]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/x86/kvm/svm/svm.c
Merge tag 'kvmarm-fixes-5.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41
42 #include <asm/virtext.h>
43 #include "trace.h"
44
45 #include "svm.h"
46 #include "svm_ops.h"
47
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57 {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 #define SVM_FEATURE_LBRV (1 << 1)
66 #define SVM_FEATURE_SVML (1 << 2)
67 #define SVM_FEATURE_TSC_RATE (1 << 4)
68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
69 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
72
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74
75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
76 #define TSC_RATIO_MIN 0x0000000000000001ULL
77 #define TSC_RATIO_MAX 0x000000ffffffffffULL
78
79 static bool erratum_383_found __read_mostly;
80
81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
82
83 /*
84 * Set osvw_len to higher value when updated Revision Guides
85 * are published and we know what the new status bits are
86 */
87 static uint64_t osvw_len = 4, osvw_status;
88
89 static DEFINE_PER_CPU(u64, current_tsc_ratio);
90 #define TSC_RATIO_DEFAULT 0x0100000000ULL
91
92 static const struct svm_direct_access_msrs {
93 u32 index; /* Index of the MSR */
94 bool always; /* True if intercept is initially cleared */
95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
96 { .index = MSR_STAR, .always = true },
97 { .index = MSR_IA32_SYSENTER_CS, .always = true },
98 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
99 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
100 #ifdef CONFIG_X86_64
101 { .index = MSR_GS_BASE, .always = true },
102 { .index = MSR_FS_BASE, .always = true },
103 { .index = MSR_KERNEL_GS_BASE, .always = true },
104 { .index = MSR_LSTAR, .always = true },
105 { .index = MSR_CSTAR, .always = true },
106 { .index = MSR_SYSCALL_MASK, .always = true },
107 #endif
108 { .index = MSR_IA32_SPEC_CTRL, .always = false },
109 { .index = MSR_IA32_PRED_CMD, .always = false },
110 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
111 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
112 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
113 { .index = MSR_IA32_LASTINTTOIP, .always = false },
114 { .index = MSR_EFER, .always = false },
115 { .index = MSR_IA32_CR_PAT, .always = false },
116 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
117 { .index = MSR_INVALID, .always = false },
118 };
119
120 /*
121 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
122 * pause_filter_count: On processors that support Pause filtering(indicated
123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
124 * count value. On VMRUN this value is loaded into an internal counter.
125 * Each time a pause instruction is executed, this counter is decremented
126 * until it reaches zero at which time a #VMEXIT is generated if pause
127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
128 * Intercept Filtering for more details.
129 * This also indicate if ple logic enabled.
130 *
131 * pause_filter_thresh: In addition, some processor families support advanced
132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
133 * the amount of time a guest is allowed to execute in a pause loop.
134 * In this mode, a 16-bit pause filter threshold field is added in the
135 * VMCB. The threshold value is a cycle count that is used to reset the
136 * pause counter. As with simple pause filtering, VMRUN loads the pause
137 * count value from VMCB into an internal counter. Then, on each pause
138 * instruction the hardware checks the elapsed number of cycles since
139 * the most recent pause instruction against the pause filter threshold.
140 * If the elapsed cycle count is greater than the pause filter threshold,
141 * then the internal pause count is reloaded from the VMCB and execution
142 * continues. If the elapsed cycle count is less than the pause filter
143 * threshold, then the internal pause count is decremented. If the count
144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
145 * triggered. If advanced pause filtering is supported and pause filter
146 * threshold field is set to zero, the filter will operate in the simpler,
147 * count only mode.
148 */
149
150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
151 module_param(pause_filter_thresh, ushort, 0444);
152
153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
154 module_param(pause_filter_count, ushort, 0444);
155
156 /* Default doubles per-vcpu window every exit. */
157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
158 module_param(pause_filter_count_grow, ushort, 0444);
159
160 /* Default resets per-vcpu window every exit to pause_filter_count. */
161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
162 module_param(pause_filter_count_shrink, ushort, 0444);
163
164 /* Default is to compute the maximum so we can never overflow. */
165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
166 module_param(pause_filter_count_max, ushort, 0444);
167
168 /*
169 * Use nested page tables by default. Note, NPT may get forced off by
170 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
171 */
172 bool npt_enabled = true;
173 module_param_named(npt, npt_enabled, bool, 0444);
174
175 /* allow nested virtualization in KVM/SVM */
176 static int nested = true;
177 module_param(nested, int, S_IRUGO);
178
179 /* enable/disable Next RIP Save */
180 static int nrips = true;
181 module_param(nrips, int, 0444);
182
183 /* enable/disable Virtual VMLOAD VMSAVE */
184 static int vls = true;
185 module_param(vls, int, 0444);
186
187 /* enable/disable Virtual GIF */
188 static int vgif = true;
189 module_param(vgif, int, 0444);
190
191 /* enable/disable LBR virtualization */
192 static int lbrv = true;
193 module_param(lbrv, int, 0444);
194
195 static int tsc_scaling = true;
196 module_param(tsc_scaling, int, 0444);
197
198 /*
199 * enable / disable AVIC. Because the defaults differ for APICv
200 * support between VMX and SVM we cannot use module_param_named.
201 */
202 static bool avic;
203 module_param(avic, bool, 0444);
204
205 bool __read_mostly dump_invalid_vmcb;
206 module_param(dump_invalid_vmcb, bool, 0644);
207
208
209 bool intercept_smi = true;
210 module_param(intercept_smi, bool, 0444);
211
212
213 static bool svm_gp_erratum_intercept = true;
214
215 static u8 rsm_ins_bytes[] = "\x0f\xaa";
216
217 static unsigned long iopm_base;
218
219 struct kvm_ldttss_desc {
220 u16 limit0;
221 u16 base0;
222 unsigned base1:8, type:5, dpl:2, p:1;
223 unsigned limit1:4, zero0:3, g:1, base2:8;
224 u32 base3;
225 u32 zero1;
226 } __attribute__((packed));
227
228 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
229
230 /*
231 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
232 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
233 *
234 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
235 * defer the restoration of TSC_AUX until the CPU returns to userspace.
236 */
237 static int tsc_aux_uret_slot __read_mostly = -1;
238
239 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
240
241 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
242 #define MSRS_RANGE_SIZE 2048
243 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
244
245 u32 svm_msrpm_offset(u32 msr)
246 {
247 u32 offset;
248 int i;
249
250 for (i = 0; i < NUM_MSR_MAPS; i++) {
251 if (msr < msrpm_ranges[i] ||
252 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
253 continue;
254
255 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
256 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
257
258 /* Now we have the u8 offset - but need the u32 offset */
259 return offset / 4;
260 }
261
262 /* MSR not in any range */
263 return MSR_INVALID;
264 }
265
266 #define MAX_INST_SIZE 15
267
268 static int get_npt_level(void)
269 {
270 #ifdef CONFIG_X86_64
271 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
272 #else
273 return PT32E_ROOT_LEVEL;
274 #endif
275 }
276
277 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
278 {
279 struct vcpu_svm *svm = to_svm(vcpu);
280 u64 old_efer = vcpu->arch.efer;
281 vcpu->arch.efer = efer;
282
283 if (!npt_enabled) {
284 /* Shadow paging assumes NX to be available. */
285 efer |= EFER_NX;
286
287 if (!(efer & EFER_LMA))
288 efer &= ~EFER_LME;
289 }
290
291 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
292 if (!(efer & EFER_SVME)) {
293 svm_leave_nested(vcpu);
294 svm_set_gif(svm, true);
295 /* #GP intercept is still needed for vmware backdoor */
296 if (!enable_vmware_backdoor)
297 clr_exception_intercept(svm, GP_VECTOR);
298
299 /*
300 * Free the nested guest state, unless we are in SMM.
301 * In this case we will return to the nested guest
302 * as soon as we leave SMM.
303 */
304 if (!is_smm(vcpu))
305 svm_free_nested(svm);
306
307 } else {
308 int ret = svm_allocate_nested(svm);
309
310 if (ret) {
311 vcpu->arch.efer = old_efer;
312 return ret;
313 }
314
315 /*
316 * Never intercept #GP for SEV guests, KVM can't
317 * decrypt guest memory to workaround the erratum.
318 */
319 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
320 set_exception_intercept(svm, GP_VECTOR);
321 }
322 }
323
324 svm->vmcb->save.efer = efer | EFER_SVME;
325 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
326 return 0;
327 }
328
329 static int is_external_interrupt(u32 info)
330 {
331 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
332 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
333 }
334
335 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
336 {
337 struct vcpu_svm *svm = to_svm(vcpu);
338 u32 ret = 0;
339
340 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
341 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
342 return ret;
343 }
344
345 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
346 {
347 struct vcpu_svm *svm = to_svm(vcpu);
348
349 if (mask == 0)
350 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
351 else
352 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
353
354 }
355
356 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
357 {
358 struct vcpu_svm *svm = to_svm(vcpu);
359
360 /*
361 * SEV-ES does not expose the next RIP. The RIP update is controlled by
362 * the type of exit and the #VC handler in the guest.
363 */
364 if (sev_es_guest(vcpu->kvm))
365 goto done;
366
367 if (nrips && svm->vmcb->control.next_rip != 0) {
368 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
369 svm->next_rip = svm->vmcb->control.next_rip;
370 }
371
372 if (!svm->next_rip) {
373 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
374 return 0;
375 } else {
376 kvm_rip_write(vcpu, svm->next_rip);
377 }
378
379 done:
380 svm_set_interrupt_shadow(vcpu, 0);
381
382 return 1;
383 }
384
385 static void svm_queue_exception(struct kvm_vcpu *vcpu)
386 {
387 struct vcpu_svm *svm = to_svm(vcpu);
388 unsigned nr = vcpu->arch.exception.nr;
389 bool has_error_code = vcpu->arch.exception.has_error_code;
390 u32 error_code = vcpu->arch.exception.error_code;
391
392 kvm_deliver_exception_payload(vcpu);
393
394 if (nr == BP_VECTOR && !nrips) {
395 unsigned long rip, old_rip = kvm_rip_read(vcpu);
396
397 /*
398 * For guest debugging where we have to reinject #BP if some
399 * INT3 is guest-owned:
400 * Emulate nRIP by moving RIP forward. Will fail if injection
401 * raises a fault that is not intercepted. Still better than
402 * failing in all cases.
403 */
404 (void)skip_emulated_instruction(vcpu);
405 rip = kvm_rip_read(vcpu);
406 svm->int3_rip = rip + svm->vmcb->save.cs.base;
407 svm->int3_injected = rip - old_rip;
408 }
409
410 svm->vmcb->control.event_inj = nr
411 | SVM_EVTINJ_VALID
412 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
413 | SVM_EVTINJ_TYPE_EXEPT;
414 svm->vmcb->control.event_inj_err = error_code;
415 }
416
417 static void svm_init_erratum_383(void)
418 {
419 u32 low, high;
420 int err;
421 u64 val;
422
423 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
424 return;
425
426 /* Use _safe variants to not break nested virtualization */
427 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
428 if (err)
429 return;
430
431 val |= (1ULL << 47);
432
433 low = lower_32_bits(val);
434 high = upper_32_bits(val);
435
436 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
437
438 erratum_383_found = true;
439 }
440
441 static void svm_init_osvw(struct kvm_vcpu *vcpu)
442 {
443 /*
444 * Guests should see errata 400 and 415 as fixed (assuming that
445 * HLT and IO instructions are intercepted).
446 */
447 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
448 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
449
450 /*
451 * By increasing VCPU's osvw.length to 3 we are telling the guest that
452 * all osvw.status bits inside that length, including bit 0 (which is
453 * reserved for erratum 298), are valid. However, if host processor's
454 * osvw_len is 0 then osvw_status[0] carries no information. We need to
455 * be conservative here and therefore we tell the guest that erratum 298
456 * is present (because we really don't know).
457 */
458 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
459 vcpu->arch.osvw.status |= 1;
460 }
461
462 static int has_svm(void)
463 {
464 const char *msg;
465
466 if (!cpu_has_svm(&msg)) {
467 printk(KERN_INFO "has_svm: %s\n", msg);
468 return 0;
469 }
470
471 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
472 pr_info("KVM is unsupported when running as an SEV guest\n");
473 return 0;
474 }
475
476 return 1;
477 }
478
479 static void svm_hardware_disable(void)
480 {
481 /* Make sure we clean up behind us */
482 if (tsc_scaling)
483 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
484
485 cpu_svm_disable();
486
487 amd_pmu_disable_virt();
488 }
489
490 static int svm_hardware_enable(void)
491 {
492
493 struct svm_cpu_data *sd;
494 uint64_t efer;
495 struct desc_struct *gdt;
496 int me = raw_smp_processor_id();
497
498 rdmsrl(MSR_EFER, efer);
499 if (efer & EFER_SVME)
500 return -EBUSY;
501
502 if (!has_svm()) {
503 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
504 return -EINVAL;
505 }
506 sd = per_cpu(svm_data, me);
507 if (!sd) {
508 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
509 return -EINVAL;
510 }
511
512 sd->asid_generation = 1;
513 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
514 sd->next_asid = sd->max_asid + 1;
515 sd->min_asid = max_sev_asid + 1;
516
517 gdt = get_current_gdt_rw();
518 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
519
520 wrmsrl(MSR_EFER, efer | EFER_SVME);
521
522 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
523
524 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
525 /*
526 * Set the default value, even if we don't use TSC scaling
527 * to avoid having stale value in the msr
528 */
529 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
530 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
531 }
532
533
534 /*
535 * Get OSVW bits.
536 *
537 * Note that it is possible to have a system with mixed processor
538 * revisions and therefore different OSVW bits. If bits are not the same
539 * on different processors then choose the worst case (i.e. if erratum
540 * is present on one processor and not on another then assume that the
541 * erratum is present everywhere).
542 */
543 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
544 uint64_t len, status = 0;
545 int err;
546
547 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
548 if (!err)
549 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
550 &err);
551
552 if (err)
553 osvw_status = osvw_len = 0;
554 else {
555 if (len < osvw_len)
556 osvw_len = len;
557 osvw_status |= status;
558 osvw_status &= (1ULL << osvw_len) - 1;
559 }
560 } else
561 osvw_status = osvw_len = 0;
562
563 svm_init_erratum_383();
564
565 amd_pmu_enable_virt();
566
567 return 0;
568 }
569
570 static void svm_cpu_uninit(int cpu)
571 {
572 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
573
574 if (!sd)
575 return;
576
577 per_cpu(svm_data, cpu) = NULL;
578 kfree(sd->sev_vmcbs);
579 __free_page(sd->save_area);
580 kfree(sd);
581 }
582
583 static int svm_cpu_init(int cpu)
584 {
585 struct svm_cpu_data *sd;
586 int ret = -ENOMEM;
587
588 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
589 if (!sd)
590 return ret;
591 sd->cpu = cpu;
592 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
593 if (!sd->save_area)
594 goto free_cpu_data;
595
596 ret = sev_cpu_init(sd);
597 if (ret)
598 goto free_save_area;
599
600 per_cpu(svm_data, cpu) = sd;
601
602 return 0;
603
604 free_save_area:
605 __free_page(sd->save_area);
606 free_cpu_data:
607 kfree(sd);
608 return ret;
609
610 }
611
612 static int direct_access_msr_slot(u32 msr)
613 {
614 u32 i;
615
616 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
617 if (direct_access_msrs[i].index == msr)
618 return i;
619
620 return -ENOENT;
621 }
622
623 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
624 int write)
625 {
626 struct vcpu_svm *svm = to_svm(vcpu);
627 int slot = direct_access_msr_slot(msr);
628
629 if (slot == -ENOENT)
630 return;
631
632 /* Set the shadow bitmaps to the desired intercept states */
633 if (read)
634 set_bit(slot, svm->shadow_msr_intercept.read);
635 else
636 clear_bit(slot, svm->shadow_msr_intercept.read);
637
638 if (write)
639 set_bit(slot, svm->shadow_msr_intercept.write);
640 else
641 clear_bit(slot, svm->shadow_msr_intercept.write);
642 }
643
644 static bool valid_msr_intercept(u32 index)
645 {
646 return direct_access_msr_slot(index) != -ENOENT;
647 }
648
649 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
650 {
651 u8 bit_write;
652 unsigned long tmp;
653 u32 offset;
654 u32 *msrpm;
655
656 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
657 to_svm(vcpu)->msrpm;
658
659 offset = svm_msrpm_offset(msr);
660 bit_write = 2 * (msr & 0x0f) + 1;
661 tmp = msrpm[offset];
662
663 BUG_ON(offset == MSR_INVALID);
664
665 return !!test_bit(bit_write, &tmp);
666 }
667
668 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
669 u32 msr, int read, int write)
670 {
671 u8 bit_read, bit_write;
672 unsigned long tmp;
673 u32 offset;
674
675 /*
676 * If this warning triggers extend the direct_access_msrs list at the
677 * beginning of the file
678 */
679 WARN_ON(!valid_msr_intercept(msr));
680
681 /* Enforce non allowed MSRs to trap */
682 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
683 read = 0;
684
685 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
686 write = 0;
687
688 offset = svm_msrpm_offset(msr);
689 bit_read = 2 * (msr & 0x0f);
690 bit_write = 2 * (msr & 0x0f) + 1;
691 tmp = msrpm[offset];
692
693 BUG_ON(offset == MSR_INVALID);
694
695 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
696 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
697
698 msrpm[offset] = tmp;
699
700 svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
701
702 }
703
704 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
705 int read, int write)
706 {
707 set_shadow_msr_intercept(vcpu, msr, read, write);
708 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
709 }
710
711 u32 *svm_vcpu_alloc_msrpm(void)
712 {
713 unsigned int order = get_order(MSRPM_SIZE);
714 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
715 u32 *msrpm;
716
717 if (!pages)
718 return NULL;
719
720 msrpm = page_address(pages);
721 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
722
723 return msrpm;
724 }
725
726 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
727 {
728 int i;
729
730 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
731 if (!direct_access_msrs[i].always)
732 continue;
733 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
734 }
735 }
736
737
738 void svm_vcpu_free_msrpm(u32 *msrpm)
739 {
740 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
741 }
742
743 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
744 {
745 struct vcpu_svm *svm = to_svm(vcpu);
746 u32 i;
747
748 /*
749 * Set intercept permissions for all direct access MSRs again. They
750 * will automatically get filtered through the MSR filter, so we are
751 * back in sync after this.
752 */
753 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
754 u32 msr = direct_access_msrs[i].index;
755 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
756 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
757
758 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
759 }
760 }
761
762 static void add_msr_offset(u32 offset)
763 {
764 int i;
765
766 for (i = 0; i < MSRPM_OFFSETS; ++i) {
767
768 /* Offset already in list? */
769 if (msrpm_offsets[i] == offset)
770 return;
771
772 /* Slot used by another offset? */
773 if (msrpm_offsets[i] != MSR_INVALID)
774 continue;
775
776 /* Add offset to list */
777 msrpm_offsets[i] = offset;
778
779 return;
780 }
781
782 /*
783 * If this BUG triggers the msrpm_offsets table has an overflow. Just
784 * increase MSRPM_OFFSETS in this case.
785 */
786 BUG();
787 }
788
789 static void init_msrpm_offsets(void)
790 {
791 int i;
792
793 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
794
795 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
796 u32 offset;
797
798 offset = svm_msrpm_offset(direct_access_msrs[i].index);
799 BUG_ON(offset == MSR_INVALID);
800
801 add_msr_offset(offset);
802 }
803 }
804
805 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
806 {
807 struct vcpu_svm *svm = to_svm(vcpu);
808
809 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
810 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
811 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
812 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
813 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
814 }
815
816 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
817 {
818 struct vcpu_svm *svm = to_svm(vcpu);
819
820 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
821 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
822 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
823 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
824 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
825 }
826
827 void disable_nmi_singlestep(struct vcpu_svm *svm)
828 {
829 svm->nmi_singlestep = false;
830
831 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
832 /* Clear our flags if they were not set by the guest */
833 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
834 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
835 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
836 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
837 }
838 }
839
840 static void grow_ple_window(struct kvm_vcpu *vcpu)
841 {
842 struct vcpu_svm *svm = to_svm(vcpu);
843 struct vmcb_control_area *control = &svm->vmcb->control;
844 int old = control->pause_filter_count;
845
846 control->pause_filter_count = __grow_ple_window(old,
847 pause_filter_count,
848 pause_filter_count_grow,
849 pause_filter_count_max);
850
851 if (control->pause_filter_count != old) {
852 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
853 trace_kvm_ple_window_update(vcpu->vcpu_id,
854 control->pause_filter_count, old);
855 }
856 }
857
858 static void shrink_ple_window(struct kvm_vcpu *vcpu)
859 {
860 struct vcpu_svm *svm = to_svm(vcpu);
861 struct vmcb_control_area *control = &svm->vmcb->control;
862 int old = control->pause_filter_count;
863
864 control->pause_filter_count =
865 __shrink_ple_window(old,
866 pause_filter_count,
867 pause_filter_count_shrink,
868 pause_filter_count);
869 if (control->pause_filter_count != old) {
870 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
871 trace_kvm_ple_window_update(vcpu->vcpu_id,
872 control->pause_filter_count, old);
873 }
874 }
875
876 static void svm_hardware_teardown(void)
877 {
878 int cpu;
879
880 sev_hardware_teardown();
881
882 for_each_possible_cpu(cpu)
883 svm_cpu_uninit(cpu);
884
885 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
886 get_order(IOPM_SIZE));
887 iopm_base = 0;
888 }
889
890 static void init_seg(struct vmcb_seg *seg)
891 {
892 seg->selector = 0;
893 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
894 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
895 seg->limit = 0xffff;
896 seg->base = 0;
897 }
898
899 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
900 {
901 seg->selector = 0;
902 seg->attrib = SVM_SELECTOR_P_MASK | type;
903 seg->limit = 0xffff;
904 seg->base = 0;
905 }
906
907 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
908 {
909 struct vcpu_svm *svm = to_svm(vcpu);
910
911 return svm->nested.ctl.tsc_offset;
912 }
913
914 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
915 {
916 struct vcpu_svm *svm = to_svm(vcpu);
917
918 return svm->tsc_ratio_msr;
919 }
920
921 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
922 {
923 struct vcpu_svm *svm = to_svm(vcpu);
924
925 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
926 svm->vmcb->control.tsc_offset = offset;
927 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
928 }
929
930 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
931 {
932 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
933 }
934
935 /* Evaluate instruction intercepts that depend on guest CPUID features. */
936 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
937 struct vcpu_svm *svm)
938 {
939 /*
940 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
941 * roots, or if INVPCID is disabled in the guest to inject #UD.
942 */
943 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
944 if (!npt_enabled ||
945 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
946 svm_set_intercept(svm, INTERCEPT_INVPCID);
947 else
948 svm_clr_intercept(svm, INTERCEPT_INVPCID);
949 }
950
951 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
952 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
953 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
954 else
955 svm_set_intercept(svm, INTERCEPT_RDTSCP);
956 }
957 }
958
959 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
960 {
961 struct vcpu_svm *svm = to_svm(vcpu);
962
963 if (guest_cpuid_is_intel(vcpu)) {
964 /*
965 * We must intercept SYSENTER_EIP and SYSENTER_ESP
966 * accesses because the processor only stores 32 bits.
967 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
968 */
969 svm_set_intercept(svm, INTERCEPT_VMLOAD);
970 svm_set_intercept(svm, INTERCEPT_VMSAVE);
971 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
972
973 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
974 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
975 } else {
976 /*
977 * If hardware supports Virtual VMLOAD VMSAVE then enable it
978 * in VMCB and clear intercepts to avoid #VMEXIT.
979 */
980 if (vls) {
981 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
982 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
983 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
984 }
985 /* No need to intercept these MSRs */
986 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
987 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
988 }
989 }
990
991 static void init_vmcb(struct kvm_vcpu *vcpu)
992 {
993 struct vcpu_svm *svm = to_svm(vcpu);
994 struct vmcb_control_area *control = &svm->vmcb->control;
995 struct vmcb_save_area *save = &svm->vmcb->save;
996
997 svm_set_intercept(svm, INTERCEPT_CR0_READ);
998 svm_set_intercept(svm, INTERCEPT_CR3_READ);
999 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1000 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1001 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1002 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1003 if (!kvm_vcpu_apicv_active(vcpu))
1004 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1005
1006 set_dr_intercepts(svm);
1007
1008 set_exception_intercept(svm, PF_VECTOR);
1009 set_exception_intercept(svm, UD_VECTOR);
1010 set_exception_intercept(svm, MC_VECTOR);
1011 set_exception_intercept(svm, AC_VECTOR);
1012 set_exception_intercept(svm, DB_VECTOR);
1013 /*
1014 * Guest access to VMware backdoor ports could legitimately
1015 * trigger #GP because of TSS I/O permission bitmap.
1016 * We intercept those #GP and allow access to them anyway
1017 * as VMware does. Don't intercept #GP for SEV guests as KVM can't
1018 * decrypt guest memory to decode the faulting instruction.
1019 */
1020 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1021 set_exception_intercept(svm, GP_VECTOR);
1022
1023 svm_set_intercept(svm, INTERCEPT_INTR);
1024 svm_set_intercept(svm, INTERCEPT_NMI);
1025
1026 if (intercept_smi)
1027 svm_set_intercept(svm, INTERCEPT_SMI);
1028
1029 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1030 svm_set_intercept(svm, INTERCEPT_RDPMC);
1031 svm_set_intercept(svm, INTERCEPT_CPUID);
1032 svm_set_intercept(svm, INTERCEPT_INVD);
1033 svm_set_intercept(svm, INTERCEPT_INVLPG);
1034 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1035 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1036 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1037 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1038 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1039 svm_set_intercept(svm, INTERCEPT_VMRUN);
1040 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1041 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1042 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1043 svm_set_intercept(svm, INTERCEPT_STGI);
1044 svm_set_intercept(svm, INTERCEPT_CLGI);
1045 svm_set_intercept(svm, INTERCEPT_SKINIT);
1046 svm_set_intercept(svm, INTERCEPT_WBINVD);
1047 svm_set_intercept(svm, INTERCEPT_XSETBV);
1048 svm_set_intercept(svm, INTERCEPT_RDPRU);
1049 svm_set_intercept(svm, INTERCEPT_RSM);
1050
1051 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1052 svm_set_intercept(svm, INTERCEPT_MONITOR);
1053 svm_set_intercept(svm, INTERCEPT_MWAIT);
1054 }
1055
1056 if (!kvm_hlt_in_guest(vcpu->kvm))
1057 svm_set_intercept(svm, INTERCEPT_HLT);
1058
1059 control->iopm_base_pa = __sme_set(iopm_base);
1060 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1061 control->int_ctl = V_INTR_MASKING_MASK;
1062
1063 init_seg(&save->es);
1064 init_seg(&save->ss);
1065 init_seg(&save->ds);
1066 init_seg(&save->fs);
1067 init_seg(&save->gs);
1068
1069 save->cs.selector = 0xf000;
1070 save->cs.base = 0xffff0000;
1071 /* Executable/Readable Code Segment */
1072 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1073 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1074 save->cs.limit = 0xffff;
1075
1076 save->gdtr.base = 0;
1077 save->gdtr.limit = 0xffff;
1078 save->idtr.base = 0;
1079 save->idtr.limit = 0xffff;
1080
1081 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1082 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1083
1084 if (npt_enabled) {
1085 /* Setup VMCB for Nested Paging */
1086 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1087 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1088 clr_exception_intercept(svm, PF_VECTOR);
1089 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1090 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1091 save->g_pat = vcpu->arch.pat;
1092 save->cr3 = 0;
1093 }
1094 svm->current_vmcb->asid_generation = 0;
1095 svm->asid = 0;
1096
1097 svm->nested.vmcb12_gpa = INVALID_GPA;
1098 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1099
1100 if (!kvm_pause_in_guest(vcpu->kvm)) {
1101 control->pause_filter_count = pause_filter_count;
1102 if (pause_filter_thresh)
1103 control->pause_filter_thresh = pause_filter_thresh;
1104 svm_set_intercept(svm, INTERCEPT_PAUSE);
1105 } else {
1106 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1107 }
1108
1109 svm_recalc_instruction_intercepts(vcpu, svm);
1110
1111 /*
1112 * If the host supports V_SPEC_CTRL then disable the interception
1113 * of MSR_IA32_SPEC_CTRL.
1114 */
1115 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1116 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1117
1118 if (kvm_vcpu_apicv_active(vcpu))
1119 avic_init_vmcb(svm);
1120
1121 if (vgif) {
1122 svm_clr_intercept(svm, INTERCEPT_STGI);
1123 svm_clr_intercept(svm, INTERCEPT_CLGI);
1124 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1125 }
1126
1127 if (sev_guest(vcpu->kvm)) {
1128 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1129 clr_exception_intercept(svm, UD_VECTOR);
1130
1131 if (sev_es_guest(vcpu->kvm)) {
1132 /* Perform SEV-ES specific VMCB updates */
1133 sev_es_init_vmcb(svm);
1134 }
1135 }
1136
1137 svm_hv_init_vmcb(svm->vmcb);
1138 init_vmcb_after_set_cpuid(vcpu);
1139
1140 vmcb_mark_all_dirty(svm->vmcb);
1141
1142 enable_gif(svm);
1143 }
1144
1145 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1146 {
1147 struct vcpu_svm *svm = to_svm(vcpu);
1148
1149 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1150
1151 svm_init_osvw(vcpu);
1152 vcpu->arch.microcode_version = 0x01000065;
1153 svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio;
1154
1155 if (sev_es_guest(vcpu->kvm))
1156 sev_es_vcpu_reset(svm);
1157 }
1158
1159 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1160 {
1161 struct vcpu_svm *svm = to_svm(vcpu);
1162
1163 svm->spec_ctrl = 0;
1164 svm->virt_spec_ctrl = 0;
1165
1166 init_vmcb(vcpu);
1167
1168 if (!init_event)
1169 __svm_vcpu_reset(vcpu);
1170 }
1171
1172 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1173 {
1174 svm->current_vmcb = target_vmcb;
1175 svm->vmcb = target_vmcb->ptr;
1176 }
1177
1178 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1179 {
1180 struct vcpu_svm *svm;
1181 struct page *vmcb01_page;
1182 struct page *vmsa_page = NULL;
1183 int err;
1184
1185 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1186 svm = to_svm(vcpu);
1187
1188 err = -ENOMEM;
1189 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1190 if (!vmcb01_page)
1191 goto out;
1192
1193 if (sev_es_guest(vcpu->kvm)) {
1194 /*
1195 * SEV-ES guests require a separate VMSA page used to contain
1196 * the encrypted register state of the guest.
1197 */
1198 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1199 if (!vmsa_page)
1200 goto error_free_vmcb_page;
1201
1202 /*
1203 * SEV-ES guests maintain an encrypted version of their FPU
1204 * state which is restored and saved on VMRUN and VMEXIT.
1205 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1206 * do xsave/xrstor on it.
1207 */
1208 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1209 }
1210
1211 err = avic_init_vcpu(svm);
1212 if (err)
1213 goto error_free_vmsa_page;
1214
1215 svm->msrpm = svm_vcpu_alloc_msrpm();
1216 if (!svm->msrpm) {
1217 err = -ENOMEM;
1218 goto error_free_vmsa_page;
1219 }
1220
1221 svm->vmcb01.ptr = page_address(vmcb01_page);
1222 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1223 svm_switch_vmcb(svm, &svm->vmcb01);
1224
1225 if (vmsa_page)
1226 svm->sev_es.vmsa = page_address(vmsa_page);
1227
1228 svm->guest_state_loaded = false;
1229
1230 return 0;
1231
1232 error_free_vmsa_page:
1233 if (vmsa_page)
1234 __free_page(vmsa_page);
1235 error_free_vmcb_page:
1236 __free_page(vmcb01_page);
1237 out:
1238 return err;
1239 }
1240
1241 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1242 {
1243 int i;
1244
1245 for_each_online_cpu(i)
1246 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1247 }
1248
1249 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1250 {
1251 struct vcpu_svm *svm = to_svm(vcpu);
1252
1253 /*
1254 * The vmcb page can be recycled, causing a false negative in
1255 * svm_vcpu_load(). So, ensure that no logical CPU has this
1256 * vmcb page recorded as its current vmcb.
1257 */
1258 svm_clear_current_vmcb(svm->vmcb);
1259
1260 svm_free_nested(svm);
1261
1262 sev_free_vcpu(vcpu);
1263
1264 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1265 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1266 }
1267
1268 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1269 {
1270 struct vcpu_svm *svm = to_svm(vcpu);
1271 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1272
1273 if (sev_es_guest(vcpu->kvm))
1274 sev_es_unmap_ghcb(svm);
1275
1276 if (svm->guest_state_loaded)
1277 return;
1278
1279 /*
1280 * Save additional host state that will be restored on VMEXIT (sev-es)
1281 * or subsequent vmload of host save area.
1282 */
1283 if (sev_es_guest(vcpu->kvm)) {
1284 sev_es_prepare_guest_switch(svm, vcpu->cpu);
1285 } else {
1286 vmsave(__sme_page_pa(sd->save_area));
1287 }
1288
1289 if (tsc_scaling) {
1290 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1291 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1292 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1293 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1294 }
1295 }
1296
1297 if (likely(tsc_aux_uret_slot >= 0))
1298 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1299
1300 svm->guest_state_loaded = true;
1301 }
1302
1303 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1304 {
1305 to_svm(vcpu)->guest_state_loaded = false;
1306 }
1307
1308 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1309 {
1310 struct vcpu_svm *svm = to_svm(vcpu);
1311 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1312
1313 if (sd->current_vmcb != svm->vmcb) {
1314 sd->current_vmcb = svm->vmcb;
1315 indirect_branch_prediction_barrier();
1316 }
1317 if (kvm_vcpu_apicv_active(vcpu))
1318 avic_vcpu_load(vcpu, cpu);
1319 }
1320
1321 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1322 {
1323 if (kvm_vcpu_apicv_active(vcpu))
1324 avic_vcpu_put(vcpu);
1325
1326 svm_prepare_host_switch(vcpu);
1327
1328 ++vcpu->stat.host_state_reload;
1329 }
1330
1331 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1332 {
1333 struct vcpu_svm *svm = to_svm(vcpu);
1334 unsigned long rflags = svm->vmcb->save.rflags;
1335
1336 if (svm->nmi_singlestep) {
1337 /* Hide our flags if they were not set by the guest */
1338 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1339 rflags &= ~X86_EFLAGS_TF;
1340 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1341 rflags &= ~X86_EFLAGS_RF;
1342 }
1343 return rflags;
1344 }
1345
1346 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1347 {
1348 if (to_svm(vcpu)->nmi_singlestep)
1349 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1350
1351 /*
1352 * Any change of EFLAGS.VM is accompanied by a reload of SS
1353 * (caused by either a task switch or an inter-privilege IRET),
1354 * so we do not need to update the CPL here.
1355 */
1356 to_svm(vcpu)->vmcb->save.rflags = rflags;
1357 }
1358
1359 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1360 {
1361 struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1362
1363 return sev_es_guest(vcpu->kvm)
1364 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1365 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1366 }
1367
1368 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1369 {
1370 kvm_register_mark_available(vcpu, reg);
1371
1372 switch (reg) {
1373 case VCPU_EXREG_PDPTR:
1374 /*
1375 * When !npt_enabled, mmu->pdptrs[] is already available since
1376 * it is always updated per SDM when moving to CRs.
1377 */
1378 if (npt_enabled)
1379 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1380 break;
1381 default:
1382 KVM_BUG_ON(1, vcpu->kvm);
1383 }
1384 }
1385
1386 static void svm_set_vintr(struct vcpu_svm *svm)
1387 {
1388 struct vmcb_control_area *control;
1389
1390 /*
1391 * The following fields are ignored when AVIC is enabled
1392 */
1393 WARN_ON(kvm_apicv_activated(svm->vcpu.kvm));
1394
1395 svm_set_intercept(svm, INTERCEPT_VINTR);
1396
1397 /*
1398 * This is just a dummy VINTR to actually cause a vmexit to happen.
1399 * Actual injection of virtual interrupts happens through EVENTINJ.
1400 */
1401 control = &svm->vmcb->control;
1402 control->int_vector = 0x0;
1403 control->int_ctl &= ~V_INTR_PRIO_MASK;
1404 control->int_ctl |= V_IRQ_MASK |
1405 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1406 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1407 }
1408
1409 static void svm_clear_vintr(struct vcpu_svm *svm)
1410 {
1411 svm_clr_intercept(svm, INTERCEPT_VINTR);
1412
1413 /* Drop int_ctl fields related to VINTR injection. */
1414 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1415 if (is_guest_mode(&svm->vcpu)) {
1416 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1417
1418 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1419 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1420
1421 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1422 V_IRQ_INJECTION_BITS_MASK;
1423
1424 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1425 }
1426
1427 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1428 }
1429
1430 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1431 {
1432 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1433 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1434
1435 switch (seg) {
1436 case VCPU_SREG_CS: return &save->cs;
1437 case VCPU_SREG_DS: return &save->ds;
1438 case VCPU_SREG_ES: return &save->es;
1439 case VCPU_SREG_FS: return &save01->fs;
1440 case VCPU_SREG_GS: return &save01->gs;
1441 case VCPU_SREG_SS: return &save->ss;
1442 case VCPU_SREG_TR: return &save01->tr;
1443 case VCPU_SREG_LDTR: return &save01->ldtr;
1444 }
1445 BUG();
1446 return NULL;
1447 }
1448
1449 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1450 {
1451 struct vmcb_seg *s = svm_seg(vcpu, seg);
1452
1453 return s->base;
1454 }
1455
1456 static void svm_get_segment(struct kvm_vcpu *vcpu,
1457 struct kvm_segment *var, int seg)
1458 {
1459 struct vmcb_seg *s = svm_seg(vcpu, seg);
1460
1461 var->base = s->base;
1462 var->limit = s->limit;
1463 var->selector = s->selector;
1464 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1465 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1466 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1467 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1468 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1469 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1470 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1471
1472 /*
1473 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1474 * However, the SVM spec states that the G bit is not observed by the
1475 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1476 * So let's synthesize a legal G bit for all segments, this helps
1477 * running KVM nested. It also helps cross-vendor migration, because
1478 * Intel's vmentry has a check on the 'G' bit.
1479 */
1480 var->g = s->limit > 0xfffff;
1481
1482 /*
1483 * AMD's VMCB does not have an explicit unusable field, so emulate it
1484 * for cross vendor migration purposes by "not present"
1485 */
1486 var->unusable = !var->present;
1487
1488 switch (seg) {
1489 case VCPU_SREG_TR:
1490 /*
1491 * Work around a bug where the busy flag in the tr selector
1492 * isn't exposed
1493 */
1494 var->type |= 0x2;
1495 break;
1496 case VCPU_SREG_DS:
1497 case VCPU_SREG_ES:
1498 case VCPU_SREG_FS:
1499 case VCPU_SREG_GS:
1500 /*
1501 * The accessed bit must always be set in the segment
1502 * descriptor cache, although it can be cleared in the
1503 * descriptor, the cached bit always remains at 1. Since
1504 * Intel has a check on this, set it here to support
1505 * cross-vendor migration.
1506 */
1507 if (!var->unusable)
1508 var->type |= 0x1;
1509 break;
1510 case VCPU_SREG_SS:
1511 /*
1512 * On AMD CPUs sometimes the DB bit in the segment
1513 * descriptor is left as 1, although the whole segment has
1514 * been made unusable. Clear it here to pass an Intel VMX
1515 * entry check when cross vendor migrating.
1516 */
1517 if (var->unusable)
1518 var->db = 0;
1519 /* This is symmetric with svm_set_segment() */
1520 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1521 break;
1522 }
1523 }
1524
1525 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1526 {
1527 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1528
1529 return save->cpl;
1530 }
1531
1532 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1533 {
1534 struct vcpu_svm *svm = to_svm(vcpu);
1535
1536 dt->size = svm->vmcb->save.idtr.limit;
1537 dt->address = svm->vmcb->save.idtr.base;
1538 }
1539
1540 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1541 {
1542 struct vcpu_svm *svm = to_svm(vcpu);
1543
1544 svm->vmcb->save.idtr.limit = dt->size;
1545 svm->vmcb->save.idtr.base = dt->address ;
1546 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1547 }
1548
1549 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1550 {
1551 struct vcpu_svm *svm = to_svm(vcpu);
1552
1553 dt->size = svm->vmcb->save.gdtr.limit;
1554 dt->address = svm->vmcb->save.gdtr.base;
1555 }
1556
1557 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1558 {
1559 struct vcpu_svm *svm = to_svm(vcpu);
1560
1561 svm->vmcb->save.gdtr.limit = dt->size;
1562 svm->vmcb->save.gdtr.base = dt->address ;
1563 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1564 }
1565
1566 static void svm_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1567 {
1568 struct vcpu_svm *svm = to_svm(vcpu);
1569
1570 /*
1571 * For guests that don't set guest_state_protected, the cr3 update is
1572 * handled via kvm_mmu_load() while entering the guest. For guests
1573 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1574 * VMCB save area now, since the save area will become the initial
1575 * contents of the VMSA, and future VMCB save area updates won't be
1576 * seen.
1577 */
1578 if (sev_es_guest(vcpu->kvm)) {
1579 svm->vmcb->save.cr3 = cr3;
1580 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1581 }
1582 }
1583
1584 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1585 {
1586 struct vcpu_svm *svm = to_svm(vcpu);
1587 u64 hcr0 = cr0;
1588
1589 #ifdef CONFIG_X86_64
1590 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1591 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1592 vcpu->arch.efer |= EFER_LMA;
1593 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1594 }
1595
1596 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1597 vcpu->arch.efer &= ~EFER_LMA;
1598 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1599 }
1600 }
1601 #endif
1602 vcpu->arch.cr0 = cr0;
1603
1604 if (!npt_enabled)
1605 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1606
1607 /*
1608 * re-enable caching here because the QEMU bios
1609 * does not do it - this results in some delay at
1610 * reboot
1611 */
1612 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1613 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1614
1615 svm->vmcb->save.cr0 = hcr0;
1616 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1617
1618 /*
1619 * SEV-ES guests must always keep the CR intercepts cleared. CR
1620 * tracking is done using the CR write traps.
1621 */
1622 if (sev_es_guest(vcpu->kvm))
1623 return;
1624
1625 if (hcr0 == cr0) {
1626 /* Selective CR0 write remains on. */
1627 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1628 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1629 } else {
1630 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1631 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1632 }
1633 }
1634
1635 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1636 {
1637 return true;
1638 }
1639
1640 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1641 {
1642 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1643 unsigned long old_cr4 = vcpu->arch.cr4;
1644
1645 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1646 svm_flush_tlb(vcpu);
1647
1648 vcpu->arch.cr4 = cr4;
1649 if (!npt_enabled)
1650 cr4 |= X86_CR4_PAE;
1651 cr4 |= host_cr4_mce;
1652 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1653 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1654
1655 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1656 kvm_update_cpuid_runtime(vcpu);
1657 }
1658
1659 static void svm_set_segment(struct kvm_vcpu *vcpu,
1660 struct kvm_segment *var, int seg)
1661 {
1662 struct vcpu_svm *svm = to_svm(vcpu);
1663 struct vmcb_seg *s = svm_seg(vcpu, seg);
1664
1665 s->base = var->base;
1666 s->limit = var->limit;
1667 s->selector = var->selector;
1668 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1669 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1670 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1671 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1672 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1673 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1674 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1675 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1676
1677 /*
1678 * This is always accurate, except if SYSRET returned to a segment
1679 * with SS.DPL != 3. Intel does not have this quirk, and always
1680 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1681 * would entail passing the CPL to userspace and back.
1682 */
1683 if (seg == VCPU_SREG_SS)
1684 /* This is symmetric with svm_get_segment() */
1685 svm->vmcb->save.cpl = (var->dpl & 3);
1686
1687 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1688 }
1689
1690 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1691 {
1692 struct vcpu_svm *svm = to_svm(vcpu);
1693
1694 clr_exception_intercept(svm, BP_VECTOR);
1695
1696 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1697 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1698 set_exception_intercept(svm, BP_VECTOR);
1699 }
1700 }
1701
1702 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1703 {
1704 if (sd->next_asid > sd->max_asid) {
1705 ++sd->asid_generation;
1706 sd->next_asid = sd->min_asid;
1707 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1708 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1709 }
1710
1711 svm->current_vmcb->asid_generation = sd->asid_generation;
1712 svm->asid = sd->next_asid++;
1713 }
1714
1715 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1716 {
1717 struct vmcb *vmcb = svm->vmcb;
1718
1719 if (svm->vcpu.arch.guest_state_protected)
1720 return;
1721
1722 if (unlikely(value != vmcb->save.dr6)) {
1723 vmcb->save.dr6 = value;
1724 vmcb_mark_dirty(vmcb, VMCB_DR);
1725 }
1726 }
1727
1728 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1729 {
1730 struct vcpu_svm *svm = to_svm(vcpu);
1731
1732 if (vcpu->arch.guest_state_protected)
1733 return;
1734
1735 get_debugreg(vcpu->arch.db[0], 0);
1736 get_debugreg(vcpu->arch.db[1], 1);
1737 get_debugreg(vcpu->arch.db[2], 2);
1738 get_debugreg(vcpu->arch.db[3], 3);
1739 /*
1740 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1741 * because db_interception might need it. We can do it before vmentry.
1742 */
1743 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1744 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1745 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1746 set_dr_intercepts(svm);
1747 }
1748
1749 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1750 {
1751 struct vcpu_svm *svm = to_svm(vcpu);
1752
1753 if (vcpu->arch.guest_state_protected)
1754 return;
1755
1756 svm->vmcb->save.dr7 = value;
1757 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1758 }
1759
1760 static int pf_interception(struct kvm_vcpu *vcpu)
1761 {
1762 struct vcpu_svm *svm = to_svm(vcpu);
1763
1764 u64 fault_address = svm->vmcb->control.exit_info_2;
1765 u64 error_code = svm->vmcb->control.exit_info_1;
1766
1767 return kvm_handle_page_fault(vcpu, error_code, fault_address,
1768 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1769 svm->vmcb->control.insn_bytes : NULL,
1770 svm->vmcb->control.insn_len);
1771 }
1772
1773 static int npf_interception(struct kvm_vcpu *vcpu)
1774 {
1775 struct vcpu_svm *svm = to_svm(vcpu);
1776
1777 u64 fault_address = svm->vmcb->control.exit_info_2;
1778 u64 error_code = svm->vmcb->control.exit_info_1;
1779
1780 trace_kvm_page_fault(fault_address, error_code);
1781 return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1782 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1783 svm->vmcb->control.insn_bytes : NULL,
1784 svm->vmcb->control.insn_len);
1785 }
1786
1787 static int db_interception(struct kvm_vcpu *vcpu)
1788 {
1789 struct kvm_run *kvm_run = vcpu->run;
1790 struct vcpu_svm *svm = to_svm(vcpu);
1791
1792 if (!(vcpu->guest_debug &
1793 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1794 !svm->nmi_singlestep) {
1795 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1796 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1797 return 1;
1798 }
1799
1800 if (svm->nmi_singlestep) {
1801 disable_nmi_singlestep(svm);
1802 /* Make sure we check for pending NMIs upon entry */
1803 kvm_make_request(KVM_REQ_EVENT, vcpu);
1804 }
1805
1806 if (vcpu->guest_debug &
1807 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1808 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1809 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1810 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1811 kvm_run->debug.arch.pc =
1812 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1813 kvm_run->debug.arch.exception = DB_VECTOR;
1814 return 0;
1815 }
1816
1817 return 1;
1818 }
1819
1820 static int bp_interception(struct kvm_vcpu *vcpu)
1821 {
1822 struct vcpu_svm *svm = to_svm(vcpu);
1823 struct kvm_run *kvm_run = vcpu->run;
1824
1825 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1826 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1827 kvm_run->debug.arch.exception = BP_VECTOR;
1828 return 0;
1829 }
1830
1831 static int ud_interception(struct kvm_vcpu *vcpu)
1832 {
1833 return handle_ud(vcpu);
1834 }
1835
1836 static int ac_interception(struct kvm_vcpu *vcpu)
1837 {
1838 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1839 return 1;
1840 }
1841
1842 static bool is_erratum_383(void)
1843 {
1844 int err, i;
1845 u64 value;
1846
1847 if (!erratum_383_found)
1848 return false;
1849
1850 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1851 if (err)
1852 return false;
1853
1854 /* Bit 62 may or may not be set for this mce */
1855 value &= ~(1ULL << 62);
1856
1857 if (value != 0xb600000000010015ULL)
1858 return false;
1859
1860 /* Clear MCi_STATUS registers */
1861 for (i = 0; i < 6; ++i)
1862 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1863
1864 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1865 if (!err) {
1866 u32 low, high;
1867
1868 value &= ~(1ULL << 2);
1869 low = lower_32_bits(value);
1870 high = upper_32_bits(value);
1871
1872 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1873 }
1874
1875 /* Flush tlb to evict multi-match entries */
1876 __flush_tlb_all();
1877
1878 return true;
1879 }
1880
1881 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1882 {
1883 if (is_erratum_383()) {
1884 /*
1885 * Erratum 383 triggered. Guest state is corrupt so kill the
1886 * guest.
1887 */
1888 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1889
1890 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1891
1892 return;
1893 }
1894
1895 /*
1896 * On an #MC intercept the MCE handler is not called automatically in
1897 * the host. So do it by hand here.
1898 */
1899 kvm_machine_check();
1900 }
1901
1902 static int mc_interception(struct kvm_vcpu *vcpu)
1903 {
1904 return 1;
1905 }
1906
1907 static int shutdown_interception(struct kvm_vcpu *vcpu)
1908 {
1909 struct kvm_run *kvm_run = vcpu->run;
1910 struct vcpu_svm *svm = to_svm(vcpu);
1911
1912 /*
1913 * The VM save area has already been encrypted so it
1914 * cannot be reinitialized - just terminate.
1915 */
1916 if (sev_es_guest(vcpu->kvm))
1917 return -EINVAL;
1918
1919 /*
1920 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put
1921 * the VMCB in a known good state. Unfortuately, KVM doesn't have
1922 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
1923 * userspace. At a platform view, INIT is acceptable behavior as
1924 * there exist bare metal platforms that automatically INIT the CPU
1925 * in response to shutdown.
1926 */
1927 clear_page(svm->vmcb);
1928 kvm_vcpu_reset(vcpu, true);
1929
1930 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1931 return 0;
1932 }
1933
1934 static int io_interception(struct kvm_vcpu *vcpu)
1935 {
1936 struct vcpu_svm *svm = to_svm(vcpu);
1937 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1938 int size, in, string;
1939 unsigned port;
1940
1941 ++vcpu->stat.io_exits;
1942 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1943 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1944 port = io_info >> 16;
1945 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1946
1947 if (string) {
1948 if (sev_es_guest(vcpu->kvm))
1949 return sev_es_string_io(svm, size, port, in);
1950 else
1951 return kvm_emulate_instruction(vcpu, 0);
1952 }
1953
1954 svm->next_rip = svm->vmcb->control.exit_info_2;
1955
1956 return kvm_fast_pio(vcpu, size, port, in);
1957 }
1958
1959 static int nmi_interception(struct kvm_vcpu *vcpu)
1960 {
1961 return 1;
1962 }
1963
1964 static int smi_interception(struct kvm_vcpu *vcpu)
1965 {
1966 return 1;
1967 }
1968
1969 static int intr_interception(struct kvm_vcpu *vcpu)
1970 {
1971 ++vcpu->stat.irq_exits;
1972 return 1;
1973 }
1974
1975 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
1976 {
1977 struct vcpu_svm *svm = to_svm(vcpu);
1978 struct vmcb *vmcb12;
1979 struct kvm_host_map map;
1980 int ret;
1981
1982 if (nested_svm_check_permissions(vcpu))
1983 return 1;
1984
1985 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1986 if (ret) {
1987 if (ret == -EINVAL)
1988 kvm_inject_gp(vcpu, 0);
1989 return 1;
1990 }
1991
1992 vmcb12 = map.hva;
1993
1994 ret = kvm_skip_emulated_instruction(vcpu);
1995
1996 if (vmload) {
1997 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
1998 svm->sysenter_eip_hi = 0;
1999 svm->sysenter_esp_hi = 0;
2000 } else {
2001 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2002 }
2003
2004 kvm_vcpu_unmap(vcpu, &map, true);
2005
2006 return ret;
2007 }
2008
2009 static int vmload_interception(struct kvm_vcpu *vcpu)
2010 {
2011 return vmload_vmsave_interception(vcpu, true);
2012 }
2013
2014 static int vmsave_interception(struct kvm_vcpu *vcpu)
2015 {
2016 return vmload_vmsave_interception(vcpu, false);
2017 }
2018
2019 static int vmrun_interception(struct kvm_vcpu *vcpu)
2020 {
2021 if (nested_svm_check_permissions(vcpu))
2022 return 1;
2023
2024 return nested_svm_vmrun(vcpu);
2025 }
2026
2027 enum {
2028 NONE_SVM_INSTR,
2029 SVM_INSTR_VMRUN,
2030 SVM_INSTR_VMLOAD,
2031 SVM_INSTR_VMSAVE,
2032 };
2033
2034 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2035 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2036 {
2037 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2038
2039 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2040 return NONE_SVM_INSTR;
2041
2042 switch (ctxt->modrm) {
2043 case 0xd8: /* VMRUN */
2044 return SVM_INSTR_VMRUN;
2045 case 0xda: /* VMLOAD */
2046 return SVM_INSTR_VMLOAD;
2047 case 0xdb: /* VMSAVE */
2048 return SVM_INSTR_VMSAVE;
2049 default:
2050 break;
2051 }
2052
2053 return NONE_SVM_INSTR;
2054 }
2055
2056 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2057 {
2058 const int guest_mode_exit_codes[] = {
2059 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2060 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2061 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2062 };
2063 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2064 [SVM_INSTR_VMRUN] = vmrun_interception,
2065 [SVM_INSTR_VMLOAD] = vmload_interception,
2066 [SVM_INSTR_VMSAVE] = vmsave_interception,
2067 };
2068 struct vcpu_svm *svm = to_svm(vcpu);
2069 int ret;
2070
2071 if (is_guest_mode(vcpu)) {
2072 /* Returns '1' or -errno on failure, '0' on success. */
2073 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2074 if (ret)
2075 return ret;
2076 return 1;
2077 }
2078 return svm_instr_handlers[opcode](vcpu);
2079 }
2080
2081 /*
2082 * #GP handling code. Note that #GP can be triggered under the following two
2083 * cases:
2084 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2085 * some AMD CPUs when EAX of these instructions are in the reserved memory
2086 * regions (e.g. SMM memory on host).
2087 * 2) VMware backdoor
2088 */
2089 static int gp_interception(struct kvm_vcpu *vcpu)
2090 {
2091 struct vcpu_svm *svm = to_svm(vcpu);
2092 u32 error_code = svm->vmcb->control.exit_info_1;
2093 int opcode;
2094
2095 /* Both #GP cases have zero error_code */
2096 if (error_code)
2097 goto reinject;
2098
2099 /* Decode the instruction for usage later */
2100 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2101 goto reinject;
2102
2103 opcode = svm_instr_opcode(vcpu);
2104
2105 if (opcode == NONE_SVM_INSTR) {
2106 if (!enable_vmware_backdoor)
2107 goto reinject;
2108
2109 /*
2110 * VMware backdoor emulation on #GP interception only handles
2111 * IN{S}, OUT{S}, and RDPMC.
2112 */
2113 if (!is_guest_mode(vcpu))
2114 return kvm_emulate_instruction(vcpu,
2115 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2116 } else {
2117 /* All SVM instructions expect page aligned RAX */
2118 if (svm->vmcb->save.rax & ~PAGE_MASK)
2119 goto reinject;
2120
2121 return emulate_svm_instr(vcpu, opcode);
2122 }
2123
2124 reinject:
2125 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2126 return 1;
2127 }
2128
2129 void svm_set_gif(struct vcpu_svm *svm, bool value)
2130 {
2131 if (value) {
2132 /*
2133 * If VGIF is enabled, the STGI intercept is only added to
2134 * detect the opening of the SMI/NMI window; remove it now.
2135 * Likewise, clear the VINTR intercept, we will set it
2136 * again while processing KVM_REQ_EVENT if needed.
2137 */
2138 if (vgif_enabled(svm))
2139 svm_clr_intercept(svm, INTERCEPT_STGI);
2140 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2141 svm_clear_vintr(svm);
2142
2143 enable_gif(svm);
2144 if (svm->vcpu.arch.smi_pending ||
2145 svm->vcpu.arch.nmi_pending ||
2146 kvm_cpu_has_injectable_intr(&svm->vcpu))
2147 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2148 } else {
2149 disable_gif(svm);
2150
2151 /*
2152 * After a CLGI no interrupts should come. But if vGIF is
2153 * in use, we still rely on the VINTR intercept (rather than
2154 * STGI) to detect an open interrupt window.
2155 */
2156 if (!vgif_enabled(svm))
2157 svm_clear_vintr(svm);
2158 }
2159 }
2160
2161 static int stgi_interception(struct kvm_vcpu *vcpu)
2162 {
2163 int ret;
2164
2165 if (nested_svm_check_permissions(vcpu))
2166 return 1;
2167
2168 ret = kvm_skip_emulated_instruction(vcpu);
2169 svm_set_gif(to_svm(vcpu), true);
2170 return ret;
2171 }
2172
2173 static int clgi_interception(struct kvm_vcpu *vcpu)
2174 {
2175 int ret;
2176
2177 if (nested_svm_check_permissions(vcpu))
2178 return 1;
2179
2180 ret = kvm_skip_emulated_instruction(vcpu);
2181 svm_set_gif(to_svm(vcpu), false);
2182 return ret;
2183 }
2184
2185 static int invlpga_interception(struct kvm_vcpu *vcpu)
2186 {
2187 gva_t gva = kvm_rax_read(vcpu);
2188 u32 asid = kvm_rcx_read(vcpu);
2189
2190 /* FIXME: Handle an address size prefix. */
2191 if (!is_long_mode(vcpu))
2192 gva = (u32)gva;
2193
2194 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2195
2196 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2197 kvm_mmu_invlpg(vcpu, gva);
2198
2199 return kvm_skip_emulated_instruction(vcpu);
2200 }
2201
2202 static int skinit_interception(struct kvm_vcpu *vcpu)
2203 {
2204 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2205
2206 kvm_queue_exception(vcpu, UD_VECTOR);
2207 return 1;
2208 }
2209
2210 static int task_switch_interception(struct kvm_vcpu *vcpu)
2211 {
2212 struct vcpu_svm *svm = to_svm(vcpu);
2213 u16 tss_selector;
2214 int reason;
2215 int int_type = svm->vmcb->control.exit_int_info &
2216 SVM_EXITINTINFO_TYPE_MASK;
2217 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2218 uint32_t type =
2219 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2220 uint32_t idt_v =
2221 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2222 bool has_error_code = false;
2223 u32 error_code = 0;
2224
2225 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2226
2227 if (svm->vmcb->control.exit_info_2 &
2228 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2229 reason = TASK_SWITCH_IRET;
2230 else if (svm->vmcb->control.exit_info_2 &
2231 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2232 reason = TASK_SWITCH_JMP;
2233 else if (idt_v)
2234 reason = TASK_SWITCH_GATE;
2235 else
2236 reason = TASK_SWITCH_CALL;
2237
2238 if (reason == TASK_SWITCH_GATE) {
2239 switch (type) {
2240 case SVM_EXITINTINFO_TYPE_NMI:
2241 vcpu->arch.nmi_injected = false;
2242 break;
2243 case SVM_EXITINTINFO_TYPE_EXEPT:
2244 if (svm->vmcb->control.exit_info_2 &
2245 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2246 has_error_code = true;
2247 error_code =
2248 (u32)svm->vmcb->control.exit_info_2;
2249 }
2250 kvm_clear_exception_queue(vcpu);
2251 break;
2252 case SVM_EXITINTINFO_TYPE_INTR:
2253 kvm_clear_interrupt_queue(vcpu);
2254 break;
2255 default:
2256 break;
2257 }
2258 }
2259
2260 if (reason != TASK_SWITCH_GATE ||
2261 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2262 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2263 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2264 if (!skip_emulated_instruction(vcpu))
2265 return 0;
2266 }
2267
2268 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2269 int_vec = -1;
2270
2271 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2272 has_error_code, error_code);
2273 }
2274
2275 static int iret_interception(struct kvm_vcpu *vcpu)
2276 {
2277 struct vcpu_svm *svm = to_svm(vcpu);
2278
2279 ++vcpu->stat.nmi_window_exits;
2280 vcpu->arch.hflags |= HF_IRET_MASK;
2281 if (!sev_es_guest(vcpu->kvm)) {
2282 svm_clr_intercept(svm, INTERCEPT_IRET);
2283 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2284 }
2285 kvm_make_request(KVM_REQ_EVENT, vcpu);
2286 return 1;
2287 }
2288
2289 static int invlpg_interception(struct kvm_vcpu *vcpu)
2290 {
2291 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2292 return kvm_emulate_instruction(vcpu, 0);
2293
2294 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2295 return kvm_skip_emulated_instruction(vcpu);
2296 }
2297
2298 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2299 {
2300 return kvm_emulate_instruction(vcpu, 0);
2301 }
2302
2303 static int rsm_interception(struct kvm_vcpu *vcpu)
2304 {
2305 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2306 }
2307
2308 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2309 unsigned long val)
2310 {
2311 struct vcpu_svm *svm = to_svm(vcpu);
2312 unsigned long cr0 = vcpu->arch.cr0;
2313 bool ret = false;
2314
2315 if (!is_guest_mode(vcpu) ||
2316 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2317 return false;
2318
2319 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2320 val &= ~SVM_CR0_SELECTIVE_MASK;
2321
2322 if (cr0 ^ val) {
2323 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2324 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2325 }
2326
2327 return ret;
2328 }
2329
2330 #define CR_VALID (1ULL << 63)
2331
2332 static int cr_interception(struct kvm_vcpu *vcpu)
2333 {
2334 struct vcpu_svm *svm = to_svm(vcpu);
2335 int reg, cr;
2336 unsigned long val;
2337 int err;
2338
2339 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2340 return emulate_on_interception(vcpu);
2341
2342 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2343 return emulate_on_interception(vcpu);
2344
2345 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2346 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2347 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2348 else
2349 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2350
2351 err = 0;
2352 if (cr >= 16) { /* mov to cr */
2353 cr -= 16;
2354 val = kvm_register_read(vcpu, reg);
2355 trace_kvm_cr_write(cr, val);
2356 switch (cr) {
2357 case 0:
2358 if (!check_selective_cr0_intercepted(vcpu, val))
2359 err = kvm_set_cr0(vcpu, val);
2360 else
2361 return 1;
2362
2363 break;
2364 case 3:
2365 err = kvm_set_cr3(vcpu, val);
2366 break;
2367 case 4:
2368 err = kvm_set_cr4(vcpu, val);
2369 break;
2370 case 8:
2371 err = kvm_set_cr8(vcpu, val);
2372 break;
2373 default:
2374 WARN(1, "unhandled write to CR%d", cr);
2375 kvm_queue_exception(vcpu, UD_VECTOR);
2376 return 1;
2377 }
2378 } else { /* mov from cr */
2379 switch (cr) {
2380 case 0:
2381 val = kvm_read_cr0(vcpu);
2382 break;
2383 case 2:
2384 val = vcpu->arch.cr2;
2385 break;
2386 case 3:
2387 val = kvm_read_cr3(vcpu);
2388 break;
2389 case 4:
2390 val = kvm_read_cr4(vcpu);
2391 break;
2392 case 8:
2393 val = kvm_get_cr8(vcpu);
2394 break;
2395 default:
2396 WARN(1, "unhandled read from CR%d", cr);
2397 kvm_queue_exception(vcpu, UD_VECTOR);
2398 return 1;
2399 }
2400 kvm_register_write(vcpu, reg, val);
2401 trace_kvm_cr_read(cr, val);
2402 }
2403 return kvm_complete_insn_gp(vcpu, err);
2404 }
2405
2406 static int cr_trap(struct kvm_vcpu *vcpu)
2407 {
2408 struct vcpu_svm *svm = to_svm(vcpu);
2409 unsigned long old_value, new_value;
2410 unsigned int cr;
2411 int ret = 0;
2412
2413 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2414
2415 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2416 switch (cr) {
2417 case 0:
2418 old_value = kvm_read_cr0(vcpu);
2419 svm_set_cr0(vcpu, new_value);
2420
2421 kvm_post_set_cr0(vcpu, old_value, new_value);
2422 break;
2423 case 4:
2424 old_value = kvm_read_cr4(vcpu);
2425 svm_set_cr4(vcpu, new_value);
2426
2427 kvm_post_set_cr4(vcpu, old_value, new_value);
2428 break;
2429 case 8:
2430 ret = kvm_set_cr8(vcpu, new_value);
2431 break;
2432 default:
2433 WARN(1, "unhandled CR%d write trap", cr);
2434 kvm_queue_exception(vcpu, UD_VECTOR);
2435 return 1;
2436 }
2437
2438 return kvm_complete_insn_gp(vcpu, ret);
2439 }
2440
2441 static int dr_interception(struct kvm_vcpu *vcpu)
2442 {
2443 struct vcpu_svm *svm = to_svm(vcpu);
2444 int reg, dr;
2445 unsigned long val;
2446 int err = 0;
2447
2448 if (vcpu->guest_debug == 0) {
2449 /*
2450 * No more DR vmexits; force a reload of the debug registers
2451 * and reenter on this instruction. The next vmexit will
2452 * retrieve the full state of the debug registers.
2453 */
2454 clr_dr_intercepts(svm);
2455 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2456 return 1;
2457 }
2458
2459 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2460 return emulate_on_interception(vcpu);
2461
2462 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2463 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2464 if (dr >= 16) { /* mov to DRn */
2465 dr -= 16;
2466 val = kvm_register_read(vcpu, reg);
2467 err = kvm_set_dr(vcpu, dr, val);
2468 } else {
2469 kvm_get_dr(vcpu, dr, &val);
2470 kvm_register_write(vcpu, reg, val);
2471 }
2472
2473 return kvm_complete_insn_gp(vcpu, err);
2474 }
2475
2476 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2477 {
2478 int r;
2479
2480 u8 cr8_prev = kvm_get_cr8(vcpu);
2481 /* instruction emulation calls kvm_set_cr8() */
2482 r = cr_interception(vcpu);
2483 if (lapic_in_kernel(vcpu))
2484 return r;
2485 if (cr8_prev <= kvm_get_cr8(vcpu))
2486 return r;
2487 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2488 return 0;
2489 }
2490
2491 static int efer_trap(struct kvm_vcpu *vcpu)
2492 {
2493 struct msr_data msr_info;
2494 int ret;
2495
2496 /*
2497 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2498 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2499 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2500 * the guest doesn't have X86_FEATURE_SVM.
2501 */
2502 msr_info.host_initiated = false;
2503 msr_info.index = MSR_EFER;
2504 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2505 ret = kvm_set_msr_common(vcpu, &msr_info);
2506
2507 return kvm_complete_insn_gp(vcpu, ret);
2508 }
2509
2510 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2511 {
2512 msr->data = 0;
2513
2514 switch (msr->index) {
2515 case MSR_F10H_DECFG:
2516 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2517 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2518 break;
2519 case MSR_IA32_PERF_CAPABILITIES:
2520 return 0;
2521 default:
2522 return KVM_MSR_RET_INVALID;
2523 }
2524
2525 return 0;
2526 }
2527
2528 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2529 {
2530 struct vcpu_svm *svm = to_svm(vcpu);
2531
2532 switch (msr_info->index) {
2533 case MSR_AMD64_TSC_RATIO:
2534 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2535 return 1;
2536 msr_info->data = svm->tsc_ratio_msr;
2537 break;
2538 case MSR_STAR:
2539 msr_info->data = svm->vmcb01.ptr->save.star;
2540 break;
2541 #ifdef CONFIG_X86_64
2542 case MSR_LSTAR:
2543 msr_info->data = svm->vmcb01.ptr->save.lstar;
2544 break;
2545 case MSR_CSTAR:
2546 msr_info->data = svm->vmcb01.ptr->save.cstar;
2547 break;
2548 case MSR_KERNEL_GS_BASE:
2549 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2550 break;
2551 case MSR_SYSCALL_MASK:
2552 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2553 break;
2554 #endif
2555 case MSR_IA32_SYSENTER_CS:
2556 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2557 break;
2558 case MSR_IA32_SYSENTER_EIP:
2559 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2560 if (guest_cpuid_is_intel(vcpu))
2561 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2562 break;
2563 case MSR_IA32_SYSENTER_ESP:
2564 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2565 if (guest_cpuid_is_intel(vcpu))
2566 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2567 break;
2568 case MSR_TSC_AUX:
2569 msr_info->data = svm->tsc_aux;
2570 break;
2571 /*
2572 * Nobody will change the following 5 values in the VMCB so we can
2573 * safely return them on rdmsr. They will always be 0 until LBRV is
2574 * implemented.
2575 */
2576 case MSR_IA32_DEBUGCTLMSR:
2577 msr_info->data = svm->vmcb->save.dbgctl;
2578 break;
2579 case MSR_IA32_LASTBRANCHFROMIP:
2580 msr_info->data = svm->vmcb->save.br_from;
2581 break;
2582 case MSR_IA32_LASTBRANCHTOIP:
2583 msr_info->data = svm->vmcb->save.br_to;
2584 break;
2585 case MSR_IA32_LASTINTFROMIP:
2586 msr_info->data = svm->vmcb->save.last_excp_from;
2587 break;
2588 case MSR_IA32_LASTINTTOIP:
2589 msr_info->data = svm->vmcb->save.last_excp_to;
2590 break;
2591 case MSR_VM_HSAVE_PA:
2592 msr_info->data = svm->nested.hsave_msr;
2593 break;
2594 case MSR_VM_CR:
2595 msr_info->data = svm->nested.vm_cr_msr;
2596 break;
2597 case MSR_IA32_SPEC_CTRL:
2598 if (!msr_info->host_initiated &&
2599 !guest_has_spec_ctrl_msr(vcpu))
2600 return 1;
2601
2602 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2603 msr_info->data = svm->vmcb->save.spec_ctrl;
2604 else
2605 msr_info->data = svm->spec_ctrl;
2606 break;
2607 case MSR_AMD64_VIRT_SPEC_CTRL:
2608 if (!msr_info->host_initiated &&
2609 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2610 return 1;
2611
2612 msr_info->data = svm->virt_spec_ctrl;
2613 break;
2614 case MSR_F15H_IC_CFG: {
2615
2616 int family, model;
2617
2618 family = guest_cpuid_family(vcpu);
2619 model = guest_cpuid_model(vcpu);
2620
2621 if (family < 0 || model < 0)
2622 return kvm_get_msr_common(vcpu, msr_info);
2623
2624 msr_info->data = 0;
2625
2626 if (family == 0x15 &&
2627 (model >= 0x2 && model < 0x20))
2628 msr_info->data = 0x1E;
2629 }
2630 break;
2631 case MSR_F10H_DECFG:
2632 msr_info->data = svm->msr_decfg;
2633 break;
2634 default:
2635 return kvm_get_msr_common(vcpu, msr_info);
2636 }
2637 return 0;
2638 }
2639
2640 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2641 {
2642 struct vcpu_svm *svm = to_svm(vcpu);
2643 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2644 return kvm_complete_insn_gp(vcpu, err);
2645
2646 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2647 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2648 X86_TRAP_GP |
2649 SVM_EVTINJ_TYPE_EXEPT |
2650 SVM_EVTINJ_VALID);
2651 return 1;
2652 }
2653
2654 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2655 {
2656 struct vcpu_svm *svm = to_svm(vcpu);
2657 int svm_dis, chg_mask;
2658
2659 if (data & ~SVM_VM_CR_VALID_MASK)
2660 return 1;
2661
2662 chg_mask = SVM_VM_CR_VALID_MASK;
2663
2664 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2665 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2666
2667 svm->nested.vm_cr_msr &= ~chg_mask;
2668 svm->nested.vm_cr_msr |= (data & chg_mask);
2669
2670 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2671
2672 /* check for svm_disable while efer.svme is set */
2673 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2674 return 1;
2675
2676 return 0;
2677 }
2678
2679 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2680 {
2681 struct vcpu_svm *svm = to_svm(vcpu);
2682 int r;
2683
2684 u32 ecx = msr->index;
2685 u64 data = msr->data;
2686 switch (ecx) {
2687 case MSR_AMD64_TSC_RATIO:
2688 if (!msr->host_initiated && !svm->tsc_scaling_enabled)
2689 return 1;
2690
2691 if (data & TSC_RATIO_RSVD)
2692 return 1;
2693
2694 svm->tsc_ratio_msr = data;
2695
2696 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2697 nested_svm_update_tsc_ratio_msr(vcpu);
2698
2699 break;
2700 case MSR_IA32_CR_PAT:
2701 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2702 return 1;
2703 vcpu->arch.pat = data;
2704 svm->vmcb01.ptr->save.g_pat = data;
2705 if (is_guest_mode(vcpu))
2706 nested_vmcb02_compute_g_pat(svm);
2707 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2708 break;
2709 case MSR_IA32_SPEC_CTRL:
2710 if (!msr->host_initiated &&
2711 !guest_has_spec_ctrl_msr(vcpu))
2712 return 1;
2713
2714 if (kvm_spec_ctrl_test_value(data))
2715 return 1;
2716
2717 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2718 svm->vmcb->save.spec_ctrl = data;
2719 else
2720 svm->spec_ctrl = data;
2721 if (!data)
2722 break;
2723
2724 /*
2725 * For non-nested:
2726 * When it's written (to non-zero) for the first time, pass
2727 * it through.
2728 *
2729 * For nested:
2730 * The handling of the MSR bitmap for L2 guests is done in
2731 * nested_svm_vmrun_msrpm.
2732 * We update the L1 MSR bit as well since it will end up
2733 * touching the MSR anyway now.
2734 */
2735 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2736 break;
2737 case MSR_IA32_PRED_CMD:
2738 if (!msr->host_initiated &&
2739 !guest_has_pred_cmd_msr(vcpu))
2740 return 1;
2741
2742 if (data & ~PRED_CMD_IBPB)
2743 return 1;
2744 if (!boot_cpu_has(X86_FEATURE_IBPB))
2745 return 1;
2746 if (!data)
2747 break;
2748
2749 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2750 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2751 break;
2752 case MSR_AMD64_VIRT_SPEC_CTRL:
2753 if (!msr->host_initiated &&
2754 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2755 return 1;
2756
2757 if (data & ~SPEC_CTRL_SSBD)
2758 return 1;
2759
2760 svm->virt_spec_ctrl = data;
2761 break;
2762 case MSR_STAR:
2763 svm->vmcb01.ptr->save.star = data;
2764 break;
2765 #ifdef CONFIG_X86_64
2766 case MSR_LSTAR:
2767 svm->vmcb01.ptr->save.lstar = data;
2768 break;
2769 case MSR_CSTAR:
2770 svm->vmcb01.ptr->save.cstar = data;
2771 break;
2772 case MSR_KERNEL_GS_BASE:
2773 svm->vmcb01.ptr->save.kernel_gs_base = data;
2774 break;
2775 case MSR_SYSCALL_MASK:
2776 svm->vmcb01.ptr->save.sfmask = data;
2777 break;
2778 #endif
2779 case MSR_IA32_SYSENTER_CS:
2780 svm->vmcb01.ptr->save.sysenter_cs = data;
2781 break;
2782 case MSR_IA32_SYSENTER_EIP:
2783 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2784 /*
2785 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2786 * when we spoof an Intel vendor ID (for cross vendor migration).
2787 * In this case we use this intercept to track the high
2788 * 32 bit part of these msrs to support Intel's
2789 * implementation of SYSENTER/SYSEXIT.
2790 */
2791 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2792 break;
2793 case MSR_IA32_SYSENTER_ESP:
2794 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2795 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2796 break;
2797 case MSR_TSC_AUX:
2798 /*
2799 * TSC_AUX is usually changed only during boot and never read
2800 * directly. Intercept TSC_AUX instead of exposing it to the
2801 * guest via direct_access_msrs, and switch it via user return.
2802 */
2803 preempt_disable();
2804 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2805 preempt_enable();
2806 if (r)
2807 return 1;
2808
2809 svm->tsc_aux = data;
2810 break;
2811 case MSR_IA32_DEBUGCTLMSR:
2812 if (!lbrv) {
2813 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2814 __func__, data);
2815 break;
2816 }
2817 if (data & DEBUGCTL_RESERVED_BITS)
2818 return 1;
2819
2820 svm->vmcb->save.dbgctl = data;
2821 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2822 if (data & (1ULL<<0))
2823 svm_enable_lbrv(vcpu);
2824 else
2825 svm_disable_lbrv(vcpu);
2826 break;
2827 case MSR_VM_HSAVE_PA:
2828 /*
2829 * Old kernels did not validate the value written to
2830 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid
2831 * value to allow live migrating buggy or malicious guests
2832 * originating from those kernels.
2833 */
2834 if (!msr->host_initiated && !page_address_valid(vcpu, data))
2835 return 1;
2836
2837 svm->nested.hsave_msr = data & PAGE_MASK;
2838 break;
2839 case MSR_VM_CR:
2840 return svm_set_vm_cr(vcpu, data);
2841 case MSR_VM_IGNNE:
2842 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2843 break;
2844 case MSR_F10H_DECFG: {
2845 struct kvm_msr_entry msr_entry;
2846
2847 msr_entry.index = msr->index;
2848 if (svm_get_msr_feature(&msr_entry))
2849 return 1;
2850
2851 /* Check the supported bits */
2852 if (data & ~msr_entry.data)
2853 return 1;
2854
2855 /* Don't allow the guest to change a bit, #GP */
2856 if (!msr->host_initiated && (data ^ msr_entry.data))
2857 return 1;
2858
2859 svm->msr_decfg = data;
2860 break;
2861 }
2862 default:
2863 return kvm_set_msr_common(vcpu, msr);
2864 }
2865 return 0;
2866 }
2867
2868 static int msr_interception(struct kvm_vcpu *vcpu)
2869 {
2870 if (to_svm(vcpu)->vmcb->control.exit_info_1)
2871 return kvm_emulate_wrmsr(vcpu);
2872 else
2873 return kvm_emulate_rdmsr(vcpu);
2874 }
2875
2876 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2877 {
2878 kvm_make_request(KVM_REQ_EVENT, vcpu);
2879 svm_clear_vintr(to_svm(vcpu));
2880
2881 /*
2882 * For AVIC, the only reason to end up here is ExtINTs.
2883 * In this case AVIC was temporarily disabled for
2884 * requesting the IRQ window and we have to re-enable it.
2885 */
2886 kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN);
2887
2888 ++vcpu->stat.irq_window_exits;
2889 return 1;
2890 }
2891
2892 static int pause_interception(struct kvm_vcpu *vcpu)
2893 {
2894 bool in_kernel;
2895
2896 /*
2897 * CPL is not made available for an SEV-ES guest, therefore
2898 * vcpu->arch.preempted_in_kernel can never be true. Just
2899 * set in_kernel to false as well.
2900 */
2901 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
2902
2903 if (!kvm_pause_in_guest(vcpu->kvm))
2904 grow_ple_window(vcpu);
2905
2906 kvm_vcpu_on_spin(vcpu, in_kernel);
2907 return kvm_skip_emulated_instruction(vcpu);
2908 }
2909
2910 static int invpcid_interception(struct kvm_vcpu *vcpu)
2911 {
2912 struct vcpu_svm *svm = to_svm(vcpu);
2913 unsigned long type;
2914 gva_t gva;
2915
2916 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2917 kvm_queue_exception(vcpu, UD_VECTOR);
2918 return 1;
2919 }
2920
2921 /*
2922 * For an INVPCID intercept:
2923 * EXITINFO1 provides the linear address of the memory operand.
2924 * EXITINFO2 provides the contents of the register operand.
2925 */
2926 type = svm->vmcb->control.exit_info_2;
2927 gva = svm->vmcb->control.exit_info_1;
2928
2929 return kvm_handle_invpcid(vcpu, type, gva);
2930 }
2931
2932 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
2933 [SVM_EXIT_READ_CR0] = cr_interception,
2934 [SVM_EXIT_READ_CR3] = cr_interception,
2935 [SVM_EXIT_READ_CR4] = cr_interception,
2936 [SVM_EXIT_READ_CR8] = cr_interception,
2937 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
2938 [SVM_EXIT_WRITE_CR0] = cr_interception,
2939 [SVM_EXIT_WRITE_CR3] = cr_interception,
2940 [SVM_EXIT_WRITE_CR4] = cr_interception,
2941 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2942 [SVM_EXIT_READ_DR0] = dr_interception,
2943 [SVM_EXIT_READ_DR1] = dr_interception,
2944 [SVM_EXIT_READ_DR2] = dr_interception,
2945 [SVM_EXIT_READ_DR3] = dr_interception,
2946 [SVM_EXIT_READ_DR4] = dr_interception,
2947 [SVM_EXIT_READ_DR5] = dr_interception,
2948 [SVM_EXIT_READ_DR6] = dr_interception,
2949 [SVM_EXIT_READ_DR7] = dr_interception,
2950 [SVM_EXIT_WRITE_DR0] = dr_interception,
2951 [SVM_EXIT_WRITE_DR1] = dr_interception,
2952 [SVM_EXIT_WRITE_DR2] = dr_interception,
2953 [SVM_EXIT_WRITE_DR3] = dr_interception,
2954 [SVM_EXIT_WRITE_DR4] = dr_interception,
2955 [SVM_EXIT_WRITE_DR5] = dr_interception,
2956 [SVM_EXIT_WRITE_DR6] = dr_interception,
2957 [SVM_EXIT_WRITE_DR7] = dr_interception,
2958 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2959 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2960 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2961 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2962 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2963 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
2964 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
2965 [SVM_EXIT_INTR] = intr_interception,
2966 [SVM_EXIT_NMI] = nmi_interception,
2967 [SVM_EXIT_SMI] = smi_interception,
2968 [SVM_EXIT_VINTR] = interrupt_window_interception,
2969 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
2970 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
2971 [SVM_EXIT_IRET] = iret_interception,
2972 [SVM_EXIT_INVD] = kvm_emulate_invd,
2973 [SVM_EXIT_PAUSE] = pause_interception,
2974 [SVM_EXIT_HLT] = kvm_emulate_halt,
2975 [SVM_EXIT_INVLPG] = invlpg_interception,
2976 [SVM_EXIT_INVLPGA] = invlpga_interception,
2977 [SVM_EXIT_IOIO] = io_interception,
2978 [SVM_EXIT_MSR] = msr_interception,
2979 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2980 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2981 [SVM_EXIT_VMRUN] = vmrun_interception,
2982 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
2983 [SVM_EXIT_VMLOAD] = vmload_interception,
2984 [SVM_EXIT_VMSAVE] = vmsave_interception,
2985 [SVM_EXIT_STGI] = stgi_interception,
2986 [SVM_EXIT_CLGI] = clgi_interception,
2987 [SVM_EXIT_SKINIT] = skinit_interception,
2988 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
2989 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
2990 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
2991 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
2992 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
2993 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
2994 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
2995 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
2996 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
2997 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
2998 [SVM_EXIT_INVPCID] = invpcid_interception,
2999 [SVM_EXIT_NPF] = npf_interception,
3000 [SVM_EXIT_RSM] = rsm_interception,
3001 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3002 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3003 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3004 };
3005
3006 static void dump_vmcb(struct kvm_vcpu *vcpu)
3007 {
3008 struct vcpu_svm *svm = to_svm(vcpu);
3009 struct vmcb_control_area *control = &svm->vmcb->control;
3010 struct vmcb_save_area *save = &svm->vmcb->save;
3011 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3012
3013 if (!dump_invalid_vmcb) {
3014 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3015 return;
3016 }
3017
3018 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3019 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3020 pr_err("VMCB Control Area:\n");
3021 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3022 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3023 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3024 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3025 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3026 pr_err("%-20s%08x %08x\n", "intercepts:",
3027 control->intercepts[INTERCEPT_WORD3],
3028 control->intercepts[INTERCEPT_WORD4]);
3029 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3030 pr_err("%-20s%d\n", "pause filter threshold:",
3031 control->pause_filter_thresh);
3032 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3033 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3034 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3035 pr_err("%-20s%d\n", "asid:", control->asid);
3036 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3037 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3038 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3039 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3040 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3041 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3042 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3043 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3044 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3045 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3046 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3047 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3048 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3049 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3050 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3051 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3052 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3053 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3054 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3055 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3056 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3057 pr_err("VMCB State Save Area:\n");
3058 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3059 "es:",
3060 save->es.selector, save->es.attrib,
3061 save->es.limit, save->es.base);
3062 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3063 "cs:",
3064 save->cs.selector, save->cs.attrib,
3065 save->cs.limit, save->cs.base);
3066 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3067 "ss:",
3068 save->ss.selector, save->ss.attrib,
3069 save->ss.limit, save->ss.base);
3070 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3071 "ds:",
3072 save->ds.selector, save->ds.attrib,
3073 save->ds.limit, save->ds.base);
3074 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3075 "fs:",
3076 save01->fs.selector, save01->fs.attrib,
3077 save01->fs.limit, save01->fs.base);
3078 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3079 "gs:",
3080 save01->gs.selector, save01->gs.attrib,
3081 save01->gs.limit, save01->gs.base);
3082 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3083 "gdtr:",
3084 save->gdtr.selector, save->gdtr.attrib,
3085 save->gdtr.limit, save->gdtr.base);
3086 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3087 "ldtr:",
3088 save01->ldtr.selector, save01->ldtr.attrib,
3089 save01->ldtr.limit, save01->ldtr.base);
3090 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3091 "idtr:",
3092 save->idtr.selector, save->idtr.attrib,
3093 save->idtr.limit, save->idtr.base);
3094 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3095 "tr:",
3096 save01->tr.selector, save01->tr.attrib,
3097 save01->tr.limit, save01->tr.base);
3098 pr_err("cpl: %d efer: %016llx\n",
3099 save->cpl, save->efer);
3100 pr_err("%-15s %016llx %-13s %016llx\n",
3101 "cr0:", save->cr0, "cr2:", save->cr2);
3102 pr_err("%-15s %016llx %-13s %016llx\n",
3103 "cr3:", save->cr3, "cr4:", save->cr4);
3104 pr_err("%-15s %016llx %-13s %016llx\n",
3105 "dr6:", save->dr6, "dr7:", save->dr7);
3106 pr_err("%-15s %016llx %-13s %016llx\n",
3107 "rip:", save->rip, "rflags:", save->rflags);
3108 pr_err("%-15s %016llx %-13s %016llx\n",
3109 "rsp:", save->rsp, "rax:", save->rax);
3110 pr_err("%-15s %016llx %-13s %016llx\n",
3111 "star:", save01->star, "lstar:", save01->lstar);
3112 pr_err("%-15s %016llx %-13s %016llx\n",
3113 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3114 pr_err("%-15s %016llx %-13s %016llx\n",
3115 "kernel_gs_base:", save01->kernel_gs_base,
3116 "sysenter_cs:", save01->sysenter_cs);
3117 pr_err("%-15s %016llx %-13s %016llx\n",
3118 "sysenter_esp:", save01->sysenter_esp,
3119 "sysenter_eip:", save01->sysenter_eip);
3120 pr_err("%-15s %016llx %-13s %016llx\n",
3121 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3122 pr_err("%-15s %016llx %-13s %016llx\n",
3123 "br_from:", save->br_from, "br_to:", save->br_to);
3124 pr_err("%-15s %016llx %-13s %016llx\n",
3125 "excp_from:", save->last_excp_from,
3126 "excp_to:", save->last_excp_to);
3127 }
3128
3129 static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code)
3130 {
3131 return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3132 svm_exit_handlers[exit_code]);
3133 }
3134
3135 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3136 {
3137 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3138 dump_vmcb(vcpu);
3139 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3140 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3141 vcpu->run->internal.ndata = 2;
3142 vcpu->run->internal.data[0] = exit_code;
3143 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3144 return 0;
3145 }
3146
3147 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3148 {
3149 if (!svm_check_exit_valid(vcpu, exit_code))
3150 return svm_handle_invalid_exit(vcpu, exit_code);
3151
3152 #ifdef CONFIG_RETPOLINE
3153 if (exit_code == SVM_EXIT_MSR)
3154 return msr_interception(vcpu);
3155 else if (exit_code == SVM_EXIT_VINTR)
3156 return interrupt_window_interception(vcpu);
3157 else if (exit_code == SVM_EXIT_INTR)
3158 return intr_interception(vcpu);
3159 else if (exit_code == SVM_EXIT_HLT)
3160 return kvm_emulate_halt(vcpu);
3161 else if (exit_code == SVM_EXIT_NPF)
3162 return npf_interception(vcpu);
3163 #endif
3164 return svm_exit_handlers[exit_code](vcpu);
3165 }
3166
3167 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3168 u64 *info1, u64 *info2,
3169 u32 *intr_info, u32 *error_code)
3170 {
3171 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3172
3173 *reason = control->exit_code;
3174 *info1 = control->exit_info_1;
3175 *info2 = control->exit_info_2;
3176 *intr_info = control->exit_int_info;
3177 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3178 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3179 *error_code = control->exit_int_info_err;
3180 else
3181 *error_code = 0;
3182 }
3183
3184 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3185 {
3186 struct vcpu_svm *svm = to_svm(vcpu);
3187 struct kvm_run *kvm_run = vcpu->run;
3188 u32 exit_code = svm->vmcb->control.exit_code;
3189
3190 trace_kvm_exit(vcpu, KVM_ISA_SVM);
3191
3192 /* SEV-ES guests must use the CR write traps to track CR registers. */
3193 if (!sev_es_guest(vcpu->kvm)) {
3194 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3195 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3196 if (npt_enabled)
3197 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3198 }
3199
3200 if (is_guest_mode(vcpu)) {
3201 int vmexit;
3202
3203 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3204
3205 vmexit = nested_svm_exit_special(svm);
3206
3207 if (vmexit == NESTED_EXIT_CONTINUE)
3208 vmexit = nested_svm_exit_handled(svm);
3209
3210 if (vmexit == NESTED_EXIT_DONE)
3211 return 1;
3212 }
3213
3214 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3215 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3216 kvm_run->fail_entry.hardware_entry_failure_reason
3217 = svm->vmcb->control.exit_code;
3218 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3219 dump_vmcb(vcpu);
3220 return 0;
3221 }
3222
3223 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3224 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3225 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3226 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3227 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3228 "exit_code 0x%x\n",
3229 __func__, svm->vmcb->control.exit_int_info,
3230 exit_code);
3231
3232 if (exit_fastpath != EXIT_FASTPATH_NONE)
3233 return 1;
3234
3235 return svm_invoke_exit_handler(vcpu, exit_code);
3236 }
3237
3238 static void reload_tss(struct kvm_vcpu *vcpu)
3239 {
3240 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3241
3242 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3243 load_TR_desc();
3244 }
3245
3246 static void pre_svm_run(struct kvm_vcpu *vcpu)
3247 {
3248 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3249 struct vcpu_svm *svm = to_svm(vcpu);
3250
3251 /*
3252 * If the previous vmrun of the vmcb occurred on a different physical
3253 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3254 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3255 */
3256 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3257 svm->current_vmcb->asid_generation = 0;
3258 vmcb_mark_all_dirty(svm->vmcb);
3259 svm->current_vmcb->cpu = vcpu->cpu;
3260 }
3261
3262 if (sev_guest(vcpu->kvm))
3263 return pre_sev_run(svm, vcpu->cpu);
3264
3265 /* FIXME: handle wraparound of asid_generation */
3266 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3267 new_asid(svm, sd);
3268 }
3269
3270 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3271 {
3272 struct vcpu_svm *svm = to_svm(vcpu);
3273
3274 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3275 vcpu->arch.hflags |= HF_NMI_MASK;
3276 if (!sev_es_guest(vcpu->kvm))
3277 svm_set_intercept(svm, INTERCEPT_IRET);
3278 ++vcpu->stat.nmi_injections;
3279 }
3280
3281 static void svm_set_irq(struct kvm_vcpu *vcpu)
3282 {
3283 struct vcpu_svm *svm = to_svm(vcpu);
3284
3285 BUG_ON(!(gif_set(svm)));
3286
3287 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3288 ++vcpu->stat.irq_injections;
3289
3290 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3291 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3292 }
3293
3294 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
3295 int trig_mode, int vector)
3296 {
3297 struct kvm_vcpu *vcpu = apic->vcpu;
3298
3299 if (svm_deliver_avic_intr(vcpu, vector)) {
3300 kvm_lapic_set_irr(vector, apic);
3301 kvm_make_request(KVM_REQ_EVENT, vcpu);
3302 kvm_vcpu_kick(vcpu);
3303 } else {
3304 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
3305 trig_mode, vector);
3306 }
3307 }
3308
3309 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3310 {
3311 struct vcpu_svm *svm = to_svm(vcpu);
3312
3313 /*
3314 * SEV-ES guests must always keep the CR intercepts cleared. CR
3315 * tracking is done using the CR write traps.
3316 */
3317 if (sev_es_guest(vcpu->kvm))
3318 return;
3319
3320 if (nested_svm_virtualize_tpr(vcpu))
3321 return;
3322
3323 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3324
3325 if (irr == -1)
3326 return;
3327
3328 if (tpr >= irr)
3329 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3330 }
3331
3332 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3333 {
3334 struct vcpu_svm *svm = to_svm(vcpu);
3335 struct vmcb *vmcb = svm->vmcb;
3336 bool ret;
3337
3338 if (!gif_set(svm))
3339 return true;
3340
3341 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3342 return false;
3343
3344 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3345 (vcpu->arch.hflags & HF_NMI_MASK);
3346
3347 return ret;
3348 }
3349
3350 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3351 {
3352 struct vcpu_svm *svm = to_svm(vcpu);
3353 if (svm->nested.nested_run_pending)
3354 return -EBUSY;
3355
3356 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3357 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3358 return -EBUSY;
3359
3360 return !svm_nmi_blocked(vcpu);
3361 }
3362
3363 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3364 {
3365 return !!(vcpu->arch.hflags & HF_NMI_MASK);
3366 }
3367
3368 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3369 {
3370 struct vcpu_svm *svm = to_svm(vcpu);
3371
3372 if (masked) {
3373 vcpu->arch.hflags |= HF_NMI_MASK;
3374 if (!sev_es_guest(vcpu->kvm))
3375 svm_set_intercept(svm, INTERCEPT_IRET);
3376 } else {
3377 vcpu->arch.hflags &= ~HF_NMI_MASK;
3378 if (!sev_es_guest(vcpu->kvm))
3379 svm_clr_intercept(svm, INTERCEPT_IRET);
3380 }
3381 }
3382
3383 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3384 {
3385 struct vcpu_svm *svm = to_svm(vcpu);
3386 struct vmcb *vmcb = svm->vmcb;
3387
3388 if (!gif_set(svm))
3389 return true;
3390
3391 if (is_guest_mode(vcpu)) {
3392 /* As long as interrupts are being delivered... */
3393 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3394 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3395 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3396 return true;
3397
3398 /* ... vmexits aren't blocked by the interrupt shadow */
3399 if (nested_exit_on_intr(svm))
3400 return false;
3401 } else {
3402 if (!svm_get_if_flag(vcpu))
3403 return true;
3404 }
3405
3406 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3407 }
3408
3409 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3410 {
3411 struct vcpu_svm *svm = to_svm(vcpu);
3412 if (svm->nested.nested_run_pending)
3413 return -EBUSY;
3414
3415 /*
3416 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3417 * e.g. if the IRQ arrived asynchronously after checking nested events.
3418 */
3419 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3420 return -EBUSY;
3421
3422 return !svm_interrupt_blocked(vcpu);
3423 }
3424
3425 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3426 {
3427 struct vcpu_svm *svm = to_svm(vcpu);
3428
3429 /*
3430 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3431 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3432 * get that intercept, this function will be called again though and
3433 * we'll get the vintr intercept. However, if the vGIF feature is
3434 * enabled, the STGI interception will not occur. Enable the irq
3435 * window under the assumption that the hardware will set the GIF.
3436 */
3437 if (vgif_enabled(svm) || gif_set(svm)) {
3438 /*
3439 * IRQ window is not needed when AVIC is enabled,
3440 * unless we have pending ExtINT since it cannot be injected
3441 * via AVIC. In such case, we need to temporarily disable AVIC,
3442 * and fallback to injecting IRQ via V_IRQ.
3443 */
3444 kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN);
3445 svm_set_vintr(svm);
3446 }
3447 }
3448
3449 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3450 {
3451 struct vcpu_svm *svm = to_svm(vcpu);
3452
3453 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3454 return; /* IRET will cause a vm exit */
3455
3456 if (!gif_set(svm)) {
3457 if (vgif_enabled(svm))
3458 svm_set_intercept(svm, INTERCEPT_STGI);
3459 return; /* STGI will cause a vm exit */
3460 }
3461
3462 /*
3463 * Something prevents NMI from been injected. Single step over possible
3464 * problem (IRET or exception injection or interrupt shadow)
3465 */
3466 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3467 svm->nmi_singlestep = true;
3468 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3469 }
3470
3471 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3472 {
3473 return 0;
3474 }
3475
3476 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3477 {
3478 return 0;
3479 }
3480
3481 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3482 {
3483 struct vcpu_svm *svm = to_svm(vcpu);
3484
3485 /*
3486 * Flush only the current ASID even if the TLB flush was invoked via
3487 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3488 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3489 * unconditionally does a TLB flush on both nested VM-Enter and nested
3490 * VM-Exit (via kvm_mmu_reset_context()).
3491 */
3492 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3493 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3494 else
3495 svm->current_vmcb->asid_generation--;
3496 }
3497
3498 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3499 {
3500 struct vcpu_svm *svm = to_svm(vcpu);
3501
3502 invlpga(gva, svm->vmcb->control.asid);
3503 }
3504
3505 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3506 {
3507 struct vcpu_svm *svm = to_svm(vcpu);
3508
3509 if (nested_svm_virtualize_tpr(vcpu))
3510 return;
3511
3512 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3513 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3514 kvm_set_cr8(vcpu, cr8);
3515 }
3516 }
3517
3518 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3519 {
3520 struct vcpu_svm *svm = to_svm(vcpu);
3521 u64 cr8;
3522
3523 if (nested_svm_virtualize_tpr(vcpu) ||
3524 kvm_vcpu_apicv_active(vcpu))
3525 return;
3526
3527 cr8 = kvm_get_cr8(vcpu);
3528 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3529 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3530 }
3531
3532 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3533 {
3534 struct vcpu_svm *svm = to_svm(vcpu);
3535 u8 vector;
3536 int type;
3537 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3538 unsigned int3_injected = svm->int3_injected;
3539
3540 svm->int3_injected = 0;
3541
3542 /*
3543 * If we've made progress since setting HF_IRET_MASK, we've
3544 * executed an IRET and can allow NMI injection.
3545 */
3546 if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3547 (sev_es_guest(vcpu->kvm) ||
3548 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3549 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3550 kvm_make_request(KVM_REQ_EVENT, vcpu);
3551 }
3552
3553 vcpu->arch.nmi_injected = false;
3554 kvm_clear_exception_queue(vcpu);
3555 kvm_clear_interrupt_queue(vcpu);
3556
3557 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3558 return;
3559
3560 kvm_make_request(KVM_REQ_EVENT, vcpu);
3561
3562 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3563 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3564
3565 switch (type) {
3566 case SVM_EXITINTINFO_TYPE_NMI:
3567 vcpu->arch.nmi_injected = true;
3568 break;
3569 case SVM_EXITINTINFO_TYPE_EXEPT:
3570 /*
3571 * Never re-inject a #VC exception.
3572 */
3573 if (vector == X86_TRAP_VC)
3574 break;
3575
3576 /*
3577 * In case of software exceptions, do not reinject the vector,
3578 * but re-execute the instruction instead. Rewind RIP first
3579 * if we emulated INT3 before.
3580 */
3581 if (kvm_exception_is_soft(vector)) {
3582 if (vector == BP_VECTOR && int3_injected &&
3583 kvm_is_linear_rip(vcpu, svm->int3_rip))
3584 kvm_rip_write(vcpu,
3585 kvm_rip_read(vcpu) - int3_injected);
3586 break;
3587 }
3588 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3589 u32 err = svm->vmcb->control.exit_int_info_err;
3590 kvm_requeue_exception_e(vcpu, vector, err);
3591
3592 } else
3593 kvm_requeue_exception(vcpu, vector);
3594 break;
3595 case SVM_EXITINTINFO_TYPE_INTR:
3596 kvm_queue_interrupt(vcpu, vector, false);
3597 break;
3598 default:
3599 break;
3600 }
3601 }
3602
3603 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3604 {
3605 struct vcpu_svm *svm = to_svm(vcpu);
3606 struct vmcb_control_area *control = &svm->vmcb->control;
3607
3608 control->exit_int_info = control->event_inj;
3609 control->exit_int_info_err = control->event_inj_err;
3610 control->event_inj = 0;
3611 svm_complete_interrupts(vcpu);
3612 }
3613
3614 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3615 {
3616 return 1;
3617 }
3618
3619 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3620 {
3621 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3622 to_svm(vcpu)->vmcb->control.exit_info_1)
3623 return handle_fastpath_set_msr_irqoff(vcpu);
3624
3625 return EXIT_FASTPATH_NONE;
3626 }
3627
3628 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3629 {
3630 struct vcpu_svm *svm = to_svm(vcpu);
3631 unsigned long vmcb_pa = svm->current_vmcb->pa;
3632
3633 guest_state_enter_irqoff();
3634
3635 if (sev_es_guest(vcpu->kvm)) {
3636 __svm_sev_es_vcpu_run(vmcb_pa);
3637 } else {
3638 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3639
3640 /*
3641 * Use a single vmcb (vmcb01 because it's always valid) for
3642 * context switching guest state via VMLOAD/VMSAVE, that way
3643 * the state doesn't need to be copied between vmcb01 and
3644 * vmcb02 when switching vmcbs for nested virtualization.
3645 */
3646 vmload(svm->vmcb01.pa);
3647 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3648 vmsave(svm->vmcb01.pa);
3649
3650 vmload(__sme_page_pa(sd->save_area));
3651 }
3652
3653 guest_state_exit_irqoff();
3654 }
3655
3656 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3657 {
3658 struct vcpu_svm *svm = to_svm(vcpu);
3659
3660 trace_kvm_entry(vcpu);
3661
3662 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3663 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3664 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3665
3666 /*
3667 * Disable singlestep if we're injecting an interrupt/exception.
3668 * We don't want our modified rflags to be pushed on the stack where
3669 * we might not be able to easily reset them if we disabled NMI
3670 * singlestep later.
3671 */
3672 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3673 /*
3674 * Event injection happens before external interrupts cause a
3675 * vmexit and interrupts are disabled here, so smp_send_reschedule
3676 * is enough to force an immediate vmexit.
3677 */
3678 disable_nmi_singlestep(svm);
3679 smp_send_reschedule(vcpu->cpu);
3680 }
3681
3682 pre_svm_run(vcpu);
3683
3684 sync_lapic_to_cr8(vcpu);
3685
3686 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3687 svm->vmcb->control.asid = svm->asid;
3688 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3689 }
3690 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3691
3692 svm_hv_update_vp_id(svm->vmcb, vcpu);
3693
3694 /*
3695 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3696 * of a #DB.
3697 */
3698 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3699 svm_set_dr6(svm, vcpu->arch.dr6);
3700 else
3701 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3702
3703 clgi();
3704 kvm_load_guest_xsave_state(vcpu);
3705
3706 kvm_wait_lapic_expire(vcpu);
3707
3708 /*
3709 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3710 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3711 * is no need to worry about the conditional branch over the wrmsr
3712 * being speculatively taken.
3713 */
3714 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3715 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3716
3717 svm_vcpu_enter_exit(vcpu);
3718
3719 /*
3720 * We do not use IBRS in the kernel. If this vCPU has used the
3721 * SPEC_CTRL MSR it may have left it on; save the value and
3722 * turn it off. This is much more efficient than blindly adding
3723 * it to the atomic save/restore list. Especially as the former
3724 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3725 *
3726 * For non-nested case:
3727 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3728 * save it.
3729 *
3730 * For nested case:
3731 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3732 * save it.
3733 */
3734 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3735 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3736 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3737
3738 if (!sev_es_guest(vcpu->kvm))
3739 reload_tss(vcpu);
3740
3741 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3742 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3743
3744 if (!sev_es_guest(vcpu->kvm)) {
3745 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3746 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3747 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3748 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3749 }
3750 vcpu->arch.regs_dirty = 0;
3751
3752 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3753 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
3754
3755 kvm_load_host_xsave_state(vcpu);
3756 stgi();
3757
3758 /* Any pending NMI will happen here */
3759
3760 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3761 kvm_after_interrupt(vcpu);
3762
3763 sync_cr8_to_lapic(vcpu);
3764
3765 svm->next_rip = 0;
3766 if (is_guest_mode(vcpu)) {
3767 nested_sync_control_from_vmcb02(svm);
3768
3769 /* Track VMRUNs that have made past consistency checking */
3770 if (svm->nested.nested_run_pending &&
3771 svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3772 ++vcpu->stat.nested_run;
3773
3774 svm->nested.nested_run_pending = 0;
3775 }
3776
3777 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3778 vmcb_mark_all_clean(svm->vmcb);
3779
3780 /* if exit due to PF check for async PF */
3781 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3782 vcpu->arch.apf.host_apf_flags =
3783 kvm_read_and_reset_apf_flags();
3784
3785 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
3786
3787 /*
3788 * We need to handle MC intercepts here before the vcpu has a chance to
3789 * change the physical cpu
3790 */
3791 if (unlikely(svm->vmcb->control.exit_code ==
3792 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3793 svm_handle_mce(vcpu);
3794
3795 svm_complete_interrupts(vcpu);
3796
3797 if (is_guest_mode(vcpu))
3798 return EXIT_FASTPATH_NONE;
3799
3800 return svm_exit_handlers_fastpath(vcpu);
3801 }
3802
3803 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3804 int root_level)
3805 {
3806 struct vcpu_svm *svm = to_svm(vcpu);
3807 unsigned long cr3;
3808
3809 if (npt_enabled) {
3810 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3811 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3812
3813 hv_track_root_tdp(vcpu, root_hpa);
3814
3815 cr3 = vcpu->arch.cr3;
3816 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3817 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3818 } else {
3819 /* PCID in the guest should be impossible with a 32-bit MMU. */
3820 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3821 cr3 = root_hpa;
3822 }
3823
3824 svm->vmcb->save.cr3 = cr3;
3825 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3826 }
3827
3828 static int is_disabled(void)
3829 {
3830 u64 vm_cr;
3831
3832 rdmsrl(MSR_VM_CR, vm_cr);
3833 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3834 return 1;
3835
3836 return 0;
3837 }
3838
3839 static void
3840 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3841 {
3842 /*
3843 * Patch in the VMMCALL instruction:
3844 */
3845 hypercall[0] = 0x0f;
3846 hypercall[1] = 0x01;
3847 hypercall[2] = 0xd9;
3848 }
3849
3850 static int __init svm_check_processor_compat(void)
3851 {
3852 return 0;
3853 }
3854
3855 static bool svm_cpu_has_accelerated_tpr(void)
3856 {
3857 return false;
3858 }
3859
3860 /*
3861 * The kvm parameter can be NULL (module initialization, or invocation before
3862 * VM creation). Be sure to check the kvm parameter before using it.
3863 */
3864 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3865 {
3866 switch (index) {
3867 case MSR_IA32_MCG_EXT_CTL:
3868 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3869 return false;
3870 case MSR_IA32_SMBASE:
3871 /* SEV-ES guests do not support SMM, so report false */
3872 if (kvm && sev_es_guest(kvm))
3873 return false;
3874 break;
3875 default:
3876 break;
3877 }
3878
3879 return true;
3880 }
3881
3882 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3883 {
3884 return 0;
3885 }
3886
3887 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3888 {
3889 struct vcpu_svm *svm = to_svm(vcpu);
3890 struct kvm_cpuid_entry2 *best;
3891
3892 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3893 boot_cpu_has(X86_FEATURE_XSAVE) &&
3894 boot_cpu_has(X86_FEATURE_XSAVES);
3895
3896 /* Update nrips enabled cache */
3897 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3898 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
3899
3900 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
3901
3902 svm_recalc_instruction_intercepts(vcpu, svm);
3903
3904 /* For sev guests, the memory encryption bit is not reserved in CR3. */
3905 if (sev_guest(vcpu->kvm)) {
3906 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3907 if (best)
3908 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3909 }
3910
3911 if (kvm_vcpu_apicv_active(vcpu)) {
3912 /*
3913 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3914 * is exposed to the guest, disable AVIC.
3915 */
3916 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3917 kvm_request_apicv_update(vcpu->kvm, false,
3918 APICV_INHIBIT_REASON_X2APIC);
3919
3920 /*
3921 * Currently, AVIC does not work with nested virtualization.
3922 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3923 */
3924 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3925 kvm_request_apicv_update(vcpu->kvm, false,
3926 APICV_INHIBIT_REASON_NESTED);
3927 }
3928 init_vmcb_after_set_cpuid(vcpu);
3929 }
3930
3931 static bool svm_has_wbinvd_exit(void)
3932 {
3933 return true;
3934 }
3935
3936 #define PRE_EX(exit) { .exit_code = (exit), \
3937 .stage = X86_ICPT_PRE_EXCEPT, }
3938 #define POST_EX(exit) { .exit_code = (exit), \
3939 .stage = X86_ICPT_POST_EXCEPT, }
3940 #define POST_MEM(exit) { .exit_code = (exit), \
3941 .stage = X86_ICPT_POST_MEMACCESS, }
3942
3943 static const struct __x86_intercept {
3944 u32 exit_code;
3945 enum x86_intercept_stage stage;
3946 } x86_intercept_map[] = {
3947 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
3948 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
3949 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
3950 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
3951 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
3952 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
3953 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
3954 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
3955 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
3956 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
3957 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
3958 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
3959 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
3960 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
3961 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
3962 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
3963 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
3964 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
3965 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
3966 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
3967 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
3968 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
3969 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
3970 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
3971 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
3972 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
3973 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
3974 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
3975 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
3976 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
3977 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
3978 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
3979 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
3980 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
3981 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
3982 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
3983 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
3984 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
3985 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
3986 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
3987 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
3988 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
3989 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
3990 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
3991 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
3992 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
3993 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
3994 };
3995
3996 #undef PRE_EX
3997 #undef POST_EX
3998 #undef POST_MEM
3999
4000 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4001 struct x86_instruction_info *info,
4002 enum x86_intercept_stage stage,
4003 struct x86_exception *exception)
4004 {
4005 struct vcpu_svm *svm = to_svm(vcpu);
4006 int vmexit, ret = X86EMUL_CONTINUE;
4007 struct __x86_intercept icpt_info;
4008 struct vmcb *vmcb = svm->vmcb;
4009
4010 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4011 goto out;
4012
4013 icpt_info = x86_intercept_map[info->intercept];
4014
4015 if (stage != icpt_info.stage)
4016 goto out;
4017
4018 switch (icpt_info.exit_code) {
4019 case SVM_EXIT_READ_CR0:
4020 if (info->intercept == x86_intercept_cr_read)
4021 icpt_info.exit_code += info->modrm_reg;
4022 break;
4023 case SVM_EXIT_WRITE_CR0: {
4024 unsigned long cr0, val;
4025
4026 if (info->intercept == x86_intercept_cr_write)
4027 icpt_info.exit_code += info->modrm_reg;
4028
4029 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4030 info->intercept == x86_intercept_clts)
4031 break;
4032
4033 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4034 INTERCEPT_SELECTIVE_CR0)))
4035 break;
4036
4037 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4038 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4039
4040 if (info->intercept == x86_intercept_lmsw) {
4041 cr0 &= 0xfUL;
4042 val &= 0xfUL;
4043 /* lmsw can't clear PE - catch this here */
4044 if (cr0 & X86_CR0_PE)
4045 val |= X86_CR0_PE;
4046 }
4047
4048 if (cr0 ^ val)
4049 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4050
4051 break;
4052 }
4053 case SVM_EXIT_READ_DR0:
4054 case SVM_EXIT_WRITE_DR0:
4055 icpt_info.exit_code += info->modrm_reg;
4056 break;
4057 case SVM_EXIT_MSR:
4058 if (info->intercept == x86_intercept_wrmsr)
4059 vmcb->control.exit_info_1 = 1;
4060 else
4061 vmcb->control.exit_info_1 = 0;
4062 break;
4063 case SVM_EXIT_PAUSE:
4064 /*
4065 * We get this for NOP only, but pause
4066 * is rep not, check this here
4067 */
4068 if (info->rep_prefix != REPE_PREFIX)
4069 goto out;
4070 break;
4071 case SVM_EXIT_IOIO: {
4072 u64 exit_info;
4073 u32 bytes;
4074
4075 if (info->intercept == x86_intercept_in ||
4076 info->intercept == x86_intercept_ins) {
4077 exit_info = ((info->src_val & 0xffff) << 16) |
4078 SVM_IOIO_TYPE_MASK;
4079 bytes = info->dst_bytes;
4080 } else {
4081 exit_info = (info->dst_val & 0xffff) << 16;
4082 bytes = info->src_bytes;
4083 }
4084
4085 if (info->intercept == x86_intercept_outs ||
4086 info->intercept == x86_intercept_ins)
4087 exit_info |= SVM_IOIO_STR_MASK;
4088
4089 if (info->rep_prefix)
4090 exit_info |= SVM_IOIO_REP_MASK;
4091
4092 bytes = min(bytes, 4u);
4093
4094 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4095
4096 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4097
4098 vmcb->control.exit_info_1 = exit_info;
4099 vmcb->control.exit_info_2 = info->next_rip;
4100
4101 break;
4102 }
4103 default:
4104 break;
4105 }
4106
4107 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4108 if (static_cpu_has(X86_FEATURE_NRIPS))
4109 vmcb->control.next_rip = info->next_rip;
4110 vmcb->control.exit_code = icpt_info.exit_code;
4111 vmexit = nested_svm_exit_handled(svm);
4112
4113 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4114 : X86EMUL_CONTINUE;
4115
4116 out:
4117 return ret;
4118 }
4119
4120 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4121 {
4122 }
4123
4124 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4125 {
4126 if (!kvm_pause_in_guest(vcpu->kvm))
4127 shrink_ple_window(vcpu);
4128 }
4129
4130 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4131 {
4132 /* [63:9] are reserved. */
4133 vcpu->arch.mcg_cap &= 0x1ff;
4134 }
4135
4136 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4137 {
4138 struct vcpu_svm *svm = to_svm(vcpu);
4139
4140 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4141 if (!gif_set(svm))
4142 return true;
4143
4144 return is_smm(vcpu);
4145 }
4146
4147 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4148 {
4149 struct vcpu_svm *svm = to_svm(vcpu);
4150 if (svm->nested.nested_run_pending)
4151 return -EBUSY;
4152
4153 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4154 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4155 return -EBUSY;
4156
4157 return !svm_smi_blocked(vcpu);
4158 }
4159
4160 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4161 {
4162 struct vcpu_svm *svm = to_svm(vcpu);
4163 struct kvm_host_map map_save;
4164 int ret;
4165
4166 if (!is_guest_mode(vcpu))
4167 return 0;
4168
4169 /* FED8h - SVM Guest */
4170 put_smstate(u64, smstate, 0x7ed8, 1);
4171 /* FEE0h - SVM Guest VMCB Physical Address */
4172 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4173
4174 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4175 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4176 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4177
4178 ret = nested_svm_vmexit(svm);
4179 if (ret)
4180 return ret;
4181
4182 /*
4183 * KVM uses VMCB01 to store L1 host state while L2 runs but
4184 * VMCB01 is going to be used during SMM and thus the state will
4185 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4186 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4187 * format of the area is identical to guest save area offsetted
4188 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4189 * within 'struct vmcb'). Note: HSAVE area may also be used by
4190 * L1 hypervisor to save additional host context (e.g. KVM does
4191 * that, see svm_prepare_guest_switch()) which must be
4192 * preserved.
4193 */
4194 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4195 &map_save) == -EINVAL)
4196 return 1;
4197
4198 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4199
4200 svm_copy_vmrun_state(map_save.hva + 0x400,
4201 &svm->vmcb01.ptr->save);
4202
4203 kvm_vcpu_unmap(vcpu, &map_save, true);
4204 return 0;
4205 }
4206
4207 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4208 {
4209 struct vcpu_svm *svm = to_svm(vcpu);
4210 struct kvm_host_map map, map_save;
4211 u64 saved_efer, vmcb12_gpa;
4212 struct vmcb *vmcb12;
4213 int ret;
4214
4215 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4216 return 0;
4217
4218 /* Non-zero if SMI arrived while vCPU was in guest mode. */
4219 if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4220 return 0;
4221
4222 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4223 return 1;
4224
4225 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4226 if (!(saved_efer & EFER_SVME))
4227 return 1;
4228
4229 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4230 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4231 return 1;
4232
4233 ret = 1;
4234 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4235 goto unmap_map;
4236
4237 if (svm_allocate_nested(svm))
4238 goto unmap_save;
4239
4240 /*
4241 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4242 * used during SMM (see svm_enter_smm())
4243 */
4244
4245 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4246
4247 /*
4248 * Enter the nested guest now
4249 */
4250
4251 vmcb12 = map.hva;
4252 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4253 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4254 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4255
4256 unmap_save:
4257 kvm_vcpu_unmap(vcpu, &map_save, true);
4258 unmap_map:
4259 kvm_vcpu_unmap(vcpu, &map, true);
4260 return ret;
4261 }
4262
4263 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4264 {
4265 struct vcpu_svm *svm = to_svm(vcpu);
4266
4267 if (!gif_set(svm)) {
4268 if (vgif_enabled(svm))
4269 svm_set_intercept(svm, INTERCEPT_STGI);
4270 /* STGI will cause a vm exit */
4271 } else {
4272 /* We must be in SMM; RSM will cause a vmexit anyway. */
4273 }
4274 }
4275
4276 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4277 void *insn, int insn_len)
4278 {
4279 bool smep, smap, is_user;
4280 unsigned long cr4;
4281 u64 error_code;
4282
4283 /* Emulation is always possible when KVM has access to all guest state. */
4284 if (!sev_guest(vcpu->kvm))
4285 return true;
4286
4287 /* #UD and #GP should never be intercepted for SEV guests. */
4288 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4289 EMULTYPE_TRAP_UD_FORCED |
4290 EMULTYPE_VMWARE_GP));
4291
4292 /*
4293 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4294 * to guest register state.
4295 */
4296 if (sev_es_guest(vcpu->kvm))
4297 return false;
4298
4299 /*
4300 * Emulation is possible if the instruction is already decoded, e.g.
4301 * when completing I/O after returning from userspace.
4302 */
4303 if (emul_type & EMULTYPE_NO_DECODE)
4304 return true;
4305
4306 /*
4307 * Emulation is possible for SEV guests if and only if a prefilled
4308 * buffer containing the bytes of the intercepted instruction is
4309 * available. SEV guest memory is encrypted with a guest specific key
4310 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4311 * decode garbage.
4312 *
4313 * Inject #UD if KVM reached this point without an instruction buffer.
4314 * In practice, this path should never be hit by a well-behaved guest,
4315 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4316 * is still theoretically reachable, e.g. via unaccelerated fault-like
4317 * AVIC access, and needs to be handled by KVM to avoid putting the
4318 * guest into an infinite loop. Injecting #UD is somewhat arbitrary,
4319 * but its the least awful option given lack of insight into the guest.
4320 */
4321 if (unlikely(!insn)) {
4322 kvm_queue_exception(vcpu, UD_VECTOR);
4323 return false;
4324 }
4325
4326 /*
4327 * Emulate for SEV guests if the insn buffer is not empty. The buffer
4328 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4329 * the faulting instruction because the code fetch itself faulted, e.g.
4330 * the guest attempted to fetch from emulated MMIO or a guest page
4331 * table used to translate CS:RIP resides in emulated MMIO.
4332 */
4333 if (likely(insn_len))
4334 return true;
4335
4336 /*
4337 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4338 *
4339 * Errata:
4340 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4341 * possible that CPU microcode implementing DecodeAssist will fail to
4342 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4343 * be '0'. This happens because microcode reads CS:RIP using a _data_
4344 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode
4345 * gives up and does not fill the instruction bytes buffer.
4346 *
4347 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4348 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4349 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4350 * GuestIntrBytes field of the VMCB.
4351 *
4352 * This does _not_ mean that the erratum has been encountered, as the
4353 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4354 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4355 * encountered a reserved/not-present #PF.
4356 *
4357 * To hit the erratum, the following conditions must be true:
4358 * 1. CR4.SMAP=1 (obviously).
4359 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot
4360 * have been hit as the guest would have encountered a SMEP
4361 * violation #PF, not a #NPF.
4362 * 3. The #NPF is not due to a code fetch, in which case failure to
4363 * retrieve the instruction bytes is legitimate (see abvoe).
4364 *
4365 * In addition, don't apply the erratum workaround if the #NPF occurred
4366 * while translating guest page tables (see below).
4367 */
4368 error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4369 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4370 goto resume_guest;
4371
4372 cr4 = kvm_read_cr4(vcpu);
4373 smep = cr4 & X86_CR4_SMEP;
4374 smap = cr4 & X86_CR4_SMAP;
4375 is_user = svm_get_cpl(vcpu) == 3;
4376 if (smap && (!smep || is_user)) {
4377 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4378
4379 /*
4380 * If the fault occurred in userspace, arbitrarily inject #GP
4381 * to avoid killing the guest and to hopefully avoid confusing
4382 * the guest kernel too much, e.g. injecting #PF would not be
4383 * coherent with respect to the guest's page tables. Request
4384 * triple fault if the fault occurred in the kernel as there's
4385 * no fault that KVM can inject without confusing the guest.
4386 * In practice, the triple fault is moot as no sane SEV kernel
4387 * will execute from user memory while also running with SMAP=1.
4388 */
4389 if (is_user)
4390 kvm_inject_gp(vcpu, 0);
4391 else
4392 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4393 }
4394
4395 resume_guest:
4396 /*
4397 * If the erratum was not hit, simply resume the guest and let it fault
4398 * again. While awful, e.g. the vCPU may get stuck in an infinite loop
4399 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to
4400 * userspace will kill the guest, and letting the emulator read garbage
4401 * will yield random behavior and potentially corrupt the guest.
4402 *
4403 * Simply resuming the guest is technically not a violation of the SEV
4404 * architecture. AMD's APM states that all code fetches and page table
4405 * accesses for SEV guest are encrypted, regardless of the C-Bit. The
4406 * APM also states that encrypted accesses to MMIO are "ignored", but
4407 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4408 * the guest spin is technically "ignoring" the access.
4409 */
4410 return false;
4411 }
4412
4413 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4414 {
4415 struct vcpu_svm *svm = to_svm(vcpu);
4416
4417 /*
4418 * TODO: Last condition latch INIT signals on vCPU when
4419 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4420 * To properly emulate the INIT intercept,
4421 * svm_check_nested_events() should call nested_svm_vmexit()
4422 * if an INIT signal is pending.
4423 */
4424 return !gif_set(svm) ||
4425 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4426 }
4427
4428 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4429 {
4430 if (!sev_es_guest(vcpu->kvm))
4431 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4432
4433 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4434 }
4435
4436 static void svm_vm_destroy(struct kvm *kvm)
4437 {
4438 avic_vm_destroy(kvm);
4439 sev_vm_destroy(kvm);
4440 }
4441
4442 static int svm_vm_init(struct kvm *kvm)
4443 {
4444 if (!pause_filter_count || !pause_filter_thresh)
4445 kvm->arch.pause_in_guest = true;
4446
4447 if (enable_apicv) {
4448 int ret = avic_vm_init(kvm);
4449 if (ret)
4450 return ret;
4451 }
4452
4453 return 0;
4454 }
4455
4456 static struct kvm_x86_ops svm_x86_ops __initdata = {
4457 .name = "kvm_amd",
4458
4459 .hardware_unsetup = svm_hardware_teardown,
4460 .hardware_enable = svm_hardware_enable,
4461 .hardware_disable = svm_hardware_disable,
4462 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4463 .has_emulated_msr = svm_has_emulated_msr,
4464
4465 .vcpu_create = svm_create_vcpu,
4466 .vcpu_free = svm_free_vcpu,
4467 .vcpu_reset = svm_vcpu_reset,
4468
4469 .vm_size = sizeof(struct kvm_svm),
4470 .vm_init = svm_vm_init,
4471 .vm_destroy = svm_vm_destroy,
4472
4473 .prepare_guest_switch = svm_prepare_guest_switch,
4474 .vcpu_load = svm_vcpu_load,
4475 .vcpu_put = svm_vcpu_put,
4476 .vcpu_blocking = avic_vcpu_blocking,
4477 .vcpu_unblocking = avic_vcpu_unblocking,
4478
4479 .update_exception_bitmap = svm_update_exception_bitmap,
4480 .get_msr_feature = svm_get_msr_feature,
4481 .get_msr = svm_get_msr,
4482 .set_msr = svm_set_msr,
4483 .get_segment_base = svm_get_segment_base,
4484 .get_segment = svm_get_segment,
4485 .set_segment = svm_set_segment,
4486 .get_cpl = svm_get_cpl,
4487 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4488 .set_cr0 = svm_set_cr0,
4489 .post_set_cr3 = svm_post_set_cr3,
4490 .is_valid_cr4 = svm_is_valid_cr4,
4491 .set_cr4 = svm_set_cr4,
4492 .set_efer = svm_set_efer,
4493 .get_idt = svm_get_idt,
4494 .set_idt = svm_set_idt,
4495 .get_gdt = svm_get_gdt,
4496 .set_gdt = svm_set_gdt,
4497 .set_dr7 = svm_set_dr7,
4498 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4499 .cache_reg = svm_cache_reg,
4500 .get_rflags = svm_get_rflags,
4501 .set_rflags = svm_set_rflags,
4502 .get_if_flag = svm_get_if_flag,
4503
4504 .tlb_flush_all = svm_flush_tlb,
4505 .tlb_flush_current = svm_flush_tlb,
4506 .tlb_flush_gva = svm_flush_tlb_gva,
4507 .tlb_flush_guest = svm_flush_tlb,
4508
4509 .vcpu_pre_run = svm_vcpu_pre_run,
4510 .run = svm_vcpu_run,
4511 .handle_exit = handle_exit,
4512 .skip_emulated_instruction = skip_emulated_instruction,
4513 .update_emulated_instruction = NULL,
4514 .set_interrupt_shadow = svm_set_interrupt_shadow,
4515 .get_interrupt_shadow = svm_get_interrupt_shadow,
4516 .patch_hypercall = svm_patch_hypercall,
4517 .set_irq = svm_set_irq,
4518 .set_nmi = svm_inject_nmi,
4519 .queue_exception = svm_queue_exception,
4520 .cancel_injection = svm_cancel_injection,
4521 .interrupt_allowed = svm_interrupt_allowed,
4522 .nmi_allowed = svm_nmi_allowed,
4523 .get_nmi_mask = svm_get_nmi_mask,
4524 .set_nmi_mask = svm_set_nmi_mask,
4525 .enable_nmi_window = svm_enable_nmi_window,
4526 .enable_irq_window = svm_enable_irq_window,
4527 .update_cr8_intercept = svm_update_cr8_intercept,
4528 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4529 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4530 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4531 .load_eoi_exitmap = svm_load_eoi_exitmap,
4532 .hwapic_irr_update = svm_hwapic_irr_update,
4533 .hwapic_isr_update = svm_hwapic_isr_update,
4534 .apicv_post_state_restore = avic_post_state_restore,
4535
4536 .set_tss_addr = svm_set_tss_addr,
4537 .set_identity_map_addr = svm_set_identity_map_addr,
4538 .get_mt_mask = svm_get_mt_mask,
4539
4540 .get_exit_info = svm_get_exit_info,
4541
4542 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4543
4544 .has_wbinvd_exit = svm_has_wbinvd_exit,
4545
4546 .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4547 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4548 .write_tsc_offset = svm_write_tsc_offset,
4549 .write_tsc_multiplier = svm_write_tsc_multiplier,
4550
4551 .load_mmu_pgd = svm_load_mmu_pgd,
4552
4553 .check_intercept = svm_check_intercept,
4554 .handle_exit_irqoff = svm_handle_exit_irqoff,
4555
4556 .request_immediate_exit = __kvm_request_immediate_exit,
4557
4558 .sched_in = svm_sched_in,
4559
4560 .pmu_ops = &amd_pmu_ops,
4561 .nested_ops = &svm_nested_ops,
4562
4563 .deliver_interrupt = svm_deliver_interrupt,
4564 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4565 .update_pi_irte = svm_update_pi_irte,
4566 .setup_mce = svm_setup_mce,
4567
4568 .smi_allowed = svm_smi_allowed,
4569 .enter_smm = svm_enter_smm,
4570 .leave_smm = svm_leave_smm,
4571 .enable_smi_window = svm_enable_smi_window,
4572
4573 .mem_enc_op = svm_mem_enc_op,
4574 .mem_enc_reg_region = svm_register_enc_region,
4575 .mem_enc_unreg_region = svm_unregister_enc_region,
4576
4577 .vm_copy_enc_context_from = svm_vm_copy_asid_from,
4578 .vm_move_enc_context_from = svm_vm_migrate_from,
4579
4580 .can_emulate_instruction = svm_can_emulate_instruction,
4581
4582 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4583
4584 .msr_filter_changed = svm_msr_filter_changed,
4585 .complete_emulated_msr = svm_complete_emulated_msr,
4586
4587 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4588 };
4589
4590 /*
4591 * The default MMIO mask is a single bit (excluding the present bit),
4592 * which could conflict with the memory encryption bit. Check for
4593 * memory encryption support and override the default MMIO mask if
4594 * memory encryption is enabled.
4595 */
4596 static __init void svm_adjust_mmio_mask(void)
4597 {
4598 unsigned int enc_bit, mask_bit;
4599 u64 msr, mask;
4600
4601 /* If there is no memory encryption support, use existing mask */
4602 if (cpuid_eax(0x80000000) < 0x8000001f)
4603 return;
4604
4605 /* If memory encryption is not enabled, use existing mask */
4606 rdmsrl(MSR_AMD64_SYSCFG, msr);
4607 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4608 return;
4609
4610 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4611 mask_bit = boot_cpu_data.x86_phys_bits;
4612
4613 /* Increment the mask bit if it is the same as the encryption bit */
4614 if (enc_bit == mask_bit)
4615 mask_bit++;
4616
4617 /*
4618 * If the mask bit location is below 52, then some bits above the
4619 * physical addressing limit will always be reserved, so use the
4620 * rsvd_bits() function to generate the mask. This mask, along with
4621 * the present bit, will be used to generate a page fault with
4622 * PFER.RSV = 1.
4623 *
4624 * If the mask bit location is 52 (or above), then clear the mask.
4625 */
4626 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4627
4628 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4629 }
4630
4631 static __init void svm_set_cpu_caps(void)
4632 {
4633 kvm_set_cpu_caps();
4634
4635 supported_xss = 0;
4636
4637 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4638 if (nested) {
4639 kvm_cpu_cap_set(X86_FEATURE_SVM);
4640
4641 if (nrips)
4642 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4643
4644 if (npt_enabled)
4645 kvm_cpu_cap_set(X86_FEATURE_NPT);
4646
4647 if (tsc_scaling)
4648 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4649
4650 /* Nested VM can receive #VMEXIT instead of triggering #GP */
4651 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4652 }
4653
4654 /* CPUID 0x80000008 */
4655 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4656 boot_cpu_has(X86_FEATURE_AMD_SSBD))
4657 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4658
4659 /* AMD PMU PERFCTR_CORE CPUID */
4660 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4661 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4662
4663 /* CPUID 0x8000001F (SME/SEV features) */
4664 sev_set_cpu_caps();
4665 }
4666
4667 static __init int svm_hardware_setup(void)
4668 {
4669 int cpu;
4670 struct page *iopm_pages;
4671 void *iopm_va;
4672 int r;
4673 unsigned int order = get_order(IOPM_SIZE);
4674
4675 /*
4676 * NX is required for shadow paging and for NPT if the NX huge pages
4677 * mitigation is enabled.
4678 */
4679 if (!boot_cpu_has(X86_FEATURE_NX)) {
4680 pr_err_ratelimited("NX (Execute Disable) not supported\n");
4681 return -EOPNOTSUPP;
4682 }
4683 kvm_enable_efer_bits(EFER_NX);
4684
4685 iopm_pages = alloc_pages(GFP_KERNEL, order);
4686
4687 if (!iopm_pages)
4688 return -ENOMEM;
4689
4690 iopm_va = page_address(iopm_pages);
4691 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4692 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4693
4694 init_msrpm_offsets();
4695
4696 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
4697
4698 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4699 kvm_enable_efer_bits(EFER_FFXSR);
4700
4701 if (tsc_scaling) {
4702 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4703 tsc_scaling = false;
4704 } else {
4705 pr_info("TSC scaling supported\n");
4706 kvm_has_tsc_control = true;
4707 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
4708 kvm_tsc_scaling_ratio_frac_bits = 32;
4709 }
4710 }
4711
4712 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4713
4714 /* Check for pause filtering support */
4715 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4716 pause_filter_count = 0;
4717 pause_filter_thresh = 0;
4718 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4719 pause_filter_thresh = 0;
4720 }
4721
4722 if (nested) {
4723 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4724 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4725 }
4726
4727 /*
4728 * KVM's MMU doesn't support using 2-level paging for itself, and thus
4729 * NPT isn't supported if the host is using 2-level paging since host
4730 * CR4 is unchanged on VMRUN.
4731 */
4732 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4733 npt_enabled = false;
4734
4735 if (!boot_cpu_has(X86_FEATURE_NPT))
4736 npt_enabled = false;
4737
4738 /* Force VM NPT level equal to the host's paging level */
4739 kvm_configure_mmu(npt_enabled, get_npt_level(),
4740 get_npt_level(), PG_LEVEL_1G);
4741 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
4742
4743 /* Note, SEV setup consumes npt_enabled. */
4744 sev_hardware_setup();
4745
4746 svm_hv_hardware_setup();
4747
4748 svm_adjust_mmio_mask();
4749
4750 for_each_possible_cpu(cpu) {
4751 r = svm_cpu_init(cpu);
4752 if (r)
4753 goto err;
4754 }
4755
4756 if (nrips) {
4757 if (!boot_cpu_has(X86_FEATURE_NRIPS))
4758 nrips = false;
4759 }
4760
4761 enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC);
4762
4763 if (enable_apicv) {
4764 pr_info("AVIC enabled\n");
4765
4766 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
4767 } else {
4768 svm_x86_ops.vcpu_blocking = NULL;
4769 svm_x86_ops.vcpu_unblocking = NULL;
4770 }
4771
4772 if (vls) {
4773 if (!npt_enabled ||
4774 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
4775 !IS_ENABLED(CONFIG_X86_64)) {
4776 vls = false;
4777 } else {
4778 pr_info("Virtual VMLOAD VMSAVE supported\n");
4779 }
4780 }
4781
4782 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
4783 svm_gp_erratum_intercept = false;
4784
4785 if (vgif) {
4786 if (!boot_cpu_has(X86_FEATURE_VGIF))
4787 vgif = false;
4788 else
4789 pr_info("Virtual GIF supported\n");
4790 }
4791
4792 if (lbrv) {
4793 if (!boot_cpu_has(X86_FEATURE_LBRV))
4794 lbrv = false;
4795 else
4796 pr_info("LBR virtualization supported\n");
4797 }
4798
4799 if (!enable_pmu)
4800 pr_info("PMU virtualization is disabled\n");
4801
4802 svm_set_cpu_caps();
4803
4804 /*
4805 * It seems that on AMD processors PTE's accessed bit is
4806 * being set by the CPU hardware before the NPF vmexit.
4807 * This is not expected behaviour and our tests fail because
4808 * of it.
4809 * A workaround here is to disable support for
4810 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
4811 * In this case userspace can know if there is support using
4812 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
4813 * it
4814 * If future AMD CPU models change the behaviour described above,
4815 * this variable can be changed accordingly
4816 */
4817 allow_smaller_maxphyaddr = !npt_enabled;
4818
4819 return 0;
4820
4821 err:
4822 svm_hardware_teardown();
4823 return r;
4824 }
4825
4826
4827 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4828 .cpu_has_kvm_support = has_svm,
4829 .disabled_by_bios = is_disabled,
4830 .hardware_setup = svm_hardware_setup,
4831 .check_processor_compatibility = svm_check_processor_compat,
4832
4833 .runtime_ops = &svm_x86_ops,
4834 };
4835
4836 static int __init svm_init(void)
4837 {
4838 __unused_size_checks();
4839
4840 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4841 __alignof__(struct vcpu_svm), THIS_MODULE);
4842 }
4843
4844 static void __exit svm_exit(void)
4845 {
4846 kvm_exit();
4847 }
4848
4849 module_init(svm_init)
4850 module_exit(svm_exit)