]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/svm/svm.c
treewide: Use fallthrough pseudo-keyword
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/frame.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 {}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63
64 #define SVM_FEATURE_LBRV (1 << 1)
65 #define SVM_FEATURE_SVML (1 << 2)
66 #define SVM_FEATURE_TSC_RATE (1 << 4)
67 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
68 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
69 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
70 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
75 #define TSC_RATIO_MIN 0x0000000000000001ULL
76 #define TSC_RATIO_MAX 0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81
82 /*
83 * Set osvw_len to higher value when updated Revision Guides
84 * are published and we know what the new status bits are
85 */
86 static uint64_t osvw_len = 4, osvw_status;
87
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT 0x0100000000ULL
90
91 static const struct svm_direct_access_msrs {
92 u32 index; /* Index of the MSR */
93 bool always; /* True if intercept is always on */
94 } direct_access_msrs[] = {
95 { .index = MSR_STAR, .always = true },
96 { .index = MSR_IA32_SYSENTER_CS, .always = true },
97 #ifdef CONFIG_X86_64
98 { .index = MSR_GS_BASE, .always = true },
99 { .index = MSR_FS_BASE, .always = true },
100 { .index = MSR_KERNEL_GS_BASE, .always = true },
101 { .index = MSR_LSTAR, .always = true },
102 { .index = MSR_CSTAR, .always = true },
103 { .index = MSR_SYSCALL_MASK, .always = true },
104 #endif
105 { .index = MSR_IA32_SPEC_CTRL, .always = false },
106 { .index = MSR_IA32_PRED_CMD, .always = false },
107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
109 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
110 { .index = MSR_IA32_LASTINTTOIP, .always = false },
111 { .index = MSR_INVALID, .always = false },
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120
121 /*
122 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123 * pause_filter_count: On processors that support Pause filtering(indicated
124 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125 * count value. On VMRUN this value is loaded into an internal counter.
126 * Each time a pause instruction is executed, this counter is decremented
127 * until it reaches zero at which time a #VMEXIT is generated if pause
128 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
129 * Intercept Filtering for more details.
130 * This also indicate if ple logic enabled.
131 *
132 * pause_filter_thresh: In addition, some processor families support advanced
133 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134 * the amount of time a guest is allowed to execute in a pause loop.
135 * In this mode, a 16-bit pause filter threshold field is added in the
136 * VMCB. The threshold value is a cycle count that is used to reset the
137 * pause counter. As with simple pause filtering, VMRUN loads the pause
138 * count value from VMCB into an internal counter. Then, on each pause
139 * instruction the hardware checks the elapsed number of cycles since
140 * the most recent pause instruction against the pause filter threshold.
141 * If the elapsed cycle count is greater than the pause filter threshold,
142 * then the internal pause count is reloaded from the VMCB and execution
143 * continues. If the elapsed cycle count is less than the pause filter
144 * threshold, then the internal pause count is decremented. If the count
145 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146 * triggered. If advanced pause filtering is supported and pause filter
147 * threshold field is set to zero, the filter will operate in the simpler,
148 * count only mode.
149 */
150
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199
200 static unsigned long iopm_base;
201
202 struct kvm_ldttss_desc {
203 u16 limit0;
204 u16 base0;
205 unsigned base1:8, type:5, dpl:2, p:1;
206 unsigned limit1:4, zero0:3, g:1, base2:8;
207 u32 base3;
208 u32 zero1;
209 } __attribute__((packed));
210
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218
219 u32 svm_msrpm_offset(u32 msr)
220 {
221 u32 offset;
222 int i;
223
224 for (i = 0; i < NUM_MSR_MAPS; i++) {
225 if (msr < msrpm_ranges[i] ||
226 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 continue;
228
229 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
231
232 /* Now we have the u8 offset - but need the u32 offset */
233 return offset / 4;
234 }
235
236 /* MSR not in any range */
237 return MSR_INVALID;
238 }
239
240 #define MAX_INST_SIZE 15
241
242 static inline void clgi(void)
243 {
244 asm volatile (__ex("clgi"));
245 }
246
247 static inline void stgi(void)
248 {
249 asm volatile (__ex("stgi"));
250 }
251
252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256
257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 return PT64_ROOT_4LEVEL;
261 #else
262 return PT32E_ROOT_LEVEL;
263 #endif
264 }
265
266 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 struct vcpu_svm *svm = to_svm(vcpu);
269 vcpu->arch.efer = efer;
270
271 if (!npt_enabled) {
272 /* Shadow paging assumes NX to be available. */
273 efer |= EFER_NX;
274
275 if (!(efer & EFER_LMA))
276 efer &= ~EFER_LME;
277 }
278
279 if (!(efer & EFER_SVME)) {
280 svm_leave_nested(svm);
281 svm_set_gif(svm, true);
282 }
283
284 svm->vmcb->save.efer = efer | EFER_SVME;
285 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
286 }
287
288 static int is_external_interrupt(u32 info)
289 {
290 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
291 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
292 }
293
294 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
295 {
296 struct vcpu_svm *svm = to_svm(vcpu);
297 u32 ret = 0;
298
299 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
300 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
301 return ret;
302 }
303
304 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
305 {
306 struct vcpu_svm *svm = to_svm(vcpu);
307
308 if (mask == 0)
309 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
310 else
311 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
312
313 }
314
315 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
316 {
317 struct vcpu_svm *svm = to_svm(vcpu);
318
319 if (nrips && svm->vmcb->control.next_rip != 0) {
320 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
321 svm->next_rip = svm->vmcb->control.next_rip;
322 }
323
324 if (!svm->next_rip) {
325 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
326 return 0;
327 } else {
328 kvm_rip_write(vcpu, svm->next_rip);
329 }
330 svm_set_interrupt_shadow(vcpu, 0);
331
332 return 1;
333 }
334
335 static void svm_queue_exception(struct kvm_vcpu *vcpu)
336 {
337 struct vcpu_svm *svm = to_svm(vcpu);
338 unsigned nr = vcpu->arch.exception.nr;
339 bool has_error_code = vcpu->arch.exception.has_error_code;
340 u32 error_code = vcpu->arch.exception.error_code;
341
342 kvm_deliver_exception_payload(&svm->vcpu);
343
344 if (nr == BP_VECTOR && !nrips) {
345 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
346
347 /*
348 * For guest debugging where we have to reinject #BP if some
349 * INT3 is guest-owned:
350 * Emulate nRIP by moving RIP forward. Will fail if injection
351 * raises a fault that is not intercepted. Still better than
352 * failing in all cases.
353 */
354 (void)skip_emulated_instruction(&svm->vcpu);
355 rip = kvm_rip_read(&svm->vcpu);
356 svm->int3_rip = rip + svm->vmcb->save.cs.base;
357 svm->int3_injected = rip - old_rip;
358 }
359
360 svm->vmcb->control.event_inj = nr
361 | SVM_EVTINJ_VALID
362 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
363 | SVM_EVTINJ_TYPE_EXEPT;
364 svm->vmcb->control.event_inj_err = error_code;
365 }
366
367 static void svm_init_erratum_383(void)
368 {
369 u32 low, high;
370 int err;
371 u64 val;
372
373 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
374 return;
375
376 /* Use _safe variants to not break nested virtualization */
377 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
378 if (err)
379 return;
380
381 val |= (1ULL << 47);
382
383 low = lower_32_bits(val);
384 high = upper_32_bits(val);
385
386 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
387
388 erratum_383_found = true;
389 }
390
391 static void svm_init_osvw(struct kvm_vcpu *vcpu)
392 {
393 /*
394 * Guests should see errata 400 and 415 as fixed (assuming that
395 * HLT and IO instructions are intercepted).
396 */
397 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
398 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
399
400 /*
401 * By increasing VCPU's osvw.length to 3 we are telling the guest that
402 * all osvw.status bits inside that length, including bit 0 (which is
403 * reserved for erratum 298), are valid. However, if host processor's
404 * osvw_len is 0 then osvw_status[0] carries no information. We need to
405 * be conservative here and therefore we tell the guest that erratum 298
406 * is present (because we really don't know).
407 */
408 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
409 vcpu->arch.osvw.status |= 1;
410 }
411
412 static int has_svm(void)
413 {
414 const char *msg;
415
416 if (!cpu_has_svm(&msg)) {
417 printk(KERN_INFO "has_svm: %s\n", msg);
418 return 0;
419 }
420
421 return 1;
422 }
423
424 static void svm_hardware_disable(void)
425 {
426 /* Make sure we clean up behind us */
427 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
428 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
429
430 cpu_svm_disable();
431
432 amd_pmu_disable_virt();
433 }
434
435 static int svm_hardware_enable(void)
436 {
437
438 struct svm_cpu_data *sd;
439 uint64_t efer;
440 struct desc_struct *gdt;
441 int me = raw_smp_processor_id();
442
443 rdmsrl(MSR_EFER, efer);
444 if (efer & EFER_SVME)
445 return -EBUSY;
446
447 if (!has_svm()) {
448 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
449 return -EINVAL;
450 }
451 sd = per_cpu(svm_data, me);
452 if (!sd) {
453 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
454 return -EINVAL;
455 }
456
457 sd->asid_generation = 1;
458 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
459 sd->next_asid = sd->max_asid + 1;
460 sd->min_asid = max_sev_asid + 1;
461
462 gdt = get_current_gdt_rw();
463 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
464
465 wrmsrl(MSR_EFER, efer | EFER_SVME);
466
467 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
468
469 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
470 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
471 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
472 }
473
474
475 /*
476 * Get OSVW bits.
477 *
478 * Note that it is possible to have a system with mixed processor
479 * revisions and therefore different OSVW bits. If bits are not the same
480 * on different processors then choose the worst case (i.e. if erratum
481 * is present on one processor and not on another then assume that the
482 * erratum is present everywhere).
483 */
484 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
485 uint64_t len, status = 0;
486 int err;
487
488 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
489 if (!err)
490 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
491 &err);
492
493 if (err)
494 osvw_status = osvw_len = 0;
495 else {
496 if (len < osvw_len)
497 osvw_len = len;
498 osvw_status |= status;
499 osvw_status &= (1ULL << osvw_len) - 1;
500 }
501 } else
502 osvw_status = osvw_len = 0;
503
504 svm_init_erratum_383();
505
506 amd_pmu_enable_virt();
507
508 return 0;
509 }
510
511 static void svm_cpu_uninit(int cpu)
512 {
513 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
514
515 if (!sd)
516 return;
517
518 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
519 kfree(sd->sev_vmcbs);
520 __free_page(sd->save_area);
521 kfree(sd);
522 }
523
524 static int svm_cpu_init(int cpu)
525 {
526 struct svm_cpu_data *sd;
527
528 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
529 if (!sd)
530 return -ENOMEM;
531 sd->cpu = cpu;
532 sd->save_area = alloc_page(GFP_KERNEL);
533 if (!sd->save_area)
534 goto free_cpu_data;
535
536 if (svm_sev_enabled()) {
537 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
538 sizeof(void *),
539 GFP_KERNEL);
540 if (!sd->sev_vmcbs)
541 goto free_save_area;
542 }
543
544 per_cpu(svm_data, cpu) = sd;
545
546 return 0;
547
548 free_save_area:
549 __free_page(sd->save_area);
550 free_cpu_data:
551 kfree(sd);
552 return -ENOMEM;
553
554 }
555
556 static bool valid_msr_intercept(u32 index)
557 {
558 int i;
559
560 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
561 if (direct_access_msrs[i].index == index)
562 return true;
563
564 return false;
565 }
566
567 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
568 {
569 u8 bit_write;
570 unsigned long tmp;
571 u32 offset;
572 u32 *msrpm;
573
574 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
575 to_svm(vcpu)->msrpm;
576
577 offset = svm_msrpm_offset(msr);
578 bit_write = 2 * (msr & 0x0f) + 1;
579 tmp = msrpm[offset];
580
581 BUG_ON(offset == MSR_INVALID);
582
583 return !!test_bit(bit_write, &tmp);
584 }
585
586 static void set_msr_interception(u32 *msrpm, unsigned msr,
587 int read, int write)
588 {
589 u8 bit_read, bit_write;
590 unsigned long tmp;
591 u32 offset;
592
593 /*
594 * If this warning triggers extend the direct_access_msrs list at the
595 * beginning of the file
596 */
597 WARN_ON(!valid_msr_intercept(msr));
598
599 offset = svm_msrpm_offset(msr);
600 bit_read = 2 * (msr & 0x0f);
601 bit_write = 2 * (msr & 0x0f) + 1;
602 tmp = msrpm[offset];
603
604 BUG_ON(offset == MSR_INVALID);
605
606 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
607 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
608
609 msrpm[offset] = tmp;
610 }
611
612 static void svm_vcpu_init_msrpm(u32 *msrpm)
613 {
614 int i;
615
616 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
617
618 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
619 if (!direct_access_msrs[i].always)
620 continue;
621
622 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
623 }
624 }
625
626 static void add_msr_offset(u32 offset)
627 {
628 int i;
629
630 for (i = 0; i < MSRPM_OFFSETS; ++i) {
631
632 /* Offset already in list? */
633 if (msrpm_offsets[i] == offset)
634 return;
635
636 /* Slot used by another offset? */
637 if (msrpm_offsets[i] != MSR_INVALID)
638 continue;
639
640 /* Add offset to list */
641 msrpm_offsets[i] = offset;
642
643 return;
644 }
645
646 /*
647 * If this BUG triggers the msrpm_offsets table has an overflow. Just
648 * increase MSRPM_OFFSETS in this case.
649 */
650 BUG();
651 }
652
653 static void init_msrpm_offsets(void)
654 {
655 int i;
656
657 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
658
659 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
660 u32 offset;
661
662 offset = svm_msrpm_offset(direct_access_msrs[i].index);
663 BUG_ON(offset == MSR_INVALID);
664
665 add_msr_offset(offset);
666 }
667 }
668
669 static void svm_enable_lbrv(struct vcpu_svm *svm)
670 {
671 u32 *msrpm = svm->msrpm;
672
673 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
674 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
675 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
676 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
677 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
678 }
679
680 static void svm_disable_lbrv(struct vcpu_svm *svm)
681 {
682 u32 *msrpm = svm->msrpm;
683
684 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
685 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
686 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
687 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
688 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
689 }
690
691 void disable_nmi_singlestep(struct vcpu_svm *svm)
692 {
693 svm->nmi_singlestep = false;
694
695 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
696 /* Clear our flags if they were not set by the guest */
697 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
698 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
699 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
700 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
701 }
702 }
703
704 static void grow_ple_window(struct kvm_vcpu *vcpu)
705 {
706 struct vcpu_svm *svm = to_svm(vcpu);
707 struct vmcb_control_area *control = &svm->vmcb->control;
708 int old = control->pause_filter_count;
709
710 control->pause_filter_count = __grow_ple_window(old,
711 pause_filter_count,
712 pause_filter_count_grow,
713 pause_filter_count_max);
714
715 if (control->pause_filter_count != old) {
716 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
717 trace_kvm_ple_window_update(vcpu->vcpu_id,
718 control->pause_filter_count, old);
719 }
720 }
721
722 static void shrink_ple_window(struct kvm_vcpu *vcpu)
723 {
724 struct vcpu_svm *svm = to_svm(vcpu);
725 struct vmcb_control_area *control = &svm->vmcb->control;
726 int old = control->pause_filter_count;
727
728 control->pause_filter_count =
729 __shrink_ple_window(old,
730 pause_filter_count,
731 pause_filter_count_shrink,
732 pause_filter_count);
733 if (control->pause_filter_count != old) {
734 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
735 trace_kvm_ple_window_update(vcpu->vcpu_id,
736 control->pause_filter_count, old);
737 }
738 }
739
740 /*
741 * The default MMIO mask is a single bit (excluding the present bit),
742 * which could conflict with the memory encryption bit. Check for
743 * memory encryption support and override the default MMIO mask if
744 * memory encryption is enabled.
745 */
746 static __init void svm_adjust_mmio_mask(void)
747 {
748 unsigned int enc_bit, mask_bit;
749 u64 msr, mask;
750
751 /* If there is no memory encryption support, use existing mask */
752 if (cpuid_eax(0x80000000) < 0x8000001f)
753 return;
754
755 /* If memory encryption is not enabled, use existing mask */
756 rdmsrl(MSR_K8_SYSCFG, msr);
757 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
758 return;
759
760 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
761 mask_bit = boot_cpu_data.x86_phys_bits;
762
763 /* Increment the mask bit if it is the same as the encryption bit */
764 if (enc_bit == mask_bit)
765 mask_bit++;
766
767 /*
768 * If the mask bit location is below 52, then some bits above the
769 * physical addressing limit will always be reserved, so use the
770 * rsvd_bits() function to generate the mask. This mask, along with
771 * the present bit, will be used to generate a page fault with
772 * PFER.RSV = 1.
773 *
774 * If the mask bit location is 52 (or above), then clear the mask.
775 */
776 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
777
778 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
779 }
780
781 static void svm_hardware_teardown(void)
782 {
783 int cpu;
784
785 if (svm_sev_enabled())
786 sev_hardware_teardown();
787
788 for_each_possible_cpu(cpu)
789 svm_cpu_uninit(cpu);
790
791 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
792 iopm_base = 0;
793 }
794
795 static __init void svm_set_cpu_caps(void)
796 {
797 kvm_set_cpu_caps();
798
799 supported_xss = 0;
800
801 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
802 if (nested) {
803 kvm_cpu_cap_set(X86_FEATURE_SVM);
804
805 if (nrips)
806 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
807
808 if (npt_enabled)
809 kvm_cpu_cap_set(X86_FEATURE_NPT);
810 }
811
812 /* CPUID 0x80000008 */
813 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
814 boot_cpu_has(X86_FEATURE_AMD_SSBD))
815 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
816 }
817
818 static __init int svm_hardware_setup(void)
819 {
820 int cpu;
821 struct page *iopm_pages;
822 void *iopm_va;
823 int r;
824
825 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
826
827 if (!iopm_pages)
828 return -ENOMEM;
829
830 iopm_va = page_address(iopm_pages);
831 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
832 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
833
834 init_msrpm_offsets();
835
836 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
837
838 if (boot_cpu_has(X86_FEATURE_NX))
839 kvm_enable_efer_bits(EFER_NX);
840
841 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
842 kvm_enable_efer_bits(EFER_FFXSR);
843
844 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
845 kvm_has_tsc_control = true;
846 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
847 kvm_tsc_scaling_ratio_frac_bits = 32;
848 }
849
850 /* Check for pause filtering support */
851 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
852 pause_filter_count = 0;
853 pause_filter_thresh = 0;
854 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
855 pause_filter_thresh = 0;
856 }
857
858 if (nested) {
859 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
860 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
861 }
862
863 if (sev) {
864 if (boot_cpu_has(X86_FEATURE_SEV) &&
865 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
866 r = sev_hardware_setup();
867 if (r)
868 sev = false;
869 } else {
870 sev = false;
871 }
872 }
873
874 svm_adjust_mmio_mask();
875
876 for_each_possible_cpu(cpu) {
877 r = svm_cpu_init(cpu);
878 if (r)
879 goto err;
880 }
881
882 if (!boot_cpu_has(X86_FEATURE_NPT))
883 npt_enabled = false;
884
885 if (npt_enabled && !npt)
886 npt_enabled = false;
887
888 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
889 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
890
891 if (nrips) {
892 if (!boot_cpu_has(X86_FEATURE_NRIPS))
893 nrips = false;
894 }
895
896 if (avic) {
897 if (!npt_enabled ||
898 !boot_cpu_has(X86_FEATURE_AVIC) ||
899 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
900 avic = false;
901 } else {
902 pr_info("AVIC enabled\n");
903
904 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
905 }
906 }
907
908 if (vls) {
909 if (!npt_enabled ||
910 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
911 !IS_ENABLED(CONFIG_X86_64)) {
912 vls = false;
913 } else {
914 pr_info("Virtual VMLOAD VMSAVE supported\n");
915 }
916 }
917
918 if (vgif) {
919 if (!boot_cpu_has(X86_FEATURE_VGIF))
920 vgif = false;
921 else
922 pr_info("Virtual GIF supported\n");
923 }
924
925 svm_set_cpu_caps();
926
927 /*
928 * It seems that on AMD processors PTE's accessed bit is
929 * being set by the CPU hardware before the NPF vmexit.
930 * This is not expected behaviour and our tests fail because
931 * of it.
932 * A workaround here is to disable support for
933 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
934 * In this case userspace can know if there is support using
935 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
936 * it
937 * If future AMD CPU models change the behaviour described above,
938 * this variable can be changed accordingly
939 */
940 allow_smaller_maxphyaddr = !npt_enabled;
941
942 return 0;
943
944 err:
945 svm_hardware_teardown();
946 return r;
947 }
948
949 static void init_seg(struct vmcb_seg *seg)
950 {
951 seg->selector = 0;
952 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
953 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
954 seg->limit = 0xffff;
955 seg->base = 0;
956 }
957
958 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
959 {
960 seg->selector = 0;
961 seg->attrib = SVM_SELECTOR_P_MASK | type;
962 seg->limit = 0xffff;
963 seg->base = 0;
964 }
965
966 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
967 {
968 struct vcpu_svm *svm = to_svm(vcpu);
969 u64 g_tsc_offset = 0;
970
971 if (is_guest_mode(vcpu)) {
972 /* Write L1's TSC offset. */
973 g_tsc_offset = svm->vmcb->control.tsc_offset -
974 svm->nested.hsave->control.tsc_offset;
975 svm->nested.hsave->control.tsc_offset = offset;
976 }
977
978 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
979 svm->vmcb->control.tsc_offset - g_tsc_offset,
980 offset);
981
982 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
983
984 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
985 return svm->vmcb->control.tsc_offset;
986 }
987
988 static void init_vmcb(struct vcpu_svm *svm)
989 {
990 struct vmcb_control_area *control = &svm->vmcb->control;
991 struct vmcb_save_area *save = &svm->vmcb->save;
992
993 svm->vcpu.arch.hflags = 0;
994
995 set_cr_intercept(svm, INTERCEPT_CR0_READ);
996 set_cr_intercept(svm, INTERCEPT_CR3_READ);
997 set_cr_intercept(svm, INTERCEPT_CR4_READ);
998 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
999 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1000 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1001 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1002 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1003
1004 set_dr_intercepts(svm);
1005
1006 set_exception_intercept(svm, PF_VECTOR);
1007 set_exception_intercept(svm, UD_VECTOR);
1008 set_exception_intercept(svm, MC_VECTOR);
1009 set_exception_intercept(svm, AC_VECTOR);
1010 set_exception_intercept(svm, DB_VECTOR);
1011 /*
1012 * Guest access to VMware backdoor ports could legitimately
1013 * trigger #GP because of TSS I/O permission bitmap.
1014 * We intercept those #GP and allow access to them anyway
1015 * as VMware does.
1016 */
1017 if (enable_vmware_backdoor)
1018 set_exception_intercept(svm, GP_VECTOR);
1019
1020 svm_set_intercept(svm, INTERCEPT_INTR);
1021 svm_set_intercept(svm, INTERCEPT_NMI);
1022 svm_set_intercept(svm, INTERCEPT_SMI);
1023 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1024 svm_set_intercept(svm, INTERCEPT_RDPMC);
1025 svm_set_intercept(svm, INTERCEPT_CPUID);
1026 svm_set_intercept(svm, INTERCEPT_INVD);
1027 svm_set_intercept(svm, INTERCEPT_INVLPG);
1028 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1029 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1030 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1031 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1032 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1033 svm_set_intercept(svm, INTERCEPT_VMRUN);
1034 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1035 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1036 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1037 svm_set_intercept(svm, INTERCEPT_STGI);
1038 svm_set_intercept(svm, INTERCEPT_CLGI);
1039 svm_set_intercept(svm, INTERCEPT_SKINIT);
1040 svm_set_intercept(svm, INTERCEPT_WBINVD);
1041 svm_set_intercept(svm, INTERCEPT_XSETBV);
1042 svm_set_intercept(svm, INTERCEPT_RDPRU);
1043 svm_set_intercept(svm, INTERCEPT_RSM);
1044
1045 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1046 svm_set_intercept(svm, INTERCEPT_MONITOR);
1047 svm_set_intercept(svm, INTERCEPT_MWAIT);
1048 }
1049
1050 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1051 svm_set_intercept(svm, INTERCEPT_HLT);
1052
1053 control->iopm_base_pa = __sme_set(iopm_base);
1054 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1055 control->int_ctl = V_INTR_MASKING_MASK;
1056
1057 init_seg(&save->es);
1058 init_seg(&save->ss);
1059 init_seg(&save->ds);
1060 init_seg(&save->fs);
1061 init_seg(&save->gs);
1062
1063 save->cs.selector = 0xf000;
1064 save->cs.base = 0xffff0000;
1065 /* Executable/Readable Code Segment */
1066 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1067 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1068 save->cs.limit = 0xffff;
1069
1070 save->gdtr.limit = 0xffff;
1071 save->idtr.limit = 0xffff;
1072
1073 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1074 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1075
1076 svm_set_efer(&svm->vcpu, 0);
1077 save->dr6 = 0xffff0ff0;
1078 kvm_set_rflags(&svm->vcpu, 2);
1079 save->rip = 0x0000fff0;
1080 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1081
1082 /*
1083 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084 * It also updates the guest-visible cr0 value.
1085 */
1086 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1087 kvm_mmu_reset_context(&svm->vcpu);
1088
1089 save->cr4 = X86_CR4_PAE;
1090 /* rdx = ?? */
1091
1092 if (npt_enabled) {
1093 /* Setup VMCB for Nested Paging */
1094 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1095 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1096 clr_exception_intercept(svm, PF_VECTOR);
1097 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1098 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1099 save->g_pat = svm->vcpu.arch.pat;
1100 save->cr3 = 0;
1101 save->cr4 = 0;
1102 }
1103 svm->asid_generation = 0;
1104
1105 svm->nested.vmcb = 0;
1106 svm->vcpu.arch.hflags = 0;
1107
1108 if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1109 control->pause_filter_count = pause_filter_count;
1110 if (pause_filter_thresh)
1111 control->pause_filter_thresh = pause_filter_thresh;
1112 svm_set_intercept(svm, INTERCEPT_PAUSE);
1113 } else {
1114 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1115 }
1116
1117 if (kvm_vcpu_apicv_active(&svm->vcpu))
1118 avic_init_vmcb(svm);
1119
1120 /*
1121 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1122 * in VMCB and clear intercepts to avoid #VMEXIT.
1123 */
1124 if (vls) {
1125 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1126 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1127 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1128 }
1129
1130 if (vgif) {
1131 svm_clr_intercept(svm, INTERCEPT_STGI);
1132 svm_clr_intercept(svm, INTERCEPT_CLGI);
1133 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1134 }
1135
1136 if (sev_guest(svm->vcpu.kvm)) {
1137 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1138 clr_exception_intercept(svm, UD_VECTOR);
1139 }
1140
1141 vmcb_mark_all_dirty(svm->vmcb);
1142
1143 enable_gif(svm);
1144
1145 }
1146
1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1148 {
1149 struct vcpu_svm *svm = to_svm(vcpu);
1150 u32 dummy;
1151 u32 eax = 1;
1152
1153 svm->spec_ctrl = 0;
1154 svm->virt_spec_ctrl = 0;
1155
1156 if (!init_event) {
1157 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1158 MSR_IA32_APICBASE_ENABLE;
1159 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1160 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1161 }
1162 init_vmcb(svm);
1163
1164 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1165 kvm_rdx_write(vcpu, eax);
1166
1167 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1168 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1169 }
1170
1171 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1172 {
1173 struct vcpu_svm *svm;
1174 struct page *page;
1175 struct page *msrpm_pages;
1176 struct page *hsave_page;
1177 struct page *nested_msrpm_pages;
1178 int err;
1179
1180 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1181 svm = to_svm(vcpu);
1182
1183 err = -ENOMEM;
1184 page = alloc_page(GFP_KERNEL_ACCOUNT);
1185 if (!page)
1186 goto out;
1187
1188 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1189 if (!msrpm_pages)
1190 goto free_page1;
1191
1192 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1193 if (!nested_msrpm_pages)
1194 goto free_page2;
1195
1196 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
1197 if (!hsave_page)
1198 goto free_page3;
1199
1200 err = avic_init_vcpu(svm);
1201 if (err)
1202 goto free_page4;
1203
1204 /* We initialize this flag to true to make sure that the is_running
1205 * bit would be set the first time the vcpu is loaded.
1206 */
1207 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1208 svm->avic_is_running = true;
1209
1210 svm->nested.hsave = page_address(hsave_page);
1211 clear_page(svm->nested.hsave);
1212
1213 svm->msrpm = page_address(msrpm_pages);
1214 svm_vcpu_init_msrpm(svm->msrpm);
1215
1216 svm->nested.msrpm = page_address(nested_msrpm_pages);
1217 svm_vcpu_init_msrpm(svm->nested.msrpm);
1218
1219 svm->vmcb = page_address(page);
1220 clear_page(svm->vmcb);
1221 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1222 svm->asid_generation = 0;
1223 init_vmcb(svm);
1224
1225 svm_init_osvw(vcpu);
1226 vcpu->arch.microcode_version = 0x01000065;
1227
1228 return 0;
1229
1230 free_page4:
1231 __free_page(hsave_page);
1232 free_page3:
1233 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1234 free_page2:
1235 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1236 free_page1:
1237 __free_page(page);
1238 out:
1239 return err;
1240 }
1241
1242 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1243 {
1244 int i;
1245
1246 for_each_online_cpu(i)
1247 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1248 }
1249
1250 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1251 {
1252 struct vcpu_svm *svm = to_svm(vcpu);
1253
1254 /*
1255 * The vmcb page can be recycled, causing a false negative in
1256 * svm_vcpu_load(). So, ensure that no logical CPU has this
1257 * vmcb page recorded as its current vmcb.
1258 */
1259 svm_clear_current_vmcb(svm->vmcb);
1260
1261 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1262 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1263 __free_page(virt_to_page(svm->nested.hsave));
1264 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1265 }
1266
1267 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1268 {
1269 struct vcpu_svm *svm = to_svm(vcpu);
1270 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1271 int i;
1272
1273 if (unlikely(cpu != vcpu->cpu)) {
1274 svm->asid_generation = 0;
1275 vmcb_mark_all_dirty(svm->vmcb);
1276 }
1277
1278 #ifdef CONFIG_X86_64
1279 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1280 #endif
1281 savesegment(fs, svm->host.fs);
1282 savesegment(gs, svm->host.gs);
1283 svm->host.ldt = kvm_read_ldt();
1284
1285 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1286 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1287
1288 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1289 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1290 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1291 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1292 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1293 }
1294 }
1295 /* This assumes that the kernel never uses MSR_TSC_AUX */
1296 if (static_cpu_has(X86_FEATURE_RDTSCP))
1297 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1298
1299 if (sd->current_vmcb != svm->vmcb) {
1300 sd->current_vmcb = svm->vmcb;
1301 indirect_branch_prediction_barrier();
1302 }
1303 avic_vcpu_load(vcpu, cpu);
1304 }
1305
1306 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1307 {
1308 struct vcpu_svm *svm = to_svm(vcpu);
1309 int i;
1310
1311 avic_vcpu_put(vcpu);
1312
1313 ++vcpu->stat.host_state_reload;
1314 kvm_load_ldt(svm->host.ldt);
1315 #ifdef CONFIG_X86_64
1316 loadsegment(fs, svm->host.fs);
1317 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1318 load_gs_index(svm->host.gs);
1319 #else
1320 #ifdef CONFIG_X86_32_LAZY_GS
1321 loadsegment(gs, svm->host.gs);
1322 #endif
1323 #endif
1324 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1325 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1326 }
1327
1328 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1329 {
1330 struct vcpu_svm *svm = to_svm(vcpu);
1331 unsigned long rflags = svm->vmcb->save.rflags;
1332
1333 if (svm->nmi_singlestep) {
1334 /* Hide our flags if they were not set by the guest */
1335 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1336 rflags &= ~X86_EFLAGS_TF;
1337 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1338 rflags &= ~X86_EFLAGS_RF;
1339 }
1340 return rflags;
1341 }
1342
1343 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1344 {
1345 if (to_svm(vcpu)->nmi_singlestep)
1346 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1347
1348 /*
1349 * Any change of EFLAGS.VM is accompanied by a reload of SS
1350 * (caused by either a task switch or an inter-privilege IRET),
1351 * so we do not need to update the CPL here.
1352 */
1353 to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 }
1355
1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1357 {
1358 switch (reg) {
1359 case VCPU_EXREG_PDPTR:
1360 BUG_ON(!npt_enabled);
1361 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1362 break;
1363 default:
1364 WARN_ON_ONCE(1);
1365 }
1366 }
1367
1368 static void svm_set_vintr(struct vcpu_svm *svm)
1369 {
1370 struct vmcb_control_area *control;
1371
1372 /* The following fields are ignored when AVIC is enabled */
1373 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1374 svm_set_intercept(svm, INTERCEPT_VINTR);
1375
1376 /*
1377 * This is just a dummy VINTR to actually cause a vmexit to happen.
1378 * Actual injection of virtual interrupts happens through EVENTINJ.
1379 */
1380 control = &svm->vmcb->control;
1381 control->int_vector = 0x0;
1382 control->int_ctl &= ~V_INTR_PRIO_MASK;
1383 control->int_ctl |= V_IRQ_MASK |
1384 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1385 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1386 }
1387
1388 static void svm_clear_vintr(struct vcpu_svm *svm)
1389 {
1390 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1391 svm_clr_intercept(svm, INTERCEPT_VINTR);
1392
1393 /* Drop int_ctl fields related to VINTR injection. */
1394 svm->vmcb->control.int_ctl &= mask;
1395 if (is_guest_mode(&svm->vcpu)) {
1396 svm->nested.hsave->control.int_ctl &= mask;
1397
1398 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1399 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1400 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1401 }
1402
1403 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1404 }
1405
1406 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1407 {
1408 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1409
1410 switch (seg) {
1411 case VCPU_SREG_CS: return &save->cs;
1412 case VCPU_SREG_DS: return &save->ds;
1413 case VCPU_SREG_ES: return &save->es;
1414 case VCPU_SREG_FS: return &save->fs;
1415 case VCPU_SREG_GS: return &save->gs;
1416 case VCPU_SREG_SS: return &save->ss;
1417 case VCPU_SREG_TR: return &save->tr;
1418 case VCPU_SREG_LDTR: return &save->ldtr;
1419 }
1420 BUG();
1421 return NULL;
1422 }
1423
1424 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1425 {
1426 struct vmcb_seg *s = svm_seg(vcpu, seg);
1427
1428 return s->base;
1429 }
1430
1431 static void svm_get_segment(struct kvm_vcpu *vcpu,
1432 struct kvm_segment *var, int seg)
1433 {
1434 struct vmcb_seg *s = svm_seg(vcpu, seg);
1435
1436 var->base = s->base;
1437 var->limit = s->limit;
1438 var->selector = s->selector;
1439 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1440 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1441 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1442 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1443 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1444 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1445 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1446
1447 /*
1448 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1449 * However, the SVM spec states that the G bit is not observed by the
1450 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1451 * So let's synthesize a legal G bit for all segments, this helps
1452 * running KVM nested. It also helps cross-vendor migration, because
1453 * Intel's vmentry has a check on the 'G' bit.
1454 */
1455 var->g = s->limit > 0xfffff;
1456
1457 /*
1458 * AMD's VMCB does not have an explicit unusable field, so emulate it
1459 * for cross vendor migration purposes by "not present"
1460 */
1461 var->unusable = !var->present;
1462
1463 switch (seg) {
1464 case VCPU_SREG_TR:
1465 /*
1466 * Work around a bug where the busy flag in the tr selector
1467 * isn't exposed
1468 */
1469 var->type |= 0x2;
1470 break;
1471 case VCPU_SREG_DS:
1472 case VCPU_SREG_ES:
1473 case VCPU_SREG_FS:
1474 case VCPU_SREG_GS:
1475 /*
1476 * The accessed bit must always be set in the segment
1477 * descriptor cache, although it can be cleared in the
1478 * descriptor, the cached bit always remains at 1. Since
1479 * Intel has a check on this, set it here to support
1480 * cross-vendor migration.
1481 */
1482 if (!var->unusable)
1483 var->type |= 0x1;
1484 break;
1485 case VCPU_SREG_SS:
1486 /*
1487 * On AMD CPUs sometimes the DB bit in the segment
1488 * descriptor is left as 1, although the whole segment has
1489 * been made unusable. Clear it here to pass an Intel VMX
1490 * entry check when cross vendor migrating.
1491 */
1492 if (var->unusable)
1493 var->db = 0;
1494 /* This is symmetric with svm_set_segment() */
1495 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1496 break;
1497 }
1498 }
1499
1500 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1501 {
1502 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1503
1504 return save->cpl;
1505 }
1506
1507 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508 {
1509 struct vcpu_svm *svm = to_svm(vcpu);
1510
1511 dt->size = svm->vmcb->save.idtr.limit;
1512 dt->address = svm->vmcb->save.idtr.base;
1513 }
1514
1515 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1516 {
1517 struct vcpu_svm *svm = to_svm(vcpu);
1518
1519 svm->vmcb->save.idtr.limit = dt->size;
1520 svm->vmcb->save.idtr.base = dt->address ;
1521 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1522 }
1523
1524 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1525 {
1526 struct vcpu_svm *svm = to_svm(vcpu);
1527
1528 dt->size = svm->vmcb->save.gdtr.limit;
1529 dt->address = svm->vmcb->save.gdtr.base;
1530 }
1531
1532 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1533 {
1534 struct vcpu_svm *svm = to_svm(vcpu);
1535
1536 svm->vmcb->save.gdtr.limit = dt->size;
1537 svm->vmcb->save.gdtr.base = dt->address ;
1538 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1539 }
1540
1541 static void update_cr0_intercept(struct vcpu_svm *svm)
1542 {
1543 ulong gcr0 = svm->vcpu.arch.cr0;
1544 u64 *hcr0 = &svm->vmcb->save.cr0;
1545
1546 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1547 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1548
1549 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1550
1551 if (gcr0 == *hcr0) {
1552 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1553 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1554 } else {
1555 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1556 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1557 }
1558 }
1559
1560 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1561 {
1562 struct vcpu_svm *svm = to_svm(vcpu);
1563
1564 #ifdef CONFIG_X86_64
1565 if (vcpu->arch.efer & EFER_LME) {
1566 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1567 vcpu->arch.efer |= EFER_LMA;
1568 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1569 }
1570
1571 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1572 vcpu->arch.efer &= ~EFER_LMA;
1573 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1574 }
1575 }
1576 #endif
1577 vcpu->arch.cr0 = cr0;
1578
1579 if (!npt_enabled)
1580 cr0 |= X86_CR0_PG | X86_CR0_WP;
1581
1582 /*
1583 * re-enable caching here because the QEMU bios
1584 * does not do it - this results in some delay at
1585 * reboot
1586 */
1587 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1588 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1589 svm->vmcb->save.cr0 = cr0;
1590 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1591 update_cr0_intercept(svm);
1592 }
1593
1594 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1595 {
1596 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1597 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1598
1599 if (cr4 & X86_CR4_VMXE)
1600 return 1;
1601
1602 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1603 svm_flush_tlb(vcpu);
1604
1605 vcpu->arch.cr4 = cr4;
1606 if (!npt_enabled)
1607 cr4 |= X86_CR4_PAE;
1608 cr4 |= host_cr4_mce;
1609 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1610 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1611 return 0;
1612 }
1613
1614 static void svm_set_segment(struct kvm_vcpu *vcpu,
1615 struct kvm_segment *var, int seg)
1616 {
1617 struct vcpu_svm *svm = to_svm(vcpu);
1618 struct vmcb_seg *s = svm_seg(vcpu, seg);
1619
1620 s->base = var->base;
1621 s->limit = var->limit;
1622 s->selector = var->selector;
1623 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1624 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1625 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1626 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1627 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1628 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1629 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1630 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1631
1632 /*
1633 * This is always accurate, except if SYSRET returned to a segment
1634 * with SS.DPL != 3. Intel does not have this quirk, and always
1635 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1636 * would entail passing the CPL to userspace and back.
1637 */
1638 if (seg == VCPU_SREG_SS)
1639 /* This is symmetric with svm_get_segment() */
1640 svm->vmcb->save.cpl = (var->dpl & 3);
1641
1642 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1643 }
1644
1645 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1646 {
1647 struct vcpu_svm *svm = to_svm(vcpu);
1648
1649 clr_exception_intercept(svm, BP_VECTOR);
1650
1651 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1652 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1653 set_exception_intercept(svm, BP_VECTOR);
1654 }
1655 }
1656
1657 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1658 {
1659 if (sd->next_asid > sd->max_asid) {
1660 ++sd->asid_generation;
1661 sd->next_asid = sd->min_asid;
1662 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1663 }
1664
1665 svm->asid_generation = sd->asid_generation;
1666 svm->vmcb->control.asid = sd->next_asid++;
1667
1668 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1669 }
1670
1671 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1672 {
1673 struct vmcb *vmcb = svm->vmcb;
1674
1675 if (unlikely(value != vmcb->save.dr6)) {
1676 vmcb->save.dr6 = value;
1677 vmcb_mark_dirty(vmcb, VMCB_DR);
1678 }
1679 }
1680
1681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1682 {
1683 struct vcpu_svm *svm = to_svm(vcpu);
1684
1685 get_debugreg(vcpu->arch.db[0], 0);
1686 get_debugreg(vcpu->arch.db[1], 1);
1687 get_debugreg(vcpu->arch.db[2], 2);
1688 get_debugreg(vcpu->arch.db[3], 3);
1689 /*
1690 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1691 * because db_interception might need it. We can do it before vmentry.
1692 */
1693 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1694 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1695 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1696 set_dr_intercepts(svm);
1697 }
1698
1699 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1700 {
1701 struct vcpu_svm *svm = to_svm(vcpu);
1702
1703 svm->vmcb->save.dr7 = value;
1704 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1705 }
1706
1707 static int pf_interception(struct vcpu_svm *svm)
1708 {
1709 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1710 u64 error_code = svm->vmcb->control.exit_info_1;
1711
1712 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1713 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1714 svm->vmcb->control.insn_bytes : NULL,
1715 svm->vmcb->control.insn_len);
1716 }
1717
1718 static int npf_interception(struct vcpu_svm *svm)
1719 {
1720 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1721 u64 error_code = svm->vmcb->control.exit_info_1;
1722
1723 trace_kvm_page_fault(fault_address, error_code);
1724 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1725 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1726 svm->vmcb->control.insn_bytes : NULL,
1727 svm->vmcb->control.insn_len);
1728 }
1729
1730 static int db_interception(struct vcpu_svm *svm)
1731 {
1732 struct kvm_run *kvm_run = svm->vcpu.run;
1733 struct kvm_vcpu *vcpu = &svm->vcpu;
1734
1735 if (!(svm->vcpu.guest_debug &
1736 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1737 !svm->nmi_singlestep) {
1738 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1739 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1740 return 1;
1741 }
1742
1743 if (svm->nmi_singlestep) {
1744 disable_nmi_singlestep(svm);
1745 /* Make sure we check for pending NMIs upon entry */
1746 kvm_make_request(KVM_REQ_EVENT, vcpu);
1747 }
1748
1749 if (svm->vcpu.guest_debug &
1750 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1751 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1752 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1753 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1754 kvm_run->debug.arch.pc =
1755 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1756 kvm_run->debug.arch.exception = DB_VECTOR;
1757 return 0;
1758 }
1759
1760 return 1;
1761 }
1762
1763 static int bp_interception(struct vcpu_svm *svm)
1764 {
1765 struct kvm_run *kvm_run = svm->vcpu.run;
1766
1767 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1768 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1769 kvm_run->debug.arch.exception = BP_VECTOR;
1770 return 0;
1771 }
1772
1773 static int ud_interception(struct vcpu_svm *svm)
1774 {
1775 return handle_ud(&svm->vcpu);
1776 }
1777
1778 static int ac_interception(struct vcpu_svm *svm)
1779 {
1780 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1781 return 1;
1782 }
1783
1784 static int gp_interception(struct vcpu_svm *svm)
1785 {
1786 struct kvm_vcpu *vcpu = &svm->vcpu;
1787 u32 error_code = svm->vmcb->control.exit_info_1;
1788
1789 WARN_ON_ONCE(!enable_vmware_backdoor);
1790
1791 /*
1792 * VMware backdoor emulation on #GP interception only handles IN{S},
1793 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1794 */
1795 if (error_code) {
1796 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1797 return 1;
1798 }
1799 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1800 }
1801
1802 static bool is_erratum_383(void)
1803 {
1804 int err, i;
1805 u64 value;
1806
1807 if (!erratum_383_found)
1808 return false;
1809
1810 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1811 if (err)
1812 return false;
1813
1814 /* Bit 62 may or may not be set for this mce */
1815 value &= ~(1ULL << 62);
1816
1817 if (value != 0xb600000000010015ULL)
1818 return false;
1819
1820 /* Clear MCi_STATUS registers */
1821 for (i = 0; i < 6; ++i)
1822 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1823
1824 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1825 if (!err) {
1826 u32 low, high;
1827
1828 value &= ~(1ULL << 2);
1829 low = lower_32_bits(value);
1830 high = upper_32_bits(value);
1831
1832 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1833 }
1834
1835 /* Flush tlb to evict multi-match entries */
1836 __flush_tlb_all();
1837
1838 return true;
1839 }
1840
1841 /*
1842 * Trigger machine check on the host. We assume all the MSRs are already set up
1843 * by the CPU and that we still run on the same CPU as the MCE occurred on.
1844 * We pass a fake environment to the machine check handler because we want
1845 * the guest to be always treated like user space, no matter what context
1846 * it used internally.
1847 */
1848 static void kvm_machine_check(void)
1849 {
1850 #if defined(CONFIG_X86_MCE)
1851 struct pt_regs regs = {
1852 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
1853 .flags = X86_EFLAGS_IF,
1854 };
1855
1856 do_machine_check(&regs);
1857 #endif
1858 }
1859
1860 static void svm_handle_mce(struct vcpu_svm *svm)
1861 {
1862 if (is_erratum_383()) {
1863 /*
1864 * Erratum 383 triggered. Guest state is corrupt so kill the
1865 * guest.
1866 */
1867 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1868
1869 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1870
1871 return;
1872 }
1873
1874 /*
1875 * On an #MC intercept the MCE handler is not called automatically in
1876 * the host. So do it by hand here.
1877 */
1878 kvm_machine_check();
1879 }
1880
1881 static int mc_interception(struct vcpu_svm *svm)
1882 {
1883 return 1;
1884 }
1885
1886 static int shutdown_interception(struct vcpu_svm *svm)
1887 {
1888 struct kvm_run *kvm_run = svm->vcpu.run;
1889
1890 /*
1891 * VMCB is undefined after a SHUTDOWN intercept
1892 * so reinitialize it.
1893 */
1894 clear_page(svm->vmcb);
1895 init_vmcb(svm);
1896
1897 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1898 return 0;
1899 }
1900
1901 static int io_interception(struct vcpu_svm *svm)
1902 {
1903 struct kvm_vcpu *vcpu = &svm->vcpu;
1904 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1905 int size, in, string;
1906 unsigned port;
1907
1908 ++svm->vcpu.stat.io_exits;
1909 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1910 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1911 if (string)
1912 return kvm_emulate_instruction(vcpu, 0);
1913
1914 port = io_info >> 16;
1915 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1916 svm->next_rip = svm->vmcb->control.exit_info_2;
1917
1918 return kvm_fast_pio(&svm->vcpu, size, port, in);
1919 }
1920
1921 static int nmi_interception(struct vcpu_svm *svm)
1922 {
1923 return 1;
1924 }
1925
1926 static int intr_interception(struct vcpu_svm *svm)
1927 {
1928 ++svm->vcpu.stat.irq_exits;
1929 return 1;
1930 }
1931
1932 static int nop_on_interception(struct vcpu_svm *svm)
1933 {
1934 return 1;
1935 }
1936
1937 static int halt_interception(struct vcpu_svm *svm)
1938 {
1939 return kvm_emulate_halt(&svm->vcpu);
1940 }
1941
1942 static int vmmcall_interception(struct vcpu_svm *svm)
1943 {
1944 return kvm_emulate_hypercall(&svm->vcpu);
1945 }
1946
1947 static int vmload_interception(struct vcpu_svm *svm)
1948 {
1949 struct vmcb *nested_vmcb;
1950 struct kvm_host_map map;
1951 int ret;
1952
1953 if (nested_svm_check_permissions(svm))
1954 return 1;
1955
1956 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1957 if (ret) {
1958 if (ret == -EINVAL)
1959 kvm_inject_gp(&svm->vcpu, 0);
1960 return 1;
1961 }
1962
1963 nested_vmcb = map.hva;
1964
1965 ret = kvm_skip_emulated_instruction(&svm->vcpu);
1966
1967 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1968 kvm_vcpu_unmap(&svm->vcpu, &map, true);
1969
1970 return ret;
1971 }
1972
1973 static int vmsave_interception(struct vcpu_svm *svm)
1974 {
1975 struct vmcb *nested_vmcb;
1976 struct kvm_host_map map;
1977 int ret;
1978
1979 if (nested_svm_check_permissions(svm))
1980 return 1;
1981
1982 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1983 if (ret) {
1984 if (ret == -EINVAL)
1985 kvm_inject_gp(&svm->vcpu, 0);
1986 return 1;
1987 }
1988
1989 nested_vmcb = map.hva;
1990
1991 ret = kvm_skip_emulated_instruction(&svm->vcpu);
1992
1993 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1994 kvm_vcpu_unmap(&svm->vcpu, &map, true);
1995
1996 return ret;
1997 }
1998
1999 static int vmrun_interception(struct vcpu_svm *svm)
2000 {
2001 if (nested_svm_check_permissions(svm))
2002 return 1;
2003
2004 return nested_svm_vmrun(svm);
2005 }
2006
2007 void svm_set_gif(struct vcpu_svm *svm, bool value)
2008 {
2009 if (value) {
2010 /*
2011 * If VGIF is enabled, the STGI intercept is only added to
2012 * detect the opening of the SMI/NMI window; remove it now.
2013 * Likewise, clear the VINTR intercept, we will set it
2014 * again while processing KVM_REQ_EVENT if needed.
2015 */
2016 if (vgif_enabled(svm))
2017 svm_clr_intercept(svm, INTERCEPT_STGI);
2018 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2019 svm_clear_vintr(svm);
2020
2021 enable_gif(svm);
2022 if (svm->vcpu.arch.smi_pending ||
2023 svm->vcpu.arch.nmi_pending ||
2024 kvm_cpu_has_injectable_intr(&svm->vcpu))
2025 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2026 } else {
2027 disable_gif(svm);
2028
2029 /*
2030 * After a CLGI no interrupts should come. But if vGIF is
2031 * in use, we still rely on the VINTR intercept (rather than
2032 * STGI) to detect an open interrupt window.
2033 */
2034 if (!vgif_enabled(svm))
2035 svm_clear_vintr(svm);
2036 }
2037 }
2038
2039 static int stgi_interception(struct vcpu_svm *svm)
2040 {
2041 int ret;
2042
2043 if (nested_svm_check_permissions(svm))
2044 return 1;
2045
2046 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2047 svm_set_gif(svm, true);
2048 return ret;
2049 }
2050
2051 static int clgi_interception(struct vcpu_svm *svm)
2052 {
2053 int ret;
2054
2055 if (nested_svm_check_permissions(svm))
2056 return 1;
2057
2058 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2059 svm_set_gif(svm, false);
2060 return ret;
2061 }
2062
2063 static int invlpga_interception(struct vcpu_svm *svm)
2064 {
2065 struct kvm_vcpu *vcpu = &svm->vcpu;
2066
2067 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2068 kvm_rax_read(&svm->vcpu));
2069
2070 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2071 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2072
2073 return kvm_skip_emulated_instruction(&svm->vcpu);
2074 }
2075
2076 static int skinit_interception(struct vcpu_svm *svm)
2077 {
2078 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2079
2080 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2081 return 1;
2082 }
2083
2084 static int wbinvd_interception(struct vcpu_svm *svm)
2085 {
2086 return kvm_emulate_wbinvd(&svm->vcpu);
2087 }
2088
2089 static int xsetbv_interception(struct vcpu_svm *svm)
2090 {
2091 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2092 u32 index = kvm_rcx_read(&svm->vcpu);
2093
2094 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2095 return kvm_skip_emulated_instruction(&svm->vcpu);
2096 }
2097
2098 return 1;
2099 }
2100
2101 static int rdpru_interception(struct vcpu_svm *svm)
2102 {
2103 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2104 return 1;
2105 }
2106
2107 static int task_switch_interception(struct vcpu_svm *svm)
2108 {
2109 u16 tss_selector;
2110 int reason;
2111 int int_type = svm->vmcb->control.exit_int_info &
2112 SVM_EXITINTINFO_TYPE_MASK;
2113 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2114 uint32_t type =
2115 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2116 uint32_t idt_v =
2117 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2118 bool has_error_code = false;
2119 u32 error_code = 0;
2120
2121 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2122
2123 if (svm->vmcb->control.exit_info_2 &
2124 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2125 reason = TASK_SWITCH_IRET;
2126 else if (svm->vmcb->control.exit_info_2 &
2127 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2128 reason = TASK_SWITCH_JMP;
2129 else if (idt_v)
2130 reason = TASK_SWITCH_GATE;
2131 else
2132 reason = TASK_SWITCH_CALL;
2133
2134 if (reason == TASK_SWITCH_GATE) {
2135 switch (type) {
2136 case SVM_EXITINTINFO_TYPE_NMI:
2137 svm->vcpu.arch.nmi_injected = false;
2138 break;
2139 case SVM_EXITINTINFO_TYPE_EXEPT:
2140 if (svm->vmcb->control.exit_info_2 &
2141 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2142 has_error_code = true;
2143 error_code =
2144 (u32)svm->vmcb->control.exit_info_2;
2145 }
2146 kvm_clear_exception_queue(&svm->vcpu);
2147 break;
2148 case SVM_EXITINTINFO_TYPE_INTR:
2149 kvm_clear_interrupt_queue(&svm->vcpu);
2150 break;
2151 default:
2152 break;
2153 }
2154 }
2155
2156 if (reason != TASK_SWITCH_GATE ||
2157 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2158 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2159 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2160 if (!skip_emulated_instruction(&svm->vcpu))
2161 return 0;
2162 }
2163
2164 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2165 int_vec = -1;
2166
2167 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2168 has_error_code, error_code);
2169 }
2170
2171 static int cpuid_interception(struct vcpu_svm *svm)
2172 {
2173 return kvm_emulate_cpuid(&svm->vcpu);
2174 }
2175
2176 static int iret_interception(struct vcpu_svm *svm)
2177 {
2178 ++svm->vcpu.stat.nmi_window_exits;
2179 svm_clr_intercept(svm, INTERCEPT_IRET);
2180 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2181 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2182 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2183 return 1;
2184 }
2185
2186 static int invlpg_interception(struct vcpu_svm *svm)
2187 {
2188 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2189 return kvm_emulate_instruction(&svm->vcpu, 0);
2190
2191 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2192 return kvm_skip_emulated_instruction(&svm->vcpu);
2193 }
2194
2195 static int emulate_on_interception(struct vcpu_svm *svm)
2196 {
2197 return kvm_emulate_instruction(&svm->vcpu, 0);
2198 }
2199
2200 static int rsm_interception(struct vcpu_svm *svm)
2201 {
2202 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2203 }
2204
2205 static int rdpmc_interception(struct vcpu_svm *svm)
2206 {
2207 int err;
2208
2209 if (!nrips)
2210 return emulate_on_interception(svm);
2211
2212 err = kvm_rdpmc(&svm->vcpu);
2213 return kvm_complete_insn_gp(&svm->vcpu, err);
2214 }
2215
2216 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2217 unsigned long val)
2218 {
2219 unsigned long cr0 = svm->vcpu.arch.cr0;
2220 bool ret = false;
2221 u64 intercept;
2222
2223 intercept = svm->nested.ctl.intercept;
2224
2225 if (!is_guest_mode(&svm->vcpu) ||
2226 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2227 return false;
2228
2229 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2230 val &= ~SVM_CR0_SELECTIVE_MASK;
2231
2232 if (cr0 ^ val) {
2233 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2234 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2235 }
2236
2237 return ret;
2238 }
2239
2240 #define CR_VALID (1ULL << 63)
2241
2242 static int cr_interception(struct vcpu_svm *svm)
2243 {
2244 int reg, cr;
2245 unsigned long val;
2246 int err;
2247
2248 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2249 return emulate_on_interception(svm);
2250
2251 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2252 return emulate_on_interception(svm);
2253
2254 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2255 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2256 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2257 else
2258 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2259
2260 err = 0;
2261 if (cr >= 16) { /* mov to cr */
2262 cr -= 16;
2263 val = kvm_register_read(&svm->vcpu, reg);
2264 switch (cr) {
2265 case 0:
2266 if (!check_selective_cr0_intercepted(svm, val))
2267 err = kvm_set_cr0(&svm->vcpu, val);
2268 else
2269 return 1;
2270
2271 break;
2272 case 3:
2273 err = kvm_set_cr3(&svm->vcpu, val);
2274 break;
2275 case 4:
2276 err = kvm_set_cr4(&svm->vcpu, val);
2277 break;
2278 case 8:
2279 err = kvm_set_cr8(&svm->vcpu, val);
2280 break;
2281 default:
2282 WARN(1, "unhandled write to CR%d", cr);
2283 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2284 return 1;
2285 }
2286 } else { /* mov from cr */
2287 switch (cr) {
2288 case 0:
2289 val = kvm_read_cr0(&svm->vcpu);
2290 break;
2291 case 2:
2292 val = svm->vcpu.arch.cr2;
2293 break;
2294 case 3:
2295 val = kvm_read_cr3(&svm->vcpu);
2296 break;
2297 case 4:
2298 val = kvm_read_cr4(&svm->vcpu);
2299 break;
2300 case 8:
2301 val = kvm_get_cr8(&svm->vcpu);
2302 break;
2303 default:
2304 WARN(1, "unhandled read from CR%d", cr);
2305 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2306 return 1;
2307 }
2308 kvm_register_write(&svm->vcpu, reg, val);
2309 }
2310 return kvm_complete_insn_gp(&svm->vcpu, err);
2311 }
2312
2313 static int dr_interception(struct vcpu_svm *svm)
2314 {
2315 int reg, dr;
2316 unsigned long val;
2317
2318 if (svm->vcpu.guest_debug == 0) {
2319 /*
2320 * No more DR vmexits; force a reload of the debug registers
2321 * and reenter on this instruction. The next vmexit will
2322 * retrieve the full state of the debug registers.
2323 */
2324 clr_dr_intercepts(svm);
2325 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2326 return 1;
2327 }
2328
2329 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2330 return emulate_on_interception(svm);
2331
2332 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2333 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2334
2335 if (dr >= 16) { /* mov to DRn */
2336 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2337 return 1;
2338 val = kvm_register_read(&svm->vcpu, reg);
2339 kvm_set_dr(&svm->vcpu, dr - 16, val);
2340 } else {
2341 if (!kvm_require_dr(&svm->vcpu, dr))
2342 return 1;
2343 kvm_get_dr(&svm->vcpu, dr, &val);
2344 kvm_register_write(&svm->vcpu, reg, val);
2345 }
2346
2347 return kvm_skip_emulated_instruction(&svm->vcpu);
2348 }
2349
2350 static int cr8_write_interception(struct vcpu_svm *svm)
2351 {
2352 struct kvm_run *kvm_run = svm->vcpu.run;
2353 int r;
2354
2355 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2356 /* instruction emulation calls kvm_set_cr8() */
2357 r = cr_interception(svm);
2358 if (lapic_in_kernel(&svm->vcpu))
2359 return r;
2360 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2361 return r;
2362 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2363 return 0;
2364 }
2365
2366 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2367 {
2368 msr->data = 0;
2369
2370 switch (msr->index) {
2371 case MSR_F10H_DECFG:
2372 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2373 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2374 break;
2375 case MSR_IA32_PERF_CAPABILITIES:
2376 return 0;
2377 default:
2378 return KVM_MSR_RET_INVALID;
2379 }
2380
2381 return 0;
2382 }
2383
2384 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2385 {
2386 struct vcpu_svm *svm = to_svm(vcpu);
2387
2388 switch (msr_info->index) {
2389 case MSR_STAR:
2390 msr_info->data = svm->vmcb->save.star;
2391 break;
2392 #ifdef CONFIG_X86_64
2393 case MSR_LSTAR:
2394 msr_info->data = svm->vmcb->save.lstar;
2395 break;
2396 case MSR_CSTAR:
2397 msr_info->data = svm->vmcb->save.cstar;
2398 break;
2399 case MSR_KERNEL_GS_BASE:
2400 msr_info->data = svm->vmcb->save.kernel_gs_base;
2401 break;
2402 case MSR_SYSCALL_MASK:
2403 msr_info->data = svm->vmcb->save.sfmask;
2404 break;
2405 #endif
2406 case MSR_IA32_SYSENTER_CS:
2407 msr_info->data = svm->vmcb->save.sysenter_cs;
2408 break;
2409 case MSR_IA32_SYSENTER_EIP:
2410 msr_info->data = svm->sysenter_eip;
2411 break;
2412 case MSR_IA32_SYSENTER_ESP:
2413 msr_info->data = svm->sysenter_esp;
2414 break;
2415 case MSR_TSC_AUX:
2416 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2417 return 1;
2418 msr_info->data = svm->tsc_aux;
2419 break;
2420 /*
2421 * Nobody will change the following 5 values in the VMCB so we can
2422 * safely return them on rdmsr. They will always be 0 until LBRV is
2423 * implemented.
2424 */
2425 case MSR_IA32_DEBUGCTLMSR:
2426 msr_info->data = svm->vmcb->save.dbgctl;
2427 break;
2428 case MSR_IA32_LASTBRANCHFROMIP:
2429 msr_info->data = svm->vmcb->save.br_from;
2430 break;
2431 case MSR_IA32_LASTBRANCHTOIP:
2432 msr_info->data = svm->vmcb->save.br_to;
2433 break;
2434 case MSR_IA32_LASTINTFROMIP:
2435 msr_info->data = svm->vmcb->save.last_excp_from;
2436 break;
2437 case MSR_IA32_LASTINTTOIP:
2438 msr_info->data = svm->vmcb->save.last_excp_to;
2439 break;
2440 case MSR_VM_HSAVE_PA:
2441 msr_info->data = svm->nested.hsave_msr;
2442 break;
2443 case MSR_VM_CR:
2444 msr_info->data = svm->nested.vm_cr_msr;
2445 break;
2446 case MSR_IA32_SPEC_CTRL:
2447 if (!msr_info->host_initiated &&
2448 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2449 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2450 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2451 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2452 return 1;
2453
2454 msr_info->data = svm->spec_ctrl;
2455 break;
2456 case MSR_AMD64_VIRT_SPEC_CTRL:
2457 if (!msr_info->host_initiated &&
2458 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2459 return 1;
2460
2461 msr_info->data = svm->virt_spec_ctrl;
2462 break;
2463 case MSR_F15H_IC_CFG: {
2464
2465 int family, model;
2466
2467 family = guest_cpuid_family(vcpu);
2468 model = guest_cpuid_model(vcpu);
2469
2470 if (family < 0 || model < 0)
2471 return kvm_get_msr_common(vcpu, msr_info);
2472
2473 msr_info->data = 0;
2474
2475 if (family == 0x15 &&
2476 (model >= 0x2 && model < 0x20))
2477 msr_info->data = 0x1E;
2478 }
2479 break;
2480 case MSR_F10H_DECFG:
2481 msr_info->data = svm->msr_decfg;
2482 break;
2483 default:
2484 return kvm_get_msr_common(vcpu, msr_info);
2485 }
2486 return 0;
2487 }
2488
2489 static int rdmsr_interception(struct vcpu_svm *svm)
2490 {
2491 return kvm_emulate_rdmsr(&svm->vcpu);
2492 }
2493
2494 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2495 {
2496 struct vcpu_svm *svm = to_svm(vcpu);
2497 int svm_dis, chg_mask;
2498
2499 if (data & ~SVM_VM_CR_VALID_MASK)
2500 return 1;
2501
2502 chg_mask = SVM_VM_CR_VALID_MASK;
2503
2504 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2505 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2506
2507 svm->nested.vm_cr_msr &= ~chg_mask;
2508 svm->nested.vm_cr_msr |= (data & chg_mask);
2509
2510 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2511
2512 /* check for svm_disable while efer.svme is set */
2513 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2514 return 1;
2515
2516 return 0;
2517 }
2518
2519 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2520 {
2521 struct vcpu_svm *svm = to_svm(vcpu);
2522
2523 u32 ecx = msr->index;
2524 u64 data = msr->data;
2525 switch (ecx) {
2526 case MSR_IA32_CR_PAT:
2527 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2528 return 1;
2529 vcpu->arch.pat = data;
2530 svm->vmcb->save.g_pat = data;
2531 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2532 break;
2533 case MSR_IA32_SPEC_CTRL:
2534 if (!msr->host_initiated &&
2535 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2536 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2537 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2538 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2539 return 1;
2540
2541 if (kvm_spec_ctrl_test_value(data))
2542 return 1;
2543
2544 svm->spec_ctrl = data;
2545 if (!data)
2546 break;
2547
2548 /*
2549 * For non-nested:
2550 * When it's written (to non-zero) for the first time, pass
2551 * it through.
2552 *
2553 * For nested:
2554 * The handling of the MSR bitmap for L2 guests is done in
2555 * nested_svm_vmrun_msrpm.
2556 * We update the L1 MSR bit as well since it will end up
2557 * touching the MSR anyway now.
2558 */
2559 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2560 break;
2561 case MSR_IA32_PRED_CMD:
2562 if (!msr->host_initiated &&
2563 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2564 return 1;
2565
2566 if (data & ~PRED_CMD_IBPB)
2567 return 1;
2568 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2569 return 1;
2570 if (!data)
2571 break;
2572
2573 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2574 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2575 break;
2576 case MSR_AMD64_VIRT_SPEC_CTRL:
2577 if (!msr->host_initiated &&
2578 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2579 return 1;
2580
2581 if (data & ~SPEC_CTRL_SSBD)
2582 return 1;
2583
2584 svm->virt_spec_ctrl = data;
2585 break;
2586 case MSR_STAR:
2587 svm->vmcb->save.star = data;
2588 break;
2589 #ifdef CONFIG_X86_64
2590 case MSR_LSTAR:
2591 svm->vmcb->save.lstar = data;
2592 break;
2593 case MSR_CSTAR:
2594 svm->vmcb->save.cstar = data;
2595 break;
2596 case MSR_KERNEL_GS_BASE:
2597 svm->vmcb->save.kernel_gs_base = data;
2598 break;
2599 case MSR_SYSCALL_MASK:
2600 svm->vmcb->save.sfmask = data;
2601 break;
2602 #endif
2603 case MSR_IA32_SYSENTER_CS:
2604 svm->vmcb->save.sysenter_cs = data;
2605 break;
2606 case MSR_IA32_SYSENTER_EIP:
2607 svm->sysenter_eip = data;
2608 svm->vmcb->save.sysenter_eip = data;
2609 break;
2610 case MSR_IA32_SYSENTER_ESP:
2611 svm->sysenter_esp = data;
2612 svm->vmcb->save.sysenter_esp = data;
2613 break;
2614 case MSR_TSC_AUX:
2615 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2616 return 1;
2617
2618 /*
2619 * This is rare, so we update the MSR here instead of using
2620 * direct_access_msrs. Doing that would require a rdmsr in
2621 * svm_vcpu_put.
2622 */
2623 svm->tsc_aux = data;
2624 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2625 break;
2626 case MSR_IA32_DEBUGCTLMSR:
2627 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2628 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2629 __func__, data);
2630 break;
2631 }
2632 if (data & DEBUGCTL_RESERVED_BITS)
2633 return 1;
2634
2635 svm->vmcb->save.dbgctl = data;
2636 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2637 if (data & (1ULL<<0))
2638 svm_enable_lbrv(svm);
2639 else
2640 svm_disable_lbrv(svm);
2641 break;
2642 case MSR_VM_HSAVE_PA:
2643 svm->nested.hsave_msr = data;
2644 break;
2645 case MSR_VM_CR:
2646 return svm_set_vm_cr(vcpu, data);
2647 case MSR_VM_IGNNE:
2648 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2649 break;
2650 case MSR_F10H_DECFG: {
2651 struct kvm_msr_entry msr_entry;
2652
2653 msr_entry.index = msr->index;
2654 if (svm_get_msr_feature(&msr_entry))
2655 return 1;
2656
2657 /* Check the supported bits */
2658 if (data & ~msr_entry.data)
2659 return 1;
2660
2661 /* Don't allow the guest to change a bit, #GP */
2662 if (!msr->host_initiated && (data ^ msr_entry.data))
2663 return 1;
2664
2665 svm->msr_decfg = data;
2666 break;
2667 }
2668 case MSR_IA32_APICBASE:
2669 if (kvm_vcpu_apicv_active(vcpu))
2670 avic_update_vapic_bar(to_svm(vcpu), data);
2671 fallthrough;
2672 default:
2673 return kvm_set_msr_common(vcpu, msr);
2674 }
2675 return 0;
2676 }
2677
2678 static int wrmsr_interception(struct vcpu_svm *svm)
2679 {
2680 return kvm_emulate_wrmsr(&svm->vcpu);
2681 }
2682
2683 static int msr_interception(struct vcpu_svm *svm)
2684 {
2685 if (svm->vmcb->control.exit_info_1)
2686 return wrmsr_interception(svm);
2687 else
2688 return rdmsr_interception(svm);
2689 }
2690
2691 static int interrupt_window_interception(struct vcpu_svm *svm)
2692 {
2693 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2694 svm_clear_vintr(svm);
2695
2696 /*
2697 * For AVIC, the only reason to end up here is ExtINTs.
2698 * In this case AVIC was temporarily disabled for
2699 * requesting the IRQ window and we have to re-enable it.
2700 */
2701 svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2702
2703 ++svm->vcpu.stat.irq_window_exits;
2704 return 1;
2705 }
2706
2707 static int pause_interception(struct vcpu_svm *svm)
2708 {
2709 struct kvm_vcpu *vcpu = &svm->vcpu;
2710 bool in_kernel = (svm_get_cpl(vcpu) == 0);
2711
2712 if (!kvm_pause_in_guest(vcpu->kvm))
2713 grow_ple_window(vcpu);
2714
2715 kvm_vcpu_on_spin(vcpu, in_kernel);
2716 return 1;
2717 }
2718
2719 static int nop_interception(struct vcpu_svm *svm)
2720 {
2721 return kvm_skip_emulated_instruction(&(svm->vcpu));
2722 }
2723
2724 static int monitor_interception(struct vcpu_svm *svm)
2725 {
2726 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2727 return nop_interception(svm);
2728 }
2729
2730 static int mwait_interception(struct vcpu_svm *svm)
2731 {
2732 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2733 return nop_interception(svm);
2734 }
2735
2736 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2737 [SVM_EXIT_READ_CR0] = cr_interception,
2738 [SVM_EXIT_READ_CR3] = cr_interception,
2739 [SVM_EXIT_READ_CR4] = cr_interception,
2740 [SVM_EXIT_READ_CR8] = cr_interception,
2741 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
2742 [SVM_EXIT_WRITE_CR0] = cr_interception,
2743 [SVM_EXIT_WRITE_CR3] = cr_interception,
2744 [SVM_EXIT_WRITE_CR4] = cr_interception,
2745 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2746 [SVM_EXIT_READ_DR0] = dr_interception,
2747 [SVM_EXIT_READ_DR1] = dr_interception,
2748 [SVM_EXIT_READ_DR2] = dr_interception,
2749 [SVM_EXIT_READ_DR3] = dr_interception,
2750 [SVM_EXIT_READ_DR4] = dr_interception,
2751 [SVM_EXIT_READ_DR5] = dr_interception,
2752 [SVM_EXIT_READ_DR6] = dr_interception,
2753 [SVM_EXIT_READ_DR7] = dr_interception,
2754 [SVM_EXIT_WRITE_DR0] = dr_interception,
2755 [SVM_EXIT_WRITE_DR1] = dr_interception,
2756 [SVM_EXIT_WRITE_DR2] = dr_interception,
2757 [SVM_EXIT_WRITE_DR3] = dr_interception,
2758 [SVM_EXIT_WRITE_DR4] = dr_interception,
2759 [SVM_EXIT_WRITE_DR5] = dr_interception,
2760 [SVM_EXIT_WRITE_DR6] = dr_interception,
2761 [SVM_EXIT_WRITE_DR7] = dr_interception,
2762 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2763 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2764 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2765 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2766 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2767 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
2768 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
2769 [SVM_EXIT_INTR] = intr_interception,
2770 [SVM_EXIT_NMI] = nmi_interception,
2771 [SVM_EXIT_SMI] = nop_on_interception,
2772 [SVM_EXIT_INIT] = nop_on_interception,
2773 [SVM_EXIT_VINTR] = interrupt_window_interception,
2774 [SVM_EXIT_RDPMC] = rdpmc_interception,
2775 [SVM_EXIT_CPUID] = cpuid_interception,
2776 [SVM_EXIT_IRET] = iret_interception,
2777 [SVM_EXIT_INVD] = emulate_on_interception,
2778 [SVM_EXIT_PAUSE] = pause_interception,
2779 [SVM_EXIT_HLT] = halt_interception,
2780 [SVM_EXIT_INVLPG] = invlpg_interception,
2781 [SVM_EXIT_INVLPGA] = invlpga_interception,
2782 [SVM_EXIT_IOIO] = io_interception,
2783 [SVM_EXIT_MSR] = msr_interception,
2784 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2785 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2786 [SVM_EXIT_VMRUN] = vmrun_interception,
2787 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2788 [SVM_EXIT_VMLOAD] = vmload_interception,
2789 [SVM_EXIT_VMSAVE] = vmsave_interception,
2790 [SVM_EXIT_STGI] = stgi_interception,
2791 [SVM_EXIT_CLGI] = clgi_interception,
2792 [SVM_EXIT_SKINIT] = skinit_interception,
2793 [SVM_EXIT_WBINVD] = wbinvd_interception,
2794 [SVM_EXIT_MONITOR] = monitor_interception,
2795 [SVM_EXIT_MWAIT] = mwait_interception,
2796 [SVM_EXIT_XSETBV] = xsetbv_interception,
2797 [SVM_EXIT_RDPRU] = rdpru_interception,
2798 [SVM_EXIT_NPF] = npf_interception,
2799 [SVM_EXIT_RSM] = rsm_interception,
2800 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
2801 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
2802 };
2803
2804 static void dump_vmcb(struct kvm_vcpu *vcpu)
2805 {
2806 struct vcpu_svm *svm = to_svm(vcpu);
2807 struct vmcb_control_area *control = &svm->vmcb->control;
2808 struct vmcb_save_area *save = &svm->vmcb->save;
2809
2810 if (!dump_invalid_vmcb) {
2811 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2812 return;
2813 }
2814
2815 pr_err("VMCB Control Area:\n");
2816 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
2817 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
2818 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
2819 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
2820 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
2821 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
2822 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2823 pr_err("%-20s%d\n", "pause filter threshold:",
2824 control->pause_filter_thresh);
2825 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2826 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2827 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2828 pr_err("%-20s%d\n", "asid:", control->asid);
2829 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2830 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2831 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2832 pr_err("%-20s%08x\n", "int_state:", control->int_state);
2833 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2834 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2835 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2836 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2837 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2838 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2839 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2840 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2841 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2842 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2843 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2844 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2845 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2846 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2847 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2848 pr_err("VMCB State Save Area:\n");
2849 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2850 "es:",
2851 save->es.selector, save->es.attrib,
2852 save->es.limit, save->es.base);
2853 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2854 "cs:",
2855 save->cs.selector, save->cs.attrib,
2856 save->cs.limit, save->cs.base);
2857 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2858 "ss:",
2859 save->ss.selector, save->ss.attrib,
2860 save->ss.limit, save->ss.base);
2861 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2862 "ds:",
2863 save->ds.selector, save->ds.attrib,
2864 save->ds.limit, save->ds.base);
2865 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2866 "fs:",
2867 save->fs.selector, save->fs.attrib,
2868 save->fs.limit, save->fs.base);
2869 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2870 "gs:",
2871 save->gs.selector, save->gs.attrib,
2872 save->gs.limit, save->gs.base);
2873 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2874 "gdtr:",
2875 save->gdtr.selector, save->gdtr.attrib,
2876 save->gdtr.limit, save->gdtr.base);
2877 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2878 "ldtr:",
2879 save->ldtr.selector, save->ldtr.attrib,
2880 save->ldtr.limit, save->ldtr.base);
2881 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2882 "idtr:",
2883 save->idtr.selector, save->idtr.attrib,
2884 save->idtr.limit, save->idtr.base);
2885 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2886 "tr:",
2887 save->tr.selector, save->tr.attrib,
2888 save->tr.limit, save->tr.base);
2889 pr_err("cpl: %d efer: %016llx\n",
2890 save->cpl, save->efer);
2891 pr_err("%-15s %016llx %-13s %016llx\n",
2892 "cr0:", save->cr0, "cr2:", save->cr2);
2893 pr_err("%-15s %016llx %-13s %016llx\n",
2894 "cr3:", save->cr3, "cr4:", save->cr4);
2895 pr_err("%-15s %016llx %-13s %016llx\n",
2896 "dr6:", save->dr6, "dr7:", save->dr7);
2897 pr_err("%-15s %016llx %-13s %016llx\n",
2898 "rip:", save->rip, "rflags:", save->rflags);
2899 pr_err("%-15s %016llx %-13s %016llx\n",
2900 "rsp:", save->rsp, "rax:", save->rax);
2901 pr_err("%-15s %016llx %-13s %016llx\n",
2902 "star:", save->star, "lstar:", save->lstar);
2903 pr_err("%-15s %016llx %-13s %016llx\n",
2904 "cstar:", save->cstar, "sfmask:", save->sfmask);
2905 pr_err("%-15s %016llx %-13s %016llx\n",
2906 "kernel_gs_base:", save->kernel_gs_base,
2907 "sysenter_cs:", save->sysenter_cs);
2908 pr_err("%-15s %016llx %-13s %016llx\n",
2909 "sysenter_esp:", save->sysenter_esp,
2910 "sysenter_eip:", save->sysenter_eip);
2911 pr_err("%-15s %016llx %-13s %016llx\n",
2912 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
2913 pr_err("%-15s %016llx %-13s %016llx\n",
2914 "br_from:", save->br_from, "br_to:", save->br_to);
2915 pr_err("%-15s %016llx %-13s %016llx\n",
2916 "excp_from:", save->last_excp_from,
2917 "excp_to:", save->last_excp_to);
2918 }
2919
2920 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2921 {
2922 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2923
2924 *info1 = control->exit_info_1;
2925 *info2 = control->exit_info_2;
2926 }
2927
2928 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
2929 {
2930 struct vcpu_svm *svm = to_svm(vcpu);
2931 struct kvm_run *kvm_run = vcpu->run;
2932 u32 exit_code = svm->vmcb->control.exit_code;
2933
2934 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2935
2936 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
2937 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2938 if (npt_enabled)
2939 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2940
2941 svm_complete_interrupts(svm);
2942
2943 if (is_guest_mode(vcpu)) {
2944 int vmexit;
2945
2946 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2947 svm->vmcb->control.exit_info_1,
2948 svm->vmcb->control.exit_info_2,
2949 svm->vmcb->control.exit_int_info,
2950 svm->vmcb->control.exit_int_info_err,
2951 KVM_ISA_SVM);
2952
2953 vmexit = nested_svm_exit_special(svm);
2954
2955 if (vmexit == NESTED_EXIT_CONTINUE)
2956 vmexit = nested_svm_exit_handled(svm);
2957
2958 if (vmexit == NESTED_EXIT_DONE)
2959 return 1;
2960 }
2961
2962 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2963 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2964 kvm_run->fail_entry.hardware_entry_failure_reason
2965 = svm->vmcb->control.exit_code;
2966 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
2967 dump_vmcb(vcpu);
2968 return 0;
2969 }
2970
2971 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2972 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2973 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
2974 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
2975 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
2976 "exit_code 0x%x\n",
2977 __func__, svm->vmcb->control.exit_int_info,
2978 exit_code);
2979
2980 if (exit_fastpath != EXIT_FASTPATH_NONE)
2981 return 1;
2982
2983 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2984 || !svm_exit_handlers[exit_code]) {
2985 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
2986 dump_vmcb(vcpu);
2987 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2988 vcpu->run->internal.suberror =
2989 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2990 vcpu->run->internal.ndata = 2;
2991 vcpu->run->internal.data[0] = exit_code;
2992 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2993 return 0;
2994 }
2995
2996 #ifdef CONFIG_RETPOLINE
2997 if (exit_code == SVM_EXIT_MSR)
2998 return msr_interception(svm);
2999 else if (exit_code == SVM_EXIT_VINTR)
3000 return interrupt_window_interception(svm);
3001 else if (exit_code == SVM_EXIT_INTR)
3002 return intr_interception(svm);
3003 else if (exit_code == SVM_EXIT_HLT)
3004 return halt_interception(svm);
3005 else if (exit_code == SVM_EXIT_NPF)
3006 return npf_interception(svm);
3007 #endif
3008 return svm_exit_handlers[exit_code](svm);
3009 }
3010
3011 static void reload_tss(struct kvm_vcpu *vcpu)
3012 {
3013 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3014
3015 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3016 load_TR_desc();
3017 }
3018
3019 static void pre_svm_run(struct vcpu_svm *svm)
3020 {
3021 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3022
3023 if (sev_guest(svm->vcpu.kvm))
3024 return pre_sev_run(svm, svm->vcpu.cpu);
3025
3026 /* FIXME: handle wraparound of asid_generation */
3027 if (svm->asid_generation != sd->asid_generation)
3028 new_asid(svm, sd);
3029 }
3030
3031 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3032 {
3033 struct vcpu_svm *svm = to_svm(vcpu);
3034
3035 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3036 vcpu->arch.hflags |= HF_NMI_MASK;
3037 svm_set_intercept(svm, INTERCEPT_IRET);
3038 ++vcpu->stat.nmi_injections;
3039 }
3040
3041 static void svm_set_irq(struct kvm_vcpu *vcpu)
3042 {
3043 struct vcpu_svm *svm = to_svm(vcpu);
3044
3045 BUG_ON(!(gif_set(svm)));
3046
3047 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3048 ++vcpu->stat.irq_injections;
3049
3050 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3051 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3052 }
3053
3054 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3055 {
3056 struct vcpu_svm *svm = to_svm(vcpu);
3057
3058 if (nested_svm_virtualize_tpr(vcpu))
3059 return;
3060
3061 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3062
3063 if (irr == -1)
3064 return;
3065
3066 if (tpr >= irr)
3067 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3068 }
3069
3070 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3071 {
3072 struct vcpu_svm *svm = to_svm(vcpu);
3073 struct vmcb *vmcb = svm->vmcb;
3074 bool ret;
3075
3076 if (!gif_set(svm))
3077 return true;
3078
3079 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3080 return false;
3081
3082 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3083 (svm->vcpu.arch.hflags & HF_NMI_MASK);
3084
3085 return ret;
3086 }
3087
3088 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3089 {
3090 struct vcpu_svm *svm = to_svm(vcpu);
3091 if (svm->nested.nested_run_pending)
3092 return -EBUSY;
3093
3094 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3095 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3096 return -EBUSY;
3097
3098 return !svm_nmi_blocked(vcpu);
3099 }
3100
3101 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3102 {
3103 struct vcpu_svm *svm = to_svm(vcpu);
3104
3105 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3106 }
3107
3108 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3109 {
3110 struct vcpu_svm *svm = to_svm(vcpu);
3111
3112 if (masked) {
3113 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3114 svm_set_intercept(svm, INTERCEPT_IRET);
3115 } else {
3116 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3117 svm_clr_intercept(svm, INTERCEPT_IRET);
3118 }
3119 }
3120
3121 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3122 {
3123 struct vcpu_svm *svm = to_svm(vcpu);
3124 struct vmcb *vmcb = svm->vmcb;
3125
3126 if (!gif_set(svm))
3127 return true;
3128
3129 if (is_guest_mode(vcpu)) {
3130 /* As long as interrupts are being delivered... */
3131 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3132 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3133 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3134 return true;
3135
3136 /* ... vmexits aren't blocked by the interrupt shadow */
3137 if (nested_exit_on_intr(svm))
3138 return false;
3139 } else {
3140 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3141 return true;
3142 }
3143
3144 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3145 }
3146
3147 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3148 {
3149 struct vcpu_svm *svm = to_svm(vcpu);
3150 if (svm->nested.nested_run_pending)
3151 return -EBUSY;
3152
3153 /*
3154 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3155 * e.g. if the IRQ arrived asynchronously after checking nested events.
3156 */
3157 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3158 return -EBUSY;
3159
3160 return !svm_interrupt_blocked(vcpu);
3161 }
3162
3163 static void enable_irq_window(struct kvm_vcpu *vcpu)
3164 {
3165 struct vcpu_svm *svm = to_svm(vcpu);
3166
3167 /*
3168 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3169 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3170 * get that intercept, this function will be called again though and
3171 * we'll get the vintr intercept. However, if the vGIF feature is
3172 * enabled, the STGI interception will not occur. Enable the irq
3173 * window under the assumption that the hardware will set the GIF.
3174 */
3175 if (vgif_enabled(svm) || gif_set(svm)) {
3176 /*
3177 * IRQ window is not needed when AVIC is enabled,
3178 * unless we have pending ExtINT since it cannot be injected
3179 * via AVIC. In such case, we need to temporarily disable AVIC,
3180 * and fallback to injecting IRQ via V_IRQ.
3181 */
3182 svm_toggle_avic_for_irq_window(vcpu, false);
3183 svm_set_vintr(svm);
3184 }
3185 }
3186
3187 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3188 {
3189 struct vcpu_svm *svm = to_svm(vcpu);
3190
3191 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3192 == HF_NMI_MASK)
3193 return; /* IRET will cause a vm exit */
3194
3195 if (!gif_set(svm)) {
3196 if (vgif_enabled(svm))
3197 svm_set_intercept(svm, INTERCEPT_STGI);
3198 return; /* STGI will cause a vm exit */
3199 }
3200
3201 /*
3202 * Something prevents NMI from been injected. Single step over possible
3203 * problem (IRET or exception injection or interrupt shadow)
3204 */
3205 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3206 svm->nmi_singlestep = true;
3207 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3208 }
3209
3210 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3211 {
3212 return 0;
3213 }
3214
3215 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3216 {
3217 return 0;
3218 }
3219
3220 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3221 {
3222 struct vcpu_svm *svm = to_svm(vcpu);
3223
3224 /*
3225 * Flush only the current ASID even if the TLB flush was invoked via
3226 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3227 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3228 * unconditionally does a TLB flush on both nested VM-Enter and nested
3229 * VM-Exit (via kvm_mmu_reset_context()).
3230 */
3231 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3232 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3233 else
3234 svm->asid_generation--;
3235 }
3236
3237 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3238 {
3239 struct vcpu_svm *svm = to_svm(vcpu);
3240
3241 invlpga(gva, svm->vmcb->control.asid);
3242 }
3243
3244 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3245 {
3246 }
3247
3248 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3249 {
3250 struct vcpu_svm *svm = to_svm(vcpu);
3251
3252 if (nested_svm_virtualize_tpr(vcpu))
3253 return;
3254
3255 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3256 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3257 kvm_set_cr8(vcpu, cr8);
3258 }
3259 }
3260
3261 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3262 {
3263 struct vcpu_svm *svm = to_svm(vcpu);
3264 u64 cr8;
3265
3266 if (nested_svm_virtualize_tpr(vcpu) ||
3267 kvm_vcpu_apicv_active(vcpu))
3268 return;
3269
3270 cr8 = kvm_get_cr8(vcpu);
3271 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3272 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3273 }
3274
3275 static void svm_complete_interrupts(struct vcpu_svm *svm)
3276 {
3277 u8 vector;
3278 int type;
3279 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3280 unsigned int3_injected = svm->int3_injected;
3281
3282 svm->int3_injected = 0;
3283
3284 /*
3285 * If we've made progress since setting HF_IRET_MASK, we've
3286 * executed an IRET and can allow NMI injection.
3287 */
3288 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3289 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3290 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3291 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3292 }
3293
3294 svm->vcpu.arch.nmi_injected = false;
3295 kvm_clear_exception_queue(&svm->vcpu);
3296 kvm_clear_interrupt_queue(&svm->vcpu);
3297
3298 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3299 return;
3300
3301 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3302
3303 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3304 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3305
3306 switch (type) {
3307 case SVM_EXITINTINFO_TYPE_NMI:
3308 svm->vcpu.arch.nmi_injected = true;
3309 break;
3310 case SVM_EXITINTINFO_TYPE_EXEPT:
3311 /*
3312 * In case of software exceptions, do not reinject the vector,
3313 * but re-execute the instruction instead. Rewind RIP first
3314 * if we emulated INT3 before.
3315 */
3316 if (kvm_exception_is_soft(vector)) {
3317 if (vector == BP_VECTOR && int3_injected &&
3318 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3319 kvm_rip_write(&svm->vcpu,
3320 kvm_rip_read(&svm->vcpu) -
3321 int3_injected);
3322 break;
3323 }
3324 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3325 u32 err = svm->vmcb->control.exit_int_info_err;
3326 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3327
3328 } else
3329 kvm_requeue_exception(&svm->vcpu, vector);
3330 break;
3331 case SVM_EXITINTINFO_TYPE_INTR:
3332 kvm_queue_interrupt(&svm->vcpu, vector, false);
3333 break;
3334 default:
3335 break;
3336 }
3337 }
3338
3339 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3340 {
3341 struct vcpu_svm *svm = to_svm(vcpu);
3342 struct vmcb_control_area *control = &svm->vmcb->control;
3343
3344 control->exit_int_info = control->event_inj;
3345 control->exit_int_info_err = control->event_inj_err;
3346 control->event_inj = 0;
3347 svm_complete_interrupts(svm);
3348 }
3349
3350 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3351 {
3352 if (!is_guest_mode(vcpu) &&
3353 to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3354 to_svm(vcpu)->vmcb->control.exit_info_1)
3355 return handle_fastpath_set_msr_irqoff(vcpu);
3356
3357 return EXIT_FASTPATH_NONE;
3358 }
3359
3360 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3361
3362 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3363 struct vcpu_svm *svm)
3364 {
3365 /*
3366 * VMENTER enables interrupts (host state), but the kernel state is
3367 * interrupts disabled when this is invoked. Also tell RCU about
3368 * it. This is the same logic as for exit_to_user_mode().
3369 *
3370 * This ensures that e.g. latency analysis on the host observes
3371 * guest mode as interrupt enabled.
3372 *
3373 * guest_enter_irqoff() informs context tracking about the
3374 * transition to guest mode and if enabled adjusts RCU state
3375 * accordingly.
3376 */
3377 instrumentation_begin();
3378 trace_hardirqs_on_prepare();
3379 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3380 instrumentation_end();
3381
3382 guest_enter_irqoff();
3383 lockdep_hardirqs_on(CALLER_ADDR0);
3384
3385 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3386
3387 #ifdef CONFIG_X86_64
3388 native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3389 #else
3390 loadsegment(fs, svm->host.fs);
3391 #ifndef CONFIG_X86_32_LAZY_GS
3392 loadsegment(gs, svm->host.gs);
3393 #endif
3394 #endif
3395
3396 /*
3397 * VMEXIT disables interrupts (host state), but tracing and lockdep
3398 * have them in state 'on' as recorded before entering guest mode.
3399 * Same as enter_from_user_mode().
3400 *
3401 * guest_exit_irqoff() restores host context and reinstates RCU if
3402 * enabled and required.
3403 *
3404 * This needs to be done before the below as native_read_msr()
3405 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3406 * into world and some more.
3407 */
3408 lockdep_hardirqs_off(CALLER_ADDR0);
3409 guest_exit_irqoff();
3410
3411 instrumentation_begin();
3412 trace_hardirqs_off_finish();
3413 instrumentation_end();
3414 }
3415
3416 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3417 {
3418 fastpath_t exit_fastpath;
3419 struct vcpu_svm *svm = to_svm(vcpu);
3420
3421 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3422 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3423 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3424
3425 /*
3426 * Disable singlestep if we're injecting an interrupt/exception.
3427 * We don't want our modified rflags to be pushed on the stack where
3428 * we might not be able to easily reset them if we disabled NMI
3429 * singlestep later.
3430 */
3431 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3432 /*
3433 * Event injection happens before external interrupts cause a
3434 * vmexit and interrupts are disabled here, so smp_send_reschedule
3435 * is enough to force an immediate vmexit.
3436 */
3437 disable_nmi_singlestep(svm);
3438 smp_send_reschedule(vcpu->cpu);
3439 }
3440
3441 pre_svm_run(svm);
3442
3443 sync_lapic_to_cr8(vcpu);
3444
3445 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3446
3447 /*
3448 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3449 * of a #DB.
3450 */
3451 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3452 svm_set_dr6(svm, vcpu->arch.dr6);
3453 else
3454 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3455
3456 clgi();
3457 kvm_load_guest_xsave_state(vcpu);
3458
3459 if (lapic_in_kernel(vcpu) &&
3460 vcpu->arch.apic->lapic_timer.timer_advance_ns)
3461 kvm_wait_lapic_expire(vcpu);
3462
3463 /*
3464 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3465 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3466 * is no need to worry about the conditional branch over the wrmsr
3467 * being speculatively taken.
3468 */
3469 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3470
3471 svm_vcpu_enter_exit(vcpu, svm);
3472
3473 /*
3474 * We do not use IBRS in the kernel. If this vCPU has used the
3475 * SPEC_CTRL MSR it may have left it on; save the value and
3476 * turn it off. This is much more efficient than blindly adding
3477 * it to the atomic save/restore list. Especially as the former
3478 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3479 *
3480 * For non-nested case:
3481 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3482 * save it.
3483 *
3484 * For nested case:
3485 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3486 * save it.
3487 */
3488 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3489 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3490
3491 reload_tss(vcpu);
3492
3493 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3494
3495 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3496 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3497 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3498 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3499
3500 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3501 kvm_before_interrupt(&svm->vcpu);
3502
3503 kvm_load_host_xsave_state(vcpu);
3504 stgi();
3505
3506 /* Any pending NMI will happen here */
3507 exit_fastpath = svm_exit_handlers_fastpath(vcpu);
3508
3509 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3510 kvm_after_interrupt(&svm->vcpu);
3511
3512 sync_cr8_to_lapic(vcpu);
3513
3514 svm->next_rip = 0;
3515 if (is_guest_mode(&svm->vcpu)) {
3516 sync_nested_vmcb_control(svm);
3517 svm->nested.nested_run_pending = 0;
3518 }
3519
3520 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3521
3522 /* if exit due to PF check for async PF */
3523 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3524 svm->vcpu.arch.apf.host_apf_flags =
3525 kvm_read_and_reset_apf_flags();
3526
3527 if (npt_enabled) {
3528 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3529 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3530 }
3531
3532 /*
3533 * We need to handle MC intercepts here before the vcpu has a chance to
3534 * change the physical cpu
3535 */
3536 if (unlikely(svm->vmcb->control.exit_code ==
3537 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3538 svm_handle_mce(svm);
3539
3540 vmcb_mark_all_clean(svm->vmcb);
3541 return exit_fastpath;
3542 }
3543
3544 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3545 int root_level)
3546 {
3547 struct vcpu_svm *svm = to_svm(vcpu);
3548 unsigned long cr3;
3549
3550 cr3 = __sme_set(root);
3551 if (npt_enabled) {
3552 svm->vmcb->control.nested_cr3 = cr3;
3553 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3554
3555 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */
3556 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3557 return;
3558 cr3 = vcpu->arch.cr3;
3559 }
3560
3561 svm->vmcb->save.cr3 = cr3;
3562 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3563 }
3564
3565 static int is_disabled(void)
3566 {
3567 u64 vm_cr;
3568
3569 rdmsrl(MSR_VM_CR, vm_cr);
3570 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3571 return 1;
3572
3573 return 0;
3574 }
3575
3576 static void
3577 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3578 {
3579 /*
3580 * Patch in the VMMCALL instruction:
3581 */
3582 hypercall[0] = 0x0f;
3583 hypercall[1] = 0x01;
3584 hypercall[2] = 0xd9;
3585 }
3586
3587 static int __init svm_check_processor_compat(void)
3588 {
3589 return 0;
3590 }
3591
3592 static bool svm_cpu_has_accelerated_tpr(void)
3593 {
3594 return false;
3595 }
3596
3597 static bool svm_has_emulated_msr(u32 index)
3598 {
3599 switch (index) {
3600 case MSR_IA32_MCG_EXT_CTL:
3601 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3602 return false;
3603 default:
3604 break;
3605 }
3606
3607 return true;
3608 }
3609
3610 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3611 {
3612 return 0;
3613 }
3614
3615 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3616 {
3617 struct vcpu_svm *svm = to_svm(vcpu);
3618
3619 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3620 boot_cpu_has(X86_FEATURE_XSAVE) &&
3621 boot_cpu_has(X86_FEATURE_XSAVES);
3622
3623 /* Update nrips enabled cache */
3624 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3625 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3626
3627 if (!kvm_vcpu_apicv_active(vcpu))
3628 return;
3629
3630 /*
3631 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3632 * is exposed to the guest, disable AVIC.
3633 */
3634 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3635 kvm_request_apicv_update(vcpu->kvm, false,
3636 APICV_INHIBIT_REASON_X2APIC);
3637
3638 /*
3639 * Currently, AVIC does not work with nested virtualization.
3640 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3641 */
3642 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3643 kvm_request_apicv_update(vcpu->kvm, false,
3644 APICV_INHIBIT_REASON_NESTED);
3645 }
3646
3647 static bool svm_has_wbinvd_exit(void)
3648 {
3649 return true;
3650 }
3651
3652 #define PRE_EX(exit) { .exit_code = (exit), \
3653 .stage = X86_ICPT_PRE_EXCEPT, }
3654 #define POST_EX(exit) { .exit_code = (exit), \
3655 .stage = X86_ICPT_POST_EXCEPT, }
3656 #define POST_MEM(exit) { .exit_code = (exit), \
3657 .stage = X86_ICPT_POST_MEMACCESS, }
3658
3659 static const struct __x86_intercept {
3660 u32 exit_code;
3661 enum x86_intercept_stage stage;
3662 } x86_intercept_map[] = {
3663 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
3664 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
3665 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
3666 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
3667 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
3668 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
3669 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
3670 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
3671 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
3672 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
3673 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
3674 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
3675 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
3676 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
3677 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
3678 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
3679 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
3680 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
3681 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
3682 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
3683 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
3684 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
3685 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
3686 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
3687 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
3688 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
3689 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
3690 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
3691 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
3692 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
3693 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
3694 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
3695 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
3696 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
3697 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
3698 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
3699 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
3700 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
3701 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
3702 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
3703 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
3704 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
3705 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
3706 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
3707 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
3708 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
3709 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
3710 };
3711
3712 #undef PRE_EX
3713 #undef POST_EX
3714 #undef POST_MEM
3715
3716 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3717 struct x86_instruction_info *info,
3718 enum x86_intercept_stage stage,
3719 struct x86_exception *exception)
3720 {
3721 struct vcpu_svm *svm = to_svm(vcpu);
3722 int vmexit, ret = X86EMUL_CONTINUE;
3723 struct __x86_intercept icpt_info;
3724 struct vmcb *vmcb = svm->vmcb;
3725
3726 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3727 goto out;
3728
3729 icpt_info = x86_intercept_map[info->intercept];
3730
3731 if (stage != icpt_info.stage)
3732 goto out;
3733
3734 switch (icpt_info.exit_code) {
3735 case SVM_EXIT_READ_CR0:
3736 if (info->intercept == x86_intercept_cr_read)
3737 icpt_info.exit_code += info->modrm_reg;
3738 break;
3739 case SVM_EXIT_WRITE_CR0: {
3740 unsigned long cr0, val;
3741 u64 intercept;
3742
3743 if (info->intercept == x86_intercept_cr_write)
3744 icpt_info.exit_code += info->modrm_reg;
3745
3746 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3747 info->intercept == x86_intercept_clts)
3748 break;
3749
3750 intercept = svm->nested.ctl.intercept;
3751
3752 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
3753 break;
3754
3755 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3756 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
3757
3758 if (info->intercept == x86_intercept_lmsw) {
3759 cr0 &= 0xfUL;
3760 val &= 0xfUL;
3761 /* lmsw can't clear PE - catch this here */
3762 if (cr0 & X86_CR0_PE)
3763 val |= X86_CR0_PE;
3764 }
3765
3766 if (cr0 ^ val)
3767 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3768
3769 break;
3770 }
3771 case SVM_EXIT_READ_DR0:
3772 case SVM_EXIT_WRITE_DR0:
3773 icpt_info.exit_code += info->modrm_reg;
3774 break;
3775 case SVM_EXIT_MSR:
3776 if (info->intercept == x86_intercept_wrmsr)
3777 vmcb->control.exit_info_1 = 1;
3778 else
3779 vmcb->control.exit_info_1 = 0;
3780 break;
3781 case SVM_EXIT_PAUSE:
3782 /*
3783 * We get this for NOP only, but pause
3784 * is rep not, check this here
3785 */
3786 if (info->rep_prefix != REPE_PREFIX)
3787 goto out;
3788 break;
3789 case SVM_EXIT_IOIO: {
3790 u64 exit_info;
3791 u32 bytes;
3792
3793 if (info->intercept == x86_intercept_in ||
3794 info->intercept == x86_intercept_ins) {
3795 exit_info = ((info->src_val & 0xffff) << 16) |
3796 SVM_IOIO_TYPE_MASK;
3797 bytes = info->dst_bytes;
3798 } else {
3799 exit_info = (info->dst_val & 0xffff) << 16;
3800 bytes = info->src_bytes;
3801 }
3802
3803 if (info->intercept == x86_intercept_outs ||
3804 info->intercept == x86_intercept_ins)
3805 exit_info |= SVM_IOIO_STR_MASK;
3806
3807 if (info->rep_prefix)
3808 exit_info |= SVM_IOIO_REP_MASK;
3809
3810 bytes = min(bytes, 4u);
3811
3812 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3813
3814 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3815
3816 vmcb->control.exit_info_1 = exit_info;
3817 vmcb->control.exit_info_2 = info->next_rip;
3818
3819 break;
3820 }
3821 default:
3822 break;
3823 }
3824
3825 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3826 if (static_cpu_has(X86_FEATURE_NRIPS))
3827 vmcb->control.next_rip = info->next_rip;
3828 vmcb->control.exit_code = icpt_info.exit_code;
3829 vmexit = nested_svm_exit_handled(svm);
3830
3831 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3832 : X86EMUL_CONTINUE;
3833
3834 out:
3835 return ret;
3836 }
3837
3838 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3839 {
3840 }
3841
3842 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3843 {
3844 if (!kvm_pause_in_guest(vcpu->kvm))
3845 shrink_ple_window(vcpu);
3846 }
3847
3848 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3849 {
3850 /* [63:9] are reserved. */
3851 vcpu->arch.mcg_cap &= 0x1ff;
3852 }
3853
3854 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3855 {
3856 struct vcpu_svm *svm = to_svm(vcpu);
3857
3858 /* Per APM Vol.2 15.22.2 "Response to SMI" */
3859 if (!gif_set(svm))
3860 return true;
3861
3862 return is_smm(vcpu);
3863 }
3864
3865 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3866 {
3867 struct vcpu_svm *svm = to_svm(vcpu);
3868 if (svm->nested.nested_run_pending)
3869 return -EBUSY;
3870
3871 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
3872 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
3873 return -EBUSY;
3874
3875 return !svm_smi_blocked(vcpu);
3876 }
3877
3878 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
3879 {
3880 struct vcpu_svm *svm = to_svm(vcpu);
3881 int ret;
3882
3883 if (is_guest_mode(vcpu)) {
3884 /* FED8h - SVM Guest */
3885 put_smstate(u64, smstate, 0x7ed8, 1);
3886 /* FEE0h - SVM Guest VMCB Physical Address */
3887 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
3888
3889 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3890 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3891 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3892
3893 ret = nested_svm_vmexit(svm);
3894 if (ret)
3895 return ret;
3896 }
3897 return 0;
3898 }
3899
3900 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
3901 {
3902 struct vcpu_svm *svm = to_svm(vcpu);
3903 struct vmcb *nested_vmcb;
3904 struct kvm_host_map map;
3905 u64 guest;
3906 u64 vmcb;
3907 int ret = 0;
3908
3909 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
3910 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
3911
3912 if (guest) {
3913 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
3914 return 1;
3915 nested_vmcb = map.hva;
3916 ret = enter_svm_guest_mode(svm, vmcb, nested_vmcb);
3917 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3918 }
3919
3920 return ret;
3921 }
3922
3923 static void enable_smi_window(struct kvm_vcpu *vcpu)
3924 {
3925 struct vcpu_svm *svm = to_svm(vcpu);
3926
3927 if (!gif_set(svm)) {
3928 if (vgif_enabled(svm))
3929 svm_set_intercept(svm, INTERCEPT_STGI);
3930 /* STGI will cause a vm exit */
3931 } else {
3932 /* We must be in SMM; RSM will cause a vmexit anyway. */
3933 }
3934 }
3935
3936 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
3937 {
3938 unsigned long cr4 = kvm_read_cr4(vcpu);
3939 bool smep = cr4 & X86_CR4_SMEP;
3940 bool smap = cr4 & X86_CR4_SMAP;
3941 bool is_user = svm_get_cpl(vcpu) == 3;
3942
3943 /*
3944 * If RIP is invalid, go ahead with emulation which will cause an
3945 * internal error exit.
3946 */
3947 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
3948 return true;
3949
3950 /*
3951 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3952 *
3953 * Errata:
3954 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3955 * possible that CPU microcode implementing DecodeAssist will fail
3956 * to read bytes of instruction which caused #NPF. In this case,
3957 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3958 * return 0 instead of the correct guest instruction bytes.
3959 *
3960 * This happens because CPU microcode reading instruction bytes
3961 * uses a special opcode which attempts to read data using CPL=0
3962 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3963 * fault, it gives up and returns no instruction bytes.
3964 *
3965 * Detection:
3966 * We reach here in case CPU supports DecodeAssist, raised #NPF and
3967 * returned 0 in GuestIntrBytes field of the VMCB.
3968 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3969 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3970 * in case vCPU CPL==3 (Because otherwise guest would have triggered
3971 * a SMEP fault instead of #NPF).
3972 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3973 * As most guests enable SMAP if they have also enabled SMEP, use above
3974 * logic in order to attempt minimize false-positive of detecting errata
3975 * while still preserving all cases semantic correctness.
3976 *
3977 * Workaround:
3978 * To determine what instruction the guest was executing, the hypervisor
3979 * will have to decode the instruction at the instruction pointer.
3980 *
3981 * In non SEV guest, hypervisor will be able to read the guest
3982 * memory to decode the instruction pointer when insn_len is zero
3983 * so we return true to indicate that decoding is possible.
3984 *
3985 * But in the SEV guest, the guest memory is encrypted with the
3986 * guest specific key and hypervisor will not be able to decode the
3987 * instruction pointer so we will not able to workaround it. Lets
3988 * print the error and request to kill the guest.
3989 */
3990 if (smap && (!smep || is_user)) {
3991 if (!sev_guest(vcpu->kvm))
3992 return true;
3993
3994 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
3995 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3996 }
3997
3998 return false;
3999 }
4000
4001 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4002 {
4003 struct vcpu_svm *svm = to_svm(vcpu);
4004
4005 /*
4006 * TODO: Last condition latch INIT signals on vCPU when
4007 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4008 * To properly emulate the INIT intercept,
4009 * svm_check_nested_events() should call nested_svm_vmexit()
4010 * if an INIT signal is pending.
4011 */
4012 return !gif_set(svm) ||
4013 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
4014 }
4015
4016 static void svm_vm_destroy(struct kvm *kvm)
4017 {
4018 avic_vm_destroy(kvm);
4019 sev_vm_destroy(kvm);
4020 }
4021
4022 static int svm_vm_init(struct kvm *kvm)
4023 {
4024 if (!pause_filter_count || !pause_filter_thresh)
4025 kvm->arch.pause_in_guest = true;
4026
4027 if (avic) {
4028 int ret = avic_vm_init(kvm);
4029 if (ret)
4030 return ret;
4031 }
4032
4033 kvm_apicv_init(kvm, avic);
4034 return 0;
4035 }
4036
4037 static struct kvm_x86_ops svm_x86_ops __initdata = {
4038 .hardware_unsetup = svm_hardware_teardown,
4039 .hardware_enable = svm_hardware_enable,
4040 .hardware_disable = svm_hardware_disable,
4041 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4042 .has_emulated_msr = svm_has_emulated_msr,
4043
4044 .vcpu_create = svm_create_vcpu,
4045 .vcpu_free = svm_free_vcpu,
4046 .vcpu_reset = svm_vcpu_reset,
4047
4048 .vm_size = sizeof(struct kvm_svm),
4049 .vm_init = svm_vm_init,
4050 .vm_destroy = svm_vm_destroy,
4051
4052 .prepare_guest_switch = svm_prepare_guest_switch,
4053 .vcpu_load = svm_vcpu_load,
4054 .vcpu_put = svm_vcpu_put,
4055 .vcpu_blocking = svm_vcpu_blocking,
4056 .vcpu_unblocking = svm_vcpu_unblocking,
4057
4058 .update_exception_bitmap = update_exception_bitmap,
4059 .get_msr_feature = svm_get_msr_feature,
4060 .get_msr = svm_get_msr,
4061 .set_msr = svm_set_msr,
4062 .get_segment_base = svm_get_segment_base,
4063 .get_segment = svm_get_segment,
4064 .set_segment = svm_set_segment,
4065 .get_cpl = svm_get_cpl,
4066 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4067 .set_cr0 = svm_set_cr0,
4068 .set_cr4 = svm_set_cr4,
4069 .set_efer = svm_set_efer,
4070 .get_idt = svm_get_idt,
4071 .set_idt = svm_set_idt,
4072 .get_gdt = svm_get_gdt,
4073 .set_gdt = svm_set_gdt,
4074 .set_dr7 = svm_set_dr7,
4075 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4076 .cache_reg = svm_cache_reg,
4077 .get_rflags = svm_get_rflags,
4078 .set_rflags = svm_set_rflags,
4079
4080 .tlb_flush_all = svm_flush_tlb,
4081 .tlb_flush_current = svm_flush_tlb,
4082 .tlb_flush_gva = svm_flush_tlb_gva,
4083 .tlb_flush_guest = svm_flush_tlb,
4084
4085 .run = svm_vcpu_run,
4086 .handle_exit = handle_exit,
4087 .skip_emulated_instruction = skip_emulated_instruction,
4088 .update_emulated_instruction = NULL,
4089 .set_interrupt_shadow = svm_set_interrupt_shadow,
4090 .get_interrupt_shadow = svm_get_interrupt_shadow,
4091 .patch_hypercall = svm_patch_hypercall,
4092 .set_irq = svm_set_irq,
4093 .set_nmi = svm_inject_nmi,
4094 .queue_exception = svm_queue_exception,
4095 .cancel_injection = svm_cancel_injection,
4096 .interrupt_allowed = svm_interrupt_allowed,
4097 .nmi_allowed = svm_nmi_allowed,
4098 .get_nmi_mask = svm_get_nmi_mask,
4099 .set_nmi_mask = svm_set_nmi_mask,
4100 .enable_nmi_window = enable_nmi_window,
4101 .enable_irq_window = enable_irq_window,
4102 .update_cr8_intercept = update_cr8_intercept,
4103 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4104 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4105 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4106 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4107 .load_eoi_exitmap = svm_load_eoi_exitmap,
4108 .hwapic_irr_update = svm_hwapic_irr_update,
4109 .hwapic_isr_update = svm_hwapic_isr_update,
4110 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4111 .apicv_post_state_restore = avic_post_state_restore,
4112
4113 .set_tss_addr = svm_set_tss_addr,
4114 .set_identity_map_addr = svm_set_identity_map_addr,
4115 .get_mt_mask = svm_get_mt_mask,
4116
4117 .get_exit_info = svm_get_exit_info,
4118
4119 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4120
4121 .has_wbinvd_exit = svm_has_wbinvd_exit,
4122
4123 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4124
4125 .load_mmu_pgd = svm_load_mmu_pgd,
4126
4127 .check_intercept = svm_check_intercept,
4128 .handle_exit_irqoff = svm_handle_exit_irqoff,
4129
4130 .request_immediate_exit = __kvm_request_immediate_exit,
4131
4132 .sched_in = svm_sched_in,
4133
4134 .pmu_ops = &amd_pmu_ops,
4135 .nested_ops = &svm_nested_ops,
4136
4137 .deliver_posted_interrupt = svm_deliver_avic_intr,
4138 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4139 .update_pi_irte = svm_update_pi_irte,
4140 .setup_mce = svm_setup_mce,
4141
4142 .smi_allowed = svm_smi_allowed,
4143 .pre_enter_smm = svm_pre_enter_smm,
4144 .pre_leave_smm = svm_pre_leave_smm,
4145 .enable_smi_window = enable_smi_window,
4146
4147 .mem_enc_op = svm_mem_enc_op,
4148 .mem_enc_reg_region = svm_register_enc_region,
4149 .mem_enc_unreg_region = svm_unregister_enc_region,
4150
4151 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
4152
4153 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4154 };
4155
4156 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4157 .cpu_has_kvm_support = has_svm,
4158 .disabled_by_bios = is_disabled,
4159 .hardware_setup = svm_hardware_setup,
4160 .check_processor_compatibility = svm_check_processor_compat,
4161
4162 .runtime_ops = &svm_x86_ops,
4163 };
4164
4165 static int __init svm_init(void)
4166 {
4167 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4168 __alignof__(struct vcpu_svm), THIS_MODULE);
4169 }
4170
4171 static void __exit svm_exit(void)
4172 {
4173 kvm_exit();
4174 }
4175
4176 module_init(svm_init)
4177 module_exit(svm_exit)