]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/x86/kvm/svm.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39
40 #include <asm/apic.h>
41 #include <asm/perf_event.h>
42 #include <asm/tlbflush.h>
43 #include <asm/desc.h>
44 #include <asm/debugreg.h>
45 #include <asm/kvm_para.h>
46 #include <asm/irq_remapping.h>
47
48 #include <asm/virtext.h>
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id svm_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_SVM),
58 {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61
62 #define IOPM_ALLOC_ORDER 2
63 #define MSRPM_ALLOC_ORDER 1
64
65 #define SEG_TYPE_LDT 2
66 #define SEG_TYPE_BUSY_TSS16 3
67
68 #define SVM_FEATURE_NPT (1 << 0)
69 #define SVM_FEATURE_LBRV (1 << 1)
70 #define SVM_FEATURE_SVML (1 << 2)
71 #define SVM_FEATURE_NRIP (1 << 3)
72 #define SVM_FEATURE_TSC_RATE (1 << 4)
73 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
74 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
75 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
76 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
77
78 #define SVM_AVIC_DOORBELL 0xc001011b
79
80 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
81 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
82 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
83
84 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
85
86 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
87 #define TSC_RATIO_MIN 0x0000000000000001ULL
88 #define TSC_RATIO_MAX 0x000000ffffffffffULL
89
90 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
91
92 /*
93 * 0xff is broadcast, so the max index allowed for physical APIC ID
94 * table is 0xfe. APIC IDs above 0xff are reserved.
95 */
96 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
97
98 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
99 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
100 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
101
102 /* AVIC GATAG is encoded using VM and VCPU IDs */
103 #define AVIC_VCPU_ID_BITS 8
104 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
105
106 #define AVIC_VM_ID_BITS 24
107 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
108 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
109
110 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
111 (y & AVIC_VCPU_ID_MASK))
112 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
113 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
114
115 static bool erratum_383_found __read_mostly;
116
117 static const u32 host_save_user_msrs[] = {
118 #ifdef CONFIG_X86_64
119 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
120 MSR_FS_BASE,
121 #endif
122 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
123 MSR_TSC_AUX,
124 };
125
126 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
127
128 struct kvm_vcpu;
129
130 struct nested_state {
131 struct vmcb *hsave;
132 u64 hsave_msr;
133 u64 vm_cr_msr;
134 u64 vmcb;
135
136 /* These are the merged vectors */
137 u32 *msrpm;
138
139 /* gpa pointers to the real vectors */
140 u64 vmcb_msrpm;
141 u64 vmcb_iopm;
142
143 /* A VMEXIT is required but not yet emulated */
144 bool exit_required;
145
146 /* cache for intercepts of the guest */
147 u32 intercept_cr;
148 u32 intercept_dr;
149 u32 intercept_exceptions;
150 u64 intercept;
151
152 /* Nested Paging related state */
153 u64 nested_cr3;
154 };
155
156 #define MSRPM_OFFSETS 16
157 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
158
159 /*
160 * Set osvw_len to higher value when updated Revision Guides
161 * are published and we know what the new status bits are
162 */
163 static uint64_t osvw_len = 4, osvw_status;
164
165 struct vcpu_svm {
166 struct kvm_vcpu vcpu;
167 struct vmcb *vmcb;
168 unsigned long vmcb_pa;
169 struct svm_cpu_data *svm_data;
170 uint64_t asid_generation;
171 uint64_t sysenter_esp;
172 uint64_t sysenter_eip;
173 uint64_t tsc_aux;
174
175 u64 next_rip;
176
177 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
178 struct {
179 u16 fs;
180 u16 gs;
181 u16 ldt;
182 u64 gs_base;
183 } host;
184
185 u32 *msrpm;
186
187 ulong nmi_iret_rip;
188
189 struct nested_state nested;
190
191 bool nmi_singlestep;
192
193 unsigned int3_injected;
194 unsigned long int3_rip;
195 u32 apf_reason;
196
197 /* cached guest cpuid flags for faster access */
198 bool nrips_enabled : 1;
199
200 u32 ldr_reg;
201 struct page *avic_backing_page;
202 u64 *avic_physical_id_cache;
203 bool avic_is_running;
204
205 /*
206 * Per-vcpu list of struct amd_svm_iommu_ir:
207 * This is used mainly to store interrupt remapping information used
208 * when update the vcpu affinity. This avoids the need to scan for
209 * IRTE and try to match ga_tag in the IOMMU driver.
210 */
211 struct list_head ir_list;
212 spinlock_t ir_list_lock;
213 };
214
215 /*
216 * This is a wrapper of struct amd_iommu_ir_data.
217 */
218 struct amd_svm_iommu_ir {
219 struct list_head node; /* Used by SVM for per-vcpu ir_list */
220 void *data; /* Storing pointer to struct amd_ir_data */
221 };
222
223 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
224 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
225
226 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
227 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
228 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
229 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
230
231 static DEFINE_PER_CPU(u64, current_tsc_ratio);
232 #define TSC_RATIO_DEFAULT 0x0100000000ULL
233
234 #define MSR_INVALID 0xffffffffU
235
236 static const struct svm_direct_access_msrs {
237 u32 index; /* Index of the MSR */
238 bool always; /* True if intercept is always on */
239 } direct_access_msrs[] = {
240 { .index = MSR_STAR, .always = true },
241 { .index = MSR_IA32_SYSENTER_CS, .always = true },
242 #ifdef CONFIG_X86_64
243 { .index = MSR_GS_BASE, .always = true },
244 { .index = MSR_FS_BASE, .always = true },
245 { .index = MSR_KERNEL_GS_BASE, .always = true },
246 { .index = MSR_LSTAR, .always = true },
247 { .index = MSR_CSTAR, .always = true },
248 { .index = MSR_SYSCALL_MASK, .always = true },
249 #endif
250 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
251 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
252 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
253 { .index = MSR_IA32_LASTINTTOIP, .always = false },
254 { .index = MSR_INVALID, .always = false },
255 };
256
257 /* enable NPT for AMD64 and X86 with PAE */
258 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
259 static bool npt_enabled = true;
260 #else
261 static bool npt_enabled;
262 #endif
263
264 /* allow nested paging (virtualized MMU) for all guests */
265 static int npt = true;
266 module_param(npt, int, S_IRUGO);
267
268 /* allow nested virtualization in KVM/SVM */
269 static int nested = true;
270 module_param(nested, int, S_IRUGO);
271
272 /* enable / disable AVIC */
273 static int avic;
274 #ifdef CONFIG_X86_LOCAL_APIC
275 module_param(avic, int, S_IRUGO);
276 #endif
277
278 /* AVIC VM ID bit masks and lock */
279 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
280 static DEFINE_SPINLOCK(avic_vm_id_lock);
281
282 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
283 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
284 static void svm_complete_interrupts(struct vcpu_svm *svm);
285
286 static int nested_svm_exit_handled(struct vcpu_svm *svm);
287 static int nested_svm_intercept(struct vcpu_svm *svm);
288 static int nested_svm_vmexit(struct vcpu_svm *svm);
289 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
290 bool has_error_code, u32 error_code);
291
292 enum {
293 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
294 pause filter count */
295 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
296 VMCB_ASID, /* ASID */
297 VMCB_INTR, /* int_ctl, int_vector */
298 VMCB_NPT, /* npt_en, nCR3, gPAT */
299 VMCB_CR, /* CR0, CR3, CR4, EFER */
300 VMCB_DR, /* DR6, DR7 */
301 VMCB_DT, /* GDT, IDT */
302 VMCB_SEG, /* CS, DS, SS, ES, CPL */
303 VMCB_CR2, /* CR2 only */
304 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
305 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
306 * AVIC PHYSICAL_TABLE pointer,
307 * AVIC LOGICAL_TABLE pointer
308 */
309 VMCB_DIRTY_MAX,
310 };
311
312 /* TPR and CR2 are always written before VMRUN */
313 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
314
315 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
316
317 static inline void mark_all_dirty(struct vmcb *vmcb)
318 {
319 vmcb->control.clean = 0;
320 }
321
322 static inline void mark_all_clean(struct vmcb *vmcb)
323 {
324 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
325 & ~VMCB_ALWAYS_DIRTY_MASK;
326 }
327
328 static inline void mark_dirty(struct vmcb *vmcb, int bit)
329 {
330 vmcb->control.clean &= ~(1 << bit);
331 }
332
333 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
334 {
335 return container_of(vcpu, struct vcpu_svm, vcpu);
336 }
337
338 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
339 {
340 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
341 mark_dirty(svm->vmcb, VMCB_AVIC);
342 }
343
344 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
345 {
346 struct vcpu_svm *svm = to_svm(vcpu);
347 u64 *entry = svm->avic_physical_id_cache;
348
349 if (!entry)
350 return false;
351
352 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
353 }
354
355 static void recalc_intercepts(struct vcpu_svm *svm)
356 {
357 struct vmcb_control_area *c, *h;
358 struct nested_state *g;
359
360 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
361
362 if (!is_guest_mode(&svm->vcpu))
363 return;
364
365 c = &svm->vmcb->control;
366 h = &svm->nested.hsave->control;
367 g = &svm->nested;
368
369 c->intercept_cr = h->intercept_cr | g->intercept_cr;
370 c->intercept_dr = h->intercept_dr | g->intercept_dr;
371 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
372 c->intercept = h->intercept | g->intercept;
373 }
374
375 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
376 {
377 if (is_guest_mode(&svm->vcpu))
378 return svm->nested.hsave;
379 else
380 return svm->vmcb;
381 }
382
383 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
384 {
385 struct vmcb *vmcb = get_host_vmcb(svm);
386
387 vmcb->control.intercept_cr |= (1U << bit);
388
389 recalc_intercepts(svm);
390 }
391
392 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
393 {
394 struct vmcb *vmcb = get_host_vmcb(svm);
395
396 vmcb->control.intercept_cr &= ~(1U << bit);
397
398 recalc_intercepts(svm);
399 }
400
401 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
402 {
403 struct vmcb *vmcb = get_host_vmcb(svm);
404
405 return vmcb->control.intercept_cr & (1U << bit);
406 }
407
408 static inline void set_dr_intercepts(struct vcpu_svm *svm)
409 {
410 struct vmcb *vmcb = get_host_vmcb(svm);
411
412 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
413 | (1 << INTERCEPT_DR1_READ)
414 | (1 << INTERCEPT_DR2_READ)
415 | (1 << INTERCEPT_DR3_READ)
416 | (1 << INTERCEPT_DR4_READ)
417 | (1 << INTERCEPT_DR5_READ)
418 | (1 << INTERCEPT_DR6_READ)
419 | (1 << INTERCEPT_DR7_READ)
420 | (1 << INTERCEPT_DR0_WRITE)
421 | (1 << INTERCEPT_DR1_WRITE)
422 | (1 << INTERCEPT_DR2_WRITE)
423 | (1 << INTERCEPT_DR3_WRITE)
424 | (1 << INTERCEPT_DR4_WRITE)
425 | (1 << INTERCEPT_DR5_WRITE)
426 | (1 << INTERCEPT_DR6_WRITE)
427 | (1 << INTERCEPT_DR7_WRITE);
428
429 recalc_intercepts(svm);
430 }
431
432 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
433 {
434 struct vmcb *vmcb = get_host_vmcb(svm);
435
436 vmcb->control.intercept_dr = 0;
437
438 recalc_intercepts(svm);
439 }
440
441 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
442 {
443 struct vmcb *vmcb = get_host_vmcb(svm);
444
445 vmcb->control.intercept_exceptions |= (1U << bit);
446
447 recalc_intercepts(svm);
448 }
449
450 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
451 {
452 struct vmcb *vmcb = get_host_vmcb(svm);
453
454 vmcb->control.intercept_exceptions &= ~(1U << bit);
455
456 recalc_intercepts(svm);
457 }
458
459 static inline void set_intercept(struct vcpu_svm *svm, int bit)
460 {
461 struct vmcb *vmcb = get_host_vmcb(svm);
462
463 vmcb->control.intercept |= (1ULL << bit);
464
465 recalc_intercepts(svm);
466 }
467
468 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
469 {
470 struct vmcb *vmcb = get_host_vmcb(svm);
471
472 vmcb->control.intercept &= ~(1ULL << bit);
473
474 recalc_intercepts(svm);
475 }
476
477 static inline void enable_gif(struct vcpu_svm *svm)
478 {
479 svm->vcpu.arch.hflags |= HF_GIF_MASK;
480 }
481
482 static inline void disable_gif(struct vcpu_svm *svm)
483 {
484 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
485 }
486
487 static inline bool gif_set(struct vcpu_svm *svm)
488 {
489 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
490 }
491
492 static unsigned long iopm_base;
493
494 struct kvm_ldttss_desc {
495 u16 limit0;
496 u16 base0;
497 unsigned base1:8, type:5, dpl:2, p:1;
498 unsigned limit1:4, zero0:3, g:1, base2:8;
499 u32 base3;
500 u32 zero1;
501 } __attribute__((packed));
502
503 struct svm_cpu_data {
504 int cpu;
505
506 u64 asid_generation;
507 u32 max_asid;
508 u32 next_asid;
509 struct kvm_ldttss_desc *tss_desc;
510
511 struct page *save_area;
512 };
513
514 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
515
516 struct svm_init_data {
517 int cpu;
518 int r;
519 };
520
521 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
522
523 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
524 #define MSRS_RANGE_SIZE 2048
525 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
526
527 static u32 svm_msrpm_offset(u32 msr)
528 {
529 u32 offset;
530 int i;
531
532 for (i = 0; i < NUM_MSR_MAPS; i++) {
533 if (msr < msrpm_ranges[i] ||
534 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
535 continue;
536
537 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
538 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
539
540 /* Now we have the u8 offset - but need the u32 offset */
541 return offset / 4;
542 }
543
544 /* MSR not in any range */
545 return MSR_INVALID;
546 }
547
548 #define MAX_INST_SIZE 15
549
550 static inline void clgi(void)
551 {
552 asm volatile (__ex(SVM_CLGI));
553 }
554
555 static inline void stgi(void)
556 {
557 asm volatile (__ex(SVM_STGI));
558 }
559
560 static inline void invlpga(unsigned long addr, u32 asid)
561 {
562 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
563 }
564
565 static int get_npt_level(void)
566 {
567 #ifdef CONFIG_X86_64
568 return PT64_ROOT_LEVEL;
569 #else
570 return PT32E_ROOT_LEVEL;
571 #endif
572 }
573
574 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
575 {
576 vcpu->arch.efer = efer;
577 if (!npt_enabled && !(efer & EFER_LMA))
578 efer &= ~EFER_LME;
579
580 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
581 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
582 }
583
584 static int is_external_interrupt(u32 info)
585 {
586 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
587 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
588 }
589
590 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
591 {
592 struct vcpu_svm *svm = to_svm(vcpu);
593 u32 ret = 0;
594
595 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
596 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
597 return ret;
598 }
599
600 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
601 {
602 struct vcpu_svm *svm = to_svm(vcpu);
603
604 if (mask == 0)
605 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
606 else
607 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
608
609 }
610
611 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
612 {
613 struct vcpu_svm *svm = to_svm(vcpu);
614
615 if (svm->vmcb->control.next_rip != 0) {
616 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
617 svm->next_rip = svm->vmcb->control.next_rip;
618 }
619
620 if (!svm->next_rip) {
621 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
622 EMULATE_DONE)
623 printk(KERN_DEBUG "%s: NOP\n", __func__);
624 return;
625 }
626 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
627 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
628 __func__, kvm_rip_read(vcpu), svm->next_rip);
629
630 kvm_rip_write(vcpu, svm->next_rip);
631 svm_set_interrupt_shadow(vcpu, 0);
632 }
633
634 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
635 bool has_error_code, u32 error_code,
636 bool reinject)
637 {
638 struct vcpu_svm *svm = to_svm(vcpu);
639
640 /*
641 * If we are within a nested VM we'd better #VMEXIT and let the guest
642 * handle the exception
643 */
644 if (!reinject &&
645 nested_svm_check_exception(svm, nr, has_error_code, error_code))
646 return;
647
648 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
649 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
650
651 /*
652 * For guest debugging where we have to reinject #BP if some
653 * INT3 is guest-owned:
654 * Emulate nRIP by moving RIP forward. Will fail if injection
655 * raises a fault that is not intercepted. Still better than
656 * failing in all cases.
657 */
658 skip_emulated_instruction(&svm->vcpu);
659 rip = kvm_rip_read(&svm->vcpu);
660 svm->int3_rip = rip + svm->vmcb->save.cs.base;
661 svm->int3_injected = rip - old_rip;
662 }
663
664 svm->vmcb->control.event_inj = nr
665 | SVM_EVTINJ_VALID
666 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
667 | SVM_EVTINJ_TYPE_EXEPT;
668 svm->vmcb->control.event_inj_err = error_code;
669 }
670
671 static void svm_init_erratum_383(void)
672 {
673 u32 low, high;
674 int err;
675 u64 val;
676
677 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
678 return;
679
680 /* Use _safe variants to not break nested virtualization */
681 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
682 if (err)
683 return;
684
685 val |= (1ULL << 47);
686
687 low = lower_32_bits(val);
688 high = upper_32_bits(val);
689
690 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
691
692 erratum_383_found = true;
693 }
694
695 static void svm_init_osvw(struct kvm_vcpu *vcpu)
696 {
697 /*
698 * Guests should see errata 400 and 415 as fixed (assuming that
699 * HLT and IO instructions are intercepted).
700 */
701 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
702 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
703
704 /*
705 * By increasing VCPU's osvw.length to 3 we are telling the guest that
706 * all osvw.status bits inside that length, including bit 0 (which is
707 * reserved for erratum 298), are valid. However, if host processor's
708 * osvw_len is 0 then osvw_status[0] carries no information. We need to
709 * be conservative here and therefore we tell the guest that erratum 298
710 * is present (because we really don't know).
711 */
712 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
713 vcpu->arch.osvw.status |= 1;
714 }
715
716 static int has_svm(void)
717 {
718 const char *msg;
719
720 if (!cpu_has_svm(&msg)) {
721 printk(KERN_INFO "has_svm: %s\n", msg);
722 return 0;
723 }
724
725 return 1;
726 }
727
728 static void svm_hardware_disable(void)
729 {
730 /* Make sure we clean up behind us */
731 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
732 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
733
734 cpu_svm_disable();
735
736 amd_pmu_disable_virt();
737 }
738
739 static int svm_hardware_enable(void)
740 {
741
742 struct svm_cpu_data *sd;
743 uint64_t efer;
744 struct desc_ptr gdt_descr;
745 struct desc_struct *gdt;
746 int me = raw_smp_processor_id();
747
748 rdmsrl(MSR_EFER, efer);
749 if (efer & EFER_SVME)
750 return -EBUSY;
751
752 if (!has_svm()) {
753 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
754 return -EINVAL;
755 }
756 sd = per_cpu(svm_data, me);
757 if (!sd) {
758 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
759 return -EINVAL;
760 }
761
762 sd->asid_generation = 1;
763 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
764 sd->next_asid = sd->max_asid + 1;
765
766 native_store_gdt(&gdt_descr);
767 gdt = (struct desc_struct *)gdt_descr.address;
768 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
769
770 wrmsrl(MSR_EFER, efer | EFER_SVME);
771
772 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
773
774 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
775 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
776 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
777 }
778
779
780 /*
781 * Get OSVW bits.
782 *
783 * Note that it is possible to have a system with mixed processor
784 * revisions and therefore different OSVW bits. If bits are not the same
785 * on different processors then choose the worst case (i.e. if erratum
786 * is present on one processor and not on another then assume that the
787 * erratum is present everywhere).
788 */
789 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
790 uint64_t len, status = 0;
791 int err;
792
793 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
794 if (!err)
795 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
796 &err);
797
798 if (err)
799 osvw_status = osvw_len = 0;
800 else {
801 if (len < osvw_len)
802 osvw_len = len;
803 osvw_status |= status;
804 osvw_status &= (1ULL << osvw_len) - 1;
805 }
806 } else
807 osvw_status = osvw_len = 0;
808
809 svm_init_erratum_383();
810
811 amd_pmu_enable_virt();
812
813 return 0;
814 }
815
816 static void svm_cpu_uninit(int cpu)
817 {
818 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
819
820 if (!sd)
821 return;
822
823 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
824 __free_page(sd->save_area);
825 kfree(sd);
826 }
827
828 static int svm_cpu_init(int cpu)
829 {
830 struct svm_cpu_data *sd;
831 int r;
832
833 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
834 if (!sd)
835 return -ENOMEM;
836 sd->cpu = cpu;
837 sd->save_area = alloc_page(GFP_KERNEL);
838 r = -ENOMEM;
839 if (!sd->save_area)
840 goto err_1;
841
842 per_cpu(svm_data, cpu) = sd;
843
844 return 0;
845
846 err_1:
847 kfree(sd);
848 return r;
849
850 }
851
852 static bool valid_msr_intercept(u32 index)
853 {
854 int i;
855
856 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
857 if (direct_access_msrs[i].index == index)
858 return true;
859
860 return false;
861 }
862
863 static void set_msr_interception(u32 *msrpm, unsigned msr,
864 int read, int write)
865 {
866 u8 bit_read, bit_write;
867 unsigned long tmp;
868 u32 offset;
869
870 /*
871 * If this warning triggers extend the direct_access_msrs list at the
872 * beginning of the file
873 */
874 WARN_ON(!valid_msr_intercept(msr));
875
876 offset = svm_msrpm_offset(msr);
877 bit_read = 2 * (msr & 0x0f);
878 bit_write = 2 * (msr & 0x0f) + 1;
879 tmp = msrpm[offset];
880
881 BUG_ON(offset == MSR_INVALID);
882
883 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
884 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
885
886 msrpm[offset] = tmp;
887 }
888
889 static void svm_vcpu_init_msrpm(u32 *msrpm)
890 {
891 int i;
892
893 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
894
895 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
896 if (!direct_access_msrs[i].always)
897 continue;
898
899 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
900 }
901 }
902
903 static void add_msr_offset(u32 offset)
904 {
905 int i;
906
907 for (i = 0; i < MSRPM_OFFSETS; ++i) {
908
909 /* Offset already in list? */
910 if (msrpm_offsets[i] == offset)
911 return;
912
913 /* Slot used by another offset? */
914 if (msrpm_offsets[i] != MSR_INVALID)
915 continue;
916
917 /* Add offset to list */
918 msrpm_offsets[i] = offset;
919
920 return;
921 }
922
923 /*
924 * If this BUG triggers the msrpm_offsets table has an overflow. Just
925 * increase MSRPM_OFFSETS in this case.
926 */
927 BUG();
928 }
929
930 static void init_msrpm_offsets(void)
931 {
932 int i;
933
934 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
935
936 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
937 u32 offset;
938
939 offset = svm_msrpm_offset(direct_access_msrs[i].index);
940 BUG_ON(offset == MSR_INVALID);
941
942 add_msr_offset(offset);
943 }
944 }
945
946 static void svm_enable_lbrv(struct vcpu_svm *svm)
947 {
948 u32 *msrpm = svm->msrpm;
949
950 svm->vmcb->control.lbr_ctl = 1;
951 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
952 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
953 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
954 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
955 }
956
957 static void svm_disable_lbrv(struct vcpu_svm *svm)
958 {
959 u32 *msrpm = svm->msrpm;
960
961 svm->vmcb->control.lbr_ctl = 0;
962 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
963 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
964 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
965 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
966 }
967
968 /* Note:
969 * This hash table is used to map VM_ID to a struct kvm_arch,
970 * when handling AMD IOMMU GALOG notification to schedule in
971 * a particular vCPU.
972 */
973 #define SVM_VM_DATA_HASH_BITS 8
974 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
975 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
976
977 /* Note:
978 * This function is called from IOMMU driver to notify
979 * SVM to schedule in a particular vCPU of a particular VM.
980 */
981 static int avic_ga_log_notifier(u32 ga_tag)
982 {
983 unsigned long flags;
984 struct kvm_arch *ka = NULL;
985 struct kvm_vcpu *vcpu = NULL;
986 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
987 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
988
989 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
990
991 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
992 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
993 struct kvm *kvm = container_of(ka, struct kvm, arch);
994 struct kvm_arch *vm_data = &kvm->arch;
995
996 if (vm_data->avic_vm_id != vm_id)
997 continue;
998 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
999 break;
1000 }
1001 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1002
1003 if (!vcpu)
1004 return 0;
1005
1006 /* Note:
1007 * At this point, the IOMMU should have already set the pending
1008 * bit in the vAPIC backing page. So, we just need to schedule
1009 * in the vcpu.
1010 */
1011 if (vcpu->mode == OUTSIDE_GUEST_MODE)
1012 kvm_vcpu_wake_up(vcpu);
1013
1014 return 0;
1015 }
1016
1017 static __init int svm_hardware_setup(void)
1018 {
1019 int cpu;
1020 struct page *iopm_pages;
1021 void *iopm_va;
1022 int r;
1023
1024 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1025
1026 if (!iopm_pages)
1027 return -ENOMEM;
1028
1029 iopm_va = page_address(iopm_pages);
1030 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1031 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1032
1033 init_msrpm_offsets();
1034
1035 if (boot_cpu_has(X86_FEATURE_NX))
1036 kvm_enable_efer_bits(EFER_NX);
1037
1038 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1039 kvm_enable_efer_bits(EFER_FFXSR);
1040
1041 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1042 kvm_has_tsc_control = true;
1043 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1044 kvm_tsc_scaling_ratio_frac_bits = 32;
1045 }
1046
1047 if (nested) {
1048 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1049 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1050 }
1051
1052 for_each_possible_cpu(cpu) {
1053 r = svm_cpu_init(cpu);
1054 if (r)
1055 goto err;
1056 }
1057
1058 if (!boot_cpu_has(X86_FEATURE_NPT))
1059 npt_enabled = false;
1060
1061 if (npt_enabled && !npt) {
1062 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1063 npt_enabled = false;
1064 }
1065
1066 if (npt_enabled) {
1067 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1068 kvm_enable_tdp();
1069 } else
1070 kvm_disable_tdp();
1071
1072 if (avic) {
1073 if (!npt_enabled ||
1074 !boot_cpu_has(X86_FEATURE_AVIC) ||
1075 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1076 avic = false;
1077 } else {
1078 pr_info("AVIC enabled\n");
1079
1080 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1081 }
1082 }
1083
1084 return 0;
1085
1086 err:
1087 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1088 iopm_base = 0;
1089 return r;
1090 }
1091
1092 static __exit void svm_hardware_unsetup(void)
1093 {
1094 int cpu;
1095
1096 for_each_possible_cpu(cpu)
1097 svm_cpu_uninit(cpu);
1098
1099 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1100 iopm_base = 0;
1101 }
1102
1103 static void init_seg(struct vmcb_seg *seg)
1104 {
1105 seg->selector = 0;
1106 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1107 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1108 seg->limit = 0xffff;
1109 seg->base = 0;
1110 }
1111
1112 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1113 {
1114 seg->selector = 0;
1115 seg->attrib = SVM_SELECTOR_P_MASK | type;
1116 seg->limit = 0xffff;
1117 seg->base = 0;
1118 }
1119
1120 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1121 {
1122 struct vcpu_svm *svm = to_svm(vcpu);
1123 u64 g_tsc_offset = 0;
1124
1125 if (is_guest_mode(vcpu)) {
1126 g_tsc_offset = svm->vmcb->control.tsc_offset -
1127 svm->nested.hsave->control.tsc_offset;
1128 svm->nested.hsave->control.tsc_offset = offset;
1129 } else
1130 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1131 svm->vmcb->control.tsc_offset,
1132 offset);
1133
1134 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1135
1136 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1137 }
1138
1139 static void avic_init_vmcb(struct vcpu_svm *svm)
1140 {
1141 struct vmcb *vmcb = svm->vmcb;
1142 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1143 phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1144 phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1145 phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1146
1147 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1148 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1149 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1150 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1151 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1152 svm->vcpu.arch.apicv_active = true;
1153 }
1154
1155 static void init_vmcb(struct vcpu_svm *svm)
1156 {
1157 struct vmcb_control_area *control = &svm->vmcb->control;
1158 struct vmcb_save_area *save = &svm->vmcb->save;
1159
1160 svm->vcpu.arch.hflags = 0;
1161
1162 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1163 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1164 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1165 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1166 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1167 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1168 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1169 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1170
1171 set_dr_intercepts(svm);
1172
1173 set_exception_intercept(svm, PF_VECTOR);
1174 set_exception_intercept(svm, UD_VECTOR);
1175 set_exception_intercept(svm, MC_VECTOR);
1176 set_exception_intercept(svm, AC_VECTOR);
1177 set_exception_intercept(svm, DB_VECTOR);
1178
1179 set_intercept(svm, INTERCEPT_INTR);
1180 set_intercept(svm, INTERCEPT_NMI);
1181 set_intercept(svm, INTERCEPT_SMI);
1182 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1183 set_intercept(svm, INTERCEPT_RDPMC);
1184 set_intercept(svm, INTERCEPT_CPUID);
1185 set_intercept(svm, INTERCEPT_INVD);
1186 set_intercept(svm, INTERCEPT_HLT);
1187 set_intercept(svm, INTERCEPT_INVLPG);
1188 set_intercept(svm, INTERCEPT_INVLPGA);
1189 set_intercept(svm, INTERCEPT_IOIO_PROT);
1190 set_intercept(svm, INTERCEPT_MSR_PROT);
1191 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1192 set_intercept(svm, INTERCEPT_SHUTDOWN);
1193 set_intercept(svm, INTERCEPT_VMRUN);
1194 set_intercept(svm, INTERCEPT_VMMCALL);
1195 set_intercept(svm, INTERCEPT_VMLOAD);
1196 set_intercept(svm, INTERCEPT_VMSAVE);
1197 set_intercept(svm, INTERCEPT_STGI);
1198 set_intercept(svm, INTERCEPT_CLGI);
1199 set_intercept(svm, INTERCEPT_SKINIT);
1200 set_intercept(svm, INTERCEPT_WBINVD);
1201 set_intercept(svm, INTERCEPT_MONITOR);
1202 set_intercept(svm, INTERCEPT_MWAIT);
1203 set_intercept(svm, INTERCEPT_XSETBV);
1204
1205 control->iopm_base_pa = iopm_base;
1206 control->msrpm_base_pa = __pa(svm->msrpm);
1207 control->int_ctl = V_INTR_MASKING_MASK;
1208
1209 init_seg(&save->es);
1210 init_seg(&save->ss);
1211 init_seg(&save->ds);
1212 init_seg(&save->fs);
1213 init_seg(&save->gs);
1214
1215 save->cs.selector = 0xf000;
1216 save->cs.base = 0xffff0000;
1217 /* Executable/Readable Code Segment */
1218 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1219 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1220 save->cs.limit = 0xffff;
1221
1222 save->gdtr.limit = 0xffff;
1223 save->idtr.limit = 0xffff;
1224
1225 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1226 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1227
1228 svm_set_efer(&svm->vcpu, 0);
1229 save->dr6 = 0xffff0ff0;
1230 kvm_set_rflags(&svm->vcpu, 2);
1231 save->rip = 0x0000fff0;
1232 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1233
1234 /*
1235 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1236 * It also updates the guest-visible cr0 value.
1237 */
1238 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1239 kvm_mmu_reset_context(&svm->vcpu);
1240
1241 save->cr4 = X86_CR4_PAE;
1242 /* rdx = ?? */
1243
1244 if (npt_enabled) {
1245 /* Setup VMCB for Nested Paging */
1246 control->nested_ctl = 1;
1247 clr_intercept(svm, INTERCEPT_INVLPG);
1248 clr_exception_intercept(svm, PF_VECTOR);
1249 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1250 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1251 save->g_pat = svm->vcpu.arch.pat;
1252 save->cr3 = 0;
1253 save->cr4 = 0;
1254 }
1255 svm->asid_generation = 0;
1256
1257 svm->nested.vmcb = 0;
1258 svm->vcpu.arch.hflags = 0;
1259
1260 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1261 control->pause_filter_count = 3000;
1262 set_intercept(svm, INTERCEPT_PAUSE);
1263 }
1264
1265 if (avic)
1266 avic_init_vmcb(svm);
1267
1268 mark_all_dirty(svm->vmcb);
1269
1270 enable_gif(svm);
1271
1272 }
1273
1274 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1275 {
1276 u64 *avic_physical_id_table;
1277 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1278
1279 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1280 return NULL;
1281
1282 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1283
1284 return &avic_physical_id_table[index];
1285 }
1286
1287 /**
1288 * Note:
1289 * AVIC hardware walks the nested page table to check permissions,
1290 * but does not use the SPA address specified in the leaf page
1291 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1292 * field of the VMCB. Therefore, we set up the
1293 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1294 */
1295 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1296 {
1297 struct kvm *kvm = vcpu->kvm;
1298 int ret;
1299
1300 if (kvm->arch.apic_access_page_done)
1301 return 0;
1302
1303 ret = x86_set_memory_region(kvm,
1304 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1305 APIC_DEFAULT_PHYS_BASE,
1306 PAGE_SIZE);
1307 if (ret)
1308 return ret;
1309
1310 kvm->arch.apic_access_page_done = true;
1311 return 0;
1312 }
1313
1314 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1315 {
1316 int ret;
1317 u64 *entry, new_entry;
1318 int id = vcpu->vcpu_id;
1319 struct vcpu_svm *svm = to_svm(vcpu);
1320
1321 ret = avic_init_access_page(vcpu);
1322 if (ret)
1323 return ret;
1324
1325 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1326 return -EINVAL;
1327
1328 if (!svm->vcpu.arch.apic->regs)
1329 return -EINVAL;
1330
1331 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1332
1333 /* Setting AVIC backing page address in the phy APIC ID table */
1334 entry = avic_get_physical_id_entry(vcpu, id);
1335 if (!entry)
1336 return -EINVAL;
1337
1338 new_entry = READ_ONCE(*entry);
1339 new_entry = (page_to_phys(svm->avic_backing_page) &
1340 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1341 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1342 WRITE_ONCE(*entry, new_entry);
1343
1344 svm->avic_physical_id_cache = entry;
1345
1346 return 0;
1347 }
1348
1349 static inline int avic_get_next_vm_id(void)
1350 {
1351 int id;
1352
1353 spin_lock(&avic_vm_id_lock);
1354
1355 /* AVIC VM ID is one-based. */
1356 id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1357 if (id <= AVIC_VM_ID_MASK)
1358 __set_bit(id, avic_vm_id_bitmap);
1359 else
1360 id = -EAGAIN;
1361
1362 spin_unlock(&avic_vm_id_lock);
1363 return id;
1364 }
1365
1366 static inline int avic_free_vm_id(int id)
1367 {
1368 if (id <= 0 || id > AVIC_VM_ID_MASK)
1369 return -EINVAL;
1370
1371 spin_lock(&avic_vm_id_lock);
1372 __clear_bit(id, avic_vm_id_bitmap);
1373 spin_unlock(&avic_vm_id_lock);
1374 return 0;
1375 }
1376
1377 static void avic_vm_destroy(struct kvm *kvm)
1378 {
1379 unsigned long flags;
1380 struct kvm_arch *vm_data = &kvm->arch;
1381
1382 if (!avic)
1383 return;
1384
1385 avic_free_vm_id(vm_data->avic_vm_id);
1386
1387 if (vm_data->avic_logical_id_table_page)
1388 __free_page(vm_data->avic_logical_id_table_page);
1389 if (vm_data->avic_physical_id_table_page)
1390 __free_page(vm_data->avic_physical_id_table_page);
1391
1392 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1393 hash_del(&vm_data->hnode);
1394 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1395 }
1396
1397 static int avic_vm_init(struct kvm *kvm)
1398 {
1399 unsigned long flags;
1400 int vm_id, err = -ENOMEM;
1401 struct kvm_arch *vm_data = &kvm->arch;
1402 struct page *p_page;
1403 struct page *l_page;
1404
1405 if (!avic)
1406 return 0;
1407
1408 vm_id = avic_get_next_vm_id();
1409 if (vm_id < 0)
1410 return vm_id;
1411 vm_data->avic_vm_id = (u32)vm_id;
1412
1413 /* Allocating physical APIC ID table (4KB) */
1414 p_page = alloc_page(GFP_KERNEL);
1415 if (!p_page)
1416 goto free_avic;
1417
1418 vm_data->avic_physical_id_table_page = p_page;
1419 clear_page(page_address(p_page));
1420
1421 /* Allocating logical APIC ID table (4KB) */
1422 l_page = alloc_page(GFP_KERNEL);
1423 if (!l_page)
1424 goto free_avic;
1425
1426 vm_data->avic_logical_id_table_page = l_page;
1427 clear_page(page_address(l_page));
1428
1429 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1430 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1431 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1432
1433 return 0;
1434
1435 free_avic:
1436 avic_vm_destroy(kvm);
1437 return err;
1438 }
1439
1440 static inline int
1441 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1442 {
1443 int ret = 0;
1444 unsigned long flags;
1445 struct amd_svm_iommu_ir *ir;
1446 struct vcpu_svm *svm = to_svm(vcpu);
1447
1448 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1449 return 0;
1450
1451 /*
1452 * Here, we go through the per-vcpu ir_list to update all existing
1453 * interrupt remapping table entry targeting this vcpu.
1454 */
1455 spin_lock_irqsave(&svm->ir_list_lock, flags);
1456
1457 if (list_empty(&svm->ir_list))
1458 goto out;
1459
1460 list_for_each_entry(ir, &svm->ir_list, node) {
1461 ret = amd_iommu_update_ga(cpu, r, ir->data);
1462 if (ret)
1463 break;
1464 }
1465 out:
1466 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1467 return ret;
1468 }
1469
1470 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1471 {
1472 u64 entry;
1473 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1474 int h_physical_id = kvm_cpu_get_apicid(cpu);
1475 struct vcpu_svm *svm = to_svm(vcpu);
1476
1477 if (!kvm_vcpu_apicv_active(vcpu))
1478 return;
1479
1480 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1481 return;
1482
1483 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1484 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1485
1486 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1487 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1488
1489 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1490 if (svm->avic_is_running)
1491 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1492
1493 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1494 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1495 svm->avic_is_running);
1496 }
1497
1498 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1499 {
1500 u64 entry;
1501 struct vcpu_svm *svm = to_svm(vcpu);
1502
1503 if (!kvm_vcpu_apicv_active(vcpu))
1504 return;
1505
1506 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1507 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1508 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1509
1510 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1511 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1512 }
1513
1514 /**
1515 * This function is called during VCPU halt/unhalt.
1516 */
1517 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1518 {
1519 struct vcpu_svm *svm = to_svm(vcpu);
1520
1521 svm->avic_is_running = is_run;
1522 if (is_run)
1523 avic_vcpu_load(vcpu, vcpu->cpu);
1524 else
1525 avic_vcpu_put(vcpu);
1526 }
1527
1528 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1529 {
1530 struct vcpu_svm *svm = to_svm(vcpu);
1531 u32 dummy;
1532 u32 eax = 1;
1533
1534 if (!init_event) {
1535 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1536 MSR_IA32_APICBASE_ENABLE;
1537 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1538 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1539 }
1540 init_vmcb(svm);
1541
1542 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1543 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1544
1545 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1546 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1547 }
1548
1549 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1550 {
1551 struct vcpu_svm *svm;
1552 struct page *page;
1553 struct page *msrpm_pages;
1554 struct page *hsave_page;
1555 struct page *nested_msrpm_pages;
1556 int err;
1557
1558 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1559 if (!svm) {
1560 err = -ENOMEM;
1561 goto out;
1562 }
1563
1564 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1565 if (err)
1566 goto free_svm;
1567
1568 err = -ENOMEM;
1569 page = alloc_page(GFP_KERNEL);
1570 if (!page)
1571 goto uninit;
1572
1573 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1574 if (!msrpm_pages)
1575 goto free_page1;
1576
1577 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1578 if (!nested_msrpm_pages)
1579 goto free_page2;
1580
1581 hsave_page = alloc_page(GFP_KERNEL);
1582 if (!hsave_page)
1583 goto free_page3;
1584
1585 if (avic) {
1586 err = avic_init_backing_page(&svm->vcpu);
1587 if (err)
1588 goto free_page4;
1589
1590 INIT_LIST_HEAD(&svm->ir_list);
1591 spin_lock_init(&svm->ir_list_lock);
1592 }
1593
1594 /* We initialize this flag to true to make sure that the is_running
1595 * bit would be set the first time the vcpu is loaded.
1596 */
1597 svm->avic_is_running = true;
1598
1599 svm->nested.hsave = page_address(hsave_page);
1600
1601 svm->msrpm = page_address(msrpm_pages);
1602 svm_vcpu_init_msrpm(svm->msrpm);
1603
1604 svm->nested.msrpm = page_address(nested_msrpm_pages);
1605 svm_vcpu_init_msrpm(svm->nested.msrpm);
1606
1607 svm->vmcb = page_address(page);
1608 clear_page(svm->vmcb);
1609 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1610 svm->asid_generation = 0;
1611 init_vmcb(svm);
1612
1613 svm_init_osvw(&svm->vcpu);
1614
1615 return &svm->vcpu;
1616
1617 free_page4:
1618 __free_page(hsave_page);
1619 free_page3:
1620 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1621 free_page2:
1622 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1623 free_page1:
1624 __free_page(page);
1625 uninit:
1626 kvm_vcpu_uninit(&svm->vcpu);
1627 free_svm:
1628 kmem_cache_free(kvm_vcpu_cache, svm);
1629 out:
1630 return ERR_PTR(err);
1631 }
1632
1633 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1634 {
1635 struct vcpu_svm *svm = to_svm(vcpu);
1636
1637 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1638 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1639 __free_page(virt_to_page(svm->nested.hsave));
1640 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1641 kvm_vcpu_uninit(vcpu);
1642 kmem_cache_free(kvm_vcpu_cache, svm);
1643 }
1644
1645 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1646 {
1647 struct vcpu_svm *svm = to_svm(vcpu);
1648 int i;
1649
1650 if (unlikely(cpu != vcpu->cpu)) {
1651 svm->asid_generation = 0;
1652 mark_all_dirty(svm->vmcb);
1653 }
1654
1655 #ifdef CONFIG_X86_64
1656 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1657 #endif
1658 savesegment(fs, svm->host.fs);
1659 savesegment(gs, svm->host.gs);
1660 svm->host.ldt = kvm_read_ldt();
1661
1662 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1663 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1664
1665 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1666 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1667 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1668 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1669 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1670 }
1671 }
1672 /* This assumes that the kernel never uses MSR_TSC_AUX */
1673 if (static_cpu_has(X86_FEATURE_RDTSCP))
1674 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1675
1676 avic_vcpu_load(vcpu, cpu);
1677 }
1678
1679 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1680 {
1681 struct vcpu_svm *svm = to_svm(vcpu);
1682 int i;
1683
1684 avic_vcpu_put(vcpu);
1685
1686 ++vcpu->stat.host_state_reload;
1687 kvm_load_ldt(svm->host.ldt);
1688 #ifdef CONFIG_X86_64
1689 loadsegment(fs, svm->host.fs);
1690 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1691 load_gs_index(svm->host.gs);
1692 #else
1693 #ifdef CONFIG_X86_32_LAZY_GS
1694 loadsegment(gs, svm->host.gs);
1695 #endif
1696 #endif
1697 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1698 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1699 }
1700
1701 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1702 {
1703 avic_set_running(vcpu, false);
1704 }
1705
1706 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1707 {
1708 avic_set_running(vcpu, true);
1709 }
1710
1711 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1712 {
1713 return to_svm(vcpu)->vmcb->save.rflags;
1714 }
1715
1716 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1717 {
1718 /*
1719 * Any change of EFLAGS.VM is accompanied by a reload of SS
1720 * (caused by either a task switch or an inter-privilege IRET),
1721 * so we do not need to update the CPL here.
1722 */
1723 to_svm(vcpu)->vmcb->save.rflags = rflags;
1724 }
1725
1726 static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1727 {
1728 return 0;
1729 }
1730
1731 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1732 {
1733 switch (reg) {
1734 case VCPU_EXREG_PDPTR:
1735 BUG_ON(!npt_enabled);
1736 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1737 break;
1738 default:
1739 BUG();
1740 }
1741 }
1742
1743 static void svm_set_vintr(struct vcpu_svm *svm)
1744 {
1745 set_intercept(svm, INTERCEPT_VINTR);
1746 }
1747
1748 static void svm_clear_vintr(struct vcpu_svm *svm)
1749 {
1750 clr_intercept(svm, INTERCEPT_VINTR);
1751 }
1752
1753 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1754 {
1755 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1756
1757 switch (seg) {
1758 case VCPU_SREG_CS: return &save->cs;
1759 case VCPU_SREG_DS: return &save->ds;
1760 case VCPU_SREG_ES: return &save->es;
1761 case VCPU_SREG_FS: return &save->fs;
1762 case VCPU_SREG_GS: return &save->gs;
1763 case VCPU_SREG_SS: return &save->ss;
1764 case VCPU_SREG_TR: return &save->tr;
1765 case VCPU_SREG_LDTR: return &save->ldtr;
1766 }
1767 BUG();
1768 return NULL;
1769 }
1770
1771 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1772 {
1773 struct vmcb_seg *s = svm_seg(vcpu, seg);
1774
1775 return s->base;
1776 }
1777
1778 static void svm_get_segment(struct kvm_vcpu *vcpu,
1779 struct kvm_segment *var, int seg)
1780 {
1781 struct vmcb_seg *s = svm_seg(vcpu, seg);
1782
1783 var->base = s->base;
1784 var->limit = s->limit;
1785 var->selector = s->selector;
1786 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1787 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1788 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1789 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1790 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1791 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1792 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1793
1794 /*
1795 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1796 * However, the SVM spec states that the G bit is not observed by the
1797 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1798 * So let's synthesize a legal G bit for all segments, this helps
1799 * running KVM nested. It also helps cross-vendor migration, because
1800 * Intel's vmentry has a check on the 'G' bit.
1801 */
1802 var->g = s->limit > 0xfffff;
1803
1804 /*
1805 * AMD's VMCB does not have an explicit unusable field, so emulate it
1806 * for cross vendor migration purposes by "not present"
1807 */
1808 var->unusable = !var->present || (var->type == 0);
1809
1810 switch (seg) {
1811 case VCPU_SREG_TR:
1812 /*
1813 * Work around a bug where the busy flag in the tr selector
1814 * isn't exposed
1815 */
1816 var->type |= 0x2;
1817 break;
1818 case VCPU_SREG_DS:
1819 case VCPU_SREG_ES:
1820 case VCPU_SREG_FS:
1821 case VCPU_SREG_GS:
1822 /*
1823 * The accessed bit must always be set in the segment
1824 * descriptor cache, although it can be cleared in the
1825 * descriptor, the cached bit always remains at 1. Since
1826 * Intel has a check on this, set it here to support
1827 * cross-vendor migration.
1828 */
1829 if (!var->unusable)
1830 var->type |= 0x1;
1831 break;
1832 case VCPU_SREG_SS:
1833 /*
1834 * On AMD CPUs sometimes the DB bit in the segment
1835 * descriptor is left as 1, although the whole segment has
1836 * been made unusable. Clear it here to pass an Intel VMX
1837 * entry check when cross vendor migrating.
1838 */
1839 if (var->unusable)
1840 var->db = 0;
1841 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1842 break;
1843 }
1844 }
1845
1846 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1847 {
1848 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1849
1850 return save->cpl;
1851 }
1852
1853 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1854 {
1855 struct vcpu_svm *svm = to_svm(vcpu);
1856
1857 dt->size = svm->vmcb->save.idtr.limit;
1858 dt->address = svm->vmcb->save.idtr.base;
1859 }
1860
1861 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1862 {
1863 struct vcpu_svm *svm = to_svm(vcpu);
1864
1865 svm->vmcb->save.idtr.limit = dt->size;
1866 svm->vmcb->save.idtr.base = dt->address ;
1867 mark_dirty(svm->vmcb, VMCB_DT);
1868 }
1869
1870 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1871 {
1872 struct vcpu_svm *svm = to_svm(vcpu);
1873
1874 dt->size = svm->vmcb->save.gdtr.limit;
1875 dt->address = svm->vmcb->save.gdtr.base;
1876 }
1877
1878 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1879 {
1880 struct vcpu_svm *svm = to_svm(vcpu);
1881
1882 svm->vmcb->save.gdtr.limit = dt->size;
1883 svm->vmcb->save.gdtr.base = dt->address ;
1884 mark_dirty(svm->vmcb, VMCB_DT);
1885 }
1886
1887 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1888 {
1889 }
1890
1891 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1892 {
1893 }
1894
1895 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1896 {
1897 }
1898
1899 static void update_cr0_intercept(struct vcpu_svm *svm)
1900 {
1901 ulong gcr0 = svm->vcpu.arch.cr0;
1902 u64 *hcr0 = &svm->vmcb->save.cr0;
1903
1904 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1905 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1906
1907 mark_dirty(svm->vmcb, VMCB_CR);
1908
1909 if (gcr0 == *hcr0) {
1910 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1911 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1912 } else {
1913 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1914 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1915 }
1916 }
1917
1918 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1919 {
1920 struct vcpu_svm *svm = to_svm(vcpu);
1921
1922 #ifdef CONFIG_X86_64
1923 if (vcpu->arch.efer & EFER_LME) {
1924 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1925 vcpu->arch.efer |= EFER_LMA;
1926 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1927 }
1928
1929 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1930 vcpu->arch.efer &= ~EFER_LMA;
1931 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1932 }
1933 }
1934 #endif
1935 vcpu->arch.cr0 = cr0;
1936
1937 if (!npt_enabled)
1938 cr0 |= X86_CR0_PG | X86_CR0_WP;
1939
1940 /*
1941 * re-enable caching here because the QEMU bios
1942 * does not do it - this results in some delay at
1943 * reboot
1944 */
1945 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1946 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1947 svm->vmcb->save.cr0 = cr0;
1948 mark_dirty(svm->vmcb, VMCB_CR);
1949 update_cr0_intercept(svm);
1950 }
1951
1952 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1953 {
1954 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1955 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1956
1957 if (cr4 & X86_CR4_VMXE)
1958 return 1;
1959
1960 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1961 svm_flush_tlb(vcpu);
1962
1963 vcpu->arch.cr4 = cr4;
1964 if (!npt_enabled)
1965 cr4 |= X86_CR4_PAE;
1966 cr4 |= host_cr4_mce;
1967 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1968 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1969 return 0;
1970 }
1971
1972 static void svm_set_segment(struct kvm_vcpu *vcpu,
1973 struct kvm_segment *var, int seg)
1974 {
1975 struct vcpu_svm *svm = to_svm(vcpu);
1976 struct vmcb_seg *s = svm_seg(vcpu, seg);
1977
1978 s->base = var->base;
1979 s->limit = var->limit;
1980 s->selector = var->selector;
1981 if (var->unusable)
1982 s->attrib = 0;
1983 else {
1984 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1985 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1986 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1987 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1988 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1989 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1990 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1991 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1992 }
1993
1994 /*
1995 * This is always accurate, except if SYSRET returned to a segment
1996 * with SS.DPL != 3. Intel does not have this quirk, and always
1997 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1998 * would entail passing the CPL to userspace and back.
1999 */
2000 if (seg == VCPU_SREG_SS)
2001 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2002
2003 mark_dirty(svm->vmcb, VMCB_SEG);
2004 }
2005
2006 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2007 {
2008 struct vcpu_svm *svm = to_svm(vcpu);
2009
2010 clr_exception_intercept(svm, BP_VECTOR);
2011
2012 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2013 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2014 set_exception_intercept(svm, BP_VECTOR);
2015 } else
2016 vcpu->guest_debug = 0;
2017 }
2018
2019 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2020 {
2021 if (sd->next_asid > sd->max_asid) {
2022 ++sd->asid_generation;
2023 sd->next_asid = 1;
2024 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2025 }
2026
2027 svm->asid_generation = sd->asid_generation;
2028 svm->vmcb->control.asid = sd->next_asid++;
2029
2030 mark_dirty(svm->vmcb, VMCB_ASID);
2031 }
2032
2033 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2034 {
2035 return to_svm(vcpu)->vmcb->save.dr6;
2036 }
2037
2038 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2039 {
2040 struct vcpu_svm *svm = to_svm(vcpu);
2041
2042 svm->vmcb->save.dr6 = value;
2043 mark_dirty(svm->vmcb, VMCB_DR);
2044 }
2045
2046 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2047 {
2048 struct vcpu_svm *svm = to_svm(vcpu);
2049
2050 get_debugreg(vcpu->arch.db[0], 0);
2051 get_debugreg(vcpu->arch.db[1], 1);
2052 get_debugreg(vcpu->arch.db[2], 2);
2053 get_debugreg(vcpu->arch.db[3], 3);
2054 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2055 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2056
2057 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2058 set_dr_intercepts(svm);
2059 }
2060
2061 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2062 {
2063 struct vcpu_svm *svm = to_svm(vcpu);
2064
2065 svm->vmcb->save.dr7 = value;
2066 mark_dirty(svm->vmcb, VMCB_DR);
2067 }
2068
2069 static int pf_interception(struct vcpu_svm *svm)
2070 {
2071 u64 fault_address = svm->vmcb->control.exit_info_2;
2072 u64 error_code;
2073 int r = 1;
2074
2075 switch (svm->apf_reason) {
2076 default:
2077 error_code = svm->vmcb->control.exit_info_1;
2078
2079 trace_kvm_page_fault(fault_address, error_code);
2080 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
2081 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
2082 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2083 svm->vmcb->control.insn_bytes,
2084 svm->vmcb->control.insn_len);
2085 break;
2086 case KVM_PV_REASON_PAGE_NOT_PRESENT:
2087 svm->apf_reason = 0;
2088 local_irq_disable();
2089 kvm_async_pf_task_wait(fault_address);
2090 local_irq_enable();
2091 break;
2092 case KVM_PV_REASON_PAGE_READY:
2093 svm->apf_reason = 0;
2094 local_irq_disable();
2095 kvm_async_pf_task_wake(fault_address);
2096 local_irq_enable();
2097 break;
2098 }
2099 return r;
2100 }
2101
2102 static int db_interception(struct vcpu_svm *svm)
2103 {
2104 struct kvm_run *kvm_run = svm->vcpu.run;
2105
2106 if (!(svm->vcpu.guest_debug &
2107 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2108 !svm->nmi_singlestep) {
2109 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2110 return 1;
2111 }
2112
2113 if (svm->nmi_singlestep) {
2114 svm->nmi_singlestep = false;
2115 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
2116 svm->vmcb->save.rflags &=
2117 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2118 }
2119
2120 if (svm->vcpu.guest_debug &
2121 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2122 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2123 kvm_run->debug.arch.pc =
2124 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2125 kvm_run->debug.arch.exception = DB_VECTOR;
2126 return 0;
2127 }
2128
2129 return 1;
2130 }
2131
2132 static int bp_interception(struct vcpu_svm *svm)
2133 {
2134 struct kvm_run *kvm_run = svm->vcpu.run;
2135
2136 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2137 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2138 kvm_run->debug.arch.exception = BP_VECTOR;
2139 return 0;
2140 }
2141
2142 static int ud_interception(struct vcpu_svm *svm)
2143 {
2144 int er;
2145
2146 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2147 if (er != EMULATE_DONE)
2148 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2149 return 1;
2150 }
2151
2152 static int ac_interception(struct vcpu_svm *svm)
2153 {
2154 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2155 return 1;
2156 }
2157
2158 static bool is_erratum_383(void)
2159 {
2160 int err, i;
2161 u64 value;
2162
2163 if (!erratum_383_found)
2164 return false;
2165
2166 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2167 if (err)
2168 return false;
2169
2170 /* Bit 62 may or may not be set for this mce */
2171 value &= ~(1ULL << 62);
2172
2173 if (value != 0xb600000000010015ULL)
2174 return false;
2175
2176 /* Clear MCi_STATUS registers */
2177 for (i = 0; i < 6; ++i)
2178 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2179
2180 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2181 if (!err) {
2182 u32 low, high;
2183
2184 value &= ~(1ULL << 2);
2185 low = lower_32_bits(value);
2186 high = upper_32_bits(value);
2187
2188 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2189 }
2190
2191 /* Flush tlb to evict multi-match entries */
2192 __flush_tlb_all();
2193
2194 return true;
2195 }
2196
2197 static void svm_handle_mce(struct vcpu_svm *svm)
2198 {
2199 if (is_erratum_383()) {
2200 /*
2201 * Erratum 383 triggered. Guest state is corrupt so kill the
2202 * guest.
2203 */
2204 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2205
2206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2207
2208 return;
2209 }
2210
2211 /*
2212 * On an #MC intercept the MCE handler is not called automatically in
2213 * the host. So do it by hand here.
2214 */
2215 asm volatile (
2216 "int $0x12\n");
2217 /* not sure if we ever come back to this point */
2218
2219 return;
2220 }
2221
2222 static int mc_interception(struct vcpu_svm *svm)
2223 {
2224 return 1;
2225 }
2226
2227 static int shutdown_interception(struct vcpu_svm *svm)
2228 {
2229 struct kvm_run *kvm_run = svm->vcpu.run;
2230
2231 /*
2232 * VMCB is undefined after a SHUTDOWN intercept
2233 * so reinitialize it.
2234 */
2235 clear_page(svm->vmcb);
2236 init_vmcb(svm);
2237
2238 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2239 return 0;
2240 }
2241
2242 static int io_interception(struct vcpu_svm *svm)
2243 {
2244 struct kvm_vcpu *vcpu = &svm->vcpu;
2245 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2246 int size, in, string;
2247 unsigned port;
2248
2249 ++svm->vcpu.stat.io_exits;
2250 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2251 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2252 if (string)
2253 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2254
2255 port = io_info >> 16;
2256 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2257 svm->next_rip = svm->vmcb->control.exit_info_2;
2258 skip_emulated_instruction(&svm->vcpu);
2259
2260 return in ? kvm_fast_pio_in(vcpu, size, port)
2261 : kvm_fast_pio_out(vcpu, size, port);
2262 }
2263
2264 static int nmi_interception(struct vcpu_svm *svm)
2265 {
2266 return 1;
2267 }
2268
2269 static int intr_interception(struct vcpu_svm *svm)
2270 {
2271 ++svm->vcpu.stat.irq_exits;
2272 return 1;
2273 }
2274
2275 static int nop_on_interception(struct vcpu_svm *svm)
2276 {
2277 return 1;
2278 }
2279
2280 static int halt_interception(struct vcpu_svm *svm)
2281 {
2282 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2283 return kvm_emulate_halt(&svm->vcpu);
2284 }
2285
2286 static int vmmcall_interception(struct vcpu_svm *svm)
2287 {
2288 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2289 return kvm_emulate_hypercall(&svm->vcpu);
2290 }
2291
2292 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2293 {
2294 struct vcpu_svm *svm = to_svm(vcpu);
2295
2296 return svm->nested.nested_cr3;
2297 }
2298
2299 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2300 {
2301 struct vcpu_svm *svm = to_svm(vcpu);
2302 u64 cr3 = svm->nested.nested_cr3;
2303 u64 pdpte;
2304 int ret;
2305
2306 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2307 offset_in_page(cr3) + index * 8, 8);
2308 if (ret)
2309 return 0;
2310 return pdpte;
2311 }
2312
2313 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2314 unsigned long root)
2315 {
2316 struct vcpu_svm *svm = to_svm(vcpu);
2317
2318 svm->vmcb->control.nested_cr3 = root;
2319 mark_dirty(svm->vmcb, VMCB_NPT);
2320 svm_flush_tlb(vcpu);
2321 }
2322
2323 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2324 struct x86_exception *fault)
2325 {
2326 struct vcpu_svm *svm = to_svm(vcpu);
2327
2328 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2329 /*
2330 * TODO: track the cause of the nested page fault, and
2331 * correctly fill in the high bits of exit_info_1.
2332 */
2333 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2334 svm->vmcb->control.exit_code_hi = 0;
2335 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2336 svm->vmcb->control.exit_info_2 = fault->address;
2337 }
2338
2339 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2340 svm->vmcb->control.exit_info_1 |= fault->error_code;
2341
2342 /*
2343 * The present bit is always zero for page structure faults on real
2344 * hardware.
2345 */
2346 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2347 svm->vmcb->control.exit_info_1 &= ~1;
2348
2349 nested_svm_vmexit(svm);
2350 }
2351
2352 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2353 {
2354 WARN_ON(mmu_is_nested(vcpu));
2355 kvm_init_shadow_mmu(vcpu);
2356 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2357 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2358 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2359 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2360 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2361 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2362 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2363 }
2364
2365 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2366 {
2367 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2368 }
2369
2370 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2371 {
2372 if (!(svm->vcpu.arch.efer & EFER_SVME)
2373 || !is_paging(&svm->vcpu)) {
2374 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2375 return 1;
2376 }
2377
2378 if (svm->vmcb->save.cpl) {
2379 kvm_inject_gp(&svm->vcpu, 0);
2380 return 1;
2381 }
2382
2383 return 0;
2384 }
2385
2386 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2387 bool has_error_code, u32 error_code)
2388 {
2389 int vmexit;
2390
2391 if (!is_guest_mode(&svm->vcpu))
2392 return 0;
2393
2394 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2395 svm->vmcb->control.exit_code_hi = 0;
2396 svm->vmcb->control.exit_info_1 = error_code;
2397 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2398
2399 vmexit = nested_svm_intercept(svm);
2400 if (vmexit == NESTED_EXIT_DONE)
2401 svm->nested.exit_required = true;
2402
2403 return vmexit;
2404 }
2405
2406 /* This function returns true if it is save to enable the irq window */
2407 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2408 {
2409 if (!is_guest_mode(&svm->vcpu))
2410 return true;
2411
2412 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2413 return true;
2414
2415 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2416 return false;
2417
2418 /*
2419 * if vmexit was already requested (by intercepted exception
2420 * for instance) do not overwrite it with "external interrupt"
2421 * vmexit.
2422 */
2423 if (svm->nested.exit_required)
2424 return false;
2425
2426 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2427 svm->vmcb->control.exit_info_1 = 0;
2428 svm->vmcb->control.exit_info_2 = 0;
2429
2430 if (svm->nested.intercept & 1ULL) {
2431 /*
2432 * The #vmexit can't be emulated here directly because this
2433 * code path runs with irqs and preemption disabled. A
2434 * #vmexit emulation might sleep. Only signal request for
2435 * the #vmexit here.
2436 */
2437 svm->nested.exit_required = true;
2438 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2439 return false;
2440 }
2441
2442 return true;
2443 }
2444
2445 /* This function returns true if it is save to enable the nmi window */
2446 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2447 {
2448 if (!is_guest_mode(&svm->vcpu))
2449 return true;
2450
2451 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2452 return true;
2453
2454 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2455 svm->nested.exit_required = true;
2456
2457 return false;
2458 }
2459
2460 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2461 {
2462 struct page *page;
2463
2464 might_sleep();
2465
2466 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2467 if (is_error_page(page))
2468 goto error;
2469
2470 *_page = page;
2471
2472 return kmap(page);
2473
2474 error:
2475 kvm_inject_gp(&svm->vcpu, 0);
2476
2477 return NULL;
2478 }
2479
2480 static void nested_svm_unmap(struct page *page)
2481 {
2482 kunmap(page);
2483 kvm_release_page_dirty(page);
2484 }
2485
2486 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2487 {
2488 unsigned port, size, iopm_len;
2489 u16 val, mask;
2490 u8 start_bit;
2491 u64 gpa;
2492
2493 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2494 return NESTED_EXIT_HOST;
2495
2496 port = svm->vmcb->control.exit_info_1 >> 16;
2497 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2498 SVM_IOIO_SIZE_SHIFT;
2499 gpa = svm->nested.vmcb_iopm + (port / 8);
2500 start_bit = port % 8;
2501 iopm_len = (start_bit + size > 8) ? 2 : 1;
2502 mask = (0xf >> (4 - size)) << start_bit;
2503 val = 0;
2504
2505 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2506 return NESTED_EXIT_DONE;
2507
2508 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2509 }
2510
2511 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2512 {
2513 u32 offset, msr, value;
2514 int write, mask;
2515
2516 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2517 return NESTED_EXIT_HOST;
2518
2519 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2520 offset = svm_msrpm_offset(msr);
2521 write = svm->vmcb->control.exit_info_1 & 1;
2522 mask = 1 << ((2 * (msr & 0xf)) + write);
2523
2524 if (offset == MSR_INVALID)
2525 return NESTED_EXIT_DONE;
2526
2527 /* Offset is in 32 bit units but need in 8 bit units */
2528 offset *= 4;
2529
2530 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2531 return NESTED_EXIT_DONE;
2532
2533 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2534 }
2535
2536 static int nested_svm_exit_special(struct vcpu_svm *svm)
2537 {
2538 u32 exit_code = svm->vmcb->control.exit_code;
2539
2540 switch (exit_code) {
2541 case SVM_EXIT_INTR:
2542 case SVM_EXIT_NMI:
2543 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2544 return NESTED_EXIT_HOST;
2545 case SVM_EXIT_NPF:
2546 /* For now we are always handling NPFs when using them */
2547 if (npt_enabled)
2548 return NESTED_EXIT_HOST;
2549 break;
2550 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2551 /* When we're shadowing, trap PFs, but not async PF */
2552 if (!npt_enabled && svm->apf_reason == 0)
2553 return NESTED_EXIT_HOST;
2554 break;
2555 default:
2556 break;
2557 }
2558
2559 return NESTED_EXIT_CONTINUE;
2560 }
2561
2562 /*
2563 * If this function returns true, this #vmexit was already handled
2564 */
2565 static int nested_svm_intercept(struct vcpu_svm *svm)
2566 {
2567 u32 exit_code = svm->vmcb->control.exit_code;
2568 int vmexit = NESTED_EXIT_HOST;
2569
2570 switch (exit_code) {
2571 case SVM_EXIT_MSR:
2572 vmexit = nested_svm_exit_handled_msr(svm);
2573 break;
2574 case SVM_EXIT_IOIO:
2575 vmexit = nested_svm_intercept_ioio(svm);
2576 break;
2577 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2578 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2579 if (svm->nested.intercept_cr & bit)
2580 vmexit = NESTED_EXIT_DONE;
2581 break;
2582 }
2583 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2584 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2585 if (svm->nested.intercept_dr & bit)
2586 vmexit = NESTED_EXIT_DONE;
2587 break;
2588 }
2589 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2590 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2591 if (svm->nested.intercept_exceptions & excp_bits)
2592 vmexit = NESTED_EXIT_DONE;
2593 /* async page fault always cause vmexit */
2594 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2595 svm->apf_reason != 0)
2596 vmexit = NESTED_EXIT_DONE;
2597 break;
2598 }
2599 case SVM_EXIT_ERR: {
2600 vmexit = NESTED_EXIT_DONE;
2601 break;
2602 }
2603 default: {
2604 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2605 if (svm->nested.intercept & exit_bits)
2606 vmexit = NESTED_EXIT_DONE;
2607 }
2608 }
2609
2610 return vmexit;
2611 }
2612
2613 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2614 {
2615 int vmexit;
2616
2617 vmexit = nested_svm_intercept(svm);
2618
2619 if (vmexit == NESTED_EXIT_DONE)
2620 nested_svm_vmexit(svm);
2621
2622 return vmexit;
2623 }
2624
2625 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2626 {
2627 struct vmcb_control_area *dst = &dst_vmcb->control;
2628 struct vmcb_control_area *from = &from_vmcb->control;
2629
2630 dst->intercept_cr = from->intercept_cr;
2631 dst->intercept_dr = from->intercept_dr;
2632 dst->intercept_exceptions = from->intercept_exceptions;
2633 dst->intercept = from->intercept;
2634 dst->iopm_base_pa = from->iopm_base_pa;
2635 dst->msrpm_base_pa = from->msrpm_base_pa;
2636 dst->tsc_offset = from->tsc_offset;
2637 dst->asid = from->asid;
2638 dst->tlb_ctl = from->tlb_ctl;
2639 dst->int_ctl = from->int_ctl;
2640 dst->int_vector = from->int_vector;
2641 dst->int_state = from->int_state;
2642 dst->exit_code = from->exit_code;
2643 dst->exit_code_hi = from->exit_code_hi;
2644 dst->exit_info_1 = from->exit_info_1;
2645 dst->exit_info_2 = from->exit_info_2;
2646 dst->exit_int_info = from->exit_int_info;
2647 dst->exit_int_info_err = from->exit_int_info_err;
2648 dst->nested_ctl = from->nested_ctl;
2649 dst->event_inj = from->event_inj;
2650 dst->event_inj_err = from->event_inj_err;
2651 dst->nested_cr3 = from->nested_cr3;
2652 dst->lbr_ctl = from->lbr_ctl;
2653 }
2654
2655 static int nested_svm_vmexit(struct vcpu_svm *svm)
2656 {
2657 struct vmcb *nested_vmcb;
2658 struct vmcb *hsave = svm->nested.hsave;
2659 struct vmcb *vmcb = svm->vmcb;
2660 struct page *page;
2661
2662 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2663 vmcb->control.exit_info_1,
2664 vmcb->control.exit_info_2,
2665 vmcb->control.exit_int_info,
2666 vmcb->control.exit_int_info_err,
2667 KVM_ISA_SVM);
2668
2669 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2670 if (!nested_vmcb)
2671 return 1;
2672
2673 /* Exit Guest-Mode */
2674 leave_guest_mode(&svm->vcpu);
2675 svm->nested.vmcb = 0;
2676
2677 /* Give the current vmcb to the guest */
2678 disable_gif(svm);
2679
2680 nested_vmcb->save.es = vmcb->save.es;
2681 nested_vmcb->save.cs = vmcb->save.cs;
2682 nested_vmcb->save.ss = vmcb->save.ss;
2683 nested_vmcb->save.ds = vmcb->save.ds;
2684 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2685 nested_vmcb->save.idtr = vmcb->save.idtr;
2686 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2687 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2688 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2689 nested_vmcb->save.cr2 = vmcb->save.cr2;
2690 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2691 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2692 nested_vmcb->save.rip = vmcb->save.rip;
2693 nested_vmcb->save.rsp = vmcb->save.rsp;
2694 nested_vmcb->save.rax = vmcb->save.rax;
2695 nested_vmcb->save.dr7 = vmcb->save.dr7;
2696 nested_vmcb->save.dr6 = vmcb->save.dr6;
2697 nested_vmcb->save.cpl = vmcb->save.cpl;
2698
2699 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2700 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2701 nested_vmcb->control.int_state = vmcb->control.int_state;
2702 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2703 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2704 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2705 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2706 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2707 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2708
2709 if (svm->nrips_enabled)
2710 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2711
2712 /*
2713 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2714 * to make sure that we do not lose injected events. So check event_inj
2715 * here and copy it to exit_int_info if it is valid.
2716 * Exit_int_info and event_inj can't be both valid because the case
2717 * below only happens on a VMRUN instruction intercept which has
2718 * no valid exit_int_info set.
2719 */
2720 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2721 struct vmcb_control_area *nc = &nested_vmcb->control;
2722
2723 nc->exit_int_info = vmcb->control.event_inj;
2724 nc->exit_int_info_err = vmcb->control.event_inj_err;
2725 }
2726
2727 nested_vmcb->control.tlb_ctl = 0;
2728 nested_vmcb->control.event_inj = 0;
2729 nested_vmcb->control.event_inj_err = 0;
2730
2731 /* We always set V_INTR_MASKING and remember the old value in hflags */
2732 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2733 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2734
2735 /* Restore the original control entries */
2736 copy_vmcb_control_area(vmcb, hsave);
2737
2738 kvm_clear_exception_queue(&svm->vcpu);
2739 kvm_clear_interrupt_queue(&svm->vcpu);
2740
2741 svm->nested.nested_cr3 = 0;
2742
2743 /* Restore selected save entries */
2744 svm->vmcb->save.es = hsave->save.es;
2745 svm->vmcb->save.cs = hsave->save.cs;
2746 svm->vmcb->save.ss = hsave->save.ss;
2747 svm->vmcb->save.ds = hsave->save.ds;
2748 svm->vmcb->save.gdtr = hsave->save.gdtr;
2749 svm->vmcb->save.idtr = hsave->save.idtr;
2750 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2751 svm_set_efer(&svm->vcpu, hsave->save.efer);
2752 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2753 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2754 if (npt_enabled) {
2755 svm->vmcb->save.cr3 = hsave->save.cr3;
2756 svm->vcpu.arch.cr3 = hsave->save.cr3;
2757 } else {
2758 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2759 }
2760 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2761 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2762 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2763 svm->vmcb->save.dr7 = 0;
2764 svm->vmcb->save.cpl = 0;
2765 svm->vmcb->control.exit_int_info = 0;
2766
2767 mark_all_dirty(svm->vmcb);
2768
2769 nested_svm_unmap(page);
2770
2771 nested_svm_uninit_mmu_context(&svm->vcpu);
2772 kvm_mmu_reset_context(&svm->vcpu);
2773 kvm_mmu_load(&svm->vcpu);
2774
2775 return 0;
2776 }
2777
2778 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2779 {
2780 /*
2781 * This function merges the msr permission bitmaps of kvm and the
2782 * nested vmcb. It is optimized in that it only merges the parts where
2783 * the kvm msr permission bitmap may contain zero bits
2784 */
2785 int i;
2786
2787 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2788 return true;
2789
2790 for (i = 0; i < MSRPM_OFFSETS; i++) {
2791 u32 value, p;
2792 u64 offset;
2793
2794 if (msrpm_offsets[i] == 0xffffffff)
2795 break;
2796
2797 p = msrpm_offsets[i];
2798 offset = svm->nested.vmcb_msrpm + (p * 4);
2799
2800 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2801 return false;
2802
2803 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2804 }
2805
2806 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2807
2808 return true;
2809 }
2810
2811 static bool nested_vmcb_checks(struct vmcb *vmcb)
2812 {
2813 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2814 return false;
2815
2816 if (vmcb->control.asid == 0)
2817 return false;
2818
2819 if (vmcb->control.nested_ctl && !npt_enabled)
2820 return false;
2821
2822 return true;
2823 }
2824
2825 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2826 {
2827 struct vmcb *nested_vmcb;
2828 struct vmcb *hsave = svm->nested.hsave;
2829 struct vmcb *vmcb = svm->vmcb;
2830 struct page *page;
2831 u64 vmcb_gpa;
2832
2833 vmcb_gpa = svm->vmcb->save.rax;
2834
2835 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2836 if (!nested_vmcb)
2837 return false;
2838
2839 if (!nested_vmcb_checks(nested_vmcb)) {
2840 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2841 nested_vmcb->control.exit_code_hi = 0;
2842 nested_vmcb->control.exit_info_1 = 0;
2843 nested_vmcb->control.exit_info_2 = 0;
2844
2845 nested_svm_unmap(page);
2846
2847 return false;
2848 }
2849
2850 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2851 nested_vmcb->save.rip,
2852 nested_vmcb->control.int_ctl,
2853 nested_vmcb->control.event_inj,
2854 nested_vmcb->control.nested_ctl);
2855
2856 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2857 nested_vmcb->control.intercept_cr >> 16,
2858 nested_vmcb->control.intercept_exceptions,
2859 nested_vmcb->control.intercept);
2860
2861 /* Clear internal status */
2862 kvm_clear_exception_queue(&svm->vcpu);
2863 kvm_clear_interrupt_queue(&svm->vcpu);
2864
2865 /*
2866 * Save the old vmcb, so we don't need to pick what we save, but can
2867 * restore everything when a VMEXIT occurs
2868 */
2869 hsave->save.es = vmcb->save.es;
2870 hsave->save.cs = vmcb->save.cs;
2871 hsave->save.ss = vmcb->save.ss;
2872 hsave->save.ds = vmcb->save.ds;
2873 hsave->save.gdtr = vmcb->save.gdtr;
2874 hsave->save.idtr = vmcb->save.idtr;
2875 hsave->save.efer = svm->vcpu.arch.efer;
2876 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2877 hsave->save.cr4 = svm->vcpu.arch.cr4;
2878 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2879 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2880 hsave->save.rsp = vmcb->save.rsp;
2881 hsave->save.rax = vmcb->save.rax;
2882 if (npt_enabled)
2883 hsave->save.cr3 = vmcb->save.cr3;
2884 else
2885 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2886
2887 copy_vmcb_control_area(hsave, vmcb);
2888
2889 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2890 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2891 else
2892 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2893
2894 if (nested_vmcb->control.nested_ctl) {
2895 kvm_mmu_unload(&svm->vcpu);
2896 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2897 nested_svm_init_mmu_context(&svm->vcpu);
2898 }
2899
2900 /* Load the nested guest state */
2901 svm->vmcb->save.es = nested_vmcb->save.es;
2902 svm->vmcb->save.cs = nested_vmcb->save.cs;
2903 svm->vmcb->save.ss = nested_vmcb->save.ss;
2904 svm->vmcb->save.ds = nested_vmcb->save.ds;
2905 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2906 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2907 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2908 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2909 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2910 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2911 if (npt_enabled) {
2912 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2913 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2914 } else
2915 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2916
2917 /* Guest paging mode is active - reset mmu */
2918 kvm_mmu_reset_context(&svm->vcpu);
2919
2920 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2921 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2922 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2923 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2924
2925 /* In case we don't even reach vcpu_run, the fields are not updated */
2926 svm->vmcb->save.rax = nested_vmcb->save.rax;
2927 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2928 svm->vmcb->save.rip = nested_vmcb->save.rip;
2929 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2930 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2931 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2932
2933 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2934 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2935
2936 /* cache intercepts */
2937 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2938 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2939 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2940 svm->nested.intercept = nested_vmcb->control.intercept;
2941
2942 svm_flush_tlb(&svm->vcpu);
2943 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2944 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2945 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2946 else
2947 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2948
2949 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2950 /* We only want the cr8 intercept bits of the guest */
2951 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2952 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2953 }
2954
2955 /* We don't want to see VMMCALLs from a nested guest */
2956 clr_intercept(svm, INTERCEPT_VMMCALL);
2957
2958 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2959 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2960 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2961 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2962 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2963 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2964
2965 nested_svm_unmap(page);
2966
2967 /* Enter Guest-Mode */
2968 enter_guest_mode(&svm->vcpu);
2969
2970 /*
2971 * Merge guest and host intercepts - must be called with vcpu in
2972 * guest-mode to take affect here
2973 */
2974 recalc_intercepts(svm);
2975
2976 svm->nested.vmcb = vmcb_gpa;
2977
2978 enable_gif(svm);
2979
2980 mark_all_dirty(svm->vmcb);
2981
2982 return true;
2983 }
2984
2985 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2986 {
2987 to_vmcb->save.fs = from_vmcb->save.fs;
2988 to_vmcb->save.gs = from_vmcb->save.gs;
2989 to_vmcb->save.tr = from_vmcb->save.tr;
2990 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2991 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2992 to_vmcb->save.star = from_vmcb->save.star;
2993 to_vmcb->save.lstar = from_vmcb->save.lstar;
2994 to_vmcb->save.cstar = from_vmcb->save.cstar;
2995 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2996 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2997 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2998 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2999 }
3000
3001 static int vmload_interception(struct vcpu_svm *svm)
3002 {
3003 struct vmcb *nested_vmcb;
3004 struct page *page;
3005
3006 if (nested_svm_check_permissions(svm))
3007 return 1;
3008
3009 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3010 if (!nested_vmcb)
3011 return 1;
3012
3013 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3014 skip_emulated_instruction(&svm->vcpu);
3015
3016 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3017 nested_svm_unmap(page);
3018
3019 return 1;
3020 }
3021
3022 static int vmsave_interception(struct vcpu_svm *svm)
3023 {
3024 struct vmcb *nested_vmcb;
3025 struct page *page;
3026
3027 if (nested_svm_check_permissions(svm))
3028 return 1;
3029
3030 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3031 if (!nested_vmcb)
3032 return 1;
3033
3034 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3035 skip_emulated_instruction(&svm->vcpu);
3036
3037 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3038 nested_svm_unmap(page);
3039
3040 return 1;
3041 }
3042
3043 static int vmrun_interception(struct vcpu_svm *svm)
3044 {
3045 if (nested_svm_check_permissions(svm))
3046 return 1;
3047
3048 /* Save rip after vmrun instruction */
3049 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3050
3051 if (!nested_svm_vmrun(svm))
3052 return 1;
3053
3054 if (!nested_svm_vmrun_msrpm(svm))
3055 goto failed;
3056
3057 return 1;
3058
3059 failed:
3060
3061 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3062 svm->vmcb->control.exit_code_hi = 0;
3063 svm->vmcb->control.exit_info_1 = 0;
3064 svm->vmcb->control.exit_info_2 = 0;
3065
3066 nested_svm_vmexit(svm);
3067
3068 return 1;
3069 }
3070
3071 static int stgi_interception(struct vcpu_svm *svm)
3072 {
3073 if (nested_svm_check_permissions(svm))
3074 return 1;
3075
3076 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3077 skip_emulated_instruction(&svm->vcpu);
3078 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3079
3080 enable_gif(svm);
3081
3082 return 1;
3083 }
3084
3085 static int clgi_interception(struct vcpu_svm *svm)
3086 {
3087 if (nested_svm_check_permissions(svm))
3088 return 1;
3089
3090 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3091 skip_emulated_instruction(&svm->vcpu);
3092
3093 disable_gif(svm);
3094
3095 /* After a CLGI no interrupts should come */
3096 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3097 svm_clear_vintr(svm);
3098 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3099 mark_dirty(svm->vmcb, VMCB_INTR);
3100 }
3101
3102 return 1;
3103 }
3104
3105 static int invlpga_interception(struct vcpu_svm *svm)
3106 {
3107 struct kvm_vcpu *vcpu = &svm->vcpu;
3108
3109 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3110 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3111
3112 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3113 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3114
3115 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3116 skip_emulated_instruction(&svm->vcpu);
3117 return 1;
3118 }
3119
3120 static int skinit_interception(struct vcpu_svm *svm)
3121 {
3122 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3123
3124 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3125 return 1;
3126 }
3127
3128 static int wbinvd_interception(struct vcpu_svm *svm)
3129 {
3130 return kvm_emulate_wbinvd(&svm->vcpu);
3131 }
3132
3133 static int xsetbv_interception(struct vcpu_svm *svm)
3134 {
3135 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3136 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3137
3138 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3139 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3140 skip_emulated_instruction(&svm->vcpu);
3141 }
3142
3143 return 1;
3144 }
3145
3146 static int task_switch_interception(struct vcpu_svm *svm)
3147 {
3148 u16 tss_selector;
3149 int reason;
3150 int int_type = svm->vmcb->control.exit_int_info &
3151 SVM_EXITINTINFO_TYPE_MASK;
3152 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3153 uint32_t type =
3154 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3155 uint32_t idt_v =
3156 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3157 bool has_error_code = false;
3158 u32 error_code = 0;
3159
3160 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3161
3162 if (svm->vmcb->control.exit_info_2 &
3163 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3164 reason = TASK_SWITCH_IRET;
3165 else if (svm->vmcb->control.exit_info_2 &
3166 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3167 reason = TASK_SWITCH_JMP;
3168 else if (idt_v)
3169 reason = TASK_SWITCH_GATE;
3170 else
3171 reason = TASK_SWITCH_CALL;
3172
3173 if (reason == TASK_SWITCH_GATE) {
3174 switch (type) {
3175 case SVM_EXITINTINFO_TYPE_NMI:
3176 svm->vcpu.arch.nmi_injected = false;
3177 break;
3178 case SVM_EXITINTINFO_TYPE_EXEPT:
3179 if (svm->vmcb->control.exit_info_2 &
3180 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3181 has_error_code = true;
3182 error_code =
3183 (u32)svm->vmcb->control.exit_info_2;
3184 }
3185 kvm_clear_exception_queue(&svm->vcpu);
3186 break;
3187 case SVM_EXITINTINFO_TYPE_INTR:
3188 kvm_clear_interrupt_queue(&svm->vcpu);
3189 break;
3190 default:
3191 break;
3192 }
3193 }
3194
3195 if (reason != TASK_SWITCH_GATE ||
3196 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3197 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3198 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3199 skip_emulated_instruction(&svm->vcpu);
3200
3201 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3202 int_vec = -1;
3203
3204 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3205 has_error_code, error_code) == EMULATE_FAIL) {
3206 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3207 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3208 svm->vcpu.run->internal.ndata = 0;
3209 return 0;
3210 }
3211 return 1;
3212 }
3213
3214 static int cpuid_interception(struct vcpu_svm *svm)
3215 {
3216 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3217 return kvm_emulate_cpuid(&svm->vcpu);
3218 }
3219
3220 static int iret_interception(struct vcpu_svm *svm)
3221 {
3222 ++svm->vcpu.stat.nmi_window_exits;
3223 clr_intercept(svm, INTERCEPT_IRET);
3224 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3225 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3226 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3227 return 1;
3228 }
3229
3230 static int invlpg_interception(struct vcpu_svm *svm)
3231 {
3232 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3233 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3234
3235 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3236 skip_emulated_instruction(&svm->vcpu);
3237 return 1;
3238 }
3239
3240 static int emulate_on_interception(struct vcpu_svm *svm)
3241 {
3242 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3243 }
3244
3245 static int rdpmc_interception(struct vcpu_svm *svm)
3246 {
3247 int err;
3248
3249 if (!static_cpu_has(X86_FEATURE_NRIPS))
3250 return emulate_on_interception(svm);
3251
3252 err = kvm_rdpmc(&svm->vcpu);
3253 return kvm_complete_insn_gp(&svm->vcpu, err);
3254 }
3255
3256 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3257 unsigned long val)
3258 {
3259 unsigned long cr0 = svm->vcpu.arch.cr0;
3260 bool ret = false;
3261 u64 intercept;
3262
3263 intercept = svm->nested.intercept;
3264
3265 if (!is_guest_mode(&svm->vcpu) ||
3266 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3267 return false;
3268
3269 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3270 val &= ~SVM_CR0_SELECTIVE_MASK;
3271
3272 if (cr0 ^ val) {
3273 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3274 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3275 }
3276
3277 return ret;
3278 }
3279
3280 #define CR_VALID (1ULL << 63)
3281
3282 static int cr_interception(struct vcpu_svm *svm)
3283 {
3284 int reg, cr;
3285 unsigned long val;
3286 int err;
3287
3288 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3289 return emulate_on_interception(svm);
3290
3291 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3292 return emulate_on_interception(svm);
3293
3294 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3295 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3296 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3297 else
3298 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3299
3300 err = 0;
3301 if (cr >= 16) { /* mov to cr */
3302 cr -= 16;
3303 val = kvm_register_read(&svm->vcpu, reg);
3304 switch (cr) {
3305 case 0:
3306 if (!check_selective_cr0_intercepted(svm, val))
3307 err = kvm_set_cr0(&svm->vcpu, val);
3308 else
3309 return 1;
3310
3311 break;
3312 case 3:
3313 err = kvm_set_cr3(&svm->vcpu, val);
3314 break;
3315 case 4:
3316 err = kvm_set_cr4(&svm->vcpu, val);
3317 break;
3318 case 8:
3319 err = kvm_set_cr8(&svm->vcpu, val);
3320 break;
3321 default:
3322 WARN(1, "unhandled write to CR%d", cr);
3323 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3324 return 1;
3325 }
3326 } else { /* mov from cr */
3327 switch (cr) {
3328 case 0:
3329 val = kvm_read_cr0(&svm->vcpu);
3330 break;
3331 case 2:
3332 val = svm->vcpu.arch.cr2;
3333 break;
3334 case 3:
3335 val = kvm_read_cr3(&svm->vcpu);
3336 break;
3337 case 4:
3338 val = kvm_read_cr4(&svm->vcpu);
3339 break;
3340 case 8:
3341 val = kvm_get_cr8(&svm->vcpu);
3342 break;
3343 default:
3344 WARN(1, "unhandled read from CR%d", cr);
3345 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3346 return 1;
3347 }
3348 kvm_register_write(&svm->vcpu, reg, val);
3349 }
3350 return kvm_complete_insn_gp(&svm->vcpu, err);
3351 }
3352
3353 static int dr_interception(struct vcpu_svm *svm)
3354 {
3355 int reg, dr;
3356 unsigned long val;
3357
3358 if (svm->vcpu.guest_debug == 0) {
3359 /*
3360 * No more DR vmexits; force a reload of the debug registers
3361 * and reenter on this instruction. The next vmexit will
3362 * retrieve the full state of the debug registers.
3363 */
3364 clr_dr_intercepts(svm);
3365 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3366 return 1;
3367 }
3368
3369 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3370 return emulate_on_interception(svm);
3371
3372 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3373 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3374
3375 if (dr >= 16) { /* mov to DRn */
3376 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3377 return 1;
3378 val = kvm_register_read(&svm->vcpu, reg);
3379 kvm_set_dr(&svm->vcpu, dr - 16, val);
3380 } else {
3381 if (!kvm_require_dr(&svm->vcpu, dr))
3382 return 1;
3383 kvm_get_dr(&svm->vcpu, dr, &val);
3384 kvm_register_write(&svm->vcpu, reg, val);
3385 }
3386
3387 skip_emulated_instruction(&svm->vcpu);
3388
3389 return 1;
3390 }
3391
3392 static int cr8_write_interception(struct vcpu_svm *svm)
3393 {
3394 struct kvm_run *kvm_run = svm->vcpu.run;
3395 int r;
3396
3397 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3398 /* instruction emulation calls kvm_set_cr8() */
3399 r = cr_interception(svm);
3400 if (lapic_in_kernel(&svm->vcpu))
3401 return r;
3402 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3403 return r;
3404 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3405 return 0;
3406 }
3407
3408 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3409 {
3410 struct vcpu_svm *svm = to_svm(vcpu);
3411
3412 switch (msr_info->index) {
3413 case MSR_IA32_TSC: {
3414 msr_info->data = svm->vmcb->control.tsc_offset +
3415 kvm_scale_tsc(vcpu, rdtsc());
3416
3417 break;
3418 }
3419 case MSR_STAR:
3420 msr_info->data = svm->vmcb->save.star;
3421 break;
3422 #ifdef CONFIG_X86_64
3423 case MSR_LSTAR:
3424 msr_info->data = svm->vmcb->save.lstar;
3425 break;
3426 case MSR_CSTAR:
3427 msr_info->data = svm->vmcb->save.cstar;
3428 break;
3429 case MSR_KERNEL_GS_BASE:
3430 msr_info->data = svm->vmcb->save.kernel_gs_base;
3431 break;
3432 case MSR_SYSCALL_MASK:
3433 msr_info->data = svm->vmcb->save.sfmask;
3434 break;
3435 #endif
3436 case MSR_IA32_SYSENTER_CS:
3437 msr_info->data = svm->vmcb->save.sysenter_cs;
3438 break;
3439 case MSR_IA32_SYSENTER_EIP:
3440 msr_info->data = svm->sysenter_eip;
3441 break;
3442 case MSR_IA32_SYSENTER_ESP:
3443 msr_info->data = svm->sysenter_esp;
3444 break;
3445 case MSR_TSC_AUX:
3446 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3447 return 1;
3448 msr_info->data = svm->tsc_aux;
3449 break;
3450 /*
3451 * Nobody will change the following 5 values in the VMCB so we can
3452 * safely return them on rdmsr. They will always be 0 until LBRV is
3453 * implemented.
3454 */
3455 case MSR_IA32_DEBUGCTLMSR:
3456 msr_info->data = svm->vmcb->save.dbgctl;
3457 break;
3458 case MSR_IA32_LASTBRANCHFROMIP:
3459 msr_info->data = svm->vmcb->save.br_from;
3460 break;
3461 case MSR_IA32_LASTBRANCHTOIP:
3462 msr_info->data = svm->vmcb->save.br_to;
3463 break;
3464 case MSR_IA32_LASTINTFROMIP:
3465 msr_info->data = svm->vmcb->save.last_excp_from;
3466 break;
3467 case MSR_IA32_LASTINTTOIP:
3468 msr_info->data = svm->vmcb->save.last_excp_to;
3469 break;
3470 case MSR_VM_HSAVE_PA:
3471 msr_info->data = svm->nested.hsave_msr;
3472 break;
3473 case MSR_VM_CR:
3474 msr_info->data = svm->nested.vm_cr_msr;
3475 break;
3476 case MSR_IA32_UCODE_REV:
3477 msr_info->data = 0x01000065;
3478 break;
3479 case MSR_F15H_IC_CFG: {
3480
3481 int family, model;
3482
3483 family = guest_cpuid_family(vcpu);
3484 model = guest_cpuid_model(vcpu);
3485
3486 if (family < 0 || model < 0)
3487 return kvm_get_msr_common(vcpu, msr_info);
3488
3489 msr_info->data = 0;
3490
3491 if (family == 0x15 &&
3492 (model >= 0x2 && model < 0x20))
3493 msr_info->data = 0x1E;
3494 }
3495 break;
3496 default:
3497 return kvm_get_msr_common(vcpu, msr_info);
3498 }
3499 return 0;
3500 }
3501
3502 static int rdmsr_interception(struct vcpu_svm *svm)
3503 {
3504 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3505 struct msr_data msr_info;
3506
3507 msr_info.index = ecx;
3508 msr_info.host_initiated = false;
3509 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3510 trace_kvm_msr_read_ex(ecx);
3511 kvm_inject_gp(&svm->vcpu, 0);
3512 } else {
3513 trace_kvm_msr_read(ecx, msr_info.data);
3514
3515 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3516 msr_info.data & 0xffffffff);
3517 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3518 msr_info.data >> 32);
3519 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3520 skip_emulated_instruction(&svm->vcpu);
3521 }
3522 return 1;
3523 }
3524
3525 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3526 {
3527 struct vcpu_svm *svm = to_svm(vcpu);
3528 int svm_dis, chg_mask;
3529
3530 if (data & ~SVM_VM_CR_VALID_MASK)
3531 return 1;
3532
3533 chg_mask = SVM_VM_CR_VALID_MASK;
3534
3535 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3536 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3537
3538 svm->nested.vm_cr_msr &= ~chg_mask;
3539 svm->nested.vm_cr_msr |= (data & chg_mask);
3540
3541 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3542
3543 /* check for svm_disable while efer.svme is set */
3544 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3545 return 1;
3546
3547 return 0;
3548 }
3549
3550 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3551 {
3552 struct vcpu_svm *svm = to_svm(vcpu);
3553
3554 u32 ecx = msr->index;
3555 u64 data = msr->data;
3556 switch (ecx) {
3557 case MSR_IA32_TSC:
3558 kvm_write_tsc(vcpu, msr);
3559 break;
3560 case MSR_STAR:
3561 svm->vmcb->save.star = data;
3562 break;
3563 #ifdef CONFIG_X86_64
3564 case MSR_LSTAR:
3565 svm->vmcb->save.lstar = data;
3566 break;
3567 case MSR_CSTAR:
3568 svm->vmcb->save.cstar = data;
3569 break;
3570 case MSR_KERNEL_GS_BASE:
3571 svm->vmcb->save.kernel_gs_base = data;
3572 break;
3573 case MSR_SYSCALL_MASK:
3574 svm->vmcb->save.sfmask = data;
3575 break;
3576 #endif
3577 case MSR_IA32_SYSENTER_CS:
3578 svm->vmcb->save.sysenter_cs = data;
3579 break;
3580 case MSR_IA32_SYSENTER_EIP:
3581 svm->sysenter_eip = data;
3582 svm->vmcb->save.sysenter_eip = data;
3583 break;
3584 case MSR_IA32_SYSENTER_ESP:
3585 svm->sysenter_esp = data;
3586 svm->vmcb->save.sysenter_esp = data;
3587 break;
3588 case MSR_TSC_AUX:
3589 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3590 return 1;
3591
3592 /*
3593 * This is rare, so we update the MSR here instead of using
3594 * direct_access_msrs. Doing that would require a rdmsr in
3595 * svm_vcpu_put.
3596 */
3597 svm->tsc_aux = data;
3598 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3599 break;
3600 case MSR_IA32_DEBUGCTLMSR:
3601 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3602 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3603 __func__, data);
3604 break;
3605 }
3606 if (data & DEBUGCTL_RESERVED_BITS)
3607 return 1;
3608
3609 svm->vmcb->save.dbgctl = data;
3610 mark_dirty(svm->vmcb, VMCB_LBR);
3611 if (data & (1ULL<<0))
3612 svm_enable_lbrv(svm);
3613 else
3614 svm_disable_lbrv(svm);
3615 break;
3616 case MSR_VM_HSAVE_PA:
3617 svm->nested.hsave_msr = data;
3618 break;
3619 case MSR_VM_CR:
3620 return svm_set_vm_cr(vcpu, data);
3621 case MSR_VM_IGNNE:
3622 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3623 break;
3624 case MSR_IA32_APICBASE:
3625 if (kvm_vcpu_apicv_active(vcpu))
3626 avic_update_vapic_bar(to_svm(vcpu), data);
3627 /* Follow through */
3628 default:
3629 return kvm_set_msr_common(vcpu, msr);
3630 }
3631 return 0;
3632 }
3633
3634 static int wrmsr_interception(struct vcpu_svm *svm)
3635 {
3636 struct msr_data msr;
3637 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3638 u64 data = kvm_read_edx_eax(&svm->vcpu);
3639
3640 msr.data = data;
3641 msr.index = ecx;
3642 msr.host_initiated = false;
3643
3644 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3645 if (kvm_set_msr(&svm->vcpu, &msr)) {
3646 trace_kvm_msr_write_ex(ecx, data);
3647 kvm_inject_gp(&svm->vcpu, 0);
3648 } else {
3649 trace_kvm_msr_write(ecx, data);
3650 skip_emulated_instruction(&svm->vcpu);
3651 }
3652 return 1;
3653 }
3654
3655 static int msr_interception(struct vcpu_svm *svm)
3656 {
3657 if (svm->vmcb->control.exit_info_1)
3658 return wrmsr_interception(svm);
3659 else
3660 return rdmsr_interception(svm);
3661 }
3662
3663 static int interrupt_window_interception(struct vcpu_svm *svm)
3664 {
3665 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3666 svm_clear_vintr(svm);
3667 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3668 mark_dirty(svm->vmcb, VMCB_INTR);
3669 ++svm->vcpu.stat.irq_window_exits;
3670 return 1;
3671 }
3672
3673 static int pause_interception(struct vcpu_svm *svm)
3674 {
3675 kvm_vcpu_on_spin(&(svm->vcpu));
3676 return 1;
3677 }
3678
3679 static int nop_interception(struct vcpu_svm *svm)
3680 {
3681 skip_emulated_instruction(&(svm->vcpu));
3682 return 1;
3683 }
3684
3685 static int monitor_interception(struct vcpu_svm *svm)
3686 {
3687 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3688 return nop_interception(svm);
3689 }
3690
3691 static int mwait_interception(struct vcpu_svm *svm)
3692 {
3693 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3694 return nop_interception(svm);
3695 }
3696
3697 enum avic_ipi_failure_cause {
3698 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3699 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3700 AVIC_IPI_FAILURE_INVALID_TARGET,
3701 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3702 };
3703
3704 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3705 {
3706 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3707 u32 icrl = svm->vmcb->control.exit_info_1;
3708 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3709 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3710 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3711
3712 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3713
3714 switch (id) {
3715 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3716 /*
3717 * AVIC hardware handles the generation of
3718 * IPIs when the specified Message Type is Fixed
3719 * (also known as fixed delivery mode) and
3720 * the Trigger Mode is edge-triggered. The hardware
3721 * also supports self and broadcast delivery modes
3722 * specified via the Destination Shorthand(DSH)
3723 * field of the ICRL. Logical and physical APIC ID
3724 * formats are supported. All other IPI types cause
3725 * a #VMEXIT, which needs to emulated.
3726 */
3727 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3728 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3729 break;
3730 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3731 int i;
3732 struct kvm_vcpu *vcpu;
3733 struct kvm *kvm = svm->vcpu.kvm;
3734 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3735
3736 /*
3737 * At this point, we expect that the AVIC HW has already
3738 * set the appropriate IRR bits on the valid target
3739 * vcpus. So, we just need to kick the appropriate vcpu.
3740 */
3741 kvm_for_each_vcpu(i, vcpu, kvm) {
3742 bool m = kvm_apic_match_dest(vcpu, apic,
3743 icrl & KVM_APIC_SHORT_MASK,
3744 GET_APIC_DEST_FIELD(icrh),
3745 icrl & KVM_APIC_DEST_MASK);
3746
3747 if (m && !avic_vcpu_is_running(vcpu))
3748 kvm_vcpu_wake_up(vcpu);
3749 }
3750 break;
3751 }
3752 case AVIC_IPI_FAILURE_INVALID_TARGET:
3753 break;
3754 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3755 WARN_ONCE(1, "Invalid backing page\n");
3756 break;
3757 default:
3758 pr_err("Unknown IPI interception\n");
3759 }
3760
3761 return 1;
3762 }
3763
3764 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3765 {
3766 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3767 int index;
3768 u32 *logical_apic_id_table;
3769 int dlid = GET_APIC_LOGICAL_ID(ldr);
3770
3771 if (!dlid)
3772 return NULL;
3773
3774 if (flat) { /* flat */
3775 index = ffs(dlid) - 1;
3776 if (index > 7)
3777 return NULL;
3778 } else { /* cluster */
3779 int cluster = (dlid & 0xf0) >> 4;
3780 int apic = ffs(dlid & 0x0f) - 1;
3781
3782 if ((apic < 0) || (apic > 7) ||
3783 (cluster >= 0xf))
3784 return NULL;
3785 index = (cluster << 2) + apic;
3786 }
3787
3788 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3789
3790 return &logical_apic_id_table[index];
3791 }
3792
3793 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3794 bool valid)
3795 {
3796 bool flat;
3797 u32 *entry, new_entry;
3798
3799 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3800 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3801 if (!entry)
3802 return -EINVAL;
3803
3804 new_entry = READ_ONCE(*entry);
3805 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3806 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3807 if (valid)
3808 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3809 else
3810 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3811 WRITE_ONCE(*entry, new_entry);
3812
3813 return 0;
3814 }
3815
3816 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3817 {
3818 int ret;
3819 struct vcpu_svm *svm = to_svm(vcpu);
3820 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3821
3822 if (!ldr)
3823 return 1;
3824
3825 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3826 if (ret && svm->ldr_reg) {
3827 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3828 svm->ldr_reg = 0;
3829 } else {
3830 svm->ldr_reg = ldr;
3831 }
3832 return ret;
3833 }
3834
3835 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3836 {
3837 u64 *old, *new;
3838 struct vcpu_svm *svm = to_svm(vcpu);
3839 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3840 u32 id = (apic_id_reg >> 24) & 0xff;
3841
3842 if (vcpu->vcpu_id == id)
3843 return 0;
3844
3845 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3846 new = avic_get_physical_id_entry(vcpu, id);
3847 if (!new || !old)
3848 return 1;
3849
3850 /* We need to move physical_id_entry to new offset */
3851 *new = *old;
3852 *old = 0ULL;
3853 to_svm(vcpu)->avic_physical_id_cache = new;
3854
3855 /*
3856 * Also update the guest physical APIC ID in the logical
3857 * APIC ID table entry if already setup the LDR.
3858 */
3859 if (svm->ldr_reg)
3860 avic_handle_ldr_update(vcpu);
3861
3862 return 0;
3863 }
3864
3865 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3866 {
3867 struct vcpu_svm *svm = to_svm(vcpu);
3868 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3869 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3870 u32 mod = (dfr >> 28) & 0xf;
3871
3872 /*
3873 * We assume that all local APICs are using the same type.
3874 * If this changes, we need to flush the AVIC logical
3875 * APID id table.
3876 */
3877 if (vm_data->ldr_mode == mod)
3878 return 0;
3879
3880 clear_page(page_address(vm_data->avic_logical_id_table_page));
3881 vm_data->ldr_mode = mod;
3882
3883 if (svm->ldr_reg)
3884 avic_handle_ldr_update(vcpu);
3885 return 0;
3886 }
3887
3888 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3889 {
3890 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3891 u32 offset = svm->vmcb->control.exit_info_1 &
3892 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3893
3894 switch (offset) {
3895 case APIC_ID:
3896 if (avic_handle_apic_id_update(&svm->vcpu))
3897 return 0;
3898 break;
3899 case APIC_LDR:
3900 if (avic_handle_ldr_update(&svm->vcpu))
3901 return 0;
3902 break;
3903 case APIC_DFR:
3904 avic_handle_dfr_update(&svm->vcpu);
3905 break;
3906 default:
3907 break;
3908 }
3909
3910 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3911
3912 return 1;
3913 }
3914
3915 static bool is_avic_unaccelerated_access_trap(u32 offset)
3916 {
3917 bool ret = false;
3918
3919 switch (offset) {
3920 case APIC_ID:
3921 case APIC_EOI:
3922 case APIC_RRR:
3923 case APIC_LDR:
3924 case APIC_DFR:
3925 case APIC_SPIV:
3926 case APIC_ESR:
3927 case APIC_ICR:
3928 case APIC_LVTT:
3929 case APIC_LVTTHMR:
3930 case APIC_LVTPC:
3931 case APIC_LVT0:
3932 case APIC_LVT1:
3933 case APIC_LVTERR:
3934 case APIC_TMICT:
3935 case APIC_TDCR:
3936 ret = true;
3937 break;
3938 default:
3939 break;
3940 }
3941 return ret;
3942 }
3943
3944 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3945 {
3946 int ret = 0;
3947 u32 offset = svm->vmcb->control.exit_info_1 &
3948 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3949 u32 vector = svm->vmcb->control.exit_info_2 &
3950 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3951 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3952 AVIC_UNACCEL_ACCESS_WRITE_MASK;
3953 bool trap = is_avic_unaccelerated_access_trap(offset);
3954
3955 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3956 trap, write, vector);
3957 if (trap) {
3958 /* Handling Trap */
3959 WARN_ONCE(!write, "svm: Handling trap read.\n");
3960 ret = avic_unaccel_trap_write(svm);
3961 } else {
3962 /* Handling Fault */
3963 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3964 }
3965
3966 return ret;
3967 }
3968
3969 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3970 [SVM_EXIT_READ_CR0] = cr_interception,
3971 [SVM_EXIT_READ_CR3] = cr_interception,
3972 [SVM_EXIT_READ_CR4] = cr_interception,
3973 [SVM_EXIT_READ_CR8] = cr_interception,
3974 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3975 [SVM_EXIT_WRITE_CR0] = cr_interception,
3976 [SVM_EXIT_WRITE_CR3] = cr_interception,
3977 [SVM_EXIT_WRITE_CR4] = cr_interception,
3978 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3979 [SVM_EXIT_READ_DR0] = dr_interception,
3980 [SVM_EXIT_READ_DR1] = dr_interception,
3981 [SVM_EXIT_READ_DR2] = dr_interception,
3982 [SVM_EXIT_READ_DR3] = dr_interception,
3983 [SVM_EXIT_READ_DR4] = dr_interception,
3984 [SVM_EXIT_READ_DR5] = dr_interception,
3985 [SVM_EXIT_READ_DR6] = dr_interception,
3986 [SVM_EXIT_READ_DR7] = dr_interception,
3987 [SVM_EXIT_WRITE_DR0] = dr_interception,
3988 [SVM_EXIT_WRITE_DR1] = dr_interception,
3989 [SVM_EXIT_WRITE_DR2] = dr_interception,
3990 [SVM_EXIT_WRITE_DR3] = dr_interception,
3991 [SVM_EXIT_WRITE_DR4] = dr_interception,
3992 [SVM_EXIT_WRITE_DR5] = dr_interception,
3993 [SVM_EXIT_WRITE_DR6] = dr_interception,
3994 [SVM_EXIT_WRITE_DR7] = dr_interception,
3995 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3996 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3997 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3998 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3999 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4000 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4001 [SVM_EXIT_INTR] = intr_interception,
4002 [SVM_EXIT_NMI] = nmi_interception,
4003 [SVM_EXIT_SMI] = nop_on_interception,
4004 [SVM_EXIT_INIT] = nop_on_interception,
4005 [SVM_EXIT_VINTR] = interrupt_window_interception,
4006 [SVM_EXIT_RDPMC] = rdpmc_interception,
4007 [SVM_EXIT_CPUID] = cpuid_interception,
4008 [SVM_EXIT_IRET] = iret_interception,
4009 [SVM_EXIT_INVD] = emulate_on_interception,
4010 [SVM_EXIT_PAUSE] = pause_interception,
4011 [SVM_EXIT_HLT] = halt_interception,
4012 [SVM_EXIT_INVLPG] = invlpg_interception,
4013 [SVM_EXIT_INVLPGA] = invlpga_interception,
4014 [SVM_EXIT_IOIO] = io_interception,
4015 [SVM_EXIT_MSR] = msr_interception,
4016 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4017 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4018 [SVM_EXIT_VMRUN] = vmrun_interception,
4019 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4020 [SVM_EXIT_VMLOAD] = vmload_interception,
4021 [SVM_EXIT_VMSAVE] = vmsave_interception,
4022 [SVM_EXIT_STGI] = stgi_interception,
4023 [SVM_EXIT_CLGI] = clgi_interception,
4024 [SVM_EXIT_SKINIT] = skinit_interception,
4025 [SVM_EXIT_WBINVD] = wbinvd_interception,
4026 [SVM_EXIT_MONITOR] = monitor_interception,
4027 [SVM_EXIT_MWAIT] = mwait_interception,
4028 [SVM_EXIT_XSETBV] = xsetbv_interception,
4029 [SVM_EXIT_NPF] = pf_interception,
4030 [SVM_EXIT_RSM] = emulate_on_interception,
4031 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4032 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4033 };
4034
4035 static void dump_vmcb(struct kvm_vcpu *vcpu)
4036 {
4037 struct vcpu_svm *svm = to_svm(vcpu);
4038 struct vmcb_control_area *control = &svm->vmcb->control;
4039 struct vmcb_save_area *save = &svm->vmcb->save;
4040
4041 pr_err("VMCB Control Area:\n");
4042 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4043 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4044 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4045 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4046 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4047 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4048 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4049 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4050 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4051 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4052 pr_err("%-20s%d\n", "asid:", control->asid);
4053 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4054 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4055 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4056 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4057 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4058 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4059 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4060 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4061 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4062 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4063 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4064 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4065 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4066 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4067 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
4068 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4069 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4070 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4071 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4072 pr_err("VMCB State Save Area:\n");
4073 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4074 "es:",
4075 save->es.selector, save->es.attrib,
4076 save->es.limit, save->es.base);
4077 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4078 "cs:",
4079 save->cs.selector, save->cs.attrib,
4080 save->cs.limit, save->cs.base);
4081 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4082 "ss:",
4083 save->ss.selector, save->ss.attrib,
4084 save->ss.limit, save->ss.base);
4085 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4086 "ds:",
4087 save->ds.selector, save->ds.attrib,
4088 save->ds.limit, save->ds.base);
4089 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4090 "fs:",
4091 save->fs.selector, save->fs.attrib,
4092 save->fs.limit, save->fs.base);
4093 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4094 "gs:",
4095 save->gs.selector, save->gs.attrib,
4096 save->gs.limit, save->gs.base);
4097 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4098 "gdtr:",
4099 save->gdtr.selector, save->gdtr.attrib,
4100 save->gdtr.limit, save->gdtr.base);
4101 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4102 "ldtr:",
4103 save->ldtr.selector, save->ldtr.attrib,
4104 save->ldtr.limit, save->ldtr.base);
4105 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4106 "idtr:",
4107 save->idtr.selector, save->idtr.attrib,
4108 save->idtr.limit, save->idtr.base);
4109 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4110 "tr:",
4111 save->tr.selector, save->tr.attrib,
4112 save->tr.limit, save->tr.base);
4113 pr_err("cpl: %d efer: %016llx\n",
4114 save->cpl, save->efer);
4115 pr_err("%-15s %016llx %-13s %016llx\n",
4116 "cr0:", save->cr0, "cr2:", save->cr2);
4117 pr_err("%-15s %016llx %-13s %016llx\n",
4118 "cr3:", save->cr3, "cr4:", save->cr4);
4119 pr_err("%-15s %016llx %-13s %016llx\n",
4120 "dr6:", save->dr6, "dr7:", save->dr7);
4121 pr_err("%-15s %016llx %-13s %016llx\n",
4122 "rip:", save->rip, "rflags:", save->rflags);
4123 pr_err("%-15s %016llx %-13s %016llx\n",
4124 "rsp:", save->rsp, "rax:", save->rax);
4125 pr_err("%-15s %016llx %-13s %016llx\n",
4126 "star:", save->star, "lstar:", save->lstar);
4127 pr_err("%-15s %016llx %-13s %016llx\n",
4128 "cstar:", save->cstar, "sfmask:", save->sfmask);
4129 pr_err("%-15s %016llx %-13s %016llx\n",
4130 "kernel_gs_base:", save->kernel_gs_base,
4131 "sysenter_cs:", save->sysenter_cs);
4132 pr_err("%-15s %016llx %-13s %016llx\n",
4133 "sysenter_esp:", save->sysenter_esp,
4134 "sysenter_eip:", save->sysenter_eip);
4135 pr_err("%-15s %016llx %-13s %016llx\n",
4136 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4137 pr_err("%-15s %016llx %-13s %016llx\n",
4138 "br_from:", save->br_from, "br_to:", save->br_to);
4139 pr_err("%-15s %016llx %-13s %016llx\n",
4140 "excp_from:", save->last_excp_from,
4141 "excp_to:", save->last_excp_to);
4142 }
4143
4144 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4145 {
4146 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4147
4148 *info1 = control->exit_info_1;
4149 *info2 = control->exit_info_2;
4150 }
4151
4152 static int handle_exit(struct kvm_vcpu *vcpu)
4153 {
4154 struct vcpu_svm *svm = to_svm(vcpu);
4155 struct kvm_run *kvm_run = vcpu->run;
4156 u32 exit_code = svm->vmcb->control.exit_code;
4157
4158 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4159
4160 vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4161
4162 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4163 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4164 if (npt_enabled)
4165 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4166
4167 if (unlikely(svm->nested.exit_required)) {
4168 nested_svm_vmexit(svm);
4169 svm->nested.exit_required = false;
4170
4171 return 1;
4172 }
4173
4174 if (is_guest_mode(vcpu)) {
4175 int vmexit;
4176
4177 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4178 svm->vmcb->control.exit_info_1,
4179 svm->vmcb->control.exit_info_2,
4180 svm->vmcb->control.exit_int_info,
4181 svm->vmcb->control.exit_int_info_err,
4182 KVM_ISA_SVM);
4183
4184 vmexit = nested_svm_exit_special(svm);
4185
4186 if (vmexit == NESTED_EXIT_CONTINUE)
4187 vmexit = nested_svm_exit_handled(svm);
4188
4189 if (vmexit == NESTED_EXIT_DONE)
4190 return 1;
4191 }
4192
4193 svm_complete_interrupts(svm);
4194
4195 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4196 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4197 kvm_run->fail_entry.hardware_entry_failure_reason
4198 = svm->vmcb->control.exit_code;
4199 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4200 dump_vmcb(vcpu);
4201 return 0;
4202 }
4203
4204 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4205 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4206 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4207 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4208 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4209 "exit_code 0x%x\n",
4210 __func__, svm->vmcb->control.exit_int_info,
4211 exit_code);
4212
4213 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4214 || !svm_exit_handlers[exit_code]) {
4215 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4216 kvm_queue_exception(vcpu, UD_VECTOR);
4217 return 1;
4218 }
4219
4220 return svm_exit_handlers[exit_code](svm);
4221 }
4222
4223 static void reload_tss(struct kvm_vcpu *vcpu)
4224 {
4225 int cpu = raw_smp_processor_id();
4226
4227 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4228 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4229 load_TR_desc();
4230 }
4231
4232 static void pre_svm_run(struct vcpu_svm *svm)
4233 {
4234 int cpu = raw_smp_processor_id();
4235
4236 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4237
4238 /* FIXME: handle wraparound of asid_generation */
4239 if (svm->asid_generation != sd->asid_generation)
4240 new_asid(svm, sd);
4241 }
4242
4243 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4244 {
4245 struct vcpu_svm *svm = to_svm(vcpu);
4246
4247 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4248 vcpu->arch.hflags |= HF_NMI_MASK;
4249 set_intercept(svm, INTERCEPT_IRET);
4250 ++vcpu->stat.nmi_injections;
4251 }
4252
4253 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4254 {
4255 struct vmcb_control_area *control;
4256
4257 /* The following fields are ignored when AVIC is enabled */
4258 control = &svm->vmcb->control;
4259 control->int_vector = irq;
4260 control->int_ctl &= ~V_INTR_PRIO_MASK;
4261 control->int_ctl |= V_IRQ_MASK |
4262 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4263 mark_dirty(svm->vmcb, VMCB_INTR);
4264 }
4265
4266 static void svm_set_irq(struct kvm_vcpu *vcpu)
4267 {
4268 struct vcpu_svm *svm = to_svm(vcpu);
4269
4270 BUG_ON(!(gif_set(svm)));
4271
4272 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4273 ++vcpu->stat.irq_injections;
4274
4275 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4276 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4277 }
4278
4279 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4280 {
4281 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4282 }
4283
4284 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4285 {
4286 struct vcpu_svm *svm = to_svm(vcpu);
4287
4288 if (svm_nested_virtualize_tpr(vcpu) ||
4289 kvm_vcpu_apicv_active(vcpu))
4290 return;
4291
4292 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4293
4294 if (irr == -1)
4295 return;
4296
4297 if (tpr >= irr)
4298 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4299 }
4300
4301 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4302 {
4303 return;
4304 }
4305
4306 static bool svm_get_enable_apicv(void)
4307 {
4308 return avic;
4309 }
4310
4311 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4312 {
4313 }
4314
4315 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4316 {
4317 }
4318
4319 /* Note: Currently only used by Hyper-V. */
4320 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4321 {
4322 struct vcpu_svm *svm = to_svm(vcpu);
4323 struct vmcb *vmcb = svm->vmcb;
4324
4325 if (!avic)
4326 return;
4327
4328 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4329 mark_dirty(vmcb, VMCB_INTR);
4330 }
4331
4332 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4333 {
4334 return;
4335 }
4336
4337 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4338 {
4339 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4340 smp_mb__after_atomic();
4341
4342 if (avic_vcpu_is_running(vcpu))
4343 wrmsrl(SVM_AVIC_DOORBELL,
4344 kvm_cpu_get_apicid(vcpu->cpu));
4345 else
4346 kvm_vcpu_wake_up(vcpu);
4347 }
4348
4349 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4350 {
4351 unsigned long flags;
4352 struct amd_svm_iommu_ir *cur;
4353
4354 spin_lock_irqsave(&svm->ir_list_lock, flags);
4355 list_for_each_entry(cur, &svm->ir_list, node) {
4356 if (cur->data != pi->ir_data)
4357 continue;
4358 list_del(&cur->node);
4359 kfree(cur);
4360 break;
4361 }
4362 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4363 }
4364
4365 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4366 {
4367 int ret = 0;
4368 unsigned long flags;
4369 struct amd_svm_iommu_ir *ir;
4370
4371 /**
4372 * In some cases, the existing irte is updaed and re-set,
4373 * so we need to check here if it's already been * added
4374 * to the ir_list.
4375 */
4376 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4377 struct kvm *kvm = svm->vcpu.kvm;
4378 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4379 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4380 struct vcpu_svm *prev_svm;
4381
4382 if (!prev_vcpu) {
4383 ret = -EINVAL;
4384 goto out;
4385 }
4386
4387 prev_svm = to_svm(prev_vcpu);
4388 svm_ir_list_del(prev_svm, pi);
4389 }
4390
4391 /**
4392 * Allocating new amd_iommu_pi_data, which will get
4393 * add to the per-vcpu ir_list.
4394 */
4395 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4396 if (!ir) {
4397 ret = -ENOMEM;
4398 goto out;
4399 }
4400 ir->data = pi->ir_data;
4401
4402 spin_lock_irqsave(&svm->ir_list_lock, flags);
4403 list_add(&ir->node, &svm->ir_list);
4404 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4405 out:
4406 return ret;
4407 }
4408
4409 /**
4410 * Note:
4411 * The HW cannot support posting multicast/broadcast
4412 * interrupts to a vCPU. So, we still use legacy interrupt
4413 * remapping for these kind of interrupts.
4414 *
4415 * For lowest-priority interrupts, we only support
4416 * those with single CPU as the destination, e.g. user
4417 * configures the interrupts via /proc/irq or uses
4418 * irqbalance to make the interrupts single-CPU.
4419 */
4420 static int
4421 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4422 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4423 {
4424 struct kvm_lapic_irq irq;
4425 struct kvm_vcpu *vcpu = NULL;
4426
4427 kvm_set_msi_irq(kvm, e, &irq);
4428
4429 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4430 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4431 __func__, irq.vector);
4432 return -1;
4433 }
4434
4435 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4436 irq.vector);
4437 *svm = to_svm(vcpu);
4438 vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4439 vcpu_info->vector = irq.vector;
4440
4441 return 0;
4442 }
4443
4444 /*
4445 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4446 *
4447 * @kvm: kvm
4448 * @host_irq: host irq of the interrupt
4449 * @guest_irq: gsi of the interrupt
4450 * @set: set or unset PI
4451 * returns 0 on success, < 0 on failure
4452 */
4453 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4454 uint32_t guest_irq, bool set)
4455 {
4456 struct kvm_kernel_irq_routing_entry *e;
4457 struct kvm_irq_routing_table *irq_rt;
4458 int idx, ret = -EINVAL;
4459
4460 if (!kvm_arch_has_assigned_device(kvm) ||
4461 !irq_remapping_cap(IRQ_POSTING_CAP))
4462 return 0;
4463
4464 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4465 __func__, host_irq, guest_irq, set);
4466
4467 idx = srcu_read_lock(&kvm->irq_srcu);
4468 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4469 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4470
4471 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4472 struct vcpu_data vcpu_info;
4473 struct vcpu_svm *svm = NULL;
4474
4475 if (e->type != KVM_IRQ_ROUTING_MSI)
4476 continue;
4477
4478 /**
4479 * Here, we setup with legacy mode in the following cases:
4480 * 1. When cannot target interrupt to a specific vcpu.
4481 * 2. Unsetting posted interrupt.
4482 * 3. APIC virtialization is disabled for the vcpu.
4483 */
4484 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4485 kvm_vcpu_apicv_active(&svm->vcpu)) {
4486 struct amd_iommu_pi_data pi;
4487
4488 /* Try to enable guest_mode in IRTE */
4489 pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4490 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4491 svm->vcpu.vcpu_id);
4492 pi.is_guest_mode = true;
4493 pi.vcpu_data = &vcpu_info;
4494 ret = irq_set_vcpu_affinity(host_irq, &pi);
4495
4496 /**
4497 * Here, we successfully setting up vcpu affinity in
4498 * IOMMU guest mode. Now, we need to store the posted
4499 * interrupt information in a per-vcpu ir_list so that
4500 * we can reference to them directly when we update vcpu
4501 * scheduling information in IOMMU irte.
4502 */
4503 if (!ret && pi.is_guest_mode)
4504 svm_ir_list_add(svm, &pi);
4505 } else {
4506 /* Use legacy mode in IRTE */
4507 struct amd_iommu_pi_data pi;
4508
4509 /**
4510 * Here, pi is used to:
4511 * - Tell IOMMU to use legacy mode for this interrupt.
4512 * - Retrieve ga_tag of prior interrupt remapping data.
4513 */
4514 pi.is_guest_mode = false;
4515 ret = irq_set_vcpu_affinity(host_irq, &pi);
4516
4517 /**
4518 * Check if the posted interrupt was previously
4519 * setup with the guest_mode by checking if the ga_tag
4520 * was cached. If so, we need to clean up the per-vcpu
4521 * ir_list.
4522 */
4523 if (!ret && pi.prev_ga_tag) {
4524 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4525 struct kvm_vcpu *vcpu;
4526
4527 vcpu = kvm_get_vcpu_by_id(kvm, id);
4528 if (vcpu)
4529 svm_ir_list_del(to_svm(vcpu), &pi);
4530 }
4531 }
4532
4533 if (!ret && svm) {
4534 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4535 host_irq, e->gsi,
4536 vcpu_info.vector,
4537 vcpu_info.pi_desc_addr, set);
4538 }
4539
4540 if (ret < 0) {
4541 pr_err("%s: failed to update PI IRTE\n", __func__);
4542 goto out;
4543 }
4544 }
4545
4546 ret = 0;
4547 out:
4548 srcu_read_unlock(&kvm->irq_srcu, idx);
4549 return ret;
4550 }
4551
4552 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4553 {
4554 struct vcpu_svm *svm = to_svm(vcpu);
4555 struct vmcb *vmcb = svm->vmcb;
4556 int ret;
4557 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4558 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4559 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4560
4561 return ret;
4562 }
4563
4564 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4565 {
4566 struct vcpu_svm *svm = to_svm(vcpu);
4567
4568 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4569 }
4570
4571 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4572 {
4573 struct vcpu_svm *svm = to_svm(vcpu);
4574
4575 if (masked) {
4576 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4577 set_intercept(svm, INTERCEPT_IRET);
4578 } else {
4579 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4580 clr_intercept(svm, INTERCEPT_IRET);
4581 }
4582 }
4583
4584 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4585 {
4586 struct vcpu_svm *svm = to_svm(vcpu);
4587 struct vmcb *vmcb = svm->vmcb;
4588 int ret;
4589
4590 if (!gif_set(svm) ||
4591 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4592 return 0;
4593
4594 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4595
4596 if (is_guest_mode(vcpu))
4597 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4598
4599 return ret;
4600 }
4601
4602 static void enable_irq_window(struct kvm_vcpu *vcpu)
4603 {
4604 struct vcpu_svm *svm = to_svm(vcpu);
4605
4606 if (kvm_vcpu_apicv_active(vcpu))
4607 return;
4608
4609 /*
4610 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4611 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4612 * get that intercept, this function will be called again though and
4613 * we'll get the vintr intercept.
4614 */
4615 if (gif_set(svm) && nested_svm_intr(svm)) {
4616 svm_set_vintr(svm);
4617 svm_inject_irq(svm, 0x0);
4618 }
4619 }
4620
4621 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4622 {
4623 struct vcpu_svm *svm = to_svm(vcpu);
4624
4625 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4626 == HF_NMI_MASK)
4627 return; /* IRET will cause a vm exit */
4628
4629 /*
4630 * Something prevents NMI from been injected. Single step over possible
4631 * problem (IRET or exception injection or interrupt shadow)
4632 */
4633 svm->nmi_singlestep = true;
4634 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4635 }
4636
4637 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4638 {
4639 return 0;
4640 }
4641
4642 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4643 {
4644 struct vcpu_svm *svm = to_svm(vcpu);
4645
4646 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4647 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4648 else
4649 svm->asid_generation--;
4650 }
4651
4652 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4653 {
4654 }
4655
4656 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4657 {
4658 struct vcpu_svm *svm = to_svm(vcpu);
4659
4660 if (svm_nested_virtualize_tpr(vcpu))
4661 return;
4662
4663 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4664 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4665 kvm_set_cr8(vcpu, cr8);
4666 }
4667 }
4668
4669 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4670 {
4671 struct vcpu_svm *svm = to_svm(vcpu);
4672 u64 cr8;
4673
4674 if (svm_nested_virtualize_tpr(vcpu) ||
4675 kvm_vcpu_apicv_active(vcpu))
4676 return;
4677
4678 cr8 = kvm_get_cr8(vcpu);
4679 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4680 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4681 }
4682
4683 static void svm_complete_interrupts(struct vcpu_svm *svm)
4684 {
4685 u8 vector;
4686 int type;
4687 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4688 unsigned int3_injected = svm->int3_injected;
4689
4690 svm->int3_injected = 0;
4691
4692 /*
4693 * If we've made progress since setting HF_IRET_MASK, we've
4694 * executed an IRET and can allow NMI injection.
4695 */
4696 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4697 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4698 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4699 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4700 }
4701
4702 svm->vcpu.arch.nmi_injected = false;
4703 kvm_clear_exception_queue(&svm->vcpu);
4704 kvm_clear_interrupt_queue(&svm->vcpu);
4705
4706 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4707 return;
4708
4709 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4710
4711 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4712 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4713
4714 switch (type) {
4715 case SVM_EXITINTINFO_TYPE_NMI:
4716 svm->vcpu.arch.nmi_injected = true;
4717 break;
4718 case SVM_EXITINTINFO_TYPE_EXEPT:
4719 /*
4720 * In case of software exceptions, do not reinject the vector,
4721 * but re-execute the instruction instead. Rewind RIP first
4722 * if we emulated INT3 before.
4723 */
4724 if (kvm_exception_is_soft(vector)) {
4725 if (vector == BP_VECTOR && int3_injected &&
4726 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4727 kvm_rip_write(&svm->vcpu,
4728 kvm_rip_read(&svm->vcpu) -
4729 int3_injected);
4730 break;
4731 }
4732 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4733 u32 err = svm->vmcb->control.exit_int_info_err;
4734 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4735
4736 } else
4737 kvm_requeue_exception(&svm->vcpu, vector);
4738 break;
4739 case SVM_EXITINTINFO_TYPE_INTR:
4740 kvm_queue_interrupt(&svm->vcpu, vector, false);
4741 break;
4742 default:
4743 break;
4744 }
4745 }
4746
4747 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4748 {
4749 struct vcpu_svm *svm = to_svm(vcpu);
4750 struct vmcb_control_area *control = &svm->vmcb->control;
4751
4752 control->exit_int_info = control->event_inj;
4753 control->exit_int_info_err = control->event_inj_err;
4754 control->event_inj = 0;
4755 svm_complete_interrupts(svm);
4756 }
4757
4758 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4759 {
4760 struct vcpu_svm *svm = to_svm(vcpu);
4761
4762 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4763 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4764 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4765
4766 /*
4767 * A vmexit emulation is required before the vcpu can be executed
4768 * again.
4769 */
4770 if (unlikely(svm->nested.exit_required))
4771 return;
4772
4773 pre_svm_run(svm);
4774
4775 sync_lapic_to_cr8(vcpu);
4776
4777 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4778
4779 clgi();
4780
4781 local_irq_enable();
4782
4783 asm volatile (
4784 "push %%" _ASM_BP "; \n\t"
4785 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4786 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4787 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4788 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4789 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4790 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4791 #ifdef CONFIG_X86_64
4792 "mov %c[r8](%[svm]), %%r8 \n\t"
4793 "mov %c[r9](%[svm]), %%r9 \n\t"
4794 "mov %c[r10](%[svm]), %%r10 \n\t"
4795 "mov %c[r11](%[svm]), %%r11 \n\t"
4796 "mov %c[r12](%[svm]), %%r12 \n\t"
4797 "mov %c[r13](%[svm]), %%r13 \n\t"
4798 "mov %c[r14](%[svm]), %%r14 \n\t"
4799 "mov %c[r15](%[svm]), %%r15 \n\t"
4800 #endif
4801
4802 /* Enter guest mode */
4803 "push %%" _ASM_AX " \n\t"
4804 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4805 __ex(SVM_VMLOAD) "\n\t"
4806 __ex(SVM_VMRUN) "\n\t"
4807 __ex(SVM_VMSAVE) "\n\t"
4808 "pop %%" _ASM_AX " \n\t"
4809
4810 /* Save guest registers, load host registers */
4811 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4812 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4813 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4814 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4815 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4816 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4817 #ifdef CONFIG_X86_64
4818 "mov %%r8, %c[r8](%[svm]) \n\t"
4819 "mov %%r9, %c[r9](%[svm]) \n\t"
4820 "mov %%r10, %c[r10](%[svm]) \n\t"
4821 "mov %%r11, %c[r11](%[svm]) \n\t"
4822 "mov %%r12, %c[r12](%[svm]) \n\t"
4823 "mov %%r13, %c[r13](%[svm]) \n\t"
4824 "mov %%r14, %c[r14](%[svm]) \n\t"
4825 "mov %%r15, %c[r15](%[svm]) \n\t"
4826 #endif
4827 "pop %%" _ASM_BP
4828 :
4829 : [svm]"a"(svm),
4830 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4831 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4832 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4833 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4834 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4835 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4836 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4837 #ifdef CONFIG_X86_64
4838 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4839 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4840 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4841 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4842 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4843 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4844 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4845 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4846 #endif
4847 : "cc", "memory"
4848 #ifdef CONFIG_X86_64
4849 , "rbx", "rcx", "rdx", "rsi", "rdi"
4850 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4851 #else
4852 , "ebx", "ecx", "edx", "esi", "edi"
4853 #endif
4854 );
4855
4856 #ifdef CONFIG_X86_64
4857 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4858 #else
4859 loadsegment(fs, svm->host.fs);
4860 #ifndef CONFIG_X86_32_LAZY_GS
4861 loadsegment(gs, svm->host.gs);
4862 #endif
4863 #endif
4864
4865 reload_tss(vcpu);
4866
4867 local_irq_disable();
4868
4869 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4870 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4871 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4872 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4873
4874 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4875 kvm_before_handle_nmi(&svm->vcpu);
4876
4877 stgi();
4878
4879 /* Any pending NMI will happen here */
4880
4881 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4882 kvm_after_handle_nmi(&svm->vcpu);
4883
4884 sync_cr8_to_lapic(vcpu);
4885
4886 svm->next_rip = 0;
4887
4888 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4889
4890 /* if exit due to PF check for async PF */
4891 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4892 svm->apf_reason = kvm_read_and_reset_pf_reason();
4893
4894 if (npt_enabled) {
4895 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4896 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4897 }
4898
4899 /*
4900 * We need to handle MC intercepts here before the vcpu has a chance to
4901 * change the physical cpu
4902 */
4903 if (unlikely(svm->vmcb->control.exit_code ==
4904 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4905 svm_handle_mce(svm);
4906
4907 mark_all_clean(svm->vmcb);
4908 }
4909
4910 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4911 {
4912 struct vcpu_svm *svm = to_svm(vcpu);
4913
4914 svm->vmcb->save.cr3 = root;
4915 mark_dirty(svm->vmcb, VMCB_CR);
4916 svm_flush_tlb(vcpu);
4917 }
4918
4919 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4920 {
4921 struct vcpu_svm *svm = to_svm(vcpu);
4922
4923 svm->vmcb->control.nested_cr3 = root;
4924 mark_dirty(svm->vmcb, VMCB_NPT);
4925
4926 /* Also sync guest cr3 here in case we live migrate */
4927 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4928 mark_dirty(svm->vmcb, VMCB_CR);
4929
4930 svm_flush_tlb(vcpu);
4931 }
4932
4933 static int is_disabled(void)
4934 {
4935 u64 vm_cr;
4936
4937 rdmsrl(MSR_VM_CR, vm_cr);
4938 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4939 return 1;
4940
4941 return 0;
4942 }
4943
4944 static void
4945 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4946 {
4947 /*
4948 * Patch in the VMMCALL instruction:
4949 */
4950 hypercall[0] = 0x0f;
4951 hypercall[1] = 0x01;
4952 hypercall[2] = 0xd9;
4953 }
4954
4955 static void svm_check_processor_compat(void *rtn)
4956 {
4957 *(int *)rtn = 0;
4958 }
4959
4960 static bool svm_cpu_has_accelerated_tpr(void)
4961 {
4962 return false;
4963 }
4964
4965 static bool svm_has_high_real_mode_segbase(void)
4966 {
4967 return true;
4968 }
4969
4970 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4971 {
4972 return 0;
4973 }
4974
4975 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4976 {
4977 struct vcpu_svm *svm = to_svm(vcpu);
4978 struct kvm_cpuid_entry2 *entry;
4979
4980 /* Update nrips enabled cache */
4981 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4982
4983 if (!kvm_vcpu_apicv_active(vcpu))
4984 return;
4985
4986 entry = kvm_find_cpuid_entry(vcpu, 1, 0);
4987 if (entry)
4988 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4989 }
4990
4991 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4992 {
4993 switch (func) {
4994 case 0x1:
4995 if (avic)
4996 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
4997 break;
4998 case 0x80000001:
4999 if (nested)
5000 entry->ecx |= (1 << 2); /* Set SVM bit */
5001 break;
5002 case 0x8000000A:
5003 entry->eax = 1; /* SVM revision 1 */
5004 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5005 ASID emulation to nested SVM */
5006 entry->ecx = 0; /* Reserved */
5007 entry->edx = 0; /* Per default do not support any
5008 additional features */
5009
5010 /* Support next_rip if host supports it */
5011 if (boot_cpu_has(X86_FEATURE_NRIPS))
5012 entry->edx |= SVM_FEATURE_NRIP;
5013
5014 /* Support NPT for the guest if enabled */
5015 if (npt_enabled)
5016 entry->edx |= SVM_FEATURE_NPT;
5017
5018 break;
5019 }
5020 }
5021
5022 static int svm_get_lpage_level(void)
5023 {
5024 return PT_PDPE_LEVEL;
5025 }
5026
5027 static bool svm_rdtscp_supported(void)
5028 {
5029 return boot_cpu_has(X86_FEATURE_RDTSCP);
5030 }
5031
5032 static bool svm_invpcid_supported(void)
5033 {
5034 return false;
5035 }
5036
5037 static bool svm_mpx_supported(void)
5038 {
5039 return false;
5040 }
5041
5042 static bool svm_xsaves_supported(void)
5043 {
5044 return false;
5045 }
5046
5047 static bool svm_has_wbinvd_exit(void)
5048 {
5049 return true;
5050 }
5051
5052 #define PRE_EX(exit) { .exit_code = (exit), \
5053 .stage = X86_ICPT_PRE_EXCEPT, }
5054 #define POST_EX(exit) { .exit_code = (exit), \
5055 .stage = X86_ICPT_POST_EXCEPT, }
5056 #define POST_MEM(exit) { .exit_code = (exit), \
5057 .stage = X86_ICPT_POST_MEMACCESS, }
5058
5059 static const struct __x86_intercept {
5060 u32 exit_code;
5061 enum x86_intercept_stage stage;
5062 } x86_intercept_map[] = {
5063 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5064 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5065 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5066 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5067 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5068 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5069 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5070 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5071 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5072 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5073 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5074 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5075 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5076 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5077 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5078 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5079 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5080 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5081 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5082 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5083 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5084 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5085 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5086 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5087 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5088 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5089 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5090 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5091 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5092 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5093 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5094 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5095 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5096 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5097 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5098 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5099 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5100 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5101 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5102 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5103 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5104 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5105 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5106 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5107 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5108 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5109 };
5110
5111 #undef PRE_EX
5112 #undef POST_EX
5113 #undef POST_MEM
5114
5115 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5116 struct x86_instruction_info *info,
5117 enum x86_intercept_stage stage)
5118 {
5119 struct vcpu_svm *svm = to_svm(vcpu);
5120 int vmexit, ret = X86EMUL_CONTINUE;
5121 struct __x86_intercept icpt_info;
5122 struct vmcb *vmcb = svm->vmcb;
5123
5124 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5125 goto out;
5126
5127 icpt_info = x86_intercept_map[info->intercept];
5128
5129 if (stage != icpt_info.stage)
5130 goto out;
5131
5132 switch (icpt_info.exit_code) {
5133 case SVM_EXIT_READ_CR0:
5134 if (info->intercept == x86_intercept_cr_read)
5135 icpt_info.exit_code += info->modrm_reg;
5136 break;
5137 case SVM_EXIT_WRITE_CR0: {
5138 unsigned long cr0, val;
5139 u64 intercept;
5140
5141 if (info->intercept == x86_intercept_cr_write)
5142 icpt_info.exit_code += info->modrm_reg;
5143
5144 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5145 info->intercept == x86_intercept_clts)
5146 break;
5147
5148 intercept = svm->nested.intercept;
5149
5150 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5151 break;
5152
5153 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5154 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5155
5156 if (info->intercept == x86_intercept_lmsw) {
5157 cr0 &= 0xfUL;
5158 val &= 0xfUL;
5159 /* lmsw can't clear PE - catch this here */
5160 if (cr0 & X86_CR0_PE)
5161 val |= X86_CR0_PE;
5162 }
5163
5164 if (cr0 ^ val)
5165 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5166
5167 break;
5168 }
5169 case SVM_EXIT_READ_DR0:
5170 case SVM_EXIT_WRITE_DR0:
5171 icpt_info.exit_code += info->modrm_reg;
5172 break;
5173 case SVM_EXIT_MSR:
5174 if (info->intercept == x86_intercept_wrmsr)
5175 vmcb->control.exit_info_1 = 1;
5176 else
5177 vmcb->control.exit_info_1 = 0;
5178 break;
5179 case SVM_EXIT_PAUSE:
5180 /*
5181 * We get this for NOP only, but pause
5182 * is rep not, check this here
5183 */
5184 if (info->rep_prefix != REPE_PREFIX)
5185 goto out;
5186 case SVM_EXIT_IOIO: {
5187 u64 exit_info;
5188 u32 bytes;
5189
5190 if (info->intercept == x86_intercept_in ||
5191 info->intercept == x86_intercept_ins) {
5192 exit_info = ((info->src_val & 0xffff) << 16) |
5193 SVM_IOIO_TYPE_MASK;
5194 bytes = info->dst_bytes;
5195 } else {
5196 exit_info = (info->dst_val & 0xffff) << 16;
5197 bytes = info->src_bytes;
5198 }
5199
5200 if (info->intercept == x86_intercept_outs ||
5201 info->intercept == x86_intercept_ins)
5202 exit_info |= SVM_IOIO_STR_MASK;
5203
5204 if (info->rep_prefix)
5205 exit_info |= SVM_IOIO_REP_MASK;
5206
5207 bytes = min(bytes, 4u);
5208
5209 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5210
5211 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5212
5213 vmcb->control.exit_info_1 = exit_info;
5214 vmcb->control.exit_info_2 = info->next_rip;
5215
5216 break;
5217 }
5218 default:
5219 break;
5220 }
5221
5222 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5223 if (static_cpu_has(X86_FEATURE_NRIPS))
5224 vmcb->control.next_rip = info->next_rip;
5225 vmcb->control.exit_code = icpt_info.exit_code;
5226 vmexit = nested_svm_exit_handled(svm);
5227
5228 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5229 : X86EMUL_CONTINUE;
5230
5231 out:
5232 return ret;
5233 }
5234
5235 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5236 {
5237 local_irq_enable();
5238 /*
5239 * We must have an instruction with interrupts enabled, so
5240 * the timer interrupt isn't delayed by the interrupt shadow.
5241 */
5242 asm("nop");
5243 local_irq_disable();
5244 }
5245
5246 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5247 {
5248 }
5249
5250 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5251 {
5252 if (avic_handle_apic_id_update(vcpu) != 0)
5253 return;
5254 if (avic_handle_dfr_update(vcpu) != 0)
5255 return;
5256 avic_handle_ldr_update(vcpu);
5257 }
5258
5259 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5260 .cpu_has_kvm_support = has_svm,
5261 .disabled_by_bios = is_disabled,
5262 .hardware_setup = svm_hardware_setup,
5263 .hardware_unsetup = svm_hardware_unsetup,
5264 .check_processor_compatibility = svm_check_processor_compat,
5265 .hardware_enable = svm_hardware_enable,
5266 .hardware_disable = svm_hardware_disable,
5267 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5268 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5269
5270 .vcpu_create = svm_create_vcpu,
5271 .vcpu_free = svm_free_vcpu,
5272 .vcpu_reset = svm_vcpu_reset,
5273
5274 .vm_init = avic_vm_init,
5275 .vm_destroy = avic_vm_destroy,
5276
5277 .prepare_guest_switch = svm_prepare_guest_switch,
5278 .vcpu_load = svm_vcpu_load,
5279 .vcpu_put = svm_vcpu_put,
5280 .vcpu_blocking = svm_vcpu_blocking,
5281 .vcpu_unblocking = svm_vcpu_unblocking,
5282
5283 .update_bp_intercept = update_bp_intercept,
5284 .get_msr = svm_get_msr,
5285 .set_msr = svm_set_msr,
5286 .get_segment_base = svm_get_segment_base,
5287 .get_segment = svm_get_segment,
5288 .set_segment = svm_set_segment,
5289 .get_cpl = svm_get_cpl,
5290 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5291 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5292 .decache_cr3 = svm_decache_cr3,
5293 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5294 .set_cr0 = svm_set_cr0,
5295 .set_cr3 = svm_set_cr3,
5296 .set_cr4 = svm_set_cr4,
5297 .set_efer = svm_set_efer,
5298 .get_idt = svm_get_idt,
5299 .set_idt = svm_set_idt,
5300 .get_gdt = svm_get_gdt,
5301 .set_gdt = svm_set_gdt,
5302 .get_dr6 = svm_get_dr6,
5303 .set_dr6 = svm_set_dr6,
5304 .set_dr7 = svm_set_dr7,
5305 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5306 .cache_reg = svm_cache_reg,
5307 .get_rflags = svm_get_rflags,
5308 .set_rflags = svm_set_rflags,
5309
5310 .get_pkru = svm_get_pkru,
5311
5312 .tlb_flush = svm_flush_tlb,
5313
5314 .run = svm_vcpu_run,
5315 .handle_exit = handle_exit,
5316 .skip_emulated_instruction = skip_emulated_instruction,
5317 .set_interrupt_shadow = svm_set_interrupt_shadow,
5318 .get_interrupt_shadow = svm_get_interrupt_shadow,
5319 .patch_hypercall = svm_patch_hypercall,
5320 .set_irq = svm_set_irq,
5321 .set_nmi = svm_inject_nmi,
5322 .queue_exception = svm_queue_exception,
5323 .cancel_injection = svm_cancel_injection,
5324 .interrupt_allowed = svm_interrupt_allowed,
5325 .nmi_allowed = svm_nmi_allowed,
5326 .get_nmi_mask = svm_get_nmi_mask,
5327 .set_nmi_mask = svm_set_nmi_mask,
5328 .enable_nmi_window = enable_nmi_window,
5329 .enable_irq_window = enable_irq_window,
5330 .update_cr8_intercept = update_cr8_intercept,
5331 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5332 .get_enable_apicv = svm_get_enable_apicv,
5333 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5334 .load_eoi_exitmap = svm_load_eoi_exitmap,
5335 .hwapic_irr_update = svm_hwapic_irr_update,
5336 .hwapic_isr_update = svm_hwapic_isr_update,
5337 .apicv_post_state_restore = avic_post_state_restore,
5338
5339 .set_tss_addr = svm_set_tss_addr,
5340 .get_tdp_level = get_npt_level,
5341 .get_mt_mask = svm_get_mt_mask,
5342
5343 .get_exit_info = svm_get_exit_info,
5344
5345 .get_lpage_level = svm_get_lpage_level,
5346
5347 .cpuid_update = svm_cpuid_update,
5348
5349 .rdtscp_supported = svm_rdtscp_supported,
5350 .invpcid_supported = svm_invpcid_supported,
5351 .mpx_supported = svm_mpx_supported,
5352 .xsaves_supported = svm_xsaves_supported,
5353
5354 .set_supported_cpuid = svm_set_supported_cpuid,
5355
5356 .has_wbinvd_exit = svm_has_wbinvd_exit,
5357
5358 .write_tsc_offset = svm_write_tsc_offset,
5359
5360 .set_tdp_cr3 = set_tdp_cr3,
5361
5362 .check_intercept = svm_check_intercept,
5363 .handle_external_intr = svm_handle_external_intr,
5364
5365 .sched_in = svm_sched_in,
5366
5367 .pmu_ops = &amd_pmu_ops,
5368 .deliver_posted_interrupt = svm_deliver_avic_intr,
5369 .update_pi_irte = svm_update_pi_irte,
5370 };
5371
5372 static int __init svm_init(void)
5373 {
5374 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5375 __alignof__(struct vcpu_svm), THIS_MODULE);
5376 }
5377
5378 static void __exit svm_exit(void)
5379 {
5380 kvm_exit();
5381 }
5382
5383 module_init(svm_init)
5384 module_exit(svm_exit)