]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/x86/kvm/paging_tmpl.h
Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-eoan-kernel.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 /*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26 /*
27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
28 * uses for EPT without A/D paging type.
29 */
30 extern u64 __pure __using_nonexistent_pte_bit(void)
31 __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
32
33 #if PTTYPE == 64
34 #define pt_element_t u64
35 #define guest_walker guest_walker64
36 #define FNAME(name) paging##64_##name
37 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
38 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
39 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
40 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
41 #define PT_LEVEL_BITS PT64_LEVEL_BITS
42 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
43 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
44 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
45 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
46 #ifdef CONFIG_X86_64
47 #define PT_MAX_FULL_LEVELS 4
48 #define CMPXCHG cmpxchg
49 #else
50 #define CMPXCHG cmpxchg64
51 #define PT_MAX_FULL_LEVELS 2
52 #endif
53 #elif PTTYPE == 32
54 #define pt_element_t u32
55 #define guest_walker guest_walker32
56 #define FNAME(name) paging##32_##name
57 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
58 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
59 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
60 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
61 #define PT_LEVEL_BITS PT32_LEVEL_BITS
62 #define PT_MAX_FULL_LEVELS 2
63 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
64 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
65 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
66 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
67 #define CMPXCHG cmpxchg
68 #elif PTTYPE == PTTYPE_EPT
69 #define pt_element_t u64
70 #define guest_walker guest_walkerEPT
71 #define FNAME(name) ept_##name
72 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
73 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
74 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
75 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
76 #define PT_LEVEL_BITS PT64_LEVEL_BITS
77 #define PT_GUEST_ACCESSED_MASK 0
78 #define PT_GUEST_DIRTY_MASK 0
79 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
80 #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
81 #define CMPXCHG cmpxchg64
82 #define PT_MAX_FULL_LEVELS 4
83 #else
84 #error Invalid PTTYPE value
85 #endif
86
87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
89
90 /*
91 * The guest_walker structure emulates the behavior of the hardware page
92 * table walker.
93 */
94 struct guest_walker {
95 int level;
96 unsigned max_level;
97 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
98 pt_element_t ptes[PT_MAX_FULL_LEVELS];
99 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
100 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
101 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
102 unsigned pt_access;
103 unsigned pte_access;
104 gfn_t gfn;
105 struct x86_exception fault;
106 };
107
108 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
109 {
110 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
111 }
112
113 static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
114 {
115 unsigned mask;
116
117 /* dirty bit is not supported, so no need to track it */
118 if (!PT_GUEST_DIRTY_MASK)
119 return;
120
121 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
122
123 mask = (unsigned)~ACC_WRITE_MASK;
124 /* Allow write access to dirty gptes */
125 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
126 PT_WRITABLE_MASK;
127 *access &= mask;
128 }
129
130 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
131 {
132 int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f;
133
134 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) |
135 ((mmu->bad_mt_xwr & (1ull << low6)) != 0);
136 }
137
138 static inline int FNAME(is_present_gpte)(unsigned long pte)
139 {
140 #if PTTYPE != PTTYPE_EPT
141 return is_present_gpte(pte);
142 #else
143 return pte & 7;
144 #endif
145 }
146
147 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
148 pt_element_t __user *ptep_user, unsigned index,
149 pt_element_t orig_pte, pt_element_t new_pte)
150 {
151 int npages;
152 pt_element_t ret;
153 pt_element_t *table;
154 struct page *page;
155
156 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
157 /* Check if the user is doing something meaningless. */
158 if (unlikely(npages != 1))
159 return -EFAULT;
160
161 table = kmap_atomic(page);
162 ret = CMPXCHG(&table[index], orig_pte, new_pte);
163 kunmap_atomic(table);
164
165 kvm_release_page_dirty(page);
166
167 return (ret != orig_pte);
168 }
169
170 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
171 struct kvm_mmu_page *sp, u64 *spte,
172 u64 gpte)
173 {
174 if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
175 goto no_present;
176
177 if (!FNAME(is_present_gpte)(gpte))
178 goto no_present;
179
180 /* if accessed bit is not supported prefetch non accessed gpte */
181 if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
182 goto no_present;
183
184 return false;
185
186 no_present:
187 drop_spte(vcpu->kvm, spte);
188 return true;
189 }
190
191 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
192 {
193 unsigned access;
194 #if PTTYPE == PTTYPE_EPT
195 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
196 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
197 ACC_USER_MASK;
198 #else
199 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
200 access &= ~(gpte >> PT64_NX_SHIFT);
201 #endif
202
203 return access;
204 }
205
206 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
207 struct kvm_mmu *mmu,
208 struct guest_walker *walker,
209 int write_fault)
210 {
211 unsigned level, index;
212 pt_element_t pte, orig_pte;
213 pt_element_t __user *ptep_user;
214 gfn_t table_gfn;
215 int ret;
216
217 /* dirty/accessed bits are not supported, so no need to update them */
218 if (!PT_GUEST_DIRTY_MASK)
219 return 0;
220
221 for (level = walker->max_level; level >= walker->level; --level) {
222 pte = orig_pte = walker->ptes[level - 1];
223 table_gfn = walker->table_gfn[level - 1];
224 ptep_user = walker->ptep_user[level - 1];
225 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
226 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
227 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
228 pte |= PT_GUEST_ACCESSED_MASK;
229 }
230 if (level == walker->level && write_fault &&
231 !(pte & PT_GUEST_DIRTY_MASK)) {
232 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
233 pte |= PT_GUEST_DIRTY_MASK;
234 }
235 if (pte == orig_pte)
236 continue;
237
238 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
239 if (ret)
240 return ret;
241
242 mark_page_dirty(vcpu->kvm, table_gfn);
243 walker->ptes[level] = pte;
244 }
245 return 0;
246 }
247
248 /*
249 * Fetch a guest pte for a guest virtual address
250 */
251 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
252 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
253 gva_t addr, u32 access)
254 {
255 int ret;
256 pt_element_t pte;
257 pt_element_t __user *uninitialized_var(ptep_user);
258 gfn_t table_gfn;
259 unsigned index, pt_access, pte_access, accessed_dirty;
260 gpa_t pte_gpa;
261 int offset;
262 const int write_fault = access & PFERR_WRITE_MASK;
263 const int user_fault = access & PFERR_USER_MASK;
264 const int fetch_fault = access & PFERR_FETCH_MASK;
265 u16 errcode = 0;
266 gpa_t real_gpa;
267 gfn_t gfn;
268
269 trace_kvm_mmu_pagetable_walk(addr, access);
270 retry_walk:
271 walker->level = mmu->root_level;
272 pte = mmu->get_cr3(vcpu);
273
274 #if PTTYPE == 64
275 if (walker->level == PT32E_ROOT_LEVEL) {
276 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
277 trace_kvm_mmu_paging_element(pte, walker->level);
278 if (!FNAME(is_present_gpte)(pte))
279 goto error;
280 --walker->level;
281 }
282 #endif
283 walker->max_level = walker->level;
284 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
285 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
286
287 accessed_dirty = PT_GUEST_ACCESSED_MASK;
288 pt_access = pte_access = ACC_ALL;
289 ++walker->level;
290
291 do {
292 gfn_t real_gfn;
293 unsigned long host_addr;
294
295 pt_access &= pte_access;
296 --walker->level;
297
298 index = PT_INDEX(addr, walker->level);
299
300 table_gfn = gpte_to_gfn(pte);
301 offset = index * sizeof(pt_element_t);
302 pte_gpa = gfn_to_gpa(table_gfn) + offset;
303 walker->table_gfn[walker->level - 1] = table_gfn;
304 walker->pte_gpa[walker->level - 1] = pte_gpa;
305
306 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
307 PFERR_USER_MASK|PFERR_WRITE_MASK);
308 if (unlikely(real_gfn == UNMAPPED_GVA))
309 goto error;
310 real_gfn = gpa_to_gfn(real_gfn);
311
312 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
313 if (unlikely(kvm_is_error_hva(host_addr)))
314 goto error;
315
316 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
317 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
318 goto error;
319 walker->ptep_user[walker->level - 1] = ptep_user;
320
321 trace_kvm_mmu_paging_element(pte, walker->level);
322
323 if (unlikely(!FNAME(is_present_gpte)(pte)))
324 goto error;
325
326 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte,
327 walker->level))) {
328 errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
329 goto error;
330 }
331
332 accessed_dirty &= pte;
333 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
334
335 walker->ptes[walker->level - 1] = pte;
336 } while (!is_last_gpte(mmu, walker->level, pte));
337
338 if (unlikely(permission_fault(mmu, pte_access, access))) {
339 errcode |= PFERR_PRESENT_MASK;
340 goto error;
341 }
342
343 gfn = gpte_to_gfn_lvl(pte, walker->level);
344 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
345
346 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
347 gfn += pse36_gfn_delta(pte);
348
349 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
350 if (real_gpa == UNMAPPED_GVA)
351 return 0;
352
353 walker->gfn = real_gpa >> PAGE_SHIFT;
354
355 if (!write_fault)
356 FNAME(protect_clean_gpte)(&pte_access, pte);
357 else
358 /*
359 * On a write fault, fold the dirty bit into accessed_dirty.
360 * For modes without A/D bits support accessed_dirty will be
361 * always clear.
362 */
363 accessed_dirty &= pte >>
364 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
365
366 if (unlikely(!accessed_dirty)) {
367 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
368 if (unlikely(ret < 0))
369 goto error;
370 else if (ret)
371 goto retry_walk;
372 }
373
374 walker->pt_access = pt_access;
375 walker->pte_access = pte_access;
376 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
377 __func__, (u64)pte, pte_access, pt_access);
378 return 1;
379
380 error:
381 errcode |= write_fault | user_fault;
382 if (fetch_fault && (mmu->nx ||
383 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
384 errcode |= PFERR_FETCH_MASK;
385
386 walker->fault.vector = PF_VECTOR;
387 walker->fault.error_code_valid = true;
388 walker->fault.error_code = errcode;
389
390 #if PTTYPE == PTTYPE_EPT
391 /*
392 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
393 * misconfiguration requires to be injected. The detection is
394 * done by is_rsvd_bits_set() above.
395 *
396 * We set up the value of exit_qualification to inject:
397 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
398 * [5:3] - Calculated by the page walk of the guest EPT page tables
399 * [7:8] - Derived from [7:8] of real exit_qualification
400 *
401 * The other bits are set to 0.
402 */
403 if (!(errcode & PFERR_RSVD_MASK)) {
404 vcpu->arch.exit_qualification &= 0x187;
405 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
406 }
407 #endif
408 walker->fault.address = addr;
409 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
410
411 trace_kvm_mmu_walker_error(walker->fault.error_code);
412 return 0;
413 }
414
415 static int FNAME(walk_addr)(struct guest_walker *walker,
416 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
417 {
418 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
419 access);
420 }
421
422 #if PTTYPE != PTTYPE_EPT
423 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
424 struct kvm_vcpu *vcpu, gva_t addr,
425 u32 access)
426 {
427 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
428 addr, access);
429 }
430 #endif
431
432 static bool
433 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
434 u64 *spte, pt_element_t gpte, bool no_dirty_log)
435 {
436 unsigned pte_access;
437 gfn_t gfn;
438 pfn_t pfn;
439
440 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
441 return false;
442
443 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
444
445 gfn = gpte_to_gfn(gpte);
446 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
447 FNAME(protect_clean_gpte)(&pte_access, gpte);
448 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
449 no_dirty_log && (pte_access & ACC_WRITE_MASK));
450 if (is_error_pfn(pfn))
451 return false;
452
453 /*
454 * we call mmu_set_spte() with host_writable = true because
455 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
456 */
457 mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
458 gfn, pfn, true, true);
459
460 return true;
461 }
462
463 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
464 u64 *spte, const void *pte)
465 {
466 pt_element_t gpte = *(const pt_element_t *)pte;
467
468 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
469 }
470
471 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
472 struct guest_walker *gw, int level)
473 {
474 pt_element_t curr_pte;
475 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
476 u64 mask;
477 int r, index;
478
479 if (level == PT_PAGE_TABLE_LEVEL) {
480 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
481 base_gpa = pte_gpa & ~mask;
482 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
483
484 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
485 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
486 curr_pte = gw->prefetch_ptes[index];
487 } else
488 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
489 &curr_pte, sizeof(curr_pte));
490
491 return r || curr_pte != gw->ptes[level - 1];
492 }
493
494 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
495 u64 *sptep)
496 {
497 struct kvm_mmu_page *sp;
498 pt_element_t *gptep = gw->prefetch_ptes;
499 u64 *spte;
500 int i;
501
502 sp = page_header(__pa(sptep));
503
504 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
505 return;
506
507 if (sp->role.direct)
508 return __direct_pte_prefetch(vcpu, sp, sptep);
509
510 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
511 spte = sp->spt + i;
512
513 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
514 if (spte == sptep)
515 continue;
516
517 if (is_shadow_present_pte(*spte))
518 continue;
519
520 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
521 break;
522 }
523 }
524
525 /*
526 * Fetch a shadow pte for a specific level in the paging hierarchy.
527 * If the guest tries to write a write-protected page, we need to
528 * emulate this operation, return 1 to indicate this case.
529 */
530 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
531 struct guest_walker *gw,
532 int write_fault, int hlevel,
533 pfn_t pfn, bool map_writable, bool prefault)
534 {
535 struct kvm_mmu_page *sp = NULL;
536 struct kvm_shadow_walk_iterator it;
537 unsigned direct_access, access = gw->pt_access;
538 int top_level, emulate = 0;
539
540 direct_access = gw->pte_access;
541
542 top_level = vcpu->arch.mmu.root_level;
543 if (top_level == PT32E_ROOT_LEVEL)
544 top_level = PT32_ROOT_LEVEL;
545 /*
546 * Verify that the top-level gpte is still there. Since the page
547 * is a root page, it is either write protected (and cannot be
548 * changed from now on) or it is invalid (in which case, we don't
549 * really care if it changes underneath us after this point).
550 */
551 if (FNAME(gpte_changed)(vcpu, gw, top_level))
552 goto out_gpte_changed;
553
554 for (shadow_walk_init(&it, vcpu, addr);
555 shadow_walk_okay(&it) && it.level > gw->level;
556 shadow_walk_next(&it)) {
557 gfn_t table_gfn;
558
559 clear_sp_write_flooding_count(it.sptep);
560 drop_large_spte(vcpu, it.sptep);
561
562 sp = NULL;
563 if (!is_shadow_present_pte(*it.sptep)) {
564 table_gfn = gw->table_gfn[it.level - 2];
565 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
566 false, access, it.sptep);
567 }
568
569 /*
570 * Verify that the gpte in the page we've just write
571 * protected is still there.
572 */
573 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
574 goto out_gpte_changed;
575
576 if (sp)
577 link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
578 }
579
580 for (;
581 shadow_walk_okay(&it) && it.level > hlevel;
582 shadow_walk_next(&it)) {
583 gfn_t direct_gfn;
584
585 clear_sp_write_flooding_count(it.sptep);
586 validate_direct_spte(vcpu, it.sptep, direct_access);
587
588 drop_large_spte(vcpu, it.sptep);
589
590 if (is_shadow_present_pte(*it.sptep))
591 continue;
592
593 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
594
595 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
596 true, direct_access, it.sptep);
597 link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
598 }
599
600 clear_sp_write_flooding_count(it.sptep);
601 mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
602 it.level, gw->gfn, pfn, prefault, map_writable);
603 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
604
605 return emulate;
606
607 out_gpte_changed:
608 if (sp)
609 kvm_mmu_put_page(sp, it.sptep);
610 kvm_release_pfn_clean(pfn);
611 return 0;
612 }
613
614 /*
615 * To see whether the mapped gfn can write its page table in the current
616 * mapping.
617 *
618 * It is the helper function of FNAME(page_fault). When guest uses large page
619 * size to map the writable gfn which is used as current page table, we should
620 * force kvm to use small page size to map it because new shadow page will be
621 * created when kvm establishes shadow page table that stop kvm using large
622 * page size. Do it early can avoid unnecessary #PF and emulation.
623 *
624 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
625 * currently used as its page table.
626 *
627 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
628 * since the PDPT is always shadowed, that means, we can not use large page
629 * size to map the gfn which is used as PDPT.
630 */
631 static bool
632 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
633 struct guest_walker *walker, int user_fault,
634 bool *write_fault_to_shadow_pgtable)
635 {
636 int level;
637 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
638 bool self_changed = false;
639
640 if (!(walker->pte_access & ACC_WRITE_MASK ||
641 (!is_write_protection(vcpu) && !user_fault)))
642 return false;
643
644 for (level = walker->level; level <= walker->max_level; level++) {
645 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
646
647 self_changed |= !(gfn & mask);
648 *write_fault_to_shadow_pgtable |= !gfn;
649 }
650
651 return self_changed;
652 }
653
654 /*
655 * Page fault handler. There are several causes for a page fault:
656 * - there is no shadow pte for the guest pte
657 * - write access through a shadow pte marked read only so that we can set
658 * the dirty bit
659 * - write access to a shadow pte marked read only so we can update the page
660 * dirty bitmap, when userspace requests it
661 * - mmio access; in this case we will never install a present shadow pte
662 * - normal guest page fault due to the guest pte marked not present, not
663 * writable, or not executable
664 *
665 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
666 * a negative value on error.
667 */
668 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
669 bool prefault)
670 {
671 int write_fault = error_code & PFERR_WRITE_MASK;
672 int user_fault = error_code & PFERR_USER_MASK;
673 struct guest_walker walker;
674 int r;
675 pfn_t pfn;
676 int level = PT_PAGE_TABLE_LEVEL;
677 int force_pt_level;
678 unsigned long mmu_seq;
679 bool map_writable, is_self_change_mapping;
680
681 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
682
683 if (unlikely(error_code & PFERR_RSVD_MASK)) {
684 r = handle_mmio_page_fault(vcpu, addr, error_code,
685 mmu_is_nested(vcpu));
686 if (likely(r != RET_MMIO_PF_INVALID))
687 return r;
688 };
689
690 r = mmu_topup_memory_caches(vcpu);
691 if (r)
692 return r;
693
694 /*
695 * Look up the guest pte for the faulting address.
696 */
697 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
698
699 /*
700 * The page is not mapped by the guest. Let the guest handle it.
701 */
702 if (!r) {
703 pgprintk("%s: guest page fault\n", __func__);
704 if (!prefault)
705 inject_page_fault(vcpu, &walker.fault);
706
707 return 0;
708 }
709
710 vcpu->arch.write_fault_to_shadow_pgtable = false;
711
712 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
713 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
714
715 if (walker.level >= PT_DIRECTORY_LEVEL)
716 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
717 || is_self_change_mapping;
718 else
719 force_pt_level = 1;
720 if (!force_pt_level) {
721 level = min(walker.level, mapping_level(vcpu, walker.gfn));
722 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
723 }
724
725 mmu_seq = vcpu->kvm->mmu_notifier_seq;
726 smp_rmb();
727
728 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
729 &map_writable))
730 return 0;
731
732 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
733 walker.gfn, pfn, walker.pte_access, &r))
734 return r;
735
736 /*
737 * Do not change pte_access if the pfn is a mmio page, otherwise
738 * we will cache the incorrect access into mmio spte.
739 */
740 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
741 !is_write_protection(vcpu) && !user_fault &&
742 !is_noslot_pfn(pfn)) {
743 walker.pte_access |= ACC_WRITE_MASK;
744 walker.pte_access &= ~ACC_USER_MASK;
745
746 /*
747 * If we converted a user page to a kernel page,
748 * so that the kernel can write to it when cr0.wp=0,
749 * then we should prevent the kernel from executing it
750 * if SMEP is enabled.
751 */
752 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
753 walker.pte_access &= ~ACC_EXEC_MASK;
754 }
755
756 spin_lock(&vcpu->kvm->mmu_lock);
757 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
758 goto out_unlock;
759
760 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
761 make_mmu_pages_available(vcpu);
762 if (!force_pt_level)
763 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
764 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
765 level, pfn, map_writable, prefault);
766 ++vcpu->stat.pf_fixed;
767 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
768 spin_unlock(&vcpu->kvm->mmu_lock);
769
770 return r;
771
772 out_unlock:
773 spin_unlock(&vcpu->kvm->mmu_lock);
774 kvm_release_pfn_clean(pfn);
775 return 0;
776 }
777
778 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
779 {
780 int offset = 0;
781
782 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
783
784 if (PTTYPE == 32)
785 offset = sp->role.quadrant << PT64_LEVEL_BITS;
786
787 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
788 }
789
790 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
791 {
792 struct kvm_shadow_walk_iterator iterator;
793 struct kvm_mmu_page *sp;
794 int level;
795 u64 *sptep;
796
797 vcpu_clear_mmio_info(vcpu, gva);
798
799 /*
800 * No need to check return value here, rmap_can_add() can
801 * help us to skip pte prefetch later.
802 */
803 mmu_topup_memory_caches(vcpu);
804
805 spin_lock(&vcpu->kvm->mmu_lock);
806 for_each_shadow_entry(vcpu, gva, iterator) {
807 level = iterator.level;
808 sptep = iterator.sptep;
809
810 sp = page_header(__pa(sptep));
811 if (is_last_spte(*sptep, level)) {
812 pt_element_t gpte;
813 gpa_t pte_gpa;
814
815 if (!sp->unsync)
816 break;
817
818 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
819 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
820
821 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
822 kvm_flush_remote_tlbs(vcpu->kvm);
823
824 if (!rmap_can_add(vcpu))
825 break;
826
827 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
828 sizeof(pt_element_t)))
829 break;
830
831 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
832 }
833
834 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
835 break;
836 }
837 spin_unlock(&vcpu->kvm->mmu_lock);
838 }
839
840 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
841 struct x86_exception *exception)
842 {
843 struct guest_walker walker;
844 gpa_t gpa = UNMAPPED_GVA;
845 int r;
846
847 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
848
849 if (r) {
850 gpa = gfn_to_gpa(walker.gfn);
851 gpa |= vaddr & ~PAGE_MASK;
852 } else if (exception)
853 *exception = walker.fault;
854
855 return gpa;
856 }
857
858 #if PTTYPE != PTTYPE_EPT
859 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
860 u32 access,
861 struct x86_exception *exception)
862 {
863 struct guest_walker walker;
864 gpa_t gpa = UNMAPPED_GVA;
865 int r;
866
867 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
868
869 if (r) {
870 gpa = gfn_to_gpa(walker.gfn);
871 gpa |= vaddr & ~PAGE_MASK;
872 } else if (exception)
873 *exception = walker.fault;
874
875 return gpa;
876 }
877 #endif
878
879 /*
880 * Using the cached information from sp->gfns is safe because:
881 * - The spte has a reference to the struct page, so the pfn for a given gfn
882 * can't change unless all sptes pointing to it are nuked first.
883 *
884 * Note:
885 * We should flush all tlbs if spte is dropped even though guest is
886 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
887 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
888 * used by guest then tlbs are not flushed, so guest is allowed to access the
889 * freed pages.
890 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
891 */
892 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
893 {
894 int i, nr_present = 0;
895 bool host_writable;
896 gpa_t first_pte_gpa;
897
898 /* direct kvm_mmu_page can not be unsync. */
899 BUG_ON(sp->role.direct);
900
901 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
902
903 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
904 unsigned pte_access;
905 pt_element_t gpte;
906 gpa_t pte_gpa;
907 gfn_t gfn;
908
909 if (!sp->spt[i])
910 continue;
911
912 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
913
914 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
915 sizeof(pt_element_t)))
916 return -EINVAL;
917
918 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
919 vcpu->kvm->tlbs_dirty++;
920 continue;
921 }
922
923 gfn = gpte_to_gfn(gpte);
924 pte_access = sp->role.access;
925 pte_access &= FNAME(gpte_access)(vcpu, gpte);
926 FNAME(protect_clean_gpte)(&pte_access, gpte);
927
928 if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
929 &nr_present))
930 continue;
931
932 if (gfn != sp->gfns[i]) {
933 drop_spte(vcpu->kvm, &sp->spt[i]);
934 vcpu->kvm->tlbs_dirty++;
935 continue;
936 }
937
938 nr_present++;
939
940 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
941
942 set_spte(vcpu, &sp->spt[i], pte_access,
943 PT_PAGE_TABLE_LEVEL, gfn,
944 spte_to_pfn(sp->spt[i]), true, false,
945 host_writable);
946 }
947
948 return !nr_present;
949 }
950
951 #undef pt_element_t
952 #undef guest_walker
953 #undef FNAME
954 #undef PT_BASE_ADDR_MASK
955 #undef PT_INDEX
956 #undef PT_LVL_ADDR_MASK
957 #undef PT_LVL_OFFSET_MASK
958 #undef PT_LEVEL_BITS
959 #undef PT_MAX_FULL_LEVELS
960 #undef gpte_to_gfn
961 #undef gpte_to_gfn_lvl
962 #undef CMPXCHG
963 #undef PT_GUEST_ACCESSED_MASK
964 #undef PT_GUEST_DIRTY_MASK
965 #undef PT_GUEST_DIRTY_SHIFT
966 #undef PT_GUEST_ACCESSED_SHIFT