]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kvm/svm/svm.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44 #include "svm_ops.h"
45
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50
51 #ifdef MODULE
52 static const struct x86_cpu_id svm_cpu_id[] = {
53 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
54 {}
55 };
56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
57 #endif
58
59 #define SEG_TYPE_LDT 2
60 #define SEG_TYPE_BUSY_TSS16 3
61
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
69
70 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
71
72 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
73 #define TSC_RATIO_MIN 0x0000000000000001ULL
74 #define TSC_RATIO_MAX 0x000000ffffffffffULL
75
76 static bool erratum_383_found __read_mostly;
77
78 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
79
80 /*
81 * Set osvw_len to higher value when updated Revision Guides
82 * are published and we know what the new status bits are
83 */
84 static uint64_t osvw_len = 4, osvw_status;
85
86 static DEFINE_PER_CPU(u64, current_tsc_ratio);
87 #define TSC_RATIO_DEFAULT 0x0100000000ULL
88
89 static const struct svm_direct_access_msrs {
90 u32 index; /* Index of the MSR */
91 bool always; /* True if intercept is initially cleared */
92 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
93 { .index = MSR_STAR, .always = true },
94 { .index = MSR_IA32_SYSENTER_CS, .always = true },
95 { .index = MSR_IA32_SYSENTER_EIP, .always = false },
96 { .index = MSR_IA32_SYSENTER_ESP, .always = false },
97 #ifdef CONFIG_X86_64
98 { .index = MSR_GS_BASE, .always = true },
99 { .index = MSR_FS_BASE, .always = true },
100 { .index = MSR_KERNEL_GS_BASE, .always = true },
101 { .index = MSR_LSTAR, .always = true },
102 { .index = MSR_CSTAR, .always = true },
103 { .index = MSR_SYSCALL_MASK, .always = true },
104 #endif
105 { .index = MSR_IA32_SPEC_CTRL, .always = false },
106 { .index = MSR_IA32_PRED_CMD, .always = false },
107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
109 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
110 { .index = MSR_IA32_LASTINTTOIP, .always = false },
111 { .index = MSR_EFER, .always = false },
112 { .index = MSR_IA32_CR_PAT, .always = false },
113 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true },
114 { .index = MSR_INVALID, .always = false },
115 };
116
117 /*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * pause_filter_count: On processors that support Pause filtering(indicated
120 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
121 * count value. On VMRUN this value is loaded into an internal counter.
122 * Each time a pause instruction is executed, this counter is decremented
123 * until it reaches zero at which time a #VMEXIT is generated if pause
124 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
125 * Intercept Filtering for more details.
126 * This also indicate if ple logic enabled.
127 *
128 * pause_filter_thresh: In addition, some processor families support advanced
129 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
130 * the amount of time a guest is allowed to execute in a pause loop.
131 * In this mode, a 16-bit pause filter threshold field is added in the
132 * VMCB. The threshold value is a cycle count that is used to reset the
133 * pause counter. As with simple pause filtering, VMRUN loads the pause
134 * count value from VMCB into an internal counter. Then, on each pause
135 * instruction the hardware checks the elapsed number of cycles since
136 * the most recent pause instruction against the pause filter threshold.
137 * If the elapsed cycle count is greater than the pause filter threshold,
138 * then the internal pause count is reloaded from the VMCB and execution
139 * continues. If the elapsed cycle count is less than the pause filter
140 * threshold, then the internal pause count is decremented. If the count
141 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
142 * triggered. If advanced pause filtering is supported and pause filter
143 * threshold field is set to zero, the filter will operate in the simpler,
144 * count only mode.
145 */
146
147 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
148 module_param(pause_filter_thresh, ushort, 0444);
149
150 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
151 module_param(pause_filter_count, ushort, 0444);
152
153 /* Default doubles per-vcpu window every exit. */
154 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
155 module_param(pause_filter_count_grow, ushort, 0444);
156
157 /* Default resets per-vcpu window every exit to pause_filter_count. */
158 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
159 module_param(pause_filter_count_shrink, ushort, 0444);
160
161 /* Default is to compute the maximum so we can never overflow. */
162 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
163 module_param(pause_filter_count_max, ushort, 0444);
164
165 /*
166 * Use nested page tables by default. Note, NPT may get forced off by
167 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
168 */
169 bool npt_enabled = true;
170 module_param_named(npt, npt_enabled, bool, 0444);
171
172 /* allow nested virtualization in KVM/SVM */
173 static int nested = true;
174 module_param(nested, int, S_IRUGO);
175
176 /* enable/disable Next RIP Save */
177 static int nrips = true;
178 module_param(nrips, int, 0444);
179
180 /* enable/disable Virtual VMLOAD VMSAVE */
181 static int vls = true;
182 module_param(vls, int, 0444);
183
184 /* enable/disable Virtual GIF */
185 static int vgif = true;
186 module_param(vgif, int, 0444);
187
188 bool __read_mostly dump_invalid_vmcb;
189 module_param(dump_invalid_vmcb, bool, 0644);
190
191 static bool svm_gp_erratum_intercept = true;
192
193 static u8 rsm_ins_bytes[] = "\x0f\xaa";
194
195 static unsigned long iopm_base;
196
197 struct kvm_ldttss_desc {
198 u16 limit0;
199 u16 base0;
200 unsigned base1:8, type:5, dpl:2, p:1;
201 unsigned limit1:4, zero0:3, g:1, base2:8;
202 u32 base3;
203 u32 zero1;
204 } __attribute__((packed));
205
206 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
207
208 /*
209 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via
210 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
211 *
212 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
213 * defer the restoration of TSC_AUX until the CPU returns to userspace.
214 */
215 static int tsc_aux_uret_slot __read_mostly = -1;
216
217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
218
219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
220 #define MSRS_RANGE_SIZE 2048
221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
222
223 u32 svm_msrpm_offset(u32 msr)
224 {
225 u32 offset;
226 int i;
227
228 for (i = 0; i < NUM_MSR_MAPS; i++) {
229 if (msr < msrpm_ranges[i] ||
230 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
231 continue;
232
233 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
234 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
235
236 /* Now we have the u8 offset - but need the u32 offset */
237 return offset / 4;
238 }
239
240 /* MSR not in any range */
241 return MSR_INVALID;
242 }
243
244 #define MAX_INST_SIZE 15
245
246 static int get_max_npt_level(void)
247 {
248 #ifdef CONFIG_X86_64
249 return PT64_ROOT_4LEVEL;
250 #else
251 return PT32E_ROOT_LEVEL;
252 #endif
253 }
254
255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
256 {
257 struct vcpu_svm *svm = to_svm(vcpu);
258 u64 old_efer = vcpu->arch.efer;
259 vcpu->arch.efer = efer;
260
261 if (!npt_enabled) {
262 /* Shadow paging assumes NX to be available. */
263 efer |= EFER_NX;
264
265 if (!(efer & EFER_LMA))
266 efer &= ~EFER_LME;
267 }
268
269 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
270 if (!(efer & EFER_SVME)) {
271 svm_leave_nested(svm);
272 svm_set_gif(svm, true);
273 /* #GP intercept is still needed for vmware backdoor */
274 if (!enable_vmware_backdoor)
275 clr_exception_intercept(svm, GP_VECTOR);
276
277 /*
278 * Free the nested guest state, unless we are in SMM.
279 * In this case we will return to the nested guest
280 * as soon as we leave SMM.
281 */
282 if (!is_smm(vcpu))
283 svm_free_nested(svm);
284
285 } else {
286 int ret = svm_allocate_nested(svm);
287
288 if (ret) {
289 vcpu->arch.efer = old_efer;
290 return ret;
291 }
292
293 if (svm_gp_erratum_intercept)
294 set_exception_intercept(svm, GP_VECTOR);
295 }
296 }
297
298 svm->vmcb->save.efer = efer | EFER_SVME;
299 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
300 return 0;
301 }
302
303 static int is_external_interrupt(u32 info)
304 {
305 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
306 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
307 }
308
309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
310 {
311 struct vcpu_svm *svm = to_svm(vcpu);
312 u32 ret = 0;
313
314 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
315 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
316 return ret;
317 }
318
319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
320 {
321 struct vcpu_svm *svm = to_svm(vcpu);
322
323 if (mask == 0)
324 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
325 else
326 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
327
328 }
329
330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
331 {
332 struct vcpu_svm *svm = to_svm(vcpu);
333
334 /*
335 * SEV-ES does not expose the next RIP. The RIP update is controlled by
336 * the type of exit and the #VC handler in the guest.
337 */
338 if (sev_es_guest(vcpu->kvm))
339 goto done;
340
341 if (nrips && svm->vmcb->control.next_rip != 0) {
342 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
343 svm->next_rip = svm->vmcb->control.next_rip;
344 }
345
346 if (!svm->next_rip) {
347 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
348 return 0;
349 } else {
350 kvm_rip_write(vcpu, svm->next_rip);
351 }
352
353 done:
354 svm_set_interrupt_shadow(vcpu, 0);
355
356 return 1;
357 }
358
359 static void svm_queue_exception(struct kvm_vcpu *vcpu)
360 {
361 struct vcpu_svm *svm = to_svm(vcpu);
362 unsigned nr = vcpu->arch.exception.nr;
363 bool has_error_code = vcpu->arch.exception.has_error_code;
364 u32 error_code = vcpu->arch.exception.error_code;
365
366 kvm_deliver_exception_payload(vcpu);
367
368 if (nr == BP_VECTOR && !nrips) {
369 unsigned long rip, old_rip = kvm_rip_read(vcpu);
370
371 /*
372 * For guest debugging where we have to reinject #BP if some
373 * INT3 is guest-owned:
374 * Emulate nRIP by moving RIP forward. Will fail if injection
375 * raises a fault that is not intercepted. Still better than
376 * failing in all cases.
377 */
378 (void)skip_emulated_instruction(vcpu);
379 rip = kvm_rip_read(vcpu);
380 svm->int3_rip = rip + svm->vmcb->save.cs.base;
381 svm->int3_injected = rip - old_rip;
382 }
383
384 svm->vmcb->control.event_inj = nr
385 | SVM_EVTINJ_VALID
386 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
387 | SVM_EVTINJ_TYPE_EXEPT;
388 svm->vmcb->control.event_inj_err = error_code;
389 }
390
391 static void svm_init_erratum_383(void)
392 {
393 u32 low, high;
394 int err;
395 u64 val;
396
397 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
398 return;
399
400 /* Use _safe variants to not break nested virtualization */
401 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
402 if (err)
403 return;
404
405 val |= (1ULL << 47);
406
407 low = lower_32_bits(val);
408 high = upper_32_bits(val);
409
410 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
411
412 erratum_383_found = true;
413 }
414
415 static void svm_init_osvw(struct kvm_vcpu *vcpu)
416 {
417 /*
418 * Guests should see errata 400 and 415 as fixed (assuming that
419 * HLT and IO instructions are intercepted).
420 */
421 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
422 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
423
424 /*
425 * By increasing VCPU's osvw.length to 3 we are telling the guest that
426 * all osvw.status bits inside that length, including bit 0 (which is
427 * reserved for erratum 298), are valid. However, if host processor's
428 * osvw_len is 0 then osvw_status[0] carries no information. We need to
429 * be conservative here and therefore we tell the guest that erratum 298
430 * is present (because we really don't know).
431 */
432 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
433 vcpu->arch.osvw.status |= 1;
434 }
435
436 static int has_svm(void)
437 {
438 const char *msg;
439
440 if (!cpu_has_svm(&msg)) {
441 printk(KERN_INFO "has_svm: %s\n", msg);
442 return 0;
443 }
444
445 if (sev_active()) {
446 pr_info("KVM is unsupported when running as an SEV guest\n");
447 return 0;
448 }
449
450 if (pgtable_l5_enabled()) {
451 pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n");
452 return 0;
453 }
454
455 return 1;
456 }
457
458 static void svm_hardware_disable(void)
459 {
460 /* Make sure we clean up behind us */
461 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
462 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
463
464 cpu_svm_disable();
465
466 amd_pmu_disable_virt();
467 }
468
469 static int svm_hardware_enable(void)
470 {
471
472 struct svm_cpu_data *sd;
473 uint64_t efer;
474 struct desc_struct *gdt;
475 int me = raw_smp_processor_id();
476
477 rdmsrl(MSR_EFER, efer);
478 if (efer & EFER_SVME)
479 return -EBUSY;
480
481 if (!has_svm()) {
482 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
483 return -EINVAL;
484 }
485 sd = per_cpu(svm_data, me);
486 if (!sd) {
487 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
488 return -EINVAL;
489 }
490
491 sd->asid_generation = 1;
492 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
493 sd->next_asid = sd->max_asid + 1;
494 sd->min_asid = max_sev_asid + 1;
495
496 gdt = get_current_gdt_rw();
497 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
498
499 wrmsrl(MSR_EFER, efer | EFER_SVME);
500
501 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
502
503 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
504 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
505 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
506 }
507
508
509 /*
510 * Get OSVW bits.
511 *
512 * Note that it is possible to have a system with mixed processor
513 * revisions and therefore different OSVW bits. If bits are not the same
514 * on different processors then choose the worst case (i.e. if erratum
515 * is present on one processor and not on another then assume that the
516 * erratum is present everywhere).
517 */
518 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
519 uint64_t len, status = 0;
520 int err;
521
522 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
523 if (!err)
524 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
525 &err);
526
527 if (err)
528 osvw_status = osvw_len = 0;
529 else {
530 if (len < osvw_len)
531 osvw_len = len;
532 osvw_status |= status;
533 osvw_status &= (1ULL << osvw_len) - 1;
534 }
535 } else
536 osvw_status = osvw_len = 0;
537
538 svm_init_erratum_383();
539
540 amd_pmu_enable_virt();
541
542 return 0;
543 }
544
545 static void svm_cpu_uninit(int cpu)
546 {
547 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
548
549 if (!sd)
550 return;
551
552 per_cpu(svm_data, cpu) = NULL;
553 kfree(sd->sev_vmcbs);
554 __free_page(sd->save_area);
555 kfree(sd);
556 }
557
558 static int svm_cpu_init(int cpu)
559 {
560 struct svm_cpu_data *sd;
561 int ret = -ENOMEM;
562
563 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
564 if (!sd)
565 return ret;
566 sd->cpu = cpu;
567 sd->save_area = alloc_page(GFP_KERNEL);
568 if (!sd->save_area)
569 goto free_cpu_data;
570
571 clear_page(page_address(sd->save_area));
572
573 ret = sev_cpu_init(sd);
574 if (ret)
575 goto free_save_area;
576
577 per_cpu(svm_data, cpu) = sd;
578
579 return 0;
580
581 free_save_area:
582 __free_page(sd->save_area);
583 free_cpu_data:
584 kfree(sd);
585 return ret;
586
587 }
588
589 static int direct_access_msr_slot(u32 msr)
590 {
591 u32 i;
592
593 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
594 if (direct_access_msrs[i].index == msr)
595 return i;
596
597 return -ENOENT;
598 }
599
600 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
601 int write)
602 {
603 struct vcpu_svm *svm = to_svm(vcpu);
604 int slot = direct_access_msr_slot(msr);
605
606 if (slot == -ENOENT)
607 return;
608
609 /* Set the shadow bitmaps to the desired intercept states */
610 if (read)
611 set_bit(slot, svm->shadow_msr_intercept.read);
612 else
613 clear_bit(slot, svm->shadow_msr_intercept.read);
614
615 if (write)
616 set_bit(slot, svm->shadow_msr_intercept.write);
617 else
618 clear_bit(slot, svm->shadow_msr_intercept.write);
619 }
620
621 static bool valid_msr_intercept(u32 index)
622 {
623 return direct_access_msr_slot(index) != -ENOENT;
624 }
625
626 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
627 {
628 u8 bit_write;
629 unsigned long tmp;
630 u32 offset;
631 u32 *msrpm;
632
633 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
634 to_svm(vcpu)->msrpm;
635
636 offset = svm_msrpm_offset(msr);
637 bit_write = 2 * (msr & 0x0f) + 1;
638 tmp = msrpm[offset];
639
640 BUG_ON(offset == MSR_INVALID);
641
642 return !!test_bit(bit_write, &tmp);
643 }
644
645 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
646 u32 msr, int read, int write)
647 {
648 u8 bit_read, bit_write;
649 unsigned long tmp;
650 u32 offset;
651
652 /*
653 * If this warning triggers extend the direct_access_msrs list at the
654 * beginning of the file
655 */
656 WARN_ON(!valid_msr_intercept(msr));
657
658 /* Enforce non allowed MSRs to trap */
659 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
660 read = 0;
661
662 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
663 write = 0;
664
665 offset = svm_msrpm_offset(msr);
666 bit_read = 2 * (msr & 0x0f);
667 bit_write = 2 * (msr & 0x0f) + 1;
668 tmp = msrpm[offset];
669
670 BUG_ON(offset == MSR_INVALID);
671
672 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
673 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
674
675 msrpm[offset] = tmp;
676 }
677
678 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
679 int read, int write)
680 {
681 set_shadow_msr_intercept(vcpu, msr, read, write);
682 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
683 }
684
685 u32 *svm_vcpu_alloc_msrpm(void)
686 {
687 unsigned int order = get_order(MSRPM_SIZE);
688 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
689 u32 *msrpm;
690
691 if (!pages)
692 return NULL;
693
694 msrpm = page_address(pages);
695 memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
696
697 return msrpm;
698 }
699
700 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
701 {
702 int i;
703
704 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
705 if (!direct_access_msrs[i].always)
706 continue;
707 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
708 }
709 }
710
711
712 void svm_vcpu_free_msrpm(u32 *msrpm)
713 {
714 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
715 }
716
717 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
718 {
719 struct vcpu_svm *svm = to_svm(vcpu);
720 u32 i;
721
722 /*
723 * Set intercept permissions for all direct access MSRs again. They
724 * will automatically get filtered through the MSR filter, so we are
725 * back in sync after this.
726 */
727 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
728 u32 msr = direct_access_msrs[i].index;
729 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
730 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
731
732 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
733 }
734 }
735
736 static void add_msr_offset(u32 offset)
737 {
738 int i;
739
740 for (i = 0; i < MSRPM_OFFSETS; ++i) {
741
742 /* Offset already in list? */
743 if (msrpm_offsets[i] == offset)
744 return;
745
746 /* Slot used by another offset? */
747 if (msrpm_offsets[i] != MSR_INVALID)
748 continue;
749
750 /* Add offset to list */
751 msrpm_offsets[i] = offset;
752
753 return;
754 }
755
756 /*
757 * If this BUG triggers the msrpm_offsets table has an overflow. Just
758 * increase MSRPM_OFFSETS in this case.
759 */
760 BUG();
761 }
762
763 static void init_msrpm_offsets(void)
764 {
765 int i;
766
767 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
768
769 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
770 u32 offset;
771
772 offset = svm_msrpm_offset(direct_access_msrs[i].index);
773 BUG_ON(offset == MSR_INVALID);
774
775 add_msr_offset(offset);
776 }
777 }
778
779 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
780 {
781 struct vcpu_svm *svm = to_svm(vcpu);
782
783 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
784 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
785 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
786 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
787 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
788 }
789
790 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
791 {
792 struct vcpu_svm *svm = to_svm(vcpu);
793
794 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
795 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
796 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
797 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
798 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
799 }
800
801 void disable_nmi_singlestep(struct vcpu_svm *svm)
802 {
803 svm->nmi_singlestep = false;
804
805 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
806 /* Clear our flags if they were not set by the guest */
807 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
808 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
809 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
810 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
811 }
812 }
813
814 static void grow_ple_window(struct kvm_vcpu *vcpu)
815 {
816 struct vcpu_svm *svm = to_svm(vcpu);
817 struct vmcb_control_area *control = &svm->vmcb->control;
818 int old = control->pause_filter_count;
819
820 control->pause_filter_count = __grow_ple_window(old,
821 pause_filter_count,
822 pause_filter_count_grow,
823 pause_filter_count_max);
824
825 if (control->pause_filter_count != old) {
826 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
827 trace_kvm_ple_window_update(vcpu->vcpu_id,
828 control->pause_filter_count, old);
829 }
830 }
831
832 static void shrink_ple_window(struct kvm_vcpu *vcpu)
833 {
834 struct vcpu_svm *svm = to_svm(vcpu);
835 struct vmcb_control_area *control = &svm->vmcb->control;
836 int old = control->pause_filter_count;
837
838 control->pause_filter_count =
839 __shrink_ple_window(old,
840 pause_filter_count,
841 pause_filter_count_shrink,
842 pause_filter_count);
843 if (control->pause_filter_count != old) {
844 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
845 trace_kvm_ple_window_update(vcpu->vcpu_id,
846 control->pause_filter_count, old);
847 }
848 }
849
850 /*
851 * The default MMIO mask is a single bit (excluding the present bit),
852 * which could conflict with the memory encryption bit. Check for
853 * memory encryption support and override the default MMIO mask if
854 * memory encryption is enabled.
855 */
856 static __init void svm_adjust_mmio_mask(void)
857 {
858 unsigned int enc_bit, mask_bit;
859 u64 msr, mask;
860
861 /* If there is no memory encryption support, use existing mask */
862 if (cpuid_eax(0x80000000) < 0x8000001f)
863 return;
864
865 /* If memory encryption is not enabled, use existing mask */
866 rdmsrl(MSR_K8_SYSCFG, msr);
867 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
868 return;
869
870 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
871 mask_bit = boot_cpu_data.x86_phys_bits;
872
873 /* Increment the mask bit if it is the same as the encryption bit */
874 if (enc_bit == mask_bit)
875 mask_bit++;
876
877 /*
878 * If the mask bit location is below 52, then some bits above the
879 * physical addressing limit will always be reserved, so use the
880 * rsvd_bits() function to generate the mask. This mask, along with
881 * the present bit, will be used to generate a page fault with
882 * PFER.RSV = 1.
883 *
884 * If the mask bit location is 52 (or above), then clear the mask.
885 */
886 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
887
888 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
889 }
890
891 static void svm_hardware_teardown(void)
892 {
893 int cpu;
894
895 sev_hardware_teardown();
896
897 for_each_possible_cpu(cpu)
898 svm_cpu_uninit(cpu);
899
900 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
901 get_order(IOPM_SIZE));
902 iopm_base = 0;
903 }
904
905 static __init void svm_set_cpu_caps(void)
906 {
907 kvm_set_cpu_caps();
908
909 supported_xss = 0;
910
911 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
912 if (nested) {
913 kvm_cpu_cap_set(X86_FEATURE_SVM);
914
915 if (nrips)
916 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
917
918 if (npt_enabled)
919 kvm_cpu_cap_set(X86_FEATURE_NPT);
920
921 /* Nested VM can receive #VMEXIT instead of triggering #GP */
922 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
923 }
924
925 /* CPUID 0x80000008 */
926 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
927 boot_cpu_has(X86_FEATURE_AMD_SSBD))
928 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
929
930 /* CPUID 0x8000001F (SME/SEV features) */
931 sev_set_cpu_caps();
932 }
933
934 static __init int svm_hardware_setup(void)
935 {
936 int cpu;
937 struct page *iopm_pages;
938 void *iopm_va;
939 int r;
940 unsigned int order = get_order(IOPM_SIZE);
941
942 iopm_pages = alloc_pages(GFP_KERNEL, order);
943
944 if (!iopm_pages)
945 return -ENOMEM;
946
947 iopm_va = page_address(iopm_pages);
948 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
949 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
950
951 init_msrpm_offsets();
952
953 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
954
955 if (boot_cpu_has(X86_FEATURE_NX))
956 kvm_enable_efer_bits(EFER_NX);
957
958 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
959 kvm_enable_efer_bits(EFER_FFXSR);
960
961 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
962 kvm_has_tsc_control = true;
963 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
964 kvm_tsc_scaling_ratio_frac_bits = 32;
965 }
966
967 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
968
969 /* Check for pause filtering support */
970 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
971 pause_filter_count = 0;
972 pause_filter_thresh = 0;
973 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
974 pause_filter_thresh = 0;
975 }
976
977 if (nested) {
978 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
979 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
980 }
981
982 /*
983 * KVM's MMU doesn't support using 2-level paging for itself, and thus
984 * NPT isn't supported if the host is using 2-level paging since host
985 * CR4 is unchanged on VMRUN.
986 */
987 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
988 npt_enabled = false;
989
990 if (!boot_cpu_has(X86_FEATURE_NPT))
991 npt_enabled = false;
992
993 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
994 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
995
996 /* Note, SEV setup consumes npt_enabled. */
997 sev_hardware_setup();
998
999 svm_adjust_mmio_mask();
1000
1001 for_each_possible_cpu(cpu) {
1002 r = svm_cpu_init(cpu);
1003 if (r)
1004 goto err;
1005 }
1006
1007 if (nrips) {
1008 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1009 nrips = false;
1010 }
1011
1012 if (avic) {
1013 if (!npt_enabled ||
1014 !boot_cpu_has(X86_FEATURE_AVIC) ||
1015 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1016 avic = false;
1017 } else {
1018 pr_info("AVIC enabled\n");
1019
1020 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1021 }
1022 }
1023
1024 if (vls) {
1025 if (!npt_enabled ||
1026 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1027 !IS_ENABLED(CONFIG_X86_64)) {
1028 vls = false;
1029 } else {
1030 pr_info("Virtual VMLOAD VMSAVE supported\n");
1031 }
1032 }
1033
1034 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1035 svm_gp_erratum_intercept = false;
1036
1037 if (vgif) {
1038 if (!boot_cpu_has(X86_FEATURE_VGIF))
1039 vgif = false;
1040 else
1041 pr_info("Virtual GIF supported\n");
1042 }
1043
1044 svm_set_cpu_caps();
1045
1046 /*
1047 * It seems that on AMD processors PTE's accessed bit is
1048 * being set by the CPU hardware before the NPF vmexit.
1049 * This is not expected behaviour and our tests fail because
1050 * of it.
1051 * A workaround here is to disable support for
1052 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1053 * In this case userspace can know if there is support using
1054 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1055 * it
1056 * If future AMD CPU models change the behaviour described above,
1057 * this variable can be changed accordingly
1058 */
1059 allow_smaller_maxphyaddr = !npt_enabled;
1060
1061 return 0;
1062
1063 err:
1064 svm_hardware_teardown();
1065 return r;
1066 }
1067
1068 static void init_seg(struct vmcb_seg *seg)
1069 {
1070 seg->selector = 0;
1071 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1072 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1073 seg->limit = 0xffff;
1074 seg->base = 0;
1075 }
1076
1077 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1078 {
1079 seg->selector = 0;
1080 seg->attrib = SVM_SELECTOR_P_MASK | type;
1081 seg->limit = 0xffff;
1082 seg->base = 0;
1083 }
1084
1085 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1086 {
1087 struct vcpu_svm *svm = to_svm(vcpu);
1088 u64 g_tsc_offset = 0;
1089
1090 if (is_guest_mode(vcpu)) {
1091 /* Write L1's TSC offset. */
1092 g_tsc_offset = svm->vmcb->control.tsc_offset -
1093 svm->vmcb01.ptr->control.tsc_offset;
1094 svm->vmcb01.ptr->control.tsc_offset = offset;
1095 }
1096
1097 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1098 svm->vmcb->control.tsc_offset - g_tsc_offset,
1099 offset);
1100
1101 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1102
1103 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1104 return svm->vmcb->control.tsc_offset;
1105 }
1106
1107 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1108 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1109 struct vcpu_svm *svm)
1110 {
1111 /*
1112 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1113 * roots, or if INVPCID is disabled in the guest to inject #UD.
1114 */
1115 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1116 if (!npt_enabled ||
1117 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1118 svm_set_intercept(svm, INTERCEPT_INVPCID);
1119 else
1120 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1121 }
1122
1123 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1124 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1125 svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1126 else
1127 svm_set_intercept(svm, INTERCEPT_RDTSCP);
1128 }
1129 }
1130
1131 static void init_vmcb(struct kvm_vcpu *vcpu)
1132 {
1133 struct vcpu_svm *svm = to_svm(vcpu);
1134 struct vmcb_control_area *control = &svm->vmcb->control;
1135 struct vmcb_save_area *save = &svm->vmcb->save;
1136
1137 vcpu->arch.hflags = 0;
1138
1139 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1140 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1141 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1142 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1143 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1144 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1145 if (!kvm_vcpu_apicv_active(vcpu))
1146 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1147
1148 set_dr_intercepts(svm);
1149
1150 set_exception_intercept(svm, PF_VECTOR);
1151 set_exception_intercept(svm, UD_VECTOR);
1152 set_exception_intercept(svm, MC_VECTOR);
1153 set_exception_intercept(svm, AC_VECTOR);
1154 set_exception_intercept(svm, DB_VECTOR);
1155 /*
1156 * Guest access to VMware backdoor ports could legitimately
1157 * trigger #GP because of TSS I/O permission bitmap.
1158 * We intercept those #GP and allow access to them anyway
1159 * as VMware does.
1160 */
1161 if (enable_vmware_backdoor)
1162 set_exception_intercept(svm, GP_VECTOR);
1163
1164 svm_set_intercept(svm, INTERCEPT_INTR);
1165 svm_set_intercept(svm, INTERCEPT_NMI);
1166 svm_set_intercept(svm, INTERCEPT_SMI);
1167 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1168 svm_set_intercept(svm, INTERCEPT_RDPMC);
1169 svm_set_intercept(svm, INTERCEPT_CPUID);
1170 svm_set_intercept(svm, INTERCEPT_INVD);
1171 svm_set_intercept(svm, INTERCEPT_INVLPG);
1172 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1173 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1174 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1175 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1176 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1177 svm_set_intercept(svm, INTERCEPT_VMRUN);
1178 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1179 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1180 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1181 svm_set_intercept(svm, INTERCEPT_STGI);
1182 svm_set_intercept(svm, INTERCEPT_CLGI);
1183 svm_set_intercept(svm, INTERCEPT_SKINIT);
1184 svm_set_intercept(svm, INTERCEPT_WBINVD);
1185 svm_set_intercept(svm, INTERCEPT_XSETBV);
1186 svm_set_intercept(svm, INTERCEPT_RDPRU);
1187 svm_set_intercept(svm, INTERCEPT_RSM);
1188
1189 if (!kvm_mwait_in_guest(vcpu->kvm)) {
1190 svm_set_intercept(svm, INTERCEPT_MONITOR);
1191 svm_set_intercept(svm, INTERCEPT_MWAIT);
1192 }
1193
1194 if (!kvm_hlt_in_guest(vcpu->kvm))
1195 svm_set_intercept(svm, INTERCEPT_HLT);
1196
1197 control->iopm_base_pa = __sme_set(iopm_base);
1198 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1199 control->int_ctl = V_INTR_MASKING_MASK;
1200
1201 init_seg(&save->es);
1202 init_seg(&save->ss);
1203 init_seg(&save->ds);
1204 init_seg(&save->fs);
1205 init_seg(&save->gs);
1206
1207 save->cs.selector = 0xf000;
1208 save->cs.base = 0xffff0000;
1209 /* Executable/Readable Code Segment */
1210 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1211 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1212 save->cs.limit = 0xffff;
1213
1214 save->gdtr.limit = 0xffff;
1215 save->idtr.limit = 0xffff;
1216
1217 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1218 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1219
1220 svm_set_cr4(vcpu, 0);
1221 svm_set_efer(vcpu, 0);
1222 save->dr6 = 0xffff0ff0;
1223 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
1224 save->rip = 0x0000fff0;
1225 vcpu->arch.regs[VCPU_REGS_RIP] = save->rip;
1226
1227 /*
1228 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1229 * It also updates the guest-visible cr0 value.
1230 */
1231 svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1232 kvm_mmu_reset_context(vcpu);
1233
1234 save->cr4 = X86_CR4_PAE;
1235 /* rdx = ?? */
1236
1237 if (npt_enabled) {
1238 /* Setup VMCB for Nested Paging */
1239 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1240 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1241 clr_exception_intercept(svm, PF_VECTOR);
1242 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1243 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1244 save->g_pat = vcpu->arch.pat;
1245 save->cr3 = 0;
1246 save->cr4 = 0;
1247 }
1248 svm->current_vmcb->asid_generation = 0;
1249 svm->asid = 0;
1250
1251 svm->nested.vmcb12_gpa = INVALID_GPA;
1252 svm->nested.last_vmcb12_gpa = INVALID_GPA;
1253 vcpu->arch.hflags = 0;
1254
1255 if (!kvm_pause_in_guest(vcpu->kvm)) {
1256 control->pause_filter_count = pause_filter_count;
1257 if (pause_filter_thresh)
1258 control->pause_filter_thresh = pause_filter_thresh;
1259 svm_set_intercept(svm, INTERCEPT_PAUSE);
1260 } else {
1261 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1262 }
1263
1264 svm_recalc_instruction_intercepts(vcpu, svm);
1265
1266 /*
1267 * If the host supports V_SPEC_CTRL then disable the interception
1268 * of MSR_IA32_SPEC_CTRL.
1269 */
1270 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1271 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1272
1273 if (kvm_vcpu_apicv_active(vcpu))
1274 avic_init_vmcb(svm);
1275
1276 if (vgif) {
1277 svm_clr_intercept(svm, INTERCEPT_STGI);
1278 svm_clr_intercept(svm, INTERCEPT_CLGI);
1279 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1280 }
1281
1282 if (sev_guest(vcpu->kvm)) {
1283 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1284 clr_exception_intercept(svm, UD_VECTOR);
1285
1286 if (sev_es_guest(vcpu->kvm)) {
1287 /* Perform SEV-ES specific VMCB updates */
1288 sev_es_init_vmcb(svm);
1289 }
1290 }
1291
1292 vmcb_mark_all_dirty(svm->vmcb);
1293
1294 enable_gif(svm);
1295
1296 }
1297
1298 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1299 {
1300 struct vcpu_svm *svm = to_svm(vcpu);
1301 u32 dummy;
1302 u32 eax = 1;
1303
1304 svm->spec_ctrl = 0;
1305 svm->virt_spec_ctrl = 0;
1306
1307 if (!init_event) {
1308 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1309 MSR_IA32_APICBASE_ENABLE;
1310 if (kvm_vcpu_is_reset_bsp(vcpu))
1311 vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP;
1312 }
1313 init_vmcb(vcpu);
1314
1315 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1316 kvm_rdx_write(vcpu, eax);
1317
1318 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1319 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1320 }
1321
1322 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1323 {
1324 svm->current_vmcb = target_vmcb;
1325 svm->vmcb = target_vmcb->ptr;
1326 }
1327
1328 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1329 {
1330 struct vcpu_svm *svm;
1331 struct page *vmcb01_page;
1332 struct page *vmsa_page = NULL;
1333 int err;
1334
1335 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1336 svm = to_svm(vcpu);
1337
1338 err = -ENOMEM;
1339 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1340 if (!vmcb01_page)
1341 goto out;
1342
1343 if (sev_es_guest(vcpu->kvm)) {
1344 /*
1345 * SEV-ES guests require a separate VMSA page used to contain
1346 * the encrypted register state of the guest.
1347 */
1348 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1349 if (!vmsa_page)
1350 goto error_free_vmcb_page;
1351
1352 /*
1353 * SEV-ES guests maintain an encrypted version of their FPU
1354 * state which is restored and saved on VMRUN and VMEXIT.
1355 * Free the fpu structure to prevent KVM from attempting to
1356 * access the FPU state.
1357 */
1358 kvm_free_guest_fpu(vcpu);
1359 }
1360
1361 err = avic_init_vcpu(svm);
1362 if (err)
1363 goto error_free_vmsa_page;
1364
1365 /* We initialize this flag to true to make sure that the is_running
1366 * bit would be set the first time the vcpu is loaded.
1367 */
1368 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1369 svm->avic_is_running = true;
1370
1371 svm->msrpm = svm_vcpu_alloc_msrpm();
1372 if (!svm->msrpm) {
1373 err = -ENOMEM;
1374 goto error_free_vmsa_page;
1375 }
1376
1377 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1378
1379 svm->vmcb01.ptr = page_address(vmcb01_page);
1380 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1381
1382 if (vmsa_page)
1383 svm->vmsa = page_address(vmsa_page);
1384
1385 svm->guest_state_loaded = false;
1386
1387 svm_switch_vmcb(svm, &svm->vmcb01);
1388 init_vmcb(vcpu);
1389
1390 svm_init_osvw(vcpu);
1391 vcpu->arch.microcode_version = 0x01000065;
1392
1393 if (sev_es_guest(vcpu->kvm))
1394 /* Perform SEV-ES specific VMCB creation updates */
1395 sev_es_create_vcpu(svm);
1396
1397 return 0;
1398
1399 error_free_vmsa_page:
1400 if (vmsa_page)
1401 __free_page(vmsa_page);
1402 error_free_vmcb_page:
1403 __free_page(vmcb01_page);
1404 out:
1405 return err;
1406 }
1407
1408 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1409 {
1410 int i;
1411
1412 for_each_online_cpu(i)
1413 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1414 }
1415
1416 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1417 {
1418 struct vcpu_svm *svm = to_svm(vcpu);
1419
1420 /*
1421 * The vmcb page can be recycled, causing a false negative in
1422 * svm_vcpu_load(). So, ensure that no logical CPU has this
1423 * vmcb page recorded as its current vmcb.
1424 */
1425 svm_clear_current_vmcb(svm->vmcb);
1426
1427 svm_free_nested(svm);
1428
1429 sev_free_vcpu(vcpu);
1430
1431 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1432 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1433 }
1434
1435 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1436 {
1437 struct vcpu_svm *svm = to_svm(vcpu);
1438 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1439
1440 if (sev_es_guest(vcpu->kvm))
1441 sev_es_unmap_ghcb(svm);
1442
1443 if (svm->guest_state_loaded)
1444 return;
1445
1446 /*
1447 * Save additional host state that will be restored on VMEXIT (sev-es)
1448 * or subsequent vmload of host save area.
1449 */
1450 if (sev_es_guest(vcpu->kvm)) {
1451 sev_es_prepare_guest_switch(svm, vcpu->cpu);
1452 } else {
1453 vmsave(__sme_page_pa(sd->save_area));
1454 }
1455
1456 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1457 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1458 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1459 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1460 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1461 }
1462 }
1463
1464 if (likely(tsc_aux_uret_slot >= 0))
1465 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1466
1467 svm->guest_state_loaded = true;
1468 }
1469
1470 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1471 {
1472 to_svm(vcpu)->guest_state_loaded = false;
1473 }
1474
1475 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1476 {
1477 struct vcpu_svm *svm = to_svm(vcpu);
1478 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1479
1480 if (sd->current_vmcb != svm->vmcb) {
1481 sd->current_vmcb = svm->vmcb;
1482 indirect_branch_prediction_barrier();
1483 }
1484 avic_vcpu_load(vcpu, cpu);
1485 }
1486
1487 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1488 {
1489 avic_vcpu_put(vcpu);
1490 svm_prepare_host_switch(vcpu);
1491
1492 ++vcpu->stat.host_state_reload;
1493 }
1494
1495 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1496 {
1497 struct vcpu_svm *svm = to_svm(vcpu);
1498 unsigned long rflags = svm->vmcb->save.rflags;
1499
1500 if (svm->nmi_singlestep) {
1501 /* Hide our flags if they were not set by the guest */
1502 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1503 rflags &= ~X86_EFLAGS_TF;
1504 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1505 rflags &= ~X86_EFLAGS_RF;
1506 }
1507 return rflags;
1508 }
1509
1510 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1511 {
1512 if (to_svm(vcpu)->nmi_singlestep)
1513 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1514
1515 /*
1516 * Any change of EFLAGS.VM is accompanied by a reload of SS
1517 * (caused by either a task switch or an inter-privilege IRET),
1518 * so we do not need to update the CPL here.
1519 */
1520 to_svm(vcpu)->vmcb->save.rflags = rflags;
1521 }
1522
1523 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1524 {
1525 switch (reg) {
1526 case VCPU_EXREG_PDPTR:
1527 BUG_ON(!npt_enabled);
1528 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1529 break;
1530 default:
1531 WARN_ON_ONCE(1);
1532 }
1533 }
1534
1535 static void svm_set_vintr(struct vcpu_svm *svm)
1536 {
1537 struct vmcb_control_area *control;
1538
1539 /* The following fields are ignored when AVIC is enabled */
1540 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1541 svm_set_intercept(svm, INTERCEPT_VINTR);
1542
1543 /*
1544 * This is just a dummy VINTR to actually cause a vmexit to happen.
1545 * Actual injection of virtual interrupts happens through EVENTINJ.
1546 */
1547 control = &svm->vmcb->control;
1548 control->int_vector = 0x0;
1549 control->int_ctl &= ~V_INTR_PRIO_MASK;
1550 control->int_ctl |= V_IRQ_MASK |
1551 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1552 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1553 }
1554
1555 static void svm_clear_vintr(struct vcpu_svm *svm)
1556 {
1557 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1558 svm_clr_intercept(svm, INTERCEPT_VINTR);
1559
1560 /* Drop int_ctl fields related to VINTR injection. */
1561 svm->vmcb->control.int_ctl &= mask;
1562 if (is_guest_mode(&svm->vcpu)) {
1563 svm->vmcb01.ptr->control.int_ctl &= mask;
1564
1565 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1566 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1567 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1568 }
1569
1570 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1571 }
1572
1573 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1574 {
1575 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1576 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1577
1578 switch (seg) {
1579 case VCPU_SREG_CS: return &save->cs;
1580 case VCPU_SREG_DS: return &save->ds;
1581 case VCPU_SREG_ES: return &save->es;
1582 case VCPU_SREG_FS: return &save01->fs;
1583 case VCPU_SREG_GS: return &save01->gs;
1584 case VCPU_SREG_SS: return &save->ss;
1585 case VCPU_SREG_TR: return &save01->tr;
1586 case VCPU_SREG_LDTR: return &save01->ldtr;
1587 }
1588 BUG();
1589 return NULL;
1590 }
1591
1592 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1593 {
1594 struct vmcb_seg *s = svm_seg(vcpu, seg);
1595
1596 return s->base;
1597 }
1598
1599 static void svm_get_segment(struct kvm_vcpu *vcpu,
1600 struct kvm_segment *var, int seg)
1601 {
1602 struct vmcb_seg *s = svm_seg(vcpu, seg);
1603
1604 var->base = s->base;
1605 var->limit = s->limit;
1606 var->selector = s->selector;
1607 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1608 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1609 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1610 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1611 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1612 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1613 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1614
1615 /*
1616 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1617 * However, the SVM spec states that the G bit is not observed by the
1618 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1619 * So let's synthesize a legal G bit for all segments, this helps
1620 * running KVM nested. It also helps cross-vendor migration, because
1621 * Intel's vmentry has a check on the 'G' bit.
1622 */
1623 var->g = s->limit > 0xfffff;
1624
1625 /*
1626 * AMD's VMCB does not have an explicit unusable field, so emulate it
1627 * for cross vendor migration purposes by "not present"
1628 */
1629 var->unusable = !var->present;
1630
1631 switch (seg) {
1632 case VCPU_SREG_TR:
1633 /*
1634 * Work around a bug where the busy flag in the tr selector
1635 * isn't exposed
1636 */
1637 var->type |= 0x2;
1638 break;
1639 case VCPU_SREG_DS:
1640 case VCPU_SREG_ES:
1641 case VCPU_SREG_FS:
1642 case VCPU_SREG_GS:
1643 /*
1644 * The accessed bit must always be set in the segment
1645 * descriptor cache, although it can be cleared in the
1646 * descriptor, the cached bit always remains at 1. Since
1647 * Intel has a check on this, set it here to support
1648 * cross-vendor migration.
1649 */
1650 if (!var->unusable)
1651 var->type |= 0x1;
1652 break;
1653 case VCPU_SREG_SS:
1654 /*
1655 * On AMD CPUs sometimes the DB bit in the segment
1656 * descriptor is left as 1, although the whole segment has
1657 * been made unusable. Clear it here to pass an Intel VMX
1658 * entry check when cross vendor migrating.
1659 */
1660 if (var->unusable)
1661 var->db = 0;
1662 /* This is symmetric with svm_set_segment() */
1663 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1664 break;
1665 }
1666 }
1667
1668 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1669 {
1670 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1671
1672 return save->cpl;
1673 }
1674
1675 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1676 {
1677 struct vcpu_svm *svm = to_svm(vcpu);
1678
1679 dt->size = svm->vmcb->save.idtr.limit;
1680 dt->address = svm->vmcb->save.idtr.base;
1681 }
1682
1683 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1684 {
1685 struct vcpu_svm *svm = to_svm(vcpu);
1686
1687 svm->vmcb->save.idtr.limit = dt->size;
1688 svm->vmcb->save.idtr.base = dt->address ;
1689 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1690 }
1691
1692 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1693 {
1694 struct vcpu_svm *svm = to_svm(vcpu);
1695
1696 dt->size = svm->vmcb->save.gdtr.limit;
1697 dt->address = svm->vmcb->save.gdtr.base;
1698 }
1699
1700 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1701 {
1702 struct vcpu_svm *svm = to_svm(vcpu);
1703
1704 svm->vmcb->save.gdtr.limit = dt->size;
1705 svm->vmcb->save.gdtr.base = dt->address ;
1706 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1707 }
1708
1709 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1710 {
1711 struct vcpu_svm *svm = to_svm(vcpu);
1712 u64 hcr0 = cr0;
1713
1714 #ifdef CONFIG_X86_64
1715 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1716 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1717 vcpu->arch.efer |= EFER_LMA;
1718 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1719 }
1720
1721 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1722 vcpu->arch.efer &= ~EFER_LMA;
1723 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1724 }
1725 }
1726 #endif
1727 vcpu->arch.cr0 = cr0;
1728
1729 if (!npt_enabled)
1730 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1731
1732 /*
1733 * re-enable caching here because the QEMU bios
1734 * does not do it - this results in some delay at
1735 * reboot
1736 */
1737 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1738 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1739
1740 svm->vmcb->save.cr0 = hcr0;
1741 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1742
1743 /*
1744 * SEV-ES guests must always keep the CR intercepts cleared. CR
1745 * tracking is done using the CR write traps.
1746 */
1747 if (sev_es_guest(vcpu->kvm))
1748 return;
1749
1750 if (hcr0 == cr0) {
1751 /* Selective CR0 write remains on. */
1752 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1753 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1754 } else {
1755 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1756 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1757 }
1758 }
1759
1760 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1761 {
1762 return true;
1763 }
1764
1765 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1766 {
1767 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1768 unsigned long old_cr4 = vcpu->arch.cr4;
1769
1770 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1771 svm_flush_tlb(vcpu);
1772
1773 vcpu->arch.cr4 = cr4;
1774 if (!npt_enabled)
1775 cr4 |= X86_CR4_PAE;
1776 cr4 |= host_cr4_mce;
1777 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1778 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1779
1780 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1781 kvm_update_cpuid_runtime(vcpu);
1782 }
1783
1784 static void svm_set_segment(struct kvm_vcpu *vcpu,
1785 struct kvm_segment *var, int seg)
1786 {
1787 struct vcpu_svm *svm = to_svm(vcpu);
1788 struct vmcb_seg *s = svm_seg(vcpu, seg);
1789
1790 s->base = var->base;
1791 s->limit = var->limit;
1792 s->selector = var->selector;
1793 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1794 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1795 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1796 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1797 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1798 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1799 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1800 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1801
1802 /*
1803 * This is always accurate, except if SYSRET returned to a segment
1804 * with SS.DPL != 3. Intel does not have this quirk, and always
1805 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1806 * would entail passing the CPL to userspace and back.
1807 */
1808 if (seg == VCPU_SREG_SS)
1809 /* This is symmetric with svm_get_segment() */
1810 svm->vmcb->save.cpl = (var->dpl & 3);
1811
1812 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1813 }
1814
1815 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1816 {
1817 struct vcpu_svm *svm = to_svm(vcpu);
1818
1819 clr_exception_intercept(svm, BP_VECTOR);
1820
1821 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1822 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1823 set_exception_intercept(svm, BP_VECTOR);
1824 }
1825 }
1826
1827 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1828 {
1829 if (sd->next_asid > sd->max_asid) {
1830 ++sd->asid_generation;
1831 sd->next_asid = sd->min_asid;
1832 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1833 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1834 }
1835
1836 svm->current_vmcb->asid_generation = sd->asid_generation;
1837 svm->asid = sd->next_asid++;
1838 }
1839
1840 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1841 {
1842 struct vmcb *vmcb = svm->vmcb;
1843
1844 if (svm->vcpu.arch.guest_state_protected)
1845 return;
1846
1847 if (unlikely(value != vmcb->save.dr6)) {
1848 vmcb->save.dr6 = value;
1849 vmcb_mark_dirty(vmcb, VMCB_DR);
1850 }
1851 }
1852
1853 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1854 {
1855 struct vcpu_svm *svm = to_svm(vcpu);
1856
1857 if (vcpu->arch.guest_state_protected)
1858 return;
1859
1860 get_debugreg(vcpu->arch.db[0], 0);
1861 get_debugreg(vcpu->arch.db[1], 1);
1862 get_debugreg(vcpu->arch.db[2], 2);
1863 get_debugreg(vcpu->arch.db[3], 3);
1864 /*
1865 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1866 * because db_interception might need it. We can do it before vmentry.
1867 */
1868 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1869 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1870 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1871 set_dr_intercepts(svm);
1872 }
1873
1874 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1875 {
1876 struct vcpu_svm *svm = to_svm(vcpu);
1877
1878 if (vcpu->arch.guest_state_protected)
1879 return;
1880
1881 svm->vmcb->save.dr7 = value;
1882 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1883 }
1884
1885 static int pf_interception(struct kvm_vcpu *vcpu)
1886 {
1887 struct vcpu_svm *svm = to_svm(vcpu);
1888
1889 u64 fault_address = svm->vmcb->control.exit_info_2;
1890 u64 error_code = svm->vmcb->control.exit_info_1;
1891
1892 return kvm_handle_page_fault(vcpu, error_code, fault_address,
1893 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1894 svm->vmcb->control.insn_bytes : NULL,
1895 svm->vmcb->control.insn_len);
1896 }
1897
1898 static int npf_interception(struct kvm_vcpu *vcpu)
1899 {
1900 struct vcpu_svm *svm = to_svm(vcpu);
1901
1902 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1903 u64 error_code = svm->vmcb->control.exit_info_1;
1904
1905 trace_kvm_page_fault(fault_address, error_code);
1906 return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1907 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1908 svm->vmcb->control.insn_bytes : NULL,
1909 svm->vmcb->control.insn_len);
1910 }
1911
1912 static int db_interception(struct kvm_vcpu *vcpu)
1913 {
1914 struct kvm_run *kvm_run = vcpu->run;
1915 struct vcpu_svm *svm = to_svm(vcpu);
1916
1917 if (!(vcpu->guest_debug &
1918 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1919 !svm->nmi_singlestep) {
1920 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1921 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1922 return 1;
1923 }
1924
1925 if (svm->nmi_singlestep) {
1926 disable_nmi_singlestep(svm);
1927 /* Make sure we check for pending NMIs upon entry */
1928 kvm_make_request(KVM_REQ_EVENT, vcpu);
1929 }
1930
1931 if (vcpu->guest_debug &
1932 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1933 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1934 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1935 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1936 kvm_run->debug.arch.pc =
1937 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1938 kvm_run->debug.arch.exception = DB_VECTOR;
1939 return 0;
1940 }
1941
1942 return 1;
1943 }
1944
1945 static int bp_interception(struct kvm_vcpu *vcpu)
1946 {
1947 struct vcpu_svm *svm = to_svm(vcpu);
1948 struct kvm_run *kvm_run = vcpu->run;
1949
1950 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1951 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1952 kvm_run->debug.arch.exception = BP_VECTOR;
1953 return 0;
1954 }
1955
1956 static int ud_interception(struct kvm_vcpu *vcpu)
1957 {
1958 return handle_ud(vcpu);
1959 }
1960
1961 static int ac_interception(struct kvm_vcpu *vcpu)
1962 {
1963 kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1964 return 1;
1965 }
1966
1967 static bool is_erratum_383(void)
1968 {
1969 int err, i;
1970 u64 value;
1971
1972 if (!erratum_383_found)
1973 return false;
1974
1975 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1976 if (err)
1977 return false;
1978
1979 /* Bit 62 may or may not be set for this mce */
1980 value &= ~(1ULL << 62);
1981
1982 if (value != 0xb600000000010015ULL)
1983 return false;
1984
1985 /* Clear MCi_STATUS registers */
1986 for (i = 0; i < 6; ++i)
1987 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1988
1989 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1990 if (!err) {
1991 u32 low, high;
1992
1993 value &= ~(1ULL << 2);
1994 low = lower_32_bits(value);
1995 high = upper_32_bits(value);
1996
1997 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1998 }
1999
2000 /* Flush tlb to evict multi-match entries */
2001 __flush_tlb_all();
2002
2003 return true;
2004 }
2005
2006 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2007 {
2008 if (is_erratum_383()) {
2009 /*
2010 * Erratum 383 triggered. Guest state is corrupt so kill the
2011 * guest.
2012 */
2013 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2014
2015 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2016
2017 return;
2018 }
2019
2020 /*
2021 * On an #MC intercept the MCE handler is not called automatically in
2022 * the host. So do it by hand here.
2023 */
2024 kvm_machine_check();
2025 }
2026
2027 static int mc_interception(struct kvm_vcpu *vcpu)
2028 {
2029 return 1;
2030 }
2031
2032 static int shutdown_interception(struct kvm_vcpu *vcpu)
2033 {
2034 struct kvm_run *kvm_run = vcpu->run;
2035 struct vcpu_svm *svm = to_svm(vcpu);
2036
2037 /*
2038 * The VM save area has already been encrypted so it
2039 * cannot be reinitialized - just terminate.
2040 */
2041 if (sev_es_guest(vcpu->kvm))
2042 return -EINVAL;
2043
2044 /*
2045 * VMCB is undefined after a SHUTDOWN intercept
2046 * so reinitialize it.
2047 */
2048 clear_page(svm->vmcb);
2049 init_vmcb(vcpu);
2050
2051 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2052 return 0;
2053 }
2054
2055 static int io_interception(struct kvm_vcpu *vcpu)
2056 {
2057 struct vcpu_svm *svm = to_svm(vcpu);
2058 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2059 int size, in, string;
2060 unsigned port;
2061
2062 ++vcpu->stat.io_exits;
2063 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2064 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2065 port = io_info >> 16;
2066 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2067
2068 if (string) {
2069 if (sev_es_guest(vcpu->kvm))
2070 return sev_es_string_io(svm, size, port, in);
2071 else
2072 return kvm_emulate_instruction(vcpu, 0);
2073 }
2074
2075 svm->next_rip = svm->vmcb->control.exit_info_2;
2076
2077 return kvm_fast_pio(vcpu, size, port, in);
2078 }
2079
2080 static int nmi_interception(struct kvm_vcpu *vcpu)
2081 {
2082 return 1;
2083 }
2084
2085 static int intr_interception(struct kvm_vcpu *vcpu)
2086 {
2087 ++vcpu->stat.irq_exits;
2088 return 1;
2089 }
2090
2091 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2092 {
2093 struct vcpu_svm *svm = to_svm(vcpu);
2094 struct vmcb *vmcb12;
2095 struct kvm_host_map map;
2096 int ret;
2097
2098 if (nested_svm_check_permissions(vcpu))
2099 return 1;
2100
2101 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2102 if (ret) {
2103 if (ret == -EINVAL)
2104 kvm_inject_gp(vcpu, 0);
2105 return 1;
2106 }
2107
2108 vmcb12 = map.hva;
2109
2110 ret = kvm_skip_emulated_instruction(vcpu);
2111
2112 if (vmload) {
2113 nested_svm_vmloadsave(vmcb12, svm->vmcb);
2114 svm->sysenter_eip_hi = 0;
2115 svm->sysenter_esp_hi = 0;
2116 } else
2117 nested_svm_vmloadsave(svm->vmcb, vmcb12);
2118
2119 kvm_vcpu_unmap(vcpu, &map, true);
2120
2121 return ret;
2122 }
2123
2124 static int vmload_interception(struct kvm_vcpu *vcpu)
2125 {
2126 return vmload_vmsave_interception(vcpu, true);
2127 }
2128
2129 static int vmsave_interception(struct kvm_vcpu *vcpu)
2130 {
2131 return vmload_vmsave_interception(vcpu, false);
2132 }
2133
2134 static int vmrun_interception(struct kvm_vcpu *vcpu)
2135 {
2136 if (nested_svm_check_permissions(vcpu))
2137 return 1;
2138
2139 return nested_svm_vmrun(vcpu);
2140 }
2141
2142 enum {
2143 NONE_SVM_INSTR,
2144 SVM_INSTR_VMRUN,
2145 SVM_INSTR_VMLOAD,
2146 SVM_INSTR_VMSAVE,
2147 };
2148
2149 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2150 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2151 {
2152 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2153
2154 if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2155 return NONE_SVM_INSTR;
2156
2157 switch (ctxt->modrm) {
2158 case 0xd8: /* VMRUN */
2159 return SVM_INSTR_VMRUN;
2160 case 0xda: /* VMLOAD */
2161 return SVM_INSTR_VMLOAD;
2162 case 0xdb: /* VMSAVE */
2163 return SVM_INSTR_VMSAVE;
2164 default:
2165 break;
2166 }
2167
2168 return NONE_SVM_INSTR;
2169 }
2170
2171 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2172 {
2173 const int guest_mode_exit_codes[] = {
2174 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2175 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2176 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2177 };
2178 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2179 [SVM_INSTR_VMRUN] = vmrun_interception,
2180 [SVM_INSTR_VMLOAD] = vmload_interception,
2181 [SVM_INSTR_VMSAVE] = vmsave_interception,
2182 };
2183 struct vcpu_svm *svm = to_svm(vcpu);
2184 int ret;
2185
2186 if (is_guest_mode(vcpu)) {
2187 /* Returns '1' or -errno on failure, '0' on success. */
2188 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2189 if (ret)
2190 return ret;
2191 return 1;
2192 }
2193 return svm_instr_handlers[opcode](vcpu);
2194 }
2195
2196 /*
2197 * #GP handling code. Note that #GP can be triggered under the following two
2198 * cases:
2199 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2200 * some AMD CPUs when EAX of these instructions are in the reserved memory
2201 * regions (e.g. SMM memory on host).
2202 * 2) VMware backdoor
2203 */
2204 static int gp_interception(struct kvm_vcpu *vcpu)
2205 {
2206 struct vcpu_svm *svm = to_svm(vcpu);
2207 u32 error_code = svm->vmcb->control.exit_info_1;
2208 int opcode;
2209
2210 /* Both #GP cases have zero error_code */
2211 if (error_code)
2212 goto reinject;
2213
2214 /* Decode the instruction for usage later */
2215 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2216 goto reinject;
2217
2218 opcode = svm_instr_opcode(vcpu);
2219
2220 if (opcode == NONE_SVM_INSTR) {
2221 if (!enable_vmware_backdoor)
2222 goto reinject;
2223
2224 /*
2225 * VMware backdoor emulation on #GP interception only handles
2226 * IN{S}, OUT{S}, and RDPMC.
2227 */
2228 if (!is_guest_mode(vcpu))
2229 return kvm_emulate_instruction(vcpu,
2230 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2231 } else
2232 return emulate_svm_instr(vcpu, opcode);
2233
2234 reinject:
2235 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2236 return 1;
2237 }
2238
2239 void svm_set_gif(struct vcpu_svm *svm, bool value)
2240 {
2241 if (value) {
2242 /*
2243 * If VGIF is enabled, the STGI intercept is only added to
2244 * detect the opening of the SMI/NMI window; remove it now.
2245 * Likewise, clear the VINTR intercept, we will set it
2246 * again while processing KVM_REQ_EVENT if needed.
2247 */
2248 if (vgif_enabled(svm))
2249 svm_clr_intercept(svm, INTERCEPT_STGI);
2250 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2251 svm_clear_vintr(svm);
2252
2253 enable_gif(svm);
2254 if (svm->vcpu.arch.smi_pending ||
2255 svm->vcpu.arch.nmi_pending ||
2256 kvm_cpu_has_injectable_intr(&svm->vcpu))
2257 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2258 } else {
2259 disable_gif(svm);
2260
2261 /*
2262 * After a CLGI no interrupts should come. But if vGIF is
2263 * in use, we still rely on the VINTR intercept (rather than
2264 * STGI) to detect an open interrupt window.
2265 */
2266 if (!vgif_enabled(svm))
2267 svm_clear_vintr(svm);
2268 }
2269 }
2270
2271 static int stgi_interception(struct kvm_vcpu *vcpu)
2272 {
2273 int ret;
2274
2275 if (nested_svm_check_permissions(vcpu))
2276 return 1;
2277
2278 ret = kvm_skip_emulated_instruction(vcpu);
2279 svm_set_gif(to_svm(vcpu), true);
2280 return ret;
2281 }
2282
2283 static int clgi_interception(struct kvm_vcpu *vcpu)
2284 {
2285 int ret;
2286
2287 if (nested_svm_check_permissions(vcpu))
2288 return 1;
2289
2290 ret = kvm_skip_emulated_instruction(vcpu);
2291 svm_set_gif(to_svm(vcpu), false);
2292 return ret;
2293 }
2294
2295 static int invlpga_interception(struct kvm_vcpu *vcpu)
2296 {
2297 gva_t gva = kvm_rax_read(vcpu);
2298 u32 asid = kvm_rcx_read(vcpu);
2299
2300 /* FIXME: Handle an address size prefix. */
2301 if (!is_long_mode(vcpu))
2302 gva = (u32)gva;
2303
2304 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2305
2306 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2307 kvm_mmu_invlpg(vcpu, gva);
2308
2309 return kvm_skip_emulated_instruction(vcpu);
2310 }
2311
2312 static int skinit_interception(struct kvm_vcpu *vcpu)
2313 {
2314 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2315
2316 kvm_queue_exception(vcpu, UD_VECTOR);
2317 return 1;
2318 }
2319
2320 static int task_switch_interception(struct kvm_vcpu *vcpu)
2321 {
2322 struct vcpu_svm *svm = to_svm(vcpu);
2323 u16 tss_selector;
2324 int reason;
2325 int int_type = svm->vmcb->control.exit_int_info &
2326 SVM_EXITINTINFO_TYPE_MASK;
2327 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2328 uint32_t type =
2329 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2330 uint32_t idt_v =
2331 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2332 bool has_error_code = false;
2333 u32 error_code = 0;
2334
2335 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2336
2337 if (svm->vmcb->control.exit_info_2 &
2338 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2339 reason = TASK_SWITCH_IRET;
2340 else if (svm->vmcb->control.exit_info_2 &
2341 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2342 reason = TASK_SWITCH_JMP;
2343 else if (idt_v)
2344 reason = TASK_SWITCH_GATE;
2345 else
2346 reason = TASK_SWITCH_CALL;
2347
2348 if (reason == TASK_SWITCH_GATE) {
2349 switch (type) {
2350 case SVM_EXITINTINFO_TYPE_NMI:
2351 vcpu->arch.nmi_injected = false;
2352 break;
2353 case SVM_EXITINTINFO_TYPE_EXEPT:
2354 if (svm->vmcb->control.exit_info_2 &
2355 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2356 has_error_code = true;
2357 error_code =
2358 (u32)svm->vmcb->control.exit_info_2;
2359 }
2360 kvm_clear_exception_queue(vcpu);
2361 break;
2362 case SVM_EXITINTINFO_TYPE_INTR:
2363 kvm_clear_interrupt_queue(vcpu);
2364 break;
2365 default:
2366 break;
2367 }
2368 }
2369
2370 if (reason != TASK_SWITCH_GATE ||
2371 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2372 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2373 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2374 if (!skip_emulated_instruction(vcpu))
2375 return 0;
2376 }
2377
2378 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2379 int_vec = -1;
2380
2381 return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2382 has_error_code, error_code);
2383 }
2384
2385 static int iret_interception(struct kvm_vcpu *vcpu)
2386 {
2387 struct vcpu_svm *svm = to_svm(vcpu);
2388
2389 ++vcpu->stat.nmi_window_exits;
2390 vcpu->arch.hflags |= HF_IRET_MASK;
2391 if (!sev_es_guest(vcpu->kvm)) {
2392 svm_clr_intercept(svm, INTERCEPT_IRET);
2393 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2394 }
2395 kvm_make_request(KVM_REQ_EVENT, vcpu);
2396 return 1;
2397 }
2398
2399 static int invlpg_interception(struct kvm_vcpu *vcpu)
2400 {
2401 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2402 return kvm_emulate_instruction(vcpu, 0);
2403
2404 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2405 return kvm_skip_emulated_instruction(vcpu);
2406 }
2407
2408 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2409 {
2410 return kvm_emulate_instruction(vcpu, 0);
2411 }
2412
2413 static int rsm_interception(struct kvm_vcpu *vcpu)
2414 {
2415 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2416 }
2417
2418 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2419 unsigned long val)
2420 {
2421 struct vcpu_svm *svm = to_svm(vcpu);
2422 unsigned long cr0 = vcpu->arch.cr0;
2423 bool ret = false;
2424
2425 if (!is_guest_mode(vcpu) ||
2426 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2427 return false;
2428
2429 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2430 val &= ~SVM_CR0_SELECTIVE_MASK;
2431
2432 if (cr0 ^ val) {
2433 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2434 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2435 }
2436
2437 return ret;
2438 }
2439
2440 #define CR_VALID (1ULL << 63)
2441
2442 static int cr_interception(struct kvm_vcpu *vcpu)
2443 {
2444 struct vcpu_svm *svm = to_svm(vcpu);
2445 int reg, cr;
2446 unsigned long val;
2447 int err;
2448
2449 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2450 return emulate_on_interception(vcpu);
2451
2452 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2453 return emulate_on_interception(vcpu);
2454
2455 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2456 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2457 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2458 else
2459 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2460
2461 err = 0;
2462 if (cr >= 16) { /* mov to cr */
2463 cr -= 16;
2464 val = kvm_register_read(vcpu, reg);
2465 trace_kvm_cr_write(cr, val);
2466 switch (cr) {
2467 case 0:
2468 if (!check_selective_cr0_intercepted(vcpu, val))
2469 err = kvm_set_cr0(vcpu, val);
2470 else
2471 return 1;
2472
2473 break;
2474 case 3:
2475 err = kvm_set_cr3(vcpu, val);
2476 break;
2477 case 4:
2478 err = kvm_set_cr4(vcpu, val);
2479 break;
2480 case 8:
2481 err = kvm_set_cr8(vcpu, val);
2482 break;
2483 default:
2484 WARN(1, "unhandled write to CR%d", cr);
2485 kvm_queue_exception(vcpu, UD_VECTOR);
2486 return 1;
2487 }
2488 } else { /* mov from cr */
2489 switch (cr) {
2490 case 0:
2491 val = kvm_read_cr0(vcpu);
2492 break;
2493 case 2:
2494 val = vcpu->arch.cr2;
2495 break;
2496 case 3:
2497 val = kvm_read_cr3(vcpu);
2498 break;
2499 case 4:
2500 val = kvm_read_cr4(vcpu);
2501 break;
2502 case 8:
2503 val = kvm_get_cr8(vcpu);
2504 break;
2505 default:
2506 WARN(1, "unhandled read from CR%d", cr);
2507 kvm_queue_exception(vcpu, UD_VECTOR);
2508 return 1;
2509 }
2510 kvm_register_write(vcpu, reg, val);
2511 trace_kvm_cr_read(cr, val);
2512 }
2513 return kvm_complete_insn_gp(vcpu, err);
2514 }
2515
2516 static int cr_trap(struct kvm_vcpu *vcpu)
2517 {
2518 struct vcpu_svm *svm = to_svm(vcpu);
2519 unsigned long old_value, new_value;
2520 unsigned int cr;
2521 int ret = 0;
2522
2523 new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2524
2525 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2526 switch (cr) {
2527 case 0:
2528 old_value = kvm_read_cr0(vcpu);
2529 svm_set_cr0(vcpu, new_value);
2530
2531 kvm_post_set_cr0(vcpu, old_value, new_value);
2532 break;
2533 case 4:
2534 old_value = kvm_read_cr4(vcpu);
2535 svm_set_cr4(vcpu, new_value);
2536
2537 kvm_post_set_cr4(vcpu, old_value, new_value);
2538 break;
2539 case 8:
2540 ret = kvm_set_cr8(vcpu, new_value);
2541 break;
2542 default:
2543 WARN(1, "unhandled CR%d write trap", cr);
2544 kvm_queue_exception(vcpu, UD_VECTOR);
2545 return 1;
2546 }
2547
2548 return kvm_complete_insn_gp(vcpu, ret);
2549 }
2550
2551 static int dr_interception(struct kvm_vcpu *vcpu)
2552 {
2553 struct vcpu_svm *svm = to_svm(vcpu);
2554 int reg, dr;
2555 unsigned long val;
2556 int err = 0;
2557
2558 if (vcpu->guest_debug == 0) {
2559 /*
2560 * No more DR vmexits; force a reload of the debug registers
2561 * and reenter on this instruction. The next vmexit will
2562 * retrieve the full state of the debug registers.
2563 */
2564 clr_dr_intercepts(svm);
2565 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2566 return 1;
2567 }
2568
2569 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2570 return emulate_on_interception(vcpu);
2571
2572 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2573 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2574 if (dr >= 16) { /* mov to DRn */
2575 dr -= 16;
2576 val = kvm_register_read(vcpu, reg);
2577 err = kvm_set_dr(vcpu, dr, val);
2578 } else {
2579 kvm_get_dr(vcpu, dr, &val);
2580 kvm_register_write(vcpu, reg, val);
2581 }
2582
2583 return kvm_complete_insn_gp(vcpu, err);
2584 }
2585
2586 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2587 {
2588 int r;
2589
2590 u8 cr8_prev = kvm_get_cr8(vcpu);
2591 /* instruction emulation calls kvm_set_cr8() */
2592 r = cr_interception(vcpu);
2593 if (lapic_in_kernel(vcpu))
2594 return r;
2595 if (cr8_prev <= kvm_get_cr8(vcpu))
2596 return r;
2597 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2598 return 0;
2599 }
2600
2601 static int efer_trap(struct kvm_vcpu *vcpu)
2602 {
2603 struct msr_data msr_info;
2604 int ret;
2605
2606 /*
2607 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2608 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2609 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2610 * the guest doesn't have X86_FEATURE_SVM.
2611 */
2612 msr_info.host_initiated = false;
2613 msr_info.index = MSR_EFER;
2614 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2615 ret = kvm_set_msr_common(vcpu, &msr_info);
2616
2617 return kvm_complete_insn_gp(vcpu, ret);
2618 }
2619
2620 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2621 {
2622 msr->data = 0;
2623
2624 switch (msr->index) {
2625 case MSR_F10H_DECFG:
2626 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2627 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2628 break;
2629 case MSR_IA32_PERF_CAPABILITIES:
2630 return 0;
2631 default:
2632 return KVM_MSR_RET_INVALID;
2633 }
2634
2635 return 0;
2636 }
2637
2638 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2639 {
2640 struct vcpu_svm *svm = to_svm(vcpu);
2641
2642 switch (msr_info->index) {
2643 case MSR_STAR:
2644 msr_info->data = svm->vmcb01.ptr->save.star;
2645 break;
2646 #ifdef CONFIG_X86_64
2647 case MSR_LSTAR:
2648 msr_info->data = svm->vmcb01.ptr->save.lstar;
2649 break;
2650 case MSR_CSTAR:
2651 msr_info->data = svm->vmcb01.ptr->save.cstar;
2652 break;
2653 case MSR_KERNEL_GS_BASE:
2654 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2655 break;
2656 case MSR_SYSCALL_MASK:
2657 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2658 break;
2659 #endif
2660 case MSR_IA32_SYSENTER_CS:
2661 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2662 break;
2663 case MSR_IA32_SYSENTER_EIP:
2664 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2665 if (guest_cpuid_is_intel(vcpu))
2666 msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2667 break;
2668 case MSR_IA32_SYSENTER_ESP:
2669 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2670 if (guest_cpuid_is_intel(vcpu))
2671 msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2672 break;
2673 case MSR_TSC_AUX:
2674 msr_info->data = svm->tsc_aux;
2675 break;
2676 /*
2677 * Nobody will change the following 5 values in the VMCB so we can
2678 * safely return them on rdmsr. They will always be 0 until LBRV is
2679 * implemented.
2680 */
2681 case MSR_IA32_DEBUGCTLMSR:
2682 msr_info->data = svm->vmcb->save.dbgctl;
2683 break;
2684 case MSR_IA32_LASTBRANCHFROMIP:
2685 msr_info->data = svm->vmcb->save.br_from;
2686 break;
2687 case MSR_IA32_LASTBRANCHTOIP:
2688 msr_info->data = svm->vmcb->save.br_to;
2689 break;
2690 case MSR_IA32_LASTINTFROMIP:
2691 msr_info->data = svm->vmcb->save.last_excp_from;
2692 break;
2693 case MSR_IA32_LASTINTTOIP:
2694 msr_info->data = svm->vmcb->save.last_excp_to;
2695 break;
2696 case MSR_VM_HSAVE_PA:
2697 msr_info->data = svm->nested.hsave_msr;
2698 break;
2699 case MSR_VM_CR:
2700 msr_info->data = svm->nested.vm_cr_msr;
2701 break;
2702 case MSR_IA32_SPEC_CTRL:
2703 if (!msr_info->host_initiated &&
2704 !guest_has_spec_ctrl_msr(vcpu))
2705 return 1;
2706
2707 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2708 msr_info->data = svm->vmcb->save.spec_ctrl;
2709 else
2710 msr_info->data = svm->spec_ctrl;
2711 break;
2712 case MSR_AMD64_VIRT_SPEC_CTRL:
2713 if (!msr_info->host_initiated &&
2714 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2715 return 1;
2716
2717 msr_info->data = svm->virt_spec_ctrl;
2718 break;
2719 case MSR_F15H_IC_CFG: {
2720
2721 int family, model;
2722
2723 family = guest_cpuid_family(vcpu);
2724 model = guest_cpuid_model(vcpu);
2725
2726 if (family < 0 || model < 0)
2727 return kvm_get_msr_common(vcpu, msr_info);
2728
2729 msr_info->data = 0;
2730
2731 if (family == 0x15 &&
2732 (model >= 0x2 && model < 0x20))
2733 msr_info->data = 0x1E;
2734 }
2735 break;
2736 case MSR_F10H_DECFG:
2737 msr_info->data = svm->msr_decfg;
2738 break;
2739 default:
2740 return kvm_get_msr_common(vcpu, msr_info);
2741 }
2742 return 0;
2743 }
2744
2745 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2746 {
2747 struct vcpu_svm *svm = to_svm(vcpu);
2748 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb))
2749 return kvm_complete_insn_gp(vcpu, err);
2750
2751 ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2752 ghcb_set_sw_exit_info_2(svm->ghcb,
2753 X86_TRAP_GP |
2754 SVM_EVTINJ_TYPE_EXEPT |
2755 SVM_EVTINJ_VALID);
2756 return 1;
2757 }
2758
2759 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2760 {
2761 struct vcpu_svm *svm = to_svm(vcpu);
2762 int svm_dis, chg_mask;
2763
2764 if (data & ~SVM_VM_CR_VALID_MASK)
2765 return 1;
2766
2767 chg_mask = SVM_VM_CR_VALID_MASK;
2768
2769 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2770 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2771
2772 svm->nested.vm_cr_msr &= ~chg_mask;
2773 svm->nested.vm_cr_msr |= (data & chg_mask);
2774
2775 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2776
2777 /* check for svm_disable while efer.svme is set */
2778 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2779 return 1;
2780
2781 return 0;
2782 }
2783
2784 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2785 {
2786 struct vcpu_svm *svm = to_svm(vcpu);
2787 int r;
2788
2789 u32 ecx = msr->index;
2790 u64 data = msr->data;
2791 switch (ecx) {
2792 case MSR_IA32_CR_PAT:
2793 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2794 return 1;
2795 vcpu->arch.pat = data;
2796 svm->vmcb01.ptr->save.g_pat = data;
2797 if (is_guest_mode(vcpu))
2798 nested_vmcb02_compute_g_pat(svm);
2799 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2800 break;
2801 case MSR_IA32_SPEC_CTRL:
2802 if (!msr->host_initiated &&
2803 !guest_has_spec_ctrl_msr(vcpu))
2804 return 1;
2805
2806 if (kvm_spec_ctrl_test_value(data))
2807 return 1;
2808
2809 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2810 svm->vmcb->save.spec_ctrl = data;
2811 else
2812 svm->spec_ctrl = data;
2813 if (!data)
2814 break;
2815
2816 /*
2817 * For non-nested:
2818 * When it's written (to non-zero) for the first time, pass
2819 * it through.
2820 *
2821 * For nested:
2822 * The handling of the MSR bitmap for L2 guests is done in
2823 * nested_svm_vmrun_msrpm.
2824 * We update the L1 MSR bit as well since it will end up
2825 * touching the MSR anyway now.
2826 */
2827 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2828 break;
2829 case MSR_IA32_PRED_CMD:
2830 if (!msr->host_initiated &&
2831 !guest_has_pred_cmd_msr(vcpu))
2832 return 1;
2833
2834 if (data & ~PRED_CMD_IBPB)
2835 return 1;
2836 if (!boot_cpu_has(X86_FEATURE_IBPB))
2837 return 1;
2838 if (!data)
2839 break;
2840
2841 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2842 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2843 break;
2844 case MSR_AMD64_VIRT_SPEC_CTRL:
2845 if (!msr->host_initiated &&
2846 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2847 return 1;
2848
2849 if (data & ~SPEC_CTRL_SSBD)
2850 return 1;
2851
2852 svm->virt_spec_ctrl = data;
2853 break;
2854 case MSR_STAR:
2855 svm->vmcb01.ptr->save.star = data;
2856 break;
2857 #ifdef CONFIG_X86_64
2858 case MSR_LSTAR:
2859 svm->vmcb01.ptr->save.lstar = data;
2860 break;
2861 case MSR_CSTAR:
2862 svm->vmcb01.ptr->save.cstar = data;
2863 break;
2864 case MSR_KERNEL_GS_BASE:
2865 svm->vmcb01.ptr->save.kernel_gs_base = data;
2866 break;
2867 case MSR_SYSCALL_MASK:
2868 svm->vmcb01.ptr->save.sfmask = data;
2869 break;
2870 #endif
2871 case MSR_IA32_SYSENTER_CS:
2872 svm->vmcb01.ptr->save.sysenter_cs = data;
2873 break;
2874 case MSR_IA32_SYSENTER_EIP:
2875 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2876 /*
2877 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2878 * when we spoof an Intel vendor ID (for cross vendor migration).
2879 * In this case we use this intercept to track the high
2880 * 32 bit part of these msrs to support Intel's
2881 * implementation of SYSENTER/SYSEXIT.
2882 */
2883 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2884 break;
2885 case MSR_IA32_SYSENTER_ESP:
2886 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2887 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2888 break;
2889 case MSR_TSC_AUX:
2890 /*
2891 * TSC_AUX is usually changed only during boot and never read
2892 * directly. Intercept TSC_AUX instead of exposing it to the
2893 * guest via direct_access_msrs, and switch it via user return.
2894 */
2895 preempt_disable();
2896 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2897 preempt_enable();
2898 if (r)
2899 return 1;
2900
2901 svm->tsc_aux = data;
2902 break;
2903 case MSR_IA32_DEBUGCTLMSR:
2904 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2905 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2906 __func__, data);
2907 break;
2908 }
2909 if (data & DEBUGCTL_RESERVED_BITS)
2910 return 1;
2911
2912 svm->vmcb->save.dbgctl = data;
2913 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2914 if (data & (1ULL<<0))
2915 svm_enable_lbrv(vcpu);
2916 else
2917 svm_disable_lbrv(vcpu);
2918 break;
2919 case MSR_VM_HSAVE_PA:
2920 svm->nested.hsave_msr = data;
2921 break;
2922 case MSR_VM_CR:
2923 return svm_set_vm_cr(vcpu, data);
2924 case MSR_VM_IGNNE:
2925 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2926 break;
2927 case MSR_F10H_DECFG: {
2928 struct kvm_msr_entry msr_entry;
2929
2930 msr_entry.index = msr->index;
2931 if (svm_get_msr_feature(&msr_entry))
2932 return 1;
2933
2934 /* Check the supported bits */
2935 if (data & ~msr_entry.data)
2936 return 1;
2937
2938 /* Don't allow the guest to change a bit, #GP */
2939 if (!msr->host_initiated && (data ^ msr_entry.data))
2940 return 1;
2941
2942 svm->msr_decfg = data;
2943 break;
2944 }
2945 case MSR_IA32_APICBASE:
2946 if (kvm_vcpu_apicv_active(vcpu))
2947 avic_update_vapic_bar(to_svm(vcpu), data);
2948 fallthrough;
2949 default:
2950 return kvm_set_msr_common(vcpu, msr);
2951 }
2952 return 0;
2953 }
2954
2955 static int msr_interception(struct kvm_vcpu *vcpu)
2956 {
2957 if (to_svm(vcpu)->vmcb->control.exit_info_1)
2958 return kvm_emulate_wrmsr(vcpu);
2959 else
2960 return kvm_emulate_rdmsr(vcpu);
2961 }
2962
2963 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2964 {
2965 kvm_make_request(KVM_REQ_EVENT, vcpu);
2966 svm_clear_vintr(to_svm(vcpu));
2967
2968 /*
2969 * For AVIC, the only reason to end up here is ExtINTs.
2970 * In this case AVIC was temporarily disabled for
2971 * requesting the IRQ window and we have to re-enable it.
2972 */
2973 svm_toggle_avic_for_irq_window(vcpu, true);
2974
2975 ++vcpu->stat.irq_window_exits;
2976 return 1;
2977 }
2978
2979 static int pause_interception(struct kvm_vcpu *vcpu)
2980 {
2981 bool in_kernel;
2982
2983 /*
2984 * CPL is not made available for an SEV-ES guest, therefore
2985 * vcpu->arch.preempted_in_kernel can never be true. Just
2986 * set in_kernel to false as well.
2987 */
2988 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
2989
2990 if (!kvm_pause_in_guest(vcpu->kvm))
2991 grow_ple_window(vcpu);
2992
2993 kvm_vcpu_on_spin(vcpu, in_kernel);
2994 return kvm_skip_emulated_instruction(vcpu);
2995 }
2996
2997 static int invpcid_interception(struct kvm_vcpu *vcpu)
2998 {
2999 struct vcpu_svm *svm = to_svm(vcpu);
3000 unsigned long type;
3001 gva_t gva;
3002
3003 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3004 kvm_queue_exception(vcpu, UD_VECTOR);
3005 return 1;
3006 }
3007
3008 /*
3009 * For an INVPCID intercept:
3010 * EXITINFO1 provides the linear address of the memory operand.
3011 * EXITINFO2 provides the contents of the register operand.
3012 */
3013 type = svm->vmcb->control.exit_info_2;
3014 gva = svm->vmcb->control.exit_info_1;
3015
3016 if (type > 3) {
3017 kvm_inject_gp(vcpu, 0);
3018 return 1;
3019 }
3020
3021 return kvm_handle_invpcid(vcpu, type, gva);
3022 }
3023
3024 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3025 [SVM_EXIT_READ_CR0] = cr_interception,
3026 [SVM_EXIT_READ_CR3] = cr_interception,
3027 [SVM_EXIT_READ_CR4] = cr_interception,
3028 [SVM_EXIT_READ_CR8] = cr_interception,
3029 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3030 [SVM_EXIT_WRITE_CR0] = cr_interception,
3031 [SVM_EXIT_WRITE_CR3] = cr_interception,
3032 [SVM_EXIT_WRITE_CR4] = cr_interception,
3033 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3034 [SVM_EXIT_READ_DR0] = dr_interception,
3035 [SVM_EXIT_READ_DR1] = dr_interception,
3036 [SVM_EXIT_READ_DR2] = dr_interception,
3037 [SVM_EXIT_READ_DR3] = dr_interception,
3038 [SVM_EXIT_READ_DR4] = dr_interception,
3039 [SVM_EXIT_READ_DR5] = dr_interception,
3040 [SVM_EXIT_READ_DR6] = dr_interception,
3041 [SVM_EXIT_READ_DR7] = dr_interception,
3042 [SVM_EXIT_WRITE_DR0] = dr_interception,
3043 [SVM_EXIT_WRITE_DR1] = dr_interception,
3044 [SVM_EXIT_WRITE_DR2] = dr_interception,
3045 [SVM_EXIT_WRITE_DR3] = dr_interception,
3046 [SVM_EXIT_WRITE_DR4] = dr_interception,
3047 [SVM_EXIT_WRITE_DR5] = dr_interception,
3048 [SVM_EXIT_WRITE_DR6] = dr_interception,
3049 [SVM_EXIT_WRITE_DR7] = dr_interception,
3050 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3051 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3052 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3053 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3054 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3055 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3056 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
3057 [SVM_EXIT_INTR] = intr_interception,
3058 [SVM_EXIT_NMI] = nmi_interception,
3059 [SVM_EXIT_SMI] = kvm_emulate_as_nop,
3060 [SVM_EXIT_INIT] = kvm_emulate_as_nop,
3061 [SVM_EXIT_VINTR] = interrupt_window_interception,
3062 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc,
3063 [SVM_EXIT_CPUID] = kvm_emulate_cpuid,
3064 [SVM_EXIT_IRET] = iret_interception,
3065 [SVM_EXIT_INVD] = kvm_emulate_invd,
3066 [SVM_EXIT_PAUSE] = pause_interception,
3067 [SVM_EXIT_HLT] = kvm_emulate_halt,
3068 [SVM_EXIT_INVLPG] = invlpg_interception,
3069 [SVM_EXIT_INVLPGA] = invlpga_interception,
3070 [SVM_EXIT_IOIO] = io_interception,
3071 [SVM_EXIT_MSR] = msr_interception,
3072 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3073 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3074 [SVM_EXIT_VMRUN] = vmrun_interception,
3075 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall,
3076 [SVM_EXIT_VMLOAD] = vmload_interception,
3077 [SVM_EXIT_VMSAVE] = vmsave_interception,
3078 [SVM_EXIT_STGI] = stgi_interception,
3079 [SVM_EXIT_CLGI] = clgi_interception,
3080 [SVM_EXIT_SKINIT] = skinit_interception,
3081 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op,
3082 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd,
3083 [SVM_EXIT_MONITOR] = kvm_emulate_monitor,
3084 [SVM_EXIT_MWAIT] = kvm_emulate_mwait,
3085 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv,
3086 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op,
3087 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap,
3088 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap,
3089 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap,
3090 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap,
3091 [SVM_EXIT_INVPCID] = invpcid_interception,
3092 [SVM_EXIT_NPF] = npf_interception,
3093 [SVM_EXIT_RSM] = rsm_interception,
3094 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
3095 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
3096 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit,
3097 };
3098
3099 static void dump_vmcb(struct kvm_vcpu *vcpu)
3100 {
3101 struct vcpu_svm *svm = to_svm(vcpu);
3102 struct vmcb_control_area *control = &svm->vmcb->control;
3103 struct vmcb_save_area *save = &svm->vmcb->save;
3104 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3105
3106 if (!dump_invalid_vmcb) {
3107 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3108 return;
3109 }
3110
3111 pr_err("VMCB Control Area:\n");
3112 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3113 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3114 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3115 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3116 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3117 pr_err("%-20s%08x %08x\n", "intercepts:",
3118 control->intercepts[INTERCEPT_WORD3],
3119 control->intercepts[INTERCEPT_WORD4]);
3120 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3121 pr_err("%-20s%d\n", "pause filter threshold:",
3122 control->pause_filter_thresh);
3123 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3124 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3125 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3126 pr_err("%-20s%d\n", "asid:", control->asid);
3127 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3128 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3129 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3130 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3131 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3132 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3133 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3134 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3135 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3136 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3137 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3138 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3139 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3140 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3141 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3142 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3143 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3144 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3145 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3146 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3147 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3148 pr_err("VMCB State Save Area:\n");
3149 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3150 "es:",
3151 save->es.selector, save->es.attrib,
3152 save->es.limit, save->es.base);
3153 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3154 "cs:",
3155 save->cs.selector, save->cs.attrib,
3156 save->cs.limit, save->cs.base);
3157 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3158 "ss:",
3159 save->ss.selector, save->ss.attrib,
3160 save->ss.limit, save->ss.base);
3161 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3162 "ds:",
3163 save->ds.selector, save->ds.attrib,
3164 save->ds.limit, save->ds.base);
3165 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3166 "fs:",
3167 save01->fs.selector, save01->fs.attrib,
3168 save01->fs.limit, save01->fs.base);
3169 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3170 "gs:",
3171 save01->gs.selector, save01->gs.attrib,
3172 save01->gs.limit, save01->gs.base);
3173 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3174 "gdtr:",
3175 save->gdtr.selector, save->gdtr.attrib,
3176 save->gdtr.limit, save->gdtr.base);
3177 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3178 "ldtr:",
3179 save01->ldtr.selector, save01->ldtr.attrib,
3180 save01->ldtr.limit, save01->ldtr.base);
3181 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3182 "idtr:",
3183 save->idtr.selector, save->idtr.attrib,
3184 save->idtr.limit, save->idtr.base);
3185 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3186 "tr:",
3187 save01->tr.selector, save01->tr.attrib,
3188 save01->tr.limit, save01->tr.base);
3189 pr_err("cpl: %d efer: %016llx\n",
3190 save->cpl, save->efer);
3191 pr_err("%-15s %016llx %-13s %016llx\n",
3192 "cr0:", save->cr0, "cr2:", save->cr2);
3193 pr_err("%-15s %016llx %-13s %016llx\n",
3194 "cr3:", save->cr3, "cr4:", save->cr4);
3195 pr_err("%-15s %016llx %-13s %016llx\n",
3196 "dr6:", save->dr6, "dr7:", save->dr7);
3197 pr_err("%-15s %016llx %-13s %016llx\n",
3198 "rip:", save->rip, "rflags:", save->rflags);
3199 pr_err("%-15s %016llx %-13s %016llx\n",
3200 "rsp:", save->rsp, "rax:", save->rax);
3201 pr_err("%-15s %016llx %-13s %016llx\n",
3202 "star:", save01->star, "lstar:", save01->lstar);
3203 pr_err("%-15s %016llx %-13s %016llx\n",
3204 "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3205 pr_err("%-15s %016llx %-13s %016llx\n",
3206 "kernel_gs_base:", save01->kernel_gs_base,
3207 "sysenter_cs:", save01->sysenter_cs);
3208 pr_err("%-15s %016llx %-13s %016llx\n",
3209 "sysenter_esp:", save01->sysenter_esp,
3210 "sysenter_eip:", save01->sysenter_eip);
3211 pr_err("%-15s %016llx %-13s %016llx\n",
3212 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3213 pr_err("%-15s %016llx %-13s %016llx\n",
3214 "br_from:", save->br_from, "br_to:", save->br_to);
3215 pr_err("%-15s %016llx %-13s %016llx\n",
3216 "excp_from:", save->last_excp_from,
3217 "excp_to:", save->last_excp_to);
3218 }
3219
3220 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3221 {
3222 if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3223 svm_exit_handlers[exit_code])
3224 return 0;
3225
3226 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3227 dump_vmcb(vcpu);
3228 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3229 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3230 vcpu->run->internal.ndata = 2;
3231 vcpu->run->internal.data[0] = exit_code;
3232 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3233
3234 return -EINVAL;
3235 }
3236
3237 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3238 {
3239 if (svm_handle_invalid_exit(vcpu, exit_code))
3240 return 0;
3241
3242 #ifdef CONFIG_RETPOLINE
3243 if (exit_code == SVM_EXIT_MSR)
3244 return msr_interception(vcpu);
3245 else if (exit_code == SVM_EXIT_VINTR)
3246 return interrupt_window_interception(vcpu);
3247 else if (exit_code == SVM_EXIT_INTR)
3248 return intr_interception(vcpu);
3249 else if (exit_code == SVM_EXIT_HLT)
3250 return kvm_emulate_halt(vcpu);
3251 else if (exit_code == SVM_EXIT_NPF)
3252 return npf_interception(vcpu);
3253 #endif
3254 return svm_exit_handlers[exit_code](vcpu);
3255 }
3256
3257 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3258 u32 *intr_info, u32 *error_code)
3259 {
3260 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3261
3262 *info1 = control->exit_info_1;
3263 *info2 = control->exit_info_2;
3264 *intr_info = control->exit_int_info;
3265 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3266 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3267 *error_code = control->exit_int_info_err;
3268 else
3269 *error_code = 0;
3270 }
3271
3272 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3273 {
3274 struct vcpu_svm *svm = to_svm(vcpu);
3275 struct kvm_run *kvm_run = vcpu->run;
3276 u32 exit_code = svm->vmcb->control.exit_code;
3277
3278 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3279
3280 /* SEV-ES guests must use the CR write traps to track CR registers. */
3281 if (!sev_es_guest(vcpu->kvm)) {
3282 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3283 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3284 if (npt_enabled)
3285 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3286 }
3287
3288 if (is_guest_mode(vcpu)) {
3289 int vmexit;
3290
3291 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3292
3293 vmexit = nested_svm_exit_special(svm);
3294
3295 if (vmexit == NESTED_EXIT_CONTINUE)
3296 vmexit = nested_svm_exit_handled(svm);
3297
3298 if (vmexit == NESTED_EXIT_DONE)
3299 return 1;
3300 }
3301
3302 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3303 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3304 kvm_run->fail_entry.hardware_entry_failure_reason
3305 = svm->vmcb->control.exit_code;
3306 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3307 dump_vmcb(vcpu);
3308 return 0;
3309 }
3310
3311 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3312 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3313 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3314 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3315 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3316 "exit_code 0x%x\n",
3317 __func__, svm->vmcb->control.exit_int_info,
3318 exit_code);
3319
3320 if (exit_fastpath != EXIT_FASTPATH_NONE)
3321 return 1;
3322
3323 return svm_invoke_exit_handler(vcpu, exit_code);
3324 }
3325
3326 static void reload_tss(struct kvm_vcpu *vcpu)
3327 {
3328 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3329
3330 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3331 load_TR_desc();
3332 }
3333
3334 static void pre_svm_run(struct kvm_vcpu *vcpu)
3335 {
3336 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3337 struct vcpu_svm *svm = to_svm(vcpu);
3338
3339 /*
3340 * If the previous vmrun of the vmcb occurred on a different physical
3341 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's
3342 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3343 */
3344 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3345 svm->current_vmcb->asid_generation = 0;
3346 vmcb_mark_all_dirty(svm->vmcb);
3347 svm->current_vmcb->cpu = vcpu->cpu;
3348 }
3349
3350 if (sev_guest(vcpu->kvm))
3351 return pre_sev_run(svm, vcpu->cpu);
3352
3353 /* FIXME: handle wraparound of asid_generation */
3354 if (svm->current_vmcb->asid_generation != sd->asid_generation)
3355 new_asid(svm, sd);
3356 }
3357
3358 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3359 {
3360 struct vcpu_svm *svm = to_svm(vcpu);
3361
3362 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3363 vcpu->arch.hflags |= HF_NMI_MASK;
3364 if (!sev_es_guest(vcpu->kvm))
3365 svm_set_intercept(svm, INTERCEPT_IRET);
3366 ++vcpu->stat.nmi_injections;
3367 }
3368
3369 static void svm_set_irq(struct kvm_vcpu *vcpu)
3370 {
3371 struct vcpu_svm *svm = to_svm(vcpu);
3372
3373 BUG_ON(!(gif_set(svm)));
3374
3375 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3376 ++vcpu->stat.irq_injections;
3377
3378 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3379 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3380 }
3381
3382 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3383 {
3384 struct vcpu_svm *svm = to_svm(vcpu);
3385
3386 /*
3387 * SEV-ES guests must always keep the CR intercepts cleared. CR
3388 * tracking is done using the CR write traps.
3389 */
3390 if (sev_es_guest(vcpu->kvm))
3391 return;
3392
3393 if (nested_svm_virtualize_tpr(vcpu))
3394 return;
3395
3396 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3397
3398 if (irr == -1)
3399 return;
3400
3401 if (tpr >= irr)
3402 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3403 }
3404
3405 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3406 {
3407 struct vcpu_svm *svm = to_svm(vcpu);
3408 struct vmcb *vmcb = svm->vmcb;
3409 bool ret;
3410
3411 if (!gif_set(svm))
3412 return true;
3413
3414 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3415 return false;
3416
3417 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3418 (vcpu->arch.hflags & HF_NMI_MASK);
3419
3420 return ret;
3421 }
3422
3423 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3424 {
3425 struct vcpu_svm *svm = to_svm(vcpu);
3426 if (svm->nested.nested_run_pending)
3427 return -EBUSY;
3428
3429 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3430 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3431 return -EBUSY;
3432
3433 return !svm_nmi_blocked(vcpu);
3434 }
3435
3436 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3437 {
3438 return !!(vcpu->arch.hflags & HF_NMI_MASK);
3439 }
3440
3441 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3442 {
3443 struct vcpu_svm *svm = to_svm(vcpu);
3444
3445 if (masked) {
3446 vcpu->arch.hflags |= HF_NMI_MASK;
3447 if (!sev_es_guest(vcpu->kvm))
3448 svm_set_intercept(svm, INTERCEPT_IRET);
3449 } else {
3450 vcpu->arch.hflags &= ~HF_NMI_MASK;
3451 if (!sev_es_guest(vcpu->kvm))
3452 svm_clr_intercept(svm, INTERCEPT_IRET);
3453 }
3454 }
3455
3456 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3457 {
3458 struct vcpu_svm *svm = to_svm(vcpu);
3459 struct vmcb *vmcb = svm->vmcb;
3460
3461 if (!gif_set(svm))
3462 return true;
3463
3464 if (sev_es_guest(vcpu->kvm)) {
3465 /*
3466 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3467 * bit to determine the state of the IF flag.
3468 */
3469 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3470 return true;
3471 } else if (is_guest_mode(vcpu)) {
3472 /* As long as interrupts are being delivered... */
3473 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3474 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3475 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3476 return true;
3477
3478 /* ... vmexits aren't blocked by the interrupt shadow */
3479 if (nested_exit_on_intr(svm))
3480 return false;
3481 } else {
3482 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3483 return true;
3484 }
3485
3486 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3487 }
3488
3489 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3490 {
3491 struct vcpu_svm *svm = to_svm(vcpu);
3492 if (svm->nested.nested_run_pending)
3493 return -EBUSY;
3494
3495 /*
3496 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3497 * e.g. if the IRQ arrived asynchronously after checking nested events.
3498 */
3499 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3500 return -EBUSY;
3501
3502 return !svm_interrupt_blocked(vcpu);
3503 }
3504
3505 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3506 {
3507 struct vcpu_svm *svm = to_svm(vcpu);
3508
3509 /*
3510 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3511 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3512 * get that intercept, this function will be called again though and
3513 * we'll get the vintr intercept. However, if the vGIF feature is
3514 * enabled, the STGI interception will not occur. Enable the irq
3515 * window under the assumption that the hardware will set the GIF.
3516 */
3517 if (vgif_enabled(svm) || gif_set(svm)) {
3518 /*
3519 * IRQ window is not needed when AVIC is enabled,
3520 * unless we have pending ExtINT since it cannot be injected
3521 * via AVIC. In such case, we need to temporarily disable AVIC,
3522 * and fallback to injecting IRQ via V_IRQ.
3523 */
3524 svm_toggle_avic_for_irq_window(vcpu, false);
3525 svm_set_vintr(svm);
3526 }
3527 }
3528
3529 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3530 {
3531 struct vcpu_svm *svm = to_svm(vcpu);
3532
3533 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3534 return; /* IRET will cause a vm exit */
3535
3536 if (!gif_set(svm)) {
3537 if (vgif_enabled(svm))
3538 svm_set_intercept(svm, INTERCEPT_STGI);
3539 return; /* STGI will cause a vm exit */
3540 }
3541
3542 /*
3543 * Something prevents NMI from been injected. Single step over possible
3544 * problem (IRET or exception injection or interrupt shadow)
3545 */
3546 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3547 svm->nmi_singlestep = true;
3548 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3549 }
3550
3551 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3552 {
3553 return 0;
3554 }
3555
3556 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3557 {
3558 return 0;
3559 }
3560
3561 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3562 {
3563 struct vcpu_svm *svm = to_svm(vcpu);
3564
3565 /*
3566 * Flush only the current ASID even if the TLB flush was invoked via
3567 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3568 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3569 * unconditionally does a TLB flush on both nested VM-Enter and nested
3570 * VM-Exit (via kvm_mmu_reset_context()).
3571 */
3572 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3573 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3574 else
3575 svm->current_vmcb->asid_generation--;
3576 }
3577
3578 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3579 {
3580 struct vcpu_svm *svm = to_svm(vcpu);
3581
3582 invlpga(gva, svm->vmcb->control.asid);
3583 }
3584
3585 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3586 {
3587 struct vcpu_svm *svm = to_svm(vcpu);
3588
3589 if (nested_svm_virtualize_tpr(vcpu))
3590 return;
3591
3592 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3593 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3594 kvm_set_cr8(vcpu, cr8);
3595 }
3596 }
3597
3598 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3599 {
3600 struct vcpu_svm *svm = to_svm(vcpu);
3601 u64 cr8;
3602
3603 if (nested_svm_virtualize_tpr(vcpu) ||
3604 kvm_vcpu_apicv_active(vcpu))
3605 return;
3606
3607 cr8 = kvm_get_cr8(vcpu);
3608 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3609 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3610 }
3611
3612 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3613 {
3614 struct vcpu_svm *svm = to_svm(vcpu);
3615 u8 vector;
3616 int type;
3617 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3618 unsigned int3_injected = svm->int3_injected;
3619
3620 svm->int3_injected = 0;
3621
3622 /*
3623 * If we've made progress since setting HF_IRET_MASK, we've
3624 * executed an IRET and can allow NMI injection.
3625 */
3626 if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3627 (sev_es_guest(vcpu->kvm) ||
3628 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3629 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3630 kvm_make_request(KVM_REQ_EVENT, vcpu);
3631 }
3632
3633 vcpu->arch.nmi_injected = false;
3634 kvm_clear_exception_queue(vcpu);
3635 kvm_clear_interrupt_queue(vcpu);
3636
3637 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3638 return;
3639
3640 kvm_make_request(KVM_REQ_EVENT, vcpu);
3641
3642 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3643 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3644
3645 switch (type) {
3646 case SVM_EXITINTINFO_TYPE_NMI:
3647 vcpu->arch.nmi_injected = true;
3648 break;
3649 case SVM_EXITINTINFO_TYPE_EXEPT:
3650 /*
3651 * Never re-inject a #VC exception.
3652 */
3653 if (vector == X86_TRAP_VC)
3654 break;
3655
3656 /*
3657 * In case of software exceptions, do not reinject the vector,
3658 * but re-execute the instruction instead. Rewind RIP first
3659 * if we emulated INT3 before.
3660 */
3661 if (kvm_exception_is_soft(vector)) {
3662 if (vector == BP_VECTOR && int3_injected &&
3663 kvm_is_linear_rip(vcpu, svm->int3_rip))
3664 kvm_rip_write(vcpu,
3665 kvm_rip_read(vcpu) - int3_injected);
3666 break;
3667 }
3668 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3669 u32 err = svm->vmcb->control.exit_int_info_err;
3670 kvm_requeue_exception_e(vcpu, vector, err);
3671
3672 } else
3673 kvm_requeue_exception(vcpu, vector);
3674 break;
3675 case SVM_EXITINTINFO_TYPE_INTR:
3676 kvm_queue_interrupt(vcpu, vector, false);
3677 break;
3678 default:
3679 break;
3680 }
3681 }
3682
3683 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3684 {
3685 struct vcpu_svm *svm = to_svm(vcpu);
3686 struct vmcb_control_area *control = &svm->vmcb->control;
3687
3688 control->exit_int_info = control->event_inj;
3689 control->exit_int_info_err = control->event_inj_err;
3690 control->event_inj = 0;
3691 svm_complete_interrupts(vcpu);
3692 }
3693
3694 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3695 {
3696 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3697 to_svm(vcpu)->vmcb->control.exit_info_1)
3698 return handle_fastpath_set_msr_irqoff(vcpu);
3699
3700 return EXIT_FASTPATH_NONE;
3701 }
3702
3703 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3704 {
3705 struct vcpu_svm *svm = to_svm(vcpu);
3706 unsigned long vmcb_pa = svm->current_vmcb->pa;
3707
3708 kvm_guest_enter_irqoff();
3709
3710 if (sev_es_guest(vcpu->kvm)) {
3711 __svm_sev_es_vcpu_run(vmcb_pa);
3712 } else {
3713 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3714
3715 /*
3716 * Use a single vmcb (vmcb01 because it's always valid) for
3717 * context switching guest state via VMLOAD/VMSAVE, that way
3718 * the state doesn't need to be copied between vmcb01 and
3719 * vmcb02 when switching vmcbs for nested virtualization.
3720 */
3721 vmload(svm->vmcb01.pa);
3722 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3723 vmsave(svm->vmcb01.pa);
3724
3725 vmload(__sme_page_pa(sd->save_area));
3726 }
3727
3728 kvm_guest_exit_irqoff();
3729 }
3730
3731 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3732 {
3733 struct vcpu_svm *svm = to_svm(vcpu);
3734
3735 trace_kvm_entry(vcpu);
3736
3737 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3738 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3739 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3740
3741 /*
3742 * Disable singlestep if we're injecting an interrupt/exception.
3743 * We don't want our modified rflags to be pushed on the stack where
3744 * we might not be able to easily reset them if we disabled NMI
3745 * singlestep later.
3746 */
3747 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3748 /*
3749 * Event injection happens before external interrupts cause a
3750 * vmexit and interrupts are disabled here, so smp_send_reschedule
3751 * is enough to force an immediate vmexit.
3752 */
3753 disable_nmi_singlestep(svm);
3754 smp_send_reschedule(vcpu->cpu);
3755 }
3756
3757 pre_svm_run(vcpu);
3758
3759 sync_lapic_to_cr8(vcpu);
3760
3761 if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3762 svm->vmcb->control.asid = svm->asid;
3763 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3764 }
3765 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3766
3767 /*
3768 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3769 * of a #DB.
3770 */
3771 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3772 svm_set_dr6(svm, vcpu->arch.dr6);
3773 else
3774 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3775
3776 clgi();
3777 kvm_load_guest_xsave_state(vcpu);
3778
3779 kvm_wait_lapic_expire(vcpu);
3780
3781 /*
3782 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3783 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3784 * is no need to worry about the conditional branch over the wrmsr
3785 * being speculatively taken.
3786 */
3787 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3788 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3789
3790 svm_vcpu_enter_exit(vcpu);
3791
3792 /*
3793 * We do not use IBRS in the kernel. If this vCPU has used the
3794 * SPEC_CTRL MSR it may have left it on; save the value and
3795 * turn it off. This is much more efficient than blindly adding
3796 * it to the atomic save/restore list. Especially as the former
3797 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3798 *
3799 * For non-nested case:
3800 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3801 * save it.
3802 *
3803 * For nested case:
3804 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3805 * save it.
3806 */
3807 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3808 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3809 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3810
3811 if (!sev_es_guest(vcpu->kvm))
3812 reload_tss(vcpu);
3813
3814 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3815 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3816
3817 if (!sev_es_guest(vcpu->kvm)) {
3818 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3819 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3820 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3821 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3822 }
3823
3824 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3825 kvm_before_interrupt(vcpu);
3826
3827 kvm_load_host_xsave_state(vcpu);
3828 stgi();
3829
3830 /* Any pending NMI will happen here */
3831
3832 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3833 kvm_after_interrupt(vcpu);
3834
3835 sync_cr8_to_lapic(vcpu);
3836
3837 svm->next_rip = 0;
3838 if (is_guest_mode(vcpu)) {
3839 nested_sync_control_from_vmcb02(svm);
3840 svm->nested.nested_run_pending = 0;
3841 }
3842
3843 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3844 vmcb_mark_all_clean(svm->vmcb);
3845
3846 /* if exit due to PF check for async PF */
3847 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3848 vcpu->arch.apf.host_apf_flags =
3849 kvm_read_and_reset_apf_flags();
3850
3851 if (npt_enabled) {
3852 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3853 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3854 }
3855
3856 /*
3857 * We need to handle MC intercepts here before the vcpu has a chance to
3858 * change the physical cpu
3859 */
3860 if (unlikely(svm->vmcb->control.exit_code ==
3861 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3862 svm_handle_mce(vcpu);
3863
3864 svm_complete_interrupts(vcpu);
3865
3866 if (is_guest_mode(vcpu))
3867 return EXIT_FASTPATH_NONE;
3868
3869 return svm_exit_handlers_fastpath(vcpu);
3870 }
3871
3872 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3873 int root_level)
3874 {
3875 struct vcpu_svm *svm = to_svm(vcpu);
3876 unsigned long cr3;
3877
3878 if (npt_enabled) {
3879 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3880 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3881
3882 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */
3883 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3884 return;
3885 cr3 = vcpu->arch.cr3;
3886 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3887 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3888 } else {
3889 /* PCID in the guest should be impossible with a 32-bit MMU. */
3890 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3891 cr3 = root_hpa;
3892 }
3893
3894 svm->vmcb->save.cr3 = cr3;
3895 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3896 }
3897
3898 static int is_disabled(void)
3899 {
3900 u64 vm_cr;
3901
3902 rdmsrl(MSR_VM_CR, vm_cr);
3903 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3904 return 1;
3905
3906 return 0;
3907 }
3908
3909 static void
3910 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3911 {
3912 /*
3913 * Patch in the VMMCALL instruction:
3914 */
3915 hypercall[0] = 0x0f;
3916 hypercall[1] = 0x01;
3917 hypercall[2] = 0xd9;
3918 }
3919
3920 static int __init svm_check_processor_compat(void)
3921 {
3922 return 0;
3923 }
3924
3925 static bool svm_cpu_has_accelerated_tpr(void)
3926 {
3927 return false;
3928 }
3929
3930 /*
3931 * The kvm parameter can be NULL (module initialization, or invocation before
3932 * VM creation). Be sure to check the kvm parameter before using it.
3933 */
3934 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3935 {
3936 switch (index) {
3937 case MSR_IA32_MCG_EXT_CTL:
3938 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3939 return false;
3940 case MSR_IA32_SMBASE:
3941 /* SEV-ES guests do not support SMM, so report false */
3942 if (kvm && sev_es_guest(kvm))
3943 return false;
3944 break;
3945 default:
3946 break;
3947 }
3948
3949 return true;
3950 }
3951
3952 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3953 {
3954 return 0;
3955 }
3956
3957 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3958 {
3959 struct vcpu_svm *svm = to_svm(vcpu);
3960 struct kvm_cpuid_entry2 *best;
3961
3962 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3963 boot_cpu_has(X86_FEATURE_XSAVE) &&
3964 boot_cpu_has(X86_FEATURE_XSAVES);
3965
3966 /* Update nrips enabled cache */
3967 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3968 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
3969
3970 svm_recalc_instruction_intercepts(vcpu, svm);
3971
3972 /* For sev guests, the memory encryption bit is not reserved in CR3. */
3973 if (sev_guest(vcpu->kvm)) {
3974 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3975 if (best)
3976 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3977 }
3978
3979 if (kvm_vcpu_apicv_active(vcpu)) {
3980 /*
3981 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3982 * is exposed to the guest, disable AVIC.
3983 */
3984 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3985 kvm_request_apicv_update(vcpu->kvm, false,
3986 APICV_INHIBIT_REASON_X2APIC);
3987
3988 /*
3989 * Currently, AVIC does not work with nested virtualization.
3990 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3991 */
3992 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3993 kvm_request_apicv_update(vcpu->kvm, false,
3994 APICV_INHIBIT_REASON_NESTED);
3995 }
3996
3997 if (guest_cpuid_is_intel(vcpu)) {
3998 /*
3999 * We must intercept SYSENTER_EIP and SYSENTER_ESP
4000 * accesses because the processor only stores 32 bits.
4001 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
4002 */
4003 svm_set_intercept(svm, INTERCEPT_VMLOAD);
4004 svm_set_intercept(svm, INTERCEPT_VMSAVE);
4005 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4006
4007 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
4008 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
4009 } else {
4010 /*
4011 * If hardware supports Virtual VMLOAD VMSAVE then enable it
4012 * in VMCB and clear intercepts to avoid #VMEXIT.
4013 */
4014 if (vls) {
4015 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
4016 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
4017 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4018 }
4019 /* No need to intercept these MSRs */
4020 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
4021 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
4022 }
4023 }
4024
4025 static bool svm_has_wbinvd_exit(void)
4026 {
4027 return true;
4028 }
4029
4030 #define PRE_EX(exit) { .exit_code = (exit), \
4031 .stage = X86_ICPT_PRE_EXCEPT, }
4032 #define POST_EX(exit) { .exit_code = (exit), \
4033 .stage = X86_ICPT_POST_EXCEPT, }
4034 #define POST_MEM(exit) { .exit_code = (exit), \
4035 .stage = X86_ICPT_POST_MEMACCESS, }
4036
4037 static const struct __x86_intercept {
4038 u32 exit_code;
4039 enum x86_intercept_stage stage;
4040 } x86_intercept_map[] = {
4041 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4042 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4043 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4044 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4045 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4046 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4047 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4048 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4049 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4050 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4051 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4052 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4053 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4054 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4055 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4056 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4057 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4058 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4059 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4060 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4061 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4062 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4063 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4064 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4065 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4066 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4067 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4068 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4069 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4070 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4071 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4072 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4073 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4074 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4075 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4076 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4077 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4078 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4079 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4080 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4081 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4082 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4083 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4084 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4085 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4086 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4087 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
4088 };
4089
4090 #undef PRE_EX
4091 #undef POST_EX
4092 #undef POST_MEM
4093
4094 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4095 struct x86_instruction_info *info,
4096 enum x86_intercept_stage stage,
4097 struct x86_exception *exception)
4098 {
4099 struct vcpu_svm *svm = to_svm(vcpu);
4100 int vmexit, ret = X86EMUL_CONTINUE;
4101 struct __x86_intercept icpt_info;
4102 struct vmcb *vmcb = svm->vmcb;
4103
4104 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4105 goto out;
4106
4107 icpt_info = x86_intercept_map[info->intercept];
4108
4109 if (stage != icpt_info.stage)
4110 goto out;
4111
4112 switch (icpt_info.exit_code) {
4113 case SVM_EXIT_READ_CR0:
4114 if (info->intercept == x86_intercept_cr_read)
4115 icpt_info.exit_code += info->modrm_reg;
4116 break;
4117 case SVM_EXIT_WRITE_CR0: {
4118 unsigned long cr0, val;
4119
4120 if (info->intercept == x86_intercept_cr_write)
4121 icpt_info.exit_code += info->modrm_reg;
4122
4123 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4124 info->intercept == x86_intercept_clts)
4125 break;
4126
4127 if (!(vmcb_is_intercept(&svm->nested.ctl,
4128 INTERCEPT_SELECTIVE_CR0)))
4129 break;
4130
4131 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4132 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4133
4134 if (info->intercept == x86_intercept_lmsw) {
4135 cr0 &= 0xfUL;
4136 val &= 0xfUL;
4137 /* lmsw can't clear PE - catch this here */
4138 if (cr0 & X86_CR0_PE)
4139 val |= X86_CR0_PE;
4140 }
4141
4142 if (cr0 ^ val)
4143 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4144
4145 break;
4146 }
4147 case SVM_EXIT_READ_DR0:
4148 case SVM_EXIT_WRITE_DR0:
4149 icpt_info.exit_code += info->modrm_reg;
4150 break;
4151 case SVM_EXIT_MSR:
4152 if (info->intercept == x86_intercept_wrmsr)
4153 vmcb->control.exit_info_1 = 1;
4154 else
4155 vmcb->control.exit_info_1 = 0;
4156 break;
4157 case SVM_EXIT_PAUSE:
4158 /*
4159 * We get this for NOP only, but pause
4160 * is rep not, check this here
4161 */
4162 if (info->rep_prefix != REPE_PREFIX)
4163 goto out;
4164 break;
4165 case SVM_EXIT_IOIO: {
4166 u64 exit_info;
4167 u32 bytes;
4168
4169 if (info->intercept == x86_intercept_in ||
4170 info->intercept == x86_intercept_ins) {
4171 exit_info = ((info->src_val & 0xffff) << 16) |
4172 SVM_IOIO_TYPE_MASK;
4173 bytes = info->dst_bytes;
4174 } else {
4175 exit_info = (info->dst_val & 0xffff) << 16;
4176 bytes = info->src_bytes;
4177 }
4178
4179 if (info->intercept == x86_intercept_outs ||
4180 info->intercept == x86_intercept_ins)
4181 exit_info |= SVM_IOIO_STR_MASK;
4182
4183 if (info->rep_prefix)
4184 exit_info |= SVM_IOIO_REP_MASK;
4185
4186 bytes = min(bytes, 4u);
4187
4188 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4189
4190 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4191
4192 vmcb->control.exit_info_1 = exit_info;
4193 vmcb->control.exit_info_2 = info->next_rip;
4194
4195 break;
4196 }
4197 default:
4198 break;
4199 }
4200
4201 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4202 if (static_cpu_has(X86_FEATURE_NRIPS))
4203 vmcb->control.next_rip = info->next_rip;
4204 vmcb->control.exit_code = icpt_info.exit_code;
4205 vmexit = nested_svm_exit_handled(svm);
4206
4207 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4208 : X86EMUL_CONTINUE;
4209
4210 out:
4211 return ret;
4212 }
4213
4214 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4215 {
4216 }
4217
4218 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4219 {
4220 if (!kvm_pause_in_guest(vcpu->kvm))
4221 shrink_ple_window(vcpu);
4222 }
4223
4224 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4225 {
4226 /* [63:9] are reserved. */
4227 vcpu->arch.mcg_cap &= 0x1ff;
4228 }
4229
4230 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4231 {
4232 struct vcpu_svm *svm = to_svm(vcpu);
4233
4234 /* Per APM Vol.2 15.22.2 "Response to SMI" */
4235 if (!gif_set(svm))
4236 return true;
4237
4238 return is_smm(vcpu);
4239 }
4240
4241 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4242 {
4243 struct vcpu_svm *svm = to_svm(vcpu);
4244 if (svm->nested.nested_run_pending)
4245 return -EBUSY;
4246
4247 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4248 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4249 return -EBUSY;
4250
4251 return !svm_smi_blocked(vcpu);
4252 }
4253
4254 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4255 {
4256 struct vcpu_svm *svm = to_svm(vcpu);
4257 int ret;
4258
4259 if (is_guest_mode(vcpu)) {
4260 /* FED8h - SVM Guest */
4261 put_smstate(u64, smstate, 0x7ed8, 1);
4262 /* FEE0h - SVM Guest VMCB Physical Address */
4263 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4264
4265 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4266 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4267 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4268
4269 ret = nested_svm_vmexit(svm);
4270 if (ret)
4271 return ret;
4272 }
4273 return 0;
4274 }
4275
4276 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4277 {
4278 struct vcpu_svm *svm = to_svm(vcpu);
4279 struct kvm_host_map map;
4280 int ret = 0;
4281
4282 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4283 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4284 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4285 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4286
4287 if (guest) {
4288 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4289 return 1;
4290
4291 if (!(saved_efer & EFER_SVME))
4292 return 1;
4293
4294 if (kvm_vcpu_map(vcpu,
4295 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4296 return 1;
4297
4298 if (svm_allocate_nested(svm))
4299 return 1;
4300
4301 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva);
4302 kvm_vcpu_unmap(vcpu, &map, true);
4303 }
4304 }
4305
4306 return ret;
4307 }
4308
4309 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4310 {
4311 struct vcpu_svm *svm = to_svm(vcpu);
4312
4313 if (!gif_set(svm)) {
4314 if (vgif_enabled(svm))
4315 svm_set_intercept(svm, INTERCEPT_STGI);
4316 /* STGI will cause a vm exit */
4317 } else {
4318 /* We must be in SMM; RSM will cause a vmexit anyway. */
4319 }
4320 }
4321
4322 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4323 {
4324 bool smep, smap, is_user;
4325 unsigned long cr4;
4326
4327 /*
4328 * When the guest is an SEV-ES guest, emulation is not possible.
4329 */
4330 if (sev_es_guest(vcpu->kvm))
4331 return false;
4332
4333 /*
4334 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4335 *
4336 * Errata:
4337 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4338 * possible that CPU microcode implementing DecodeAssist will fail
4339 * to read bytes of instruction which caused #NPF. In this case,
4340 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4341 * return 0 instead of the correct guest instruction bytes.
4342 *
4343 * This happens because CPU microcode reading instruction bytes
4344 * uses a special opcode which attempts to read data using CPL=0
4345 * privileges. The microcode reads CS:RIP and if it hits a SMAP
4346 * fault, it gives up and returns no instruction bytes.
4347 *
4348 * Detection:
4349 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4350 * returned 0 in GuestIntrBytes field of the VMCB.
4351 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4352 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4353 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4354 * a SMEP fault instead of #NPF).
4355 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4356 * As most guests enable SMAP if they have also enabled SMEP, use above
4357 * logic in order to attempt minimize false-positive of detecting errata
4358 * while still preserving all cases semantic correctness.
4359 *
4360 * Workaround:
4361 * To determine what instruction the guest was executing, the hypervisor
4362 * will have to decode the instruction at the instruction pointer.
4363 *
4364 * In non SEV guest, hypervisor will be able to read the guest
4365 * memory to decode the instruction pointer when insn_len is zero
4366 * so we return true to indicate that decoding is possible.
4367 *
4368 * But in the SEV guest, the guest memory is encrypted with the
4369 * guest specific key and hypervisor will not be able to decode the
4370 * instruction pointer so we will not able to workaround it. Lets
4371 * print the error and request to kill the guest.
4372 */
4373 if (likely(!insn || insn_len))
4374 return true;
4375
4376 /*
4377 * If RIP is invalid, go ahead with emulation which will cause an
4378 * internal error exit.
4379 */
4380 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4381 return true;
4382
4383 cr4 = kvm_read_cr4(vcpu);
4384 smep = cr4 & X86_CR4_SMEP;
4385 smap = cr4 & X86_CR4_SMAP;
4386 is_user = svm_get_cpl(vcpu) == 3;
4387 if (smap && (!smep || is_user)) {
4388 if (!sev_guest(vcpu->kvm))
4389 return true;
4390
4391 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4392 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4393 }
4394
4395 return false;
4396 }
4397
4398 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4399 {
4400 struct vcpu_svm *svm = to_svm(vcpu);
4401
4402 /*
4403 * TODO: Last condition latch INIT signals on vCPU when
4404 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4405 * To properly emulate the INIT intercept,
4406 * svm_check_nested_events() should call nested_svm_vmexit()
4407 * if an INIT signal is pending.
4408 */
4409 return !gif_set(svm) ||
4410 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4411 }
4412
4413 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4414 {
4415 if (!sev_es_guest(vcpu->kvm))
4416 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4417
4418 sev_vcpu_deliver_sipi_vector(vcpu, vector);
4419 }
4420
4421 static void svm_vm_destroy(struct kvm *kvm)
4422 {
4423 avic_vm_destroy(kvm);
4424 sev_vm_destroy(kvm);
4425 }
4426
4427 static int svm_vm_init(struct kvm *kvm)
4428 {
4429 if (!pause_filter_count || !pause_filter_thresh)
4430 kvm->arch.pause_in_guest = true;
4431
4432 if (avic) {
4433 int ret = avic_vm_init(kvm);
4434 if (ret)
4435 return ret;
4436 }
4437
4438 kvm_apicv_init(kvm, avic);
4439 return 0;
4440 }
4441
4442 static struct kvm_x86_ops svm_x86_ops __initdata = {
4443 .hardware_unsetup = svm_hardware_teardown,
4444 .hardware_enable = svm_hardware_enable,
4445 .hardware_disable = svm_hardware_disable,
4446 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4447 .has_emulated_msr = svm_has_emulated_msr,
4448
4449 .vcpu_create = svm_create_vcpu,
4450 .vcpu_free = svm_free_vcpu,
4451 .vcpu_reset = svm_vcpu_reset,
4452
4453 .vm_size = sizeof(struct kvm_svm),
4454 .vm_init = svm_vm_init,
4455 .vm_destroy = svm_vm_destroy,
4456
4457 .prepare_guest_switch = svm_prepare_guest_switch,
4458 .vcpu_load = svm_vcpu_load,
4459 .vcpu_put = svm_vcpu_put,
4460 .vcpu_blocking = svm_vcpu_blocking,
4461 .vcpu_unblocking = svm_vcpu_unblocking,
4462
4463 .update_exception_bitmap = svm_update_exception_bitmap,
4464 .get_msr_feature = svm_get_msr_feature,
4465 .get_msr = svm_get_msr,
4466 .set_msr = svm_set_msr,
4467 .get_segment_base = svm_get_segment_base,
4468 .get_segment = svm_get_segment,
4469 .set_segment = svm_set_segment,
4470 .get_cpl = svm_get_cpl,
4471 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4472 .set_cr0 = svm_set_cr0,
4473 .is_valid_cr4 = svm_is_valid_cr4,
4474 .set_cr4 = svm_set_cr4,
4475 .set_efer = svm_set_efer,
4476 .get_idt = svm_get_idt,
4477 .set_idt = svm_set_idt,
4478 .get_gdt = svm_get_gdt,
4479 .set_gdt = svm_set_gdt,
4480 .set_dr7 = svm_set_dr7,
4481 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4482 .cache_reg = svm_cache_reg,
4483 .get_rflags = svm_get_rflags,
4484 .set_rflags = svm_set_rflags,
4485
4486 .tlb_flush_all = svm_flush_tlb,
4487 .tlb_flush_current = svm_flush_tlb,
4488 .tlb_flush_gva = svm_flush_tlb_gva,
4489 .tlb_flush_guest = svm_flush_tlb,
4490
4491 .run = svm_vcpu_run,
4492 .handle_exit = handle_exit,
4493 .skip_emulated_instruction = skip_emulated_instruction,
4494 .update_emulated_instruction = NULL,
4495 .set_interrupt_shadow = svm_set_interrupt_shadow,
4496 .get_interrupt_shadow = svm_get_interrupt_shadow,
4497 .patch_hypercall = svm_patch_hypercall,
4498 .set_irq = svm_set_irq,
4499 .set_nmi = svm_inject_nmi,
4500 .queue_exception = svm_queue_exception,
4501 .cancel_injection = svm_cancel_injection,
4502 .interrupt_allowed = svm_interrupt_allowed,
4503 .nmi_allowed = svm_nmi_allowed,
4504 .get_nmi_mask = svm_get_nmi_mask,
4505 .set_nmi_mask = svm_set_nmi_mask,
4506 .enable_nmi_window = svm_enable_nmi_window,
4507 .enable_irq_window = svm_enable_irq_window,
4508 .update_cr8_intercept = svm_update_cr8_intercept,
4509 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4510 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4511 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4512 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4513 .load_eoi_exitmap = svm_load_eoi_exitmap,
4514 .hwapic_irr_update = svm_hwapic_irr_update,
4515 .hwapic_isr_update = svm_hwapic_isr_update,
4516 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4517 .apicv_post_state_restore = avic_post_state_restore,
4518
4519 .set_tss_addr = svm_set_tss_addr,
4520 .set_identity_map_addr = svm_set_identity_map_addr,
4521 .get_mt_mask = svm_get_mt_mask,
4522
4523 .get_exit_info = svm_get_exit_info,
4524
4525 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4526
4527 .has_wbinvd_exit = svm_has_wbinvd_exit,
4528
4529 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4530
4531 .load_mmu_pgd = svm_load_mmu_pgd,
4532
4533 .check_intercept = svm_check_intercept,
4534 .handle_exit_irqoff = svm_handle_exit_irqoff,
4535
4536 .request_immediate_exit = __kvm_request_immediate_exit,
4537
4538 .sched_in = svm_sched_in,
4539
4540 .pmu_ops = &amd_pmu_ops,
4541 .nested_ops = &svm_nested_ops,
4542
4543 .deliver_posted_interrupt = svm_deliver_avic_intr,
4544 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4545 .update_pi_irte = svm_update_pi_irte,
4546 .setup_mce = svm_setup_mce,
4547
4548 .smi_allowed = svm_smi_allowed,
4549 .pre_enter_smm = svm_pre_enter_smm,
4550 .pre_leave_smm = svm_pre_leave_smm,
4551 .enable_smi_window = svm_enable_smi_window,
4552
4553 .mem_enc_op = svm_mem_enc_op,
4554 .mem_enc_reg_region = svm_register_enc_region,
4555 .mem_enc_unreg_region = svm_unregister_enc_region,
4556
4557 .vm_copy_enc_context_from = svm_vm_copy_asid_from,
4558
4559 .can_emulate_instruction = svm_can_emulate_instruction,
4560
4561 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4562
4563 .msr_filter_changed = svm_msr_filter_changed,
4564 .complete_emulated_msr = svm_complete_emulated_msr,
4565
4566 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4567 };
4568
4569 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4570 .cpu_has_kvm_support = has_svm,
4571 .disabled_by_bios = is_disabled,
4572 .hardware_setup = svm_hardware_setup,
4573 .check_processor_compatibility = svm_check_processor_compat,
4574
4575 .runtime_ops = &svm_x86_ops,
4576 };
4577
4578 static int __init svm_init(void)
4579 {
4580 __unused_size_checks();
4581
4582 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4583 __alignof__(struct vcpu_svm), THIS_MODULE);
4584 }
4585
4586 static void __exit svm_exit(void)
4587 {
4588 kvm_exit();
4589 }
4590
4591 module_init(svm_init)
4592 module_exit(svm_exit)