2603 struct kvm_mmu_page *sp;
2604
2605 if (list_empty(&kvm->arch.active_mmu_pages))
2606 return false;
2607
2608 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2609 struct kvm_mmu_page, link);
2610 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2611
2612 return true;
2613 }
2614
2615 /*
2616 * Changing the number of mmu pages allocated to the vm
2617 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2618 */
2619 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2620 {
2621 LIST_HEAD(invalid_list);
2622
2623 spin_lock(&kvm->mmu_lock);
2624
2625 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2626 /* Need to free some mmu pages to achieve the goal. */
2627 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2628 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2629 break;
2630
2631 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2632 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2633 }
2634
2635 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2636
2637 spin_unlock(&kvm->mmu_lock);
2638 }
2639
2640 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2641 {
2642 struct kvm_mmu_page *sp;
2643 LIST_HEAD(invalid_list);
2644 int r;
2645
2646 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2647 r = 0;
2648 spin_lock(&kvm->mmu_lock);
2649 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2650 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2651 sp->role.word);
2652 r = 1;
2653 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2654 }
2655 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2656 spin_unlock(&kvm->mmu_lock);
2657
2658 return r;
2659 }
2660 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2661
2662 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2663 {
2664 trace_kvm_mmu_unsync_page(sp);
2665 ++vcpu->kvm->stat.mmu_unsync;
2666 sp->unsync = 1;
2667
2668 kvm_mmu_mark_parents_unsync(sp);
2669 }
2670
2671 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2672 bool can_unsync)
2673 {
2674 struct kvm_mmu_page *sp;
2675
2676 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2677 return true;
2678
2679 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2680 if (!can_unsync)
2681 return true;
2682
2683 if (sp->unsync)
2684 continue;
2685
2686 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2687 kvm_unsync_page(vcpu, sp);
2688 }
2689
2690 return false;
2691 }
2692
2693 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2694 {
2695 if (pfn_valid(pfn))
2696 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2697
2698 return true;
2699 }
2700
2701 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2702 unsigned pte_access, int level,
2703 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2704 bool can_unsync, bool host_writable)
2705 {
2706 u64 spte = 0;
2707 int ret = 0;
2708 struct kvm_mmu_page *sp;
2709
2710 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2711 return 0;
2712
2713 sp = page_header(__pa(sptep));
2714 if (sp_ad_disabled(sp))
2715 spte |= shadow_acc_track_value;
2716
2717 /*
2718 * For the EPT case, shadow_present_mask is 0 if hardware
2719 * supports exec-only page table entries. In that case,
2720 * ACC_USER_MASK and shadow_user_mask are used to represent
2721 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2722 */
2723 spte |= shadow_present_mask;
2724 if (!speculative)
2725 spte |= spte_shadow_accessed_mask(spte);
2726
2727 if (pte_access & ACC_EXEC_MASK)
2728 spte |= shadow_x_mask;
2729 else
2730 spte |= shadow_nx_mask;
2731
2732 if (pte_access & ACC_USER_MASK)
2733 spte |= shadow_user_mask;
2734
2735 if (level > PT_PAGE_TABLE_LEVEL)
2736 spte |= PT_PAGE_SIZE_MASK;
2737 if (tdp_enabled)
2738 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2739 kvm_is_mmio_pfn(pfn));
2740
2741 if (host_writable)
2742 spte |= SPTE_HOST_WRITEABLE;
2743 else
2744 pte_access &= ~ACC_WRITE_MASK;
2745
2746 spte |= (u64)pfn << PAGE_SHIFT;
2747
2748 if (pte_access & ACC_WRITE_MASK) {
2749
2750 /*
2751 * Other vcpu creates new sp in the window between
2752 * mapping_level() and acquiring mmu-lock. We can
2753 * allow guest to retry the access, the mapping can
2754 * be fixed if guest refault.
2755 */
2756 if (level > PT_PAGE_TABLE_LEVEL &&
2757 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2758 goto done;
2759
2760 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2761
2762 /*
2763 * Optimization: for pte sync, if spte was writable the hash
2764 * lookup is unnecessary (and expensive). Write protection
2765 * is responsibility of mmu_get_page / kvm_sync_page.
2766 * Same reasoning can be applied to dirty page accounting.
2767 */
2768 if (!can_unsync && is_writable_pte(*sptep))
2769 goto set_pte;
2770
2771 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2772 pgprintk("%s: found shadow page for %llx, marking ro\n",
2773 __func__, gfn);
2774 ret = 1;
2775 pte_access &= ~ACC_WRITE_MASK;
2776 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2777 }
2778 }
2779
2780 if (pte_access & ACC_WRITE_MASK) {
2781 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2782 spte |= spte_shadow_dirty_mask(spte);
2783 }
2784
2785 if (speculative)
2786 spte = mark_spte_for_access_track(spte);
2787
2788 set_pte:
2789 if (mmu_spte_update(sptep, spte))
2790 kvm_flush_remote_tlbs(vcpu->kvm);
2791 done:
2792 return ret;
2793 }
2794
2795 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2796 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2797 bool speculative, bool host_writable)
2798 {
2799 int was_rmapped = 0;
2800 int rmap_count;
2801 bool emulate = false;
2802
2803 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2804 *sptep, write_fault, gfn);
2805
2806 if (is_shadow_present_pte(*sptep)) {
2807 /*
2808 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2809 * the parent of the now unreachable PTE.
2810 */
2811 if (level > PT_PAGE_TABLE_LEVEL &&
2812 !is_large_pte(*sptep)) {
2813 struct kvm_mmu_page *child;
2814 u64 pte = *sptep;
2815
2816 child = page_header(pte & PT64_BASE_ADDR_MASK);
2817 drop_parent_pte(child, sptep);
2818 kvm_flush_remote_tlbs(vcpu->kvm);
2819 } else if (pfn != spte_to_pfn(*sptep)) {
2820 pgprintk("hfn old %llx new %llx\n",
2821 spte_to_pfn(*sptep), pfn);
2822 drop_spte(vcpu->kvm, sptep);
2823 kvm_flush_remote_tlbs(vcpu->kvm);
2824 } else
2825 was_rmapped = 1;
2826 }
2827
2828 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2829 true, host_writable)) {
2830 if (write_fault)
2831 emulate = true;
2832 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2833 }
2834
2835 if (unlikely(is_mmio_spte(*sptep)))
2836 emulate = true;
2837
2838 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2839 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2840 is_large_pte(*sptep)? "2MB" : "4kB",
2841 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2842 *sptep, sptep);
2843 if (!was_rmapped && is_large_pte(*sptep))
2844 ++vcpu->kvm->stat.lpages;
2845
2846 if (is_shadow_present_pte(*sptep)) {
2847 if (!was_rmapped) {
2848 rmap_count = rmap_add(vcpu, sptep, gfn);
2849 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2850 rmap_recycle(vcpu, sptep, gfn);
2851 }
2852 }
2853
2854 kvm_release_pfn_clean(pfn);
2855
2856 return emulate;
2857 }
2858
2859 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2860 bool no_dirty_log)
2861 {
2862 struct kvm_memory_slot *slot;
2863
2864 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2865 if (!slot)
2866 return KVM_PFN_ERR_FAULT;
2867
2868 return gfn_to_pfn_memslot_atomic(slot, gfn);
2869 }
2870
2871 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2872 struct kvm_mmu_page *sp,
2873 u64 *start, u64 *end)
2874 {
2875 struct page *pages[PTE_PREFETCH_NUM];
2876 struct kvm_memory_slot *slot;
2877 unsigned access = sp->role.access;
2878 int i, ret;
2879 gfn_t gfn;
2880
2881 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2882 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2883 if (!slot)
2884 return -1;
2885
2886 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2887 if (ret <= 0)
2888 return -1;
2889
2890 for (i = 0; i < ret; i++, gfn++, start++)
2891 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2892 page_to_pfn(pages[i]), true, true);
2893
2894 return 0;
2895 }
2896
2897 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2898 struct kvm_mmu_page *sp, u64 *sptep)
2899 {
2900 u64 *spte, *start = NULL;
2901 int i;
2902
2903 WARN_ON(!sp->role.direct);
2904
2905 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2906 spte = sp->spt + i;
2907
2908 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2909 if (is_shadow_present_pte(*spte) || spte == sptep) {
2910 if (!start)
2911 continue;
2912 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2913 break;
2914 start = NULL;
2915 } else if (!start)
2916 start = spte;
2917 }
2918 }
2919
2920 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2921 {
2922 struct kvm_mmu_page *sp;
2923
2924 sp = page_header(__pa(sptep));
2925
2926 /*
2927 * Without accessed bits, there's no way to distinguish between
2928 * actually accessed translations and prefetched, so disable pte
2929 * prefetch if accessed bits aren't available.
2930 */
2931 if (sp_ad_disabled(sp))
2932 return;
2933
2934 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2935 return;
2936
2937 __direct_pte_prefetch(vcpu, sp, sptep);
2938 }
2939
2940 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2941 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2942 {
2943 struct kvm_shadow_walk_iterator iterator;
2944 struct kvm_mmu_page *sp;
2945 int emulate = 0;
2946 gfn_t pseudo_gfn;
2947
2948 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2949 return 0;
2950
2951 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2952 if (iterator.level == level) {
2953 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2954 write, level, gfn, pfn, prefault,
2955 map_writable);
2956 direct_pte_prefetch(vcpu, iterator.sptep);
2957 ++vcpu->stat.pf_fixed;
2958 break;
2959 }
2960
2961 drop_large_spte(vcpu, iterator.sptep);
2962 if (!is_shadow_present_pte(*iterator.sptep)) {
2963 u64 base_addr = iterator.addr;
2964
2965 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2966 pseudo_gfn = base_addr >> PAGE_SHIFT;
2967 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2968 iterator.level - 1, 1, ACC_ALL);
2969
2970 link_shadow_page(vcpu, iterator.sptep, sp);
2971 }
2972 }
2973 return emulate;
2974 }
2975
2976 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2977 {
2978 siginfo_t info;
2979
2980 info.si_signo = SIGBUS;
2981 info.si_errno = 0;
2982 info.si_code = BUS_MCEERR_AR;
2983 info.si_addr = (void __user *)address;
2984 info.si_addr_lsb = PAGE_SHIFT;
2985
2986 send_sig_info(SIGBUS, &info, tsk);
2987 }
2988
2989 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2990 {
2991 /*
2992 * Do not cache the mmio info caused by writing the readonly gfn
2993 * into the spte otherwise read access on readonly gfn also can
2994 * caused mmio page fault and treat it as mmio access.
2995 * Return 1 to tell kvm to emulate it.
2996 */
2997 if (pfn == KVM_PFN_ERR_RO_FAULT)
2998 return 1;
2999
3000 if (pfn == KVM_PFN_ERR_HWPOISON) {
3001 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3002 return 0;
3003 }
3004
3005 return -EFAULT;
3006 }
3007
3008 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3009 gfn_t *gfnp, kvm_pfn_t *pfnp,
3010 int *levelp)
3011 {
3012 kvm_pfn_t pfn = *pfnp;
3013 gfn_t gfn = *gfnp;
3014 int level = *levelp;
3015
3016 /*
3017 * Check if it's a transparent hugepage. If this would be an
3018 * hugetlbfs page, level wouldn't be set to
3019 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3020 * here.
3021 */
3022 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3023 level == PT_PAGE_TABLE_LEVEL &&
3024 PageTransCompoundMap(pfn_to_page(pfn)) &&
3025 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3026 unsigned long mask;
3027 /*
3028 * mmu_notifier_retry was successful and we hold the
3029 * mmu_lock here, so the pmd can't become splitting
3030 * from under us, and in turn
3031 * __split_huge_page_refcount() can't run from under
3032 * us and we can safely transfer the refcount from
3033 * PG_tail to PG_head as we switch the pfn to tail to
3034 * head.
3035 */
3036 *levelp = level = PT_DIRECTORY_LEVEL;
3037 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3038 VM_BUG_ON((gfn & mask) != (pfn & mask));
3039 if (pfn & mask) {
3040 gfn &= ~mask;
3041 *gfnp = gfn;
3042 kvm_release_pfn_clean(pfn);
3043 pfn &= ~mask;
3044 kvm_get_pfn(pfn);
3045 *pfnp = pfn;
3046 }
3047 }
3048 }
3049
3050 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3051 kvm_pfn_t pfn, unsigned access, int *ret_val)
3052 {
3053 /* The pfn is invalid, report the error! */
3054 if (unlikely(is_error_pfn(pfn))) {
3055 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3056 return true;
3057 }
3058
3059 if (unlikely(is_noslot_pfn(pfn)))
3060 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3061
3062 return false;
3063 }
3064
3065 static bool page_fault_can_be_fast(u32 error_code)
3066 {
3067 /*
3068 * Do not fix the mmio spte with invalid generation number which
3069 * need to be updated by slow page fault path.
3070 */
3071 if (unlikely(error_code & PFERR_RSVD_MASK))
3072 return false;
3073
3074 /* See if the page fault is due to an NX violation */
3075 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3076 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3077 return false;
3078
3079 /*
3080 * #PF can be fast if:
3081 * 1. The shadow page table entry is not present, which could mean that
3082 * the fault is potentially caused by access tracking (if enabled).
3083 * 2. The shadow page table entry is present and the fault
3084 * is caused by write-protect, that means we just need change the W
3085 * bit of the spte which can be done out of mmu-lock.
3086 *
3087 * However, if access tracking is disabled we know that a non-present
3088 * page must be a genuine page fault where we have to create a new SPTE.
3089 * So, if access tracking is disabled, we return true only for write
3090 * accesses to a present page.
3091 */
3092
3093 return shadow_acc_track_mask != 0 ||
3094 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3095 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3096 }
3097
3098 /*
3099 * Returns true if the SPTE was fixed successfully. Otherwise,
3100 * someone else modified the SPTE from its original value.
3101 */
3102 static bool
3103 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3104 u64 *sptep, u64 old_spte, u64 new_spte)
3105 {
3106 gfn_t gfn;
3107
3108 WARN_ON(!sp->role.direct);
3109
3110 /*
3111 * Theoretically we could also set dirty bit (and flush TLB) here in
3112 * order to eliminate unnecessary PML logging. See comments in
3113 * set_spte. But fast_page_fault is very unlikely to happen with PML
3114 * enabled, so we do not do this. This might result in the same GPA
3115 * to be logged in PML buffer again when the write really happens, and
3116 * eventually to be called by mark_page_dirty twice. But it's also no
3117 * harm. This also avoids the TLB flush needed after setting dirty bit
3118 * so non-PML cases won't be impacted.
3119 *
3120 * Compare with set_spte where instead shadow_dirty_mask is set.
3121 */
3122 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3123 return false;
3124
3125 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3126 /*
3127 * The gfn of direct spte is stable since it is
3128 * calculated by sp->gfn.
3129 */
3130 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3131 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3132 }
3133
3134 return true;
3135 }
3136
3137 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3138 {
3139 if (fault_err_code & PFERR_FETCH_MASK)
3140 return is_executable_pte(spte);
3141
3142 if (fault_err_code & PFERR_WRITE_MASK)
3143 return is_writable_pte(spte);
3144
3145 /* Fault was on Read access */
3146 return spte & PT_PRESENT_MASK;
3147 }
3148
3149 /*
3150 * Return value:
3151 * - true: let the vcpu to access on the same address again.
3152 * - false: let the real page fault path to fix it.
3153 */
3154 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3155 u32 error_code)
3156 {
3157 struct kvm_shadow_walk_iterator iterator;
3158 struct kvm_mmu_page *sp;
3159 bool fault_handled = false;
3160 u64 spte = 0ull;
3161 uint retry_count = 0;
3162
3163 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3164 return false;
3165
3166 if (!page_fault_can_be_fast(error_code))
3167 return false;
3168
3169 walk_shadow_page_lockless_begin(vcpu);
3170
3171 do {
3172 u64 new_spte;
3173
3174 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3175 if (!is_shadow_present_pte(spte) ||
3176 iterator.level < level)
3177 break;
3178
3179 sp = page_header(__pa(iterator.sptep));
3180 if (!is_last_spte(spte, sp->role.level))
3181 break;
3182
3183 /*
3184 * Check whether the memory access that caused the fault would
3185 * still cause it if it were to be performed right now. If not,
3186 * then this is a spurious fault caused by TLB lazily flushed,
3187 * or some other CPU has already fixed the PTE after the
3188 * current CPU took the fault.
3189 *
3190 * Need not check the access of upper level table entries since
3191 * they are always ACC_ALL.
3192 */
3193 if (is_access_allowed(error_code, spte)) {
3194 fault_handled = true;
3195 break;
3196 }
3197
3198 new_spte = spte;
3199
3200 if (is_access_track_spte(spte))
3201 new_spte = restore_acc_track_spte(new_spte);
3202
3203 /*
3204 * Currently, to simplify the code, write-protection can
3205 * be removed in the fast path only if the SPTE was
3206 * write-protected for dirty-logging or access tracking.
3207 */
3208 if ((error_code & PFERR_WRITE_MASK) &&
3209 spte_can_locklessly_be_made_writable(spte))
3210 {
3211 new_spte |= PT_WRITABLE_MASK;
3212
3213 /*
3214 * Do not fix write-permission on the large spte. Since
3215 * we only dirty the first page into the dirty-bitmap in
3216 * fast_pf_fix_direct_spte(), other pages are missed
3217 * if its slot has dirty logging enabled.
3218 *
3219 * Instead, we let the slow page fault path create a
3220 * normal spte to fix the access.
3221 *
3222 * See the comments in kvm_arch_commit_memory_region().
3223 */
3224 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3225 break;
3226 }
3227
3228 /* Verify that the fault can be handled in the fast path */
3229 if (new_spte == spte ||
3230 !is_access_allowed(error_code, new_spte))
3231 break;
3232
3233 /*
3234 * Currently, fast page fault only works for direct mapping
3235 * since the gfn is not stable for indirect shadow page. See
3236 * Documentation/virtual/kvm/locking.txt to get more detail.
3237 */
3238 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3239 iterator.sptep, spte,
3240 new_spte);
3241 if (fault_handled)
3242 break;
3243
3244 if (++retry_count > 4) {
3245 printk_once(KERN_WARNING
3246 "kvm: Fast #PF retrying more than 4 times.\n");
3247 break;
3248 }
3249
3250 } while (true);
3251
3252 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3253 spte, fault_handled);
3254 walk_shadow_page_lockless_end(vcpu);
3255
3256 return fault_handled;
3257 }
3258
3259 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3260 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3261 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3262
3263 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3264 gfn_t gfn, bool prefault)
3265 {
3266 int r;
3267 int level;
3268 bool force_pt_level = false;
3269 kvm_pfn_t pfn;
3270 unsigned long mmu_seq;
3271 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3272
3273 level = mapping_level(vcpu, gfn, &force_pt_level);
3274 if (likely(!force_pt_level)) {
3275 /*
3276 * This path builds a PAE pagetable - so we can map
3277 * 2mb pages at maximum. Therefore check if the level
3278 * is larger than that.
3279 */
3280 if (level > PT_DIRECTORY_LEVEL)
3281 level = PT_DIRECTORY_LEVEL;
3282
3283 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3284 }
3285
3286 if (fast_page_fault(vcpu, v, level, error_code))
3287 return 0;
3288
3289 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3290 smp_rmb();
3291
3292 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3293 return 0;
3294
3295 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3296 return r;
3297
3298 spin_lock(&vcpu->kvm->mmu_lock);
3299 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3300 goto out_unlock;
3301 make_mmu_pages_available(vcpu);
3302 if (likely(!force_pt_level))
3303 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3304 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3305 spin_unlock(&vcpu->kvm->mmu_lock);
3306
3307 return r;
3308
3309 out_unlock:
3310 spin_unlock(&vcpu->kvm->mmu_lock);
3311 kvm_release_pfn_clean(pfn);
3312 return 0;
3313 }
3314
3315
3316 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3317 {
3318 int i;
3319 struct kvm_mmu_page *sp;
3320 LIST_HEAD(invalid_list);
3321
3322 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3323 return;
3324
3325 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3326 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3327 vcpu->arch.mmu.direct_map)) {
3328 hpa_t root = vcpu->arch.mmu.root_hpa;
3329
3330 spin_lock(&vcpu->kvm->mmu_lock);
3331 sp = page_header(root);
3332 --sp->root_count;
3333 if (!sp->root_count && sp->role.invalid) {
3334 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3335 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3336 }
3337 spin_unlock(&vcpu->kvm->mmu_lock);
3338 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3339 return;
3340 }
3341
3342 spin_lock(&vcpu->kvm->mmu_lock);
3343 for (i = 0; i < 4; ++i) {
3344 hpa_t root = vcpu->arch.mmu.pae_root[i];
3345
3346 if (root) {
3347 root &= PT64_BASE_ADDR_MASK;
3348 sp = page_header(root);
3349 --sp->root_count;
3350 if (!sp->root_count && sp->role.invalid)
3351 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3352 &invalid_list);
3353 }
3354 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3355 }
3356 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3357 spin_unlock(&vcpu->kvm->mmu_lock);
3358 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3359 }
3360
3361 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3362 {
3363 int ret = 0;
3364
3365 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3366 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3367 ret = 1;
3368 }
3369
3370 return ret;
3371 }
3372
3373 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3374 {
3375 struct kvm_mmu_page *sp;
3376 unsigned i;
3377
3378 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3379 spin_lock(&vcpu->kvm->mmu_lock);
3380 make_mmu_pages_available(vcpu);
3381 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3382 ++sp->root_count;
3383 spin_unlock(&vcpu->kvm->mmu_lock);
3384 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3385 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3386 for (i = 0; i < 4; ++i) {
3387 hpa_t root = vcpu->arch.mmu.pae_root[i];
3388
3389 MMU_WARN_ON(VALID_PAGE(root));
3390 spin_lock(&vcpu->kvm->mmu_lock);
3391 make_mmu_pages_available(vcpu);
3392 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3393 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3394 root = __pa(sp->spt);
3395 ++sp->root_count;
3396 spin_unlock(&vcpu->kvm->mmu_lock);
3397 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3398 }
3399 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3400 } else
3401 BUG();
3402
3403 return 0;
3404 }
3405
3406 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3407 {
3408 struct kvm_mmu_page *sp;
3409 u64 pdptr, pm_mask;
3410 gfn_t root_gfn;
3411 int i;
3412
3413 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3414
3415 if (mmu_check_root(vcpu, root_gfn))
3416 return 1;
3417
3418 /*
3419 * Do we shadow a long mode page table? If so we need to
3420 * write-protect the guests page table root.
3421 */
3422 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3423 hpa_t root = vcpu->arch.mmu.root_hpa;
3424
3425 MMU_WARN_ON(VALID_PAGE(root));
3426
3427 spin_lock(&vcpu->kvm->mmu_lock);
3428 make_mmu_pages_available(vcpu);
3429 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3430 0, ACC_ALL);
3431 root = __pa(sp->spt);
3432 ++sp->root_count;
3433 spin_unlock(&vcpu->kvm->mmu_lock);
3434 vcpu->arch.mmu.root_hpa = root;
3435 return 0;
3436 }
3437
3438 /*
3439 * We shadow a 32 bit page table. This may be a legacy 2-level
3440 * or a PAE 3-level page table. In either case we need to be aware that
3441 * the shadow page table may be a PAE or a long mode page table.
3442 */
3443 pm_mask = PT_PRESENT_MASK;
3444 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3445 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3446
3447 for (i = 0; i < 4; ++i) {
3448 hpa_t root = vcpu->arch.mmu.pae_root[i];
3449
3450 MMU_WARN_ON(VALID_PAGE(root));
3451 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3452 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3453 if (!(pdptr & PT_PRESENT_MASK)) {
3454 vcpu->arch.mmu.pae_root[i] = 0;
3455 continue;
3456 }
3457 root_gfn = pdptr >> PAGE_SHIFT;
3458 if (mmu_check_root(vcpu, root_gfn))
3459 return 1;
3460 }
3461 spin_lock(&vcpu->kvm->mmu_lock);
3462 make_mmu_pages_available(vcpu);
3463 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3464 0, ACC_ALL);
3465 root = __pa(sp->spt);
3466 ++sp->root_count;
3467 spin_unlock(&vcpu->kvm->mmu_lock);
3468
3469 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3470 }
3471 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3472
3473 /*
3474 * If we shadow a 32 bit page table with a long mode page
3475 * table we enter this path.
3476 */
3477 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3478 if (vcpu->arch.mmu.lm_root == NULL) {
3479 /*
3480 * The additional page necessary for this is only
3481 * allocated on demand.
3482 */
3483
3484 u64 *lm_root;
3485
3486 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3487 if (lm_root == NULL)
3488 return 1;
3489
3490 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3491
3492 vcpu->arch.mmu.lm_root = lm_root;
3493 }
3494
3495 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3496 }
3497
3498 return 0;
3499 }
3500
3501 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3502 {
3503 if (vcpu->arch.mmu.direct_map)
3504 return mmu_alloc_direct_roots(vcpu);
3505 else
3506 return mmu_alloc_shadow_roots(vcpu);
3507 }
3508
3509 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3510 {
3511 int i;
3512 struct kvm_mmu_page *sp;
3513
3514 if (vcpu->arch.mmu.direct_map)
3515 return;
3516
3517 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3518 return;
3519
3520 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3521 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3522 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3523 hpa_t root = vcpu->arch.mmu.root_hpa;
3524 sp = page_header(root);
3525 mmu_sync_children(vcpu, sp);
3526 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3527 return;
3528 }
3529 for (i = 0; i < 4; ++i) {
3530 hpa_t root = vcpu->arch.mmu.pae_root[i];
3531
3532 if (root && VALID_PAGE(root)) {
3533 root &= PT64_BASE_ADDR_MASK;
3534 sp = page_header(root);
3535 mmu_sync_children(vcpu, sp);
3536 }
3537 }
3538 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3539 }
3540
3541 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3542 {
3543 spin_lock(&vcpu->kvm->mmu_lock);
3544 mmu_sync_roots(vcpu);
3545 spin_unlock(&vcpu->kvm->mmu_lock);
3546 }
3547 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3548
3549 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3550 u32 access, struct x86_exception *exception)
3551 {
3552 if (exception)
3553 exception->error_code = 0;
3554 return vaddr;
3555 }
3556
3557 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3558 u32 access,
3559 struct x86_exception *exception)
3560 {
3561 if (exception)
3562 exception->error_code = 0;
3563 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3564 }
3565
3566 static bool
3567 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3568 {
3569 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3570
3571 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3572 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3573 }
3574
3575 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3576 {
3577 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3578 }
3579
3580 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3581 {
3582 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3583 }
3584
3585 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3586 {
3587 if (direct)
3588 return vcpu_match_mmio_gpa(vcpu, addr);
3589
3590 return vcpu_match_mmio_gva(vcpu, addr);
3591 }
3592
3593 /* return true if reserved bit is detected on spte. */
3594 static bool
3595 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3596 {
3597 struct kvm_shadow_walk_iterator iterator;
3598 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3599 int root, leaf;
3600 bool reserved = false;
3601
3602 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3603 goto exit;
3604
3605 walk_shadow_page_lockless_begin(vcpu);
3606
3607 for (shadow_walk_init(&iterator, vcpu, addr),
3608 leaf = root = iterator.level;
3609 shadow_walk_okay(&iterator);
3610 __shadow_walk_next(&iterator, spte)) {
3611 spte = mmu_spte_get_lockless(iterator.sptep);
3612
3613 sptes[leaf - 1] = spte;
3614 leaf--;
3615
3616 if (!is_shadow_present_pte(spte))
3617 break;
3618
3619 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3620 iterator.level);
3621 }
3622
3623 walk_shadow_page_lockless_end(vcpu);
3624
3625 if (reserved) {
3626 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3627 __func__, addr);
3628 while (root > leaf) {
3629 pr_err("------ spte 0x%llx level %d.\n",
3630 sptes[root - 1], root);
3631 root--;
3632 }
3633 }
3634 exit:
3635 *sptep = spte;
3636 return reserved;
3637 }
3638
3639 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3640 {
3641 u64 spte;
3642 bool reserved;
3643
3644 if (mmio_info_in_cache(vcpu, addr, direct))
3645 return RET_MMIO_PF_EMULATE;
3646
3647 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3648 if (WARN_ON(reserved))
3649 return RET_MMIO_PF_BUG;
3650
3651 if (is_mmio_spte(spte)) {
3652 gfn_t gfn = get_mmio_spte_gfn(spte);
3653 unsigned access = get_mmio_spte_access(spte);
3654
3655 if (!check_mmio_spte(vcpu, spte))
3656 return RET_MMIO_PF_INVALID;
3657
3658 if (direct)
3659 addr = 0;
3660
3661 trace_handle_mmio_page_fault(addr, gfn, access);
3662 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3663 return RET_MMIO_PF_EMULATE;
3664 }
3665
3666 /*
3667 * If the page table is zapped by other cpus, let CPU fault again on
3668 * the address.
3669 */
3670 return RET_MMIO_PF_RETRY;
3671 }
3672 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3673
3674 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3675 u32 error_code, gfn_t gfn)
3676 {
3677 if (unlikely(error_code & PFERR_RSVD_MASK))
3678 return false;
3679
3680 if (!(error_code & PFERR_PRESENT_MASK) ||
3681 !(error_code & PFERR_WRITE_MASK))
3682 return false;
3683
3684 /*
3685 * guest is writing the page which is write tracked which can
3686 * not be fixed by page fault handler.
3687 */
3688 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3689 return true;
3690
3691 return false;
3692 }
3693
3694 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3695 {
3696 struct kvm_shadow_walk_iterator iterator;
3697 u64 spte;
3698
3699 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3700 return;
3701
3702 walk_shadow_page_lockless_begin(vcpu);
3703 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3704 clear_sp_write_flooding_count(iterator.sptep);
3705 if (!is_shadow_present_pte(spte))
3706 break;
3707 }
3708 walk_shadow_page_lockless_end(vcpu);
3709 }
3710
3711 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3712 u32 error_code, bool prefault)
3713 {
3714 gfn_t gfn = gva >> PAGE_SHIFT;
3715 int r;
3716
3717 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3718
3719 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3720 return 1;
3721
3722 r = mmu_topup_memory_caches(vcpu);
3723 if (r)
3724 return r;
3725
3726 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3727
3728
3729 return nonpaging_map(vcpu, gva & PAGE_MASK,
3730 error_code, gfn, prefault);
3731 }
3732
3733 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3734 {
3735 struct kvm_arch_async_pf arch;
3736
3737 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3738 arch.gfn = gfn;
3739 arch.direct_map = vcpu->arch.mmu.direct_map;
3740 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3741
3742 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3743 }
3744
3745 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3746 {
3747 if (unlikely(!lapic_in_kernel(vcpu) ||
3748 kvm_event_needs_reinjection(vcpu)))
3749 return false;
3750
3751 if (is_guest_mode(vcpu))
3752 return false;
3753
3754 return kvm_x86_ops->interrupt_allowed(vcpu);
3755 }
3756
3757 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3758 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3759 {
3760 struct kvm_memory_slot *slot;
3761 bool async;
3762
3763 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3764 async = false;
3765 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3766 if (!async)
3767 return false; /* *pfn has correct page already */
3768
3769 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3770 trace_kvm_try_async_get_page(gva, gfn);
3771 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3772 trace_kvm_async_pf_doublefault(gva, gfn);
3773 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3774 return true;
3775 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3776 return true;
3777 }
3778
3779 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3780 return false;
3781 }
3782
3783 static bool
3784 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3785 {
3786 int page_num = KVM_PAGES_PER_HPAGE(level);
3787
3788 gfn &= ~(page_num - 1);
3789
3790 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3791 }
3792
3793 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3794 bool prefault)
3795 {
3796 kvm_pfn_t pfn;
3797 int r;
3798 int level;
3799 bool force_pt_level;
3800 gfn_t gfn = gpa >> PAGE_SHIFT;
3801 unsigned long mmu_seq;
3802 int write = error_code & PFERR_WRITE_MASK;
3803 bool map_writable;
3804
3805 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3806
3807 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3808 return 1;
3809
3810 r = mmu_topup_memory_caches(vcpu);
3811 if (r)
3812 return r;
3813
3814 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3815 PT_DIRECTORY_LEVEL);
3816 level = mapping_level(vcpu, gfn, &force_pt_level);
3817 if (likely(!force_pt_level)) {
3818 if (level > PT_DIRECTORY_LEVEL &&
3819 !check_hugepage_cache_consistency(vcpu, gfn, level))
3820 level = PT_DIRECTORY_LEVEL;
3821 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3822 }
3823
3824 if (fast_page_fault(vcpu, gpa, level, error_code))
3825 return 0;
3826
3827 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3828 smp_rmb();
3829
3830 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3831 return 0;
3832
3833 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3834 return r;
3835
3836 spin_lock(&vcpu->kvm->mmu_lock);
3837 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3838 goto out_unlock;
3839 make_mmu_pages_available(vcpu);
3840 if (likely(!force_pt_level))
3841 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3842 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3843 spin_unlock(&vcpu->kvm->mmu_lock);
3844
3845 return r;
3846
3847 out_unlock:
3848 spin_unlock(&vcpu->kvm->mmu_lock);
3849 kvm_release_pfn_clean(pfn);
3850 return 0;
3851 }
3852
3853 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3854 struct kvm_mmu *context)
3855 {
3856 context->page_fault = nonpaging_page_fault;
3857 context->gva_to_gpa = nonpaging_gva_to_gpa;
3858 context->sync_page = nonpaging_sync_page;
3859 context->invlpg = nonpaging_invlpg;
3860 context->update_pte = nonpaging_update_pte;
3861 context->root_level = 0;
3862 context->shadow_root_level = PT32E_ROOT_LEVEL;
3863 context->root_hpa = INVALID_PAGE;
3864 context->direct_map = true;
3865 context->nx = false;
3866 }
3867
3868 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3869 {
3870 mmu_free_roots(vcpu);
3871 }
3872
3873 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3874 {
3875 return kvm_read_cr3(vcpu);
3876 }
3877
3878 static void inject_page_fault(struct kvm_vcpu *vcpu,
3879 struct x86_exception *fault)
3880 {
3881 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3882 }
3883
3884 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3885 unsigned access, int *nr_present)
3886 {
3887 if (unlikely(is_mmio_spte(*sptep))) {
3888 if (gfn != get_mmio_spte_gfn(*sptep)) {
3889 mmu_spte_clear_no_track(sptep);
3890 return true;
3891 }
3892
3893 (*nr_present)++;
3894 mark_mmio_spte(vcpu, sptep, gfn, access);
3895 return true;
3896 }
3897
3898 return false;
3899 }
3900
3901 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3902 unsigned level, unsigned gpte)
3903 {
3904 /*
3905 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3906 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3907 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3908 */
3909 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3910
3911 /*
3912 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3913 * If it is clear, there are no large pages at this level, so clear
3914 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3915 */
3916 gpte &= level - mmu->last_nonleaf_level;
3917
3918 return gpte & PT_PAGE_SIZE_MASK;
3919 }
3920
3921 #define PTTYPE_EPT 18 /* arbitrary */
3922 #define PTTYPE PTTYPE_EPT
3923 #include "paging_tmpl.h"
3924 #undef PTTYPE
3925
3926 #define PTTYPE 64
3927 #include "paging_tmpl.h"
3928 #undef PTTYPE
3929
3930 #define PTTYPE 32
3931 #include "paging_tmpl.h"
3932 #undef PTTYPE
3933
3934 static void
3935 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3936 struct rsvd_bits_validate *rsvd_check,
3937 int maxphyaddr, int level, bool nx, bool gbpages,
3938 bool pse, bool amd)
3939 {
3940 u64 exb_bit_rsvd = 0;
3941 u64 gbpages_bit_rsvd = 0;
3942 u64 nonleaf_bit8_rsvd = 0;
3943
3944 rsvd_check->bad_mt_xwr = 0;
3945
3946 if (!nx)
3947 exb_bit_rsvd = rsvd_bits(63, 63);
3948 if (!gbpages)
3949 gbpages_bit_rsvd = rsvd_bits(7, 7);
3950
3951 /*
3952 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3953 * leaf entries) on AMD CPUs only.
3954 */
3955 if (amd)
3956 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3957
3958 switch (level) {
3959 case PT32_ROOT_LEVEL:
3960 /* no rsvd bits for 2 level 4K page table entries */
3961 rsvd_check->rsvd_bits_mask[0][1] = 0;
3962 rsvd_check->rsvd_bits_mask[0][0] = 0;
3963 rsvd_check->rsvd_bits_mask[1][0] =
3964 rsvd_check->rsvd_bits_mask[0][0];
3965
3966 if (!pse) {
3967 rsvd_check->rsvd_bits_mask[1][1] = 0;
3968 break;
3969 }
3970
3971 if (is_cpuid_PSE36())
3972 /* 36bits PSE 4MB page */
3973 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3974 else
3975 /* 32 bits PSE 4MB page */
3976 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3977 break;
3978 case PT32E_ROOT_LEVEL:
3979 rsvd_check->rsvd_bits_mask[0][2] =
3980 rsvd_bits(maxphyaddr, 63) |
3981 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3982 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3983 rsvd_bits(maxphyaddr, 62); /* PDE */
3984 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3985 rsvd_bits(maxphyaddr, 62); /* PTE */
3986 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3987 rsvd_bits(maxphyaddr, 62) |
3988 rsvd_bits(13, 20); /* large page */
3989 rsvd_check->rsvd_bits_mask[1][0] =
3990 rsvd_check->rsvd_bits_mask[0][0];
3991 break;
3992 case PT64_ROOT_LEVEL:
3993 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3994 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3995 rsvd_bits(maxphyaddr, 51);
3996 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3997 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3998 rsvd_bits(maxphyaddr, 51);
3999 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4000 rsvd_bits(maxphyaddr, 51);
4001 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4002 rsvd_bits(maxphyaddr, 51);
4003 rsvd_check->rsvd_bits_mask[1][3] =
4004 rsvd_check->rsvd_bits_mask[0][3];
4005 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4006 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4007 rsvd_bits(13, 29);
4008 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4009 rsvd_bits(maxphyaddr, 51) |
4010 rsvd_bits(13, 20); /* large page */
4011 rsvd_check->rsvd_bits_mask[1][0] =
4012 rsvd_check->rsvd_bits_mask[0][0];
4013 break;
4014 }
4015 }
4016
4017 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4018 struct kvm_mmu *context)
4019 {
4020 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4021 cpuid_maxphyaddr(vcpu), context->root_level,
4022 context->nx, guest_cpuid_has_gbpages(vcpu),
4023 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4024 }
4025
4026 static void
4027 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4028 int maxphyaddr, bool execonly)
4029 {
4030 u64 bad_mt_xwr;
4031
4032 rsvd_check->rsvd_bits_mask[0][3] =
4033 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4034 rsvd_check->rsvd_bits_mask[0][2] =
4035 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4036 rsvd_check->rsvd_bits_mask[0][1] =
4037 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4038 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4039
4040 /* large page */
4041 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4042 rsvd_check->rsvd_bits_mask[1][2] =
4043 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4044 rsvd_check->rsvd_bits_mask[1][1] =
4045 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4046 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4047
4048 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4049 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4050 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4051 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4052 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4053 if (!execonly) {
4054 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4055 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4056 }
4057 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4058 }
4059
4060 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4061 struct kvm_mmu *context, bool execonly)
4062 {
4063 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4064 cpuid_maxphyaddr(vcpu), execonly);
4065 }
4066
4067 /*
4068 * the page table on host is the shadow page table for the page
4069 * table in guest or amd nested guest, its mmu features completely
4070 * follow the features in guest.
4071 */
4072 void
4073 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4074 {
4075 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4076
4077 /*
4078 * Passing "true" to the last argument is okay; it adds a check
4079 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4080 */
4081 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4082 boot_cpu_data.x86_phys_bits,
4083 context->shadow_root_level, uses_nx,
4084 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
4085 true);
4086 }
4087 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4088
4089 static inline bool boot_cpu_is_amd(void)
4090 {
4091 WARN_ON_ONCE(!tdp_enabled);
4092 return shadow_x_mask == 0;
4093 }
4094
4095 /*
4096 * the direct page table on host, use as much mmu features as
4097 * possible, however, kvm currently does not do execution-protection.
4098 */
4099 static void
4100 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4101 struct kvm_mmu *context)
4102 {
4103 if (boot_cpu_is_amd())
4104 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
4105 boot_cpu_data.x86_phys_bits,
4106 context->shadow_root_level, false,
4107 boot_cpu_has(X86_FEATURE_GBPAGES),
4108 true, true);
4109 else
4110 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4111 boot_cpu_data.x86_phys_bits,
4112 false);
4113
4114 }
4115
4116 /*
4117 * as the comments in reset_shadow_zero_bits_mask() except it
4118 * is the shadow page table for intel nested guest.
4119 */
4120 static void
4121 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4122 struct kvm_mmu *context, bool execonly)
4123 {
4124 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4125 boot_cpu_data.x86_phys_bits, execonly);
4126 }
4127
4128 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4129 struct kvm_mmu *mmu, bool ept)
4130 {
4131 unsigned bit, byte, pfec;
4132 u8 map;
4133 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
4134
4135 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4136 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4137 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4138 pfec = byte << 1;
4139 map = 0;
4140 wf = pfec & PFERR_WRITE_MASK;
4141 uf = pfec & PFERR_USER_MASK;
4142 ff = pfec & PFERR_FETCH_MASK;
4143 /*
4144 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
4145 * subject to SMAP restrictions, and cleared otherwise. The
4146 * bit is only meaningful if the SMAP bit is set in CR4.
4147 */
4148 smapf = !(pfec & PFERR_RSVD_MASK);
4149 for (bit = 0; bit < 8; ++bit) {
4150 x = bit & ACC_EXEC_MASK;
4151 w = bit & ACC_WRITE_MASK;
4152 u = bit & ACC_USER_MASK;
4153
4154 if (!ept) {
4155 /* Not really needed: !nx will cause pte.nx to fault */
4156 x |= !mmu->nx;
4157 /* Allow supervisor writes if !cr0.wp */
4158 w |= !is_write_protection(vcpu) && !uf;
4159 /* Disallow supervisor fetches of user code if cr4.smep */
4160 x &= !(cr4_smep && u && !uf);
4161
4162 /*
4163 * SMAP:kernel-mode data accesses from user-mode
4164 * mappings should fault. A fault is considered
4165 * as a SMAP violation if all of the following
4166 * conditions are ture:
4167 * - X86_CR4_SMAP is set in CR4
4168 * - A user page is accessed
4169 * - Page fault in kernel mode
4170 * - if CPL = 3 or X86_EFLAGS_AC is clear
4171 *
4172 * Here, we cover the first three conditions.
4173 * The fourth is computed dynamically in
4174 * permission_fault() and is in smapf.
4175 *
4176 * Also, SMAP does not affect instruction
4177 * fetches, add the !ff check here to make it
4178 * clearer.
4179 */
4180 smap = cr4_smap && u && !uf && !ff;
4181 }
4182
4183 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
4184 (smapf && smap);
4185 map |= fault << bit;
4186 }
4187 mmu->permissions[byte] = map;
4188 }
4189 }
4190
4191 /*
4192 * PKU is an additional mechanism by which the paging controls access to
4193 * user-mode addresses based on the value in the PKRU register. Protection
4194 * key violations are reported through a bit in the page fault error code.
4195 * Unlike other bits of the error code, the PK bit is not known at the
4196 * call site of e.g. gva_to_gpa; it must be computed directly in
4197 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4198 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4199 *
4200 * In particular the following conditions come from the error code, the
4201 * page tables and the machine state:
4202 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4203 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4204 * - PK is always zero if U=0 in the page tables
4205 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4206 *
4207 * The PKRU bitmask caches the result of these four conditions. The error
4208 * code (minus the P bit) and the page table's U bit form an index into the
4209 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4210 * with the two bits of the PKRU register corresponding to the protection key.
4211 * For the first three conditions above the bits will be 00, thus masking
4212 * away both AD and WD. For all reads or if the last condition holds, WD
4213 * only will be masked away.
4214 */
4215 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4216 bool ept)
4217 {
4218 unsigned bit;
4219 bool wp;
4220
4221 if (ept) {
4222 mmu->pkru_mask = 0;
4223 return;
4224 }
4225
4226 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4227 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4228 mmu->pkru_mask = 0;
4229 return;
4230 }
4231
4232 wp = is_write_protection(vcpu);
4233
4234 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4235 unsigned pfec, pkey_bits;
4236 bool check_pkey, check_write, ff, uf, wf, pte_user;
4237
4238 pfec = bit << 1;
4239 ff = pfec & PFERR_FETCH_MASK;
4240 uf = pfec & PFERR_USER_MASK;
4241 wf = pfec & PFERR_WRITE_MASK;
4242
4243 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4244 pte_user = pfec & PFERR_RSVD_MASK;
4245
4246 /*
4247 * Only need to check the access which is not an
4248 * instruction fetch and is to a user page.
4249 */
4250 check_pkey = (!ff && pte_user);
4251 /*
4252 * write access is controlled by PKRU if it is a
4253 * user access or CR0.WP = 1.
4254 */
4255 check_write = check_pkey && wf && (uf || wp);
4256
4257 /* PKRU.AD stops both read and write access. */
4258 pkey_bits = !!check_pkey;
4259 /* PKRU.WD stops write access. */
4260 pkey_bits |= (!!check_write) << 1;
4261
4262 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4263 }
4264 }
4265
4266 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4267 {
4268 unsigned root_level = mmu->root_level;
4269
4270 mmu->last_nonleaf_level = root_level;
4271 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4272 mmu->last_nonleaf_level++;
4273 }
4274
4275 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4276 struct kvm_mmu *context,
4277 int level)
4278 {
4279 context->nx = is_nx(vcpu);
4280 context->root_level = level;
4281
4282 reset_rsvds_bits_mask(vcpu, context);
4283 update_permission_bitmask(vcpu, context, false);
4284 update_pkru_bitmask(vcpu, context, false);
4285 update_last_nonleaf_level(vcpu, context);
4286
4287 MMU_WARN_ON(!is_pae(vcpu));
4288 context->page_fault = paging64_page_fault;
4289 context->gva_to_gpa = paging64_gva_to_gpa;
4290 context->sync_page = paging64_sync_page;
4291 context->invlpg = paging64_invlpg;
4292 context->update_pte = paging64_update_pte;
4293 context->shadow_root_level = level;
4294 context->root_hpa = INVALID_PAGE;
4295 context->direct_map = false;
4296 }
4297
4298 static void paging64_init_context(struct kvm_vcpu *vcpu,
4299 struct kvm_mmu *context)
4300 {
4301 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4302 }
4303
4304 static void paging32_init_context(struct kvm_vcpu *vcpu,
4305 struct kvm_mmu *context)
4306 {
4307 context->nx = false;
4308 context->root_level = PT32_ROOT_LEVEL;
4309
4310 reset_rsvds_bits_mask(vcpu, context);
4311 update_permission_bitmask(vcpu, context, false);
4312 update_pkru_bitmask(vcpu, context, false);
4313 update_last_nonleaf_level(vcpu, context);
4314
4315 context->page_fault = paging32_page_fault;
4316 context->gva_to_gpa = paging32_gva_to_gpa;
4317 context->sync_page = paging32_sync_page;
4318 context->invlpg = paging32_invlpg;
4319 context->update_pte = paging32_update_pte;
4320 context->shadow_root_level = PT32E_ROOT_LEVEL;
4321 context->root_hpa = INVALID_PAGE;
4322 context->direct_map = false;
4323 }
4324
4325 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4326 struct kvm_mmu *context)
4327 {
4328 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4329 }
4330
4331 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4332 {
4333 struct kvm_mmu *context = &vcpu->arch.mmu;
4334
4335 context->base_role.word = 0;
4336 context->base_role.smm = is_smm(vcpu);
4337 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4338 context->page_fault = tdp_page_fault;
4339 context->sync_page = nonpaging_sync_page;
4340 context->invlpg = nonpaging_invlpg;
4341 context->update_pte = nonpaging_update_pte;
4342 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4343 context->root_hpa = INVALID_PAGE;
4344 context->direct_map = true;
4345 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4346 context->get_cr3 = get_cr3;
4347 context->get_pdptr = kvm_pdptr_read;
4348 context->inject_page_fault = kvm_inject_page_fault;
4349
4350 if (!is_paging(vcpu)) {
4351 context->nx = false;
4352 context->gva_to_gpa = nonpaging_gva_to_gpa;
4353 context->root_level = 0;
4354 } else if (is_long_mode(vcpu)) {
4355 context->nx = is_nx(vcpu);
4356 context->root_level = PT64_ROOT_LEVEL;
4357 reset_rsvds_bits_mask(vcpu, context);
4358 context->gva_to_gpa = paging64_gva_to_gpa;
4359 } else if (is_pae(vcpu)) {
4360 context->nx = is_nx(vcpu);
4361 context->root_level = PT32E_ROOT_LEVEL;
4362 reset_rsvds_bits_mask(vcpu, context);
4363 context->gva_to_gpa = paging64_gva_to_gpa;
4364 } else {
4365 context->nx = false;
4366 context->root_level = PT32_ROOT_LEVEL;
4367 reset_rsvds_bits_mask(vcpu, context);
4368 context->gva_to_gpa = paging32_gva_to_gpa;
4369 }
4370
4371 update_permission_bitmask(vcpu, context, false);
4372 update_pkru_bitmask(vcpu, context, false);
4373 update_last_nonleaf_level(vcpu, context);
4374 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4375 }
4376
4377 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4378 {
4379 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4380 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4381 struct kvm_mmu *context = &vcpu->arch.mmu;
4382
4383 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4384
4385 if (!is_paging(vcpu))
4386 nonpaging_init_context(vcpu, context);
4387 else if (is_long_mode(vcpu))
4388 paging64_init_context(vcpu, context);
4389 else if (is_pae(vcpu))
4390 paging32E_init_context(vcpu, context);
4391 else
4392 paging32_init_context(vcpu, context);
4393
4394 context->base_role.nxe = is_nx(vcpu);
4395 context->base_role.cr4_pae = !!is_pae(vcpu);
4396 context->base_role.cr0_wp = is_write_protection(vcpu);
4397 context->base_role.smep_andnot_wp
4398 = smep && !is_write_protection(vcpu);
4399 context->base_role.smap_andnot_wp
4400 = smap && !is_write_protection(vcpu);
4401 context->base_role.smm = is_smm(vcpu);
4402 reset_shadow_zero_bits_mask(vcpu, context);
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4405
4406 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4407 bool accessed_dirty)
4408 {
4409 struct kvm_mmu *context = &vcpu->arch.mmu;
4410
4411 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4412
4413 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4414
4415 context->nx = true;
4416 context->ept_ad = accessed_dirty;
4417 context->page_fault = ept_page_fault;
4418 context->gva_to_gpa = ept_gva_to_gpa;
4419 context->sync_page = ept_sync_page;
4420 context->invlpg = ept_invlpg;
4421 context->update_pte = ept_update_pte;
4422 context->root_level = context->shadow_root_level;
4423 context->root_hpa = INVALID_PAGE;
4424 context->direct_map = false;
4425 context->base_role.ad_disabled = !accessed_dirty;
4426
4427 update_permission_bitmask(vcpu, context, true);
4428 update_pkru_bitmask(vcpu, context, true);
4429 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4430 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4431 }
4432 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4433
4434 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4435 {
4436 struct kvm_mmu *context = &vcpu->arch.mmu;
4437
4438 kvm_init_shadow_mmu(vcpu);
4439 context->set_cr3 = kvm_x86_ops->set_cr3;
4440 context->get_cr3 = get_cr3;
4441 context->get_pdptr = kvm_pdptr_read;
4442 context->inject_page_fault = kvm_inject_page_fault;
4443 }
4444
4445 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4446 {
4447 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4448
4449 g_context->get_cr3 = get_cr3;
4450 g_context->get_pdptr = kvm_pdptr_read;
4451 g_context->inject_page_fault = kvm_inject_page_fault;
4452
4453 /*
4454 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4455 * L1's nested page tables (e.g. EPT12). The nested translation
4456 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4457 * L2's page tables as the first level of translation and L1's
4458 * nested page tables as the second level of translation. Basically
4459 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4460 */
4461 if (!is_paging(vcpu)) {
4462 g_context->nx = false;
4463 g_context->root_level = 0;
4464 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4465 } else if (is_long_mode(vcpu)) {
4466 g_context->nx = is_nx(vcpu);
4467 g_context->root_level = PT64_ROOT_LEVEL;
4468 reset_rsvds_bits_mask(vcpu, g_context);
4469 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4470 } else if (is_pae(vcpu)) {
4471 g_context->nx = is_nx(vcpu);
4472 g_context->root_level = PT32E_ROOT_LEVEL;
4473 reset_rsvds_bits_mask(vcpu, g_context);
4474 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4475 } else {
4476 g_context->nx = false;
4477 g_context->root_level = PT32_ROOT_LEVEL;
4478 reset_rsvds_bits_mask(vcpu, g_context);
4479 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4480 }
4481
4482 update_permission_bitmask(vcpu, g_context, false);
4483 update_pkru_bitmask(vcpu, g_context, false);
4484 update_last_nonleaf_level(vcpu, g_context);
4485 }
4486
4487 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4488 {
4489 if (mmu_is_nested(vcpu))
4490 init_kvm_nested_mmu(vcpu);
4491 else if (tdp_enabled)
4492 init_kvm_tdp_mmu(vcpu);
4493 else
4494 init_kvm_softmmu(vcpu);
4495 }
4496
4497 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4498 {
4499 kvm_mmu_unload(vcpu);
4500 init_kvm_mmu(vcpu);
4501 }
4502 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4503
4504 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4505 {
4506 int r;
4507
4508 r = mmu_topup_memory_caches(vcpu);
4509 if (r)
4510 goto out;
4511 r = mmu_alloc_roots(vcpu);
4512 kvm_mmu_sync_roots(vcpu);
4513 if (r)
4514 goto out;
4515 /* set_cr3() should ensure TLB has been flushed */
4516 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4517 out:
4518 return r;
4519 }
4520 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4521
4522 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4523 {
4524 mmu_free_roots(vcpu);
4525 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4526 }
4527 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4528
4529 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4530 struct kvm_mmu_page *sp, u64 *spte,
4531 const void *new)
4532 {
4533 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4534 ++vcpu->kvm->stat.mmu_pde_zapped;
4535 return;
4536 }
4537
4538 ++vcpu->kvm->stat.mmu_pte_updated;
4539 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4540 }
4541
4542 static bool need_remote_flush(u64 old, u64 new)
4543 {
4544 if (!is_shadow_present_pte(old))
4545 return false;
4546 if (!is_shadow_present_pte(new))
4547 return true;
4548 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4549 return true;
4550 old ^= shadow_nx_mask;
4551 new ^= shadow_nx_mask;
4552 return (old & ~new & PT64_PERM_MASK) != 0;
4553 }
4554
4555 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4556 const u8 *new, int *bytes)
4557 {
4558 u64 gentry;
4559 int r;
4560
4561 /*
4562 * Assume that the pte write on a page table of the same type
4563 * as the current vcpu paging mode since we update the sptes only
4564 * when they have the same mode.
4565 */
4566 if (is_pae(vcpu) && *bytes == 4) {
4567 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4568 *gpa &= ~(gpa_t)7;
4569 *bytes = 8;
4570 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4571 if (r)
4572 gentry = 0;
4573 new = (const u8 *)&gentry;
4574 }
4575
4576 switch (*bytes) {
4577 case 4:
4578 gentry = *(const u32 *)new;
4579 break;
4580 case 8:
4581 gentry = *(const u64 *)new;
4582 break;
4583 default:
4584 gentry = 0;
4585 break;
4586 }
4587
4588 return gentry;
4589 }
4590
4591 /*
4592 * If we're seeing too many writes to a page, it may no longer be a page table,
4593 * or we may be forking, in which case it is better to unmap the page.
4594 */
4595 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4596 {
4597 /*
4598 * Skip write-flooding detected for the sp whose level is 1, because
4599 * it can become unsync, then the guest page is not write-protected.
4600 */
4601 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4602 return false;
4603
4604 atomic_inc(&sp->write_flooding_count);
4605 return atomic_read(&sp->write_flooding_count) >= 3;
4606 }
4607
4608 /*
4609 * Misaligned accesses are too much trouble to fix up; also, they usually
4610 * indicate a page is not used as a page table.
4611 */
4612 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4613 int bytes)
4614 {
4615 unsigned offset, pte_size, misaligned;
4616
4617 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4618 gpa, bytes, sp->role.word);
4619
4620 offset = offset_in_page(gpa);
4621 pte_size = sp->role.cr4_pae ? 8 : 4;
4622
4623 /*
4624 * Sometimes, the OS only writes the last one bytes to update status
4625 * bits, for example, in linux, andb instruction is used in clear_bit().
4626 */
4627 if (!(offset & (pte_size - 1)) && bytes == 1)
4628 return false;
4629
4630 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4631 misaligned |= bytes < 4;
4632
4633 return misaligned;
4634 }
4635
4636 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4637 {
4638 unsigned page_offset, quadrant;
4639 u64 *spte;
4640 int level;
4641
4642 page_offset = offset_in_page(gpa);
4643 level = sp->role.level;
4644 *nspte = 1;
4645 if (!sp->role.cr4_pae) {
4646 page_offset <<= 1; /* 32->64 */
4647 /*
4648 * A 32-bit pde maps 4MB while the shadow pdes map
4649 * only 2MB. So we need to double the offset again
4650 * and zap two pdes instead of one.
4651 */
4652 if (level == PT32_ROOT_LEVEL) {
4653 page_offset &= ~7; /* kill rounding error */
4654 page_offset <<= 1;
4655 *nspte = 2;
4656 }
4657 quadrant = page_offset >> PAGE_SHIFT;
4658 page_offset &= ~PAGE_MASK;
4659 if (quadrant != sp->role.quadrant)
4660 return NULL;
4661 }
4662
4663 spte = &sp->spt[page_offset / sizeof(*spte)];
4664 return spte;
4665 }
4666
4667 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4668 const u8 *new, int bytes,
4669 struct kvm_page_track_notifier_node *node)
4670 {
4671 gfn_t gfn = gpa >> PAGE_SHIFT;
4672 struct kvm_mmu_page *sp;
4673 LIST_HEAD(invalid_list);
4674 u64 entry, gentry, *spte;
4675 int npte;
4676 bool remote_flush, local_flush;
4677 union kvm_mmu_page_role mask = { };
4678
4679 mask.cr0_wp = 1;
4680 mask.cr4_pae = 1;
4681 mask.nxe = 1;
4682 mask.smep_andnot_wp = 1;
4683 mask.smap_andnot_wp = 1;
4684 mask.smm = 1;
4685 mask.ad_disabled = 1;
4686
4687 /*
4688 * If we don't have indirect shadow pages, it means no page is
4689 * write-protected, so we can exit simply.
4690 */
4691 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4692 return;
4693
4694 remote_flush = local_flush = false;
4695
4696 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4697
4698 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4699
4700 /*
4701 * No need to care whether allocation memory is successful
4702 * or not since pte prefetch is skiped if it does not have
4703 * enough objects in the cache.
4704 */
4705 mmu_topup_memory_caches(vcpu);
4706
4707 spin_lock(&vcpu->kvm->mmu_lock);
4708 ++vcpu->kvm->stat.mmu_pte_write;
4709 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4710
4711 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4712 if (detect_write_misaligned(sp, gpa, bytes) ||
4713 detect_write_flooding(sp)) {
4714 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4715 ++vcpu->kvm->stat.mmu_flooded;
4716 continue;
4717 }
4718
4719 spte = get_written_sptes(sp, gpa, &npte);
4720 if (!spte)
4721 continue;
4722
4723 local_flush = true;
4724 while (npte--) {
4725 entry = *spte;
4726 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4727 if (gentry &&
4728 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4729 & mask.word) && rmap_can_add(vcpu))
4730 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4731 if (need_remote_flush(entry, *spte))
4732 remote_flush = true;
4733 ++spte;
4734 }
4735 }
4736 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4737 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4738 spin_unlock(&vcpu->kvm->mmu_lock);
4739 }
4740
4741 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4742 {
4743 gpa_t gpa;
4744 int r;
4745
4746 if (vcpu->arch.mmu.direct_map)
4747 return 0;
4748
4749 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4750
4751 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4752
4753 return r;
4754 }
4755 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4756
4757 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4758 {
4759 LIST_HEAD(invalid_list);
4760
4761 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4762 return;
4763
4764 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4765 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4766 break;
4767
4768 ++vcpu->kvm->stat.mmu_recycled;
4769 }
4770 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4771 }
4772
4773 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
4774 void *insn, int insn_len)
4775 {
4776 int r, emulation_type = EMULTYPE_RETRY;
4777 enum emulation_result er;
4778 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4779
4780 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4781 r = handle_mmio_page_fault(vcpu, cr2, direct);
4782 if (r == RET_MMIO_PF_EMULATE) {
4783 emulation_type = 0;
4784 goto emulate;
4785 }
4786 if (r == RET_MMIO_PF_RETRY)
4787 return 1;
4788 if (r < 0)
4789 return r;
4790 }
4791
4792 r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
4793 false);
4794 if (r < 0)
4795 return r;
4796 if (!r)
4797 return 1;
4798
4799 /*
4800 * Before emulating the instruction, check if the error code
4801 * was due to a RO violation while translating the guest page.
4802 * This can occur when using nested virtualization with nested
4803 * paging in both guests. If true, we simply unprotect the page
4804 * and resume the guest.
4805 *
4806 * Note: AMD only (since it supports the PFERR_GUEST_PAGE_MASK used
4807 * in PFERR_NEXT_GUEST_PAGE)
4808 */
4809 if (error_code == PFERR_NESTED_GUEST_PAGE) {
4810 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
4811 return 1;
4812 }
4813
4814 if (mmio_info_in_cache(vcpu, cr2, direct))
4815 emulation_type = 0;
4816 emulate:
4817 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4818
4819 switch (er) {
4820 case EMULATE_DONE:
4821 return 1;
4822 case EMULATE_USER_EXIT:
4823 ++vcpu->stat.mmio_exits;
4824 /* fall through */
4825 case EMULATE_FAIL:
4826 return 0;
4827 default:
4828 BUG();
4829 }
4830 }
4831 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4832
4833 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4834 {
4835 vcpu->arch.mmu.invlpg(vcpu, gva);
4836 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4837 ++vcpu->stat.invlpg;
4838 }
4839 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4840
4841 void kvm_enable_tdp(void)
4842 {
4843 tdp_enabled = true;
4844 }
4845 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4846
4847 void kvm_disable_tdp(void)
4848 {
4849 tdp_enabled = false;
4850 }
4851 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4852
4853 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4854 {
4855 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4856 if (vcpu->arch.mmu.lm_root != NULL)
4857 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4858 }
4859
4860 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4861 {
4862 struct page *page;
4863 int i;
4864
4865 /*
4866 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4867 * Therefore we need to allocate shadow page tables in the first
4868 * 4GB of memory, which happens to fit the DMA32 zone.
4869 */
4870 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4871 if (!page)
4872 return -ENOMEM;
4873
4874 vcpu->arch.mmu.pae_root = page_address(page);
4875 for (i = 0; i < 4; ++i)
4876 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4877
4878 return 0;
4879 }
4880
4881 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4882 {
4883 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4884 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4885 vcpu->arch.mmu.translate_gpa = translate_gpa;
4886 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4887
4888 return alloc_mmu_pages(vcpu);
4889 }
4890
4891 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4892 {
4893 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4894
4895 init_kvm_mmu(vcpu);
4896 }
4897
4898 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4899 struct kvm_memory_slot *slot,
4900 struct kvm_page_track_notifier_node *node)
4901 {
4902 kvm_mmu_invalidate_zap_all_pages(kvm);
4903 }
4904
4905 void kvm_mmu_init_vm(struct kvm *kvm)
4906 {
4907 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4908
4909 node->track_write = kvm_mmu_pte_write;
4910 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4911 kvm_page_track_register_notifier(kvm, node);
4912 }
4913
4914 void kvm_mmu_uninit_vm(struct kvm *kvm)
4915 {
4916 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4917
4918 kvm_page_track_unregister_notifier(kvm, node);
4919 }
4920
4921 /* The return value indicates if tlb flush on all vcpus is needed. */
4922 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4923
4924 /* The caller should hold mmu-lock before calling this function. */
4925 static bool
4926 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4927 slot_level_handler fn, int start_level, int end_level,
4928 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4929 {
4930 struct slot_rmap_walk_iterator iterator;
4931 bool flush = false;
4932
4933 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4934 end_gfn, &iterator) {
4935 if (iterator.rmap)
4936 flush |= fn(kvm, iterator.rmap);
4937
4938 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4939 if (flush && lock_flush_tlb) {
4940 kvm_flush_remote_tlbs(kvm);
4941 flush = false;
4942 }
4943 cond_resched_lock(&kvm->mmu_lock);
4944 }
4945 }
4946
4947 if (flush && lock_flush_tlb) {
4948 kvm_flush_remote_tlbs(kvm);
4949 flush = false;
4950 }
4951
4952 return flush;
4953 }
4954
4955 static bool
4956 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4957 slot_level_handler fn, int start_level, int end_level,
4958 bool lock_flush_tlb)
4959 {
4960 return slot_handle_level_range(kvm, memslot, fn, start_level,
4961 end_level, memslot->base_gfn,
4962 memslot->base_gfn + memslot->npages - 1,
4963 lock_flush_tlb);
4964 }
4965
4966 static bool
4967 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4968 slot_level_handler fn, bool lock_flush_tlb)
4969 {
4970 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4971 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4972 }
4973
4974 static bool
4975 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4976 slot_level_handler fn, bool lock_flush_tlb)
4977 {
4978 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4979 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4980 }
4981
4982 static bool
4983 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4984 slot_level_handler fn, bool lock_flush_tlb)
4985 {
4986 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4987 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4988 }
4989
4990 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4991 {
4992 struct kvm_memslots *slots;
4993 struct kvm_memory_slot *memslot;
4994 int i;
4995
4996 spin_lock(&kvm->mmu_lock);
4997 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4998 slots = __kvm_memslots(kvm, i);
4999 kvm_for_each_memslot(memslot, slots) {
5000 gfn_t start, end;
5001
5002 start = max(gfn_start, memslot->base_gfn);
5003 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5004 if (start >= end)
5005 continue;
5006
5007 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5008 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5009 start, end - 1, true);
5010 }
5011 }
5012
5013 spin_unlock(&kvm->mmu_lock);
5014 }
5015
5016 static bool slot_rmap_write_protect(struct kvm *kvm,
5017 struct kvm_rmap_head *rmap_head)
5018 {
5019 return __rmap_write_protect(kvm, rmap_head, false);
5020 }
5021
5022 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5023 struct kvm_memory_slot *memslot)
5024 {
5025 bool flush;
5026
5027 spin_lock(&kvm->mmu_lock);
5028 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5029 false);
5030 spin_unlock(&kvm->mmu_lock);
5031
5032 /*
5033 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5034 * which do tlb flush out of mmu-lock should be serialized by
5035 * kvm->slots_lock otherwise tlb flush would be missed.
5036 */
5037 lockdep_assert_held(&kvm->slots_lock);
5038
5039 /*
5040 * We can flush all the TLBs out of the mmu lock without TLB
5041 * corruption since we just change the spte from writable to
5042 * readonly so that we only need to care the case of changing
5043 * spte from present to present (changing the spte from present
5044 * to nonpresent will flush all the TLBs immediately), in other
5045 * words, the only case we care is mmu_spte_update() where we
5046 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5047 * instead of PT_WRITABLE_MASK, that means it does not depend
5048 * on PT_WRITABLE_MASK anymore.
5049 */
5050 if (flush)
5051 kvm_flush_remote_tlbs(kvm);
5052 }
5053
5054 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5055 struct kvm_rmap_head *rmap_head)
5056 {
5057 u64 *sptep;
5058 struct rmap_iterator iter;
5059 int need_tlb_flush = 0;
5060 kvm_pfn_t pfn;
5061 struct kvm_mmu_page *sp;
5062
5063 restart:
5064 for_each_rmap_spte(rmap_head, &iter, sptep) {
5065 sp = page_header(__pa(sptep));
5066 pfn = spte_to_pfn(*sptep);
5067
5068 /*
5069 * We cannot do huge page mapping for indirect shadow pages,
5070 * which are found on the last rmap (level = 1) when not using
5071 * tdp; such shadow pages are synced with the page table in
5072 * the guest, and the guest page table is using 4K page size
5073 * mapping if the indirect sp has level = 1.
5074 */
5075 if (sp->role.direct &&
5076 !kvm_is_reserved_pfn(pfn) &&
5077 PageTransCompoundMap(pfn_to_page(pfn))) {
5078 drop_spte(kvm, sptep);
5079 need_tlb_flush = 1;
5080 goto restart;
5081 }
5082 }
5083
5084 return need_tlb_flush;
5085 }
5086
5087 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5088 const struct kvm_memory_slot *memslot)
5089 {
5090 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
5091 spin_lock(&kvm->mmu_lock);
5092 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5093 kvm_mmu_zap_collapsible_spte, true);
5094 spin_unlock(&kvm->mmu_lock);
5095 }
5096
5097 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5098 struct kvm_memory_slot *memslot)
5099 {
5100 bool flush;
5101
5102 spin_lock(&kvm->mmu_lock);
5103 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5104 spin_unlock(&kvm->mmu_lock);
5105
5106 lockdep_assert_held(&kvm->slots_lock);
5107
5108 /*
5109 * It's also safe to flush TLBs out of mmu lock here as currently this
5110 * function is only used for dirty logging, in which case flushing TLB
5111 * out of mmu lock also guarantees no dirty pages will be lost in
5112 * dirty_bitmap.
5113 */
5114 if (flush)
5115 kvm_flush_remote_tlbs(kvm);
5116 }
5117 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5118
5119 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5120 struct kvm_memory_slot *memslot)
5121 {
5122 bool flush;
5123
5124 spin_lock(&kvm->mmu_lock);
5125 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5126 false);
5127 spin_unlock(&kvm->mmu_lock);
5128
5129 /* see kvm_mmu_slot_remove_write_access */
5130 lockdep_assert_held(&kvm->slots_lock);
5131
5132 if (flush)
5133 kvm_flush_remote_tlbs(kvm);
5134 }
5135 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5136
5137 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5138 struct kvm_memory_slot *memslot)
5139 {
5140 bool flush;
5141
5142 spin_lock(&kvm->mmu_lock);
5143 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5144 spin_unlock(&kvm->mmu_lock);
5145
5146 lockdep_assert_held(&kvm->slots_lock);
5147
5148 /* see kvm_mmu_slot_leaf_clear_dirty */
5149 if (flush)
5150 kvm_flush_remote_tlbs(kvm);
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5153
5154 #define BATCH_ZAP_PAGES 10
5155 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5156 {
5157 struct kvm_mmu_page *sp, *node;
5158 int batch = 0;
5159
5160 restart:
5161 list_for_each_entry_safe_reverse(sp, node,
5162 &kvm->arch.active_mmu_pages, link) {
5163 int ret;
5164
5165 /*
5166 * No obsolete page exists before new created page since
5167 * active_mmu_pages is the FIFO list.
5168 */
5169 if (!is_obsolete_sp(kvm, sp))
5170 break;
5171
5172 /*
5173 * Since we are reversely walking the list and the invalid
5174 * list will be moved to the head, skip the invalid page
5175 * can help us to avoid the infinity list walking.
5176 */
5177 if (sp->role.invalid)
5178 continue;
5179
5180 /*
5181 * Need not flush tlb since we only zap the sp with invalid
5182 * generation number.
5183 */
5184 if (batch >= BATCH_ZAP_PAGES &&
5185 cond_resched_lock(&kvm->mmu_lock)) {
5186 batch = 0;
5187 goto restart;
5188 }
5189
5190 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5191 &kvm->arch.zapped_obsolete_pages);
5192 batch += ret;
5193
5194 if (ret)
5195 goto restart;
5196 }
5197
5198 /*
5199 * Should flush tlb before free page tables since lockless-walking
5200 * may use the pages.
5201 */
5202 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5203 }
5204
5205 /*
5206 * Fast invalidate all shadow pages and use lock-break technique
5207 * to zap obsolete pages.
5208 *
5209 * It's required when memslot is being deleted or VM is being
5210 * destroyed, in these cases, we should ensure that KVM MMU does
5211 * not use any resource of the being-deleted slot or all slots
5212 * after calling the function.
5213 */
5214 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5215 {
5216 spin_lock(&kvm->mmu_lock);
5217 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5218 kvm->arch.mmu_valid_gen++;
5219
5220 /*
5221 * Notify all vcpus to reload its shadow page table
5222 * and flush TLB. Then all vcpus will switch to new
5223 * shadow page table with the new mmu_valid_gen.
5224 *
5225 * Note: we should do this under the protection of
5226 * mmu-lock, otherwise, vcpu would purge shadow page
5227 * but miss tlb flush.
5228 */
5229 kvm_reload_remote_mmus(kvm);
5230
5231 kvm_zap_obsolete_pages(kvm);
5232 spin_unlock(&kvm->mmu_lock);
5233 }
5234
5235 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5236 {
5237 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5238 }
5239
5240 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5241 {
5242 /*
5243 * The very rare case: if the generation-number is round,
5244 * zap all shadow pages.
5245 */
5246 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5247 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5248 kvm_mmu_invalidate_zap_all_pages(kvm);
5249 }
5250 }
5251
5252 static unsigned long
5253 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5254 {
5255 struct kvm *kvm;
5256 int nr_to_scan = sc->nr_to_scan;
5257 unsigned long freed = 0;
5258
5259 spin_lock(&kvm_lock);
5260
5261 list_for_each_entry(kvm, &vm_list, vm_list) {
5262 int idx;
5263 LIST_HEAD(invalid_list);
5264
5265 /*
5266 * Never scan more than sc->nr_to_scan VM instances.
5267 * Will not hit this condition practically since we do not try
5268 * to shrink more than one VM and it is very unlikely to see
5269 * !n_used_mmu_pages so many times.
5270 */
5271 if (!nr_to_scan--)
5272 break;
5273 /*
5274 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5275 * here. We may skip a VM instance errorneosly, but we do not
5276 * want to shrink a VM that only started to populate its MMU
5277 * anyway.
5278 */
5279 if (!kvm->arch.n_used_mmu_pages &&
5280 !kvm_has_zapped_obsolete_pages(kvm))
5281 continue;
5282
5283 idx = srcu_read_lock(&kvm->srcu);
5284 spin_lock(&kvm->mmu_lock);
5285
5286 if (kvm_has_zapped_obsolete_pages(kvm)) {
5287 kvm_mmu_commit_zap_page(kvm,
5288 &kvm->arch.zapped_obsolete_pages);
5289 goto unlock;
5290 }
5291
5292 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5293 freed++;
5294 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5295
5296 unlock:
5297 spin_unlock(&kvm->mmu_lock);
5298 srcu_read_unlock(&kvm->srcu, idx);
5299
5300 /*
5301 * unfair on small ones
5302 * per-vm shrinkers cry out
5303 * sadness comes quickly
5304 */
5305 list_move_tail(&kvm->vm_list, &vm_list);
5306 break;
5307 }
5308
5309 spin_unlock(&kvm_lock);
5310 return freed;
5311 }
5312
5313 static unsigned long
5314 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5315 {
5316 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5317 }
5318
5319 static struct shrinker mmu_shrinker = {
5320 .count_objects = mmu_shrink_count,
5321 .scan_objects = mmu_shrink_scan,
5322 .seeks = DEFAULT_SEEKS * 10,
5323 };
5324
5325 static void mmu_destroy_caches(void)
5326 {
5327 if (pte_list_desc_cache)
5328 kmem_cache_destroy(pte_list_desc_cache);
5329 if (mmu_page_header_cache)
5330 kmem_cache_destroy(mmu_page_header_cache);
5331 }
5332
5333 int kvm_mmu_module_init(void)
5334 {
5335 kvm_mmu_clear_all_pte_masks();
5336
5337 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5338 sizeof(struct pte_list_desc),
5339 0, 0, NULL);
5340 if (!pte_list_desc_cache)
5341 goto nomem;
5342
5343 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5344 sizeof(struct kvm_mmu_page),
5345 0, 0, NULL);
5346 if (!mmu_page_header_cache)
5347 goto nomem;
5348
5349 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5350 goto nomem;
5351
5352 register_shrinker(&mmu_shrinker);
5353
5354 return 0;
5355
5356 nomem:
5357 mmu_destroy_caches();
5358 return -ENOMEM;
5359 }
5360
5361 /*
5362 * Caculate mmu pages needed for kvm.
5363 */
5364 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5365 {
5366 unsigned int nr_mmu_pages;
5367 unsigned int nr_pages = 0;
5368 struct kvm_memslots *slots;
5369 struct kvm_memory_slot *memslot;
5370 int i;
5371
5372 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5373 slots = __kvm_memslots(kvm, i);
5374
5375 kvm_for_each_memslot(memslot, slots)
5376 nr_pages += memslot->npages;
5377 }
5378
5379 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5380 nr_mmu_pages = max(nr_mmu_pages,
5381 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5382
5383 return nr_mmu_pages;
5384 }
5385
5386 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5387 {
5388 kvm_mmu_unload(vcpu);
5389 free_mmu_pages(vcpu);
5390 mmu_free_memory_caches(vcpu);
5391 }
5392
5393 void kvm_mmu_module_exit(void)
5394 {
5395 mmu_destroy_caches();
5396 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5397 unregister_shrinker(&mmu_shrinker);
5398 mmu_audit_disable();
5399 }