]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kvm/svm/svm.c
KVM: SVM: Replace "avic_mode" enum with "x2avic_enabled" boolean
[mirror_ubuntu-kernels.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30
31 #include <asm/apic.h>
32 #include <asm/perf_event.h>
33 #include <asm/tlbflush.h>
34 #include <asm/desc.h>
35 #include <asm/debugreg.h>
36 #include <asm/kvm_para.h>
37 #include <asm/irq_remapping.h>
38 #include <asm/spec-ctrl.h>
39 #include <asm/cpu_device_id.h>
40 #include <asm/traps.h>
41 #include <asm/fpu/api.h>
42
43 #include <asm/virtext.h>
44 #include "trace.h"
45
46 #include "svm.h"
47 #include "svm_ops.h"
48
49 #include "kvm_onhyperv.h"
50 #include "svm_onhyperv.h"
51
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54
55 #ifdef MODULE
56 static const struct x86_cpu_id svm_cpu_id[] = {
57 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61 #endif
62
63 #define SEG_TYPE_LDT 2
64 #define SEG_TYPE_BUSY_TSS16 3
65
66 static bool erratum_383_found __read_mostly;
67
68 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
69
70 /*
71 * Set osvw_len to higher value when updated Revision Guides
72 * are published and we know what the new status bits are
73 */
74 static uint64_t osvw_len = 4, osvw_status;
75
76 static DEFINE_PER_CPU(u64, current_tsc_ratio);
77
78 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4))
79
80 static const struct svm_direct_access_msrs {
81 u32 index; /* Index of the MSR */
82 bool always; /* True if intercept is initially cleared */
83 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
84 { .index = MSR_STAR, .always = true },
85 { .index = MSR_IA32_SYSENTER_CS, .always = true },
86 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
87 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
88 #ifdef CONFIG_X86_64
89 { .index = MSR_GS_BASE, .always = true },
90 { .index = MSR_FS_BASE, .always = true },
91 { .index = MSR_KERNEL_GS_BASE, .always = true },
92 { .index = MSR_LSTAR, .always = true },
93 { .index = MSR_CSTAR, .always = true },
94 { .index = MSR_SYSCALL_MASK, .always = true },
95 #endif
96 { .index = MSR_IA32_SPEC_CTRL, .always = false },
97 { .index = MSR_IA32_PRED_CMD, .always = false },
98 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
99 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
100 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
101 { .index = MSR_IA32_LASTINTTOIP, .always = false },
102 { .index = MSR_EFER, .always = false },
103 { .index = MSR_IA32_CR_PAT, .always = false },
104 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
105 { .index = MSR_TSC_AUX, .always = false },
106 { .index = X2APIC_MSR(APIC_ID), .always = false },
107 { .index = X2APIC_MSR(APIC_LVR), .always = false },
108 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false },
109 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false },
110 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false },
111 { .index = X2APIC_MSR(APIC_EOI), .always = false },
112 { .index = X2APIC_MSR(APIC_RRR), .always = false },
113 { .index = X2APIC_MSR(APIC_LDR), .always = false },
114 { .index = X2APIC_MSR(APIC_DFR), .always = false },
115 { .index = X2APIC_MSR(APIC_SPIV), .always = false },
116 { .index = X2APIC_MSR(APIC_ISR), .always = false },
117 { .index = X2APIC_MSR(APIC_TMR), .always = false },
118 { .index = X2APIC_MSR(APIC_IRR), .always = false },
119 { .index = X2APIC_MSR(APIC_ESR), .always = false },
120 { .index = X2APIC_MSR(APIC_ICR), .always = false },
121 { .index = X2APIC_MSR(APIC_ICR2), .always = false },
122
123 /*
124 * Note:
125 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
126 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
127 * the AVIC hardware would generate GP fault. Therefore, always
128 * intercept the MSR 0x832, and do not setup direct_access_msr.
129 */
130 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false },
131 { .index = X2APIC_MSR(APIC_LVTPC), .always = false },
132 { .index = X2APIC_MSR(APIC_LVT0), .always = false },
133 { .index = X2APIC_MSR(APIC_LVT1), .always = false },
134 { .index = X2APIC_MSR(APIC_LVTERR), .always = false },
135 { .index = X2APIC_MSR(APIC_TMICT), .always = false },
136 { .index = X2APIC_MSR(APIC_TMCCT), .always = false },
137 { .index = X2APIC_MSR(APIC_TDCR), .always = false },
138 { .index = MSR_INVALID, .always = false },
139 };
140
141 /*
142 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
143 * pause_filter_count: On processors that support Pause filtering(indicated
144 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
145 * count value. On VMRUN this value is loaded into an internal counter.
146 * Each time a pause instruction is executed, this counter is decremented
147 * until it reaches zero at which time a #VMEXIT is generated if pause
148 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
149 * Intercept Filtering for more details.
150 * This also indicate if ple logic enabled.
151 *
152 * pause_filter_thresh: In addition, some processor families support advanced
153 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
154 * the amount of time a guest is allowed to execute in a pause loop.
155 * In this mode, a 16-bit pause filter threshold field is added in the
156 * VMCB. The threshold value is a cycle count that is used to reset the
157 * pause counter. As with simple pause filtering, VMRUN loads the pause
158 * count value from VMCB into an internal counter. Then, on each pause
159 * instruction the hardware checks the elapsed number of cycles since
160 * the most recent pause instruction against the pause filter threshold.
161 * If the elapsed cycle count is greater than the pause filter threshold,
162 * then the internal pause count is reloaded from the VMCB and execution
163 * continues. If the elapsed cycle count is less than the pause filter
164 * threshold, then the internal pause count is decremented. If the count
165 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
166 * triggered. If advanced pause filtering is supported and pause filter
167 * threshold field is set to zero, the filter will operate in the simpler,
168 * count only mode.
169 */
170
171 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
172 module_param(pause_filter_thresh, ushort, 0444);
173
174 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
175 module_param(pause_filter_count, ushort, 0444);
176
177 /* Default doubles per-vcpu window every exit. */
178 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
179 module_param(pause_filter_count_grow, ushort, 0444);
180
181 /* Default resets per-vcpu window every exit to pause_filter_count. */
182 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
183 module_param(pause_filter_count_shrink, ushort, 0444);
184
185 /* Default is to compute the maximum so we can never overflow. */
186 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
187 module_param(pause_filter_count_max, ushort, 0444);
188
189 /*
190 * Use nested page tables by default. Note, NPT may get forced off by
191 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
192 */
193 bool npt_enabled = true;
194 module_param_named(npt, npt_enabled, bool, 0444);
195
196 /* allow nested virtualization in KVM/SVM */
197 static int nested = true;
198 module_param(nested, int, S_IRUGO);
199
200 /* enable/disable Next RIP Save */
201 static int nrips = true;
202 module_param(nrips, int, 0444);
203
204 /* enable/disable Virtual VMLOAD VMSAVE */
205 static int vls = true;
206 module_param(vls, int, 0444);
207
208 /* enable/disable Virtual GIF */
209 int vgif = true;
210 module_param(vgif, int, 0444);
211
212 /* enable/disable LBR virtualization */
213 static int lbrv = true;
214 module_param(lbrv, int, 0444);
215
216 static int tsc_scaling = true;
217 module_param(tsc_scaling, int, 0444);
218
219 /*
220 * enable / disable AVIC. Because the defaults differ for APICv
221 * support between VMX and SVM we cannot use module_param_named.
222 */
223 static bool avic;
224 module_param(avic, bool, 0444);
225
226 bool __read_mostly dump_invalid_vmcb;
227 module_param(dump_invalid_vmcb, bool, 0644);
228
229
230 bool intercept_smi = true;
231 module_param(intercept_smi, bool, 0444);
232
233
234 static bool svm_gp_erratum_intercept = true;
235
236 static u8 rsm_ins_bytes[] = "\x0f\xaa";
237
238 static unsigned long iopm_base;
239
240 struct kvm_ldttss_desc {
241 u16 limit0;
242 u16 base0;
243 unsigned base1:8, type:5, dpl:2, p:1;
244 unsigned limit1:4, zero0:3, g:1, base2:8;
245 u32 base3;
246 u32 zero1;
247 } __attribute__((packed));
248
249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
250
251 /*
252 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
253 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
254 *
255 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
256 * defer the restoration of TSC_AUX until the CPU returns to userspace.
257 */
258 static int tsc_aux_uret_slot __read_mostly = -1;
259
260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
261
262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
263 #define MSRS_RANGE_SIZE 2048
264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
265
266 u32 svm_msrpm_offset(u32 msr)
267 {
268 u32 offset;
269 int i;
270
271 for (i = 0; i < NUM_MSR_MAPS; i++) {
272 if (msr < msrpm_ranges[i] ||
273 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
274 continue;
275
276 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
277 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
278
279 /* Now we have the u8 offset - but need the u32 offset */
280 return offset / 4;
281 }
282
283 /* MSR not in any range */
284 return MSR_INVALID;
285 }
286
287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
288
289 static int get_npt_level(void)
290 {
291 #ifdef CONFIG_X86_64
292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
293 #else
294 return PT32E_ROOT_LEVEL;
295 #endif
296 }
297
298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
299 {
300 struct vcpu_svm *svm = to_svm(vcpu);
301 u64 old_efer = vcpu->arch.efer;
302 vcpu->arch.efer = efer;
303
304 if (!npt_enabled) {
305 /* Shadow paging assumes NX to be available. */
306 efer |= EFER_NX;
307
308 if (!(efer & EFER_LMA))
309 efer &= ~EFER_LME;
310 }
311
312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
313 if (!(efer & EFER_SVME)) {
314 svm_leave_nested(vcpu);
315 svm_set_gif(svm, true);
316 /* #GP intercept is still needed for vmware backdoor */
317 if (!enable_vmware_backdoor)
318 clr_exception_intercept(svm, GP_VECTOR);
319
320 /*
321 * Free the nested guest state, unless we are in SMM.
322 * In this case we will return to the nested guest
323 * as soon as we leave SMM.
324 */
325 if (!is_smm(vcpu))
326 svm_free_nested(svm);
327
328 } else {
329 int ret = svm_allocate_nested(svm);
330
331 if (ret) {
332 vcpu->arch.efer = old_efer;
333 return ret;
334 }
335
336 /*
337 * Never intercept #GP for SEV guests, KVM can't
338 * decrypt guest memory to workaround the erratum.
339 */
340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
341 set_exception_intercept(svm, GP_VECTOR);
342 }
343 }
344
345 svm->vmcb->save.efer = efer | EFER_SVME;
346 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
347 return 0;
348 }
349
350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
351 {
352 struct vcpu_svm *svm = to_svm(vcpu);
353 u32 ret = 0;
354
355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
357 return ret;
358 }
359
360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
361 {
362 struct vcpu_svm *svm = to_svm(vcpu);
363
364 if (mask == 0)
365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
366 else
367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
368
369 }
370
371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
372 bool commit_side_effects)
373 {
374 struct vcpu_svm *svm = to_svm(vcpu);
375 unsigned long old_rflags;
376
377 /*
378 * SEV-ES does not expose the next RIP. The RIP update is controlled by
379 * the type of exit and the #VC handler in the guest.
380 */
381 if (sev_es_guest(vcpu->kvm))
382 goto done;
383
384 if (nrips && svm->vmcb->control.next_rip != 0) {
385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
386 svm->next_rip = svm->vmcb->control.next_rip;
387 }
388
389 if (!svm->next_rip) {
390 if (unlikely(!commit_side_effects))
391 old_rflags = svm->vmcb->save.rflags;
392
393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
394 return 0;
395
396 if (unlikely(!commit_side_effects))
397 svm->vmcb->save.rflags = old_rflags;
398 } else {
399 kvm_rip_write(vcpu, svm->next_rip);
400 }
401
402 done:
403 if (likely(commit_side_effects))
404 svm_set_interrupt_shadow(vcpu, 0);
405
406 return 1;
407 }
408
409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
410 {
411 return __svm_skip_emulated_instruction(vcpu, true);
412 }
413
414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
415 {
416 unsigned long rip, old_rip = kvm_rip_read(vcpu);
417 struct vcpu_svm *svm = to_svm(vcpu);
418
419 /*
420 * Due to architectural shortcomings, the CPU doesn't always provide
421 * NextRIP, e.g. if KVM intercepted an exception that occurred while
422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip
423 * the instruction even if NextRIP is supported to acquire the next
424 * RIP so that it can be shoved into the NextRIP field, otherwise
425 * hardware will fail to advance guest RIP during event injection.
426 * Drop the exception/interrupt if emulation fails and effectively
427 * retry the instruction, it's the least awful option. If NRIPS is
428 * in use, the skip must not commit any side effects such as clearing
429 * the interrupt shadow or RFLAGS.RF.
430 */
431 if (!__svm_skip_emulated_instruction(vcpu, !nrips))
432 return -EIO;
433
434 rip = kvm_rip_read(vcpu);
435
436 /*
437 * Save the injection information, even when using next_rip, as the
438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
439 * doesn't complete due to a VM-Exit occurring while the CPU is
440 * vectoring the event. Decoding the instruction isn't guaranteed to
441 * work as there may be no backing instruction, e.g. if the event is
442 * being injected by L1 for L2, or if the guest is patching INT3 into
443 * a different instruction.
444 */
445 svm->soft_int_injected = true;
446 svm->soft_int_csbase = svm->vmcb->save.cs.base;
447 svm->soft_int_old_rip = old_rip;
448 svm->soft_int_next_rip = rip;
449
450 if (nrips)
451 kvm_rip_write(vcpu, old_rip);
452
453 if (static_cpu_has(X86_FEATURE_NRIPS))
454 svm->vmcb->control.next_rip = rip;
455
456 return 0;
457 }
458
459 static void svm_inject_exception(struct kvm_vcpu *vcpu)
460 {
461 struct kvm_queued_exception *ex = &vcpu->arch.exception;
462 struct vcpu_svm *svm = to_svm(vcpu);
463
464 kvm_deliver_exception_payload(vcpu, ex);
465
466 if (kvm_exception_is_soft(ex->vector) &&
467 svm_update_soft_interrupt_rip(vcpu))
468 return;
469
470 svm->vmcb->control.event_inj = ex->vector
471 | SVM_EVTINJ_VALID
472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
473 | SVM_EVTINJ_TYPE_EXEPT;
474 svm->vmcb->control.event_inj_err = ex->error_code;
475 }
476
477 static void svm_init_erratum_383(void)
478 {
479 u32 low, high;
480 int err;
481 u64 val;
482
483 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
484 return;
485
486 /* Use _safe variants to not break nested virtualization */
487 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
488 if (err)
489 return;
490
491 val |= (1ULL << 47);
492
493 low = lower_32_bits(val);
494 high = upper_32_bits(val);
495
496 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
497
498 erratum_383_found = true;
499 }
500
501 static void svm_init_osvw(struct kvm_vcpu *vcpu)
502 {
503 /*
504 * Guests should see errata 400 and 415 as fixed (assuming that
505 * HLT and IO instructions are intercepted).
506 */
507 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
508 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
509
510 /*
511 * By increasing VCPU's osvw.length to 3 we are telling the guest that
512 * all osvw.status bits inside that length, including bit 0 (which is
513 * reserved for erratum 298), are valid. However, if host processor's
514 * osvw_len is 0 then osvw_status[0] carries no information. We need to
515 * be conservative here and therefore we tell the guest that erratum 298
516 * is present (because we really don't know).
517 */
518 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
519 vcpu->arch.osvw.status |= 1;
520 }
521
522 static int has_svm(void)
523 {
524 const char *msg;
525
526 if (!cpu_has_svm(&msg)) {
527 printk(KERN_INFO "has_svm: %s\n", msg);
528 return 0;
529 }
530
531 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
532 pr_info("KVM is unsupported when running as an SEV guest\n");
533 return 0;
534 }
535
536 return 1;
537 }
538
539 void __svm_write_tsc_multiplier(u64 multiplier)
540 {
541 preempt_disable();
542
543 if (multiplier == __this_cpu_read(current_tsc_ratio))
544 goto out;
545
546 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
547 __this_cpu_write(current_tsc_ratio, multiplier);
548 out:
549 preempt_enable();
550 }
551
552 static void svm_hardware_disable(void)
553 {
554 /* Make sure we clean up behind us */
555 if (tsc_scaling)
556 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
557
558 cpu_svm_disable();
559
560 amd_pmu_disable_virt();
561 }
562
563 static int svm_hardware_enable(void)
564 {
565
566 struct svm_cpu_data *sd;
567 uint64_t efer;
568 struct desc_struct *gdt;
569 int me = raw_smp_processor_id();
570
571 rdmsrl(MSR_EFER, efer);
572 if (efer & EFER_SVME)
573 return -EBUSY;
574
575 if (!has_svm()) {
576 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
577 return -EINVAL;
578 }
579 sd = per_cpu_ptr(&svm_data, me);
580 sd->asid_generation = 1;
581 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
582 sd->next_asid = sd->max_asid + 1;
583 sd->min_asid = max_sev_asid + 1;
584
585 gdt = get_current_gdt_rw();
586 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
587
588 wrmsrl(MSR_EFER, efer | EFER_SVME);
589
590 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
591
592 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
593 /*
594 * Set the default value, even if we don't use TSC scaling
595 * to avoid having stale value in the msr
596 */
597 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
598 }
599
600
601 /*
602 * Get OSVW bits.
603 *
604 * Note that it is possible to have a system with mixed processor
605 * revisions and therefore different OSVW bits. If bits are not the same
606 * on different processors then choose the worst case (i.e. if erratum
607 * is present on one processor and not on another then assume that the
608 * erratum is present everywhere).
609 */
610 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
611 uint64_t len, status = 0;
612 int err;
613
614 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
615 if (!err)
616 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
617 &err);
618
619 if (err)
620 osvw_status = osvw_len = 0;
621 else {
622 if (len < osvw_len)
623 osvw_len = len;
624 osvw_status |= status;
625 osvw_status &= (1ULL << osvw_len) - 1;
626 }
627 } else
628 osvw_status = osvw_len = 0;
629
630 svm_init_erratum_383();
631
632 amd_pmu_enable_virt();
633
634 return 0;
635 }
636
637 static void svm_cpu_uninit(int cpu)
638 {
639 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
640
641 if (!sd->save_area)
642 return;
643
644 kfree(sd->sev_vmcbs);
645 __free_page(sd->save_area);
646 sd->save_area_pa = 0;
647 sd->save_area = NULL;
648 }
649
650 static int svm_cpu_init(int cpu)
651 {
652 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
653 int ret = -ENOMEM;
654
655 memset(sd, 0, sizeof(struct svm_cpu_data));
656 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
657 if (!sd->save_area)
658 return ret;
659
660 ret = sev_cpu_init(sd);
661 if (ret)
662 goto free_save_area;
663
664 sd->save_area_pa = __sme_page_pa(sd->save_area);
665 return 0;
666
667 free_save_area:
668 __free_page(sd->save_area);
669 sd->save_area = NULL;
670 return ret;
671
672 }
673
674 static int direct_access_msr_slot(u32 msr)
675 {
676 u32 i;
677
678 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
679 if (direct_access_msrs[i].index == msr)
680 return i;
681
682 return -ENOENT;
683 }
684
685 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
686 int write)
687 {
688 struct vcpu_svm *svm = to_svm(vcpu);
689 int slot = direct_access_msr_slot(msr);
690
691 if (slot == -ENOENT)
692 return;
693
694 /* Set the shadow bitmaps to the desired intercept states */
695 if (read)
696 set_bit(slot, svm->shadow_msr_intercept.read);
697 else
698 clear_bit(slot, svm->shadow_msr_intercept.read);
699
700 if (write)
701 set_bit(slot, svm->shadow_msr_intercept.write);
702 else
703 clear_bit(slot, svm->shadow_msr_intercept.write);
704 }
705
706 static bool valid_msr_intercept(u32 index)
707 {
708 return direct_access_msr_slot(index) != -ENOENT;
709 }
710
711 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
712 {
713 u8 bit_write;
714 unsigned long tmp;
715 u32 offset;
716 u32 *msrpm;
717
718 /*
719 * For non-nested case:
720 * If the L01 MSR bitmap does not intercept the MSR, then we need to
721 * save it.
722 *
723 * For nested case:
724 * If the L02 MSR bitmap does not intercept the MSR, then we need to
725 * save it.
726 */
727 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
728 to_svm(vcpu)->msrpm;
729
730 offset = svm_msrpm_offset(msr);
731 bit_write = 2 * (msr & 0x0f) + 1;
732 tmp = msrpm[offset];
733
734 BUG_ON(offset == MSR_INVALID);
735
736 return !!test_bit(bit_write, &tmp);
737 }
738
739 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
740 u32 msr, int read, int write)
741 {
742 struct vcpu_svm *svm = to_svm(vcpu);
743 u8 bit_read, bit_write;
744 unsigned long tmp;
745 u32 offset;
746
747 /*
748 * If this warning triggers extend the direct_access_msrs list at the
749 * beginning of the file
750 */
751 WARN_ON(!valid_msr_intercept(msr));
752
753 /* Enforce non allowed MSRs to trap */
754 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
755 read = 0;
756
757 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
758 write = 0;
759
760 offset = svm_msrpm_offset(msr);
761 bit_read = 2 * (msr & 0x0f);
762 bit_write = 2 * (msr & 0x0f) + 1;
763 tmp = msrpm[offset];
764
765 BUG_ON(offset == MSR_INVALID);
766
767 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
768 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
769
770 msrpm[offset] = tmp;
771
772 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
773 svm->nested.force_msr_bitmap_recalc = true;
774 }
775
776 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
777 int read, int write)
778 {
779 set_shadow_msr_intercept(vcpu, msr, read, write);
780 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
781 }
782
783 u32 *svm_vcpu_alloc_msrpm(void)
784 {
785 unsigned int order = get_order(MSRPM_SIZE);
786 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
787 u32 *msrpm;
788
789 if (!pages)
790 return NULL;
791
792 msrpm = page_address(pages);
793 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
794
795 return msrpm;
796 }
797
798 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
799 {
800 int i;
801
802 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
803 if (!direct_access_msrs[i].always)
804 continue;
805 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
806 }
807 }
808
809 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
810 {
811 int i;
812
813 if (intercept == svm->x2avic_msrs_intercepted)
814 return;
815
816 if (!x2avic_enabled ||
817 !apic_x2apic_mode(svm->vcpu.arch.apic))
818 return;
819
820 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
821 int index = direct_access_msrs[i].index;
822
823 if ((index < APIC_BASE_MSR) ||
824 (index > APIC_BASE_MSR + 0xff))
825 continue;
826 set_msr_interception(&svm->vcpu, svm->msrpm, index,
827 !intercept, !intercept);
828 }
829
830 svm->x2avic_msrs_intercepted = intercept;
831 }
832
833 void svm_vcpu_free_msrpm(u32 *msrpm)
834 {
835 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
836 }
837
838 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
839 {
840 struct vcpu_svm *svm = to_svm(vcpu);
841 u32 i;
842
843 /*
844 * Set intercept permissions for all direct access MSRs again. They
845 * will automatically get filtered through the MSR filter, so we are
846 * back in sync after this.
847 */
848 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
849 u32 msr = direct_access_msrs[i].index;
850 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
851 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
852
853 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
854 }
855 }
856
857 static void add_msr_offset(u32 offset)
858 {
859 int i;
860
861 for (i = 0; i < MSRPM_OFFSETS; ++i) {
862
863 /* Offset already in list? */
864 if (msrpm_offsets[i] == offset)
865 return;
866
867 /* Slot used by another offset? */
868 if (msrpm_offsets[i] != MSR_INVALID)
869 continue;
870
871 /* Add offset to list */
872 msrpm_offsets[i] = offset;
873
874 return;
875 }
876
877 /*
878 * If this BUG triggers the msrpm_offsets table has an overflow. Just
879 * increase MSRPM_OFFSETS in this case.
880 */
881 BUG();
882 }
883
884 static void init_msrpm_offsets(void)
885 {
886 int i;
887
888 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
889
890 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
891 u32 offset;
892
893 offset = svm_msrpm_offset(direct_access_msrs[i].index);
894 BUG_ON(offset == MSR_INVALID);
895
896 add_msr_offset(offset);
897 }
898 }
899
900 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
901 {
902 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl;
903 to_vmcb->save.br_from = from_vmcb->save.br_from;
904 to_vmcb->save.br_to = from_vmcb->save.br_to;
905 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from;
906 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to;
907
908 vmcb_mark_dirty(to_vmcb, VMCB_LBR);
909 }
910
911 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
912 {
913 struct vcpu_svm *svm = to_svm(vcpu);
914
915 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
916 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
917 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
918 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
919 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
920
921 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
922 if (is_guest_mode(vcpu))
923 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
924 }
925
926 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
927 {
928 struct vcpu_svm *svm = to_svm(vcpu);
929
930 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
931 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
932 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
933 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
934 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
935
936 /*
937 * Move the LBR msrs back to the vmcb01 to avoid copying them
938 * on nested guest entries.
939 */
940 if (is_guest_mode(vcpu))
941 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
942 }
943
944 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
945 {
946 /*
947 * If the LBR virtualization is disabled, the LBR msrs are always
948 * kept in the vmcb01 to avoid copying them on nested guest entries.
949 *
950 * If nested, and the LBR virtualization is enabled/disabled, the msrs
951 * are moved between the vmcb01 and vmcb02 as needed.
952 */
953 struct vmcb *vmcb =
954 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
955 svm->vmcb : svm->vmcb01.ptr;
956
957 switch (index) {
958 case MSR_IA32_DEBUGCTLMSR:
959 return vmcb->save.dbgctl;
960 case MSR_IA32_LASTBRANCHFROMIP:
961 return vmcb->save.br_from;
962 case MSR_IA32_LASTBRANCHTOIP:
963 return vmcb->save.br_to;
964 case MSR_IA32_LASTINTFROMIP:
965 return vmcb->save.last_excp_from;
966 case MSR_IA32_LASTINTTOIP:
967 return vmcb->save.last_excp_to;
968 default:
969 KVM_BUG(false, svm->vcpu.kvm,
970 "%s: Unknown MSR 0x%x", __func__, index);
971 return 0;
972 }
973 }
974
975 void svm_update_lbrv(struct kvm_vcpu *vcpu)
976 {
977 struct vcpu_svm *svm = to_svm(vcpu);
978
979 bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
980 DEBUGCTLMSR_LBR;
981
982 bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
983 LBR_CTL_ENABLE_MASK);
984
985 if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
986 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
987 enable_lbrv = true;
988
989 if (enable_lbrv == current_enable_lbrv)
990 return;
991
992 if (enable_lbrv)
993 svm_enable_lbrv(vcpu);
994 else
995 svm_disable_lbrv(vcpu);
996 }
997
998 void disable_nmi_singlestep(struct vcpu_svm *svm)
999 {
1000 svm->nmi_singlestep = false;
1001
1002 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1003 /* Clear our flags if they were not set by the guest */
1004 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1005 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1006 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1007 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1008 }
1009 }
1010
1011 static void grow_ple_window(struct kvm_vcpu *vcpu)
1012 {
1013 struct vcpu_svm *svm = to_svm(vcpu);
1014 struct vmcb_control_area *control = &svm->vmcb->control;
1015 int old = control->pause_filter_count;
1016
1017 if (kvm_pause_in_guest(vcpu->kvm))
1018 return;
1019
1020 control->pause_filter_count = __grow_ple_window(old,
1021 pause_filter_count,
1022 pause_filter_count_grow,
1023 pause_filter_count_max);
1024
1025 if (control->pause_filter_count != old) {
1026 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1027 trace_kvm_ple_window_update(vcpu->vcpu_id,
1028 control->pause_filter_count, old);
1029 }
1030 }
1031
1032 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1033 {
1034 struct vcpu_svm *svm = to_svm(vcpu);
1035 struct vmcb_control_area *control = &svm->vmcb->control;
1036 int old = control->pause_filter_count;
1037
1038 if (kvm_pause_in_guest(vcpu->kvm))
1039 return;
1040
1041 control->pause_filter_count =
1042 __shrink_ple_window(old,
1043 pause_filter_count,
1044 pause_filter_count_shrink,
1045 pause_filter_count);
1046 if (control->pause_filter_count != old) {
1047 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1048 trace_kvm_ple_window_update(vcpu->vcpu_id,
1049 control->pause_filter_count, old);
1050 }
1051 }
1052
1053 static void svm_hardware_unsetup(void)
1054 {
1055 int cpu;
1056
1057 sev_hardware_unsetup();
1058
1059 for_each_possible_cpu(cpu)
1060 svm_cpu_uninit(cpu);
1061
1062 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1063 get_order(IOPM_SIZE));
1064 iopm_base = 0;
1065 }
1066
1067 static void init_seg(struct vmcb_seg *seg)
1068 {
1069 seg->selector = 0;
1070 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1071 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1072 seg->limit = 0xffff;
1073 seg->base = 0;
1074 }
1075
1076 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1077 {
1078 seg->selector = 0;
1079 seg->attrib = SVM_SELECTOR_P_MASK | type;
1080 seg->limit = 0xffff;
1081 seg->base = 0;
1082 }
1083
1084 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1085 {
1086 struct vcpu_svm *svm = to_svm(vcpu);
1087
1088 return svm->nested.ctl.tsc_offset;
1089 }
1090
1091 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1092 {
1093 struct vcpu_svm *svm = to_svm(vcpu);
1094
1095 return svm->tsc_ratio_msr;
1096 }
1097
1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1099 {
1100 struct vcpu_svm *svm = to_svm(vcpu);
1101
1102 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1103 svm->vmcb->control.tsc_offset = offset;
1104 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1105 }
1106
1107 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1108 {
1109 __svm_write_tsc_multiplier(multiplier);
1110 }
1111
1112
1113 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1114 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1115 struct vcpu_svm *svm)
1116 {
1117 /*
1118 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1119 * roots, or if INVPCID is disabled in the guest to inject #UD.
1120 */
1121 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1122 if (!npt_enabled ||
1123 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1124 svm_set_intercept(svm, INTERCEPT_INVPCID);
1125 else
1126 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1127 }
1128
1129 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1130 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1131 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1132 else
1133 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1134 }
1135 }
1136
1137 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1138 {
1139 struct vcpu_svm *svm = to_svm(vcpu);
1140
1141 if (guest_cpuid_is_intel(vcpu)) {
1142 /*
1143 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1144 * accesses because the processor only stores 32 bits.
1145 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1146 */
1147 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1148 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1149 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1150
1151 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1152 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1153
1154 svm->v_vmload_vmsave_enabled = false;
1155 } else {
1156 /*
1157 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1158 * in VMCB and clear intercepts to avoid #VMEXIT.
1159 */
1160 if (vls) {
1161 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1162 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1163 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1164 }
1165 /* No need to intercept these MSRs */
1166 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1167 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1168 }
1169 }
1170
1171 static void init_vmcb(struct kvm_vcpu *vcpu)
1172 {
1173 struct vcpu_svm *svm = to_svm(vcpu);
1174 struct vmcb *vmcb = svm->vmcb01.ptr;
1175 struct vmcb_control_area *control = &vmcb->control;
1176 struct vmcb_save_area *save = &vmcb->save;
1177
1178 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1179 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1180 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1181 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1182 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1183 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1184 if (!kvm_vcpu_apicv_active(vcpu))
1185 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1186
1187 set_dr_intercepts(svm);
1188
1189 set_exception_intercept(svm, PF_VECTOR);
1190 set_exception_intercept(svm, UD_VECTOR);
1191 set_exception_intercept(svm, MC_VECTOR);
1192 set_exception_intercept(svm, AC_VECTOR);
1193 set_exception_intercept(svm, DB_VECTOR);
1194 /*
1195 * Guest access to VMware backdoor ports could legitimately
1196 * trigger #GP because of TSS I/O permission bitmap.
1197 * We intercept those #GP and allow access to them anyway
1198 * as VMware does. Don't intercept #GP for SEV guests as KVM can't
1199 * decrypt guest memory to decode the faulting instruction.
1200 */
1201 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1202 set_exception_intercept(svm, GP_VECTOR);
1203
1204 svm_set_intercept(svm, INTERCEPT_INTR);
1205 svm_set_intercept(svm, INTERCEPT_NMI);
1206
1207 if (intercept_smi)
1208 svm_set_intercept(svm, INTERCEPT_SMI);
1209
1210 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1211 svm_set_intercept(svm, INTERCEPT_RDPMC);
1212 svm_set_intercept(svm, INTERCEPT_CPUID);
1213 svm_set_intercept(svm, INTERCEPT_INVD);
1214 svm_set_intercept(svm, INTERCEPT_INVLPG);
1215 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1216 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1217 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1218 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1220 svm_set_intercept(svm, INTERCEPT_VMRUN);
1221 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1222 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1223 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1224 svm_set_intercept(svm, INTERCEPT_STGI);
1225 svm_set_intercept(svm, INTERCEPT_CLGI);
1226 svm_set_intercept(svm, INTERCEPT_SKINIT);
1227 svm_set_intercept(svm, INTERCEPT_WBINVD);
1228 svm_set_intercept(svm, INTERCEPT_XSETBV);
1229 svm_set_intercept(svm, INTERCEPT_RDPRU);
1230 svm_set_intercept(svm, INTERCEPT_RSM);
1231
1232 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1233 svm_set_intercept(svm, INTERCEPT_MONITOR);
1234 svm_set_intercept(svm, INTERCEPT_MWAIT);
1235 }
1236
1237 if (!kvm_hlt_in_guest(vcpu->kvm))
1238 svm_set_intercept(svm, INTERCEPT_HLT);
1239
1240 control->iopm_base_pa = __sme_set(iopm_base);
1241 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1242 control->int_ctl = V_INTR_MASKING_MASK;
1243
1244 init_seg(&save->es);
1245 init_seg(&save->ss);
1246 init_seg(&save->ds);
1247 init_seg(&save->fs);
1248 init_seg(&save->gs);
1249
1250 save->cs.selector = 0xf000;
1251 save->cs.base = 0xffff0000;
1252 /* Executable/Readable Code Segment */
1253 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1254 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1255 save->cs.limit = 0xffff;
1256
1257 save->gdtr.base = 0;
1258 save->gdtr.limit = 0xffff;
1259 save->idtr.base = 0;
1260 save->idtr.limit = 0xffff;
1261
1262 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1263 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1264
1265 if (npt_enabled) {
1266 /* Setup VMCB for Nested Paging */
1267 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1268 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1269 clr_exception_intercept(svm, PF_VECTOR);
1270 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1271 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1272 save->g_pat = vcpu->arch.pat;
1273 save->cr3 = 0;
1274 }
1275 svm->current_vmcb->asid_generation = 0;
1276 svm->asid = 0;
1277
1278 svm->nested.vmcb12_gpa = INVALID_GPA;
1279 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1280
1281 if (!kvm_pause_in_guest(vcpu->kvm)) {
1282 control->pause_filter_count = pause_filter_count;
1283 if (pause_filter_thresh)
1284 control->pause_filter_thresh = pause_filter_thresh;
1285 svm_set_intercept(svm, INTERCEPT_PAUSE);
1286 } else {
1287 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1288 }
1289
1290 svm_recalc_instruction_intercepts(vcpu, svm);
1291
1292 /*
1293 * If the host supports V_SPEC_CTRL then disable the interception
1294 * of MSR_IA32_SPEC_CTRL.
1295 */
1296 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1297 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1298
1299 if (kvm_vcpu_apicv_active(vcpu))
1300 avic_init_vmcb(svm, vmcb);
1301
1302 if (vgif) {
1303 svm_clr_intercept(svm, INTERCEPT_STGI);
1304 svm_clr_intercept(svm, INTERCEPT_CLGI);
1305 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1306 }
1307
1308 if (sev_guest(vcpu->kvm))
1309 sev_init_vmcb(svm);
1310
1311 svm_hv_init_vmcb(vmcb);
1312 init_vmcb_after_set_cpuid(vcpu);
1313
1314 vmcb_mark_all_dirty(vmcb);
1315
1316 enable_gif(svm);
1317 }
1318
1319 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1320 {
1321 struct vcpu_svm *svm = to_svm(vcpu);
1322
1323 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1324
1325 svm_init_osvw(vcpu);
1326 vcpu->arch.microcode_version = 0x01000065;
1327 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1328
1329 if (sev_es_guest(vcpu->kvm))
1330 sev_es_vcpu_reset(svm);
1331 }
1332
1333 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1334 {
1335 struct vcpu_svm *svm = to_svm(vcpu);
1336
1337 svm->spec_ctrl = 0;
1338 svm->virt_spec_ctrl = 0;
1339
1340 init_vmcb(vcpu);
1341
1342 if (!init_event)
1343 __svm_vcpu_reset(vcpu);
1344 }
1345
1346 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1347 {
1348 svm->current_vmcb = target_vmcb;
1349 svm->vmcb = target_vmcb->ptr;
1350 }
1351
1352 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1353 {
1354 struct vcpu_svm *svm;
1355 struct page *vmcb01_page;
1356 struct page *vmsa_page = NULL;
1357 int err;
1358
1359 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1360 svm = to_svm(vcpu);
1361
1362 err = -ENOMEM;
1363 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1364 if (!vmcb01_page)
1365 goto out;
1366
1367 if (sev_es_guest(vcpu->kvm)) {
1368 /*
1369 * SEV-ES guests require a separate VMSA page used to contain
1370 * the encrypted register state of the guest.
1371 */
1372 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1373 if (!vmsa_page)
1374 goto error_free_vmcb_page;
1375
1376 /*
1377 * SEV-ES guests maintain an encrypted version of their FPU
1378 * state which is restored and saved on VMRUN and VMEXIT.
1379 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1380 * do xsave/xrstor on it.
1381 */
1382 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1383 }
1384
1385 err = avic_init_vcpu(svm);
1386 if (err)
1387 goto error_free_vmsa_page;
1388
1389 svm->msrpm = svm_vcpu_alloc_msrpm();
1390 if (!svm->msrpm) {
1391 err = -ENOMEM;
1392 goto error_free_vmsa_page;
1393 }
1394
1395 svm->x2avic_msrs_intercepted = true;
1396
1397 svm->vmcb01.ptr = page_address(vmcb01_page);
1398 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1399 svm_switch_vmcb(svm, &svm->vmcb01);
1400
1401 if (vmsa_page)
1402 svm->sev_es.vmsa = page_address(vmsa_page);
1403
1404 svm->guest_state_loaded = false;
1405
1406 return 0;
1407
1408 error_free_vmsa_page:
1409 if (vmsa_page)
1410 __free_page(vmsa_page);
1411 error_free_vmcb_page:
1412 __free_page(vmcb01_page);
1413 out:
1414 return err;
1415 }
1416
1417 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1418 {
1419 int i;
1420
1421 for_each_online_cpu(i)
1422 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1423 }
1424
1425 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1426 {
1427 struct vcpu_svm *svm = to_svm(vcpu);
1428
1429 /*
1430 * The vmcb page can be recycled, causing a false negative in
1431 * svm_vcpu_load(). So, ensure that no logical CPU has this
1432 * vmcb page recorded as its current vmcb.
1433 */
1434 svm_clear_current_vmcb(svm->vmcb);
1435
1436 svm_leave_nested(vcpu);
1437 svm_free_nested(svm);
1438
1439 sev_free_vcpu(vcpu);
1440
1441 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1442 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1443 }
1444
1445 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1446 {
1447 struct vcpu_svm *svm = to_svm(vcpu);
1448 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1449
1450 if (sev_es_guest(vcpu->kvm))
1451 sev_es_unmap_ghcb(svm);
1452
1453 if (svm->guest_state_loaded)
1454 return;
1455
1456 /*
1457 * Save additional host state that will be restored on VMEXIT (sev-es)
1458 * or subsequent vmload of host save area.
1459 */
1460 vmsave(sd->save_area_pa);
1461 if (sev_es_guest(vcpu->kvm)) {
1462 struct sev_es_save_area *hostsa;
1463 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1464
1465 sev_es_prepare_switch_to_guest(hostsa);
1466 }
1467
1468 if (tsc_scaling)
1469 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1470
1471 if (likely(tsc_aux_uret_slot >= 0))
1472 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1473
1474 svm->guest_state_loaded = true;
1475 }
1476
1477 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1478 {
1479 to_svm(vcpu)->guest_state_loaded = false;
1480 }
1481
1482 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1483 {
1484 struct vcpu_svm *svm = to_svm(vcpu);
1485 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1486
1487 if (sd->current_vmcb != svm->vmcb) {
1488 sd->current_vmcb = svm->vmcb;
1489 indirect_branch_prediction_barrier();
1490 }
1491 if (kvm_vcpu_apicv_active(vcpu))
1492 avic_vcpu_load(vcpu, cpu);
1493 }
1494
1495 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1496 {
1497 if (kvm_vcpu_apicv_active(vcpu))
1498 avic_vcpu_put(vcpu);
1499
1500 svm_prepare_host_switch(vcpu);
1501
1502 ++vcpu->stat.host_state_reload;
1503 }
1504
1505 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1506 {
1507 struct vcpu_svm *svm = to_svm(vcpu);
1508 unsigned long rflags = svm->vmcb->save.rflags;
1509
1510 if (svm->nmi_singlestep) {
1511 /* Hide our flags if they were not set by the guest */
1512 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1513 rflags &= ~X86_EFLAGS_TF;
1514 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1515 rflags &= ~X86_EFLAGS_RF;
1516 }
1517 return rflags;
1518 }
1519
1520 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1521 {
1522 if (to_svm(vcpu)->nmi_singlestep)
1523 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1524
1525 /*
1526 * Any change of EFLAGS.VM is accompanied by a reload of SS
1527 * (caused by either a task switch or an inter-privilege IRET),
1528 * so we do not need to update the CPL here.
1529 */
1530 to_svm(vcpu)->vmcb->save.rflags = rflags;
1531 }
1532
1533 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1534 {
1535 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1536
1537 return sev_es_guest(vcpu->kvm)
1538 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1539 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1540 }
1541
1542 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1543 {
1544 kvm_register_mark_available(vcpu, reg);
1545
1546 switch (reg) {
1547 case VCPU_EXREG_PDPTR:
1548 /*
1549 * When !npt_enabled, mmu->pdptrs[] is already available since
1550 * it is always updated per SDM when moving to CRs.
1551 */
1552 if (npt_enabled)
1553 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1554 break;
1555 default:
1556 KVM_BUG_ON(1, vcpu->kvm);
1557 }
1558 }
1559
1560 static void svm_set_vintr(struct vcpu_svm *svm)
1561 {
1562 struct vmcb_control_area *control;
1563
1564 /*
1565 * The following fields are ignored when AVIC is enabled
1566 */
1567 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1568
1569 svm_set_intercept(svm, INTERCEPT_VINTR);
1570
1571 /*
1572 * This is just a dummy VINTR to actually cause a vmexit to happen.
1573 * Actual injection of virtual interrupts happens through EVENTINJ.
1574 */
1575 control = &svm->vmcb->control;
1576 control->int_vector = 0x0;
1577 control->int_ctl &= ~V_INTR_PRIO_MASK;
1578 control->int_ctl |= V_IRQ_MASK |
1579 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1580 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1581 }
1582
1583 static void svm_clear_vintr(struct vcpu_svm *svm)
1584 {
1585 svm_clr_intercept(svm, INTERCEPT_VINTR);
1586
1587 /* Drop int_ctl fields related to VINTR injection. */
1588 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1589 if (is_guest_mode(&svm->vcpu)) {
1590 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1591
1592 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1593 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1594
1595 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1596 V_IRQ_INJECTION_BITS_MASK;
1597
1598 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1599 }
1600
1601 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1602 }
1603
1604 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1605 {
1606 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1607 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1608
1609 switch (seg) {
1610 case VCPU_SREG_CS: return &save->cs;
1611 case VCPU_SREG_DS: return &save->ds;
1612 case VCPU_SREG_ES: return &save->es;
1613 case VCPU_SREG_FS: return &save01->fs;
1614 case VCPU_SREG_GS: return &save01->gs;
1615 case VCPU_SREG_SS: return &save->ss;
1616 case VCPU_SREG_TR: return &save01->tr;
1617 case VCPU_SREG_LDTR: return &save01->ldtr;
1618 }
1619 BUG();
1620 return NULL;
1621 }
1622
1623 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1624 {
1625 struct vmcb_seg *s = svm_seg(vcpu, seg);
1626
1627 return s->base;
1628 }
1629
1630 static void svm_get_segment(struct kvm_vcpu *vcpu,
1631 struct kvm_segment *var, int seg)
1632 {
1633 struct vmcb_seg *s = svm_seg(vcpu, seg);
1634
1635 var->base = s->base;
1636 var->limit = s->limit;
1637 var->selector = s->selector;
1638 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1639 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1640 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1641 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1642 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1643 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1644 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1645
1646 /*
1647 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1648 * However, the SVM spec states that the G bit is not observed by the
1649 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1650 * So let's synthesize a legal G bit for all segments, this helps
1651 * running KVM nested. It also helps cross-vendor migration, because
1652 * Intel's vmentry has a check on the 'G' bit.
1653 */
1654 var->g = s->limit > 0xfffff;
1655
1656 /*
1657 * AMD's VMCB does not have an explicit unusable field, so emulate it
1658 * for cross vendor migration purposes by "not present"
1659 */
1660 var->unusable = !var->present;
1661
1662 switch (seg) {
1663 case VCPU_SREG_TR:
1664 /*
1665 * Work around a bug where the busy flag in the tr selector
1666 * isn't exposed
1667 */
1668 var->type |= 0x2;
1669 break;
1670 case VCPU_SREG_DS:
1671 case VCPU_SREG_ES:
1672 case VCPU_SREG_FS:
1673 case VCPU_SREG_GS:
1674 /*
1675 * The accessed bit must always be set in the segment
1676 * descriptor cache, although it can be cleared in the
1677 * descriptor, the cached bit always remains at 1. Since
1678 * Intel has a check on this, set it here to support
1679 * cross-vendor migration.
1680 */
1681 if (!var->unusable)
1682 var->type |= 0x1;
1683 break;
1684 case VCPU_SREG_SS:
1685 /*
1686 * On AMD CPUs sometimes the DB bit in the segment
1687 * descriptor is left as 1, although the whole segment has
1688 * been made unusable. Clear it here to pass an Intel VMX
1689 * entry check when cross vendor migrating.
1690 */
1691 if (var->unusable)
1692 var->db = 0;
1693 /* This is symmetric with svm_set_segment() */
1694 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1695 break;
1696 }
1697 }
1698
1699 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1700 {
1701 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1702
1703 return save->cpl;
1704 }
1705
1706 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1707 {
1708 struct kvm_segment cs;
1709
1710 svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1711 *db = cs.db;
1712 *l = cs.l;
1713 }
1714
1715 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1716 {
1717 struct vcpu_svm *svm = to_svm(vcpu);
1718
1719 dt->size = svm->vmcb->save.idtr.limit;
1720 dt->address = svm->vmcb->save.idtr.base;
1721 }
1722
1723 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1724 {
1725 struct vcpu_svm *svm = to_svm(vcpu);
1726
1727 svm->vmcb->save.idtr.limit = dt->size;
1728 svm->vmcb->save.idtr.base = dt->address ;
1729 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1730 }
1731
1732 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1733 {
1734 struct vcpu_svm *svm = to_svm(vcpu);
1735
1736 dt->size = svm->vmcb->save.gdtr.limit;
1737 dt->address = svm->vmcb->save.gdtr.base;
1738 }
1739
1740 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1741 {
1742 struct vcpu_svm *svm = to_svm(vcpu);
1743
1744 svm->vmcb->save.gdtr.limit = dt->size;
1745 svm->vmcb->save.gdtr.base = dt->address ;
1746 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1747 }
1748
1749 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1750 {
1751 struct vcpu_svm *svm = to_svm(vcpu);
1752
1753 /*
1754 * For guests that don't set guest_state_protected, the cr3 update is
1755 * handled via kvm_mmu_load() while entering the guest. For guests
1756 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1757 * VMCB save area now, since the save area will become the initial
1758 * contents of the VMSA, and future VMCB save area updates won't be
1759 * seen.
1760 */
1761 if (sev_es_guest(vcpu->kvm)) {
1762 svm->vmcb->save.cr3 = cr3;
1763 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1764 }
1765 }
1766
1767 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1768 {
1769 struct vcpu_svm *svm = to_svm(vcpu);
1770 u64 hcr0 = cr0;
1771 bool old_paging = is_paging(vcpu);
1772
1773 #ifdef CONFIG_X86_64
1774 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1775 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1776 vcpu->arch.efer |= EFER_LMA;
1777 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1778 }
1779
1780 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1781 vcpu->arch.efer &= ~EFER_LMA;
1782 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1783 }
1784 }
1785 #endif
1786 vcpu->arch.cr0 = cr0;
1787
1788 if (!npt_enabled) {
1789 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1790 if (old_paging != is_paging(vcpu))
1791 svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1792 }
1793
1794 /*
1795 * re-enable caching here because the QEMU bios
1796 * does not do it - this results in some delay at
1797 * reboot
1798 */
1799 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1800 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1801
1802 svm->vmcb->save.cr0 = hcr0;
1803 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1804
1805 /*
1806 * SEV-ES guests must always keep the CR intercepts cleared. CR
1807 * tracking is done using the CR write traps.
1808 */
1809 if (sev_es_guest(vcpu->kvm))
1810 return;
1811
1812 if (hcr0 == cr0) {
1813 /* Selective CR0 write remains on. */
1814 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1815 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1816 } else {
1817 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1818 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1819 }
1820 }
1821
1822 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1823 {
1824 return true;
1825 }
1826
1827 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1828 {
1829 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1830 unsigned long old_cr4 = vcpu->arch.cr4;
1831
1832 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1833 svm_flush_tlb_current(vcpu);
1834
1835 vcpu->arch.cr4 = cr4;
1836 if (!npt_enabled) {
1837 cr4 |= X86_CR4_PAE;
1838
1839 if (!is_paging(vcpu))
1840 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1841 }
1842 cr4 |= host_cr4_mce;
1843 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1844 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1845
1846 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1847 kvm_update_cpuid_runtime(vcpu);
1848 }
1849
1850 static void svm_set_segment(struct kvm_vcpu *vcpu,
1851 struct kvm_segment *var, int seg)
1852 {
1853 struct vcpu_svm *svm = to_svm(vcpu);
1854 struct vmcb_seg *s = svm_seg(vcpu, seg);
1855
1856 s->base = var->base;
1857 s->limit = var->limit;
1858 s->selector = var->selector;
1859 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1860 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1861 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1862 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1863 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1864 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1865 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1866 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1867
1868 /*
1869 * This is always accurate, except if SYSRET returned to a segment
1870 * with SS.DPL != 3. Intel does not have this quirk, and always
1871 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1872 * would entail passing the CPL to userspace and back.
1873 */
1874 if (seg == VCPU_SREG_SS)
1875 /* This is symmetric with svm_get_segment() */
1876 svm->vmcb->save.cpl = (var->dpl & 3);
1877
1878 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1879 }
1880
1881 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1882 {
1883 struct vcpu_svm *svm = to_svm(vcpu);
1884
1885 clr_exception_intercept(svm, BP_VECTOR);
1886
1887 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1888 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1889 set_exception_intercept(svm, BP_VECTOR);
1890 }
1891 }
1892
1893 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1894 {
1895 if (sd->next_asid > sd->max_asid) {
1896 ++sd->asid_generation;
1897 sd->next_asid = sd->min_asid;
1898 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1899 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1900 }
1901
1902 svm->current_vmcb->asid_generation = sd->asid_generation;
1903 svm->asid = sd->next_asid++;
1904 }
1905
1906 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1907 {
1908 struct vmcb *vmcb = svm->vmcb;
1909
1910 if (svm->vcpu.arch.guest_state_protected)
1911 return;
1912
1913 if (unlikely(value != vmcb->save.dr6)) {
1914 vmcb->save.dr6 = value;
1915 vmcb_mark_dirty(vmcb, VMCB_DR);
1916 }
1917 }
1918
1919 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1920 {
1921 struct vcpu_svm *svm = to_svm(vcpu);
1922
1923 if (vcpu->arch.guest_state_protected)
1924 return;
1925
1926 get_debugreg(vcpu->arch.db[0], 0);
1927 get_debugreg(vcpu->arch.db[1], 1);
1928 get_debugreg(vcpu->arch.db[2], 2);
1929 get_debugreg(vcpu->arch.db[3], 3);
1930 /*
1931 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1932 * because db_interception might need it. We can do it before vmentry.
1933 */
1934 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1935 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1936 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1937 set_dr_intercepts(svm);
1938 }
1939
1940 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1941 {
1942 struct vcpu_svm *svm = to_svm(vcpu);
1943
1944 if (vcpu->arch.guest_state_protected)
1945 return;
1946
1947 svm->vmcb->save.dr7 = value;
1948 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1949 }
1950
1951 static int pf_interception(struct kvm_vcpu *vcpu)
1952 {
1953 struct vcpu_svm *svm = to_svm(vcpu);
1954
1955 u64 fault_address = svm->vmcb->control.exit_info_2;
1956 u64 error_code = svm->vmcb->control.exit_info_1;
1957
1958 return kvm_handle_page_fault(vcpu, error_code, fault_address,
1959 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1960 svm->vmcb->control.insn_bytes : NULL,
1961 svm->vmcb->control.insn_len);
1962 }
1963
1964 static int npf_interception(struct kvm_vcpu *vcpu)
1965 {
1966 struct vcpu_svm *svm = to_svm(vcpu);
1967
1968 u64 fault_address = svm->vmcb->control.exit_info_2;
1969 u64 error_code = svm->vmcb->control.exit_info_1;
1970
1971 trace_kvm_page_fault(vcpu, fault_address, error_code);
1972 return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1973 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1974 svm->vmcb->control.insn_bytes : NULL,
1975 svm->vmcb->control.insn_len);
1976 }
1977
1978 static int db_interception(struct kvm_vcpu *vcpu)
1979 {
1980 struct kvm_run *kvm_run = vcpu->run;
1981 struct vcpu_svm *svm = to_svm(vcpu);
1982
1983 if (!(vcpu->guest_debug &
1984 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1985 !svm->nmi_singlestep) {
1986 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1987 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1988 return 1;
1989 }
1990
1991 if (svm->nmi_singlestep) {
1992 disable_nmi_singlestep(svm);
1993 /* Make sure we check for pending NMIs upon entry */
1994 kvm_make_request(KVM_REQ_EVENT, vcpu);
1995 }
1996
1997 if (vcpu->guest_debug &
1998 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1999 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2000 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2001 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2002 kvm_run->debug.arch.pc =
2003 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2004 kvm_run->debug.arch.exception = DB_VECTOR;
2005 return 0;
2006 }
2007
2008 return 1;
2009 }
2010
2011 static int bp_interception(struct kvm_vcpu *vcpu)
2012 {
2013 struct vcpu_svm *svm = to_svm(vcpu);
2014 struct kvm_run *kvm_run = vcpu->run;
2015
2016 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2017 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2018 kvm_run->debug.arch.exception = BP_VECTOR;
2019 return 0;
2020 }
2021
2022 static int ud_interception(struct kvm_vcpu *vcpu)
2023 {
2024 return handle_ud(vcpu);
2025 }
2026
2027 static int ac_interception(struct kvm_vcpu *vcpu)
2028 {
2029 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2030 return 1;
2031 }
2032
2033 static bool is_erratum_383(void)
2034 {
2035 int err, i;
2036 u64 value;
2037
2038 if (!erratum_383_found)
2039 return false;
2040
2041 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2042 if (err)
2043 return false;
2044
2045 /* Bit 62 may or may not be set for this mce */
2046 value &= ~(1ULL << 62);
2047
2048 if (value != 0xb600000000010015ULL)
2049 return false;
2050
2051 /* Clear MCi_STATUS registers */
2052 for (i = 0; i < 6; ++i)
2053 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2054
2055 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2056 if (!err) {
2057 u32 low, high;
2058
2059 value &= ~(1ULL << 2);
2060 low = lower_32_bits(value);
2061 high = upper_32_bits(value);
2062
2063 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2064 }
2065
2066 /* Flush tlb to evict multi-match entries */
2067 __flush_tlb_all();
2068
2069 return true;
2070 }
2071
2072 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2073 {
2074 if (is_erratum_383()) {
2075 /*
2076 * Erratum 383 triggered. Guest state is corrupt so kill the
2077 * guest.
2078 */
2079 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2080
2081 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2082
2083 return;
2084 }
2085
2086 /*
2087 * On an #MC intercept the MCE handler is not called automatically in
2088 * the host. So do it by hand here.
2089 */
2090 kvm_machine_check();
2091 }
2092
2093 static int mc_interception(struct kvm_vcpu *vcpu)
2094 {
2095 return 1;
2096 }
2097
2098 static int shutdown_interception(struct kvm_vcpu *vcpu)
2099 {
2100 struct kvm_run *kvm_run = vcpu->run;
2101 struct vcpu_svm *svm = to_svm(vcpu);
2102
2103 /*
2104 * The VM save area has already been encrypted so it
2105 * cannot be reinitialized - just terminate.
2106 */
2107 if (sev_es_guest(vcpu->kvm))
2108 return -EINVAL;
2109
2110 /*
2111 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
2112 * the VMCB in a known good state. Unfortuately, KVM doesn't have
2113 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2114 * userspace. At a platform view, INIT is acceptable behavior as
2115 * there exist bare metal platforms that automatically INIT the CPU
2116 * in response to shutdown.
2117 */
2118 clear_page(svm->vmcb);
2119 kvm_vcpu_reset(vcpu, true);
2120
2121 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2122 return 0;
2123 }
2124
2125 static int io_interception(struct kvm_vcpu *vcpu)
2126 {
2127 struct vcpu_svm *svm = to_svm(vcpu);
2128 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2129 int size, in, string;
2130 unsigned port;
2131
2132 ++vcpu->stat.io_exits;
2133 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2134 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2135 port = io_info >> 16;
2136 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2137
2138 if (string) {
2139 if (sev_es_guest(vcpu->kvm))
2140 return sev_es_string_io(svm, size, port, in);
2141 else
2142 return kvm_emulate_instruction(vcpu, 0);
2143 }
2144
2145 svm->next_rip = svm->vmcb->control.exit_info_2;
2146
2147 return kvm_fast_pio(vcpu, size, port, in);
2148 }
2149
2150 static int nmi_interception(struct kvm_vcpu *vcpu)
2151 {
2152 return 1;
2153 }
2154
2155 static int smi_interception(struct kvm_vcpu *vcpu)
2156 {
2157 return 1;
2158 }
2159
2160 static int intr_interception(struct kvm_vcpu *vcpu)
2161 {
2162 ++vcpu->stat.irq_exits;
2163 return 1;
2164 }
2165
2166 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2167 {
2168 struct vcpu_svm *svm = to_svm(vcpu);
2169 struct vmcb *vmcb12;
2170 struct kvm_host_map map;
2171 int ret;
2172
2173 if (nested_svm_check_permissions(vcpu))
2174 return 1;
2175
2176 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2177 if (ret) {
2178 if (ret == -EINVAL)
2179 kvm_inject_gp(vcpu, 0);
2180 return 1;
2181 }
2182
2183 vmcb12 = map.hva;
2184
2185 ret = kvm_skip_emulated_instruction(vcpu);
2186
2187 if (vmload) {
2188 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2189 svm->sysenter_eip_hi = 0;
2190 svm->sysenter_esp_hi = 0;
2191 } else {
2192 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2193 }
2194
2195 kvm_vcpu_unmap(vcpu, &map, true);
2196
2197 return ret;
2198 }
2199
2200 static int vmload_interception(struct kvm_vcpu *vcpu)
2201 {
2202 return vmload_vmsave_interception(vcpu, true);
2203 }
2204
2205 static int vmsave_interception(struct kvm_vcpu *vcpu)
2206 {
2207 return vmload_vmsave_interception(vcpu, false);
2208 }
2209
2210 static int vmrun_interception(struct kvm_vcpu *vcpu)
2211 {
2212 if (nested_svm_check_permissions(vcpu))
2213 return 1;
2214
2215 return nested_svm_vmrun(vcpu);
2216 }
2217
2218 enum {
2219 NONE_SVM_INSTR,
2220 SVM_INSTR_VMRUN,
2221 SVM_INSTR_VMLOAD,
2222 SVM_INSTR_VMSAVE,
2223 };
2224
2225 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2226 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2227 {
2228 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2229
2230 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2231 return NONE_SVM_INSTR;
2232
2233 switch (ctxt->modrm) {
2234 case 0xd8: /* VMRUN */
2235 return SVM_INSTR_VMRUN;
2236 case 0xda: /* VMLOAD */
2237 return SVM_INSTR_VMLOAD;
2238 case 0xdb: /* VMSAVE */
2239 return SVM_INSTR_VMSAVE;
2240 default:
2241 break;
2242 }
2243
2244 return NONE_SVM_INSTR;
2245 }
2246
2247 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2248 {
2249 const int guest_mode_exit_codes[] = {
2250 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2251 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2252 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2253 };
2254 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2255 [SVM_INSTR_VMRUN] = vmrun_interception,
2256 [SVM_INSTR_VMLOAD] = vmload_interception,
2257 [SVM_INSTR_VMSAVE] = vmsave_interception,
2258 };
2259 struct vcpu_svm *svm = to_svm(vcpu);
2260 int ret;
2261
2262 if (is_guest_mode(vcpu)) {
2263 /* Returns '1' or -errno on failure, '0' on success. */
2264 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2265 if (ret)
2266 return ret;
2267 return 1;
2268 }
2269 return svm_instr_handlers[opcode](vcpu);
2270 }
2271
2272 /*
2273 * #GP handling code. Note that #GP can be triggered under the following two
2274 * cases:
2275 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2276 * some AMD CPUs when EAX of these instructions are in the reserved memory
2277 * regions (e.g. SMM memory on host).
2278 * 2) VMware backdoor
2279 */
2280 static int gp_interception(struct kvm_vcpu *vcpu)
2281 {
2282 struct vcpu_svm *svm = to_svm(vcpu);
2283 u32 error_code = svm->vmcb->control.exit_info_1;
2284 int opcode;
2285
2286 /* Both #GP cases have zero error_code */
2287 if (error_code)
2288 goto reinject;
2289
2290 /* Decode the instruction for usage later */
2291 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2292 goto reinject;
2293
2294 opcode = svm_instr_opcode(vcpu);
2295
2296 if (opcode == NONE_SVM_INSTR) {
2297 if (!enable_vmware_backdoor)
2298 goto reinject;
2299
2300 /*
2301 * VMware backdoor emulation on #GP interception only handles
2302 * IN{S}, OUT{S}, and RDPMC.
2303 */
2304 if (!is_guest_mode(vcpu))
2305 return kvm_emulate_instruction(vcpu,
2306 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2307 } else {
2308 /* All SVM instructions expect page aligned RAX */
2309 if (svm->vmcb->save.rax & ~PAGE_MASK)
2310 goto reinject;
2311
2312 return emulate_svm_instr(vcpu, opcode);
2313 }
2314
2315 reinject:
2316 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2317 return 1;
2318 }
2319
2320 void svm_set_gif(struct vcpu_svm *svm, bool value)
2321 {
2322 if (value) {
2323 /*
2324 * If VGIF is enabled, the STGI intercept is only added to
2325 * detect the opening of the SMI/NMI window; remove it now.
2326 * Likewise, clear the VINTR intercept, we will set it
2327 * again while processing KVM_REQ_EVENT if needed.
2328 */
2329 if (vgif)
2330 svm_clr_intercept(svm, INTERCEPT_STGI);
2331 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2332 svm_clear_vintr(svm);
2333
2334 enable_gif(svm);
2335 if (svm->vcpu.arch.smi_pending ||
2336 svm->vcpu.arch.nmi_pending ||
2337 kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2338 kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2339 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2340 } else {
2341 disable_gif(svm);
2342
2343 /*
2344 * After a CLGI no interrupts should come. But if vGIF is
2345 * in use, we still rely on the VINTR intercept (rather than
2346 * STGI) to detect an open interrupt window.
2347 */
2348 if (!vgif)
2349 svm_clear_vintr(svm);
2350 }
2351 }
2352
2353 static int stgi_interception(struct kvm_vcpu *vcpu)
2354 {
2355 int ret;
2356
2357 if (nested_svm_check_permissions(vcpu))
2358 return 1;
2359
2360 ret = kvm_skip_emulated_instruction(vcpu);
2361 svm_set_gif(to_svm(vcpu), true);
2362 return ret;
2363 }
2364
2365 static int clgi_interception(struct kvm_vcpu *vcpu)
2366 {
2367 int ret;
2368
2369 if (nested_svm_check_permissions(vcpu))
2370 return 1;
2371
2372 ret = kvm_skip_emulated_instruction(vcpu);
2373 svm_set_gif(to_svm(vcpu), false);
2374 return ret;
2375 }
2376
2377 static int invlpga_interception(struct kvm_vcpu *vcpu)
2378 {
2379 gva_t gva = kvm_rax_read(vcpu);
2380 u32 asid = kvm_rcx_read(vcpu);
2381
2382 /* FIXME: Handle an address size prefix. */
2383 if (!is_long_mode(vcpu))
2384 gva = (u32)gva;
2385
2386 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2387
2388 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2389 kvm_mmu_invlpg(vcpu, gva);
2390
2391 return kvm_skip_emulated_instruction(vcpu);
2392 }
2393
2394 static int skinit_interception(struct kvm_vcpu *vcpu)
2395 {
2396 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2397
2398 kvm_queue_exception(vcpu, UD_VECTOR);
2399 return 1;
2400 }
2401
2402 static int task_switch_interception(struct kvm_vcpu *vcpu)
2403 {
2404 struct vcpu_svm *svm = to_svm(vcpu);
2405 u16 tss_selector;
2406 int reason;
2407 int int_type = svm->vmcb->control.exit_int_info &
2408 SVM_EXITINTINFO_TYPE_MASK;
2409 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2410 uint32_t type =
2411 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2412 uint32_t idt_v =
2413 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2414 bool has_error_code = false;
2415 u32 error_code = 0;
2416
2417 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2418
2419 if (svm->vmcb->control.exit_info_2 &
2420 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2421 reason = TASK_SWITCH_IRET;
2422 else if (svm->vmcb->control.exit_info_2 &
2423 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2424 reason = TASK_SWITCH_JMP;
2425 else if (idt_v)
2426 reason = TASK_SWITCH_GATE;
2427 else
2428 reason = TASK_SWITCH_CALL;
2429
2430 if (reason == TASK_SWITCH_GATE) {
2431 switch (type) {
2432 case SVM_EXITINTINFO_TYPE_NMI:
2433 vcpu->arch.nmi_injected = false;
2434 break;
2435 case SVM_EXITINTINFO_TYPE_EXEPT:
2436 if (svm->vmcb->control.exit_info_2 &
2437 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2438 has_error_code = true;
2439 error_code =
2440 (u32)svm->vmcb->control.exit_info_2;
2441 }
2442 kvm_clear_exception_queue(vcpu);
2443 break;
2444 case SVM_EXITINTINFO_TYPE_INTR:
2445 case SVM_EXITINTINFO_TYPE_SOFT:
2446 kvm_clear_interrupt_queue(vcpu);
2447 break;
2448 default:
2449 break;
2450 }
2451 }
2452
2453 if (reason != TASK_SWITCH_GATE ||
2454 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2455 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2456 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2457 if (!svm_skip_emulated_instruction(vcpu))
2458 return 0;
2459 }
2460
2461 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2462 int_vec = -1;
2463
2464 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2465 has_error_code, error_code);
2466 }
2467
2468 static int iret_interception(struct kvm_vcpu *vcpu)
2469 {
2470 struct vcpu_svm *svm = to_svm(vcpu);
2471
2472 ++vcpu->stat.nmi_window_exits;
2473 vcpu->arch.hflags |= HF_IRET_MASK;
2474 if (!sev_es_guest(vcpu->kvm)) {
2475 svm_clr_intercept(svm, INTERCEPT_IRET);
2476 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2477 }
2478 kvm_make_request(KVM_REQ_EVENT, vcpu);
2479 return 1;
2480 }
2481
2482 static int invlpg_interception(struct kvm_vcpu *vcpu)
2483 {
2484 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2485 return kvm_emulate_instruction(vcpu, 0);
2486
2487 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2488 return kvm_skip_emulated_instruction(vcpu);
2489 }
2490
2491 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2492 {
2493 return kvm_emulate_instruction(vcpu, 0);
2494 }
2495
2496 static int rsm_interception(struct kvm_vcpu *vcpu)
2497 {
2498 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2499 }
2500
2501 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2502 unsigned long val)
2503 {
2504 struct vcpu_svm *svm = to_svm(vcpu);
2505 unsigned long cr0 = vcpu->arch.cr0;
2506 bool ret = false;
2507
2508 if (!is_guest_mode(vcpu) ||
2509 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2510 return false;
2511
2512 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2513 val &= ~SVM_CR0_SELECTIVE_MASK;
2514
2515 if (cr0 ^ val) {
2516 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2517 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2518 }
2519
2520 return ret;
2521 }
2522
2523 #define CR_VALID (1ULL << 63)
2524
2525 static int cr_interception(struct kvm_vcpu *vcpu)
2526 {
2527 struct vcpu_svm *svm = to_svm(vcpu);
2528 int reg, cr;
2529 unsigned long val;
2530 int err;
2531
2532 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2533 return emulate_on_interception(vcpu);
2534
2535 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2536 return emulate_on_interception(vcpu);
2537
2538 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2539 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2540 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2541 else
2542 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2543
2544 err = 0;
2545 if (cr >= 16) { /* mov to cr */
2546 cr -= 16;
2547 val = kvm_register_read(vcpu, reg);
2548 trace_kvm_cr_write(cr, val);
2549 switch (cr) {
2550 case 0:
2551 if (!check_selective_cr0_intercepted(vcpu, val))
2552 err = kvm_set_cr0(vcpu, val);
2553 else
2554 return 1;
2555
2556 break;
2557 case 3:
2558 err = kvm_set_cr3(vcpu, val);
2559 break;
2560 case 4:
2561 err = kvm_set_cr4(vcpu, val);
2562 break;
2563 case 8:
2564 err = kvm_set_cr8(vcpu, val);
2565 break;
2566 default:
2567 WARN(1, "unhandled write to CR%d", cr);
2568 kvm_queue_exception(vcpu, UD_VECTOR);
2569 return 1;
2570 }
2571 } else { /* mov from cr */
2572 switch (cr) {
2573 case 0:
2574 val = kvm_read_cr0(vcpu);
2575 break;
2576 case 2:
2577 val = vcpu->arch.cr2;
2578 break;
2579 case 3:
2580 val = kvm_read_cr3(vcpu);
2581 break;
2582 case 4:
2583 val = kvm_read_cr4(vcpu);
2584 break;
2585 case 8:
2586 val = kvm_get_cr8(vcpu);
2587 break;
2588 default:
2589 WARN(1, "unhandled read from CR%d", cr);
2590 kvm_queue_exception(vcpu, UD_VECTOR);
2591 return 1;
2592 }
2593 kvm_register_write(vcpu, reg, val);
2594 trace_kvm_cr_read(cr, val);
2595 }
2596 return kvm_complete_insn_gp(vcpu, err);
2597 }
2598
2599 static int cr_trap(struct kvm_vcpu *vcpu)
2600 {
2601 struct vcpu_svm *svm = to_svm(vcpu);
2602 unsigned long old_value, new_value;
2603 unsigned int cr;
2604 int ret = 0;
2605
2606 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2607
2608 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2609 switch (cr) {
2610 case 0:
2611 old_value = kvm_read_cr0(vcpu);
2612 svm_set_cr0(vcpu, new_value);
2613
2614 kvm_post_set_cr0(vcpu, old_value, new_value);
2615 break;
2616 case 4:
2617 old_value = kvm_read_cr4(vcpu);
2618 svm_set_cr4(vcpu, new_value);
2619
2620 kvm_post_set_cr4(vcpu, old_value, new_value);
2621 break;
2622 case 8:
2623 ret = kvm_set_cr8(vcpu, new_value);
2624 break;
2625 default:
2626 WARN(1, "unhandled CR%d write trap", cr);
2627 kvm_queue_exception(vcpu, UD_VECTOR);
2628 return 1;
2629 }
2630
2631 return kvm_complete_insn_gp(vcpu, ret);
2632 }
2633
2634 static int dr_interception(struct kvm_vcpu *vcpu)
2635 {
2636 struct vcpu_svm *svm = to_svm(vcpu);
2637 int reg, dr;
2638 unsigned long val;
2639 int err = 0;
2640
2641 if (vcpu->guest_debug == 0) {
2642 /*
2643 * No more DR vmexits; force a reload of the debug registers
2644 * and reenter on this instruction. The next vmexit will
2645 * retrieve the full state of the debug registers.
2646 */
2647 clr_dr_intercepts(svm);
2648 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2649 return 1;
2650 }
2651
2652 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2653 return emulate_on_interception(vcpu);
2654
2655 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2656 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2657 if (dr >= 16) { /* mov to DRn */
2658 dr -= 16;
2659 val = kvm_register_read(vcpu, reg);
2660 err = kvm_set_dr(vcpu, dr, val);
2661 } else {
2662 kvm_get_dr(vcpu, dr, &val);
2663 kvm_register_write(vcpu, reg, val);
2664 }
2665
2666 return kvm_complete_insn_gp(vcpu, err);
2667 }
2668
2669 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2670 {
2671 int r;
2672
2673 u8 cr8_prev = kvm_get_cr8(vcpu);
2674 /* instruction emulation calls kvm_set_cr8() */
2675 r = cr_interception(vcpu);
2676 if (lapic_in_kernel(vcpu))
2677 return r;
2678 if (cr8_prev <= kvm_get_cr8(vcpu))
2679 return r;
2680 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2681 return 0;
2682 }
2683
2684 static int efer_trap(struct kvm_vcpu *vcpu)
2685 {
2686 struct msr_data msr_info;
2687 int ret;
2688
2689 /*
2690 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2691 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2692 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2693 * the guest doesn't have X86_FEATURE_SVM.
2694 */
2695 msr_info.host_initiated = false;
2696 msr_info.index = MSR_EFER;
2697 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2698 ret = kvm_set_msr_common(vcpu, &msr_info);
2699
2700 return kvm_complete_insn_gp(vcpu, ret);
2701 }
2702
2703 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2704 {
2705 msr->data = 0;
2706
2707 switch (msr->index) {
2708 case MSR_F10H_DECFG:
2709 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2710 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2711 break;
2712 default:
2713 return KVM_MSR_RET_INVALID;
2714 }
2715
2716 return 0;
2717 }
2718
2719 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2720 {
2721 struct vcpu_svm *svm = to_svm(vcpu);
2722
2723 switch (msr_info->index) {
2724 case MSR_AMD64_TSC_RATIO:
2725 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2726 return 1;
2727 msr_info->data = svm->tsc_ratio_msr;
2728 break;
2729 case MSR_STAR:
2730 msr_info->data = svm->vmcb01.ptr->save.star;
2731 break;
2732 #ifdef CONFIG_X86_64
2733 case MSR_LSTAR:
2734 msr_info->data = svm->vmcb01.ptr->save.lstar;
2735 break;
2736 case MSR_CSTAR:
2737 msr_info->data = svm->vmcb01.ptr->save.cstar;
2738 break;
2739 case MSR_KERNEL_GS_BASE:
2740 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2741 break;
2742 case MSR_SYSCALL_MASK:
2743 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2744 break;
2745 #endif
2746 case MSR_IA32_SYSENTER_CS:
2747 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2748 break;
2749 case MSR_IA32_SYSENTER_EIP:
2750 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2751 if (guest_cpuid_is_intel(vcpu))
2752 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2753 break;
2754 case MSR_IA32_SYSENTER_ESP:
2755 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2756 if (guest_cpuid_is_intel(vcpu))
2757 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2758 break;
2759 case MSR_TSC_AUX:
2760 msr_info->data = svm->tsc_aux;
2761 break;
2762 case MSR_IA32_DEBUGCTLMSR:
2763 case MSR_IA32_LASTBRANCHFROMIP:
2764 case MSR_IA32_LASTBRANCHTOIP:
2765 case MSR_IA32_LASTINTFROMIP:
2766 case MSR_IA32_LASTINTTOIP:
2767 msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2768 break;
2769 case MSR_VM_HSAVE_PA:
2770 msr_info->data = svm->nested.hsave_msr;
2771 break;
2772 case MSR_VM_CR:
2773 msr_info->data = svm->nested.vm_cr_msr;
2774 break;
2775 case MSR_IA32_SPEC_CTRL:
2776 if (!msr_info->host_initiated &&
2777 !guest_has_spec_ctrl_msr(vcpu))
2778 return 1;
2779
2780 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2781 msr_info->data = svm->vmcb->save.spec_ctrl;
2782 else
2783 msr_info->data = svm->spec_ctrl;
2784 break;
2785 case MSR_AMD64_VIRT_SPEC_CTRL:
2786 if (!msr_info->host_initiated &&
2787 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2788 return 1;
2789
2790 msr_info->data = svm->virt_spec_ctrl;
2791 break;
2792 case MSR_F15H_IC_CFG: {
2793
2794 int family, model;
2795
2796 family = guest_cpuid_family(vcpu);
2797 model = guest_cpuid_model(vcpu);
2798
2799 if (family < 0 || model < 0)
2800 return kvm_get_msr_common(vcpu, msr_info);
2801
2802 msr_info->data = 0;
2803
2804 if (family == 0x15 &&
2805 (model >= 0x2 && model < 0x20))
2806 msr_info->data = 0x1E;
2807 }
2808 break;
2809 case MSR_F10H_DECFG:
2810 msr_info->data = svm->msr_decfg;
2811 break;
2812 default:
2813 return kvm_get_msr_common(vcpu, msr_info);
2814 }
2815 return 0;
2816 }
2817
2818 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2819 {
2820 struct vcpu_svm *svm = to_svm(vcpu);
2821 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2822 return kvm_complete_insn_gp(vcpu, err);
2823
2824 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2825 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2826 X86_TRAP_GP |
2827 SVM_EVTINJ_TYPE_EXEPT |
2828 SVM_EVTINJ_VALID);
2829 return 1;
2830 }
2831
2832 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2833 {
2834 struct vcpu_svm *svm = to_svm(vcpu);
2835 int svm_dis, chg_mask;
2836
2837 if (data & ~SVM_VM_CR_VALID_MASK)
2838 return 1;
2839
2840 chg_mask = SVM_VM_CR_VALID_MASK;
2841
2842 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2843 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2844
2845 svm->nested.vm_cr_msr &= ~chg_mask;
2846 svm->nested.vm_cr_msr |= (data & chg_mask);
2847
2848 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2849
2850 /* check for svm_disable while efer.svme is set */
2851 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2852 return 1;
2853
2854 return 0;
2855 }
2856
2857 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2858 {
2859 struct vcpu_svm *svm = to_svm(vcpu);
2860 int r;
2861
2862 u32 ecx = msr->index;
2863 u64 data = msr->data;
2864 switch (ecx) {
2865 case MSR_AMD64_TSC_RATIO:
2866
2867 if (!svm->tsc_scaling_enabled) {
2868
2869 if (!msr->host_initiated)
2870 return 1;
2871 /*
2872 * In case TSC scaling is not enabled, always
2873 * leave this MSR at the default value.
2874 *
2875 * Due to bug in qemu 6.2.0, it would try to set
2876 * this msr to 0 if tsc scaling is not enabled.
2877 * Ignore this value as well.
2878 */
2879 if (data != 0 && data != svm->tsc_ratio_msr)
2880 return 1;
2881 break;
2882 }
2883
2884 if (data & SVM_TSC_RATIO_RSVD)
2885 return 1;
2886
2887 svm->tsc_ratio_msr = data;
2888
2889 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2890 nested_svm_update_tsc_ratio_msr(vcpu);
2891
2892 break;
2893 case MSR_IA32_CR_PAT:
2894 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2895 return 1;
2896 vcpu->arch.pat = data;
2897 svm->vmcb01.ptr->save.g_pat = data;
2898 if (is_guest_mode(vcpu))
2899 nested_vmcb02_compute_g_pat(svm);
2900 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2901 break;
2902 case MSR_IA32_SPEC_CTRL:
2903 if (!msr->host_initiated &&
2904 !guest_has_spec_ctrl_msr(vcpu))
2905 return 1;
2906
2907 if (kvm_spec_ctrl_test_value(data))
2908 return 1;
2909
2910 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2911 svm->vmcb->save.spec_ctrl = data;
2912 else
2913 svm->spec_ctrl = data;
2914 if (!data)
2915 break;
2916
2917 /*
2918 * For non-nested:
2919 * When it's written (to non-zero) for the first time, pass
2920 * it through.
2921 *
2922 * For nested:
2923 * The handling of the MSR bitmap for L2 guests is done in
2924 * nested_svm_vmrun_msrpm.
2925 * We update the L1 MSR bit as well since it will end up
2926 * touching the MSR anyway now.
2927 */
2928 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2929 break;
2930 case MSR_IA32_PRED_CMD:
2931 if (!msr->host_initiated &&
2932 !guest_has_pred_cmd_msr(vcpu))
2933 return 1;
2934
2935 if (data & ~PRED_CMD_IBPB)
2936 return 1;
2937 if (!boot_cpu_has(X86_FEATURE_IBPB))
2938 return 1;
2939 if (!data)
2940 break;
2941
2942 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2943 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2944 break;
2945 case MSR_AMD64_VIRT_SPEC_CTRL:
2946 if (!msr->host_initiated &&
2947 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2948 return 1;
2949
2950 if (data & ~SPEC_CTRL_SSBD)
2951 return 1;
2952
2953 svm->virt_spec_ctrl = data;
2954 break;
2955 case MSR_STAR:
2956 svm->vmcb01.ptr->save.star = data;
2957 break;
2958 #ifdef CONFIG_X86_64
2959 case MSR_LSTAR:
2960 svm->vmcb01.ptr->save.lstar = data;
2961 break;
2962 case MSR_CSTAR:
2963 svm->vmcb01.ptr->save.cstar = data;
2964 break;
2965 case MSR_KERNEL_GS_BASE:
2966 svm->vmcb01.ptr->save.kernel_gs_base = data;
2967 break;
2968 case MSR_SYSCALL_MASK:
2969 svm->vmcb01.ptr->save.sfmask = data;
2970 break;
2971 #endif
2972 case MSR_IA32_SYSENTER_CS:
2973 svm->vmcb01.ptr->save.sysenter_cs = data;
2974 break;
2975 case MSR_IA32_SYSENTER_EIP:
2976 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2977 /*
2978 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2979 * when we spoof an Intel vendor ID (for cross vendor migration).
2980 * In this case we use this intercept to track the high
2981 * 32 bit part of these msrs to support Intel's
2982 * implementation of SYSENTER/SYSEXIT.
2983 */
2984 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2985 break;
2986 case MSR_IA32_SYSENTER_ESP:
2987 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2988 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2989 break;
2990 case MSR_TSC_AUX:
2991 /*
2992 * TSC_AUX is usually changed only during boot and never read
2993 * directly. Intercept TSC_AUX instead of exposing it to the
2994 * guest via direct_access_msrs, and switch it via user return.
2995 */
2996 preempt_disable();
2997 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2998 preempt_enable();
2999 if (r)
3000 return 1;
3001
3002 svm->tsc_aux = data;
3003 break;
3004 case MSR_IA32_DEBUGCTLMSR:
3005 if (!lbrv) {
3006 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3007 __func__, data);
3008 break;
3009 }
3010 if (data & DEBUGCTL_RESERVED_BITS)
3011 return 1;
3012
3013 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3014 svm->vmcb->save.dbgctl = data;
3015 else
3016 svm->vmcb01.ptr->save.dbgctl = data;
3017
3018 svm_update_lbrv(vcpu);
3019
3020 break;
3021 case MSR_VM_HSAVE_PA:
3022 /*
3023 * Old kernels did not validate the value written to
3024 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
3025 * value to allow live migrating buggy or malicious guests
3026 * originating from those kernels.
3027 */
3028 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3029 return 1;
3030
3031 svm->nested.hsave_msr = data & PAGE_MASK;
3032 break;
3033 case MSR_VM_CR:
3034 return svm_set_vm_cr(vcpu, data);
3035 case MSR_VM_IGNNE:
3036 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3037 break;
3038 case MSR_F10H_DECFG: {
3039 struct kvm_msr_entry msr_entry;
3040
3041 msr_entry.index = msr->index;
3042 if (svm_get_msr_feature(&msr_entry))
3043 return 1;
3044
3045 /* Check the supported bits */
3046 if (data & ~msr_entry.data)
3047 return 1;
3048
3049 /* Don't allow the guest to change a bit, #GP */
3050 if (!msr->host_initiated && (data ^ msr_entry.data))
3051 return 1;
3052
3053 svm->msr_decfg = data;
3054 break;
3055 }
3056 default:
3057 return kvm_set_msr_common(vcpu, msr);
3058 }
3059 return 0;
3060 }
3061
3062 static int msr_interception(struct kvm_vcpu *vcpu)
3063 {
3064 if (to_svm(vcpu)->vmcb->control.exit_info_1)
3065 return kvm_emulate_wrmsr(vcpu);
3066 else
3067 return kvm_emulate_rdmsr(vcpu);
3068 }
3069
3070 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3071 {
3072 kvm_make_request(KVM_REQ_EVENT, vcpu);
3073 svm_clear_vintr(to_svm(vcpu));
3074
3075 /*
3076 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3077 * In this case AVIC was temporarily disabled for
3078 * requesting the IRQ window and we have to re-enable it.
3079 *
3080 * If running nested, still remove the VM wide AVIC inhibit to
3081 * support case in which the interrupt window was requested when the
3082 * vCPU was not running nested.
3083
3084 * All vCPUs which run still run nested, will remain to have their
3085 * AVIC still inhibited due to per-cpu AVIC inhibition.
3086 */
3087 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3088
3089 ++vcpu->stat.irq_window_exits;
3090 return 1;
3091 }
3092
3093 static int pause_interception(struct kvm_vcpu *vcpu)
3094 {
3095 bool in_kernel;
3096 /*
3097 * CPL is not made available for an SEV-ES guest, therefore
3098 * vcpu->arch.preempted_in_kernel can never be true. Just
3099 * set in_kernel to false as well.
3100 */
3101 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3102
3103 grow_ple_window(vcpu);
3104
3105 kvm_vcpu_on_spin(vcpu, in_kernel);
3106 return kvm_skip_emulated_instruction(vcpu);
3107 }
3108
3109 static int invpcid_interception(struct kvm_vcpu *vcpu)
3110 {
3111 struct vcpu_svm *svm = to_svm(vcpu);
3112 unsigned long type;
3113 gva_t gva;
3114
3115 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3116 kvm_queue_exception(vcpu, UD_VECTOR);
3117 return 1;
3118 }
3119
3120 /*
3121 * For an INVPCID intercept:
3122 * EXITINFO1 provides the linear address of the memory operand.
3123 * EXITINFO2 provides the contents of the register operand.
3124 */
3125 type = svm->vmcb->control.exit_info_2;
3126 gva = svm->vmcb->control.exit_info_1;
3127
3128 return kvm_handle_invpcid(vcpu, type, gva);
3129 }
3130
3131 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3132 [SVM_EXIT_READ_CR0] = cr_interception,
3133 [SVM_EXIT_READ_CR3] = cr_interception,
3134 [SVM_EXIT_READ_CR4] = cr_interception,
3135 [SVM_EXIT_READ_CR8] = cr_interception,
3136 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3137 [SVM_EXIT_WRITE_CR0] = cr_interception,
3138 [SVM_EXIT_WRITE_CR3] = cr_interception,
3139 [SVM_EXIT_WRITE_CR4] = cr_interception,
3140 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3141 [SVM_EXIT_READ_DR0] = dr_interception,
3142 [SVM_EXIT_READ_DR1] = dr_interception,
3143 [SVM_EXIT_READ_DR2] = dr_interception,
3144 [SVM_EXIT_READ_DR3] = dr_interception,
3145 [SVM_EXIT_READ_DR4] = dr_interception,
3146 [SVM_EXIT_READ_DR5] = dr_interception,
3147 [SVM_EXIT_READ_DR6] = dr_interception,
3148 [SVM_EXIT_READ_DR7] = dr_interception,
3149 [SVM_EXIT_WRITE_DR0] = dr_interception,
3150 [SVM_EXIT_WRITE_DR1] = dr_interception,
3151 [SVM_EXIT_WRITE_DR2] = dr_interception,
3152 [SVM_EXIT_WRITE_DR3] = dr_interception,
3153 [SVM_EXIT_WRITE_DR4] = dr_interception,
3154 [SVM_EXIT_WRITE_DR5] = dr_interception,
3155 [SVM_EXIT_WRITE_DR6] = dr_interception,
3156 [SVM_EXIT_WRITE_DR7] = dr_interception,
3157 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3158 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3159 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3160 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3161 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3162 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3163 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3164 [SVM_EXIT_INTR] = intr_interception,
3165 [SVM_EXIT_NMI] = nmi_interception,
3166 [SVM_EXIT_SMI] = smi_interception,
3167 [SVM_EXIT_VINTR] = interrupt_window_interception,
3168 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3169 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3170 [SVM_EXIT_IRET] = iret_interception,
3171 [SVM_EXIT_INVD] = kvm_emulate_invd,
3172 [SVM_EXIT_PAUSE] = pause_interception,
3173 [SVM_EXIT_HLT] = kvm_emulate_halt,
3174 [SVM_EXIT_INVLPG] = invlpg_interception,
3175 [SVM_EXIT_INVLPGA] = invlpga_interception,
3176 [SVM_EXIT_IOIO] = io_interception,
3177 [SVM_EXIT_MSR] = msr_interception,
3178 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3179 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3180 [SVM_EXIT_VMRUN] = vmrun_interception,
3181 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3182 [SVM_EXIT_VMLOAD] = vmload_interception,
3183 [SVM_EXIT_VMSAVE] = vmsave_interception,
3184 [SVM_EXIT_STGI] = stgi_interception,
3185 [SVM_EXIT_CLGI] = clgi_interception,
3186 [SVM_EXIT_SKINIT] = skinit_interception,
3187 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3188 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3189 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3190 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3191 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3192 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3193 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3194 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3195 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3196 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3197 [SVM_EXIT_INVPCID] = invpcid_interception,
3198 [SVM_EXIT_NPF] = npf_interception,
3199 [SVM_EXIT_RSM] = rsm_interception,
3200 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3201 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3202 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3203 };
3204
3205 static void dump_vmcb(struct kvm_vcpu *vcpu)
3206 {
3207 struct vcpu_svm *svm = to_svm(vcpu);
3208 struct vmcb_control_area *control = &svm->vmcb->control;
3209 struct vmcb_save_area *save = &svm->vmcb->save;
3210 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3211
3212 if (!dump_invalid_vmcb) {
3213 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3214 return;
3215 }
3216
3217 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3218 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3219 pr_err("VMCB Control Area:\n");
3220 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3221 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3222 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3223 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3224 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3225 pr_err("%-20s%08x %08x\n", "intercepts:",
3226 control->intercepts[INTERCEPT_WORD3],
3227 control->intercepts[INTERCEPT_WORD4]);
3228 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3229 pr_err("%-20s%d\n", "pause filter threshold:",
3230 control->pause_filter_thresh);
3231 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3232 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3233 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3234 pr_err("%-20s%d\n", "asid:", control->asid);
3235 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3236 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3237 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3238 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3239 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3240 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3241 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3242 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3243 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3244 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3245 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3246 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3247 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3248 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3249 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3250 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3251 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3252 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3253 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3254 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3255 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3256 pr_err("VMCB State Save Area:\n");
3257 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3258 "es:",
3259 save->es.selector, save->es.attrib,
3260 save->es.limit, save->es.base);
3261 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3262 "cs:",
3263 save->cs.selector, save->cs.attrib,
3264 save->cs.limit, save->cs.base);
3265 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3266 "ss:",
3267 save->ss.selector, save->ss.attrib,
3268 save->ss.limit, save->ss.base);
3269 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3270 "ds:",
3271 save->ds.selector, save->ds.attrib,
3272 save->ds.limit, save->ds.base);
3273 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3274 "fs:",
3275 save01->fs.selector, save01->fs.attrib,
3276 save01->fs.limit, save01->fs.base);
3277 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3278 "gs:",
3279 save01->gs.selector, save01->gs.attrib,
3280 save01->gs.limit, save01->gs.base);
3281 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3282 "gdtr:",
3283 save->gdtr.selector, save->gdtr.attrib,
3284 save->gdtr.limit, save->gdtr.base);
3285 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3286 "ldtr:",
3287 save01->ldtr.selector, save01->ldtr.attrib,
3288 save01->ldtr.limit, save01->ldtr.base);
3289 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290 "idtr:",
3291 save->idtr.selector, save->idtr.attrib,
3292 save->idtr.limit, save->idtr.base);
3293 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294 "tr:",
3295 save01->tr.selector, save01->tr.attrib,
3296 save01->tr.limit, save01->tr.base);
3297 pr_err("vmpl: %d cpl: %d efer: %016llx\n",
3298 save->vmpl, save->cpl, save->efer);
3299 pr_err("%-15s %016llx %-13s %016llx\n",
3300 "cr0:", save->cr0, "cr2:", save->cr2);
3301 pr_err("%-15s %016llx %-13s %016llx\n",
3302 "cr3:", save->cr3, "cr4:", save->cr4);
3303 pr_err("%-15s %016llx %-13s %016llx\n",
3304 "dr6:", save->dr6, "dr7:", save->dr7);
3305 pr_err("%-15s %016llx %-13s %016llx\n",
3306 "rip:", save->rip, "rflags:", save->rflags);
3307 pr_err("%-15s %016llx %-13s %016llx\n",
3308 "rsp:", save->rsp, "rax:", save->rax);
3309 pr_err("%-15s %016llx %-13s %016llx\n",
3310 "star:", save01->star, "lstar:", save01->lstar);
3311 pr_err("%-15s %016llx %-13s %016llx\n",
3312 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3313 pr_err("%-15s %016llx %-13s %016llx\n",
3314 "kernel_gs_base:", save01->kernel_gs_base,
3315 "sysenter_cs:", save01->sysenter_cs);
3316 pr_err("%-15s %016llx %-13s %016llx\n",
3317 "sysenter_esp:", save01->sysenter_esp,
3318 "sysenter_eip:", save01->sysenter_eip);
3319 pr_err("%-15s %016llx %-13s %016llx\n",
3320 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3321 pr_err("%-15s %016llx %-13s %016llx\n",
3322 "br_from:", save->br_from, "br_to:", save->br_to);
3323 pr_err("%-15s %016llx %-13s %016llx\n",
3324 "excp_from:", save->last_excp_from,
3325 "excp_to:", save->last_excp_to);
3326 }
3327
3328 static bool svm_check_exit_valid(u64 exit_code)
3329 {
3330 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3331 svm_exit_handlers[exit_code]);
3332 }
3333
3334 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3335 {
3336 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3337 dump_vmcb(vcpu);
3338 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3339 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3340 vcpu->run->internal.ndata = 2;
3341 vcpu->run->internal.data[0] = exit_code;
3342 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3343 return 0;
3344 }
3345
3346 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3347 {
3348 if (!svm_check_exit_valid(exit_code))
3349 return svm_handle_invalid_exit(vcpu, exit_code);
3350
3351 #ifdef CONFIG_RETPOLINE
3352 if (exit_code == SVM_EXIT_MSR)
3353 return msr_interception(vcpu);
3354 else if (exit_code == SVM_EXIT_VINTR)
3355 return interrupt_window_interception(vcpu);
3356 else if (exit_code == SVM_EXIT_INTR)
3357 return intr_interception(vcpu);
3358 else if (exit_code == SVM_EXIT_HLT)
3359 return kvm_emulate_halt(vcpu);
3360 else if (exit_code == SVM_EXIT_NPF)
3361 return npf_interception(vcpu);
3362 #endif
3363 return svm_exit_handlers[exit_code](vcpu);
3364 }
3365
3366 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3367 u64 *info1, u64 *info2,
3368 u32 *intr_info, u32 *error_code)
3369 {
3370 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3371
3372 *reason = control->exit_code;
3373 *info1 = control->exit_info_1;
3374 *info2 = control->exit_info_2;
3375 *intr_info = control->exit_int_info;
3376 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3377 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3378 *error_code = control->exit_int_info_err;
3379 else
3380 *error_code = 0;
3381 }
3382
3383 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3384 {
3385 struct vcpu_svm *svm = to_svm(vcpu);
3386 struct kvm_run *kvm_run = vcpu->run;
3387 u32 exit_code = svm->vmcb->control.exit_code;
3388
3389 trace_kvm_exit(vcpu, KVM_ISA_SVM);
3390
3391 /* SEV-ES guests must use the CR write traps to track CR registers. */
3392 if (!sev_es_guest(vcpu->kvm)) {
3393 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3394 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3395 if (npt_enabled)
3396 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3397 }
3398
3399 if (is_guest_mode(vcpu)) {
3400 int vmexit;
3401
3402 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3403
3404 vmexit = nested_svm_exit_special(svm);
3405
3406 if (vmexit == NESTED_EXIT_CONTINUE)
3407 vmexit = nested_svm_exit_handled(svm);
3408
3409 if (vmexit == NESTED_EXIT_DONE)
3410 return 1;
3411 }
3412
3413 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3414 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3415 kvm_run->fail_entry.hardware_entry_failure_reason
3416 = svm->vmcb->control.exit_code;
3417 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3418 dump_vmcb(vcpu);
3419 return 0;
3420 }
3421
3422 if (exit_fastpath != EXIT_FASTPATH_NONE)
3423 return 1;
3424
3425 return svm_invoke_exit_handler(vcpu, exit_code);
3426 }
3427
3428 static void reload_tss(struct kvm_vcpu *vcpu)
3429 {
3430 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3431
3432 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3433 load_TR_desc();
3434 }
3435
3436 static void pre_svm_run(struct kvm_vcpu *vcpu)
3437 {
3438 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3439 struct vcpu_svm *svm = to_svm(vcpu);
3440
3441 /*
3442 * If the previous vmrun of the vmcb occurred on a different physical
3443 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3444 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3445 */
3446 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3447 svm->current_vmcb->asid_generation = 0;
3448 vmcb_mark_all_dirty(svm->vmcb);
3449 svm->current_vmcb->cpu = vcpu->cpu;
3450 }
3451
3452 if (sev_guest(vcpu->kvm))
3453 return pre_sev_run(svm, vcpu->cpu);
3454
3455 /* FIXME: handle wraparound of asid_generation */
3456 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3457 new_asid(svm, sd);
3458 }
3459
3460 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3461 {
3462 struct vcpu_svm *svm = to_svm(vcpu);
3463
3464 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3465
3466 if (svm->nmi_l1_to_l2)
3467 return;
3468
3469 vcpu->arch.hflags |= HF_NMI_MASK;
3470 if (!sev_es_guest(vcpu->kvm))
3471 svm_set_intercept(svm, INTERCEPT_IRET);
3472 ++vcpu->stat.nmi_injections;
3473 }
3474
3475 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3476 {
3477 struct vcpu_svm *svm = to_svm(vcpu);
3478 u32 type;
3479
3480 if (vcpu->arch.interrupt.soft) {
3481 if (svm_update_soft_interrupt_rip(vcpu))
3482 return;
3483
3484 type = SVM_EVTINJ_TYPE_SOFT;
3485 } else {
3486 type = SVM_EVTINJ_TYPE_INTR;
3487 }
3488
3489 trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3490 vcpu->arch.interrupt.soft, reinjected);
3491 ++vcpu->stat.irq_injections;
3492
3493 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3494 SVM_EVTINJ_VALID | type;
3495 }
3496
3497 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3498 int trig_mode, int vector)
3499 {
3500 /*
3501 * apic->apicv_active must be read after vcpu->mode.
3502 * Pairs with smp_store_release in vcpu_enter_guest.
3503 */
3504 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3505
3506 /* Note, this is called iff the local APIC is in-kernel. */
3507 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3508 /* Process the interrupt via kvm_check_and_inject_events(). */
3509 kvm_make_request(KVM_REQ_EVENT, vcpu);
3510 kvm_vcpu_kick(vcpu);
3511 return;
3512 }
3513
3514 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3515 if (in_guest_mode) {
3516 /*
3517 * Signal the doorbell to tell hardware to inject the IRQ. If
3518 * the vCPU exits the guest before the doorbell chimes, hardware
3519 * will automatically process AVIC interrupts at the next VMRUN.
3520 */
3521 avic_ring_doorbell(vcpu);
3522 } else {
3523 /*
3524 * Wake the vCPU if it was blocking. KVM will then detect the
3525 * pending IRQ when checking if the vCPU has a wake event.
3526 */
3527 kvm_vcpu_wake_up(vcpu);
3528 }
3529 }
3530
3531 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3532 int trig_mode, int vector)
3533 {
3534 kvm_lapic_set_irr(vector, apic);
3535
3536 /*
3537 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3538 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3539 * the read of guest_mode. This guarantees that either VMRUN will see
3540 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3541 * will signal the doorbell if the CPU has already entered the guest.
3542 */
3543 smp_mb__after_atomic();
3544 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3545 }
3546
3547 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3548 {
3549 struct vcpu_svm *svm = to_svm(vcpu);
3550
3551 /*
3552 * SEV-ES guests must always keep the CR intercepts cleared. CR
3553 * tracking is done using the CR write traps.
3554 */
3555 if (sev_es_guest(vcpu->kvm))
3556 return;
3557
3558 if (nested_svm_virtualize_tpr(vcpu))
3559 return;
3560
3561 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3562
3563 if (irr == -1)
3564 return;
3565
3566 if (tpr >= irr)
3567 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3568 }
3569
3570 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3571 {
3572 struct vcpu_svm *svm = to_svm(vcpu);
3573 struct vmcb *vmcb = svm->vmcb;
3574 bool ret;
3575
3576 if (!gif_set(svm))
3577 return true;
3578
3579 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3580 return false;
3581
3582 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3583 (vcpu->arch.hflags & HF_NMI_MASK);
3584
3585 return ret;
3586 }
3587
3588 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3589 {
3590 struct vcpu_svm *svm = to_svm(vcpu);
3591 if (svm->nested.nested_run_pending)
3592 return -EBUSY;
3593
3594 if (svm_nmi_blocked(vcpu))
3595 return 0;
3596
3597 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3598 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3599 return -EBUSY;
3600 return 1;
3601 }
3602
3603 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3604 {
3605 return !!(vcpu->arch.hflags & HF_NMI_MASK);
3606 }
3607
3608 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3609 {
3610 struct vcpu_svm *svm = to_svm(vcpu);
3611
3612 if (masked) {
3613 vcpu->arch.hflags |= HF_NMI_MASK;
3614 if (!sev_es_guest(vcpu->kvm))
3615 svm_set_intercept(svm, INTERCEPT_IRET);
3616 } else {
3617 vcpu->arch.hflags &= ~HF_NMI_MASK;
3618 if (!sev_es_guest(vcpu->kvm))
3619 svm_clr_intercept(svm, INTERCEPT_IRET);
3620 }
3621 }
3622
3623 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3624 {
3625 struct vcpu_svm *svm = to_svm(vcpu);
3626 struct vmcb *vmcb = svm->vmcb;
3627
3628 if (!gif_set(svm))
3629 return true;
3630
3631 if (is_guest_mode(vcpu)) {
3632 /* As long as interrupts are being delivered... */
3633 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3634 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3635 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3636 return true;
3637
3638 /* ... vmexits aren't blocked by the interrupt shadow */
3639 if (nested_exit_on_intr(svm))
3640 return false;
3641 } else {
3642 if (!svm_get_if_flag(vcpu))
3643 return true;
3644 }
3645
3646 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3647 }
3648
3649 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3650 {
3651 struct vcpu_svm *svm = to_svm(vcpu);
3652
3653 if (svm->nested.nested_run_pending)
3654 return -EBUSY;
3655
3656 if (svm_interrupt_blocked(vcpu))
3657 return 0;
3658
3659 /*
3660 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3661 * e.g. if the IRQ arrived asynchronously after checking nested events.
3662 */
3663 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3664 return -EBUSY;
3665
3666 return 1;
3667 }
3668
3669 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3670 {
3671 struct vcpu_svm *svm = to_svm(vcpu);
3672
3673 /*
3674 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3675 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3676 * get that intercept, this function will be called again though and
3677 * we'll get the vintr intercept. However, if the vGIF feature is
3678 * enabled, the STGI interception will not occur. Enable the irq
3679 * window under the assumption that the hardware will set the GIF.
3680 */
3681 if (vgif || gif_set(svm)) {
3682 /*
3683 * IRQ window is not needed when AVIC is enabled,
3684 * unless we have pending ExtINT since it cannot be injected
3685 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3686 * and fallback to injecting IRQ via V_IRQ.
3687 *
3688 * If running nested, AVIC is already locally inhibited
3689 * on this vCPU, therefore there is no need to request
3690 * the VM wide AVIC inhibition.
3691 */
3692 if (!is_guest_mode(vcpu))
3693 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3694
3695 svm_set_vintr(svm);
3696 }
3697 }
3698
3699 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3700 {
3701 struct vcpu_svm *svm = to_svm(vcpu);
3702
3703 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3704 return; /* IRET will cause a vm exit */
3705
3706 if (!gif_set(svm)) {
3707 if (vgif)
3708 svm_set_intercept(svm, INTERCEPT_STGI);
3709 return; /* STGI will cause a vm exit */
3710 }
3711
3712 /*
3713 * Something prevents NMI from been injected. Single step over possible
3714 * problem (IRET or exception injection or interrupt shadow)
3715 */
3716 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3717 svm->nmi_singlestep = true;
3718 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3719 }
3720
3721 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3722 {
3723 struct vcpu_svm *svm = to_svm(vcpu);
3724
3725 /*
3726 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3727 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3728 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3729 */
3730 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3731
3732 /*
3733 * Flush only the current ASID even if the TLB flush was invoked via
3734 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3735 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3736 * unconditionally does a TLB flush on both nested VM-Enter and nested
3737 * VM-Exit (via kvm_mmu_reset_context()).
3738 */
3739 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3740 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3741 else
3742 svm->current_vmcb->asid_generation--;
3743 }
3744
3745 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3746 {
3747 struct vcpu_svm *svm = to_svm(vcpu);
3748
3749 invlpga(gva, svm->vmcb->control.asid);
3750 }
3751
3752 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3753 {
3754 struct vcpu_svm *svm = to_svm(vcpu);
3755
3756 if (nested_svm_virtualize_tpr(vcpu))
3757 return;
3758
3759 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3760 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3761 kvm_set_cr8(vcpu, cr8);
3762 }
3763 }
3764
3765 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3766 {
3767 struct vcpu_svm *svm = to_svm(vcpu);
3768 u64 cr8;
3769
3770 if (nested_svm_virtualize_tpr(vcpu) ||
3771 kvm_vcpu_apicv_active(vcpu))
3772 return;
3773
3774 cr8 = kvm_get_cr8(vcpu);
3775 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3776 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3777 }
3778
3779 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3780 int type)
3781 {
3782 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3783 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3784 struct vcpu_svm *svm = to_svm(vcpu);
3785
3786 /*
3787 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3788 * associated with the original soft exception/interrupt. next_rip is
3789 * cleared on all exits that can occur while vectoring an event, so KVM
3790 * needs to manually set next_rip for re-injection. Unlike the !nrips
3791 * case below, this needs to be done if and only if KVM is re-injecting
3792 * the same event, i.e. if the event is a soft exception/interrupt,
3793 * otherwise next_rip is unused on VMRUN.
3794 */
3795 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3796 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3797 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3798 /*
3799 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3800 * injecting the soft exception/interrupt. That advancement needs to
3801 * be unwound if vectoring didn't complete. Note, the new event may
3802 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3803 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3804 * be the reported vectored event, but RIP still needs to be unwound.
3805 */
3806 else if (!nrips && (is_soft || is_exception) &&
3807 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3808 kvm_rip_write(vcpu, svm->soft_int_old_rip);
3809 }
3810
3811 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3812 {
3813 struct vcpu_svm *svm = to_svm(vcpu);
3814 u8 vector;
3815 int type;
3816 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3817 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3818 bool soft_int_injected = svm->soft_int_injected;
3819
3820 svm->nmi_l1_to_l2 = false;
3821 svm->soft_int_injected = false;
3822
3823 /*
3824 * If we've made progress since setting HF_IRET_MASK, we've
3825 * executed an IRET and can allow NMI injection.
3826 */
3827 if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3828 (sev_es_guest(vcpu->kvm) ||
3829 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3830 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3831 kvm_make_request(KVM_REQ_EVENT, vcpu);
3832 }
3833
3834 vcpu->arch.nmi_injected = false;
3835 kvm_clear_exception_queue(vcpu);
3836 kvm_clear_interrupt_queue(vcpu);
3837
3838 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3839 return;
3840
3841 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842
3843 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3844 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3845
3846 if (soft_int_injected)
3847 svm_complete_soft_interrupt(vcpu, vector, type);
3848
3849 switch (type) {
3850 case SVM_EXITINTINFO_TYPE_NMI:
3851 vcpu->arch.nmi_injected = true;
3852 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3853 break;
3854 case SVM_EXITINTINFO_TYPE_EXEPT:
3855 /*
3856 * Never re-inject a #VC exception.
3857 */
3858 if (vector == X86_TRAP_VC)
3859 break;
3860
3861 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3862 u32 err = svm->vmcb->control.exit_int_info_err;
3863 kvm_requeue_exception_e(vcpu, vector, err);
3864
3865 } else
3866 kvm_requeue_exception(vcpu, vector);
3867 break;
3868 case SVM_EXITINTINFO_TYPE_INTR:
3869 kvm_queue_interrupt(vcpu, vector, false);
3870 break;
3871 case SVM_EXITINTINFO_TYPE_SOFT:
3872 kvm_queue_interrupt(vcpu, vector, true);
3873 break;
3874 default:
3875 break;
3876 }
3877
3878 }
3879
3880 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3881 {
3882 struct vcpu_svm *svm = to_svm(vcpu);
3883 struct vmcb_control_area *control = &svm->vmcb->control;
3884
3885 control->exit_int_info = control->event_inj;
3886 control->exit_int_info_err = control->event_inj_err;
3887 control->event_inj = 0;
3888 svm_complete_interrupts(vcpu);
3889 }
3890
3891 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3892 {
3893 return 1;
3894 }
3895
3896 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3897 {
3898 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3899
3900 /*
3901 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
3902 * can't read guest memory (dereference memslots) to decode the WRMSR.
3903 */
3904 if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
3905 nrips && control->next_rip)
3906 return handle_fastpath_set_msr_irqoff(vcpu);
3907
3908 return EXIT_FASTPATH_NONE;
3909 }
3910
3911 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
3912 {
3913 struct vcpu_svm *svm = to_svm(vcpu);
3914
3915 guest_state_enter_irqoff();
3916
3917 if (sev_es_guest(vcpu->kvm))
3918 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
3919 else
3920 __svm_vcpu_run(svm, spec_ctrl_intercepted);
3921
3922 guest_state_exit_irqoff();
3923 }
3924
3925 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3926 {
3927 struct vcpu_svm *svm = to_svm(vcpu);
3928 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
3929
3930 trace_kvm_entry(vcpu);
3931
3932 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3933 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3934 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3935
3936 /*
3937 * Disable singlestep if we're injecting an interrupt/exception.
3938 * We don't want our modified rflags to be pushed on the stack where
3939 * we might not be able to easily reset them if we disabled NMI
3940 * singlestep later.
3941 */
3942 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3943 /*
3944 * Event injection happens before external interrupts cause a
3945 * vmexit and interrupts are disabled here, so smp_send_reschedule
3946 * is enough to force an immediate vmexit.
3947 */
3948 disable_nmi_singlestep(svm);
3949 smp_send_reschedule(vcpu->cpu);
3950 }
3951
3952 pre_svm_run(vcpu);
3953
3954 sync_lapic_to_cr8(vcpu);
3955
3956 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3957 svm->vmcb->control.asid = svm->asid;
3958 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3959 }
3960 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3961
3962 svm_hv_update_vp_id(svm->vmcb, vcpu);
3963
3964 /*
3965 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3966 * of a #DB.
3967 */
3968 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3969 svm_set_dr6(svm, vcpu->arch.dr6);
3970 else
3971 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3972
3973 clgi();
3974 kvm_load_guest_xsave_state(vcpu);
3975
3976 kvm_wait_lapic_expire(vcpu);
3977
3978 /*
3979 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3980 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3981 * is no need to worry about the conditional branch over the wrmsr
3982 * being speculatively taken.
3983 */
3984 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3985 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
3986
3987 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
3988
3989 if (!sev_es_guest(vcpu->kvm))
3990 reload_tss(vcpu);
3991
3992 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3993 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
3994
3995 if (!sev_es_guest(vcpu->kvm)) {
3996 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3997 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3998 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3999 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4000 }
4001 vcpu->arch.regs_dirty = 0;
4002
4003 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4004 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4005
4006 kvm_load_host_xsave_state(vcpu);
4007 stgi();
4008
4009 /* Any pending NMI will happen here */
4010
4011 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4012 kvm_after_interrupt(vcpu);
4013
4014 sync_cr8_to_lapic(vcpu);
4015
4016 svm->next_rip = 0;
4017 if (is_guest_mode(vcpu)) {
4018 nested_sync_control_from_vmcb02(svm);
4019
4020 /* Track VMRUNs that have made past consistency checking */
4021 if (svm->nested.nested_run_pending &&
4022 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4023 ++vcpu->stat.nested_run;
4024
4025 svm->nested.nested_run_pending = 0;
4026 }
4027
4028 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4029 vmcb_mark_all_clean(svm->vmcb);
4030
4031 /* if exit due to PF check for async PF */
4032 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4033 vcpu->arch.apf.host_apf_flags =
4034 kvm_read_and_reset_apf_flags();
4035
4036 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4037
4038 /*
4039 * We need to handle MC intercepts here before the vcpu has a chance to
4040 * change the physical cpu
4041 */
4042 if (unlikely(svm->vmcb->control.exit_code ==
4043 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4044 svm_handle_mce(vcpu);
4045
4046 svm_complete_interrupts(vcpu);
4047
4048 if (is_guest_mode(vcpu))
4049 return EXIT_FASTPATH_NONE;
4050
4051 return svm_exit_handlers_fastpath(vcpu);
4052 }
4053
4054 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4055 int root_level)
4056 {
4057 struct vcpu_svm *svm = to_svm(vcpu);
4058 unsigned long cr3;
4059
4060 if (npt_enabled) {
4061 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4062 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4063
4064 hv_track_root_tdp(vcpu, root_hpa);
4065
4066 cr3 = vcpu->arch.cr3;
4067 } else if (root_level >= PT64_ROOT_4LEVEL) {
4068 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4069 } else {
4070 /* PCID in the guest should be impossible with a 32-bit MMU. */
4071 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4072 cr3 = root_hpa;
4073 }
4074
4075 svm->vmcb->save.cr3 = cr3;
4076 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4077 }
4078
4079 static int is_disabled(void)
4080 {
4081 u64 vm_cr;
4082
4083 rdmsrl(MSR_VM_CR, vm_cr);
4084 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4085 return 1;
4086
4087 return 0;
4088 }
4089
4090 static void
4091 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4092 {
4093 /*
4094 * Patch in the VMMCALL instruction:
4095 */
4096 hypercall[0] = 0x0f;
4097 hypercall[1] = 0x01;
4098 hypercall[2] = 0xd9;
4099 }
4100
4101 static int __init svm_check_processor_compat(void)
4102 {
4103 return 0;
4104 }
4105
4106 /*
4107 * The kvm parameter can be NULL (module initialization, or invocation before
4108 * VM creation). Be sure to check the kvm parameter before using it.
4109 */
4110 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4111 {
4112 switch (index) {
4113 case MSR_IA32_MCG_EXT_CTL:
4114 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4115 return false;
4116 case MSR_IA32_SMBASE:
4117 if (!IS_ENABLED(CONFIG_KVM_SMM))
4118 return false;
4119 /* SEV-ES guests do not support SMM, so report false */
4120 if (kvm && sev_es_guest(kvm))
4121 return false;
4122 break;
4123 default:
4124 break;
4125 }
4126
4127 return true;
4128 }
4129
4130 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4131 {
4132 struct vcpu_svm *svm = to_svm(vcpu);
4133 struct kvm_cpuid_entry2 *best;
4134
4135 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4136 boot_cpu_has(X86_FEATURE_XSAVE) &&
4137 boot_cpu_has(X86_FEATURE_XSAVES);
4138
4139 /* Update nrips enabled cache */
4140 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4141 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4142
4143 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4144 svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4145
4146 svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4147
4148 svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4149 guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4150
4151 svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4152 guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4153
4154 svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4155
4156 svm_recalc_instruction_intercepts(vcpu, svm);
4157
4158 /* For sev guests, the memory encryption bit is not reserved in CR3. */
4159 if (sev_guest(vcpu->kvm)) {
4160 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4161 if (best)
4162 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4163 }
4164
4165 init_vmcb_after_set_cpuid(vcpu);
4166 }
4167
4168 static bool svm_has_wbinvd_exit(void)
4169 {
4170 return true;
4171 }
4172
4173 #define PRE_EX(exit) { .exit_code = (exit), \
4174 .stage = X86_ICPT_PRE_EXCEPT, }
4175 #define POST_EX(exit) { .exit_code = (exit), \
4176 .stage = X86_ICPT_POST_EXCEPT, }
4177 #define POST_MEM(exit) { .exit_code = (exit), \
4178 .stage = X86_ICPT_POST_MEMACCESS, }
4179
4180 static const struct __x86_intercept {
4181 u32 exit_code;
4182 enum x86_intercept_stage stage;
4183 } x86_intercept_map[] = {
4184 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4185 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4186 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4187 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4188 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4189 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4190 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4191 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4192 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4193 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4194 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4195 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4196 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4197 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4198 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4199 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4200 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4201 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4202 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4203 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4204 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4205 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4206 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4207 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4208 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4209 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4210 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4211 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4212 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4213 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4214 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4215 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4216 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4217 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4218 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4219 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4220 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4221 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4222 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4223 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4224 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4225 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4226 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4227 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4228 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4229 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4230 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4231 };
4232
4233 #undef PRE_EX
4234 #undef POST_EX
4235 #undef POST_MEM
4236
4237 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4238 struct x86_instruction_info *info,
4239 enum x86_intercept_stage stage,
4240 struct x86_exception *exception)
4241 {
4242 struct vcpu_svm *svm = to_svm(vcpu);
4243 int vmexit, ret = X86EMUL_CONTINUE;
4244 struct __x86_intercept icpt_info;
4245 struct vmcb *vmcb = svm->vmcb;
4246
4247 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4248 goto out;
4249
4250 icpt_info = x86_intercept_map[info->intercept];
4251
4252 if (stage != icpt_info.stage)
4253 goto out;
4254
4255 switch (icpt_info.exit_code) {
4256 case SVM_EXIT_READ_CR0:
4257 if (info->intercept == x86_intercept_cr_read)
4258 icpt_info.exit_code += info->modrm_reg;
4259 break;
4260 case SVM_EXIT_WRITE_CR0: {
4261 unsigned long cr0, val;
4262
4263 if (info->intercept == x86_intercept_cr_write)
4264 icpt_info.exit_code += info->modrm_reg;
4265
4266 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4267 info->intercept == x86_intercept_clts)
4268 break;
4269
4270 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4271 INTERCEPT_SELECTIVE_CR0)))
4272 break;
4273
4274 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4275 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4276
4277 if (info->intercept == x86_intercept_lmsw) {
4278 cr0 &= 0xfUL;
4279 val &= 0xfUL;
4280 /* lmsw can't clear PE - catch this here */
4281 if (cr0 & X86_CR0_PE)
4282 val |= X86_CR0_PE;
4283 }
4284
4285 if (cr0 ^ val)
4286 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4287
4288 break;
4289 }
4290 case SVM_EXIT_READ_DR0:
4291 case SVM_EXIT_WRITE_DR0:
4292 icpt_info.exit_code += info->modrm_reg;
4293 break;
4294 case SVM_EXIT_MSR:
4295 if (info->intercept == x86_intercept_wrmsr)
4296 vmcb->control.exit_info_1 = 1;
4297 else
4298 vmcb->control.exit_info_1 = 0;
4299 break;
4300 case SVM_EXIT_PAUSE:
4301 /*
4302 * We get this for NOP only, but pause
4303 * is rep not, check this here
4304 */
4305 if (info->rep_prefix != REPE_PREFIX)
4306 goto out;
4307 break;
4308 case SVM_EXIT_IOIO: {
4309 u64 exit_info;
4310 u32 bytes;
4311
4312 if (info->intercept == x86_intercept_in ||
4313 info->intercept == x86_intercept_ins) {
4314 exit_info = ((info->src_val & 0xffff) << 16) |
4315 SVM_IOIO_TYPE_MASK;
4316 bytes = info->dst_bytes;
4317 } else {
4318 exit_info = (info->dst_val & 0xffff) << 16;
4319 bytes = info->src_bytes;
4320 }
4321
4322 if (info->intercept == x86_intercept_outs ||
4323 info->intercept == x86_intercept_ins)
4324 exit_info |= SVM_IOIO_STR_MASK;
4325
4326 if (info->rep_prefix)
4327 exit_info |= SVM_IOIO_REP_MASK;
4328
4329 bytes = min(bytes, 4u);
4330
4331 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4332
4333 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4334
4335 vmcb->control.exit_info_1 = exit_info;
4336 vmcb->control.exit_info_2 = info->next_rip;
4337
4338 break;
4339 }
4340 default:
4341 break;
4342 }
4343
4344 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4345 if (static_cpu_has(X86_FEATURE_NRIPS))
4346 vmcb->control.next_rip = info->next_rip;
4347 vmcb->control.exit_code = icpt_info.exit_code;
4348 vmexit = nested_svm_exit_handled(svm);
4349
4350 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4351 : X86EMUL_CONTINUE;
4352
4353 out:
4354 return ret;
4355 }
4356
4357 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4358 {
4359 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4360 vcpu->arch.at_instruction_boundary = true;
4361 }
4362
4363 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4364 {
4365 if (!kvm_pause_in_guest(vcpu->kvm))
4366 shrink_ple_window(vcpu);
4367 }
4368
4369 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4370 {
4371 /* [63:9] are reserved. */
4372 vcpu->arch.mcg_cap &= 0x1ff;
4373 }
4374
4375 #ifdef CONFIG_KVM_SMM
4376 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4377 {
4378 struct vcpu_svm *svm = to_svm(vcpu);
4379
4380 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4381 if (!gif_set(svm))
4382 return true;
4383
4384 return is_smm(vcpu);
4385 }
4386
4387 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4388 {
4389 struct vcpu_svm *svm = to_svm(vcpu);
4390 if (svm->nested.nested_run_pending)
4391 return -EBUSY;
4392
4393 if (svm_smi_blocked(vcpu))
4394 return 0;
4395
4396 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4397 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4398 return -EBUSY;
4399
4400 return 1;
4401 }
4402
4403 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4404 {
4405 struct vcpu_svm *svm = to_svm(vcpu);
4406 struct kvm_host_map map_save;
4407 int ret;
4408
4409 if (!is_guest_mode(vcpu))
4410 return 0;
4411
4412 /*
4413 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is
4414 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4415 */
4416
4417 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4418 return 1;
4419
4420 smram->smram64.svm_guest_flag = 1;
4421 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4422
4423 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4424 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4425 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4426
4427 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4428 if (ret)
4429 return ret;
4430
4431 /*
4432 * KVM uses VMCB01 to store L1 host state while L2 runs but
4433 * VMCB01 is going to be used during SMM and thus the state will
4434 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4435 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4436 * format of the area is identical to guest save area offsetted
4437 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4438 * within 'struct vmcb'). Note: HSAVE area may also be used by
4439 * L1 hypervisor to save additional host context (e.g. KVM does
4440 * that, see svm_prepare_switch_to_guest()) which must be
4441 * preserved.
4442 */
4443 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4444 return 1;
4445
4446 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4447
4448 svm_copy_vmrun_state(map_save.hva + 0x400,
4449 &svm->vmcb01.ptr->save);
4450
4451 kvm_vcpu_unmap(vcpu, &map_save, true);
4452 return 0;
4453 }
4454
4455 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4456 {
4457 struct vcpu_svm *svm = to_svm(vcpu);
4458 struct kvm_host_map map, map_save;
4459 struct vmcb *vmcb12;
4460 int ret;
4461
4462 const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4463
4464 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4465 return 0;
4466
4467 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4468 if (!smram64->svm_guest_flag)
4469 return 0;
4470
4471 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4472 return 1;
4473
4474 if (!(smram64->efer & EFER_SVME))
4475 return 1;
4476
4477 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4478 return 1;
4479
4480 ret = 1;
4481 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4482 goto unmap_map;
4483
4484 if (svm_allocate_nested(svm))
4485 goto unmap_save;
4486
4487 /*
4488 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4489 * used during SMM (see svm_enter_smm())
4490 */
4491
4492 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4493
4494 /*
4495 * Enter the nested guest now
4496 */
4497
4498 vmcb_mark_all_dirty(svm->vmcb01.ptr);
4499
4500 vmcb12 = map.hva;
4501 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4502 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4503 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4504
4505 if (ret)
4506 goto unmap_save;
4507
4508 svm->nested.nested_run_pending = 1;
4509
4510 unmap_save:
4511 kvm_vcpu_unmap(vcpu, &map_save, true);
4512 unmap_map:
4513 kvm_vcpu_unmap(vcpu, &map, true);
4514 return ret;
4515 }
4516
4517 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4518 {
4519 struct vcpu_svm *svm = to_svm(vcpu);
4520
4521 if (!gif_set(svm)) {
4522 if (vgif)
4523 svm_set_intercept(svm, INTERCEPT_STGI);
4524 /* STGI will cause a vm exit */
4525 } else {
4526 /* We must be in SMM; RSM will cause a vmexit anyway. */
4527 }
4528 }
4529 #endif
4530
4531 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4532 void *insn, int insn_len)
4533 {
4534 bool smep, smap, is_user;
4535 unsigned long cr4;
4536 u64 error_code;
4537
4538 /* Emulation is always possible when KVM has access to all guest state. */
4539 if (!sev_guest(vcpu->kvm))
4540 return true;
4541
4542 /* #UD and #GP should never be intercepted for SEV guests. */
4543 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4544 EMULTYPE_TRAP_UD_FORCED |
4545 EMULTYPE_VMWARE_GP));
4546
4547 /*
4548 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4549 * to guest register state.
4550 */
4551 if (sev_es_guest(vcpu->kvm))
4552 return false;
4553
4554 /*
4555 * Emulation is possible if the instruction is already decoded, e.g.
4556 * when completing I/O after returning from userspace.
4557 */
4558 if (emul_type & EMULTYPE_NO_DECODE)
4559 return true;
4560
4561 /*
4562 * Emulation is possible for SEV guests if and only if a prefilled
4563 * buffer containing the bytes of the intercepted instruction is
4564 * available. SEV guest memory is encrypted with a guest specific key
4565 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4566 * decode garbage.
4567 *
4568 * Inject #UD if KVM reached this point without an instruction buffer.
4569 * In practice, this path should never be hit by a well-behaved guest,
4570 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4571 * is still theoretically reachable, e.g. via unaccelerated fault-like
4572 * AVIC access, and needs to be handled by KVM to avoid putting the
4573 * guest into an infinite loop. Injecting #UD is somewhat arbitrary,
4574 * but its the least awful option given lack of insight into the guest.
4575 */
4576 if (unlikely(!insn)) {
4577 kvm_queue_exception(vcpu, UD_VECTOR);
4578 return false;
4579 }
4580
4581 /*
4582 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4583 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4584 * the faulting instruction because the code fetch itself faulted, e.g.
4585 * the guest attempted to fetch from emulated MMIO or a guest page
4586 * table used to translate CS:RIP resides in emulated MMIO.
4587 */
4588 if (likely(insn_len))
4589 return true;
4590
4591 /*
4592 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4593 *
4594 * Errata:
4595 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4596 * possible that CPU microcode implementing DecodeAssist will fail to
4597 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4598 * be '0'. This happens because microcode reads CS:RIP using a _data_
4599 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4600 * gives up and does not fill the instruction bytes buffer.
4601 *
4602 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4603 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4604 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4605 * GuestIntrBytes field of the VMCB.
4606 *
4607 * This does _not_ mean that the erratum has been encountered, as the
4608 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4609 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4610 * encountered a reserved/not-present #PF.
4611 *
4612 * To hit the erratum, the following conditions must be true:
4613 * 1. CR4.SMAP=1 (obviously).
4614 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4615 * have been hit as the guest would have encountered a SMEP
4616 * violation #PF, not a #NPF.
4617 * 3. The #NPF is not due to a code fetch, in which case failure to
4618 * retrieve the instruction bytes is legitimate (see abvoe).
4619 *
4620 * In addition, don't apply the erratum workaround if the #NPF occurred
4621 * while translating guest page tables (see below).
4622 */
4623 error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4624 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4625 goto resume_guest;
4626
4627 cr4 = kvm_read_cr4(vcpu);
4628 smep = cr4 & X86_CR4_SMEP;
4629 smap = cr4 & X86_CR4_SMAP;
4630 is_user = svm_get_cpl(vcpu) == 3;
4631 if (smap && (!smep || is_user)) {
4632 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4633
4634 /*
4635 * If the fault occurred in userspace, arbitrarily inject #GP
4636 * to avoid killing the guest and to hopefully avoid confusing
4637 * the guest kernel too much, e.g. injecting #PF would not be
4638 * coherent with respect to the guest's page tables. Request
4639 * triple fault if the fault occurred in the kernel as there's
4640 * no fault that KVM can inject without confusing the guest.
4641 * In practice, the triple fault is moot as no sane SEV kernel
4642 * will execute from user memory while also running with SMAP=1.
4643 */
4644 if (is_user)
4645 kvm_inject_gp(vcpu, 0);
4646 else
4647 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4648 }
4649
4650 resume_guest:
4651 /*
4652 * If the erratum was not hit, simply resume the guest and let it fault
4653 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4654 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4655 * userspace will kill the guest, and letting the emulator read garbage
4656 * will yield random behavior and potentially corrupt the guest.
4657 *
4658 * Simply resuming the guest is technically not a violation of the SEV
4659 * architecture. AMD's APM states that all code fetches and page table
4660 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4661 * APM also states that encrypted accesses to MMIO are "ignored", but
4662 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4663 * the guest spin is technically "ignoring" the access.
4664 */
4665 return false;
4666 }
4667
4668 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4669 {
4670 struct vcpu_svm *svm = to_svm(vcpu);
4671
4672 return !gif_set(svm);
4673 }
4674
4675 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4676 {
4677 if (!sev_es_guest(vcpu->kvm))
4678 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4679
4680 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4681 }
4682
4683 static void svm_vm_destroy(struct kvm *kvm)
4684 {
4685 avic_vm_destroy(kvm);
4686 sev_vm_destroy(kvm);
4687 }
4688
4689 static int svm_vm_init(struct kvm *kvm)
4690 {
4691 if (!pause_filter_count || !pause_filter_thresh)
4692 kvm->arch.pause_in_guest = true;
4693
4694 if (enable_apicv) {
4695 int ret = avic_vm_init(kvm);
4696 if (ret)
4697 return ret;
4698 }
4699
4700 return 0;
4701 }
4702
4703 static struct kvm_x86_ops svm_x86_ops __initdata = {
4704 .name = "kvm_amd",
4705
4706 .hardware_unsetup = svm_hardware_unsetup,
4707 .hardware_enable = svm_hardware_enable,
4708 .hardware_disable = svm_hardware_disable,
4709 .has_emulated_msr = svm_has_emulated_msr,
4710
4711 .vcpu_create = svm_vcpu_create,
4712 .vcpu_free = svm_vcpu_free,
4713 .vcpu_reset = svm_vcpu_reset,
4714
4715 .vm_size = sizeof(struct kvm_svm),
4716 .vm_init = svm_vm_init,
4717 .vm_destroy = svm_vm_destroy,
4718
4719 .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4720 .vcpu_load = svm_vcpu_load,
4721 .vcpu_put = svm_vcpu_put,
4722 .vcpu_blocking = avic_vcpu_blocking,
4723 .vcpu_unblocking = avic_vcpu_unblocking,
4724
4725 .update_exception_bitmap = svm_update_exception_bitmap,
4726 .get_msr_feature = svm_get_msr_feature,
4727 .get_msr = svm_get_msr,
4728 .set_msr = svm_set_msr,
4729 .get_segment_base = svm_get_segment_base,
4730 .get_segment = svm_get_segment,
4731 .set_segment = svm_set_segment,
4732 .get_cpl = svm_get_cpl,
4733 .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4734 .set_cr0 = svm_set_cr0,
4735 .post_set_cr3 = sev_post_set_cr3,
4736 .is_valid_cr4 = svm_is_valid_cr4,
4737 .set_cr4 = svm_set_cr4,
4738 .set_efer = svm_set_efer,
4739 .get_idt = svm_get_idt,
4740 .set_idt = svm_set_idt,
4741 .get_gdt = svm_get_gdt,
4742 .set_gdt = svm_set_gdt,
4743 .set_dr7 = svm_set_dr7,
4744 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4745 .cache_reg = svm_cache_reg,
4746 .get_rflags = svm_get_rflags,
4747 .set_rflags = svm_set_rflags,
4748 .get_if_flag = svm_get_if_flag,
4749
4750 .flush_tlb_all = svm_flush_tlb_current,
4751 .flush_tlb_current = svm_flush_tlb_current,
4752 .flush_tlb_gva = svm_flush_tlb_gva,
4753 .flush_tlb_guest = svm_flush_tlb_current,
4754
4755 .vcpu_pre_run = svm_vcpu_pre_run,
4756 .vcpu_run = svm_vcpu_run,
4757 .handle_exit = svm_handle_exit,
4758 .skip_emulated_instruction = svm_skip_emulated_instruction,
4759 .update_emulated_instruction = NULL,
4760 .set_interrupt_shadow = svm_set_interrupt_shadow,
4761 .get_interrupt_shadow = svm_get_interrupt_shadow,
4762 .patch_hypercall = svm_patch_hypercall,
4763 .inject_irq = svm_inject_irq,
4764 .inject_nmi = svm_inject_nmi,
4765 .inject_exception = svm_inject_exception,
4766 .cancel_injection = svm_cancel_injection,
4767 .interrupt_allowed = svm_interrupt_allowed,
4768 .nmi_allowed = svm_nmi_allowed,
4769 .get_nmi_mask = svm_get_nmi_mask,
4770 .set_nmi_mask = svm_set_nmi_mask,
4771 .enable_nmi_window = svm_enable_nmi_window,
4772 .enable_irq_window = svm_enable_irq_window,
4773 .update_cr8_intercept = svm_update_cr8_intercept,
4774 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4775 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4776 .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4777 .apicv_post_state_restore = avic_apicv_post_state_restore,
4778
4779 .get_exit_info = svm_get_exit_info,
4780
4781 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4782
4783 .has_wbinvd_exit = svm_has_wbinvd_exit,
4784
4785 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4786 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4787 .write_tsc_offset = svm_write_tsc_offset,
4788 .write_tsc_multiplier = svm_write_tsc_multiplier,
4789
4790 .load_mmu_pgd = svm_load_mmu_pgd,
4791
4792 .check_intercept = svm_check_intercept,
4793 .handle_exit_irqoff = svm_handle_exit_irqoff,
4794
4795 .request_immediate_exit = __kvm_request_immediate_exit,
4796
4797 .sched_in = svm_sched_in,
4798
4799 .nested_ops = &svm_nested_ops,
4800
4801 .deliver_interrupt = svm_deliver_interrupt,
4802 .pi_update_irte = avic_pi_update_irte,
4803 .setup_mce = svm_setup_mce,
4804
4805 #ifdef CONFIG_KVM_SMM
4806 .smi_allowed = svm_smi_allowed,
4807 .enter_smm = svm_enter_smm,
4808 .leave_smm = svm_leave_smm,
4809 .enable_smi_window = svm_enable_smi_window,
4810 #endif
4811
4812 .mem_enc_ioctl = sev_mem_enc_ioctl,
4813 .mem_enc_register_region = sev_mem_enc_register_region,
4814 .mem_enc_unregister_region = sev_mem_enc_unregister_region,
4815 .guest_memory_reclaimed = sev_guest_memory_reclaimed,
4816
4817 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4818 .vm_move_enc_context_from = sev_vm_move_enc_context_from,
4819
4820 .can_emulate_instruction = svm_can_emulate_instruction,
4821
4822 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4823
4824 .msr_filter_changed = svm_msr_filter_changed,
4825 .complete_emulated_msr = svm_complete_emulated_msr,
4826
4827 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4828 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4829 };
4830
4831 /*
4832 * The default MMIO mask is a single bit (excluding the present bit),
4833 * which could conflict with the memory encryption bit. Check for
4834 * memory encryption support and override the default MMIO mask if
4835 * memory encryption is enabled.
4836 */
4837 static __init void svm_adjust_mmio_mask(void)
4838 {
4839 unsigned int enc_bit, mask_bit;
4840 u64 msr, mask;
4841
4842 /* If there is no memory encryption support, use existing mask */
4843 if (cpuid_eax(0x80000000) < 0x8000001f)
4844 return;
4845
4846 /* If memory encryption is not enabled, use existing mask */
4847 rdmsrl(MSR_AMD64_SYSCFG, msr);
4848 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4849 return;
4850
4851 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4852 mask_bit = boot_cpu_data.x86_phys_bits;
4853
4854 /* Increment the mask bit if it is the same as the encryption bit */
4855 if (enc_bit == mask_bit)
4856 mask_bit++;
4857
4858 /*
4859 * If the mask bit location is below 52, then some bits above the
4860 * physical addressing limit will always be reserved, so use the
4861 * rsvd_bits() function to generate the mask. This mask, along with
4862 * the present bit, will be used to generate a page fault with
4863 * PFER.RSV = 1.
4864 *
4865 * If the mask bit location is 52 (or above), then clear the mask.
4866 */
4867 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4868
4869 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4870 }
4871
4872 static __init void svm_set_cpu_caps(void)
4873 {
4874 kvm_set_cpu_caps();
4875
4876 kvm_caps.supported_perf_cap = 0;
4877 kvm_caps.supported_xss = 0;
4878
4879 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4880 if (nested) {
4881 kvm_cpu_cap_set(X86_FEATURE_SVM);
4882 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4883
4884 if (nrips)
4885 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4886
4887 if (npt_enabled)
4888 kvm_cpu_cap_set(X86_FEATURE_NPT);
4889
4890 if (tsc_scaling)
4891 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4892
4893 if (vls)
4894 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4895 if (lbrv)
4896 kvm_cpu_cap_set(X86_FEATURE_LBRV);
4897
4898 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4899 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4900
4901 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4902 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4903
4904 if (vgif)
4905 kvm_cpu_cap_set(X86_FEATURE_VGIF);
4906
4907 /* Nested VM can receive #VMEXIT instead of triggering #GP */
4908 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4909 }
4910
4911 /* CPUID 0x80000008 */
4912 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4913 boot_cpu_has(X86_FEATURE_AMD_SSBD))
4914 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4915
4916 /* AMD PMU PERFCTR_CORE CPUID */
4917 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4918 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4919
4920 /* CPUID 0x8000001F (SME/SEV features) */
4921 sev_set_cpu_caps();
4922 }
4923
4924 static __init int svm_hardware_setup(void)
4925 {
4926 int cpu;
4927 struct page *iopm_pages;
4928 void *iopm_va;
4929 int r;
4930 unsigned int order = get_order(IOPM_SIZE);
4931
4932 /*
4933 * NX is required for shadow paging and for NPT if the NX huge pages
4934 * mitigation is enabled.
4935 */
4936 if (!boot_cpu_has(X86_FEATURE_NX)) {
4937 pr_err_ratelimited("NX (Execute Disable) not supported\n");
4938 return -EOPNOTSUPP;
4939 }
4940 kvm_enable_efer_bits(EFER_NX);
4941
4942 iopm_pages = alloc_pages(GFP_KERNEL, order);
4943
4944 if (!iopm_pages)
4945 return -ENOMEM;
4946
4947 iopm_va = page_address(iopm_pages);
4948 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4949 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4950
4951 init_msrpm_offsets();
4952
4953 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4954 XFEATURE_MASK_BNDCSR);
4955
4956 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4957 kvm_enable_efer_bits(EFER_FFXSR);
4958
4959 if (tsc_scaling) {
4960 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4961 tsc_scaling = false;
4962 } else {
4963 pr_info("TSC scaling supported\n");
4964 kvm_caps.has_tsc_control = true;
4965 }
4966 }
4967 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4968 kvm_caps.tsc_scaling_ratio_frac_bits = 32;
4969
4970 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4971
4972 /* Check for pause filtering support */
4973 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4974 pause_filter_count = 0;
4975 pause_filter_thresh = 0;
4976 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4977 pause_filter_thresh = 0;
4978 }
4979
4980 if (nested) {
4981 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4982 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4983 }
4984
4985 /*
4986 * KVM's MMU doesn't support using 2-level paging for itself, and thus
4987 * NPT isn't supported if the host is using 2-level paging since host
4988 * CR4 is unchanged on VMRUN.
4989 */
4990 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4991 npt_enabled = false;
4992
4993 if (!boot_cpu_has(X86_FEATURE_NPT))
4994 npt_enabled = false;
4995
4996 /* Force VM NPT level equal to the host's paging level */
4997 kvm_configure_mmu(npt_enabled, get_npt_level(),
4998 get_npt_level(), PG_LEVEL_1G);
4999 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5000
5001 /* Setup shadow_me_value and shadow_me_mask */
5002 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5003
5004 svm_adjust_mmio_mask();
5005
5006 /*
5007 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5008 * may be modified by svm_adjust_mmio_mask()).
5009 */
5010 sev_hardware_setup();
5011
5012 svm_hv_hardware_setup();
5013
5014 for_each_possible_cpu(cpu) {
5015 r = svm_cpu_init(cpu);
5016 if (r)
5017 goto err;
5018 }
5019
5020 if (nrips) {
5021 if (!boot_cpu_has(X86_FEATURE_NRIPS))
5022 nrips = false;
5023 }
5024
5025 enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops);
5026
5027 if (!enable_apicv) {
5028 svm_x86_ops.vcpu_blocking = NULL;
5029 svm_x86_ops.vcpu_unblocking = NULL;
5030 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5031 } else if (!x2avic_enabled) {
5032 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5033 }
5034
5035 if (vls) {
5036 if (!npt_enabled ||
5037 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5038 !IS_ENABLED(CONFIG_X86_64)) {
5039 vls = false;
5040 } else {
5041 pr_info("Virtual VMLOAD VMSAVE supported\n");
5042 }
5043 }
5044
5045 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5046 svm_gp_erratum_intercept = false;
5047
5048 if (vgif) {
5049 if (!boot_cpu_has(X86_FEATURE_VGIF))
5050 vgif = false;
5051 else
5052 pr_info("Virtual GIF supported\n");
5053 }
5054
5055 if (lbrv) {
5056 if (!boot_cpu_has(X86_FEATURE_LBRV))
5057 lbrv = false;
5058 else
5059 pr_info("LBR virtualization supported\n");
5060 }
5061
5062 if (!enable_pmu)
5063 pr_info("PMU virtualization is disabled\n");
5064
5065 svm_set_cpu_caps();
5066
5067 /*
5068 * It seems that on AMD processors PTE's accessed bit is
5069 * being set by the CPU hardware before the NPF vmexit.
5070 * This is not expected behaviour and our tests fail because
5071 * of it.
5072 * A workaround here is to disable support for
5073 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5074 * In this case userspace can know if there is support using
5075 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5076 * it
5077 * If future AMD CPU models change the behaviour described above,
5078 * this variable can be changed accordingly
5079 */
5080 allow_smaller_maxphyaddr = !npt_enabled;
5081
5082 return 0;
5083
5084 err:
5085 svm_hardware_unsetup();
5086 return r;
5087 }
5088
5089
5090 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5091 .cpu_has_kvm_support = has_svm,
5092 .disabled_by_bios = is_disabled,
5093 .hardware_setup = svm_hardware_setup,
5094 .check_processor_compatibility = svm_check_processor_compat,
5095
5096 .runtime_ops = &svm_x86_ops,
5097 .pmu_ops = &amd_pmu_ops,
5098 };
5099
5100 static int __init svm_init(void)
5101 {
5102 __unused_size_checks();
5103
5104 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5105 __alignof__(struct vcpu_svm), THIS_MODULE);
5106 }
5107
5108 static void __exit svm_exit(void)
5109 {
5110 kvm_exit();
5111 }
5112
5113 module_init(svm_init)
5114 module_exit(svm_exit)