]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/mmu.h
Merge tag 'nfsd-4.13' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.h
1 #ifndef __KVM_X86_MMU_H
2 #define __KVM_X86_MMU_H
3
4 #include <linux/kvm_host.h>
5 #include "kvm_cache_regs.h"
6
7 #define PT64_PT_BITS 9
8 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9 #define PT32_PT_BITS 10
10 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
11
12 #define PT_WRITABLE_SHIFT 1
13 #define PT_USER_SHIFT 2
14
15 #define PT_PRESENT_MASK (1ULL << 0)
16 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
17 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
18 #define PT_PWT_MASK (1ULL << 3)
19 #define PT_PCD_MASK (1ULL << 4)
20 #define PT_ACCESSED_SHIFT 5
21 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
22 #define PT_DIRTY_SHIFT 6
23 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
24 #define PT_PAGE_SIZE_SHIFT 7
25 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
26 #define PT_PAT_MASK (1ULL << 7)
27 #define PT_GLOBAL_MASK (1ULL << 8)
28 #define PT64_NX_SHIFT 63
29 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
30
31 #define PT_PAT_SHIFT 7
32 #define PT_DIR_PAT_SHIFT 12
33 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
34
35 #define PT32_DIR_PSE36_SIZE 4
36 #define PT32_DIR_PSE36_SHIFT 13
37 #define PT32_DIR_PSE36_MASK \
38 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
39
40 #define PT64_ROOT_LEVEL 4
41 #define PT32_ROOT_LEVEL 2
42 #define PT32E_ROOT_LEVEL 3
43
44 #define PT_PDPE_LEVEL 3
45 #define PT_DIRECTORY_LEVEL 2
46 #define PT_PAGE_TABLE_LEVEL 1
47 #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
48
49 static inline u64 rsvd_bits(int s, int e)
50 {
51 return ((1ULL << (e - s + 1)) - 1) << s;
52 }
53
54 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value);
55
56 void
57 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
58
59 /*
60 * Return values of handle_mmio_page_fault:
61 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
62 * directly.
63 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
64 * fault path update the mmio spte.
65 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
66 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
67 */
68 enum {
69 RET_MMIO_PF_EMULATE = 1,
70 RET_MMIO_PF_INVALID = 2,
71 RET_MMIO_PF_RETRY = 0,
72 RET_MMIO_PF_BUG = -1
73 };
74
75 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
76 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
77 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
78 bool accessed_dirty);
79 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
80
81 static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
82 {
83 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
84 return kvm->arch.n_max_mmu_pages -
85 kvm->arch.n_used_mmu_pages;
86
87 return 0;
88 }
89
90 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
91 {
92 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
93 return 0;
94
95 return kvm_mmu_load(vcpu);
96 }
97
98 /*
99 * Currently, we have two sorts of write-protection, a) the first one
100 * write-protects guest page to sync the guest modification, b) another one is
101 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
102 * between these two sorts are:
103 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
104 * 2) the first case requires flushing tlb immediately avoiding corrupting
105 * shadow page table between all vcpus so it should be in the protection of
106 * mmu-lock. And the another case does not need to flush tlb until returning
107 * the dirty bitmap to userspace since it only write-protects the page
108 * logged in the bitmap, that means the page in the dirty bitmap is not
109 * missed, so it can flush tlb out of mmu-lock.
110 *
111 * So, there is the problem: the first case can meet the corrupted tlb caused
112 * by another case which write-protects pages but without flush tlb
113 * immediately. In order to making the first case be aware this problem we let
114 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
115 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
116 *
117 * Anyway, whenever a spte is updated (only permission and status bits are
118 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
119 * readonly, if that happens, we need to flush tlb. Fortunately,
120 * mmu_spte_update() has already handled it perfectly.
121 *
122 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
123 * - if we want to see if it has writable tlb entry or if the spte can be
124 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
125 * case, otherwise
126 * - if we fix page fault on the spte or do write-protection by dirty logging,
127 * check PT_WRITABLE_MASK.
128 *
129 * TODO: introduce APIs to split these two cases.
130 */
131 static inline int is_writable_pte(unsigned long pte)
132 {
133 return pte & PT_WRITABLE_MASK;
134 }
135
136 static inline bool is_write_protection(struct kvm_vcpu *vcpu)
137 {
138 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
139 }
140
141 /*
142 * Check if a given access (described through the I/D, W/R and U/S bits of a
143 * page fault error code pfec) causes a permission fault with the given PTE
144 * access rights (in ACC_* format).
145 *
146 * Return zero if the access does not fault; return the page fault error code
147 * if the access faults.
148 */
149 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
150 unsigned pte_access, unsigned pte_pkey,
151 unsigned pfec)
152 {
153 int cpl = kvm_x86_ops->get_cpl(vcpu);
154 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
155
156 /*
157 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
158 *
159 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
160 * (these are implicit supervisor accesses) regardless of the value
161 * of EFLAGS.AC.
162 *
163 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
164 * the result in X86_EFLAGS_AC. We then insert it in place of
165 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
166 * but it will be one in index if SMAP checks are being overridden.
167 * It is important to keep this branchless.
168 */
169 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
170 int index = (pfec >> 1) +
171 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
172 bool fault = (mmu->permissions[index] >> pte_access) & 1;
173 u32 errcode = PFERR_PRESENT_MASK;
174
175 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
176 if (unlikely(mmu->pkru_mask)) {
177 u32 pkru_bits, offset;
178
179 /*
180 * PKRU defines 32 bits, there are 16 domains and 2
181 * attribute bits per domain in pkru. pte_pkey is the
182 * index of the protection domain, so pte_pkey * 2 is
183 * is the index of the first bit for the domain.
184 */
185 pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
186
187 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
188 offset = (pfec & ~1) +
189 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
190
191 pkru_bits &= mmu->pkru_mask >> offset;
192 errcode |= -pkru_bits & PFERR_PK_MASK;
193 fault |= (pkru_bits != 0);
194 }
195
196 return -(u32)fault & errcode;
197 }
198
199 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
200 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
201
202 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
203 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
204 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
205 struct kvm_memory_slot *slot, u64 gfn);
206 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
207 #endif