]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/paging_tmpl.h
Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / paging_tmpl.h
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 /*
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
23 */
24
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
31 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
32 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42 #elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
51 #define PT_LEVEL_BITS PT32_LEVEL_BITS
52 #define PT_MAX_FULL_LEVELS 2
53 #define CMPXCHG cmpxchg
54 #else
55 #error Invalid PTTYPE value
56 #endif
57
58 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
59 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
60
61 /*
62 * The guest_walker structure emulates the behavior of the hardware page
63 * table walker.
64 */
65 struct guest_walker {
66 int level;
67 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
68 pt_element_t ptes[PT_MAX_FULL_LEVELS];
69 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
70 unsigned pt_access;
71 unsigned pte_access;
72 gfn_t gfn;
73 u32 error_code;
74 };
75
76 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
77 {
78 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
79 }
80
81 static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
82 gfn_t table_gfn, unsigned index,
83 pt_element_t orig_pte, pt_element_t new_pte)
84 {
85 pt_element_t ret;
86 pt_element_t *table;
87 struct page *page;
88
89 page = gfn_to_page(kvm, table_gfn);
90
91 table = kmap_atomic(page, KM_USER0);
92 ret = CMPXCHG(&table[index], orig_pte, new_pte);
93 kunmap_atomic(table, KM_USER0);
94
95 kvm_release_page_dirty(page);
96
97 return (ret != orig_pte);
98 }
99
100 static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
101 {
102 unsigned access;
103
104 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
105 #if PTTYPE == 64
106 if (is_nx(vcpu))
107 access &= ~(gpte >> PT64_NX_SHIFT);
108 #endif
109 return access;
110 }
111
112 /*
113 * Fetch a guest pte for a guest virtual address
114 */
115 static int FNAME(walk_addr)(struct guest_walker *walker,
116 struct kvm_vcpu *vcpu, gva_t addr,
117 int write_fault, int user_fault, int fetch_fault)
118 {
119 pt_element_t pte;
120 gfn_t table_gfn;
121 unsigned index, pt_access, pte_access;
122 gpa_t pte_gpa;
123 int rsvd_fault = 0;
124
125 trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
126 fetch_fault);
127 walk:
128 walker->level = vcpu->arch.mmu.root_level;
129 pte = vcpu->arch.cr3;
130 #if PTTYPE == 64
131 if (!is_long_mode(vcpu)) {
132 pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3);
133 trace_kvm_mmu_paging_element(pte, walker->level);
134 if (!is_present_gpte(pte))
135 goto not_present;
136 --walker->level;
137 }
138 #endif
139 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
140 (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
141
142 pt_access = ACC_ALL;
143
144 for (;;) {
145 index = PT_INDEX(addr, walker->level);
146
147 table_gfn = gpte_to_gfn(pte);
148 pte_gpa = gfn_to_gpa(table_gfn);
149 pte_gpa += index * sizeof(pt_element_t);
150 walker->table_gfn[walker->level - 1] = table_gfn;
151 walker->pte_gpa[walker->level - 1] = pte_gpa;
152
153 if (kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte)))
154 goto not_present;
155
156 trace_kvm_mmu_paging_element(pte, walker->level);
157
158 if (!is_present_gpte(pte))
159 goto not_present;
160
161 rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
162 if (rsvd_fault)
163 goto access_error;
164
165 if (write_fault && !is_writable_pte(pte))
166 if (user_fault || is_write_protection(vcpu))
167 goto access_error;
168
169 if (user_fault && !(pte & PT_USER_MASK))
170 goto access_error;
171
172 #if PTTYPE == 64
173 if (fetch_fault && (pte & PT64_NX_MASK))
174 goto access_error;
175 #endif
176
177 if (!(pte & PT_ACCESSED_MASK)) {
178 trace_kvm_mmu_set_accessed_bit(table_gfn, index,
179 sizeof(pte));
180 mark_page_dirty(vcpu->kvm, table_gfn);
181 if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
182 index, pte, pte|PT_ACCESSED_MASK))
183 goto walk;
184 pte |= PT_ACCESSED_MASK;
185 }
186
187 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
188
189 walker->ptes[walker->level - 1] = pte;
190
191 if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
192 ((walker->level == PT_DIRECTORY_LEVEL) &&
193 is_large_pte(pte) &&
194 (PTTYPE == 64 || is_pse(vcpu))) ||
195 ((walker->level == PT_PDPE_LEVEL) &&
196 is_large_pte(pte) &&
197 is_long_mode(vcpu))) {
198 int lvl = walker->level;
199
200 walker->gfn = gpte_to_gfn_lvl(pte, lvl);
201 walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl))
202 >> PAGE_SHIFT;
203
204 if (PTTYPE == 32 &&
205 walker->level == PT_DIRECTORY_LEVEL &&
206 is_cpuid_PSE36())
207 walker->gfn += pse36_gfn_delta(pte);
208
209 break;
210 }
211
212 pt_access = pte_access;
213 --walker->level;
214 }
215
216 if (write_fault && !is_dirty_gpte(pte)) {
217 bool ret;
218
219 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
220 mark_page_dirty(vcpu->kvm, table_gfn);
221 ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
222 pte|PT_DIRTY_MASK);
223 if (ret)
224 goto walk;
225 pte |= PT_DIRTY_MASK;
226 walker->ptes[walker->level - 1] = pte;
227 }
228
229 walker->pt_access = pt_access;
230 walker->pte_access = pte_access;
231 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
232 __func__, (u64)pte, pt_access, pte_access);
233 return 1;
234
235 not_present:
236 walker->error_code = 0;
237 goto err;
238
239 access_error:
240 walker->error_code = PFERR_PRESENT_MASK;
241
242 err:
243 if (write_fault)
244 walker->error_code |= PFERR_WRITE_MASK;
245 if (user_fault)
246 walker->error_code |= PFERR_USER_MASK;
247 if (fetch_fault)
248 walker->error_code |= PFERR_FETCH_MASK;
249 if (rsvd_fault)
250 walker->error_code |= PFERR_RSVD_MASK;
251 trace_kvm_mmu_walker_error(walker->error_code);
252 return 0;
253 }
254
255 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
256 u64 *spte, const void *pte)
257 {
258 pt_element_t gpte;
259 unsigned pte_access;
260 pfn_t pfn;
261 u64 new_spte;
262
263 gpte = *(const pt_element_t *)pte;
264 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
265 if (!is_present_gpte(gpte)) {
266 if (page->unsync)
267 new_spte = shadow_trap_nonpresent_pte;
268 else
269 new_spte = shadow_notrap_nonpresent_pte;
270 __set_spte(spte, new_spte);
271 }
272 return;
273 }
274 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
275 pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
276 if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
277 return;
278 pfn = vcpu->arch.update_pte.pfn;
279 if (is_error_pfn(pfn))
280 return;
281 if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
282 return;
283 kvm_get_pfn(pfn);
284 /*
285 * we call mmu_set_spte() with reset_host_protection = true beacuse that
286 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
287 */
288 mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
289 gpte & PT_DIRTY_MASK, NULL, PT_PAGE_TABLE_LEVEL,
290 gpte_to_gfn(gpte), pfn, true, true);
291 }
292
293 /*
294 * Fetch a shadow pte for a specific level in the paging hierarchy.
295 */
296 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
297 struct guest_walker *gw,
298 int user_fault, int write_fault, int hlevel,
299 int *ptwrite, pfn_t pfn)
300 {
301 unsigned access = gw->pt_access;
302 struct kvm_mmu_page *shadow_page;
303 u64 spte, *sptep = NULL;
304 int direct;
305 gfn_t table_gfn;
306 int r;
307 int level;
308 pt_element_t curr_pte;
309 struct kvm_shadow_walk_iterator iterator;
310
311 if (!is_present_gpte(gw->ptes[gw->level - 1]))
312 return NULL;
313
314 for_each_shadow_entry(vcpu, addr, iterator) {
315 level = iterator.level;
316 sptep = iterator.sptep;
317 if (iterator.level == hlevel) {
318 mmu_set_spte(vcpu, sptep, access,
319 gw->pte_access & access,
320 user_fault, write_fault,
321 gw->ptes[gw->level-1] & PT_DIRTY_MASK,
322 ptwrite, level,
323 gw->gfn, pfn, false, true);
324 break;
325 }
326
327 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
328 continue;
329
330 if (is_large_pte(*sptep)) {
331 rmap_remove(vcpu->kvm, sptep);
332 __set_spte(sptep, shadow_trap_nonpresent_pte);
333 kvm_flush_remote_tlbs(vcpu->kvm);
334 }
335
336 if (level <= gw->level) {
337 int delta = level - gw->level + 1;
338 direct = 1;
339 if (!is_dirty_gpte(gw->ptes[level - delta]))
340 access &= ~ACC_WRITE_MASK;
341 table_gfn = gpte_to_gfn(gw->ptes[level - delta]);
342 /* advance table_gfn when emulating 1gb pages with 4k */
343 if (delta == 0)
344 table_gfn += PT_INDEX(addr, level);
345 } else {
346 direct = 0;
347 table_gfn = gw->table_gfn[level - 2];
348 }
349 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
350 direct, access, sptep);
351 if (!direct) {
352 r = kvm_read_guest_atomic(vcpu->kvm,
353 gw->pte_gpa[level - 2],
354 &curr_pte, sizeof(curr_pte));
355 if (r || curr_pte != gw->ptes[level - 2]) {
356 kvm_mmu_put_page(shadow_page, sptep);
357 kvm_release_pfn_clean(pfn);
358 sptep = NULL;
359 break;
360 }
361 }
362
363 spte = __pa(shadow_page->spt)
364 | PT_PRESENT_MASK | PT_ACCESSED_MASK
365 | PT_WRITABLE_MASK | PT_USER_MASK;
366 *sptep = spte;
367 }
368
369 return sptep;
370 }
371
372 /*
373 * Page fault handler. There are several causes for a page fault:
374 * - there is no shadow pte for the guest pte
375 * - write access through a shadow pte marked read only so that we can set
376 * the dirty bit
377 * - write access to a shadow pte marked read only so we can update the page
378 * dirty bitmap, when userspace requests it
379 * - mmio access; in this case we will never install a present shadow pte
380 * - normal guest page fault due to the guest pte marked not present, not
381 * writable, or not executable
382 *
383 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
384 * a negative value on error.
385 */
386 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
387 u32 error_code)
388 {
389 int write_fault = error_code & PFERR_WRITE_MASK;
390 int user_fault = error_code & PFERR_USER_MASK;
391 int fetch_fault = error_code & PFERR_FETCH_MASK;
392 struct guest_walker walker;
393 u64 *sptep;
394 int write_pt = 0;
395 int r;
396 pfn_t pfn;
397 int level = PT_PAGE_TABLE_LEVEL;
398 unsigned long mmu_seq;
399
400 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
401 kvm_mmu_audit(vcpu, "pre page fault");
402
403 r = mmu_topup_memory_caches(vcpu);
404 if (r)
405 return r;
406
407 /*
408 * Look up the guest pte for the faulting address.
409 */
410 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
411 fetch_fault);
412
413 /*
414 * The page is not mapped by the guest. Let the guest handle it.
415 */
416 if (!r) {
417 pgprintk("%s: guest page fault\n", __func__);
418 inject_page_fault(vcpu, addr, walker.error_code);
419 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
420 return 0;
421 }
422
423 if (walker.level >= PT_DIRECTORY_LEVEL) {
424 level = min(walker.level, mapping_level(vcpu, walker.gfn));
425 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
426 }
427
428 mmu_seq = vcpu->kvm->mmu_notifier_seq;
429 smp_rmb();
430 pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
431
432 /* mmio */
433 if (is_error_pfn(pfn)) {
434 pgprintk("gfn %lx is mmio\n", walker.gfn);
435 kvm_release_pfn_clean(pfn);
436 return 1;
437 }
438
439 spin_lock(&vcpu->kvm->mmu_lock);
440 if (mmu_notifier_retry(vcpu, mmu_seq))
441 goto out_unlock;
442 kvm_mmu_free_some_pages(vcpu);
443 sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
444 level, &write_pt, pfn);
445 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
446 sptep, *sptep, write_pt);
447
448 if (!write_pt)
449 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
450
451 ++vcpu->stat.pf_fixed;
452 kvm_mmu_audit(vcpu, "post page fault (fixed)");
453 spin_unlock(&vcpu->kvm->mmu_lock);
454
455 return write_pt;
456
457 out_unlock:
458 spin_unlock(&vcpu->kvm->mmu_lock);
459 kvm_release_pfn_clean(pfn);
460 return 0;
461 }
462
463 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
464 {
465 struct kvm_shadow_walk_iterator iterator;
466 gpa_t pte_gpa = -1;
467 int level;
468 u64 *sptep;
469 int need_flush = 0;
470
471 spin_lock(&vcpu->kvm->mmu_lock);
472
473 for_each_shadow_entry(vcpu, gva, iterator) {
474 level = iterator.level;
475 sptep = iterator.sptep;
476
477 if (is_last_spte(*sptep, level)) {
478 struct kvm_mmu_page *sp = page_header(__pa(sptep));
479 int offset, shift;
480
481 shift = PAGE_SHIFT -
482 (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
483 offset = sp->role.quadrant << shift;
484
485 pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
486 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
487
488 if (is_shadow_present_pte(*sptep)) {
489 rmap_remove(vcpu->kvm, sptep);
490 if (is_large_pte(*sptep))
491 --vcpu->kvm->stat.lpages;
492 need_flush = 1;
493 }
494 __set_spte(sptep, shadow_trap_nonpresent_pte);
495 break;
496 }
497
498 if (!is_shadow_present_pte(*sptep))
499 break;
500 }
501
502 if (need_flush)
503 kvm_flush_remote_tlbs(vcpu->kvm);
504
505 atomic_inc(&vcpu->kvm->arch.invlpg_counter);
506
507 spin_unlock(&vcpu->kvm->mmu_lock);
508
509 if (pte_gpa == -1)
510 return;
511
512 if (mmu_topup_memory_caches(vcpu))
513 return;
514 kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
515 }
516
517 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
518 u32 *error)
519 {
520 struct guest_walker walker;
521 gpa_t gpa = UNMAPPED_GVA;
522 int r;
523
524 r = FNAME(walk_addr)(&walker, vcpu, vaddr,
525 !!(access & PFERR_WRITE_MASK),
526 !!(access & PFERR_USER_MASK),
527 !!(access & PFERR_FETCH_MASK));
528
529 if (r) {
530 gpa = gfn_to_gpa(walker.gfn);
531 gpa |= vaddr & ~PAGE_MASK;
532 } else if (error)
533 *error = walker.error_code;
534
535 return gpa;
536 }
537
538 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
539 struct kvm_mmu_page *sp)
540 {
541 int i, j, offset, r;
542 pt_element_t pt[256 / sizeof(pt_element_t)];
543 gpa_t pte_gpa;
544
545 if (sp->role.direct
546 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
547 nonpaging_prefetch_page(vcpu, sp);
548 return;
549 }
550
551 pte_gpa = gfn_to_gpa(sp->gfn);
552 if (PTTYPE == 32) {
553 offset = sp->role.quadrant << PT64_LEVEL_BITS;
554 pte_gpa += offset * sizeof(pt_element_t);
555 }
556
557 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
558 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
559 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
560 for (j = 0; j < ARRAY_SIZE(pt); ++j)
561 if (r || is_present_gpte(pt[j]))
562 sp->spt[i+j] = shadow_trap_nonpresent_pte;
563 else
564 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
565 }
566 }
567
568 /*
569 * Using the cached information from sp->gfns is safe because:
570 * - The spte has a reference to the struct page, so the pfn for a given gfn
571 * can't change unless all sptes pointing to it are nuked first.
572 * - Alias changes zap the entire shadow cache.
573 */
574 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
575 {
576 int i, offset, nr_present;
577 bool reset_host_protection;
578 gpa_t first_pte_gpa;
579
580 offset = nr_present = 0;
581
582 if (PTTYPE == 32)
583 offset = sp->role.quadrant << PT64_LEVEL_BITS;
584
585 first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
586
587 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
588 unsigned pte_access;
589 pt_element_t gpte;
590 gpa_t pte_gpa;
591 gfn_t gfn = sp->gfns[i];
592
593 if (!is_shadow_present_pte(sp->spt[i]))
594 continue;
595
596 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
597
598 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
599 sizeof(pt_element_t)))
600 return -EINVAL;
601
602 if (gpte_to_gfn(gpte) != gfn || !is_present_gpte(gpte) ||
603 !(gpte & PT_ACCESSED_MASK)) {
604 u64 nonpresent;
605
606 rmap_remove(vcpu->kvm, &sp->spt[i]);
607 if (is_present_gpte(gpte))
608 nonpresent = shadow_trap_nonpresent_pte;
609 else
610 nonpresent = shadow_notrap_nonpresent_pte;
611 __set_spte(&sp->spt[i], nonpresent);
612 continue;
613 }
614
615 nr_present++;
616 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
617 if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) {
618 pte_access &= ~ACC_WRITE_MASK;
619 reset_host_protection = 0;
620 } else {
621 reset_host_protection = 1;
622 }
623 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
624 is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
625 spte_to_pfn(sp->spt[i]), true, false,
626 reset_host_protection);
627 }
628
629 return !nr_present;
630 }
631
632 #undef pt_element_t
633 #undef guest_walker
634 #undef FNAME
635 #undef PT_BASE_ADDR_MASK
636 #undef PT_INDEX
637 #undef PT_LEVEL_MASK
638 #undef PT_LVL_ADDR_MASK
639 #undef PT_LVL_OFFSET_MASK
640 #undef PT_LEVEL_BITS
641 #undef PT_MAX_FULL_LEVELS
642 #undef gpte_to_gfn
643 #undef gpte_to_gfn_lvl
644 #undef CMPXCHG