]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/x86/kvm/svm.c
Merge branch 'x86/boot' into x86/mm, to avoid conflict
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39
40 #include <asm/apic.h>
41 #include <asm/perf_event.h>
42 #include <asm/tlbflush.h>
43 #include <asm/desc.h>
44 #include <asm/debugreg.h>
45 #include <asm/kvm_para.h>
46 #include <asm/irq_remapping.h>
47
48 #include <asm/virtext.h>
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id svm_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_SVM),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61
62 #define IOPM_ALLOC_ORDER 2
63 #define MSRPM_ALLOC_ORDER 1
64
65 #define SEG_TYPE_LDT 2
66 #define SEG_TYPE_BUSY_TSS16 3
67
68 #define SVM_FEATURE_NPT (1 << 0)
69 #define SVM_FEATURE_LBRV (1 << 1)
70 #define SVM_FEATURE_SVML (1 << 2)
71 #define SVM_FEATURE_NRIP (1 << 3)
72 #define SVM_FEATURE_TSC_RATE (1 << 4)
73 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
74 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
75 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
76 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
77
78 #define SVM_AVIC_DOORBELL 0xc001011b
79
80 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
81 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
82 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
83
84 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
85
86 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
87 #define TSC_RATIO_MIN 0x0000000000000001ULL
88 #define TSC_RATIO_MAX 0x000000ffffffffffULL
89
90 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
91
92 /*
93 * 0xff is broadcast, so the max index allowed for physical APIC ID
94 * table is 0xfe. APIC IDs above 0xff are reserved.
95 */
96 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
97
98 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
99 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
100 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
101
102 /* AVIC GATAG is encoded using VM and VCPU IDs */
103 #define AVIC_VCPU_ID_BITS 8
104 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
105
106 #define AVIC_VM_ID_BITS 24
107 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
108 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
109
110 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
111 (y & AVIC_VCPU_ID_MASK))
112 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
113 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
114
115 static bool erratum_383_found __read_mostly;
116
117 static const u32 host_save_user_msrs[] = {
118 #ifdef CONFIG_X86_64
119 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
120 MSR_FS_BASE,
121 #endif
122 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
123 MSR_TSC_AUX,
124 };
125
126 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
127
128 struct kvm_vcpu;
129
130 struct nested_state {
131 struct vmcb *hsave;
132 u64 hsave_msr;
133 u64 vm_cr_msr;
134 u64 vmcb;
135
136 /* These are the merged vectors */
137 u32 *msrpm;
138
139 /* gpa pointers to the real vectors */
140 u64 vmcb_msrpm;
141 u64 vmcb_iopm;
142
143 /* A VMEXIT is required but not yet emulated */
144 bool exit_required;
145
146 /* cache for intercepts of the guest */
147 u32 intercept_cr;
148 u32 intercept_dr;
149 u32 intercept_exceptions;
150 u64 intercept;
151
152 /* Nested Paging related state */
153 u64 nested_cr3;
154 };
155
156 #define MSRPM_OFFSETS 16
157 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
158
159 /*
160 * Set osvw_len to higher value when updated Revision Guides
161 * are published and we know what the new status bits are
162 */
163 static uint64_t osvw_len = 4, osvw_status;
164
165 struct vcpu_svm {
166 struct kvm_vcpu vcpu;
167 struct vmcb *vmcb;
168 unsigned long vmcb_pa;
169 struct svm_cpu_data *svm_data;
170 uint64_t asid_generation;
171 uint64_t sysenter_esp;
172 uint64_t sysenter_eip;
173 uint64_t tsc_aux;
174
175 u64 next_rip;
176
177 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
178 struct {
179 u16 fs;
180 u16 gs;
181 u16 ldt;
182 u64 gs_base;
183 } host;
184
185 u32 *msrpm;
186
187 ulong nmi_iret_rip;
188
189 struct nested_state nested;
190
191 bool nmi_singlestep;
192
193 unsigned int3_injected;
194 unsigned long int3_rip;
195 u32 apf_reason;
196
197 /* cached guest cpuid flags for faster access */
198 bool nrips_enabled : 1;
199
200 u32 ldr_reg;
201 struct page *avic_backing_page;
202 u64 *avic_physical_id_cache;
203 bool avic_is_running;
204
205 /*
206 * Per-vcpu list of struct amd_svm_iommu_ir:
207 * This is used mainly to store interrupt remapping information used
208 * when update the vcpu affinity. This avoids the need to scan for
209 * IRTE and try to match ga_tag in the IOMMU driver.
210 */
211 struct list_head ir_list;
212 spinlock_t ir_list_lock;
213 };
214
215 /*
216 * This is a wrapper of struct amd_iommu_ir_data.
217 */
218 struct amd_svm_iommu_ir {
219 struct list_head node; /* Used by SVM for per-vcpu ir_list */
220 void *data; /* Storing pointer to struct amd_ir_data */
221 };
222
223 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
224 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
225
226 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
227 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
228 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
229 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
230
231 static DEFINE_PER_CPU(u64, current_tsc_ratio);
232 #define TSC_RATIO_DEFAULT 0x0100000000ULL
233
234 #define MSR_INVALID 0xffffffffU
235
236 static const struct svm_direct_access_msrs {
237 u32 index; /* Index of the MSR */
238 bool always; /* True if intercept is always on */
239 } direct_access_msrs[] = {
240 { .index = MSR_STAR, .always = true },
241 { .index = MSR_IA32_SYSENTER_CS, .always = true },
242 #ifdef CONFIG_X86_64
243 { .index = MSR_GS_BASE, .always = true },
244 { .index = MSR_FS_BASE, .always = true },
245 { .index = MSR_KERNEL_GS_BASE, .always = true },
246 { .index = MSR_LSTAR, .always = true },
247 { .index = MSR_CSTAR, .always = true },
248 { .index = MSR_SYSCALL_MASK, .always = true },
249 #endif
250 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
251 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
252 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
253 { .index = MSR_IA32_LASTINTTOIP, .always = false },
254 { .index = MSR_INVALID, .always = false },
255 };
256
257 /* enable NPT for AMD64 and X86 with PAE */
258 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
259 static bool npt_enabled = true;
260 #else
261 static bool npt_enabled;
262 #endif
263
264 /* allow nested paging (virtualized MMU) for all guests */
265 static int npt = true;
266 module_param(npt, int, S_IRUGO);
267
268 /* allow nested virtualization in KVM/SVM */
269 static int nested = true;
270 module_param(nested, int, S_IRUGO);
271
272 /* enable / disable AVIC */
273 static int avic;
274 #ifdef CONFIG_X86_LOCAL_APIC
275 module_param(avic, int, S_IRUGO);
276 #endif
277
278 /* AVIC VM ID bit masks and lock */
279 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
280 static DEFINE_SPINLOCK(avic_vm_id_lock);
281
282 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
283 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
284 static void svm_complete_interrupts(struct vcpu_svm *svm);
285
286 static int nested_svm_exit_handled(struct vcpu_svm *svm);
287 static int nested_svm_intercept(struct vcpu_svm *svm);
288 static int nested_svm_vmexit(struct vcpu_svm *svm);
289 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
290 bool has_error_code, u32 error_code);
291
292 enum {
293 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
294 pause filter count */
295 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
296 VMCB_ASID, /* ASID */
297 VMCB_INTR, /* int_ctl, int_vector */
298 VMCB_NPT, /* npt_en, nCR3, gPAT */
299 VMCB_CR, /* CR0, CR3, CR4, EFER */
300 VMCB_DR, /* DR6, DR7 */
301 VMCB_DT, /* GDT, IDT */
302 VMCB_SEG, /* CS, DS, SS, ES, CPL */
303 VMCB_CR2, /* CR2 only */
304 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
305 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
306 * AVIC PHYSICAL_TABLE pointer,
307 * AVIC LOGICAL_TABLE pointer
308 */
309 VMCB_DIRTY_MAX,
310 };
311
312 /* TPR and CR2 are always written before VMRUN */
313 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
314
315 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
316
317 static inline void mark_all_dirty(struct vmcb *vmcb)
318 {
319 vmcb->control.clean = 0;
320 }
321
322 static inline void mark_all_clean(struct vmcb *vmcb)
323 {
324 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
325 & ~VMCB_ALWAYS_DIRTY_MASK;
326 }
327
328 static inline void mark_dirty(struct vmcb *vmcb, int bit)
329 {
330 vmcb->control.clean &= ~(1 << bit);
331 }
332
333 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
334 {
335 return container_of(vcpu, struct vcpu_svm, vcpu);
336 }
337
338 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
339 {
340 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
341 mark_dirty(svm->vmcb, VMCB_AVIC);
342 }
343
344 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
345 {
346 struct vcpu_svm *svm = to_svm(vcpu);
347 u64 *entry = svm->avic_physical_id_cache;
348
349 if (!entry)
350 return false;
351
352 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
353 }
354
355 static void recalc_intercepts(struct vcpu_svm *svm)
356 {
357 struct vmcb_control_area *c, *h;
358 struct nested_state *g;
359
360 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
361
362 if (!is_guest_mode(&svm->vcpu))
363 return;
364
365 c = &svm->vmcb->control;
366 h = &svm->nested.hsave->control;
367 g = &svm->nested;
368
369 c->intercept_cr = h->intercept_cr | g->intercept_cr;
370 c->intercept_dr = h->intercept_dr | g->intercept_dr;
371 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
372 c->intercept = h->intercept | g->intercept;
373 }
374
375 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
376 {
377 if (is_guest_mode(&svm->vcpu))
378 return svm->nested.hsave;
379 else
380 return svm->vmcb;
381 }
382
383 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
384 {
385 struct vmcb *vmcb = get_host_vmcb(svm);
386
387 vmcb->control.intercept_cr |= (1U << bit);
388
389 recalc_intercepts(svm);
390 }
391
392 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
393 {
394 struct vmcb *vmcb = get_host_vmcb(svm);
395
396 vmcb->control.intercept_cr &= ~(1U << bit);
397
398 recalc_intercepts(svm);
399 }
400
401 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
402 {
403 struct vmcb *vmcb = get_host_vmcb(svm);
404
405 return vmcb->control.intercept_cr & (1U << bit);
406 }
407
408 static inline void set_dr_intercepts(struct vcpu_svm *svm)
409 {
410 struct vmcb *vmcb = get_host_vmcb(svm);
411
412 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
413 | (1 << INTERCEPT_DR1_READ)
414 | (1 << INTERCEPT_DR2_READ)
415 | (1 << INTERCEPT_DR3_READ)
416 | (1 << INTERCEPT_DR4_READ)
417 | (1 << INTERCEPT_DR5_READ)
418 | (1 << INTERCEPT_DR6_READ)
419 | (1 << INTERCEPT_DR7_READ)
420 | (1 << INTERCEPT_DR0_WRITE)
421 | (1 << INTERCEPT_DR1_WRITE)
422 | (1 << INTERCEPT_DR2_WRITE)
423 | (1 << INTERCEPT_DR3_WRITE)
424 | (1 << INTERCEPT_DR4_WRITE)
425 | (1 << INTERCEPT_DR5_WRITE)
426 | (1 << INTERCEPT_DR6_WRITE)
427 | (1 << INTERCEPT_DR7_WRITE);
428
429 recalc_intercepts(svm);
430 }
431
432 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
433 {
434 struct vmcb *vmcb = get_host_vmcb(svm);
435
436 vmcb->control.intercept_dr = 0;
437
438 recalc_intercepts(svm);
439 }
440
441 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
442 {
443 struct vmcb *vmcb = get_host_vmcb(svm);
444
445 vmcb->control.intercept_exceptions |= (1U << bit);
446
447 recalc_intercepts(svm);
448 }
449
450 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
451 {
452 struct vmcb *vmcb = get_host_vmcb(svm);
453
454 vmcb->control.intercept_exceptions &= ~(1U << bit);
455
456 recalc_intercepts(svm);
457 }
458
459 static inline void set_intercept(struct vcpu_svm *svm, int bit)
460 {
461 struct vmcb *vmcb = get_host_vmcb(svm);
462
463 vmcb->control.intercept |= (1ULL << bit);
464
465 recalc_intercepts(svm);
466 }
467
468 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
469 {
470 struct vmcb *vmcb = get_host_vmcb(svm);
471
472 vmcb->control.intercept &= ~(1ULL << bit);
473
474 recalc_intercepts(svm);
475 }
476
477 static inline void enable_gif(struct vcpu_svm *svm)
478 {
479 svm->vcpu.arch.hflags |= HF_GIF_MASK;
480 }
481
482 static inline void disable_gif(struct vcpu_svm *svm)
483 {
484 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
485 }
486
487 static inline bool gif_set(struct vcpu_svm *svm)
488 {
489 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
490 }
491
492 static unsigned long iopm_base;
493
494 struct kvm_ldttss_desc {
495 u16 limit0;
496 u16 base0;
497 unsigned base1:8, type:5, dpl:2, p:1;
498 unsigned limit1:4, zero0:3, g:1, base2:8;
499 u32 base3;
500 u32 zero1;
501 } __attribute__((packed));
502
503 struct svm_cpu_data {
504 int cpu;
505
506 u64 asid_generation;
507 u32 max_asid;
508 u32 next_asid;
509 struct kvm_ldttss_desc *tss_desc;
510
511 struct page *save_area;
512 };
513
514 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
515
516 struct svm_init_data {
517 int cpu;
518 int r;
519 };
520
521 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
522
523 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
524 #define MSRS_RANGE_SIZE 2048
525 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
526
527 static u32 svm_msrpm_offset(u32 msr)
528 {
529 u32 offset;
530 int i;
531
532 for (i = 0; i < NUM_MSR_MAPS; i++) {
533 if (msr < msrpm_ranges[i] ||
534 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
535 continue;
536
537 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
538 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
539
540 /* Now we have the u8 offset - but need the u32 offset */
541 return offset / 4;
542 }
543
544 /* MSR not in any range */
545 return MSR_INVALID;
546 }
547
548 #define MAX_INST_SIZE 15
549
550 static inline void clgi(void)
551 {
552 asm volatile (__ex(SVM_CLGI));
553 }
554
555 static inline void stgi(void)
556 {
557 asm volatile (__ex(SVM_STGI));
558 }
559
560 static inline void invlpga(unsigned long addr, u32 asid)
561 {
562 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
563 }
564
565 static int get_npt_level(void)
566 {
567 #ifdef CONFIG_X86_64
568 return PT64_ROOT_LEVEL;
569 #else
570 return PT32E_ROOT_LEVEL;
571 #endif
572 }
573
574 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
575 {
576 vcpu->arch.efer = efer;
577 if (!npt_enabled && !(efer & EFER_LMA))
578 efer &= ~EFER_LME;
579
580 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
581 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
582 }
583
584 static int is_external_interrupt(u32 info)
585 {
586 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
587 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
588 }
589
590 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
591 {
592 struct vcpu_svm *svm = to_svm(vcpu);
593 u32 ret = 0;
594
595 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
596 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
597 return ret;
598 }
599
600 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
601 {
602 struct vcpu_svm *svm = to_svm(vcpu);
603
604 if (mask == 0)
605 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
606 else
607 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
608
609 }
610
611 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
612 {
613 struct vcpu_svm *svm = to_svm(vcpu);
614
615 if (svm->vmcb->control.next_rip != 0) {
616 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
617 svm->next_rip = svm->vmcb->control.next_rip;
618 }
619
620 if (!svm->next_rip) {
621 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
622 EMULATE_DONE)
623 printk(KERN_DEBUG "%s: NOP\n", __func__);
624 return;
625 }
626 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
627 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
628 __func__, kvm_rip_read(vcpu), svm->next_rip);
629
630 kvm_rip_write(vcpu, svm->next_rip);
631 svm_set_interrupt_shadow(vcpu, 0);
632 }
633
634 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
635 bool has_error_code, u32 error_code,
636 bool reinject)
637 {
638 struct vcpu_svm *svm = to_svm(vcpu);
639
640 /*
641 * If we are within a nested VM we'd better #VMEXIT and let the guest
642 * handle the exception
643 */
644 if (!reinject &&
645 nested_svm_check_exception(svm, nr, has_error_code, error_code))
646 return;
647
648 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
649 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
650
651 /*
652 * For guest debugging where we have to reinject #BP if some
653 * INT3 is guest-owned:
654 * Emulate nRIP by moving RIP forward. Will fail if injection
655 * raises a fault that is not intercepted. Still better than
656 * failing in all cases.
657 */
658 skip_emulated_instruction(&svm->vcpu);
659 rip = kvm_rip_read(&svm->vcpu);
660 svm->int3_rip = rip + svm->vmcb->save.cs.base;
661 svm->int3_injected = rip - old_rip;
662 }
663
664 svm->vmcb->control.event_inj = nr
665 | SVM_EVTINJ_VALID
666 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
667 | SVM_EVTINJ_TYPE_EXEPT;
668 svm->vmcb->control.event_inj_err = error_code;
669 }
670
671 static void svm_init_erratum_383(void)
672 {
673 u32 low, high;
674 int err;
675 u64 val;
676
677 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
678 return;
679
680 /* Use _safe variants to not break nested virtualization */
681 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
682 if (err)
683 return;
684
685 val |= (1ULL << 47);
686
687 low = lower_32_bits(val);
688 high = upper_32_bits(val);
689
690 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
691
692 erratum_383_found = true;
693 }
694
695 static void svm_init_osvw(struct kvm_vcpu *vcpu)
696 {
697 /*
698 * Guests should see errata 400 and 415 as fixed (assuming that
699 * HLT and IO instructions are intercepted).
700 */
701 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
702 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
703
704 /*
705 * By increasing VCPU's osvw.length to 3 we are telling the guest that
706 * all osvw.status bits inside that length, including bit 0 (which is
707 * reserved for erratum 298), are valid. However, if host processor's
708 * osvw_len is 0 then osvw_status[0] carries no information. We need to
709 * be conservative here and therefore we tell the guest that erratum 298
710 * is present (because we really don't know).
711 */
712 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
713 vcpu->arch.osvw.status |= 1;
714 }
715
716 static int has_svm(void)
717 {
718 const char *msg;
719
720 if (!cpu_has_svm(&msg)) {
721 printk(KERN_INFO "has_svm: %s\n", msg);
722 return 0;
723 }
724
725 return 1;
726 }
727
728 static void svm_hardware_disable(void)
729 {
730 /* Make sure we clean up behind us */
731 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
732 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
733
734 cpu_svm_disable();
735
736 amd_pmu_disable_virt();
737 }
738
739 static int svm_hardware_enable(void)
740 {
741
742 struct svm_cpu_data *sd;
743 uint64_t efer;
744 struct desc_struct *gdt;
745 int me = raw_smp_processor_id();
746
747 rdmsrl(MSR_EFER, efer);
748 if (efer & EFER_SVME)
749 return -EBUSY;
750
751 if (!has_svm()) {
752 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
753 return -EINVAL;
754 }
755 sd = per_cpu(svm_data, me);
756 if (!sd) {
757 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
758 return -EINVAL;
759 }
760
761 sd->asid_generation = 1;
762 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
763 sd->next_asid = sd->max_asid + 1;
764
765 gdt = get_current_gdt_rw();
766 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
767
768 wrmsrl(MSR_EFER, efer | EFER_SVME);
769
770 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
771
772 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
773 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
774 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
775 }
776
777
778 /*
779 * Get OSVW bits.
780 *
781 * Note that it is possible to have a system with mixed processor
782 * revisions and therefore different OSVW bits. If bits are not the same
783 * on different processors then choose the worst case (i.e. if erratum
784 * is present on one processor and not on another then assume that the
785 * erratum is present everywhere).
786 */
787 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
788 uint64_t len, status = 0;
789 int err;
790
791 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
792 if (!err)
793 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
794 &err);
795
796 if (err)
797 osvw_status = osvw_len = 0;
798 else {
799 if (len < osvw_len)
800 osvw_len = len;
801 osvw_status |= status;
802 osvw_status &= (1ULL << osvw_len) - 1;
803 }
804 } else
805 osvw_status = osvw_len = 0;
806
807 svm_init_erratum_383();
808
809 amd_pmu_enable_virt();
810
811 return 0;
812 }
813
814 static void svm_cpu_uninit(int cpu)
815 {
816 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
817
818 if (!sd)
819 return;
820
821 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
822 __free_page(sd->save_area);
823 kfree(sd);
824 }
825
826 static int svm_cpu_init(int cpu)
827 {
828 struct svm_cpu_data *sd;
829 int r;
830
831 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
832 if (!sd)
833 return -ENOMEM;
834 sd->cpu = cpu;
835 sd->save_area = alloc_page(GFP_KERNEL);
836 r = -ENOMEM;
837 if (!sd->save_area)
838 goto err_1;
839
840 per_cpu(svm_data, cpu) = sd;
841
842 return 0;
843
844 err_1:
845 kfree(sd);
846 return r;
847
848 }
849
850 static bool valid_msr_intercept(u32 index)
851 {
852 int i;
853
854 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
855 if (direct_access_msrs[i].index == index)
856 return true;
857
858 return false;
859 }
860
861 static void set_msr_interception(u32 *msrpm, unsigned msr,
862 int read, int write)
863 {
864 u8 bit_read, bit_write;
865 unsigned long tmp;
866 u32 offset;
867
868 /*
869 * If this warning triggers extend the direct_access_msrs list at the
870 * beginning of the file
871 */
872 WARN_ON(!valid_msr_intercept(msr));
873
874 offset = svm_msrpm_offset(msr);
875 bit_read = 2 * (msr & 0x0f);
876 bit_write = 2 * (msr & 0x0f) + 1;
877 tmp = msrpm[offset];
878
879 BUG_ON(offset == MSR_INVALID);
880
881 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
882 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
883
884 msrpm[offset] = tmp;
885 }
886
887 static void svm_vcpu_init_msrpm(u32 *msrpm)
888 {
889 int i;
890
891 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
892
893 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
894 if (!direct_access_msrs[i].always)
895 continue;
896
897 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
898 }
899 }
900
901 static void add_msr_offset(u32 offset)
902 {
903 int i;
904
905 for (i = 0; i < MSRPM_OFFSETS; ++i) {
906
907 /* Offset already in list? */
908 if (msrpm_offsets[i] == offset)
909 return;
910
911 /* Slot used by another offset? */
912 if (msrpm_offsets[i] != MSR_INVALID)
913 continue;
914
915 /* Add offset to list */
916 msrpm_offsets[i] = offset;
917
918 return;
919 }
920
921 /*
922 * If this BUG triggers the msrpm_offsets table has an overflow. Just
923 * increase MSRPM_OFFSETS in this case.
924 */
925 BUG();
926 }
927
928 static void init_msrpm_offsets(void)
929 {
930 int i;
931
932 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
933
934 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
935 u32 offset;
936
937 offset = svm_msrpm_offset(direct_access_msrs[i].index);
938 BUG_ON(offset == MSR_INVALID);
939
940 add_msr_offset(offset);
941 }
942 }
943
944 static void svm_enable_lbrv(struct vcpu_svm *svm)
945 {
946 u32 *msrpm = svm->msrpm;
947
948 svm->vmcb->control.lbr_ctl = 1;
949 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
950 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
951 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
952 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
953 }
954
955 static void svm_disable_lbrv(struct vcpu_svm *svm)
956 {
957 u32 *msrpm = svm->msrpm;
958
959 svm->vmcb->control.lbr_ctl = 0;
960 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
961 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
962 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
963 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
964 }
965
966 /* Note:
967 * This hash table is used to map VM_ID to a struct kvm_arch,
968 * when handling AMD IOMMU GALOG notification to schedule in
969 * a particular vCPU.
970 */
971 #define SVM_VM_DATA_HASH_BITS 8
972 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
973 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
974
975 /* Note:
976 * This function is called from IOMMU driver to notify
977 * SVM to schedule in a particular vCPU of a particular VM.
978 */
979 static int avic_ga_log_notifier(u32 ga_tag)
980 {
981 unsigned long flags;
982 struct kvm_arch *ka = NULL;
983 struct kvm_vcpu *vcpu = NULL;
984 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
985 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
986
987 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
988
989 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
990 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
991 struct kvm *kvm = container_of(ka, struct kvm, arch);
992 struct kvm_arch *vm_data = &kvm->arch;
993
994 if (vm_data->avic_vm_id != vm_id)
995 continue;
996 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
997 break;
998 }
999 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1000
1001 if (!vcpu)
1002 return 0;
1003
1004 /* Note:
1005 * At this point, the IOMMU should have already set the pending
1006 * bit in the vAPIC backing page. So, we just need to schedule
1007 * in the vcpu.
1008 */
1009 if (vcpu->mode == OUTSIDE_GUEST_MODE)
1010 kvm_vcpu_wake_up(vcpu);
1011
1012 return 0;
1013 }
1014
1015 static __init int svm_hardware_setup(void)
1016 {
1017 int cpu;
1018 struct page *iopm_pages;
1019 void *iopm_va;
1020 int r;
1021
1022 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1023
1024 if (!iopm_pages)
1025 return -ENOMEM;
1026
1027 iopm_va = page_address(iopm_pages);
1028 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1029 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1030
1031 init_msrpm_offsets();
1032
1033 if (boot_cpu_has(X86_FEATURE_NX))
1034 kvm_enable_efer_bits(EFER_NX);
1035
1036 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1037 kvm_enable_efer_bits(EFER_FFXSR);
1038
1039 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1040 kvm_has_tsc_control = true;
1041 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1042 kvm_tsc_scaling_ratio_frac_bits = 32;
1043 }
1044
1045 if (nested) {
1046 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1047 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1048 }
1049
1050 for_each_possible_cpu(cpu) {
1051 r = svm_cpu_init(cpu);
1052 if (r)
1053 goto err;
1054 }
1055
1056 if (!boot_cpu_has(X86_FEATURE_NPT))
1057 npt_enabled = false;
1058
1059 if (npt_enabled && !npt) {
1060 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1061 npt_enabled = false;
1062 }
1063
1064 if (npt_enabled) {
1065 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1066 kvm_enable_tdp();
1067 } else
1068 kvm_disable_tdp();
1069
1070 if (avic) {
1071 if (!npt_enabled ||
1072 !boot_cpu_has(X86_FEATURE_AVIC) ||
1073 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1074 avic = false;
1075 } else {
1076 pr_info("AVIC enabled\n");
1077
1078 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1079 }
1080 }
1081
1082 return 0;
1083
1084 err:
1085 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1086 iopm_base = 0;
1087 return r;
1088 }
1089
1090 static __exit void svm_hardware_unsetup(void)
1091 {
1092 int cpu;
1093
1094 for_each_possible_cpu(cpu)
1095 svm_cpu_uninit(cpu);
1096
1097 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1098 iopm_base = 0;
1099 }
1100
1101 static void init_seg(struct vmcb_seg *seg)
1102 {
1103 seg->selector = 0;
1104 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1105 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1106 seg->limit = 0xffff;
1107 seg->base = 0;
1108 }
1109
1110 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1111 {
1112 seg->selector = 0;
1113 seg->attrib = SVM_SELECTOR_P_MASK | type;
1114 seg->limit = 0xffff;
1115 seg->base = 0;
1116 }
1117
1118 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1119 {
1120 struct vcpu_svm *svm = to_svm(vcpu);
1121 u64 g_tsc_offset = 0;
1122
1123 if (is_guest_mode(vcpu)) {
1124 g_tsc_offset = svm->vmcb->control.tsc_offset -
1125 svm->nested.hsave->control.tsc_offset;
1126 svm->nested.hsave->control.tsc_offset = offset;
1127 } else
1128 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1129 svm->vmcb->control.tsc_offset,
1130 offset);
1131
1132 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1133
1134 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1135 }
1136
1137 static void avic_init_vmcb(struct vcpu_svm *svm)
1138 {
1139 struct vmcb *vmcb = svm->vmcb;
1140 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1141 phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1142 phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1143 phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1144
1145 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1146 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1147 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1148 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1149 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1150 svm->vcpu.arch.apicv_active = true;
1151 }
1152
1153 static void init_vmcb(struct vcpu_svm *svm)
1154 {
1155 struct vmcb_control_area *control = &svm->vmcb->control;
1156 struct vmcb_save_area *save = &svm->vmcb->save;
1157
1158 svm->vcpu.arch.hflags = 0;
1159
1160 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1161 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1162 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1163 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1164 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1165 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1166 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1167 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1168
1169 set_dr_intercepts(svm);
1170
1171 set_exception_intercept(svm, PF_VECTOR);
1172 set_exception_intercept(svm, UD_VECTOR);
1173 set_exception_intercept(svm, MC_VECTOR);
1174 set_exception_intercept(svm, AC_VECTOR);
1175 set_exception_intercept(svm, DB_VECTOR);
1176
1177 set_intercept(svm, INTERCEPT_INTR);
1178 set_intercept(svm, INTERCEPT_NMI);
1179 set_intercept(svm, INTERCEPT_SMI);
1180 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1181 set_intercept(svm, INTERCEPT_RDPMC);
1182 set_intercept(svm, INTERCEPT_CPUID);
1183 set_intercept(svm, INTERCEPT_INVD);
1184 set_intercept(svm, INTERCEPT_HLT);
1185 set_intercept(svm, INTERCEPT_INVLPG);
1186 set_intercept(svm, INTERCEPT_INVLPGA);
1187 set_intercept(svm, INTERCEPT_IOIO_PROT);
1188 set_intercept(svm, INTERCEPT_MSR_PROT);
1189 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1190 set_intercept(svm, INTERCEPT_SHUTDOWN);
1191 set_intercept(svm, INTERCEPT_VMRUN);
1192 set_intercept(svm, INTERCEPT_VMMCALL);
1193 set_intercept(svm, INTERCEPT_VMLOAD);
1194 set_intercept(svm, INTERCEPT_VMSAVE);
1195 set_intercept(svm, INTERCEPT_STGI);
1196 set_intercept(svm, INTERCEPT_CLGI);
1197 set_intercept(svm, INTERCEPT_SKINIT);
1198 set_intercept(svm, INTERCEPT_WBINVD);
1199 set_intercept(svm, INTERCEPT_MONITOR);
1200 set_intercept(svm, INTERCEPT_MWAIT);
1201 set_intercept(svm, INTERCEPT_XSETBV);
1202
1203 control->iopm_base_pa = iopm_base;
1204 control->msrpm_base_pa = __pa(svm->msrpm);
1205 control->int_ctl = V_INTR_MASKING_MASK;
1206
1207 init_seg(&save->es);
1208 init_seg(&save->ss);
1209 init_seg(&save->ds);
1210 init_seg(&save->fs);
1211 init_seg(&save->gs);
1212
1213 save->cs.selector = 0xf000;
1214 save->cs.base = 0xffff0000;
1215 /* Executable/Readable Code Segment */
1216 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1217 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1218 save->cs.limit = 0xffff;
1219
1220 save->gdtr.limit = 0xffff;
1221 save->idtr.limit = 0xffff;
1222
1223 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1224 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1225
1226 svm_set_efer(&svm->vcpu, 0);
1227 save->dr6 = 0xffff0ff0;
1228 kvm_set_rflags(&svm->vcpu, 2);
1229 save->rip = 0x0000fff0;
1230 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1231
1232 /*
1233 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1234 * It also updates the guest-visible cr0 value.
1235 */
1236 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1237 kvm_mmu_reset_context(&svm->vcpu);
1238
1239 save->cr4 = X86_CR4_PAE;
1240 /* rdx = ?? */
1241
1242 if (npt_enabled) {
1243 /* Setup VMCB for Nested Paging */
1244 control->nested_ctl = 1;
1245 clr_intercept(svm, INTERCEPT_INVLPG);
1246 clr_exception_intercept(svm, PF_VECTOR);
1247 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1248 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1249 save->g_pat = svm->vcpu.arch.pat;
1250 save->cr3 = 0;
1251 save->cr4 = 0;
1252 }
1253 svm->asid_generation = 0;
1254
1255 svm->nested.vmcb = 0;
1256 svm->vcpu.arch.hflags = 0;
1257
1258 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1259 control->pause_filter_count = 3000;
1260 set_intercept(svm, INTERCEPT_PAUSE);
1261 }
1262
1263 if (avic)
1264 avic_init_vmcb(svm);
1265
1266 mark_all_dirty(svm->vmcb);
1267
1268 enable_gif(svm);
1269
1270 }
1271
1272 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1273 {
1274 u64 *avic_physical_id_table;
1275 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1276
1277 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1278 return NULL;
1279
1280 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1281
1282 return &avic_physical_id_table[index];
1283 }
1284
1285 /**
1286 * Note:
1287 * AVIC hardware walks the nested page table to check permissions,
1288 * but does not use the SPA address specified in the leaf page
1289 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1290 * field of the VMCB. Therefore, we set up the
1291 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1292 */
1293 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1294 {
1295 struct kvm *kvm = vcpu->kvm;
1296 int ret;
1297
1298 if (kvm->arch.apic_access_page_done)
1299 return 0;
1300
1301 ret = x86_set_memory_region(kvm,
1302 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1303 APIC_DEFAULT_PHYS_BASE,
1304 PAGE_SIZE);
1305 if (ret)
1306 return ret;
1307
1308 kvm->arch.apic_access_page_done = true;
1309 return 0;
1310 }
1311
1312 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1313 {
1314 int ret;
1315 u64 *entry, new_entry;
1316 int id = vcpu->vcpu_id;
1317 struct vcpu_svm *svm = to_svm(vcpu);
1318
1319 ret = avic_init_access_page(vcpu);
1320 if (ret)
1321 return ret;
1322
1323 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1324 return -EINVAL;
1325
1326 if (!svm->vcpu.arch.apic->regs)
1327 return -EINVAL;
1328
1329 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1330
1331 /* Setting AVIC backing page address in the phy APIC ID table */
1332 entry = avic_get_physical_id_entry(vcpu, id);
1333 if (!entry)
1334 return -EINVAL;
1335
1336 new_entry = READ_ONCE(*entry);
1337 new_entry = (page_to_phys(svm->avic_backing_page) &
1338 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1339 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1340 WRITE_ONCE(*entry, new_entry);
1341
1342 svm->avic_physical_id_cache = entry;
1343
1344 return 0;
1345 }
1346
1347 static inline int avic_get_next_vm_id(void)
1348 {
1349 int id;
1350
1351 spin_lock(&avic_vm_id_lock);
1352
1353 /* AVIC VM ID is one-based. */
1354 id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1355 if (id <= AVIC_VM_ID_MASK)
1356 __set_bit(id, avic_vm_id_bitmap);
1357 else
1358 id = -EAGAIN;
1359
1360 spin_unlock(&avic_vm_id_lock);
1361 return id;
1362 }
1363
1364 static inline int avic_free_vm_id(int id)
1365 {
1366 if (id <= 0 || id > AVIC_VM_ID_MASK)
1367 return -EINVAL;
1368
1369 spin_lock(&avic_vm_id_lock);
1370 __clear_bit(id, avic_vm_id_bitmap);
1371 spin_unlock(&avic_vm_id_lock);
1372 return 0;
1373 }
1374
1375 static void avic_vm_destroy(struct kvm *kvm)
1376 {
1377 unsigned long flags;
1378 struct kvm_arch *vm_data = &kvm->arch;
1379
1380 if (!avic)
1381 return;
1382
1383 avic_free_vm_id(vm_data->avic_vm_id);
1384
1385 if (vm_data->avic_logical_id_table_page)
1386 __free_page(vm_data->avic_logical_id_table_page);
1387 if (vm_data->avic_physical_id_table_page)
1388 __free_page(vm_data->avic_physical_id_table_page);
1389
1390 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1391 hash_del(&vm_data->hnode);
1392 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1393 }
1394
1395 static int avic_vm_init(struct kvm *kvm)
1396 {
1397 unsigned long flags;
1398 int vm_id, err = -ENOMEM;
1399 struct kvm_arch *vm_data = &kvm->arch;
1400 struct page *p_page;
1401 struct page *l_page;
1402
1403 if (!avic)
1404 return 0;
1405
1406 vm_id = avic_get_next_vm_id();
1407 if (vm_id < 0)
1408 return vm_id;
1409 vm_data->avic_vm_id = (u32)vm_id;
1410
1411 /* Allocating physical APIC ID table (4KB) */
1412 p_page = alloc_page(GFP_KERNEL);
1413 if (!p_page)
1414 goto free_avic;
1415
1416 vm_data->avic_physical_id_table_page = p_page;
1417 clear_page(page_address(p_page));
1418
1419 /* Allocating logical APIC ID table (4KB) */
1420 l_page = alloc_page(GFP_KERNEL);
1421 if (!l_page)
1422 goto free_avic;
1423
1424 vm_data->avic_logical_id_table_page = l_page;
1425 clear_page(page_address(l_page));
1426
1427 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1428 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1429 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1430
1431 return 0;
1432
1433 free_avic:
1434 avic_vm_destroy(kvm);
1435 return err;
1436 }
1437
1438 static inline int
1439 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1440 {
1441 int ret = 0;
1442 unsigned long flags;
1443 struct amd_svm_iommu_ir *ir;
1444 struct vcpu_svm *svm = to_svm(vcpu);
1445
1446 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1447 return 0;
1448
1449 /*
1450 * Here, we go through the per-vcpu ir_list to update all existing
1451 * interrupt remapping table entry targeting this vcpu.
1452 */
1453 spin_lock_irqsave(&svm->ir_list_lock, flags);
1454
1455 if (list_empty(&svm->ir_list))
1456 goto out;
1457
1458 list_for_each_entry(ir, &svm->ir_list, node) {
1459 ret = amd_iommu_update_ga(cpu, r, ir->data);
1460 if (ret)
1461 break;
1462 }
1463 out:
1464 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1465 return ret;
1466 }
1467
1468 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1469 {
1470 u64 entry;
1471 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1472 int h_physical_id = kvm_cpu_get_apicid(cpu);
1473 struct vcpu_svm *svm = to_svm(vcpu);
1474
1475 if (!kvm_vcpu_apicv_active(vcpu))
1476 return;
1477
1478 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1479 return;
1480
1481 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1482 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1483
1484 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1485 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1486
1487 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1488 if (svm->avic_is_running)
1489 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1490
1491 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1492 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1493 svm->avic_is_running);
1494 }
1495
1496 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1497 {
1498 u64 entry;
1499 struct vcpu_svm *svm = to_svm(vcpu);
1500
1501 if (!kvm_vcpu_apicv_active(vcpu))
1502 return;
1503
1504 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1505 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1506 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1507
1508 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1509 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1510 }
1511
1512 /**
1513 * This function is called during VCPU halt/unhalt.
1514 */
1515 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1516 {
1517 struct vcpu_svm *svm = to_svm(vcpu);
1518
1519 svm->avic_is_running = is_run;
1520 if (is_run)
1521 avic_vcpu_load(vcpu, vcpu->cpu);
1522 else
1523 avic_vcpu_put(vcpu);
1524 }
1525
1526 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1527 {
1528 struct vcpu_svm *svm = to_svm(vcpu);
1529 u32 dummy;
1530 u32 eax = 1;
1531
1532 if (!init_event) {
1533 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1534 MSR_IA32_APICBASE_ENABLE;
1535 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1536 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1537 }
1538 init_vmcb(svm);
1539
1540 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1541 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1542
1543 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1544 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1545 }
1546
1547 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1548 {
1549 struct vcpu_svm *svm;
1550 struct page *page;
1551 struct page *msrpm_pages;
1552 struct page *hsave_page;
1553 struct page *nested_msrpm_pages;
1554 int err;
1555
1556 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1557 if (!svm) {
1558 err = -ENOMEM;
1559 goto out;
1560 }
1561
1562 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1563 if (err)
1564 goto free_svm;
1565
1566 err = -ENOMEM;
1567 page = alloc_page(GFP_KERNEL);
1568 if (!page)
1569 goto uninit;
1570
1571 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1572 if (!msrpm_pages)
1573 goto free_page1;
1574
1575 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1576 if (!nested_msrpm_pages)
1577 goto free_page2;
1578
1579 hsave_page = alloc_page(GFP_KERNEL);
1580 if (!hsave_page)
1581 goto free_page3;
1582
1583 if (avic) {
1584 err = avic_init_backing_page(&svm->vcpu);
1585 if (err)
1586 goto free_page4;
1587
1588 INIT_LIST_HEAD(&svm->ir_list);
1589 spin_lock_init(&svm->ir_list_lock);
1590 }
1591
1592 /* We initialize this flag to true to make sure that the is_running
1593 * bit would be set the first time the vcpu is loaded.
1594 */
1595 svm->avic_is_running = true;
1596
1597 svm->nested.hsave = page_address(hsave_page);
1598
1599 svm->msrpm = page_address(msrpm_pages);
1600 svm_vcpu_init_msrpm(svm->msrpm);
1601
1602 svm->nested.msrpm = page_address(nested_msrpm_pages);
1603 svm_vcpu_init_msrpm(svm->nested.msrpm);
1604
1605 svm->vmcb = page_address(page);
1606 clear_page(svm->vmcb);
1607 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1608 svm->asid_generation = 0;
1609 init_vmcb(svm);
1610
1611 svm_init_osvw(&svm->vcpu);
1612
1613 return &svm->vcpu;
1614
1615 free_page4:
1616 __free_page(hsave_page);
1617 free_page3:
1618 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1619 free_page2:
1620 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1621 free_page1:
1622 __free_page(page);
1623 uninit:
1624 kvm_vcpu_uninit(&svm->vcpu);
1625 free_svm:
1626 kmem_cache_free(kvm_vcpu_cache, svm);
1627 out:
1628 return ERR_PTR(err);
1629 }
1630
1631 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1632 {
1633 struct vcpu_svm *svm = to_svm(vcpu);
1634
1635 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1636 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1637 __free_page(virt_to_page(svm->nested.hsave));
1638 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1639 kvm_vcpu_uninit(vcpu);
1640 kmem_cache_free(kvm_vcpu_cache, svm);
1641 }
1642
1643 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1644 {
1645 struct vcpu_svm *svm = to_svm(vcpu);
1646 int i;
1647
1648 if (unlikely(cpu != vcpu->cpu)) {
1649 svm->asid_generation = 0;
1650 mark_all_dirty(svm->vmcb);
1651 }
1652
1653 #ifdef CONFIG_X86_64
1654 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1655 #endif
1656 savesegment(fs, svm->host.fs);
1657 savesegment(gs, svm->host.gs);
1658 svm->host.ldt = kvm_read_ldt();
1659
1660 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1661 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1662
1663 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1664 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1665 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1666 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1667 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1668 }
1669 }
1670 /* This assumes that the kernel never uses MSR_TSC_AUX */
1671 if (static_cpu_has(X86_FEATURE_RDTSCP))
1672 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1673
1674 avic_vcpu_load(vcpu, cpu);
1675 }
1676
1677 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1678 {
1679 struct vcpu_svm *svm = to_svm(vcpu);
1680 int i;
1681
1682 avic_vcpu_put(vcpu);
1683
1684 ++vcpu->stat.host_state_reload;
1685 kvm_load_ldt(svm->host.ldt);
1686 #ifdef CONFIG_X86_64
1687 loadsegment(fs, svm->host.fs);
1688 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1689 load_gs_index(svm->host.gs);
1690 #else
1691 #ifdef CONFIG_X86_32_LAZY_GS
1692 loadsegment(gs, svm->host.gs);
1693 #endif
1694 #endif
1695 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1696 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1697 }
1698
1699 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1700 {
1701 avic_set_running(vcpu, false);
1702 }
1703
1704 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1705 {
1706 avic_set_running(vcpu, true);
1707 }
1708
1709 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1710 {
1711 return to_svm(vcpu)->vmcb->save.rflags;
1712 }
1713
1714 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1715 {
1716 /*
1717 * Any change of EFLAGS.VM is accompanied by a reload of SS
1718 * (caused by either a task switch or an inter-privilege IRET),
1719 * so we do not need to update the CPL here.
1720 */
1721 to_svm(vcpu)->vmcb->save.rflags = rflags;
1722 }
1723
1724 static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1725 {
1726 return 0;
1727 }
1728
1729 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1730 {
1731 switch (reg) {
1732 case VCPU_EXREG_PDPTR:
1733 BUG_ON(!npt_enabled);
1734 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1735 break;
1736 default:
1737 BUG();
1738 }
1739 }
1740
1741 static void svm_set_vintr(struct vcpu_svm *svm)
1742 {
1743 set_intercept(svm, INTERCEPT_VINTR);
1744 }
1745
1746 static void svm_clear_vintr(struct vcpu_svm *svm)
1747 {
1748 clr_intercept(svm, INTERCEPT_VINTR);
1749 }
1750
1751 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1752 {
1753 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1754
1755 switch (seg) {
1756 case VCPU_SREG_CS: return &save->cs;
1757 case VCPU_SREG_DS: return &save->ds;
1758 case VCPU_SREG_ES: return &save->es;
1759 case VCPU_SREG_FS: return &save->fs;
1760 case VCPU_SREG_GS: return &save->gs;
1761 case VCPU_SREG_SS: return &save->ss;
1762 case VCPU_SREG_TR: return &save->tr;
1763 case VCPU_SREG_LDTR: return &save->ldtr;
1764 }
1765 BUG();
1766 return NULL;
1767 }
1768
1769 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1770 {
1771 struct vmcb_seg *s = svm_seg(vcpu, seg);
1772
1773 return s->base;
1774 }
1775
1776 static void svm_get_segment(struct kvm_vcpu *vcpu,
1777 struct kvm_segment *var, int seg)
1778 {
1779 struct vmcb_seg *s = svm_seg(vcpu, seg);
1780
1781 var->base = s->base;
1782 var->limit = s->limit;
1783 var->selector = s->selector;
1784 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1785 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1786 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1787 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1788 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1789 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1790 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1791
1792 /*
1793 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1794 * However, the SVM spec states that the G bit is not observed by the
1795 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1796 * So let's synthesize a legal G bit for all segments, this helps
1797 * running KVM nested. It also helps cross-vendor migration, because
1798 * Intel's vmentry has a check on the 'G' bit.
1799 */
1800 var->g = s->limit > 0xfffff;
1801
1802 /*
1803 * AMD's VMCB does not have an explicit unusable field, so emulate it
1804 * for cross vendor migration purposes by "not present"
1805 */
1806 var->unusable = !var->present || (var->type == 0);
1807
1808 switch (seg) {
1809 case VCPU_SREG_TR:
1810 /*
1811 * Work around a bug where the busy flag in the tr selector
1812 * isn't exposed
1813 */
1814 var->type |= 0x2;
1815 break;
1816 case VCPU_SREG_DS:
1817 case VCPU_SREG_ES:
1818 case VCPU_SREG_FS:
1819 case VCPU_SREG_GS:
1820 /*
1821 * The accessed bit must always be set in the segment
1822 * descriptor cache, although it can be cleared in the
1823 * descriptor, the cached bit always remains at 1. Since
1824 * Intel has a check on this, set it here to support
1825 * cross-vendor migration.
1826 */
1827 if (!var->unusable)
1828 var->type |= 0x1;
1829 break;
1830 case VCPU_SREG_SS:
1831 /*
1832 * On AMD CPUs sometimes the DB bit in the segment
1833 * descriptor is left as 1, although the whole segment has
1834 * been made unusable. Clear it here to pass an Intel VMX
1835 * entry check when cross vendor migrating.
1836 */
1837 if (var->unusable)
1838 var->db = 0;
1839 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1840 break;
1841 }
1842 }
1843
1844 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1845 {
1846 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1847
1848 return save->cpl;
1849 }
1850
1851 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1852 {
1853 struct vcpu_svm *svm = to_svm(vcpu);
1854
1855 dt->size = svm->vmcb->save.idtr.limit;
1856 dt->address = svm->vmcb->save.idtr.base;
1857 }
1858
1859 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1860 {
1861 struct vcpu_svm *svm = to_svm(vcpu);
1862
1863 svm->vmcb->save.idtr.limit = dt->size;
1864 svm->vmcb->save.idtr.base = dt->address ;
1865 mark_dirty(svm->vmcb, VMCB_DT);
1866 }
1867
1868 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1869 {
1870 struct vcpu_svm *svm = to_svm(vcpu);
1871
1872 dt->size = svm->vmcb->save.gdtr.limit;
1873 dt->address = svm->vmcb->save.gdtr.base;
1874 }
1875
1876 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1877 {
1878 struct vcpu_svm *svm = to_svm(vcpu);
1879
1880 svm->vmcb->save.gdtr.limit = dt->size;
1881 svm->vmcb->save.gdtr.base = dt->address ;
1882 mark_dirty(svm->vmcb, VMCB_DT);
1883 }
1884
1885 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1886 {
1887 }
1888
1889 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1890 {
1891 }
1892
1893 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1894 {
1895 }
1896
1897 static void update_cr0_intercept(struct vcpu_svm *svm)
1898 {
1899 ulong gcr0 = svm->vcpu.arch.cr0;
1900 u64 *hcr0 = &svm->vmcb->save.cr0;
1901
1902 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1903 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1904
1905 mark_dirty(svm->vmcb, VMCB_CR);
1906
1907 if (gcr0 == *hcr0) {
1908 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1909 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1910 } else {
1911 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1912 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1913 }
1914 }
1915
1916 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1917 {
1918 struct vcpu_svm *svm = to_svm(vcpu);
1919
1920 #ifdef CONFIG_X86_64
1921 if (vcpu->arch.efer & EFER_LME) {
1922 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1923 vcpu->arch.efer |= EFER_LMA;
1924 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1925 }
1926
1927 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1928 vcpu->arch.efer &= ~EFER_LMA;
1929 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1930 }
1931 }
1932 #endif
1933 vcpu->arch.cr0 = cr0;
1934
1935 if (!npt_enabled)
1936 cr0 |= X86_CR0_PG | X86_CR0_WP;
1937
1938 /*
1939 * re-enable caching here because the QEMU bios
1940 * does not do it - this results in some delay at
1941 * reboot
1942 */
1943 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1944 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1945 svm->vmcb->save.cr0 = cr0;
1946 mark_dirty(svm->vmcb, VMCB_CR);
1947 update_cr0_intercept(svm);
1948 }
1949
1950 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1951 {
1952 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1953 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1954
1955 if (cr4 & X86_CR4_VMXE)
1956 return 1;
1957
1958 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1959 svm_flush_tlb(vcpu);
1960
1961 vcpu->arch.cr4 = cr4;
1962 if (!npt_enabled)
1963 cr4 |= X86_CR4_PAE;
1964 cr4 |= host_cr4_mce;
1965 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1966 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1967 return 0;
1968 }
1969
1970 static void svm_set_segment(struct kvm_vcpu *vcpu,
1971 struct kvm_segment *var, int seg)
1972 {
1973 struct vcpu_svm *svm = to_svm(vcpu);
1974 struct vmcb_seg *s = svm_seg(vcpu, seg);
1975
1976 s->base = var->base;
1977 s->limit = var->limit;
1978 s->selector = var->selector;
1979 if (var->unusable)
1980 s->attrib = 0;
1981 else {
1982 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1983 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1984 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1985 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1986 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1987 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1988 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1989 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1990 }
1991
1992 /*
1993 * This is always accurate, except if SYSRET returned to a segment
1994 * with SS.DPL != 3. Intel does not have this quirk, and always
1995 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1996 * would entail passing the CPL to userspace and back.
1997 */
1998 if (seg == VCPU_SREG_SS)
1999 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2000
2001 mark_dirty(svm->vmcb, VMCB_SEG);
2002 }
2003
2004 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2005 {
2006 struct vcpu_svm *svm = to_svm(vcpu);
2007
2008 clr_exception_intercept(svm, BP_VECTOR);
2009
2010 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2011 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2012 set_exception_intercept(svm, BP_VECTOR);
2013 } else
2014 vcpu->guest_debug = 0;
2015 }
2016
2017 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2018 {
2019 if (sd->next_asid > sd->max_asid) {
2020 ++sd->asid_generation;
2021 sd->next_asid = 1;
2022 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2023 }
2024
2025 svm->asid_generation = sd->asid_generation;
2026 svm->vmcb->control.asid = sd->next_asid++;
2027
2028 mark_dirty(svm->vmcb, VMCB_ASID);
2029 }
2030
2031 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2032 {
2033 return to_svm(vcpu)->vmcb->save.dr6;
2034 }
2035
2036 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2037 {
2038 struct vcpu_svm *svm = to_svm(vcpu);
2039
2040 svm->vmcb->save.dr6 = value;
2041 mark_dirty(svm->vmcb, VMCB_DR);
2042 }
2043
2044 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2045 {
2046 struct vcpu_svm *svm = to_svm(vcpu);
2047
2048 get_debugreg(vcpu->arch.db[0], 0);
2049 get_debugreg(vcpu->arch.db[1], 1);
2050 get_debugreg(vcpu->arch.db[2], 2);
2051 get_debugreg(vcpu->arch.db[3], 3);
2052 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2053 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2054
2055 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2056 set_dr_intercepts(svm);
2057 }
2058
2059 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2060 {
2061 struct vcpu_svm *svm = to_svm(vcpu);
2062
2063 svm->vmcb->save.dr7 = value;
2064 mark_dirty(svm->vmcb, VMCB_DR);
2065 }
2066
2067 static int pf_interception(struct vcpu_svm *svm)
2068 {
2069 u64 fault_address = svm->vmcb->control.exit_info_2;
2070 u64 error_code;
2071 int r = 1;
2072
2073 switch (svm->apf_reason) {
2074 default:
2075 error_code = svm->vmcb->control.exit_info_1;
2076
2077 trace_kvm_page_fault(fault_address, error_code);
2078 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
2079 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
2080 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2081 svm->vmcb->control.insn_bytes,
2082 svm->vmcb->control.insn_len);
2083 break;
2084 case KVM_PV_REASON_PAGE_NOT_PRESENT:
2085 svm->apf_reason = 0;
2086 local_irq_disable();
2087 kvm_async_pf_task_wait(fault_address);
2088 local_irq_enable();
2089 break;
2090 case KVM_PV_REASON_PAGE_READY:
2091 svm->apf_reason = 0;
2092 local_irq_disable();
2093 kvm_async_pf_task_wake(fault_address);
2094 local_irq_enable();
2095 break;
2096 }
2097 return r;
2098 }
2099
2100 static int db_interception(struct vcpu_svm *svm)
2101 {
2102 struct kvm_run *kvm_run = svm->vcpu.run;
2103
2104 if (!(svm->vcpu.guest_debug &
2105 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2106 !svm->nmi_singlestep) {
2107 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2108 return 1;
2109 }
2110
2111 if (svm->nmi_singlestep) {
2112 svm->nmi_singlestep = false;
2113 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
2114 svm->vmcb->save.rflags &=
2115 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2116 }
2117
2118 if (svm->vcpu.guest_debug &
2119 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2120 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2121 kvm_run->debug.arch.pc =
2122 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2123 kvm_run->debug.arch.exception = DB_VECTOR;
2124 return 0;
2125 }
2126
2127 return 1;
2128 }
2129
2130 static int bp_interception(struct vcpu_svm *svm)
2131 {
2132 struct kvm_run *kvm_run = svm->vcpu.run;
2133
2134 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2135 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2136 kvm_run->debug.arch.exception = BP_VECTOR;
2137 return 0;
2138 }
2139
2140 static int ud_interception(struct vcpu_svm *svm)
2141 {
2142 int er;
2143
2144 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2145 if (er != EMULATE_DONE)
2146 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2147 return 1;
2148 }
2149
2150 static int ac_interception(struct vcpu_svm *svm)
2151 {
2152 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2153 return 1;
2154 }
2155
2156 static bool is_erratum_383(void)
2157 {
2158 int err, i;
2159 u64 value;
2160
2161 if (!erratum_383_found)
2162 return false;
2163
2164 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2165 if (err)
2166 return false;
2167
2168 /* Bit 62 may or may not be set for this mce */
2169 value &= ~(1ULL << 62);
2170
2171 if (value != 0xb600000000010015ULL)
2172 return false;
2173
2174 /* Clear MCi_STATUS registers */
2175 for (i = 0; i < 6; ++i)
2176 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2177
2178 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2179 if (!err) {
2180 u32 low, high;
2181
2182 value &= ~(1ULL << 2);
2183 low = lower_32_bits(value);
2184 high = upper_32_bits(value);
2185
2186 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2187 }
2188
2189 /* Flush tlb to evict multi-match entries */
2190 __flush_tlb_all();
2191
2192 return true;
2193 }
2194
2195 static void svm_handle_mce(struct vcpu_svm *svm)
2196 {
2197 if (is_erratum_383()) {
2198 /*
2199 * Erratum 383 triggered. Guest state is corrupt so kill the
2200 * guest.
2201 */
2202 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2203
2204 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2205
2206 return;
2207 }
2208
2209 /*
2210 * On an #MC intercept the MCE handler is not called automatically in
2211 * the host. So do it by hand here.
2212 */
2213 asm volatile (
2214 "int $0x12\n");
2215 /* not sure if we ever come back to this point */
2216
2217 return;
2218 }
2219
2220 static int mc_interception(struct vcpu_svm *svm)
2221 {
2222 return 1;
2223 }
2224
2225 static int shutdown_interception(struct vcpu_svm *svm)
2226 {
2227 struct kvm_run *kvm_run = svm->vcpu.run;
2228
2229 /*
2230 * VMCB is undefined after a SHUTDOWN intercept
2231 * so reinitialize it.
2232 */
2233 clear_page(svm->vmcb);
2234 init_vmcb(svm);
2235
2236 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2237 return 0;
2238 }
2239
2240 static int io_interception(struct vcpu_svm *svm)
2241 {
2242 struct kvm_vcpu *vcpu = &svm->vcpu;
2243 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2244 int size, in, string;
2245 unsigned port;
2246
2247 ++svm->vcpu.stat.io_exits;
2248 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2249 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2250 if (string)
2251 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2252
2253 port = io_info >> 16;
2254 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2255 svm->next_rip = svm->vmcb->control.exit_info_2;
2256 skip_emulated_instruction(&svm->vcpu);
2257
2258 return in ? kvm_fast_pio_in(vcpu, size, port)
2259 : kvm_fast_pio_out(vcpu, size, port);
2260 }
2261
2262 static int nmi_interception(struct vcpu_svm *svm)
2263 {
2264 return 1;
2265 }
2266
2267 static int intr_interception(struct vcpu_svm *svm)
2268 {
2269 ++svm->vcpu.stat.irq_exits;
2270 return 1;
2271 }
2272
2273 static int nop_on_interception(struct vcpu_svm *svm)
2274 {
2275 return 1;
2276 }
2277
2278 static int halt_interception(struct vcpu_svm *svm)
2279 {
2280 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2281 return kvm_emulate_halt(&svm->vcpu);
2282 }
2283
2284 static int vmmcall_interception(struct vcpu_svm *svm)
2285 {
2286 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2287 return kvm_emulate_hypercall(&svm->vcpu);
2288 }
2289
2290 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2291 {
2292 struct vcpu_svm *svm = to_svm(vcpu);
2293
2294 return svm->nested.nested_cr3;
2295 }
2296
2297 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2298 {
2299 struct vcpu_svm *svm = to_svm(vcpu);
2300 u64 cr3 = svm->nested.nested_cr3;
2301 u64 pdpte;
2302 int ret;
2303
2304 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2305 offset_in_page(cr3) + index * 8, 8);
2306 if (ret)
2307 return 0;
2308 return pdpte;
2309 }
2310
2311 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2312 unsigned long root)
2313 {
2314 struct vcpu_svm *svm = to_svm(vcpu);
2315
2316 svm->vmcb->control.nested_cr3 = root;
2317 mark_dirty(svm->vmcb, VMCB_NPT);
2318 svm_flush_tlb(vcpu);
2319 }
2320
2321 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2322 struct x86_exception *fault)
2323 {
2324 struct vcpu_svm *svm = to_svm(vcpu);
2325
2326 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2327 /*
2328 * TODO: track the cause of the nested page fault, and
2329 * correctly fill in the high bits of exit_info_1.
2330 */
2331 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2332 svm->vmcb->control.exit_code_hi = 0;
2333 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2334 svm->vmcb->control.exit_info_2 = fault->address;
2335 }
2336
2337 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2338 svm->vmcb->control.exit_info_1 |= fault->error_code;
2339
2340 /*
2341 * The present bit is always zero for page structure faults on real
2342 * hardware.
2343 */
2344 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2345 svm->vmcb->control.exit_info_1 &= ~1;
2346
2347 nested_svm_vmexit(svm);
2348 }
2349
2350 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2351 {
2352 WARN_ON(mmu_is_nested(vcpu));
2353 kvm_init_shadow_mmu(vcpu);
2354 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2355 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2356 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2357 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2358 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2359 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2360 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2361 }
2362
2363 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2364 {
2365 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2366 }
2367
2368 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2369 {
2370 if (!(svm->vcpu.arch.efer & EFER_SVME)
2371 || !is_paging(&svm->vcpu)) {
2372 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2373 return 1;
2374 }
2375
2376 if (svm->vmcb->save.cpl) {
2377 kvm_inject_gp(&svm->vcpu, 0);
2378 return 1;
2379 }
2380
2381 return 0;
2382 }
2383
2384 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2385 bool has_error_code, u32 error_code)
2386 {
2387 int vmexit;
2388
2389 if (!is_guest_mode(&svm->vcpu))
2390 return 0;
2391
2392 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2393 svm->vmcb->control.exit_code_hi = 0;
2394 svm->vmcb->control.exit_info_1 = error_code;
2395 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2396
2397 vmexit = nested_svm_intercept(svm);
2398 if (vmexit == NESTED_EXIT_DONE)
2399 svm->nested.exit_required = true;
2400
2401 return vmexit;
2402 }
2403
2404 /* This function returns true if it is save to enable the irq window */
2405 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2406 {
2407 if (!is_guest_mode(&svm->vcpu))
2408 return true;
2409
2410 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2411 return true;
2412
2413 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2414 return false;
2415
2416 /*
2417 * if vmexit was already requested (by intercepted exception
2418 * for instance) do not overwrite it with "external interrupt"
2419 * vmexit.
2420 */
2421 if (svm->nested.exit_required)
2422 return false;
2423
2424 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2425 svm->vmcb->control.exit_info_1 = 0;
2426 svm->vmcb->control.exit_info_2 = 0;
2427
2428 if (svm->nested.intercept & 1ULL) {
2429 /*
2430 * The #vmexit can't be emulated here directly because this
2431 * code path runs with irqs and preemption disabled. A
2432 * #vmexit emulation might sleep. Only signal request for
2433 * the #vmexit here.
2434 */
2435 svm->nested.exit_required = true;
2436 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2437 return false;
2438 }
2439
2440 return true;
2441 }
2442
2443 /* This function returns true if it is save to enable the nmi window */
2444 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2445 {
2446 if (!is_guest_mode(&svm->vcpu))
2447 return true;
2448
2449 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2450 return true;
2451
2452 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2453 svm->nested.exit_required = true;
2454
2455 return false;
2456 }
2457
2458 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2459 {
2460 struct page *page;
2461
2462 might_sleep();
2463
2464 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2465 if (is_error_page(page))
2466 goto error;
2467
2468 *_page = page;
2469
2470 return kmap(page);
2471
2472 error:
2473 kvm_inject_gp(&svm->vcpu, 0);
2474
2475 return NULL;
2476 }
2477
2478 static void nested_svm_unmap(struct page *page)
2479 {
2480 kunmap(page);
2481 kvm_release_page_dirty(page);
2482 }
2483
2484 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2485 {
2486 unsigned port, size, iopm_len;
2487 u16 val, mask;
2488 u8 start_bit;
2489 u64 gpa;
2490
2491 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2492 return NESTED_EXIT_HOST;
2493
2494 port = svm->vmcb->control.exit_info_1 >> 16;
2495 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2496 SVM_IOIO_SIZE_SHIFT;
2497 gpa = svm->nested.vmcb_iopm + (port / 8);
2498 start_bit = port % 8;
2499 iopm_len = (start_bit + size > 8) ? 2 : 1;
2500 mask = (0xf >> (4 - size)) << start_bit;
2501 val = 0;
2502
2503 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2504 return NESTED_EXIT_DONE;
2505
2506 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2507 }
2508
2509 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2510 {
2511 u32 offset, msr, value;
2512 int write, mask;
2513
2514 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2515 return NESTED_EXIT_HOST;
2516
2517 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2518 offset = svm_msrpm_offset(msr);
2519 write = svm->vmcb->control.exit_info_1 & 1;
2520 mask = 1 << ((2 * (msr & 0xf)) + write);
2521
2522 if (offset == MSR_INVALID)
2523 return NESTED_EXIT_DONE;
2524
2525 /* Offset is in 32 bit units but need in 8 bit units */
2526 offset *= 4;
2527
2528 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2529 return NESTED_EXIT_DONE;
2530
2531 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2532 }
2533
2534 static int nested_svm_exit_special(struct vcpu_svm *svm)
2535 {
2536 u32 exit_code = svm->vmcb->control.exit_code;
2537
2538 switch (exit_code) {
2539 case SVM_EXIT_INTR:
2540 case SVM_EXIT_NMI:
2541 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2542 return NESTED_EXIT_HOST;
2543 case SVM_EXIT_NPF:
2544 /* For now we are always handling NPFs when using them */
2545 if (npt_enabled)
2546 return NESTED_EXIT_HOST;
2547 break;
2548 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2549 /* When we're shadowing, trap PFs, but not async PF */
2550 if (!npt_enabled && svm->apf_reason == 0)
2551 return NESTED_EXIT_HOST;
2552 break;
2553 default:
2554 break;
2555 }
2556
2557 return NESTED_EXIT_CONTINUE;
2558 }
2559
2560 /*
2561 * If this function returns true, this #vmexit was already handled
2562 */
2563 static int nested_svm_intercept(struct vcpu_svm *svm)
2564 {
2565 u32 exit_code = svm->vmcb->control.exit_code;
2566 int vmexit = NESTED_EXIT_HOST;
2567
2568 switch (exit_code) {
2569 case SVM_EXIT_MSR:
2570 vmexit = nested_svm_exit_handled_msr(svm);
2571 break;
2572 case SVM_EXIT_IOIO:
2573 vmexit = nested_svm_intercept_ioio(svm);
2574 break;
2575 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2576 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2577 if (svm->nested.intercept_cr & bit)
2578 vmexit = NESTED_EXIT_DONE;
2579 break;
2580 }
2581 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2582 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2583 if (svm->nested.intercept_dr & bit)
2584 vmexit = NESTED_EXIT_DONE;
2585 break;
2586 }
2587 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2588 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2589 if (svm->nested.intercept_exceptions & excp_bits)
2590 vmexit = NESTED_EXIT_DONE;
2591 /* async page fault always cause vmexit */
2592 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2593 svm->apf_reason != 0)
2594 vmexit = NESTED_EXIT_DONE;
2595 break;
2596 }
2597 case SVM_EXIT_ERR: {
2598 vmexit = NESTED_EXIT_DONE;
2599 break;
2600 }
2601 default: {
2602 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2603 if (svm->nested.intercept & exit_bits)
2604 vmexit = NESTED_EXIT_DONE;
2605 }
2606 }
2607
2608 return vmexit;
2609 }
2610
2611 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2612 {
2613 int vmexit;
2614
2615 vmexit = nested_svm_intercept(svm);
2616
2617 if (vmexit == NESTED_EXIT_DONE)
2618 nested_svm_vmexit(svm);
2619
2620 return vmexit;
2621 }
2622
2623 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2624 {
2625 struct vmcb_control_area *dst = &dst_vmcb->control;
2626 struct vmcb_control_area *from = &from_vmcb->control;
2627
2628 dst->intercept_cr = from->intercept_cr;
2629 dst->intercept_dr = from->intercept_dr;
2630 dst->intercept_exceptions = from->intercept_exceptions;
2631 dst->intercept = from->intercept;
2632 dst->iopm_base_pa = from->iopm_base_pa;
2633 dst->msrpm_base_pa = from->msrpm_base_pa;
2634 dst->tsc_offset = from->tsc_offset;
2635 dst->asid = from->asid;
2636 dst->tlb_ctl = from->tlb_ctl;
2637 dst->int_ctl = from->int_ctl;
2638 dst->int_vector = from->int_vector;
2639 dst->int_state = from->int_state;
2640 dst->exit_code = from->exit_code;
2641 dst->exit_code_hi = from->exit_code_hi;
2642 dst->exit_info_1 = from->exit_info_1;
2643 dst->exit_info_2 = from->exit_info_2;
2644 dst->exit_int_info = from->exit_int_info;
2645 dst->exit_int_info_err = from->exit_int_info_err;
2646 dst->nested_ctl = from->nested_ctl;
2647 dst->event_inj = from->event_inj;
2648 dst->event_inj_err = from->event_inj_err;
2649 dst->nested_cr3 = from->nested_cr3;
2650 dst->lbr_ctl = from->lbr_ctl;
2651 }
2652
2653 static int nested_svm_vmexit(struct vcpu_svm *svm)
2654 {
2655 struct vmcb *nested_vmcb;
2656 struct vmcb *hsave = svm->nested.hsave;
2657 struct vmcb *vmcb = svm->vmcb;
2658 struct page *page;
2659
2660 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2661 vmcb->control.exit_info_1,
2662 vmcb->control.exit_info_2,
2663 vmcb->control.exit_int_info,
2664 vmcb->control.exit_int_info_err,
2665 KVM_ISA_SVM);
2666
2667 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2668 if (!nested_vmcb)
2669 return 1;
2670
2671 /* Exit Guest-Mode */
2672 leave_guest_mode(&svm->vcpu);
2673 svm->nested.vmcb = 0;
2674
2675 /* Give the current vmcb to the guest */
2676 disable_gif(svm);
2677
2678 nested_vmcb->save.es = vmcb->save.es;
2679 nested_vmcb->save.cs = vmcb->save.cs;
2680 nested_vmcb->save.ss = vmcb->save.ss;
2681 nested_vmcb->save.ds = vmcb->save.ds;
2682 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2683 nested_vmcb->save.idtr = vmcb->save.idtr;
2684 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2685 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2686 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2687 nested_vmcb->save.cr2 = vmcb->save.cr2;
2688 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2689 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2690 nested_vmcb->save.rip = vmcb->save.rip;
2691 nested_vmcb->save.rsp = vmcb->save.rsp;
2692 nested_vmcb->save.rax = vmcb->save.rax;
2693 nested_vmcb->save.dr7 = vmcb->save.dr7;
2694 nested_vmcb->save.dr6 = vmcb->save.dr6;
2695 nested_vmcb->save.cpl = vmcb->save.cpl;
2696
2697 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2698 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2699 nested_vmcb->control.int_state = vmcb->control.int_state;
2700 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2701 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2702 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2703 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2704 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2705 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2706
2707 if (svm->nrips_enabled)
2708 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2709
2710 /*
2711 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2712 * to make sure that we do not lose injected events. So check event_inj
2713 * here and copy it to exit_int_info if it is valid.
2714 * Exit_int_info and event_inj can't be both valid because the case
2715 * below only happens on a VMRUN instruction intercept which has
2716 * no valid exit_int_info set.
2717 */
2718 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2719 struct vmcb_control_area *nc = &nested_vmcb->control;
2720
2721 nc->exit_int_info = vmcb->control.event_inj;
2722 nc->exit_int_info_err = vmcb->control.event_inj_err;
2723 }
2724
2725 nested_vmcb->control.tlb_ctl = 0;
2726 nested_vmcb->control.event_inj = 0;
2727 nested_vmcb->control.event_inj_err = 0;
2728
2729 /* We always set V_INTR_MASKING and remember the old value in hflags */
2730 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2731 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2732
2733 /* Restore the original control entries */
2734 copy_vmcb_control_area(vmcb, hsave);
2735
2736 kvm_clear_exception_queue(&svm->vcpu);
2737 kvm_clear_interrupt_queue(&svm->vcpu);
2738
2739 svm->nested.nested_cr3 = 0;
2740
2741 /* Restore selected save entries */
2742 svm->vmcb->save.es = hsave->save.es;
2743 svm->vmcb->save.cs = hsave->save.cs;
2744 svm->vmcb->save.ss = hsave->save.ss;
2745 svm->vmcb->save.ds = hsave->save.ds;
2746 svm->vmcb->save.gdtr = hsave->save.gdtr;
2747 svm->vmcb->save.idtr = hsave->save.idtr;
2748 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2749 svm_set_efer(&svm->vcpu, hsave->save.efer);
2750 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2751 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2752 if (npt_enabled) {
2753 svm->vmcb->save.cr3 = hsave->save.cr3;
2754 svm->vcpu.arch.cr3 = hsave->save.cr3;
2755 } else {
2756 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2757 }
2758 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2759 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2760 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2761 svm->vmcb->save.dr7 = 0;
2762 svm->vmcb->save.cpl = 0;
2763 svm->vmcb->control.exit_int_info = 0;
2764
2765 mark_all_dirty(svm->vmcb);
2766
2767 nested_svm_unmap(page);
2768
2769 nested_svm_uninit_mmu_context(&svm->vcpu);
2770 kvm_mmu_reset_context(&svm->vcpu);
2771 kvm_mmu_load(&svm->vcpu);
2772
2773 return 0;
2774 }
2775
2776 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2777 {
2778 /*
2779 * This function merges the msr permission bitmaps of kvm and the
2780 * nested vmcb. It is optimized in that it only merges the parts where
2781 * the kvm msr permission bitmap may contain zero bits
2782 */
2783 int i;
2784
2785 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2786 return true;
2787
2788 for (i = 0; i < MSRPM_OFFSETS; i++) {
2789 u32 value, p;
2790 u64 offset;
2791
2792 if (msrpm_offsets[i] == 0xffffffff)
2793 break;
2794
2795 p = msrpm_offsets[i];
2796 offset = svm->nested.vmcb_msrpm + (p * 4);
2797
2798 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2799 return false;
2800
2801 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2802 }
2803
2804 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2805
2806 return true;
2807 }
2808
2809 static bool nested_vmcb_checks(struct vmcb *vmcb)
2810 {
2811 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2812 return false;
2813
2814 if (vmcb->control.asid == 0)
2815 return false;
2816
2817 if (vmcb->control.nested_ctl && !npt_enabled)
2818 return false;
2819
2820 return true;
2821 }
2822
2823 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2824 {
2825 struct vmcb *nested_vmcb;
2826 struct vmcb *hsave = svm->nested.hsave;
2827 struct vmcb *vmcb = svm->vmcb;
2828 struct page *page;
2829 u64 vmcb_gpa;
2830
2831 vmcb_gpa = svm->vmcb->save.rax;
2832
2833 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2834 if (!nested_vmcb)
2835 return false;
2836
2837 if (!nested_vmcb_checks(nested_vmcb)) {
2838 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2839 nested_vmcb->control.exit_code_hi = 0;
2840 nested_vmcb->control.exit_info_1 = 0;
2841 nested_vmcb->control.exit_info_2 = 0;
2842
2843 nested_svm_unmap(page);
2844
2845 return false;
2846 }
2847
2848 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2849 nested_vmcb->save.rip,
2850 nested_vmcb->control.int_ctl,
2851 nested_vmcb->control.event_inj,
2852 nested_vmcb->control.nested_ctl);
2853
2854 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2855 nested_vmcb->control.intercept_cr >> 16,
2856 nested_vmcb->control.intercept_exceptions,
2857 nested_vmcb->control.intercept);
2858
2859 /* Clear internal status */
2860 kvm_clear_exception_queue(&svm->vcpu);
2861 kvm_clear_interrupt_queue(&svm->vcpu);
2862
2863 /*
2864 * Save the old vmcb, so we don't need to pick what we save, but can
2865 * restore everything when a VMEXIT occurs
2866 */
2867 hsave->save.es = vmcb->save.es;
2868 hsave->save.cs = vmcb->save.cs;
2869 hsave->save.ss = vmcb->save.ss;
2870 hsave->save.ds = vmcb->save.ds;
2871 hsave->save.gdtr = vmcb->save.gdtr;
2872 hsave->save.idtr = vmcb->save.idtr;
2873 hsave->save.efer = svm->vcpu.arch.efer;
2874 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2875 hsave->save.cr4 = svm->vcpu.arch.cr4;
2876 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2877 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2878 hsave->save.rsp = vmcb->save.rsp;
2879 hsave->save.rax = vmcb->save.rax;
2880 if (npt_enabled)
2881 hsave->save.cr3 = vmcb->save.cr3;
2882 else
2883 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2884
2885 copy_vmcb_control_area(hsave, vmcb);
2886
2887 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2888 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2889 else
2890 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2891
2892 if (nested_vmcb->control.nested_ctl) {
2893 kvm_mmu_unload(&svm->vcpu);
2894 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2895 nested_svm_init_mmu_context(&svm->vcpu);
2896 }
2897
2898 /* Load the nested guest state */
2899 svm->vmcb->save.es = nested_vmcb->save.es;
2900 svm->vmcb->save.cs = nested_vmcb->save.cs;
2901 svm->vmcb->save.ss = nested_vmcb->save.ss;
2902 svm->vmcb->save.ds = nested_vmcb->save.ds;
2903 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2904 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2905 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2906 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2907 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2908 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2909 if (npt_enabled) {
2910 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2911 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2912 } else
2913 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2914
2915 /* Guest paging mode is active - reset mmu */
2916 kvm_mmu_reset_context(&svm->vcpu);
2917
2918 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2919 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2920 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2921 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2922
2923 /* In case we don't even reach vcpu_run, the fields are not updated */
2924 svm->vmcb->save.rax = nested_vmcb->save.rax;
2925 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2926 svm->vmcb->save.rip = nested_vmcb->save.rip;
2927 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2928 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2929 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2930
2931 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2932 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2933
2934 /* cache intercepts */
2935 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2936 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2937 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2938 svm->nested.intercept = nested_vmcb->control.intercept;
2939
2940 svm_flush_tlb(&svm->vcpu);
2941 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2942 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2943 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2944 else
2945 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2946
2947 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2948 /* We only want the cr8 intercept bits of the guest */
2949 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2950 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2951 }
2952
2953 /* We don't want to see VMMCALLs from a nested guest */
2954 clr_intercept(svm, INTERCEPT_VMMCALL);
2955
2956 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2957 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2958 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2959 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2960 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2961 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2962
2963 nested_svm_unmap(page);
2964
2965 /* Enter Guest-Mode */
2966 enter_guest_mode(&svm->vcpu);
2967
2968 /*
2969 * Merge guest and host intercepts - must be called with vcpu in
2970 * guest-mode to take affect here
2971 */
2972 recalc_intercepts(svm);
2973
2974 svm->nested.vmcb = vmcb_gpa;
2975
2976 enable_gif(svm);
2977
2978 mark_all_dirty(svm->vmcb);
2979
2980 return true;
2981 }
2982
2983 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2984 {
2985 to_vmcb->save.fs = from_vmcb->save.fs;
2986 to_vmcb->save.gs = from_vmcb->save.gs;
2987 to_vmcb->save.tr = from_vmcb->save.tr;
2988 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2989 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2990 to_vmcb->save.star = from_vmcb->save.star;
2991 to_vmcb->save.lstar = from_vmcb->save.lstar;
2992 to_vmcb->save.cstar = from_vmcb->save.cstar;
2993 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2994 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2995 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2996 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2997 }
2998
2999 static int vmload_interception(struct vcpu_svm *svm)
3000 {
3001 struct vmcb *nested_vmcb;
3002 struct page *page;
3003
3004 if (nested_svm_check_permissions(svm))
3005 return 1;
3006
3007 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3008 if (!nested_vmcb)
3009 return 1;
3010
3011 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3012 skip_emulated_instruction(&svm->vcpu);
3013
3014 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3015 nested_svm_unmap(page);
3016
3017 return 1;
3018 }
3019
3020 static int vmsave_interception(struct vcpu_svm *svm)
3021 {
3022 struct vmcb *nested_vmcb;
3023 struct page *page;
3024
3025 if (nested_svm_check_permissions(svm))
3026 return 1;
3027
3028 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3029 if (!nested_vmcb)
3030 return 1;
3031
3032 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3033 skip_emulated_instruction(&svm->vcpu);
3034
3035 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3036 nested_svm_unmap(page);
3037
3038 return 1;
3039 }
3040
3041 static int vmrun_interception(struct vcpu_svm *svm)
3042 {
3043 if (nested_svm_check_permissions(svm))
3044 return 1;
3045
3046 /* Save rip after vmrun instruction */
3047 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3048
3049 if (!nested_svm_vmrun(svm))
3050 return 1;
3051
3052 if (!nested_svm_vmrun_msrpm(svm))
3053 goto failed;
3054
3055 return 1;
3056
3057 failed:
3058
3059 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3060 svm->vmcb->control.exit_code_hi = 0;
3061 svm->vmcb->control.exit_info_1 = 0;
3062 svm->vmcb->control.exit_info_2 = 0;
3063
3064 nested_svm_vmexit(svm);
3065
3066 return 1;
3067 }
3068
3069 static int stgi_interception(struct vcpu_svm *svm)
3070 {
3071 if (nested_svm_check_permissions(svm))
3072 return 1;
3073
3074 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3075 skip_emulated_instruction(&svm->vcpu);
3076 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3077
3078 enable_gif(svm);
3079
3080 return 1;
3081 }
3082
3083 static int clgi_interception(struct vcpu_svm *svm)
3084 {
3085 if (nested_svm_check_permissions(svm))
3086 return 1;
3087
3088 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3089 skip_emulated_instruction(&svm->vcpu);
3090
3091 disable_gif(svm);
3092
3093 /* After a CLGI no interrupts should come */
3094 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3095 svm_clear_vintr(svm);
3096 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3097 mark_dirty(svm->vmcb, VMCB_INTR);
3098 }
3099
3100 return 1;
3101 }
3102
3103 static int invlpga_interception(struct vcpu_svm *svm)
3104 {
3105 struct kvm_vcpu *vcpu = &svm->vcpu;
3106
3107 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3108 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3109
3110 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3111 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3112
3113 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3114 skip_emulated_instruction(&svm->vcpu);
3115 return 1;
3116 }
3117
3118 static int skinit_interception(struct vcpu_svm *svm)
3119 {
3120 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3121
3122 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3123 return 1;
3124 }
3125
3126 static int wbinvd_interception(struct vcpu_svm *svm)
3127 {
3128 return kvm_emulate_wbinvd(&svm->vcpu);
3129 }
3130
3131 static int xsetbv_interception(struct vcpu_svm *svm)
3132 {
3133 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3134 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3135
3136 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3137 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3138 skip_emulated_instruction(&svm->vcpu);
3139 }
3140
3141 return 1;
3142 }
3143
3144 static int task_switch_interception(struct vcpu_svm *svm)
3145 {
3146 u16 tss_selector;
3147 int reason;
3148 int int_type = svm->vmcb->control.exit_int_info &
3149 SVM_EXITINTINFO_TYPE_MASK;
3150 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3151 uint32_t type =
3152 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3153 uint32_t idt_v =
3154 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3155 bool has_error_code = false;
3156 u32 error_code = 0;
3157
3158 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3159
3160 if (svm->vmcb->control.exit_info_2 &
3161 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3162 reason = TASK_SWITCH_IRET;
3163 else if (svm->vmcb->control.exit_info_2 &
3164 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3165 reason = TASK_SWITCH_JMP;
3166 else if (idt_v)
3167 reason = TASK_SWITCH_GATE;
3168 else
3169 reason = TASK_SWITCH_CALL;
3170
3171 if (reason == TASK_SWITCH_GATE) {
3172 switch (type) {
3173 case SVM_EXITINTINFO_TYPE_NMI:
3174 svm->vcpu.arch.nmi_injected = false;
3175 break;
3176 case SVM_EXITINTINFO_TYPE_EXEPT:
3177 if (svm->vmcb->control.exit_info_2 &
3178 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3179 has_error_code = true;
3180 error_code =
3181 (u32)svm->vmcb->control.exit_info_2;
3182 }
3183 kvm_clear_exception_queue(&svm->vcpu);
3184 break;
3185 case SVM_EXITINTINFO_TYPE_INTR:
3186 kvm_clear_interrupt_queue(&svm->vcpu);
3187 break;
3188 default:
3189 break;
3190 }
3191 }
3192
3193 if (reason != TASK_SWITCH_GATE ||
3194 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3195 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3196 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3197 skip_emulated_instruction(&svm->vcpu);
3198
3199 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3200 int_vec = -1;
3201
3202 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3203 has_error_code, error_code) == EMULATE_FAIL) {
3204 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3205 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3206 svm->vcpu.run->internal.ndata = 0;
3207 return 0;
3208 }
3209 return 1;
3210 }
3211
3212 static int cpuid_interception(struct vcpu_svm *svm)
3213 {
3214 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3215 return kvm_emulate_cpuid(&svm->vcpu);
3216 }
3217
3218 static int iret_interception(struct vcpu_svm *svm)
3219 {
3220 ++svm->vcpu.stat.nmi_window_exits;
3221 clr_intercept(svm, INTERCEPT_IRET);
3222 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3223 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3224 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3225 return 1;
3226 }
3227
3228 static int invlpg_interception(struct vcpu_svm *svm)
3229 {
3230 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3231 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3232
3233 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3234 skip_emulated_instruction(&svm->vcpu);
3235 return 1;
3236 }
3237
3238 static int emulate_on_interception(struct vcpu_svm *svm)
3239 {
3240 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3241 }
3242
3243 static int rdpmc_interception(struct vcpu_svm *svm)
3244 {
3245 int err;
3246
3247 if (!static_cpu_has(X86_FEATURE_NRIPS))
3248 return emulate_on_interception(svm);
3249
3250 err = kvm_rdpmc(&svm->vcpu);
3251 return kvm_complete_insn_gp(&svm->vcpu, err);
3252 }
3253
3254 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3255 unsigned long val)
3256 {
3257 unsigned long cr0 = svm->vcpu.arch.cr0;
3258 bool ret = false;
3259 u64 intercept;
3260
3261 intercept = svm->nested.intercept;
3262
3263 if (!is_guest_mode(&svm->vcpu) ||
3264 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3265 return false;
3266
3267 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3268 val &= ~SVM_CR0_SELECTIVE_MASK;
3269
3270 if (cr0 ^ val) {
3271 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3272 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3273 }
3274
3275 return ret;
3276 }
3277
3278 #define CR_VALID (1ULL << 63)
3279
3280 static int cr_interception(struct vcpu_svm *svm)
3281 {
3282 int reg, cr;
3283 unsigned long val;
3284 int err;
3285
3286 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3287 return emulate_on_interception(svm);
3288
3289 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3290 return emulate_on_interception(svm);
3291
3292 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3293 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3294 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3295 else
3296 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3297
3298 err = 0;
3299 if (cr >= 16) { /* mov to cr */
3300 cr -= 16;
3301 val = kvm_register_read(&svm->vcpu, reg);
3302 switch (cr) {
3303 case 0:
3304 if (!check_selective_cr0_intercepted(svm, val))
3305 err = kvm_set_cr0(&svm->vcpu, val);
3306 else
3307 return 1;
3308
3309 break;
3310 case 3:
3311 err = kvm_set_cr3(&svm->vcpu, val);
3312 break;
3313 case 4:
3314 err = kvm_set_cr4(&svm->vcpu, val);
3315 break;
3316 case 8:
3317 err = kvm_set_cr8(&svm->vcpu, val);
3318 break;
3319 default:
3320 WARN(1, "unhandled write to CR%d", cr);
3321 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3322 return 1;
3323 }
3324 } else { /* mov from cr */
3325 switch (cr) {
3326 case 0:
3327 val = kvm_read_cr0(&svm->vcpu);
3328 break;
3329 case 2:
3330 val = svm->vcpu.arch.cr2;
3331 break;
3332 case 3:
3333 val = kvm_read_cr3(&svm->vcpu);
3334 break;
3335 case 4:
3336 val = kvm_read_cr4(&svm->vcpu);
3337 break;
3338 case 8:
3339 val = kvm_get_cr8(&svm->vcpu);
3340 break;
3341 default:
3342 WARN(1, "unhandled read from CR%d", cr);
3343 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3344 return 1;
3345 }
3346 kvm_register_write(&svm->vcpu, reg, val);
3347 }
3348 return kvm_complete_insn_gp(&svm->vcpu, err);
3349 }
3350
3351 static int dr_interception(struct vcpu_svm *svm)
3352 {
3353 int reg, dr;
3354 unsigned long val;
3355
3356 if (svm->vcpu.guest_debug == 0) {
3357 /*
3358 * No more DR vmexits; force a reload of the debug registers
3359 * and reenter on this instruction. The next vmexit will
3360 * retrieve the full state of the debug registers.
3361 */
3362 clr_dr_intercepts(svm);
3363 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3364 return 1;
3365 }
3366
3367 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3368 return emulate_on_interception(svm);
3369
3370 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3371 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3372
3373 if (dr >= 16) { /* mov to DRn */
3374 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3375 return 1;
3376 val = kvm_register_read(&svm->vcpu, reg);
3377 kvm_set_dr(&svm->vcpu, dr - 16, val);
3378 } else {
3379 if (!kvm_require_dr(&svm->vcpu, dr))
3380 return 1;
3381 kvm_get_dr(&svm->vcpu, dr, &val);
3382 kvm_register_write(&svm->vcpu, reg, val);
3383 }
3384
3385 skip_emulated_instruction(&svm->vcpu);
3386
3387 return 1;
3388 }
3389
3390 static int cr8_write_interception(struct vcpu_svm *svm)
3391 {
3392 struct kvm_run *kvm_run = svm->vcpu.run;
3393 int r;
3394
3395 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3396 /* instruction emulation calls kvm_set_cr8() */
3397 r = cr_interception(svm);
3398 if (lapic_in_kernel(&svm->vcpu))
3399 return r;
3400 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3401 return r;
3402 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3403 return 0;
3404 }
3405
3406 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3407 {
3408 struct vcpu_svm *svm = to_svm(vcpu);
3409
3410 switch (msr_info->index) {
3411 case MSR_IA32_TSC: {
3412 msr_info->data = svm->vmcb->control.tsc_offset +
3413 kvm_scale_tsc(vcpu, rdtsc());
3414
3415 break;
3416 }
3417 case MSR_STAR:
3418 msr_info->data = svm->vmcb->save.star;
3419 break;
3420 #ifdef CONFIG_X86_64
3421 case MSR_LSTAR:
3422 msr_info->data = svm->vmcb->save.lstar;
3423 break;
3424 case MSR_CSTAR:
3425 msr_info->data = svm->vmcb->save.cstar;
3426 break;
3427 case MSR_KERNEL_GS_BASE:
3428 msr_info->data = svm->vmcb->save.kernel_gs_base;
3429 break;
3430 case MSR_SYSCALL_MASK:
3431 msr_info->data = svm->vmcb->save.sfmask;
3432 break;
3433 #endif
3434 case MSR_IA32_SYSENTER_CS:
3435 msr_info->data = svm->vmcb->save.sysenter_cs;
3436 break;
3437 case MSR_IA32_SYSENTER_EIP:
3438 msr_info->data = svm->sysenter_eip;
3439 break;
3440 case MSR_IA32_SYSENTER_ESP:
3441 msr_info->data = svm->sysenter_esp;
3442 break;
3443 case MSR_TSC_AUX:
3444 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3445 return 1;
3446 msr_info->data = svm->tsc_aux;
3447 break;
3448 /*
3449 * Nobody will change the following 5 values in the VMCB so we can
3450 * safely return them on rdmsr. They will always be 0 until LBRV is
3451 * implemented.
3452 */
3453 case MSR_IA32_DEBUGCTLMSR:
3454 msr_info->data = svm->vmcb->save.dbgctl;
3455 break;
3456 case MSR_IA32_LASTBRANCHFROMIP:
3457 msr_info->data = svm->vmcb->save.br_from;
3458 break;
3459 case MSR_IA32_LASTBRANCHTOIP:
3460 msr_info->data = svm->vmcb->save.br_to;
3461 break;
3462 case MSR_IA32_LASTINTFROMIP:
3463 msr_info->data = svm->vmcb->save.last_excp_from;
3464 break;
3465 case MSR_IA32_LASTINTTOIP:
3466 msr_info->data = svm->vmcb->save.last_excp_to;
3467 break;
3468 case MSR_VM_HSAVE_PA:
3469 msr_info->data = svm->nested.hsave_msr;
3470 break;
3471 case MSR_VM_CR:
3472 msr_info->data = svm->nested.vm_cr_msr;
3473 break;
3474 case MSR_IA32_UCODE_REV:
3475 msr_info->data = 0x01000065;
3476 break;
3477 case MSR_F15H_IC_CFG: {
3478
3479 int family, model;
3480
3481 family = guest_cpuid_family(vcpu);
3482 model = guest_cpuid_model(vcpu);
3483
3484 if (family < 0 || model < 0)
3485 return kvm_get_msr_common(vcpu, msr_info);
3486
3487 msr_info->data = 0;
3488
3489 if (family == 0x15 &&
3490 (model >= 0x2 && model < 0x20))
3491 msr_info->data = 0x1E;
3492 }
3493 break;
3494 default:
3495 return kvm_get_msr_common(vcpu, msr_info);
3496 }
3497 return 0;
3498 }
3499
3500 static int rdmsr_interception(struct vcpu_svm *svm)
3501 {
3502 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3503 struct msr_data msr_info;
3504
3505 msr_info.index = ecx;
3506 msr_info.host_initiated = false;
3507 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3508 trace_kvm_msr_read_ex(ecx);
3509 kvm_inject_gp(&svm->vcpu, 0);
3510 } else {
3511 trace_kvm_msr_read(ecx, msr_info.data);
3512
3513 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3514 msr_info.data & 0xffffffff);
3515 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3516 msr_info.data >> 32);
3517 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3518 skip_emulated_instruction(&svm->vcpu);
3519 }
3520 return 1;
3521 }
3522
3523 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3524 {
3525 struct vcpu_svm *svm = to_svm(vcpu);
3526 int svm_dis, chg_mask;
3527
3528 if (data & ~SVM_VM_CR_VALID_MASK)
3529 return 1;
3530
3531 chg_mask = SVM_VM_CR_VALID_MASK;
3532
3533 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3534 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3535
3536 svm->nested.vm_cr_msr &= ~chg_mask;
3537 svm->nested.vm_cr_msr |= (data & chg_mask);
3538
3539 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3540
3541 /* check for svm_disable while efer.svme is set */
3542 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3543 return 1;
3544
3545 return 0;
3546 }
3547
3548 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3549 {
3550 struct vcpu_svm *svm = to_svm(vcpu);
3551
3552 u32 ecx = msr->index;
3553 u64 data = msr->data;
3554 switch (ecx) {
3555 case MSR_IA32_TSC:
3556 kvm_write_tsc(vcpu, msr);
3557 break;
3558 case MSR_STAR:
3559 svm->vmcb->save.star = data;
3560 break;
3561 #ifdef CONFIG_X86_64
3562 case MSR_LSTAR:
3563 svm->vmcb->save.lstar = data;
3564 break;
3565 case MSR_CSTAR:
3566 svm->vmcb->save.cstar = data;
3567 break;
3568 case MSR_KERNEL_GS_BASE:
3569 svm->vmcb->save.kernel_gs_base = data;
3570 break;
3571 case MSR_SYSCALL_MASK:
3572 svm->vmcb->save.sfmask = data;
3573 break;
3574 #endif
3575 case MSR_IA32_SYSENTER_CS:
3576 svm->vmcb->save.sysenter_cs = data;
3577 break;
3578 case MSR_IA32_SYSENTER_EIP:
3579 svm->sysenter_eip = data;
3580 svm->vmcb->save.sysenter_eip = data;
3581 break;
3582 case MSR_IA32_SYSENTER_ESP:
3583 svm->sysenter_esp = data;
3584 svm->vmcb->save.sysenter_esp = data;
3585 break;
3586 case MSR_TSC_AUX:
3587 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3588 return 1;
3589
3590 /*
3591 * This is rare, so we update the MSR here instead of using
3592 * direct_access_msrs. Doing that would require a rdmsr in
3593 * svm_vcpu_put.
3594 */
3595 svm->tsc_aux = data;
3596 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3597 break;
3598 case MSR_IA32_DEBUGCTLMSR:
3599 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3600 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3601 __func__, data);
3602 break;
3603 }
3604 if (data & DEBUGCTL_RESERVED_BITS)
3605 return 1;
3606
3607 svm->vmcb->save.dbgctl = data;
3608 mark_dirty(svm->vmcb, VMCB_LBR);
3609 if (data & (1ULL<<0))
3610 svm_enable_lbrv(svm);
3611 else
3612 svm_disable_lbrv(svm);
3613 break;
3614 case MSR_VM_HSAVE_PA:
3615 svm->nested.hsave_msr = data;
3616 break;
3617 case MSR_VM_CR:
3618 return svm_set_vm_cr(vcpu, data);
3619 case MSR_VM_IGNNE:
3620 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3621 break;
3622 case MSR_IA32_APICBASE:
3623 if (kvm_vcpu_apicv_active(vcpu))
3624 avic_update_vapic_bar(to_svm(vcpu), data);
3625 /* Follow through */
3626 default:
3627 return kvm_set_msr_common(vcpu, msr);
3628 }
3629 return 0;
3630 }
3631
3632 static int wrmsr_interception(struct vcpu_svm *svm)
3633 {
3634 struct msr_data msr;
3635 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3636 u64 data = kvm_read_edx_eax(&svm->vcpu);
3637
3638 msr.data = data;
3639 msr.index = ecx;
3640 msr.host_initiated = false;
3641
3642 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3643 if (kvm_set_msr(&svm->vcpu, &msr)) {
3644 trace_kvm_msr_write_ex(ecx, data);
3645 kvm_inject_gp(&svm->vcpu, 0);
3646 } else {
3647 trace_kvm_msr_write(ecx, data);
3648 skip_emulated_instruction(&svm->vcpu);
3649 }
3650 return 1;
3651 }
3652
3653 static int msr_interception(struct vcpu_svm *svm)
3654 {
3655 if (svm->vmcb->control.exit_info_1)
3656 return wrmsr_interception(svm);
3657 else
3658 return rdmsr_interception(svm);
3659 }
3660
3661 static int interrupt_window_interception(struct vcpu_svm *svm)
3662 {
3663 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3664 svm_clear_vintr(svm);
3665 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3666 mark_dirty(svm->vmcb, VMCB_INTR);
3667 ++svm->vcpu.stat.irq_window_exits;
3668 return 1;
3669 }
3670
3671 static int pause_interception(struct vcpu_svm *svm)
3672 {
3673 kvm_vcpu_on_spin(&(svm->vcpu));
3674 return 1;
3675 }
3676
3677 static int nop_interception(struct vcpu_svm *svm)
3678 {
3679 skip_emulated_instruction(&(svm->vcpu));
3680 return 1;
3681 }
3682
3683 static int monitor_interception(struct vcpu_svm *svm)
3684 {
3685 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3686 return nop_interception(svm);
3687 }
3688
3689 static int mwait_interception(struct vcpu_svm *svm)
3690 {
3691 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3692 return nop_interception(svm);
3693 }
3694
3695 enum avic_ipi_failure_cause {
3696 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3697 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3698 AVIC_IPI_FAILURE_INVALID_TARGET,
3699 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3700 };
3701
3702 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3703 {
3704 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3705 u32 icrl = svm->vmcb->control.exit_info_1;
3706 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3707 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3708 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3709
3710 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3711
3712 switch (id) {
3713 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3714 /*
3715 * AVIC hardware handles the generation of
3716 * IPIs when the specified Message Type is Fixed
3717 * (also known as fixed delivery mode) and
3718 * the Trigger Mode is edge-triggered. The hardware
3719 * also supports self and broadcast delivery modes
3720 * specified via the Destination Shorthand(DSH)
3721 * field of the ICRL. Logical and physical APIC ID
3722 * formats are supported. All other IPI types cause
3723 * a #VMEXIT, which needs to emulated.
3724 */
3725 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3726 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3727 break;
3728 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3729 int i;
3730 struct kvm_vcpu *vcpu;
3731 struct kvm *kvm = svm->vcpu.kvm;
3732 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3733
3734 /*
3735 * At this point, we expect that the AVIC HW has already
3736 * set the appropriate IRR bits on the valid target
3737 * vcpus. So, we just need to kick the appropriate vcpu.
3738 */
3739 kvm_for_each_vcpu(i, vcpu, kvm) {
3740 bool m = kvm_apic_match_dest(vcpu, apic,
3741 icrl & KVM_APIC_SHORT_MASK,
3742 GET_APIC_DEST_FIELD(icrh),
3743 icrl & KVM_APIC_DEST_MASK);
3744
3745 if (m && !avic_vcpu_is_running(vcpu))
3746 kvm_vcpu_wake_up(vcpu);
3747 }
3748 break;
3749 }
3750 case AVIC_IPI_FAILURE_INVALID_TARGET:
3751 break;
3752 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3753 WARN_ONCE(1, "Invalid backing page\n");
3754 break;
3755 default:
3756 pr_err("Unknown IPI interception\n");
3757 }
3758
3759 return 1;
3760 }
3761
3762 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3763 {
3764 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3765 int index;
3766 u32 *logical_apic_id_table;
3767 int dlid = GET_APIC_LOGICAL_ID(ldr);
3768
3769 if (!dlid)
3770 return NULL;
3771
3772 if (flat) { /* flat */
3773 index = ffs(dlid) - 1;
3774 if (index > 7)
3775 return NULL;
3776 } else { /* cluster */
3777 int cluster = (dlid & 0xf0) >> 4;
3778 int apic = ffs(dlid & 0x0f) - 1;
3779
3780 if ((apic < 0) || (apic > 7) ||
3781 (cluster >= 0xf))
3782 return NULL;
3783 index = (cluster << 2) + apic;
3784 }
3785
3786 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3787
3788 return &logical_apic_id_table[index];
3789 }
3790
3791 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3792 bool valid)
3793 {
3794 bool flat;
3795 u32 *entry, new_entry;
3796
3797 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3798 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3799 if (!entry)
3800 return -EINVAL;
3801
3802 new_entry = READ_ONCE(*entry);
3803 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3804 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3805 if (valid)
3806 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3807 else
3808 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3809 WRITE_ONCE(*entry, new_entry);
3810
3811 return 0;
3812 }
3813
3814 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3815 {
3816 int ret;
3817 struct vcpu_svm *svm = to_svm(vcpu);
3818 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3819
3820 if (!ldr)
3821 return 1;
3822
3823 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3824 if (ret && svm->ldr_reg) {
3825 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3826 svm->ldr_reg = 0;
3827 } else {
3828 svm->ldr_reg = ldr;
3829 }
3830 return ret;
3831 }
3832
3833 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3834 {
3835 u64 *old, *new;
3836 struct vcpu_svm *svm = to_svm(vcpu);
3837 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3838 u32 id = (apic_id_reg >> 24) & 0xff;
3839
3840 if (vcpu->vcpu_id == id)
3841 return 0;
3842
3843 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3844 new = avic_get_physical_id_entry(vcpu, id);
3845 if (!new || !old)
3846 return 1;
3847
3848 /* We need to move physical_id_entry to new offset */
3849 *new = *old;
3850 *old = 0ULL;
3851 to_svm(vcpu)->avic_physical_id_cache = new;
3852
3853 /*
3854 * Also update the guest physical APIC ID in the logical
3855 * APIC ID table entry if already setup the LDR.
3856 */
3857 if (svm->ldr_reg)
3858 avic_handle_ldr_update(vcpu);
3859
3860 return 0;
3861 }
3862
3863 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3864 {
3865 struct vcpu_svm *svm = to_svm(vcpu);
3866 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3867 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3868 u32 mod = (dfr >> 28) & 0xf;
3869
3870 /*
3871 * We assume that all local APICs are using the same type.
3872 * If this changes, we need to flush the AVIC logical
3873 * APID id table.
3874 */
3875 if (vm_data->ldr_mode == mod)
3876 return 0;
3877
3878 clear_page(page_address(vm_data->avic_logical_id_table_page));
3879 vm_data->ldr_mode = mod;
3880
3881 if (svm->ldr_reg)
3882 avic_handle_ldr_update(vcpu);
3883 return 0;
3884 }
3885
3886 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3887 {
3888 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3889 u32 offset = svm->vmcb->control.exit_info_1 &
3890 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3891
3892 switch (offset) {
3893 case APIC_ID:
3894 if (avic_handle_apic_id_update(&svm->vcpu))
3895 return 0;
3896 break;
3897 case APIC_LDR:
3898 if (avic_handle_ldr_update(&svm->vcpu))
3899 return 0;
3900 break;
3901 case APIC_DFR:
3902 avic_handle_dfr_update(&svm->vcpu);
3903 break;
3904 default:
3905 break;
3906 }
3907
3908 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3909
3910 return 1;
3911 }
3912
3913 static bool is_avic_unaccelerated_access_trap(u32 offset)
3914 {
3915 bool ret = false;
3916
3917 switch (offset) {
3918 case APIC_ID:
3919 case APIC_EOI:
3920 case APIC_RRR:
3921 case APIC_LDR:
3922 case APIC_DFR:
3923 case APIC_SPIV:
3924 case APIC_ESR:
3925 case APIC_ICR:
3926 case APIC_LVTT:
3927 case APIC_LVTTHMR:
3928 case APIC_LVTPC:
3929 case APIC_LVT0:
3930 case APIC_LVT1:
3931 case APIC_LVTERR:
3932 case APIC_TMICT:
3933 case APIC_TDCR:
3934 ret = true;
3935 break;
3936 default:
3937 break;
3938 }
3939 return ret;
3940 }
3941
3942 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3943 {
3944 int ret = 0;
3945 u32 offset = svm->vmcb->control.exit_info_1 &
3946 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3947 u32 vector = svm->vmcb->control.exit_info_2 &
3948 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3949 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3950 AVIC_UNACCEL_ACCESS_WRITE_MASK;
3951 bool trap = is_avic_unaccelerated_access_trap(offset);
3952
3953 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3954 trap, write, vector);
3955 if (trap) {
3956 /* Handling Trap */
3957 WARN_ONCE(!write, "svm: Handling trap read.\n");
3958 ret = avic_unaccel_trap_write(svm);
3959 } else {
3960 /* Handling Fault */
3961 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3962 }
3963
3964 return ret;
3965 }
3966
3967 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3968 [SVM_EXIT_READ_CR0] = cr_interception,
3969 [SVM_EXIT_READ_CR3] = cr_interception,
3970 [SVM_EXIT_READ_CR4] = cr_interception,
3971 [SVM_EXIT_READ_CR8] = cr_interception,
3972 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3973 [SVM_EXIT_WRITE_CR0] = cr_interception,
3974 [SVM_EXIT_WRITE_CR3] = cr_interception,
3975 [SVM_EXIT_WRITE_CR4] = cr_interception,
3976 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3977 [SVM_EXIT_READ_DR0] = dr_interception,
3978 [SVM_EXIT_READ_DR1] = dr_interception,
3979 [SVM_EXIT_READ_DR2] = dr_interception,
3980 [SVM_EXIT_READ_DR3] = dr_interception,
3981 [SVM_EXIT_READ_DR4] = dr_interception,
3982 [SVM_EXIT_READ_DR5] = dr_interception,
3983 [SVM_EXIT_READ_DR6] = dr_interception,
3984 [SVM_EXIT_READ_DR7] = dr_interception,
3985 [SVM_EXIT_WRITE_DR0] = dr_interception,
3986 [SVM_EXIT_WRITE_DR1] = dr_interception,
3987 [SVM_EXIT_WRITE_DR2] = dr_interception,
3988 [SVM_EXIT_WRITE_DR3] = dr_interception,
3989 [SVM_EXIT_WRITE_DR4] = dr_interception,
3990 [SVM_EXIT_WRITE_DR5] = dr_interception,
3991 [SVM_EXIT_WRITE_DR6] = dr_interception,
3992 [SVM_EXIT_WRITE_DR7] = dr_interception,
3993 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3994 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3995 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3996 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3997 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3998 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3999 [SVM_EXIT_INTR] = intr_interception,
4000 [SVM_EXIT_NMI] = nmi_interception,
4001 [SVM_EXIT_SMI] = nop_on_interception,
4002 [SVM_EXIT_INIT] = nop_on_interception,
4003 [SVM_EXIT_VINTR] = interrupt_window_interception,
4004 [SVM_EXIT_RDPMC] = rdpmc_interception,
4005 [SVM_EXIT_CPUID] = cpuid_interception,
4006 [SVM_EXIT_IRET] = iret_interception,
4007 [SVM_EXIT_INVD] = emulate_on_interception,
4008 [SVM_EXIT_PAUSE] = pause_interception,
4009 [SVM_EXIT_HLT] = halt_interception,
4010 [SVM_EXIT_INVLPG] = invlpg_interception,
4011 [SVM_EXIT_INVLPGA] = invlpga_interception,
4012 [SVM_EXIT_IOIO] = io_interception,
4013 [SVM_EXIT_MSR] = msr_interception,
4014 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4015 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4016 [SVM_EXIT_VMRUN] = vmrun_interception,
4017 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4018 [SVM_EXIT_VMLOAD] = vmload_interception,
4019 [SVM_EXIT_VMSAVE] = vmsave_interception,
4020 [SVM_EXIT_STGI] = stgi_interception,
4021 [SVM_EXIT_CLGI] = clgi_interception,
4022 [SVM_EXIT_SKINIT] = skinit_interception,
4023 [SVM_EXIT_WBINVD] = wbinvd_interception,
4024 [SVM_EXIT_MONITOR] = monitor_interception,
4025 [SVM_EXIT_MWAIT] = mwait_interception,
4026 [SVM_EXIT_XSETBV] = xsetbv_interception,
4027 [SVM_EXIT_NPF] = pf_interception,
4028 [SVM_EXIT_RSM] = emulate_on_interception,
4029 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4030 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4031 };
4032
4033 static void dump_vmcb(struct kvm_vcpu *vcpu)
4034 {
4035 struct vcpu_svm *svm = to_svm(vcpu);
4036 struct vmcb_control_area *control = &svm->vmcb->control;
4037 struct vmcb_save_area *save = &svm->vmcb->save;
4038
4039 pr_err("VMCB Control Area:\n");
4040 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4041 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4042 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4043 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4044 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4045 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4046 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4047 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4048 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4049 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4050 pr_err("%-20s%d\n", "asid:", control->asid);
4051 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4052 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4053 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4054 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4055 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4056 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4057 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4058 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4059 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4060 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4061 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4062 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4063 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4064 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4065 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
4066 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4067 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4068 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4069 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4070 pr_err("VMCB State Save Area:\n");
4071 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4072 "es:",
4073 save->es.selector, save->es.attrib,
4074 save->es.limit, save->es.base);
4075 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4076 "cs:",
4077 save->cs.selector, save->cs.attrib,
4078 save->cs.limit, save->cs.base);
4079 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4080 "ss:",
4081 save->ss.selector, save->ss.attrib,
4082 save->ss.limit, save->ss.base);
4083 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4084 "ds:",
4085 save->ds.selector, save->ds.attrib,
4086 save->ds.limit, save->ds.base);
4087 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4088 "fs:",
4089 save->fs.selector, save->fs.attrib,
4090 save->fs.limit, save->fs.base);
4091 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4092 "gs:",
4093 save->gs.selector, save->gs.attrib,
4094 save->gs.limit, save->gs.base);
4095 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4096 "gdtr:",
4097 save->gdtr.selector, save->gdtr.attrib,
4098 save->gdtr.limit, save->gdtr.base);
4099 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4100 "ldtr:",
4101 save->ldtr.selector, save->ldtr.attrib,
4102 save->ldtr.limit, save->ldtr.base);
4103 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4104 "idtr:",
4105 save->idtr.selector, save->idtr.attrib,
4106 save->idtr.limit, save->idtr.base);
4107 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4108 "tr:",
4109 save->tr.selector, save->tr.attrib,
4110 save->tr.limit, save->tr.base);
4111 pr_err("cpl: %d efer: %016llx\n",
4112 save->cpl, save->efer);
4113 pr_err("%-15s %016llx %-13s %016llx\n",
4114 "cr0:", save->cr0, "cr2:", save->cr2);
4115 pr_err("%-15s %016llx %-13s %016llx\n",
4116 "cr3:", save->cr3, "cr4:", save->cr4);
4117 pr_err("%-15s %016llx %-13s %016llx\n",
4118 "dr6:", save->dr6, "dr7:", save->dr7);
4119 pr_err("%-15s %016llx %-13s %016llx\n",
4120 "rip:", save->rip, "rflags:", save->rflags);
4121 pr_err("%-15s %016llx %-13s %016llx\n",
4122 "rsp:", save->rsp, "rax:", save->rax);
4123 pr_err("%-15s %016llx %-13s %016llx\n",
4124 "star:", save->star, "lstar:", save->lstar);
4125 pr_err("%-15s %016llx %-13s %016llx\n",
4126 "cstar:", save->cstar, "sfmask:", save->sfmask);
4127 pr_err("%-15s %016llx %-13s %016llx\n",
4128 "kernel_gs_base:", save->kernel_gs_base,
4129 "sysenter_cs:", save->sysenter_cs);
4130 pr_err("%-15s %016llx %-13s %016llx\n",
4131 "sysenter_esp:", save->sysenter_esp,
4132 "sysenter_eip:", save->sysenter_eip);
4133 pr_err("%-15s %016llx %-13s %016llx\n",
4134 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4135 pr_err("%-15s %016llx %-13s %016llx\n",
4136 "br_from:", save->br_from, "br_to:", save->br_to);
4137 pr_err("%-15s %016llx %-13s %016llx\n",
4138 "excp_from:", save->last_excp_from,
4139 "excp_to:", save->last_excp_to);
4140 }
4141
4142 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4143 {
4144 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4145
4146 *info1 = control->exit_info_1;
4147 *info2 = control->exit_info_2;
4148 }
4149
4150 static int handle_exit(struct kvm_vcpu *vcpu)
4151 {
4152 struct vcpu_svm *svm = to_svm(vcpu);
4153 struct kvm_run *kvm_run = vcpu->run;
4154 u32 exit_code = svm->vmcb->control.exit_code;
4155
4156 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4157
4158 vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4159
4160 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4161 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4162 if (npt_enabled)
4163 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4164
4165 if (unlikely(svm->nested.exit_required)) {
4166 nested_svm_vmexit(svm);
4167 svm->nested.exit_required = false;
4168
4169 return 1;
4170 }
4171
4172 if (is_guest_mode(vcpu)) {
4173 int vmexit;
4174
4175 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4176 svm->vmcb->control.exit_info_1,
4177 svm->vmcb->control.exit_info_2,
4178 svm->vmcb->control.exit_int_info,
4179 svm->vmcb->control.exit_int_info_err,
4180 KVM_ISA_SVM);
4181
4182 vmexit = nested_svm_exit_special(svm);
4183
4184 if (vmexit == NESTED_EXIT_CONTINUE)
4185 vmexit = nested_svm_exit_handled(svm);
4186
4187 if (vmexit == NESTED_EXIT_DONE)
4188 return 1;
4189 }
4190
4191 svm_complete_interrupts(svm);
4192
4193 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4194 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4195 kvm_run->fail_entry.hardware_entry_failure_reason
4196 = svm->vmcb->control.exit_code;
4197 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4198 dump_vmcb(vcpu);
4199 return 0;
4200 }
4201
4202 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4203 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4204 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4205 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4206 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4207 "exit_code 0x%x\n",
4208 __func__, svm->vmcb->control.exit_int_info,
4209 exit_code);
4210
4211 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4212 || !svm_exit_handlers[exit_code]) {
4213 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4214 kvm_queue_exception(vcpu, UD_VECTOR);
4215 return 1;
4216 }
4217
4218 return svm_exit_handlers[exit_code](svm);
4219 }
4220
4221 static void reload_tss(struct kvm_vcpu *vcpu)
4222 {
4223 int cpu = raw_smp_processor_id();
4224
4225 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4226 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4227 load_TR_desc();
4228 }
4229
4230 static void pre_svm_run(struct vcpu_svm *svm)
4231 {
4232 int cpu = raw_smp_processor_id();
4233
4234 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4235
4236 /* FIXME: handle wraparound of asid_generation */
4237 if (svm->asid_generation != sd->asid_generation)
4238 new_asid(svm, sd);
4239 }
4240
4241 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4242 {
4243 struct vcpu_svm *svm = to_svm(vcpu);
4244
4245 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4246 vcpu->arch.hflags |= HF_NMI_MASK;
4247 set_intercept(svm, INTERCEPT_IRET);
4248 ++vcpu->stat.nmi_injections;
4249 }
4250
4251 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4252 {
4253 struct vmcb_control_area *control;
4254
4255 /* The following fields are ignored when AVIC is enabled */
4256 control = &svm->vmcb->control;
4257 control->int_vector = irq;
4258 control->int_ctl &= ~V_INTR_PRIO_MASK;
4259 control->int_ctl |= V_IRQ_MASK |
4260 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4261 mark_dirty(svm->vmcb, VMCB_INTR);
4262 }
4263
4264 static void svm_set_irq(struct kvm_vcpu *vcpu)
4265 {
4266 struct vcpu_svm *svm = to_svm(vcpu);
4267
4268 BUG_ON(!(gif_set(svm)));
4269
4270 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4271 ++vcpu->stat.irq_injections;
4272
4273 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4274 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4275 }
4276
4277 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4278 {
4279 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4280 }
4281
4282 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4283 {
4284 struct vcpu_svm *svm = to_svm(vcpu);
4285
4286 if (svm_nested_virtualize_tpr(vcpu) ||
4287 kvm_vcpu_apicv_active(vcpu))
4288 return;
4289
4290 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4291
4292 if (irr == -1)
4293 return;
4294
4295 if (tpr >= irr)
4296 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4297 }
4298
4299 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4300 {
4301 return;
4302 }
4303
4304 static bool svm_get_enable_apicv(void)
4305 {
4306 return avic;
4307 }
4308
4309 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4310 {
4311 }
4312
4313 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4314 {
4315 }
4316
4317 /* Note: Currently only used by Hyper-V. */
4318 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4319 {
4320 struct vcpu_svm *svm = to_svm(vcpu);
4321 struct vmcb *vmcb = svm->vmcb;
4322
4323 if (!avic)
4324 return;
4325
4326 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4327 mark_dirty(vmcb, VMCB_INTR);
4328 }
4329
4330 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4331 {
4332 return;
4333 }
4334
4335 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4336 {
4337 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4338 smp_mb__after_atomic();
4339
4340 if (avic_vcpu_is_running(vcpu))
4341 wrmsrl(SVM_AVIC_DOORBELL,
4342 kvm_cpu_get_apicid(vcpu->cpu));
4343 else
4344 kvm_vcpu_wake_up(vcpu);
4345 }
4346
4347 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4348 {
4349 unsigned long flags;
4350 struct amd_svm_iommu_ir *cur;
4351
4352 spin_lock_irqsave(&svm->ir_list_lock, flags);
4353 list_for_each_entry(cur, &svm->ir_list, node) {
4354 if (cur->data != pi->ir_data)
4355 continue;
4356 list_del(&cur->node);
4357 kfree(cur);
4358 break;
4359 }
4360 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4361 }
4362
4363 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4364 {
4365 int ret = 0;
4366 unsigned long flags;
4367 struct amd_svm_iommu_ir *ir;
4368
4369 /**
4370 * In some cases, the existing irte is updaed and re-set,
4371 * so we need to check here if it's already been * added
4372 * to the ir_list.
4373 */
4374 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4375 struct kvm *kvm = svm->vcpu.kvm;
4376 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4377 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4378 struct vcpu_svm *prev_svm;
4379
4380 if (!prev_vcpu) {
4381 ret = -EINVAL;
4382 goto out;
4383 }
4384
4385 prev_svm = to_svm(prev_vcpu);
4386 svm_ir_list_del(prev_svm, pi);
4387 }
4388
4389 /**
4390 * Allocating new amd_iommu_pi_data, which will get
4391 * add to the per-vcpu ir_list.
4392 */
4393 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4394 if (!ir) {
4395 ret = -ENOMEM;
4396 goto out;
4397 }
4398 ir->data = pi->ir_data;
4399
4400 spin_lock_irqsave(&svm->ir_list_lock, flags);
4401 list_add(&ir->node, &svm->ir_list);
4402 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4403 out:
4404 return ret;
4405 }
4406
4407 /**
4408 * Note:
4409 * The HW cannot support posting multicast/broadcast
4410 * interrupts to a vCPU. So, we still use legacy interrupt
4411 * remapping for these kind of interrupts.
4412 *
4413 * For lowest-priority interrupts, we only support
4414 * those with single CPU as the destination, e.g. user
4415 * configures the interrupts via /proc/irq or uses
4416 * irqbalance to make the interrupts single-CPU.
4417 */
4418 static int
4419 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4420 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4421 {
4422 struct kvm_lapic_irq irq;
4423 struct kvm_vcpu *vcpu = NULL;
4424
4425 kvm_set_msi_irq(kvm, e, &irq);
4426
4427 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4428 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4429 __func__, irq.vector);
4430 return -1;
4431 }
4432
4433 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4434 irq.vector);
4435 *svm = to_svm(vcpu);
4436 vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4437 vcpu_info->vector = irq.vector;
4438
4439 return 0;
4440 }
4441
4442 /*
4443 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4444 *
4445 * @kvm: kvm
4446 * @host_irq: host irq of the interrupt
4447 * @guest_irq: gsi of the interrupt
4448 * @set: set or unset PI
4449 * returns 0 on success, < 0 on failure
4450 */
4451 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4452 uint32_t guest_irq, bool set)
4453 {
4454 struct kvm_kernel_irq_routing_entry *e;
4455 struct kvm_irq_routing_table *irq_rt;
4456 int idx, ret = -EINVAL;
4457
4458 if (!kvm_arch_has_assigned_device(kvm) ||
4459 !irq_remapping_cap(IRQ_POSTING_CAP))
4460 return 0;
4461
4462 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4463 __func__, host_irq, guest_irq, set);
4464
4465 idx = srcu_read_lock(&kvm->irq_srcu);
4466 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4467 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4468
4469 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4470 struct vcpu_data vcpu_info;
4471 struct vcpu_svm *svm = NULL;
4472
4473 if (e->type != KVM_IRQ_ROUTING_MSI)
4474 continue;
4475
4476 /**
4477 * Here, we setup with legacy mode in the following cases:
4478 * 1. When cannot target interrupt to a specific vcpu.
4479 * 2. Unsetting posted interrupt.
4480 * 3. APIC virtialization is disabled for the vcpu.
4481 */
4482 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4483 kvm_vcpu_apicv_active(&svm->vcpu)) {
4484 struct amd_iommu_pi_data pi;
4485
4486 /* Try to enable guest_mode in IRTE */
4487 pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4488 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4489 svm->vcpu.vcpu_id);
4490 pi.is_guest_mode = true;
4491 pi.vcpu_data = &vcpu_info;
4492 ret = irq_set_vcpu_affinity(host_irq, &pi);
4493
4494 /**
4495 * Here, we successfully setting up vcpu affinity in
4496 * IOMMU guest mode. Now, we need to store the posted
4497 * interrupt information in a per-vcpu ir_list so that
4498 * we can reference to them directly when we update vcpu
4499 * scheduling information in IOMMU irte.
4500 */
4501 if (!ret && pi.is_guest_mode)
4502 svm_ir_list_add(svm, &pi);
4503 } else {
4504 /* Use legacy mode in IRTE */
4505 struct amd_iommu_pi_data pi;
4506
4507 /**
4508 * Here, pi is used to:
4509 * - Tell IOMMU to use legacy mode for this interrupt.
4510 * - Retrieve ga_tag of prior interrupt remapping data.
4511 */
4512 pi.is_guest_mode = false;
4513 ret = irq_set_vcpu_affinity(host_irq, &pi);
4514
4515 /**
4516 * Check if the posted interrupt was previously
4517 * setup with the guest_mode by checking if the ga_tag
4518 * was cached. If so, we need to clean up the per-vcpu
4519 * ir_list.
4520 */
4521 if (!ret && pi.prev_ga_tag) {
4522 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4523 struct kvm_vcpu *vcpu;
4524
4525 vcpu = kvm_get_vcpu_by_id(kvm, id);
4526 if (vcpu)
4527 svm_ir_list_del(to_svm(vcpu), &pi);
4528 }
4529 }
4530
4531 if (!ret && svm) {
4532 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4533 host_irq, e->gsi,
4534 vcpu_info.vector,
4535 vcpu_info.pi_desc_addr, set);
4536 }
4537
4538 if (ret < 0) {
4539 pr_err("%s: failed to update PI IRTE\n", __func__);
4540 goto out;
4541 }
4542 }
4543
4544 ret = 0;
4545 out:
4546 srcu_read_unlock(&kvm->irq_srcu, idx);
4547 return ret;
4548 }
4549
4550 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4551 {
4552 struct vcpu_svm *svm = to_svm(vcpu);
4553 struct vmcb *vmcb = svm->vmcb;
4554 int ret;
4555 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4556 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4557 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4558
4559 return ret;
4560 }
4561
4562 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4563 {
4564 struct vcpu_svm *svm = to_svm(vcpu);
4565
4566 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4567 }
4568
4569 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4570 {
4571 struct vcpu_svm *svm = to_svm(vcpu);
4572
4573 if (masked) {
4574 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4575 set_intercept(svm, INTERCEPT_IRET);
4576 } else {
4577 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4578 clr_intercept(svm, INTERCEPT_IRET);
4579 }
4580 }
4581
4582 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4583 {
4584 struct vcpu_svm *svm = to_svm(vcpu);
4585 struct vmcb *vmcb = svm->vmcb;
4586 int ret;
4587
4588 if (!gif_set(svm) ||
4589 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4590 return 0;
4591
4592 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4593
4594 if (is_guest_mode(vcpu))
4595 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4596
4597 return ret;
4598 }
4599
4600 static void enable_irq_window(struct kvm_vcpu *vcpu)
4601 {
4602 struct vcpu_svm *svm = to_svm(vcpu);
4603
4604 if (kvm_vcpu_apicv_active(vcpu))
4605 return;
4606
4607 /*
4608 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4609 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4610 * get that intercept, this function will be called again though and
4611 * we'll get the vintr intercept.
4612 */
4613 if (gif_set(svm) && nested_svm_intr(svm)) {
4614 svm_set_vintr(svm);
4615 svm_inject_irq(svm, 0x0);
4616 }
4617 }
4618
4619 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4620 {
4621 struct vcpu_svm *svm = to_svm(vcpu);
4622
4623 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4624 == HF_NMI_MASK)
4625 return; /* IRET will cause a vm exit */
4626
4627 /*
4628 * Something prevents NMI from been injected. Single step over possible
4629 * problem (IRET or exception injection or interrupt shadow)
4630 */
4631 svm->nmi_singlestep = true;
4632 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4633 }
4634
4635 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4636 {
4637 return 0;
4638 }
4639
4640 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4641 {
4642 struct vcpu_svm *svm = to_svm(vcpu);
4643
4644 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4645 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4646 else
4647 svm->asid_generation--;
4648 }
4649
4650 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4651 {
4652 }
4653
4654 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4655 {
4656 struct vcpu_svm *svm = to_svm(vcpu);
4657
4658 if (svm_nested_virtualize_tpr(vcpu))
4659 return;
4660
4661 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4662 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4663 kvm_set_cr8(vcpu, cr8);
4664 }
4665 }
4666
4667 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4668 {
4669 struct vcpu_svm *svm = to_svm(vcpu);
4670 u64 cr8;
4671
4672 if (svm_nested_virtualize_tpr(vcpu) ||
4673 kvm_vcpu_apicv_active(vcpu))
4674 return;
4675
4676 cr8 = kvm_get_cr8(vcpu);
4677 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4678 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4679 }
4680
4681 static void svm_complete_interrupts(struct vcpu_svm *svm)
4682 {
4683 u8 vector;
4684 int type;
4685 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4686 unsigned int3_injected = svm->int3_injected;
4687
4688 svm->int3_injected = 0;
4689
4690 /*
4691 * If we've made progress since setting HF_IRET_MASK, we've
4692 * executed an IRET and can allow NMI injection.
4693 */
4694 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4695 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4696 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4697 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4698 }
4699
4700 svm->vcpu.arch.nmi_injected = false;
4701 kvm_clear_exception_queue(&svm->vcpu);
4702 kvm_clear_interrupt_queue(&svm->vcpu);
4703
4704 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4705 return;
4706
4707 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4708
4709 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4710 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4711
4712 switch (type) {
4713 case SVM_EXITINTINFO_TYPE_NMI:
4714 svm->vcpu.arch.nmi_injected = true;
4715 break;
4716 case SVM_EXITINTINFO_TYPE_EXEPT:
4717 /*
4718 * In case of software exceptions, do not reinject the vector,
4719 * but re-execute the instruction instead. Rewind RIP first
4720 * if we emulated INT3 before.
4721 */
4722 if (kvm_exception_is_soft(vector)) {
4723 if (vector == BP_VECTOR && int3_injected &&
4724 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4725 kvm_rip_write(&svm->vcpu,
4726 kvm_rip_read(&svm->vcpu) -
4727 int3_injected);
4728 break;
4729 }
4730 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4731 u32 err = svm->vmcb->control.exit_int_info_err;
4732 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4733
4734 } else
4735 kvm_requeue_exception(&svm->vcpu, vector);
4736 break;
4737 case SVM_EXITINTINFO_TYPE_INTR:
4738 kvm_queue_interrupt(&svm->vcpu, vector, false);
4739 break;
4740 default:
4741 break;
4742 }
4743 }
4744
4745 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4746 {
4747 struct vcpu_svm *svm = to_svm(vcpu);
4748 struct vmcb_control_area *control = &svm->vmcb->control;
4749
4750 control->exit_int_info = control->event_inj;
4751 control->exit_int_info_err = control->event_inj_err;
4752 control->event_inj = 0;
4753 svm_complete_interrupts(svm);
4754 }
4755
4756 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4757 {
4758 struct vcpu_svm *svm = to_svm(vcpu);
4759
4760 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4761 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4762 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4763
4764 /*
4765 * A vmexit emulation is required before the vcpu can be executed
4766 * again.
4767 */
4768 if (unlikely(svm->nested.exit_required))
4769 return;
4770
4771 pre_svm_run(svm);
4772
4773 sync_lapic_to_cr8(vcpu);
4774
4775 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4776
4777 clgi();
4778
4779 local_irq_enable();
4780
4781 asm volatile (
4782 "push %%" _ASM_BP "; \n\t"
4783 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4784 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4785 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4786 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4787 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4788 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4789 #ifdef CONFIG_X86_64
4790 "mov %c[r8](%[svm]), %%r8 \n\t"
4791 "mov %c[r9](%[svm]), %%r9 \n\t"
4792 "mov %c[r10](%[svm]), %%r10 \n\t"
4793 "mov %c[r11](%[svm]), %%r11 \n\t"
4794 "mov %c[r12](%[svm]), %%r12 \n\t"
4795 "mov %c[r13](%[svm]), %%r13 \n\t"
4796 "mov %c[r14](%[svm]), %%r14 \n\t"
4797 "mov %c[r15](%[svm]), %%r15 \n\t"
4798 #endif
4799
4800 /* Enter guest mode */
4801 "push %%" _ASM_AX " \n\t"
4802 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4803 __ex(SVM_VMLOAD) "\n\t"
4804 __ex(SVM_VMRUN) "\n\t"
4805 __ex(SVM_VMSAVE) "\n\t"
4806 "pop %%" _ASM_AX " \n\t"
4807
4808 /* Save guest registers, load host registers */
4809 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4810 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4811 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4812 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4813 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4814 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4815 #ifdef CONFIG_X86_64
4816 "mov %%r8, %c[r8](%[svm]) \n\t"
4817 "mov %%r9, %c[r9](%[svm]) \n\t"
4818 "mov %%r10, %c[r10](%[svm]) \n\t"
4819 "mov %%r11, %c[r11](%[svm]) \n\t"
4820 "mov %%r12, %c[r12](%[svm]) \n\t"
4821 "mov %%r13, %c[r13](%[svm]) \n\t"
4822 "mov %%r14, %c[r14](%[svm]) \n\t"
4823 "mov %%r15, %c[r15](%[svm]) \n\t"
4824 #endif
4825 "pop %%" _ASM_BP
4826 :
4827 : [svm]"a"(svm),
4828 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4829 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4830 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4831 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4832 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4833 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4834 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4835 #ifdef CONFIG_X86_64
4836 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4837 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4838 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4839 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4840 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4841 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4842 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4843 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4844 #endif
4845 : "cc", "memory"
4846 #ifdef CONFIG_X86_64
4847 , "rbx", "rcx", "rdx", "rsi", "rdi"
4848 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4849 #else
4850 , "ebx", "ecx", "edx", "esi", "edi"
4851 #endif
4852 );
4853
4854 #ifdef CONFIG_X86_64
4855 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4856 #else
4857 loadsegment(fs, svm->host.fs);
4858 #ifndef CONFIG_X86_32_LAZY_GS
4859 loadsegment(gs, svm->host.gs);
4860 #endif
4861 #endif
4862
4863 reload_tss(vcpu);
4864
4865 local_irq_disable();
4866
4867 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4868 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4869 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4870 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4871
4872 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4873 kvm_before_handle_nmi(&svm->vcpu);
4874
4875 stgi();
4876
4877 /* Any pending NMI will happen here */
4878
4879 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4880 kvm_after_handle_nmi(&svm->vcpu);
4881
4882 sync_cr8_to_lapic(vcpu);
4883
4884 svm->next_rip = 0;
4885
4886 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4887
4888 /* if exit due to PF check for async PF */
4889 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4890 svm->apf_reason = kvm_read_and_reset_pf_reason();
4891
4892 if (npt_enabled) {
4893 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4894 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4895 }
4896
4897 /*
4898 * We need to handle MC intercepts here before the vcpu has a chance to
4899 * change the physical cpu
4900 */
4901 if (unlikely(svm->vmcb->control.exit_code ==
4902 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4903 svm_handle_mce(svm);
4904
4905 mark_all_clean(svm->vmcb);
4906 }
4907
4908 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4909 {
4910 struct vcpu_svm *svm = to_svm(vcpu);
4911
4912 svm->vmcb->save.cr3 = root;
4913 mark_dirty(svm->vmcb, VMCB_CR);
4914 svm_flush_tlb(vcpu);
4915 }
4916
4917 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4918 {
4919 struct vcpu_svm *svm = to_svm(vcpu);
4920
4921 svm->vmcb->control.nested_cr3 = root;
4922 mark_dirty(svm->vmcb, VMCB_NPT);
4923
4924 /* Also sync guest cr3 here in case we live migrate */
4925 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4926 mark_dirty(svm->vmcb, VMCB_CR);
4927
4928 svm_flush_tlb(vcpu);
4929 }
4930
4931 static int is_disabled(void)
4932 {
4933 u64 vm_cr;
4934
4935 rdmsrl(MSR_VM_CR, vm_cr);
4936 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4937 return 1;
4938
4939 return 0;
4940 }
4941
4942 static void
4943 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4944 {
4945 /*
4946 * Patch in the VMMCALL instruction:
4947 */
4948 hypercall[0] = 0x0f;
4949 hypercall[1] = 0x01;
4950 hypercall[2] = 0xd9;
4951 }
4952
4953 static void svm_check_processor_compat(void *rtn)
4954 {
4955 *(int *)rtn = 0;
4956 }
4957
4958 static bool svm_cpu_has_accelerated_tpr(void)
4959 {
4960 return false;
4961 }
4962
4963 static bool svm_has_high_real_mode_segbase(void)
4964 {
4965 return true;
4966 }
4967
4968 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4969 {
4970 return 0;
4971 }
4972
4973 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4974 {
4975 struct vcpu_svm *svm = to_svm(vcpu);
4976 struct kvm_cpuid_entry2 *entry;
4977
4978 /* Update nrips enabled cache */
4979 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4980
4981 if (!kvm_vcpu_apicv_active(vcpu))
4982 return;
4983
4984 entry = kvm_find_cpuid_entry(vcpu, 1, 0);
4985 if (entry)
4986 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4987 }
4988
4989 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4990 {
4991 switch (func) {
4992 case 0x1:
4993 if (avic)
4994 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4995 break;
4996 case 0x80000001:
4997 if (nested)
4998 entry->ecx |= (1 << 2); /* Set SVM bit */
4999 break;
5000 case 0x8000000A:
5001 entry->eax = 1; /* SVM revision 1 */
5002 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5003 ASID emulation to nested SVM */
5004 entry->ecx = 0; /* Reserved */
5005 entry->edx = 0; /* Per default do not support any
5006 additional features */
5007
5008 /* Support next_rip if host supports it */
5009 if (boot_cpu_has(X86_FEATURE_NRIPS))
5010 entry->edx |= SVM_FEATURE_NRIP;
5011
5012 /* Support NPT for the guest if enabled */
5013 if (npt_enabled)
5014 entry->edx |= SVM_FEATURE_NPT;
5015
5016 break;
5017 }
5018 }
5019
5020 static int svm_get_lpage_level(void)
5021 {
5022 return PT_PDPE_LEVEL;
5023 }
5024
5025 static bool svm_rdtscp_supported(void)
5026 {
5027 return boot_cpu_has(X86_FEATURE_RDTSCP);
5028 }
5029
5030 static bool svm_invpcid_supported(void)
5031 {
5032 return false;
5033 }
5034
5035 static bool svm_mpx_supported(void)
5036 {
5037 return false;
5038 }
5039
5040 static bool svm_xsaves_supported(void)
5041 {
5042 return false;
5043 }
5044
5045 static bool svm_has_wbinvd_exit(void)
5046 {
5047 return true;
5048 }
5049
5050 #define PRE_EX(exit) { .exit_code = (exit), \
5051 .stage = X86_ICPT_PRE_EXCEPT, }
5052 #define POST_EX(exit) { .exit_code = (exit), \
5053 .stage = X86_ICPT_POST_EXCEPT, }
5054 #define POST_MEM(exit) { .exit_code = (exit), \
5055 .stage = X86_ICPT_POST_MEMACCESS, }
5056
5057 static const struct __x86_intercept {
5058 u32 exit_code;
5059 enum x86_intercept_stage stage;
5060 } x86_intercept_map[] = {
5061 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5062 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5063 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5064 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5065 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5066 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5067 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5068 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5069 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5070 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5071 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5072 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5073 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5074 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5075 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5076 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5077 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5078 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5079 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5080 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5081 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5082 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5083 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5084 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5085 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5086 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5087 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5088 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5089 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5090 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5091 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5092 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5093 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5094 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5095 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5096 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5097 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5098 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5099 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5100 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5101 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5102 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5103 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5104 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5105 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5106 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5107 };
5108
5109 #undef PRE_EX
5110 #undef POST_EX
5111 #undef POST_MEM
5112
5113 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5114 struct x86_instruction_info *info,
5115 enum x86_intercept_stage stage)
5116 {
5117 struct vcpu_svm *svm = to_svm(vcpu);
5118 int vmexit, ret = X86EMUL_CONTINUE;
5119 struct __x86_intercept icpt_info;
5120 struct vmcb *vmcb = svm->vmcb;
5121
5122 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5123 goto out;
5124
5125 icpt_info = x86_intercept_map[info->intercept];
5126
5127 if (stage != icpt_info.stage)
5128 goto out;
5129
5130 switch (icpt_info.exit_code) {
5131 case SVM_EXIT_READ_CR0:
5132 if (info->intercept == x86_intercept_cr_read)
5133 icpt_info.exit_code += info->modrm_reg;
5134 break;
5135 case SVM_EXIT_WRITE_CR0: {
5136 unsigned long cr0, val;
5137 u64 intercept;
5138
5139 if (info->intercept == x86_intercept_cr_write)
5140 icpt_info.exit_code += info->modrm_reg;
5141
5142 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5143 info->intercept == x86_intercept_clts)
5144 break;
5145
5146 intercept = svm->nested.intercept;
5147
5148 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5149 break;
5150
5151 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5152 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5153
5154 if (info->intercept == x86_intercept_lmsw) {
5155 cr0 &= 0xfUL;
5156 val &= 0xfUL;
5157 /* lmsw can't clear PE - catch this here */
5158 if (cr0 & X86_CR0_PE)
5159 val |= X86_CR0_PE;
5160 }
5161
5162 if (cr0 ^ val)
5163 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5164
5165 break;
5166 }
5167 case SVM_EXIT_READ_DR0:
5168 case SVM_EXIT_WRITE_DR0:
5169 icpt_info.exit_code += info->modrm_reg;
5170 break;
5171 case SVM_EXIT_MSR:
5172 if (info->intercept == x86_intercept_wrmsr)
5173 vmcb->control.exit_info_1 = 1;
5174 else
5175 vmcb->control.exit_info_1 = 0;
5176 break;
5177 case SVM_EXIT_PAUSE:
5178 /*
5179 * We get this for NOP only, but pause
5180 * is rep not, check this here
5181 */
5182 if (info->rep_prefix != REPE_PREFIX)
5183 goto out;
5184 case SVM_EXIT_IOIO: {
5185 u64 exit_info;
5186 u32 bytes;
5187
5188 if (info->intercept == x86_intercept_in ||
5189 info->intercept == x86_intercept_ins) {
5190 exit_info = ((info->src_val & 0xffff) << 16) |
5191 SVM_IOIO_TYPE_MASK;
5192 bytes = info->dst_bytes;
5193 } else {
5194 exit_info = (info->dst_val & 0xffff) << 16;
5195 bytes = info->src_bytes;
5196 }
5197
5198 if (info->intercept == x86_intercept_outs ||
5199 info->intercept == x86_intercept_ins)
5200 exit_info |= SVM_IOIO_STR_MASK;
5201
5202 if (info->rep_prefix)
5203 exit_info |= SVM_IOIO_REP_MASK;
5204
5205 bytes = min(bytes, 4u);
5206
5207 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5208
5209 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5210
5211 vmcb->control.exit_info_1 = exit_info;
5212 vmcb->control.exit_info_2 = info->next_rip;
5213
5214 break;
5215 }
5216 default:
5217 break;
5218 }
5219
5220 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5221 if (static_cpu_has(X86_FEATURE_NRIPS))
5222 vmcb->control.next_rip = info->next_rip;
5223 vmcb->control.exit_code = icpt_info.exit_code;
5224 vmexit = nested_svm_exit_handled(svm);
5225
5226 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5227 : X86EMUL_CONTINUE;
5228
5229 out:
5230 return ret;
5231 }
5232
5233 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5234 {
5235 local_irq_enable();
5236 /*
5237 * We must have an instruction with interrupts enabled, so
5238 * the timer interrupt isn't delayed by the interrupt shadow.
5239 */
5240 asm("nop");
5241 local_irq_disable();
5242 }
5243
5244 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5245 {
5246 }
5247
5248 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5249 {
5250 if (avic_handle_apic_id_update(vcpu) != 0)
5251 return;
5252 if (avic_handle_dfr_update(vcpu) != 0)
5253 return;
5254 avic_handle_ldr_update(vcpu);
5255 }
5256
5257 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5258 .cpu_has_kvm_support = has_svm,
5259 .disabled_by_bios = is_disabled,
5260 .hardware_setup = svm_hardware_setup,
5261 .hardware_unsetup = svm_hardware_unsetup,
5262 .check_processor_compatibility = svm_check_processor_compat,
5263 .hardware_enable = svm_hardware_enable,
5264 .hardware_disable = svm_hardware_disable,
5265 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5266 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5267
5268 .vcpu_create = svm_create_vcpu,
5269 .vcpu_free = svm_free_vcpu,
5270 .vcpu_reset = svm_vcpu_reset,
5271
5272 .vm_init = avic_vm_init,
5273 .vm_destroy = avic_vm_destroy,
5274
5275 .prepare_guest_switch = svm_prepare_guest_switch,
5276 .vcpu_load = svm_vcpu_load,
5277 .vcpu_put = svm_vcpu_put,
5278 .vcpu_blocking = svm_vcpu_blocking,
5279 .vcpu_unblocking = svm_vcpu_unblocking,
5280
5281 .update_bp_intercept = update_bp_intercept,
5282 .get_msr = svm_get_msr,
5283 .set_msr = svm_set_msr,
5284 .get_segment_base = svm_get_segment_base,
5285 .get_segment = svm_get_segment,
5286 .set_segment = svm_set_segment,
5287 .get_cpl = svm_get_cpl,
5288 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5289 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5290 .decache_cr3 = svm_decache_cr3,
5291 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5292 .set_cr0 = svm_set_cr0,
5293 .set_cr3 = svm_set_cr3,
5294 .set_cr4 = svm_set_cr4,
5295 .set_efer = svm_set_efer,
5296 .get_idt = svm_get_idt,
5297 .set_idt = svm_set_idt,
5298 .get_gdt = svm_get_gdt,
5299 .set_gdt = svm_set_gdt,
5300 .get_dr6 = svm_get_dr6,
5301 .set_dr6 = svm_set_dr6,
5302 .set_dr7 = svm_set_dr7,
5303 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5304 .cache_reg = svm_cache_reg,
5305 .get_rflags = svm_get_rflags,
5306 .set_rflags = svm_set_rflags,
5307
5308 .get_pkru = svm_get_pkru,
5309
5310 .tlb_flush = svm_flush_tlb,
5311
5312 .run = svm_vcpu_run,
5313 .handle_exit = handle_exit,
5314 .skip_emulated_instruction = skip_emulated_instruction,
5315 .set_interrupt_shadow = svm_set_interrupt_shadow,
5316 .get_interrupt_shadow = svm_get_interrupt_shadow,
5317 .patch_hypercall = svm_patch_hypercall,
5318 .set_irq = svm_set_irq,
5319 .set_nmi = svm_inject_nmi,
5320 .queue_exception = svm_queue_exception,
5321 .cancel_injection = svm_cancel_injection,
5322 .interrupt_allowed = svm_interrupt_allowed,
5323 .nmi_allowed = svm_nmi_allowed,
5324 .get_nmi_mask = svm_get_nmi_mask,
5325 .set_nmi_mask = svm_set_nmi_mask,
5326 .enable_nmi_window = enable_nmi_window,
5327 .enable_irq_window = enable_irq_window,
5328 .update_cr8_intercept = update_cr8_intercept,
5329 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5330 .get_enable_apicv = svm_get_enable_apicv,
5331 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5332 .load_eoi_exitmap = svm_load_eoi_exitmap,
5333 .hwapic_irr_update = svm_hwapic_irr_update,
5334 .hwapic_isr_update = svm_hwapic_isr_update,
5335 .apicv_post_state_restore = avic_post_state_restore,
5336
5337 .set_tss_addr = svm_set_tss_addr,
5338 .get_tdp_level = get_npt_level,
5339 .get_mt_mask = svm_get_mt_mask,
5340
5341 .get_exit_info = svm_get_exit_info,
5342
5343 .get_lpage_level = svm_get_lpage_level,
5344
5345 .cpuid_update = svm_cpuid_update,
5346
5347 .rdtscp_supported = svm_rdtscp_supported,
5348 .invpcid_supported = svm_invpcid_supported,
5349 .mpx_supported = svm_mpx_supported,
5350 .xsaves_supported = svm_xsaves_supported,
5351
5352 .set_supported_cpuid = svm_set_supported_cpuid,
5353
5354 .has_wbinvd_exit = svm_has_wbinvd_exit,
5355
5356 .write_tsc_offset = svm_write_tsc_offset,
5357
5358 .set_tdp_cr3 = set_tdp_cr3,
5359
5360 .check_intercept = svm_check_intercept,
5361 .handle_external_intr = svm_handle_external_intr,
5362
5363 .sched_in = svm_sched_in,
5364
5365 .pmu_ops = &amd_pmu_ops,
5366 .deliver_posted_interrupt = svm_deliver_avic_intr,
5367 .update_pi_irte = svm_update_pi_irte,
5368 };
5369
5370 static int __init svm_init(void)
5371 {
5372 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5373 __alignof__(struct vcpu_svm), THIS_MODULE);
5374 }
5375
5376 static void __exit svm_exit(void)
5377 {
5378 kvm_exit();
5379 }
5380
5381 module_init(svm_init)
5382 module_exit(svm_exit)