]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/paging_tmpl.h
KVM: x86: trap invlpg
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define shadow_walker shadow_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
32 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define shadow_walker shadow_walker32
46 #define FNAME(name) paging##32_##name
47 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
48 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
51 #define PT_LEVEL_BITS PT32_LEVEL_BITS
52 #define PT_MAX_FULL_LEVELS 2
53 #define CMPXCHG cmpxchg
54 #else
55 #error Invalid PTTYPE value
56 #endif
57
58 #define gpte_to_gfn FNAME(gpte_to_gfn)
59 #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
60
61 /*
62 * The guest_walker structure emulates the behavior of the hardware page
63 * table walker.
64 */
65 struct guest_walker {
66 int level;
67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
68 pt_element_t ptes[PT_MAX_FULL_LEVELS];
69 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
70 unsigned pt_access;
71 unsigned pte_access;
72 gfn_t gfn;
73 u32 error_code;
74 };
75
76 struct shadow_walker {
77 struct kvm_shadow_walk walker;
78 struct guest_walker *guest_walker;
79 int user_fault;
80 int write_fault;
81 int largepage;
82 int *ptwrite;
83 pfn_t pfn;
84 u64 *sptep;
85 };
86
87 static gfn_t gpte_to_gfn(pt_element_t gpte)
88 {
89 return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
90 }
91
92 static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
93 {
94 return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
95 }
96
97 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
98 gfn_t table_gfn, unsigned index,
99 pt_element_t orig_pte, pt_element_t new_pte)
100 {
101 pt_element_t ret;
102 pt_element_t *table;
103 struct page *page;
104
105 page = gfn_to_page(kvm, table_gfn);
106
107 table = kmap_atomic(page, KM_USER0);
108 ret = CMPXCHG(&table[index], orig_pte, new_pte);
109 kunmap_atomic(table, KM_USER0);
110
111 kvm_release_page_dirty(page);
112
113 return (ret != orig_pte);
114 }
115
116 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
117 {
118 unsigned access;
119
120 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
121 #if PTTYPE == 64
122 if (is_nx(vcpu))
123 access &= ~(gpte >> PT64_NX_SHIFT);
124 #endif
125 return access;
126 }
127
128 /*
129 * Fetch a guest pte for a guest virtual address
130 */
131 static int FNAME(walk_addr)(struct guest_walker *walker,
132 struct kvm_vcpu *vcpu, gva_t addr,
133 int write_fault, int user_fault, int fetch_fault)
134 {
135 pt_element_t pte;
136 gfn_t table_gfn;
137 unsigned index, pt_access, pte_access;
138 gpa_t pte_gpa;
139
140 pgprintk("%s: addr %lx\n", __func__, addr);
141 walk:
142 walker->level = vcpu->arch.mmu.root_level;
143 pte = vcpu->arch.cr3;
144 #if PTTYPE == 64
145 if (!is_long_mode(vcpu)) {
146 pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
147 if (!is_present_pte(pte))
148 goto not_present;
149 --walker->level;
150 }
151 #endif
152 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
153 (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
154
155 pt_access = ACC_ALL;
156
157 for (;;) {
158 index = PT_INDEX(addr, walker->level);
159
160 table_gfn = gpte_to_gfn(pte);
161 pte_gpa = gfn_to_gpa(table_gfn);
162 pte_gpa += index * sizeof(pt_element_t);
163 walker->table_gfn[walker->level - 1] = table_gfn;
164 walker->pte_gpa[walker->level - 1] = pte_gpa;
165 pgprintk("%s: table_gfn[%d] %lx\n", __func__,
166 walker->level - 1, table_gfn);
167
168 kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
169
170 if (!is_present_pte(pte))
171 goto not_present;
172
173 if (write_fault && !is_writeble_pte(pte))
174 if (user_fault || is_write_protection(vcpu))
175 goto access_error;
176
177 if (user_fault && !(pte & PT_USER_MASK))
178 goto access_error;
179
180 #if PTTYPE == 64
181 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
182 goto access_error;
183 #endif
184
185 if (!(pte & PT_ACCESSED_MASK)) {
186 mark_page_dirty(vcpu->kvm, table_gfn);
187 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
188 index, pte, pte|PT_ACCESSED_MASK))
189 goto walk;
190 pte |= PT_ACCESSED_MASK;
191 }
192
193 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
194
195 walker->ptes[walker->level - 1] = pte;
196
197 if (walker->level == PT_PAGE_TABLE_LEVEL) {
198 walker->gfn = gpte_to_gfn(pte);
199 break;
200 }
201
202 if (walker->level == PT_DIRECTORY_LEVEL
203 && (pte & PT_PAGE_SIZE_MASK)
204 && (PTTYPE == 64 || is_pse(vcpu))) {
205 walker->gfn = gpte_to_gfn_pde(pte);
206 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
207 if (PTTYPE == 32 && is_cpuid_PSE36())
208 walker->gfn += pse36_gfn_delta(pte);
209 break;
210 }
211
212 pt_access = pte_access;
213 --walker->level;
214 }
215
216 if (write_fault && !is_dirty_pte(pte)) {
217 bool ret;
218
219 mark_page_dirty(vcpu->kvm, table_gfn);
220 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
221 pte|PT_DIRTY_MASK);
222 if (ret)
223 goto walk;
224 pte |= PT_DIRTY_MASK;
225 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
226 walker->ptes[walker->level - 1] = pte;
227 }
228
229 walker->pt_access = pt_access;
230 walker->pte_access = pte_access;
231 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
232 __func__, (u64)pte, pt_access, pte_access);
233 return 1;
234
235 not_present:
236 walker->error_code = 0;
237 goto err;
238
239 access_error:
240 walker->error_code = PFERR_PRESENT_MASK;
241
242 err:
243 if (write_fault)
244 walker->error_code |= PFERR_WRITE_MASK;
245 if (user_fault)
246 walker->error_code |= PFERR_USER_MASK;
247 if (fetch_fault)
248 walker->error_code |= PFERR_FETCH_MASK;
249 return 0;
250 }
251
252 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
253 u64 *spte, const void *pte)
254 {
255 pt_element_t gpte;
256 unsigned pte_access;
257 pfn_t pfn;
258 int largepage = vcpu->arch.update_pte.largepage;
259
260 gpte = *(const pt_element_t *)pte;
261 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
262 if (!is_present_pte(gpte))
263 set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
264 return;
265 }
266 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
267 pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
268 if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
269 return;
270 pfn = vcpu->arch.update_pte.pfn;
271 if (is_error_pfn(pfn))
272 return;
273 if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
274 return;
275 kvm_get_pfn(pfn);
276 mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
277 gpte & PT_DIRTY_MASK, NULL, largepage, gpte_to_gfn(gpte),
278 pfn, true);
279 }
280
281 /*
282 * Fetch a shadow pte for a specific level in the paging hierarchy.
283 */
284 static int FNAME(shadow_walk_entry)(struct kvm_shadow_walk *_sw,
285 struct kvm_vcpu *vcpu, u64 addr,
286 u64 *sptep, int level)
287 {
288 struct shadow_walker *sw =
289 container_of(_sw, struct shadow_walker, walker);
290 struct guest_walker *gw = sw->guest_walker;
291 unsigned access = gw->pt_access;
292 struct kvm_mmu_page *shadow_page;
293 u64 spte;
294 int metaphysical;
295 gfn_t table_gfn;
296 int r;
297 pt_element_t curr_pte;
298
299 if (level == PT_PAGE_TABLE_LEVEL
300 || (sw->largepage && level == PT_DIRECTORY_LEVEL)) {
301 mmu_set_spte(vcpu, sptep, access, gw->pte_access & access,
302 sw->user_fault, sw->write_fault,
303 gw->ptes[gw->level-1] & PT_DIRTY_MASK,
304 sw->ptwrite, sw->largepage, gw->gfn, sw->pfn,
305 false);
306 sw->sptep = sptep;
307 return 1;
308 }
309
310 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
311 return 0;
312
313 if (is_large_pte(*sptep)) {
314 set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
315 kvm_flush_remote_tlbs(vcpu->kvm);
316 rmap_remove(vcpu->kvm, sptep);
317 }
318
319 if (level == PT_DIRECTORY_LEVEL && gw->level == PT_DIRECTORY_LEVEL) {
320 metaphysical = 1;
321 if (!is_dirty_pte(gw->ptes[level - 1]))
322 access &= ~ACC_WRITE_MASK;
323 table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
324 } else {
325 metaphysical = 0;
326 table_gfn = gw->table_gfn[level - 2];
327 }
328 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, (gva_t)addr, level-1,
329 metaphysical, access, sptep);
330 if (!metaphysical) {
331 r = kvm_read_guest_atomic(vcpu->kvm, gw->pte_gpa[level - 2],
332 &curr_pte, sizeof(curr_pte));
333 if (r || curr_pte != gw->ptes[level - 2]) {
334 kvm_release_pfn_clean(sw->pfn);
335 sw->sptep = NULL;
336 return 1;
337 }
338 }
339
340 spte = __pa(shadow_page->spt) | PT_PRESENT_MASK | PT_ACCESSED_MASK
341 | PT_WRITABLE_MASK | PT_USER_MASK;
342 *sptep = spte;
343 return 0;
344 }
345
346 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
347 struct guest_walker *guest_walker,
348 int user_fault, int write_fault, int largepage,
349 int *ptwrite, pfn_t pfn)
350 {
351 struct shadow_walker walker = {
352 .walker = { .entry = FNAME(shadow_walk_entry), },
353 .guest_walker = guest_walker,
354 .user_fault = user_fault,
355 .write_fault = write_fault,
356 .largepage = largepage,
357 .ptwrite = ptwrite,
358 .pfn = pfn,
359 };
360
361 if (!is_present_pte(guest_walker->ptes[guest_walker->level - 1]))
362 return NULL;
363
364 walk_shadow(&walker.walker, vcpu, addr);
365
366 return walker.sptep;
367 }
368
369 /*
370 * Page fault handler. There are several causes for a page fault:
371 * - there is no shadow pte for the guest pte
372 * - write access through a shadow pte marked read only so that we can set
373 * the dirty bit
374 * - write access to a shadow pte marked read only so we can update the page
375 * dirty bitmap, when userspace requests it
376 * - mmio access; in this case we will never install a present shadow pte
377 * - normal guest page fault due to the guest pte marked not present, not
378 * writable, or not executable
379 *
380 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
381 * a negative value on error.
382 */
383 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
384 u32 error_code)
385 {
386 int write_fault = error_code & PFERR_WRITE_MASK;
387 int user_fault = error_code & PFERR_USER_MASK;
388 int fetch_fault = error_code & PFERR_FETCH_MASK;
389 struct guest_walker walker;
390 u64 *shadow_pte;
391 int write_pt = 0;
392 int r;
393 pfn_t pfn;
394 int largepage = 0;
395 unsigned long mmu_seq;
396
397 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
398 kvm_mmu_audit(vcpu, "pre page fault");
399
400 r = mmu_topup_memory_caches(vcpu);
401 if (r)
402 return r;
403
404 /*
405 * Look up the shadow pte for the faulting address.
406 */
407 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
408 fetch_fault);
409
410 /*
411 * The page is not mapped by the guest. Let the guest handle it.
412 */
413 if (!r) {
414 pgprintk("%s: guest page fault\n", __func__);
415 inject_page_fault(vcpu, addr, walker.error_code);
416 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
417 return 0;
418 }
419
420 if (walker.level == PT_DIRECTORY_LEVEL) {
421 gfn_t large_gfn;
422 large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
423 if (is_largepage_backed(vcpu, large_gfn)) {
424 walker.gfn = large_gfn;
425 largepage = 1;
426 }
427 }
428 mmu_seq = vcpu->kvm->mmu_notifier_seq;
429 smp_rmb();
430 pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
431
432 /* mmio */
433 if (is_error_pfn(pfn)) {
434 pgprintk("gfn %lx is mmio\n", walker.gfn);
435 kvm_release_pfn_clean(pfn);
436 return 1;
437 }
438
439 spin_lock(&vcpu->kvm->mmu_lock);
440 if (mmu_notifier_retry(vcpu, mmu_seq))
441 goto out_unlock;
442 kvm_mmu_free_some_pages(vcpu);
443 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
444 largepage, &write_pt, pfn);
445
446 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
447 shadow_pte, *shadow_pte, write_pt);
448
449 if (!write_pt)
450 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
451
452 ++vcpu->stat.pf_fixed;
453 kvm_mmu_audit(vcpu, "post page fault (fixed)");
454 spin_unlock(&vcpu->kvm->mmu_lock);
455
456 return write_pt;
457
458 out_unlock:
459 spin_unlock(&vcpu->kvm->mmu_lock);
460 kvm_release_pfn_clean(pfn);
461 return 0;
462 }
463
464 static int FNAME(shadow_invlpg_entry)(struct kvm_shadow_walk *_sw,
465 struct kvm_vcpu *vcpu, u64 addr,
466 u64 *sptep, int level)
467 {
468
469 if (level == PT_PAGE_TABLE_LEVEL) {
470 if (is_shadow_present_pte(*sptep))
471 rmap_remove(vcpu->kvm, sptep);
472 set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
473 return 1;
474 }
475 if (!is_shadow_present_pte(*sptep))
476 return 1;
477 return 0;
478 }
479
480 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
481 {
482 struct shadow_walker walker = {
483 .walker = { .entry = FNAME(shadow_invlpg_entry), },
484 };
485
486 walk_shadow(&walker.walker, vcpu, gva);
487 }
488
489 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
490 {
491 struct guest_walker walker;
492 gpa_t gpa = UNMAPPED_GVA;
493 int r;
494
495 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
496
497 if (r) {
498 gpa = gfn_to_gpa(walker.gfn);
499 gpa |= vaddr & ~PAGE_MASK;
500 }
501
502 return gpa;
503 }
504
505 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
506 struct kvm_mmu_page *sp)
507 {
508 int i, j, offset, r;
509 pt_element_t pt[256 / sizeof(pt_element_t)];
510 gpa_t pte_gpa;
511
512 if (sp->role.metaphysical
513 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
514 nonpaging_prefetch_page(vcpu, sp);
515 return;
516 }
517
518 pte_gpa = gfn_to_gpa(sp->gfn);
519 if (PTTYPE == 32) {
520 offset = sp->role.quadrant << PT64_LEVEL_BITS;
521 pte_gpa += offset * sizeof(pt_element_t);
522 }
523
524 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
525 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
526 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
527 for (j = 0; j < ARRAY_SIZE(pt); ++j)
528 if (r || is_present_pte(pt[j]))
529 sp->spt[i+j] = shadow_trap_nonpresent_pte;
530 else
531 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
532 }
533 }
534
535 /*
536 * Using the cached information from sp->gfns is safe because:
537 * - The spte has a reference to the struct page, so the pfn for a given gfn
538 * can't change unless all sptes pointing to it are nuked first.
539 * - Alias changes zap the entire shadow cache.
540 */
541 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
542 {
543 int i, offset, nr_present;
544
545 offset = nr_present = 0;
546
547 if (PTTYPE == 32)
548 offset = sp->role.quadrant << PT64_LEVEL_BITS;
549
550 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
551 unsigned pte_access;
552 pt_element_t gpte;
553 gpa_t pte_gpa;
554 gfn_t gfn = sp->gfns[i];
555
556 if (!is_shadow_present_pte(sp->spt[i]))
557 continue;
558
559 pte_gpa = gfn_to_gpa(sp->gfn);
560 pte_gpa += (i+offset) * sizeof(pt_element_t);
561
562 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
563 sizeof(pt_element_t)))
564 return -EINVAL;
565
566 if (gpte_to_gfn(gpte) != gfn || !is_present_pte(gpte) ||
567 !(gpte & PT_ACCESSED_MASK)) {
568 u64 nonpresent;
569
570 rmap_remove(vcpu->kvm, &sp->spt[i]);
571 if (is_present_pte(gpte))
572 nonpresent = shadow_trap_nonpresent_pte;
573 else
574 nonpresent = shadow_notrap_nonpresent_pte;
575 set_shadow_pte(&sp->spt[i], nonpresent);
576 continue;
577 }
578
579 nr_present++;
580 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
581 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
582 is_dirty_pte(gpte), 0, gfn,
583 spte_to_pfn(sp->spt[i]), true);
584 }
585
586 return !nr_present;
587 }
588
589 #undef pt_element_t
590 #undef guest_walker
591 #undef shadow_walker
592 #undef FNAME
593 #undef PT_BASE_ADDR_MASK
594 #undef PT_INDEX
595 #undef PT_LEVEL_MASK
596 #undef PT_DIR_BASE_ADDR_MASK
597 #undef PT_LEVEL_BITS
598 #undef PT_MAX_FULL_LEVELS
599 #undef gpte_to_gfn
600 #undef gpte_to_gfn_pde
601 #undef CMPXCHG