]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
kvm/x86: Pass return code of kvm_emulate_hypercall
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50 X86_FEATURE_MATCH(X86_FEATURE_SVM),
51 {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT (1 << 0)
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_NRIP (1 << 3)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70
71 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
72 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
73 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
78 #define TSC_RATIO_MIN 0x0000000000000001ULL
79 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86 MSR_FS_BASE,
87 #endif
88 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 MSR_TSC_AUX,
90 };
91
92 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
93
94 struct kvm_vcpu;
95
96 struct nested_state {
97 struct vmcb *hsave;
98 u64 hsave_msr;
99 u64 vm_cr_msr;
100 u64 vmcb;
101
102 /* These are the merged vectors */
103 u32 *msrpm;
104
105 /* gpa pointers to the real vectors */
106 u64 vmcb_msrpm;
107 u64 vmcb_iopm;
108
109 /* A VMEXIT is required but not yet emulated */
110 bool exit_required;
111
112 /* cache for intercepts of the guest */
113 u32 intercept_cr;
114 u32 intercept_dr;
115 u32 intercept_exceptions;
116 u64 intercept;
117
118 /* Nested Paging related state */
119 u64 nested_cr3;
120 };
121
122 #define MSRPM_OFFSETS 16
123 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
124
125 /*
126 * Set osvw_len to higher value when updated Revision Guides
127 * are published and we know what the new status bits are
128 */
129 static uint64_t osvw_len = 4, osvw_status;
130
131 struct vcpu_svm {
132 struct kvm_vcpu vcpu;
133 struct vmcb *vmcb;
134 unsigned long vmcb_pa;
135 struct svm_cpu_data *svm_data;
136 uint64_t asid_generation;
137 uint64_t sysenter_esp;
138 uint64_t sysenter_eip;
139 uint64_t tsc_aux;
140
141 u64 next_rip;
142
143 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
144 struct {
145 u16 fs;
146 u16 gs;
147 u16 ldt;
148 u64 gs_base;
149 } host;
150
151 u32 *msrpm;
152
153 ulong nmi_iret_rip;
154
155 struct nested_state nested;
156
157 bool nmi_singlestep;
158
159 unsigned int3_injected;
160 unsigned long int3_rip;
161 u32 apf_reason;
162
163 /* cached guest cpuid flags for faster access */
164 bool nrips_enabled : 1;
165 };
166
167 static DEFINE_PER_CPU(u64, current_tsc_ratio);
168 #define TSC_RATIO_DEFAULT 0x0100000000ULL
169
170 #define MSR_INVALID 0xffffffffU
171
172 static const struct svm_direct_access_msrs {
173 u32 index; /* Index of the MSR */
174 bool always; /* True if intercept is always on */
175 } direct_access_msrs[] = {
176 { .index = MSR_STAR, .always = true },
177 { .index = MSR_IA32_SYSENTER_CS, .always = true },
178 #ifdef CONFIG_X86_64
179 { .index = MSR_GS_BASE, .always = true },
180 { .index = MSR_FS_BASE, .always = true },
181 { .index = MSR_KERNEL_GS_BASE, .always = true },
182 { .index = MSR_LSTAR, .always = true },
183 { .index = MSR_CSTAR, .always = true },
184 { .index = MSR_SYSCALL_MASK, .always = true },
185 #endif
186 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
187 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
188 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
189 { .index = MSR_IA32_LASTINTTOIP, .always = false },
190 { .index = MSR_INVALID, .always = false },
191 };
192
193 /* enable NPT for AMD64 and X86 with PAE */
194 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
195 static bool npt_enabled = true;
196 #else
197 static bool npt_enabled;
198 #endif
199
200 /* allow nested paging (virtualized MMU) for all guests */
201 static int npt = true;
202 module_param(npt, int, S_IRUGO);
203
204 /* allow nested virtualization in KVM/SVM */
205 static int nested = true;
206 module_param(nested, int, S_IRUGO);
207
208 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
209 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
210 static void svm_complete_interrupts(struct vcpu_svm *svm);
211
212 static int nested_svm_exit_handled(struct vcpu_svm *svm);
213 static int nested_svm_intercept(struct vcpu_svm *svm);
214 static int nested_svm_vmexit(struct vcpu_svm *svm);
215 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
216 bool has_error_code, u32 error_code);
217
218 enum {
219 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
220 pause filter count */
221 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
222 VMCB_ASID, /* ASID */
223 VMCB_INTR, /* int_ctl, int_vector */
224 VMCB_NPT, /* npt_en, nCR3, gPAT */
225 VMCB_CR, /* CR0, CR3, CR4, EFER */
226 VMCB_DR, /* DR6, DR7 */
227 VMCB_DT, /* GDT, IDT */
228 VMCB_SEG, /* CS, DS, SS, ES, CPL */
229 VMCB_CR2, /* CR2 only */
230 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
231 VMCB_DIRTY_MAX,
232 };
233
234 /* TPR and CR2 are always written before VMRUN */
235 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
236
237 static inline void mark_all_dirty(struct vmcb *vmcb)
238 {
239 vmcb->control.clean = 0;
240 }
241
242 static inline void mark_all_clean(struct vmcb *vmcb)
243 {
244 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
245 & ~VMCB_ALWAYS_DIRTY_MASK;
246 }
247
248 static inline void mark_dirty(struct vmcb *vmcb, int bit)
249 {
250 vmcb->control.clean &= ~(1 << bit);
251 }
252
253 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
254 {
255 return container_of(vcpu, struct vcpu_svm, vcpu);
256 }
257
258 static void recalc_intercepts(struct vcpu_svm *svm)
259 {
260 struct vmcb_control_area *c, *h;
261 struct nested_state *g;
262
263 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
264
265 if (!is_guest_mode(&svm->vcpu))
266 return;
267
268 c = &svm->vmcb->control;
269 h = &svm->nested.hsave->control;
270 g = &svm->nested;
271
272 c->intercept_cr = h->intercept_cr | g->intercept_cr;
273 c->intercept_dr = h->intercept_dr | g->intercept_dr;
274 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
275 c->intercept = h->intercept | g->intercept;
276 }
277
278 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
279 {
280 if (is_guest_mode(&svm->vcpu))
281 return svm->nested.hsave;
282 else
283 return svm->vmcb;
284 }
285
286 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
287 {
288 struct vmcb *vmcb = get_host_vmcb(svm);
289
290 vmcb->control.intercept_cr |= (1U << bit);
291
292 recalc_intercepts(svm);
293 }
294
295 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
296 {
297 struct vmcb *vmcb = get_host_vmcb(svm);
298
299 vmcb->control.intercept_cr &= ~(1U << bit);
300
301 recalc_intercepts(svm);
302 }
303
304 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
305 {
306 struct vmcb *vmcb = get_host_vmcb(svm);
307
308 return vmcb->control.intercept_cr & (1U << bit);
309 }
310
311 static inline void set_dr_intercepts(struct vcpu_svm *svm)
312 {
313 struct vmcb *vmcb = get_host_vmcb(svm);
314
315 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
316 | (1 << INTERCEPT_DR1_READ)
317 | (1 << INTERCEPT_DR2_READ)
318 | (1 << INTERCEPT_DR3_READ)
319 | (1 << INTERCEPT_DR4_READ)
320 | (1 << INTERCEPT_DR5_READ)
321 | (1 << INTERCEPT_DR6_READ)
322 | (1 << INTERCEPT_DR7_READ)
323 | (1 << INTERCEPT_DR0_WRITE)
324 | (1 << INTERCEPT_DR1_WRITE)
325 | (1 << INTERCEPT_DR2_WRITE)
326 | (1 << INTERCEPT_DR3_WRITE)
327 | (1 << INTERCEPT_DR4_WRITE)
328 | (1 << INTERCEPT_DR5_WRITE)
329 | (1 << INTERCEPT_DR6_WRITE)
330 | (1 << INTERCEPT_DR7_WRITE);
331
332 recalc_intercepts(svm);
333 }
334
335 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
336 {
337 struct vmcb *vmcb = get_host_vmcb(svm);
338
339 vmcb->control.intercept_dr = 0;
340
341 recalc_intercepts(svm);
342 }
343
344 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
345 {
346 struct vmcb *vmcb = get_host_vmcb(svm);
347
348 vmcb->control.intercept_exceptions |= (1U << bit);
349
350 recalc_intercepts(svm);
351 }
352
353 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
354 {
355 struct vmcb *vmcb = get_host_vmcb(svm);
356
357 vmcb->control.intercept_exceptions &= ~(1U << bit);
358
359 recalc_intercepts(svm);
360 }
361
362 static inline void set_intercept(struct vcpu_svm *svm, int bit)
363 {
364 struct vmcb *vmcb = get_host_vmcb(svm);
365
366 vmcb->control.intercept |= (1ULL << bit);
367
368 recalc_intercepts(svm);
369 }
370
371 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
372 {
373 struct vmcb *vmcb = get_host_vmcb(svm);
374
375 vmcb->control.intercept &= ~(1ULL << bit);
376
377 recalc_intercepts(svm);
378 }
379
380 static inline void enable_gif(struct vcpu_svm *svm)
381 {
382 svm->vcpu.arch.hflags |= HF_GIF_MASK;
383 }
384
385 static inline void disable_gif(struct vcpu_svm *svm)
386 {
387 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
388 }
389
390 static inline bool gif_set(struct vcpu_svm *svm)
391 {
392 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
393 }
394
395 static unsigned long iopm_base;
396
397 struct kvm_ldttss_desc {
398 u16 limit0;
399 u16 base0;
400 unsigned base1:8, type:5, dpl:2, p:1;
401 unsigned limit1:4, zero0:3, g:1, base2:8;
402 u32 base3;
403 u32 zero1;
404 } __attribute__((packed));
405
406 struct svm_cpu_data {
407 int cpu;
408
409 u64 asid_generation;
410 u32 max_asid;
411 u32 next_asid;
412 struct kvm_ldttss_desc *tss_desc;
413
414 struct page *save_area;
415 };
416
417 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
418
419 struct svm_init_data {
420 int cpu;
421 int r;
422 };
423
424 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
425
426 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
427 #define MSRS_RANGE_SIZE 2048
428 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
429
430 static u32 svm_msrpm_offset(u32 msr)
431 {
432 u32 offset;
433 int i;
434
435 for (i = 0; i < NUM_MSR_MAPS; i++) {
436 if (msr < msrpm_ranges[i] ||
437 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
438 continue;
439
440 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
441 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
442
443 /* Now we have the u8 offset - but need the u32 offset */
444 return offset / 4;
445 }
446
447 /* MSR not in any range */
448 return MSR_INVALID;
449 }
450
451 #define MAX_INST_SIZE 15
452
453 static inline void clgi(void)
454 {
455 asm volatile (__ex(SVM_CLGI));
456 }
457
458 static inline void stgi(void)
459 {
460 asm volatile (__ex(SVM_STGI));
461 }
462
463 static inline void invlpga(unsigned long addr, u32 asid)
464 {
465 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
466 }
467
468 static int get_npt_level(void)
469 {
470 #ifdef CONFIG_X86_64
471 return PT64_ROOT_LEVEL;
472 #else
473 return PT32E_ROOT_LEVEL;
474 #endif
475 }
476
477 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
478 {
479 vcpu->arch.efer = efer;
480 if (!npt_enabled && !(efer & EFER_LMA))
481 efer &= ~EFER_LME;
482
483 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
484 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
485 }
486
487 static int is_external_interrupt(u32 info)
488 {
489 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
490 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
491 }
492
493 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
494 {
495 struct vcpu_svm *svm = to_svm(vcpu);
496 u32 ret = 0;
497
498 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
499 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
500 return ret;
501 }
502
503 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
504 {
505 struct vcpu_svm *svm = to_svm(vcpu);
506
507 if (mask == 0)
508 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
509 else
510 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
511
512 }
513
514 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
515 {
516 struct vcpu_svm *svm = to_svm(vcpu);
517
518 if (svm->vmcb->control.next_rip != 0) {
519 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
520 svm->next_rip = svm->vmcb->control.next_rip;
521 }
522
523 if (!svm->next_rip) {
524 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
525 EMULATE_DONE)
526 printk(KERN_DEBUG "%s: NOP\n", __func__);
527 return;
528 }
529 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
530 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
531 __func__, kvm_rip_read(vcpu), svm->next_rip);
532
533 kvm_rip_write(vcpu, svm->next_rip);
534 svm_set_interrupt_shadow(vcpu, 0);
535 }
536
537 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
538 bool has_error_code, u32 error_code,
539 bool reinject)
540 {
541 struct vcpu_svm *svm = to_svm(vcpu);
542
543 /*
544 * If we are within a nested VM we'd better #VMEXIT and let the guest
545 * handle the exception
546 */
547 if (!reinject &&
548 nested_svm_check_exception(svm, nr, has_error_code, error_code))
549 return;
550
551 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
552 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
553
554 /*
555 * For guest debugging where we have to reinject #BP if some
556 * INT3 is guest-owned:
557 * Emulate nRIP by moving RIP forward. Will fail if injection
558 * raises a fault that is not intercepted. Still better than
559 * failing in all cases.
560 */
561 skip_emulated_instruction(&svm->vcpu);
562 rip = kvm_rip_read(&svm->vcpu);
563 svm->int3_rip = rip + svm->vmcb->save.cs.base;
564 svm->int3_injected = rip - old_rip;
565 }
566
567 svm->vmcb->control.event_inj = nr
568 | SVM_EVTINJ_VALID
569 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
570 | SVM_EVTINJ_TYPE_EXEPT;
571 svm->vmcb->control.event_inj_err = error_code;
572 }
573
574 static void svm_init_erratum_383(void)
575 {
576 u32 low, high;
577 int err;
578 u64 val;
579
580 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
581 return;
582
583 /* Use _safe variants to not break nested virtualization */
584 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
585 if (err)
586 return;
587
588 val |= (1ULL << 47);
589
590 low = lower_32_bits(val);
591 high = upper_32_bits(val);
592
593 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
594
595 erratum_383_found = true;
596 }
597
598 static void svm_init_osvw(struct kvm_vcpu *vcpu)
599 {
600 /*
601 * Guests should see errata 400 and 415 as fixed (assuming that
602 * HLT and IO instructions are intercepted).
603 */
604 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
605 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
606
607 /*
608 * By increasing VCPU's osvw.length to 3 we are telling the guest that
609 * all osvw.status bits inside that length, including bit 0 (which is
610 * reserved for erratum 298), are valid. However, if host processor's
611 * osvw_len is 0 then osvw_status[0] carries no information. We need to
612 * be conservative here and therefore we tell the guest that erratum 298
613 * is present (because we really don't know).
614 */
615 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
616 vcpu->arch.osvw.status |= 1;
617 }
618
619 static int has_svm(void)
620 {
621 const char *msg;
622
623 if (!cpu_has_svm(&msg)) {
624 printk(KERN_INFO "has_svm: %s\n", msg);
625 return 0;
626 }
627
628 return 1;
629 }
630
631 static void svm_hardware_disable(void)
632 {
633 /* Make sure we clean up behind us */
634 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
635 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
636
637 cpu_svm_disable();
638
639 amd_pmu_disable_virt();
640 }
641
642 static int svm_hardware_enable(void)
643 {
644
645 struct svm_cpu_data *sd;
646 uint64_t efer;
647 struct desc_ptr gdt_descr;
648 struct desc_struct *gdt;
649 int me = raw_smp_processor_id();
650
651 rdmsrl(MSR_EFER, efer);
652 if (efer & EFER_SVME)
653 return -EBUSY;
654
655 if (!has_svm()) {
656 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
657 return -EINVAL;
658 }
659 sd = per_cpu(svm_data, me);
660 if (!sd) {
661 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
662 return -EINVAL;
663 }
664
665 sd->asid_generation = 1;
666 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
667 sd->next_asid = sd->max_asid + 1;
668
669 native_store_gdt(&gdt_descr);
670 gdt = (struct desc_struct *)gdt_descr.address;
671 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
672
673 wrmsrl(MSR_EFER, efer | EFER_SVME);
674
675 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
676
677 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
678 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
679 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
680 }
681
682
683 /*
684 * Get OSVW bits.
685 *
686 * Note that it is possible to have a system with mixed processor
687 * revisions and therefore different OSVW bits. If bits are not the same
688 * on different processors then choose the worst case (i.e. if erratum
689 * is present on one processor and not on another then assume that the
690 * erratum is present everywhere).
691 */
692 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
693 uint64_t len, status = 0;
694 int err;
695
696 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
697 if (!err)
698 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
699 &err);
700
701 if (err)
702 osvw_status = osvw_len = 0;
703 else {
704 if (len < osvw_len)
705 osvw_len = len;
706 osvw_status |= status;
707 osvw_status &= (1ULL << osvw_len) - 1;
708 }
709 } else
710 osvw_status = osvw_len = 0;
711
712 svm_init_erratum_383();
713
714 amd_pmu_enable_virt();
715
716 return 0;
717 }
718
719 static void svm_cpu_uninit(int cpu)
720 {
721 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
722
723 if (!sd)
724 return;
725
726 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
727 __free_page(sd->save_area);
728 kfree(sd);
729 }
730
731 static int svm_cpu_init(int cpu)
732 {
733 struct svm_cpu_data *sd;
734 int r;
735
736 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
737 if (!sd)
738 return -ENOMEM;
739 sd->cpu = cpu;
740 sd->save_area = alloc_page(GFP_KERNEL);
741 r = -ENOMEM;
742 if (!sd->save_area)
743 goto err_1;
744
745 per_cpu(svm_data, cpu) = sd;
746
747 return 0;
748
749 err_1:
750 kfree(sd);
751 return r;
752
753 }
754
755 static bool valid_msr_intercept(u32 index)
756 {
757 int i;
758
759 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
760 if (direct_access_msrs[i].index == index)
761 return true;
762
763 return false;
764 }
765
766 static void set_msr_interception(u32 *msrpm, unsigned msr,
767 int read, int write)
768 {
769 u8 bit_read, bit_write;
770 unsigned long tmp;
771 u32 offset;
772
773 /*
774 * If this warning triggers extend the direct_access_msrs list at the
775 * beginning of the file
776 */
777 WARN_ON(!valid_msr_intercept(msr));
778
779 offset = svm_msrpm_offset(msr);
780 bit_read = 2 * (msr & 0x0f);
781 bit_write = 2 * (msr & 0x0f) + 1;
782 tmp = msrpm[offset];
783
784 BUG_ON(offset == MSR_INVALID);
785
786 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
787 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
788
789 msrpm[offset] = tmp;
790 }
791
792 static void svm_vcpu_init_msrpm(u32 *msrpm)
793 {
794 int i;
795
796 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
797
798 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
799 if (!direct_access_msrs[i].always)
800 continue;
801
802 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
803 }
804 }
805
806 static void add_msr_offset(u32 offset)
807 {
808 int i;
809
810 for (i = 0; i < MSRPM_OFFSETS; ++i) {
811
812 /* Offset already in list? */
813 if (msrpm_offsets[i] == offset)
814 return;
815
816 /* Slot used by another offset? */
817 if (msrpm_offsets[i] != MSR_INVALID)
818 continue;
819
820 /* Add offset to list */
821 msrpm_offsets[i] = offset;
822
823 return;
824 }
825
826 /*
827 * If this BUG triggers the msrpm_offsets table has an overflow. Just
828 * increase MSRPM_OFFSETS in this case.
829 */
830 BUG();
831 }
832
833 static void init_msrpm_offsets(void)
834 {
835 int i;
836
837 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
838
839 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
840 u32 offset;
841
842 offset = svm_msrpm_offset(direct_access_msrs[i].index);
843 BUG_ON(offset == MSR_INVALID);
844
845 add_msr_offset(offset);
846 }
847 }
848
849 static void svm_enable_lbrv(struct vcpu_svm *svm)
850 {
851 u32 *msrpm = svm->msrpm;
852
853 svm->vmcb->control.lbr_ctl = 1;
854 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
855 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
856 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
857 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
858 }
859
860 static void svm_disable_lbrv(struct vcpu_svm *svm)
861 {
862 u32 *msrpm = svm->msrpm;
863
864 svm->vmcb->control.lbr_ctl = 0;
865 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
866 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
867 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
868 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
869 }
870
871 static __init int svm_hardware_setup(void)
872 {
873 int cpu;
874 struct page *iopm_pages;
875 void *iopm_va;
876 int r;
877
878 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
879
880 if (!iopm_pages)
881 return -ENOMEM;
882
883 iopm_va = page_address(iopm_pages);
884 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
885 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
886
887 init_msrpm_offsets();
888
889 if (boot_cpu_has(X86_FEATURE_NX))
890 kvm_enable_efer_bits(EFER_NX);
891
892 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
893 kvm_enable_efer_bits(EFER_FFXSR);
894
895 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
896 kvm_has_tsc_control = true;
897 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
898 kvm_tsc_scaling_ratio_frac_bits = 32;
899 }
900
901 if (nested) {
902 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
903 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
904 }
905
906 for_each_possible_cpu(cpu) {
907 r = svm_cpu_init(cpu);
908 if (r)
909 goto err;
910 }
911
912 if (!boot_cpu_has(X86_FEATURE_NPT))
913 npt_enabled = false;
914
915 if (npt_enabled && !npt) {
916 printk(KERN_INFO "kvm: Nested Paging disabled\n");
917 npt_enabled = false;
918 }
919
920 if (npt_enabled) {
921 printk(KERN_INFO "kvm: Nested Paging enabled\n");
922 kvm_enable_tdp();
923 } else
924 kvm_disable_tdp();
925
926 return 0;
927
928 err:
929 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
930 iopm_base = 0;
931 return r;
932 }
933
934 static __exit void svm_hardware_unsetup(void)
935 {
936 int cpu;
937
938 for_each_possible_cpu(cpu)
939 svm_cpu_uninit(cpu);
940
941 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
942 iopm_base = 0;
943 }
944
945 static void init_seg(struct vmcb_seg *seg)
946 {
947 seg->selector = 0;
948 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
949 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
950 seg->limit = 0xffff;
951 seg->base = 0;
952 }
953
954 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
955 {
956 seg->selector = 0;
957 seg->attrib = SVM_SELECTOR_P_MASK | type;
958 seg->limit = 0xffff;
959 seg->base = 0;
960 }
961
962 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
963 {
964 struct vcpu_svm *svm = to_svm(vcpu);
965
966 return svm->vmcb->control.tsc_offset;
967 }
968
969 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
970 {
971 struct vcpu_svm *svm = to_svm(vcpu);
972 u64 g_tsc_offset = 0;
973
974 if (is_guest_mode(vcpu)) {
975 g_tsc_offset = svm->vmcb->control.tsc_offset -
976 svm->nested.hsave->control.tsc_offset;
977 svm->nested.hsave->control.tsc_offset = offset;
978 } else
979 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
980 svm->vmcb->control.tsc_offset,
981 offset);
982
983 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
984
985 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
986 }
987
988 static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
989 {
990 struct vcpu_svm *svm = to_svm(vcpu);
991
992 svm->vmcb->control.tsc_offset += adjustment;
993 if (is_guest_mode(vcpu))
994 svm->nested.hsave->control.tsc_offset += adjustment;
995 else
996 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
997 svm->vmcb->control.tsc_offset - adjustment,
998 svm->vmcb->control.tsc_offset);
999
1000 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1001 }
1002
1003 static void init_vmcb(struct vcpu_svm *svm)
1004 {
1005 struct vmcb_control_area *control = &svm->vmcb->control;
1006 struct vmcb_save_area *save = &svm->vmcb->save;
1007
1008 svm->vcpu.fpu_active = 1;
1009 svm->vcpu.arch.hflags = 0;
1010
1011 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1012 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1013 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1014 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1015 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1016 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1017 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1018
1019 set_dr_intercepts(svm);
1020
1021 set_exception_intercept(svm, PF_VECTOR);
1022 set_exception_intercept(svm, UD_VECTOR);
1023 set_exception_intercept(svm, MC_VECTOR);
1024 set_exception_intercept(svm, AC_VECTOR);
1025 set_exception_intercept(svm, DB_VECTOR);
1026
1027 set_intercept(svm, INTERCEPT_INTR);
1028 set_intercept(svm, INTERCEPT_NMI);
1029 set_intercept(svm, INTERCEPT_SMI);
1030 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1031 set_intercept(svm, INTERCEPT_RDPMC);
1032 set_intercept(svm, INTERCEPT_CPUID);
1033 set_intercept(svm, INTERCEPT_INVD);
1034 set_intercept(svm, INTERCEPT_HLT);
1035 set_intercept(svm, INTERCEPT_INVLPG);
1036 set_intercept(svm, INTERCEPT_INVLPGA);
1037 set_intercept(svm, INTERCEPT_IOIO_PROT);
1038 set_intercept(svm, INTERCEPT_MSR_PROT);
1039 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1040 set_intercept(svm, INTERCEPT_SHUTDOWN);
1041 set_intercept(svm, INTERCEPT_VMRUN);
1042 set_intercept(svm, INTERCEPT_VMMCALL);
1043 set_intercept(svm, INTERCEPT_VMLOAD);
1044 set_intercept(svm, INTERCEPT_VMSAVE);
1045 set_intercept(svm, INTERCEPT_STGI);
1046 set_intercept(svm, INTERCEPT_CLGI);
1047 set_intercept(svm, INTERCEPT_SKINIT);
1048 set_intercept(svm, INTERCEPT_WBINVD);
1049 set_intercept(svm, INTERCEPT_MONITOR);
1050 set_intercept(svm, INTERCEPT_MWAIT);
1051 set_intercept(svm, INTERCEPT_XSETBV);
1052
1053 control->iopm_base_pa = iopm_base;
1054 control->msrpm_base_pa = __pa(svm->msrpm);
1055 control->int_ctl = V_INTR_MASKING_MASK;
1056
1057 init_seg(&save->es);
1058 init_seg(&save->ss);
1059 init_seg(&save->ds);
1060 init_seg(&save->fs);
1061 init_seg(&save->gs);
1062
1063 save->cs.selector = 0xf000;
1064 save->cs.base = 0xffff0000;
1065 /* Executable/Readable Code Segment */
1066 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1067 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1068 save->cs.limit = 0xffff;
1069
1070 save->gdtr.limit = 0xffff;
1071 save->idtr.limit = 0xffff;
1072
1073 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1074 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1075
1076 svm_set_efer(&svm->vcpu, 0);
1077 save->dr6 = 0xffff0ff0;
1078 kvm_set_rflags(&svm->vcpu, 2);
1079 save->rip = 0x0000fff0;
1080 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1081
1082 /*
1083 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084 * It also updates the guest-visible cr0 value.
1085 */
1086 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1087 kvm_mmu_reset_context(&svm->vcpu);
1088
1089 save->cr4 = X86_CR4_PAE;
1090 /* rdx = ?? */
1091
1092 if (npt_enabled) {
1093 /* Setup VMCB for Nested Paging */
1094 control->nested_ctl = 1;
1095 clr_intercept(svm, INTERCEPT_INVLPG);
1096 clr_exception_intercept(svm, PF_VECTOR);
1097 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1098 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1099 save->g_pat = svm->vcpu.arch.pat;
1100 save->cr3 = 0;
1101 save->cr4 = 0;
1102 }
1103 svm->asid_generation = 0;
1104
1105 svm->nested.vmcb = 0;
1106 svm->vcpu.arch.hflags = 0;
1107
1108 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1109 control->pause_filter_count = 3000;
1110 set_intercept(svm, INTERCEPT_PAUSE);
1111 }
1112
1113 mark_all_dirty(svm->vmcb);
1114
1115 enable_gif(svm);
1116 }
1117
1118 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1119 {
1120 struct vcpu_svm *svm = to_svm(vcpu);
1121 u32 dummy;
1122 u32 eax = 1;
1123
1124 if (!init_event) {
1125 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1126 MSR_IA32_APICBASE_ENABLE;
1127 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1128 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1129 }
1130 init_vmcb(svm);
1131
1132 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1133 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1134 }
1135
1136 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1137 {
1138 struct vcpu_svm *svm;
1139 struct page *page;
1140 struct page *msrpm_pages;
1141 struct page *hsave_page;
1142 struct page *nested_msrpm_pages;
1143 int err;
1144
1145 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1146 if (!svm) {
1147 err = -ENOMEM;
1148 goto out;
1149 }
1150
1151 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1152 if (err)
1153 goto free_svm;
1154
1155 err = -ENOMEM;
1156 page = alloc_page(GFP_KERNEL);
1157 if (!page)
1158 goto uninit;
1159
1160 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1161 if (!msrpm_pages)
1162 goto free_page1;
1163
1164 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1165 if (!nested_msrpm_pages)
1166 goto free_page2;
1167
1168 hsave_page = alloc_page(GFP_KERNEL);
1169 if (!hsave_page)
1170 goto free_page3;
1171
1172 svm->nested.hsave = page_address(hsave_page);
1173
1174 svm->msrpm = page_address(msrpm_pages);
1175 svm_vcpu_init_msrpm(svm->msrpm);
1176
1177 svm->nested.msrpm = page_address(nested_msrpm_pages);
1178 svm_vcpu_init_msrpm(svm->nested.msrpm);
1179
1180 svm->vmcb = page_address(page);
1181 clear_page(svm->vmcb);
1182 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1183 svm->asid_generation = 0;
1184 init_vmcb(svm);
1185
1186 svm_init_osvw(&svm->vcpu);
1187
1188 return &svm->vcpu;
1189
1190 free_page3:
1191 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1192 free_page2:
1193 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1194 free_page1:
1195 __free_page(page);
1196 uninit:
1197 kvm_vcpu_uninit(&svm->vcpu);
1198 free_svm:
1199 kmem_cache_free(kvm_vcpu_cache, svm);
1200 out:
1201 return ERR_PTR(err);
1202 }
1203
1204 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1205 {
1206 struct vcpu_svm *svm = to_svm(vcpu);
1207
1208 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1209 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1210 __free_page(virt_to_page(svm->nested.hsave));
1211 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1212 kvm_vcpu_uninit(vcpu);
1213 kmem_cache_free(kvm_vcpu_cache, svm);
1214 }
1215
1216 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1217 {
1218 struct vcpu_svm *svm = to_svm(vcpu);
1219 int i;
1220
1221 if (unlikely(cpu != vcpu->cpu)) {
1222 svm->asid_generation = 0;
1223 mark_all_dirty(svm->vmcb);
1224 }
1225
1226 #ifdef CONFIG_X86_64
1227 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1228 #endif
1229 savesegment(fs, svm->host.fs);
1230 savesegment(gs, svm->host.gs);
1231 svm->host.ldt = kvm_read_ldt();
1232
1233 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1234 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1235
1236 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1237 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1238 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1239 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1240 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1241 }
1242 }
1243 /* This assumes that the kernel never uses MSR_TSC_AUX */
1244 if (static_cpu_has(X86_FEATURE_RDTSCP))
1245 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1246 }
1247
1248 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1249 {
1250 struct vcpu_svm *svm = to_svm(vcpu);
1251 int i;
1252
1253 ++vcpu->stat.host_state_reload;
1254 kvm_load_ldt(svm->host.ldt);
1255 #ifdef CONFIG_X86_64
1256 loadsegment(fs, svm->host.fs);
1257 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1258 load_gs_index(svm->host.gs);
1259 #else
1260 #ifdef CONFIG_X86_32_LAZY_GS
1261 loadsegment(gs, svm->host.gs);
1262 #endif
1263 #endif
1264 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1265 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1266 }
1267
1268 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1269 {
1270 return to_svm(vcpu)->vmcb->save.rflags;
1271 }
1272
1273 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1274 {
1275 /*
1276 * Any change of EFLAGS.VM is accompained by a reload of SS
1277 * (caused by either a task switch or an inter-privilege IRET),
1278 * so we do not need to update the CPL here.
1279 */
1280 to_svm(vcpu)->vmcb->save.rflags = rflags;
1281 }
1282
1283 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1284 {
1285 switch (reg) {
1286 case VCPU_EXREG_PDPTR:
1287 BUG_ON(!npt_enabled);
1288 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1289 break;
1290 default:
1291 BUG();
1292 }
1293 }
1294
1295 static void svm_set_vintr(struct vcpu_svm *svm)
1296 {
1297 set_intercept(svm, INTERCEPT_VINTR);
1298 }
1299
1300 static void svm_clear_vintr(struct vcpu_svm *svm)
1301 {
1302 clr_intercept(svm, INTERCEPT_VINTR);
1303 }
1304
1305 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1306 {
1307 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1308
1309 switch (seg) {
1310 case VCPU_SREG_CS: return &save->cs;
1311 case VCPU_SREG_DS: return &save->ds;
1312 case VCPU_SREG_ES: return &save->es;
1313 case VCPU_SREG_FS: return &save->fs;
1314 case VCPU_SREG_GS: return &save->gs;
1315 case VCPU_SREG_SS: return &save->ss;
1316 case VCPU_SREG_TR: return &save->tr;
1317 case VCPU_SREG_LDTR: return &save->ldtr;
1318 }
1319 BUG();
1320 return NULL;
1321 }
1322
1323 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1324 {
1325 struct vmcb_seg *s = svm_seg(vcpu, seg);
1326
1327 return s->base;
1328 }
1329
1330 static void svm_get_segment(struct kvm_vcpu *vcpu,
1331 struct kvm_segment *var, int seg)
1332 {
1333 struct vmcb_seg *s = svm_seg(vcpu, seg);
1334
1335 var->base = s->base;
1336 var->limit = s->limit;
1337 var->selector = s->selector;
1338 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1339 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1340 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1341 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1342 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1343 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1344 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1345
1346 /*
1347 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1348 * However, the SVM spec states that the G bit is not observed by the
1349 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1350 * So let's synthesize a legal G bit for all segments, this helps
1351 * running KVM nested. It also helps cross-vendor migration, because
1352 * Intel's vmentry has a check on the 'G' bit.
1353 */
1354 var->g = s->limit > 0xfffff;
1355
1356 /*
1357 * AMD's VMCB does not have an explicit unusable field, so emulate it
1358 * for cross vendor migration purposes by "not present"
1359 */
1360 var->unusable = !var->present || (var->type == 0);
1361
1362 switch (seg) {
1363 case VCPU_SREG_TR:
1364 /*
1365 * Work around a bug where the busy flag in the tr selector
1366 * isn't exposed
1367 */
1368 var->type |= 0x2;
1369 break;
1370 case VCPU_SREG_DS:
1371 case VCPU_SREG_ES:
1372 case VCPU_SREG_FS:
1373 case VCPU_SREG_GS:
1374 /*
1375 * The accessed bit must always be set in the segment
1376 * descriptor cache, although it can be cleared in the
1377 * descriptor, the cached bit always remains at 1. Since
1378 * Intel has a check on this, set it here to support
1379 * cross-vendor migration.
1380 */
1381 if (!var->unusable)
1382 var->type |= 0x1;
1383 break;
1384 case VCPU_SREG_SS:
1385 /*
1386 * On AMD CPUs sometimes the DB bit in the segment
1387 * descriptor is left as 1, although the whole segment has
1388 * been made unusable. Clear it here to pass an Intel VMX
1389 * entry check when cross vendor migrating.
1390 */
1391 if (var->unusable)
1392 var->db = 0;
1393 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1394 break;
1395 }
1396 }
1397
1398 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1399 {
1400 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1401
1402 return save->cpl;
1403 }
1404
1405 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1406 {
1407 struct vcpu_svm *svm = to_svm(vcpu);
1408
1409 dt->size = svm->vmcb->save.idtr.limit;
1410 dt->address = svm->vmcb->save.idtr.base;
1411 }
1412
1413 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1414 {
1415 struct vcpu_svm *svm = to_svm(vcpu);
1416
1417 svm->vmcb->save.idtr.limit = dt->size;
1418 svm->vmcb->save.idtr.base = dt->address ;
1419 mark_dirty(svm->vmcb, VMCB_DT);
1420 }
1421
1422 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1423 {
1424 struct vcpu_svm *svm = to_svm(vcpu);
1425
1426 dt->size = svm->vmcb->save.gdtr.limit;
1427 dt->address = svm->vmcb->save.gdtr.base;
1428 }
1429
1430 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1431 {
1432 struct vcpu_svm *svm = to_svm(vcpu);
1433
1434 svm->vmcb->save.gdtr.limit = dt->size;
1435 svm->vmcb->save.gdtr.base = dt->address ;
1436 mark_dirty(svm->vmcb, VMCB_DT);
1437 }
1438
1439 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1440 {
1441 }
1442
1443 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1444 {
1445 }
1446
1447 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1448 {
1449 }
1450
1451 static void update_cr0_intercept(struct vcpu_svm *svm)
1452 {
1453 ulong gcr0 = svm->vcpu.arch.cr0;
1454 u64 *hcr0 = &svm->vmcb->save.cr0;
1455
1456 if (!svm->vcpu.fpu_active)
1457 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1458 else
1459 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1460 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1461
1462 mark_dirty(svm->vmcb, VMCB_CR);
1463
1464 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1465 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1466 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1467 } else {
1468 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1469 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1470 }
1471 }
1472
1473 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1474 {
1475 struct vcpu_svm *svm = to_svm(vcpu);
1476
1477 #ifdef CONFIG_X86_64
1478 if (vcpu->arch.efer & EFER_LME) {
1479 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1480 vcpu->arch.efer |= EFER_LMA;
1481 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1482 }
1483
1484 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1485 vcpu->arch.efer &= ~EFER_LMA;
1486 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1487 }
1488 }
1489 #endif
1490 vcpu->arch.cr0 = cr0;
1491
1492 if (!npt_enabled)
1493 cr0 |= X86_CR0_PG | X86_CR0_WP;
1494
1495 if (!vcpu->fpu_active)
1496 cr0 |= X86_CR0_TS;
1497 /*
1498 * re-enable caching here because the QEMU bios
1499 * does not do it - this results in some delay at
1500 * reboot
1501 */
1502 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1503 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1504 svm->vmcb->save.cr0 = cr0;
1505 mark_dirty(svm->vmcb, VMCB_CR);
1506 update_cr0_intercept(svm);
1507 }
1508
1509 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1510 {
1511 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1512 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1513
1514 if (cr4 & X86_CR4_VMXE)
1515 return 1;
1516
1517 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1518 svm_flush_tlb(vcpu);
1519
1520 vcpu->arch.cr4 = cr4;
1521 if (!npt_enabled)
1522 cr4 |= X86_CR4_PAE;
1523 cr4 |= host_cr4_mce;
1524 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1525 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1526 return 0;
1527 }
1528
1529 static void svm_set_segment(struct kvm_vcpu *vcpu,
1530 struct kvm_segment *var, int seg)
1531 {
1532 struct vcpu_svm *svm = to_svm(vcpu);
1533 struct vmcb_seg *s = svm_seg(vcpu, seg);
1534
1535 s->base = var->base;
1536 s->limit = var->limit;
1537 s->selector = var->selector;
1538 if (var->unusable)
1539 s->attrib = 0;
1540 else {
1541 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1542 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1543 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1544 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1545 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1546 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1547 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1548 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1549 }
1550
1551 /*
1552 * This is always accurate, except if SYSRET returned to a segment
1553 * with SS.DPL != 3. Intel does not have this quirk, and always
1554 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1555 * would entail passing the CPL to userspace and back.
1556 */
1557 if (seg == VCPU_SREG_SS)
1558 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1559
1560 mark_dirty(svm->vmcb, VMCB_SEG);
1561 }
1562
1563 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1564 {
1565 struct vcpu_svm *svm = to_svm(vcpu);
1566
1567 clr_exception_intercept(svm, BP_VECTOR);
1568
1569 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1570 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1571 set_exception_intercept(svm, BP_VECTOR);
1572 } else
1573 vcpu->guest_debug = 0;
1574 }
1575
1576 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1577 {
1578 if (sd->next_asid > sd->max_asid) {
1579 ++sd->asid_generation;
1580 sd->next_asid = 1;
1581 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1582 }
1583
1584 svm->asid_generation = sd->asid_generation;
1585 svm->vmcb->control.asid = sd->next_asid++;
1586
1587 mark_dirty(svm->vmcb, VMCB_ASID);
1588 }
1589
1590 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1591 {
1592 return to_svm(vcpu)->vmcb->save.dr6;
1593 }
1594
1595 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1596 {
1597 struct vcpu_svm *svm = to_svm(vcpu);
1598
1599 svm->vmcb->save.dr6 = value;
1600 mark_dirty(svm->vmcb, VMCB_DR);
1601 }
1602
1603 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1604 {
1605 struct vcpu_svm *svm = to_svm(vcpu);
1606
1607 get_debugreg(vcpu->arch.db[0], 0);
1608 get_debugreg(vcpu->arch.db[1], 1);
1609 get_debugreg(vcpu->arch.db[2], 2);
1610 get_debugreg(vcpu->arch.db[3], 3);
1611 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1612 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1613
1614 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1615 set_dr_intercepts(svm);
1616 }
1617
1618 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1619 {
1620 struct vcpu_svm *svm = to_svm(vcpu);
1621
1622 svm->vmcb->save.dr7 = value;
1623 mark_dirty(svm->vmcb, VMCB_DR);
1624 }
1625
1626 static int pf_interception(struct vcpu_svm *svm)
1627 {
1628 u64 fault_address = svm->vmcb->control.exit_info_2;
1629 u32 error_code;
1630 int r = 1;
1631
1632 switch (svm->apf_reason) {
1633 default:
1634 error_code = svm->vmcb->control.exit_info_1;
1635
1636 trace_kvm_page_fault(fault_address, error_code);
1637 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1638 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1639 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1640 svm->vmcb->control.insn_bytes,
1641 svm->vmcb->control.insn_len);
1642 break;
1643 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1644 svm->apf_reason = 0;
1645 local_irq_disable();
1646 kvm_async_pf_task_wait(fault_address);
1647 local_irq_enable();
1648 break;
1649 case KVM_PV_REASON_PAGE_READY:
1650 svm->apf_reason = 0;
1651 local_irq_disable();
1652 kvm_async_pf_task_wake(fault_address);
1653 local_irq_enable();
1654 break;
1655 }
1656 return r;
1657 }
1658
1659 static int db_interception(struct vcpu_svm *svm)
1660 {
1661 struct kvm_run *kvm_run = svm->vcpu.run;
1662
1663 if (!(svm->vcpu.guest_debug &
1664 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1665 !svm->nmi_singlestep) {
1666 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1667 return 1;
1668 }
1669
1670 if (svm->nmi_singlestep) {
1671 svm->nmi_singlestep = false;
1672 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1673 svm->vmcb->save.rflags &=
1674 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1675 }
1676
1677 if (svm->vcpu.guest_debug &
1678 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1679 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1680 kvm_run->debug.arch.pc =
1681 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1682 kvm_run->debug.arch.exception = DB_VECTOR;
1683 return 0;
1684 }
1685
1686 return 1;
1687 }
1688
1689 static int bp_interception(struct vcpu_svm *svm)
1690 {
1691 struct kvm_run *kvm_run = svm->vcpu.run;
1692
1693 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1694 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1695 kvm_run->debug.arch.exception = BP_VECTOR;
1696 return 0;
1697 }
1698
1699 static int ud_interception(struct vcpu_svm *svm)
1700 {
1701 int er;
1702
1703 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1704 if (er != EMULATE_DONE)
1705 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1706 return 1;
1707 }
1708
1709 static int ac_interception(struct vcpu_svm *svm)
1710 {
1711 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1712 return 1;
1713 }
1714
1715 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1716 {
1717 struct vcpu_svm *svm = to_svm(vcpu);
1718
1719 clr_exception_intercept(svm, NM_VECTOR);
1720
1721 svm->vcpu.fpu_active = 1;
1722 update_cr0_intercept(svm);
1723 }
1724
1725 static int nm_interception(struct vcpu_svm *svm)
1726 {
1727 svm_fpu_activate(&svm->vcpu);
1728 return 1;
1729 }
1730
1731 static bool is_erratum_383(void)
1732 {
1733 int err, i;
1734 u64 value;
1735
1736 if (!erratum_383_found)
1737 return false;
1738
1739 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1740 if (err)
1741 return false;
1742
1743 /* Bit 62 may or may not be set for this mce */
1744 value &= ~(1ULL << 62);
1745
1746 if (value != 0xb600000000010015ULL)
1747 return false;
1748
1749 /* Clear MCi_STATUS registers */
1750 for (i = 0; i < 6; ++i)
1751 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1752
1753 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1754 if (!err) {
1755 u32 low, high;
1756
1757 value &= ~(1ULL << 2);
1758 low = lower_32_bits(value);
1759 high = upper_32_bits(value);
1760
1761 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1762 }
1763
1764 /* Flush tlb to evict multi-match entries */
1765 __flush_tlb_all();
1766
1767 return true;
1768 }
1769
1770 static void svm_handle_mce(struct vcpu_svm *svm)
1771 {
1772 if (is_erratum_383()) {
1773 /*
1774 * Erratum 383 triggered. Guest state is corrupt so kill the
1775 * guest.
1776 */
1777 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1778
1779 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1780
1781 return;
1782 }
1783
1784 /*
1785 * On an #MC intercept the MCE handler is not called automatically in
1786 * the host. So do it by hand here.
1787 */
1788 asm volatile (
1789 "int $0x12\n");
1790 /* not sure if we ever come back to this point */
1791
1792 return;
1793 }
1794
1795 static int mc_interception(struct vcpu_svm *svm)
1796 {
1797 return 1;
1798 }
1799
1800 static int shutdown_interception(struct vcpu_svm *svm)
1801 {
1802 struct kvm_run *kvm_run = svm->vcpu.run;
1803
1804 /*
1805 * VMCB is undefined after a SHUTDOWN intercept
1806 * so reinitialize it.
1807 */
1808 clear_page(svm->vmcb);
1809 init_vmcb(svm);
1810
1811 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1812 return 0;
1813 }
1814
1815 static int io_interception(struct vcpu_svm *svm)
1816 {
1817 struct kvm_vcpu *vcpu = &svm->vcpu;
1818 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1819 int size, in, string;
1820 unsigned port;
1821
1822 ++svm->vcpu.stat.io_exits;
1823 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1824 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1825 if (string || in)
1826 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1827
1828 port = io_info >> 16;
1829 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1830 svm->next_rip = svm->vmcb->control.exit_info_2;
1831 skip_emulated_instruction(&svm->vcpu);
1832
1833 return kvm_fast_pio_out(vcpu, size, port);
1834 }
1835
1836 static int nmi_interception(struct vcpu_svm *svm)
1837 {
1838 return 1;
1839 }
1840
1841 static int intr_interception(struct vcpu_svm *svm)
1842 {
1843 ++svm->vcpu.stat.irq_exits;
1844 return 1;
1845 }
1846
1847 static int nop_on_interception(struct vcpu_svm *svm)
1848 {
1849 return 1;
1850 }
1851
1852 static int halt_interception(struct vcpu_svm *svm)
1853 {
1854 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1855 return kvm_emulate_halt(&svm->vcpu);
1856 }
1857
1858 static int vmmcall_interception(struct vcpu_svm *svm)
1859 {
1860 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1861 return kvm_emulate_hypercall(&svm->vcpu);
1862 }
1863
1864 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1865 {
1866 struct vcpu_svm *svm = to_svm(vcpu);
1867
1868 return svm->nested.nested_cr3;
1869 }
1870
1871 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1872 {
1873 struct vcpu_svm *svm = to_svm(vcpu);
1874 u64 cr3 = svm->nested.nested_cr3;
1875 u64 pdpte;
1876 int ret;
1877
1878 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1879 offset_in_page(cr3) + index * 8, 8);
1880 if (ret)
1881 return 0;
1882 return pdpte;
1883 }
1884
1885 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1886 unsigned long root)
1887 {
1888 struct vcpu_svm *svm = to_svm(vcpu);
1889
1890 svm->vmcb->control.nested_cr3 = root;
1891 mark_dirty(svm->vmcb, VMCB_NPT);
1892 svm_flush_tlb(vcpu);
1893 }
1894
1895 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1896 struct x86_exception *fault)
1897 {
1898 struct vcpu_svm *svm = to_svm(vcpu);
1899
1900 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1901 /*
1902 * TODO: track the cause of the nested page fault, and
1903 * correctly fill in the high bits of exit_info_1.
1904 */
1905 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1906 svm->vmcb->control.exit_code_hi = 0;
1907 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1908 svm->vmcb->control.exit_info_2 = fault->address;
1909 }
1910
1911 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1912 svm->vmcb->control.exit_info_1 |= fault->error_code;
1913
1914 /*
1915 * The present bit is always zero for page structure faults on real
1916 * hardware.
1917 */
1918 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1919 svm->vmcb->control.exit_info_1 &= ~1;
1920
1921 nested_svm_vmexit(svm);
1922 }
1923
1924 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1925 {
1926 WARN_ON(mmu_is_nested(vcpu));
1927 kvm_init_shadow_mmu(vcpu);
1928 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1929 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1930 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1931 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1932 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1933 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1934 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1935 }
1936
1937 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1938 {
1939 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1940 }
1941
1942 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1943 {
1944 if (!(svm->vcpu.arch.efer & EFER_SVME)
1945 || !is_paging(&svm->vcpu)) {
1946 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1947 return 1;
1948 }
1949
1950 if (svm->vmcb->save.cpl) {
1951 kvm_inject_gp(&svm->vcpu, 0);
1952 return 1;
1953 }
1954
1955 return 0;
1956 }
1957
1958 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1959 bool has_error_code, u32 error_code)
1960 {
1961 int vmexit;
1962
1963 if (!is_guest_mode(&svm->vcpu))
1964 return 0;
1965
1966 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1967 svm->vmcb->control.exit_code_hi = 0;
1968 svm->vmcb->control.exit_info_1 = error_code;
1969 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1970
1971 vmexit = nested_svm_intercept(svm);
1972 if (vmexit == NESTED_EXIT_DONE)
1973 svm->nested.exit_required = true;
1974
1975 return vmexit;
1976 }
1977
1978 /* This function returns true if it is save to enable the irq window */
1979 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1980 {
1981 if (!is_guest_mode(&svm->vcpu))
1982 return true;
1983
1984 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1985 return true;
1986
1987 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1988 return false;
1989
1990 /*
1991 * if vmexit was already requested (by intercepted exception
1992 * for instance) do not overwrite it with "external interrupt"
1993 * vmexit.
1994 */
1995 if (svm->nested.exit_required)
1996 return false;
1997
1998 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1999 svm->vmcb->control.exit_info_1 = 0;
2000 svm->vmcb->control.exit_info_2 = 0;
2001
2002 if (svm->nested.intercept & 1ULL) {
2003 /*
2004 * The #vmexit can't be emulated here directly because this
2005 * code path runs with irqs and preemption disabled. A
2006 * #vmexit emulation might sleep. Only signal request for
2007 * the #vmexit here.
2008 */
2009 svm->nested.exit_required = true;
2010 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2011 return false;
2012 }
2013
2014 return true;
2015 }
2016
2017 /* This function returns true if it is save to enable the nmi window */
2018 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2019 {
2020 if (!is_guest_mode(&svm->vcpu))
2021 return true;
2022
2023 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2024 return true;
2025
2026 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2027 svm->nested.exit_required = true;
2028
2029 return false;
2030 }
2031
2032 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2033 {
2034 struct page *page;
2035
2036 might_sleep();
2037
2038 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2039 if (is_error_page(page))
2040 goto error;
2041
2042 *_page = page;
2043
2044 return kmap(page);
2045
2046 error:
2047 kvm_inject_gp(&svm->vcpu, 0);
2048
2049 return NULL;
2050 }
2051
2052 static void nested_svm_unmap(struct page *page)
2053 {
2054 kunmap(page);
2055 kvm_release_page_dirty(page);
2056 }
2057
2058 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2059 {
2060 unsigned port, size, iopm_len;
2061 u16 val, mask;
2062 u8 start_bit;
2063 u64 gpa;
2064
2065 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2066 return NESTED_EXIT_HOST;
2067
2068 port = svm->vmcb->control.exit_info_1 >> 16;
2069 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2070 SVM_IOIO_SIZE_SHIFT;
2071 gpa = svm->nested.vmcb_iopm + (port / 8);
2072 start_bit = port % 8;
2073 iopm_len = (start_bit + size > 8) ? 2 : 1;
2074 mask = (0xf >> (4 - size)) << start_bit;
2075 val = 0;
2076
2077 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2078 return NESTED_EXIT_DONE;
2079
2080 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2081 }
2082
2083 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2084 {
2085 u32 offset, msr, value;
2086 int write, mask;
2087
2088 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2089 return NESTED_EXIT_HOST;
2090
2091 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2092 offset = svm_msrpm_offset(msr);
2093 write = svm->vmcb->control.exit_info_1 & 1;
2094 mask = 1 << ((2 * (msr & 0xf)) + write);
2095
2096 if (offset == MSR_INVALID)
2097 return NESTED_EXIT_DONE;
2098
2099 /* Offset is in 32 bit units but need in 8 bit units */
2100 offset *= 4;
2101
2102 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2103 return NESTED_EXIT_DONE;
2104
2105 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2106 }
2107
2108 static int nested_svm_exit_special(struct vcpu_svm *svm)
2109 {
2110 u32 exit_code = svm->vmcb->control.exit_code;
2111
2112 switch (exit_code) {
2113 case SVM_EXIT_INTR:
2114 case SVM_EXIT_NMI:
2115 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2116 return NESTED_EXIT_HOST;
2117 case SVM_EXIT_NPF:
2118 /* For now we are always handling NPFs when using them */
2119 if (npt_enabled)
2120 return NESTED_EXIT_HOST;
2121 break;
2122 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2123 /* When we're shadowing, trap PFs, but not async PF */
2124 if (!npt_enabled && svm->apf_reason == 0)
2125 return NESTED_EXIT_HOST;
2126 break;
2127 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2128 nm_interception(svm);
2129 break;
2130 default:
2131 break;
2132 }
2133
2134 return NESTED_EXIT_CONTINUE;
2135 }
2136
2137 /*
2138 * If this function returns true, this #vmexit was already handled
2139 */
2140 static int nested_svm_intercept(struct vcpu_svm *svm)
2141 {
2142 u32 exit_code = svm->vmcb->control.exit_code;
2143 int vmexit = NESTED_EXIT_HOST;
2144
2145 switch (exit_code) {
2146 case SVM_EXIT_MSR:
2147 vmexit = nested_svm_exit_handled_msr(svm);
2148 break;
2149 case SVM_EXIT_IOIO:
2150 vmexit = nested_svm_intercept_ioio(svm);
2151 break;
2152 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2153 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2154 if (svm->nested.intercept_cr & bit)
2155 vmexit = NESTED_EXIT_DONE;
2156 break;
2157 }
2158 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2159 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2160 if (svm->nested.intercept_dr & bit)
2161 vmexit = NESTED_EXIT_DONE;
2162 break;
2163 }
2164 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2165 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2166 if (svm->nested.intercept_exceptions & excp_bits)
2167 vmexit = NESTED_EXIT_DONE;
2168 /* async page fault always cause vmexit */
2169 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2170 svm->apf_reason != 0)
2171 vmexit = NESTED_EXIT_DONE;
2172 break;
2173 }
2174 case SVM_EXIT_ERR: {
2175 vmexit = NESTED_EXIT_DONE;
2176 break;
2177 }
2178 default: {
2179 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2180 if (svm->nested.intercept & exit_bits)
2181 vmexit = NESTED_EXIT_DONE;
2182 }
2183 }
2184
2185 return vmexit;
2186 }
2187
2188 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2189 {
2190 int vmexit;
2191
2192 vmexit = nested_svm_intercept(svm);
2193
2194 if (vmexit == NESTED_EXIT_DONE)
2195 nested_svm_vmexit(svm);
2196
2197 return vmexit;
2198 }
2199
2200 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2201 {
2202 struct vmcb_control_area *dst = &dst_vmcb->control;
2203 struct vmcb_control_area *from = &from_vmcb->control;
2204
2205 dst->intercept_cr = from->intercept_cr;
2206 dst->intercept_dr = from->intercept_dr;
2207 dst->intercept_exceptions = from->intercept_exceptions;
2208 dst->intercept = from->intercept;
2209 dst->iopm_base_pa = from->iopm_base_pa;
2210 dst->msrpm_base_pa = from->msrpm_base_pa;
2211 dst->tsc_offset = from->tsc_offset;
2212 dst->asid = from->asid;
2213 dst->tlb_ctl = from->tlb_ctl;
2214 dst->int_ctl = from->int_ctl;
2215 dst->int_vector = from->int_vector;
2216 dst->int_state = from->int_state;
2217 dst->exit_code = from->exit_code;
2218 dst->exit_code_hi = from->exit_code_hi;
2219 dst->exit_info_1 = from->exit_info_1;
2220 dst->exit_info_2 = from->exit_info_2;
2221 dst->exit_int_info = from->exit_int_info;
2222 dst->exit_int_info_err = from->exit_int_info_err;
2223 dst->nested_ctl = from->nested_ctl;
2224 dst->event_inj = from->event_inj;
2225 dst->event_inj_err = from->event_inj_err;
2226 dst->nested_cr3 = from->nested_cr3;
2227 dst->lbr_ctl = from->lbr_ctl;
2228 }
2229
2230 static int nested_svm_vmexit(struct vcpu_svm *svm)
2231 {
2232 struct vmcb *nested_vmcb;
2233 struct vmcb *hsave = svm->nested.hsave;
2234 struct vmcb *vmcb = svm->vmcb;
2235 struct page *page;
2236
2237 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2238 vmcb->control.exit_info_1,
2239 vmcb->control.exit_info_2,
2240 vmcb->control.exit_int_info,
2241 vmcb->control.exit_int_info_err,
2242 KVM_ISA_SVM);
2243
2244 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2245 if (!nested_vmcb)
2246 return 1;
2247
2248 /* Exit Guest-Mode */
2249 leave_guest_mode(&svm->vcpu);
2250 svm->nested.vmcb = 0;
2251
2252 /* Give the current vmcb to the guest */
2253 disable_gif(svm);
2254
2255 nested_vmcb->save.es = vmcb->save.es;
2256 nested_vmcb->save.cs = vmcb->save.cs;
2257 nested_vmcb->save.ss = vmcb->save.ss;
2258 nested_vmcb->save.ds = vmcb->save.ds;
2259 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2260 nested_vmcb->save.idtr = vmcb->save.idtr;
2261 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2262 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2263 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2264 nested_vmcb->save.cr2 = vmcb->save.cr2;
2265 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2266 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2267 nested_vmcb->save.rip = vmcb->save.rip;
2268 nested_vmcb->save.rsp = vmcb->save.rsp;
2269 nested_vmcb->save.rax = vmcb->save.rax;
2270 nested_vmcb->save.dr7 = vmcb->save.dr7;
2271 nested_vmcb->save.dr6 = vmcb->save.dr6;
2272 nested_vmcb->save.cpl = vmcb->save.cpl;
2273
2274 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2275 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2276 nested_vmcb->control.int_state = vmcb->control.int_state;
2277 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2278 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2279 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2280 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2281 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2282 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2283
2284 if (svm->nrips_enabled)
2285 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2286
2287 /*
2288 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2289 * to make sure that we do not lose injected events. So check event_inj
2290 * here and copy it to exit_int_info if it is valid.
2291 * Exit_int_info and event_inj can't be both valid because the case
2292 * below only happens on a VMRUN instruction intercept which has
2293 * no valid exit_int_info set.
2294 */
2295 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2296 struct vmcb_control_area *nc = &nested_vmcb->control;
2297
2298 nc->exit_int_info = vmcb->control.event_inj;
2299 nc->exit_int_info_err = vmcb->control.event_inj_err;
2300 }
2301
2302 nested_vmcb->control.tlb_ctl = 0;
2303 nested_vmcb->control.event_inj = 0;
2304 nested_vmcb->control.event_inj_err = 0;
2305
2306 /* We always set V_INTR_MASKING and remember the old value in hflags */
2307 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2308 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2309
2310 /* Restore the original control entries */
2311 copy_vmcb_control_area(vmcb, hsave);
2312
2313 kvm_clear_exception_queue(&svm->vcpu);
2314 kvm_clear_interrupt_queue(&svm->vcpu);
2315
2316 svm->nested.nested_cr3 = 0;
2317
2318 /* Restore selected save entries */
2319 svm->vmcb->save.es = hsave->save.es;
2320 svm->vmcb->save.cs = hsave->save.cs;
2321 svm->vmcb->save.ss = hsave->save.ss;
2322 svm->vmcb->save.ds = hsave->save.ds;
2323 svm->vmcb->save.gdtr = hsave->save.gdtr;
2324 svm->vmcb->save.idtr = hsave->save.idtr;
2325 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2326 svm_set_efer(&svm->vcpu, hsave->save.efer);
2327 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2328 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2329 if (npt_enabled) {
2330 svm->vmcb->save.cr3 = hsave->save.cr3;
2331 svm->vcpu.arch.cr3 = hsave->save.cr3;
2332 } else {
2333 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2334 }
2335 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2336 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2337 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2338 svm->vmcb->save.dr7 = 0;
2339 svm->vmcb->save.cpl = 0;
2340 svm->vmcb->control.exit_int_info = 0;
2341
2342 mark_all_dirty(svm->vmcb);
2343
2344 nested_svm_unmap(page);
2345
2346 nested_svm_uninit_mmu_context(&svm->vcpu);
2347 kvm_mmu_reset_context(&svm->vcpu);
2348 kvm_mmu_load(&svm->vcpu);
2349
2350 return 0;
2351 }
2352
2353 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2354 {
2355 /*
2356 * This function merges the msr permission bitmaps of kvm and the
2357 * nested vmcb. It is optimized in that it only merges the parts where
2358 * the kvm msr permission bitmap may contain zero bits
2359 */
2360 int i;
2361
2362 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2363 return true;
2364
2365 for (i = 0; i < MSRPM_OFFSETS; i++) {
2366 u32 value, p;
2367 u64 offset;
2368
2369 if (msrpm_offsets[i] == 0xffffffff)
2370 break;
2371
2372 p = msrpm_offsets[i];
2373 offset = svm->nested.vmcb_msrpm + (p * 4);
2374
2375 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2376 return false;
2377
2378 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2379 }
2380
2381 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2382
2383 return true;
2384 }
2385
2386 static bool nested_vmcb_checks(struct vmcb *vmcb)
2387 {
2388 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2389 return false;
2390
2391 if (vmcb->control.asid == 0)
2392 return false;
2393
2394 if (vmcb->control.nested_ctl && !npt_enabled)
2395 return false;
2396
2397 return true;
2398 }
2399
2400 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2401 {
2402 struct vmcb *nested_vmcb;
2403 struct vmcb *hsave = svm->nested.hsave;
2404 struct vmcb *vmcb = svm->vmcb;
2405 struct page *page;
2406 u64 vmcb_gpa;
2407
2408 vmcb_gpa = svm->vmcb->save.rax;
2409
2410 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2411 if (!nested_vmcb)
2412 return false;
2413
2414 if (!nested_vmcb_checks(nested_vmcb)) {
2415 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2416 nested_vmcb->control.exit_code_hi = 0;
2417 nested_vmcb->control.exit_info_1 = 0;
2418 nested_vmcb->control.exit_info_2 = 0;
2419
2420 nested_svm_unmap(page);
2421
2422 return false;
2423 }
2424
2425 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2426 nested_vmcb->save.rip,
2427 nested_vmcb->control.int_ctl,
2428 nested_vmcb->control.event_inj,
2429 nested_vmcb->control.nested_ctl);
2430
2431 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2432 nested_vmcb->control.intercept_cr >> 16,
2433 nested_vmcb->control.intercept_exceptions,
2434 nested_vmcb->control.intercept);
2435
2436 /* Clear internal status */
2437 kvm_clear_exception_queue(&svm->vcpu);
2438 kvm_clear_interrupt_queue(&svm->vcpu);
2439
2440 /*
2441 * Save the old vmcb, so we don't need to pick what we save, but can
2442 * restore everything when a VMEXIT occurs
2443 */
2444 hsave->save.es = vmcb->save.es;
2445 hsave->save.cs = vmcb->save.cs;
2446 hsave->save.ss = vmcb->save.ss;
2447 hsave->save.ds = vmcb->save.ds;
2448 hsave->save.gdtr = vmcb->save.gdtr;
2449 hsave->save.idtr = vmcb->save.idtr;
2450 hsave->save.efer = svm->vcpu.arch.efer;
2451 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2452 hsave->save.cr4 = svm->vcpu.arch.cr4;
2453 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2454 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2455 hsave->save.rsp = vmcb->save.rsp;
2456 hsave->save.rax = vmcb->save.rax;
2457 if (npt_enabled)
2458 hsave->save.cr3 = vmcb->save.cr3;
2459 else
2460 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2461
2462 copy_vmcb_control_area(hsave, vmcb);
2463
2464 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2465 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2466 else
2467 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2468
2469 if (nested_vmcb->control.nested_ctl) {
2470 kvm_mmu_unload(&svm->vcpu);
2471 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2472 nested_svm_init_mmu_context(&svm->vcpu);
2473 }
2474
2475 /* Load the nested guest state */
2476 svm->vmcb->save.es = nested_vmcb->save.es;
2477 svm->vmcb->save.cs = nested_vmcb->save.cs;
2478 svm->vmcb->save.ss = nested_vmcb->save.ss;
2479 svm->vmcb->save.ds = nested_vmcb->save.ds;
2480 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2481 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2482 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2483 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2484 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2485 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2486 if (npt_enabled) {
2487 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2488 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2489 } else
2490 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2491
2492 /* Guest paging mode is active - reset mmu */
2493 kvm_mmu_reset_context(&svm->vcpu);
2494
2495 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2496 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2497 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2498 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2499
2500 /* In case we don't even reach vcpu_run, the fields are not updated */
2501 svm->vmcb->save.rax = nested_vmcb->save.rax;
2502 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2503 svm->vmcb->save.rip = nested_vmcb->save.rip;
2504 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2505 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2506 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2507
2508 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2509 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2510
2511 /* cache intercepts */
2512 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2513 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2514 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2515 svm->nested.intercept = nested_vmcb->control.intercept;
2516
2517 svm_flush_tlb(&svm->vcpu);
2518 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2519 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2520 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2521 else
2522 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2523
2524 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2525 /* We only want the cr8 intercept bits of the guest */
2526 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2527 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2528 }
2529
2530 /* We don't want to see VMMCALLs from a nested guest */
2531 clr_intercept(svm, INTERCEPT_VMMCALL);
2532
2533 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2534 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2535 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2536 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2537 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2538 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2539
2540 nested_svm_unmap(page);
2541
2542 /* Enter Guest-Mode */
2543 enter_guest_mode(&svm->vcpu);
2544
2545 /*
2546 * Merge guest and host intercepts - must be called with vcpu in
2547 * guest-mode to take affect here
2548 */
2549 recalc_intercepts(svm);
2550
2551 svm->nested.vmcb = vmcb_gpa;
2552
2553 enable_gif(svm);
2554
2555 mark_all_dirty(svm->vmcb);
2556
2557 return true;
2558 }
2559
2560 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2561 {
2562 to_vmcb->save.fs = from_vmcb->save.fs;
2563 to_vmcb->save.gs = from_vmcb->save.gs;
2564 to_vmcb->save.tr = from_vmcb->save.tr;
2565 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2566 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2567 to_vmcb->save.star = from_vmcb->save.star;
2568 to_vmcb->save.lstar = from_vmcb->save.lstar;
2569 to_vmcb->save.cstar = from_vmcb->save.cstar;
2570 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2571 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2572 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2573 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2574 }
2575
2576 static int vmload_interception(struct vcpu_svm *svm)
2577 {
2578 struct vmcb *nested_vmcb;
2579 struct page *page;
2580
2581 if (nested_svm_check_permissions(svm))
2582 return 1;
2583
2584 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2585 if (!nested_vmcb)
2586 return 1;
2587
2588 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2589 skip_emulated_instruction(&svm->vcpu);
2590
2591 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2592 nested_svm_unmap(page);
2593
2594 return 1;
2595 }
2596
2597 static int vmsave_interception(struct vcpu_svm *svm)
2598 {
2599 struct vmcb *nested_vmcb;
2600 struct page *page;
2601
2602 if (nested_svm_check_permissions(svm))
2603 return 1;
2604
2605 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2606 if (!nested_vmcb)
2607 return 1;
2608
2609 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2610 skip_emulated_instruction(&svm->vcpu);
2611
2612 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2613 nested_svm_unmap(page);
2614
2615 return 1;
2616 }
2617
2618 static int vmrun_interception(struct vcpu_svm *svm)
2619 {
2620 if (nested_svm_check_permissions(svm))
2621 return 1;
2622
2623 /* Save rip after vmrun instruction */
2624 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2625
2626 if (!nested_svm_vmrun(svm))
2627 return 1;
2628
2629 if (!nested_svm_vmrun_msrpm(svm))
2630 goto failed;
2631
2632 return 1;
2633
2634 failed:
2635
2636 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2637 svm->vmcb->control.exit_code_hi = 0;
2638 svm->vmcb->control.exit_info_1 = 0;
2639 svm->vmcb->control.exit_info_2 = 0;
2640
2641 nested_svm_vmexit(svm);
2642
2643 return 1;
2644 }
2645
2646 static int stgi_interception(struct vcpu_svm *svm)
2647 {
2648 if (nested_svm_check_permissions(svm))
2649 return 1;
2650
2651 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2652 skip_emulated_instruction(&svm->vcpu);
2653 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2654
2655 enable_gif(svm);
2656
2657 return 1;
2658 }
2659
2660 static int clgi_interception(struct vcpu_svm *svm)
2661 {
2662 if (nested_svm_check_permissions(svm))
2663 return 1;
2664
2665 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2666 skip_emulated_instruction(&svm->vcpu);
2667
2668 disable_gif(svm);
2669
2670 /* After a CLGI no interrupts should come */
2671 svm_clear_vintr(svm);
2672 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2673
2674 mark_dirty(svm->vmcb, VMCB_INTR);
2675
2676 return 1;
2677 }
2678
2679 static int invlpga_interception(struct vcpu_svm *svm)
2680 {
2681 struct kvm_vcpu *vcpu = &svm->vcpu;
2682
2683 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2684 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2685
2686 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2687 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2688
2689 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2690 skip_emulated_instruction(&svm->vcpu);
2691 return 1;
2692 }
2693
2694 static int skinit_interception(struct vcpu_svm *svm)
2695 {
2696 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2697
2698 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2699 return 1;
2700 }
2701
2702 static int wbinvd_interception(struct vcpu_svm *svm)
2703 {
2704 kvm_emulate_wbinvd(&svm->vcpu);
2705 return 1;
2706 }
2707
2708 static int xsetbv_interception(struct vcpu_svm *svm)
2709 {
2710 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2711 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2712
2713 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2714 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2715 skip_emulated_instruction(&svm->vcpu);
2716 }
2717
2718 return 1;
2719 }
2720
2721 static int task_switch_interception(struct vcpu_svm *svm)
2722 {
2723 u16 tss_selector;
2724 int reason;
2725 int int_type = svm->vmcb->control.exit_int_info &
2726 SVM_EXITINTINFO_TYPE_MASK;
2727 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2728 uint32_t type =
2729 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2730 uint32_t idt_v =
2731 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2732 bool has_error_code = false;
2733 u32 error_code = 0;
2734
2735 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2736
2737 if (svm->vmcb->control.exit_info_2 &
2738 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2739 reason = TASK_SWITCH_IRET;
2740 else if (svm->vmcb->control.exit_info_2 &
2741 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2742 reason = TASK_SWITCH_JMP;
2743 else if (idt_v)
2744 reason = TASK_SWITCH_GATE;
2745 else
2746 reason = TASK_SWITCH_CALL;
2747
2748 if (reason == TASK_SWITCH_GATE) {
2749 switch (type) {
2750 case SVM_EXITINTINFO_TYPE_NMI:
2751 svm->vcpu.arch.nmi_injected = false;
2752 break;
2753 case SVM_EXITINTINFO_TYPE_EXEPT:
2754 if (svm->vmcb->control.exit_info_2 &
2755 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2756 has_error_code = true;
2757 error_code =
2758 (u32)svm->vmcb->control.exit_info_2;
2759 }
2760 kvm_clear_exception_queue(&svm->vcpu);
2761 break;
2762 case SVM_EXITINTINFO_TYPE_INTR:
2763 kvm_clear_interrupt_queue(&svm->vcpu);
2764 break;
2765 default:
2766 break;
2767 }
2768 }
2769
2770 if (reason != TASK_SWITCH_GATE ||
2771 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2772 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2773 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2774 skip_emulated_instruction(&svm->vcpu);
2775
2776 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2777 int_vec = -1;
2778
2779 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2780 has_error_code, error_code) == EMULATE_FAIL) {
2781 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2782 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2783 svm->vcpu.run->internal.ndata = 0;
2784 return 0;
2785 }
2786 return 1;
2787 }
2788
2789 static int cpuid_interception(struct vcpu_svm *svm)
2790 {
2791 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2792 kvm_emulate_cpuid(&svm->vcpu);
2793 return 1;
2794 }
2795
2796 static int iret_interception(struct vcpu_svm *svm)
2797 {
2798 ++svm->vcpu.stat.nmi_window_exits;
2799 clr_intercept(svm, INTERCEPT_IRET);
2800 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2801 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2802 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2803 return 1;
2804 }
2805
2806 static int invlpg_interception(struct vcpu_svm *svm)
2807 {
2808 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2809 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2810
2811 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2812 skip_emulated_instruction(&svm->vcpu);
2813 return 1;
2814 }
2815
2816 static int emulate_on_interception(struct vcpu_svm *svm)
2817 {
2818 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2819 }
2820
2821 static int rdpmc_interception(struct vcpu_svm *svm)
2822 {
2823 int err;
2824
2825 if (!static_cpu_has(X86_FEATURE_NRIPS))
2826 return emulate_on_interception(svm);
2827
2828 err = kvm_rdpmc(&svm->vcpu);
2829 kvm_complete_insn_gp(&svm->vcpu, err);
2830
2831 return 1;
2832 }
2833
2834 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2835 unsigned long val)
2836 {
2837 unsigned long cr0 = svm->vcpu.arch.cr0;
2838 bool ret = false;
2839 u64 intercept;
2840
2841 intercept = svm->nested.intercept;
2842
2843 if (!is_guest_mode(&svm->vcpu) ||
2844 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2845 return false;
2846
2847 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2848 val &= ~SVM_CR0_SELECTIVE_MASK;
2849
2850 if (cr0 ^ val) {
2851 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2852 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2853 }
2854
2855 return ret;
2856 }
2857
2858 #define CR_VALID (1ULL << 63)
2859
2860 static int cr_interception(struct vcpu_svm *svm)
2861 {
2862 int reg, cr;
2863 unsigned long val;
2864 int err;
2865
2866 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2867 return emulate_on_interception(svm);
2868
2869 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2870 return emulate_on_interception(svm);
2871
2872 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2873 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2874 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2875 else
2876 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2877
2878 err = 0;
2879 if (cr >= 16) { /* mov to cr */
2880 cr -= 16;
2881 val = kvm_register_read(&svm->vcpu, reg);
2882 switch (cr) {
2883 case 0:
2884 if (!check_selective_cr0_intercepted(svm, val))
2885 err = kvm_set_cr0(&svm->vcpu, val);
2886 else
2887 return 1;
2888
2889 break;
2890 case 3:
2891 err = kvm_set_cr3(&svm->vcpu, val);
2892 break;
2893 case 4:
2894 err = kvm_set_cr4(&svm->vcpu, val);
2895 break;
2896 case 8:
2897 err = kvm_set_cr8(&svm->vcpu, val);
2898 break;
2899 default:
2900 WARN(1, "unhandled write to CR%d", cr);
2901 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2902 return 1;
2903 }
2904 } else { /* mov from cr */
2905 switch (cr) {
2906 case 0:
2907 val = kvm_read_cr0(&svm->vcpu);
2908 break;
2909 case 2:
2910 val = svm->vcpu.arch.cr2;
2911 break;
2912 case 3:
2913 val = kvm_read_cr3(&svm->vcpu);
2914 break;
2915 case 4:
2916 val = kvm_read_cr4(&svm->vcpu);
2917 break;
2918 case 8:
2919 val = kvm_get_cr8(&svm->vcpu);
2920 break;
2921 default:
2922 WARN(1, "unhandled read from CR%d", cr);
2923 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2924 return 1;
2925 }
2926 kvm_register_write(&svm->vcpu, reg, val);
2927 }
2928 kvm_complete_insn_gp(&svm->vcpu, err);
2929
2930 return 1;
2931 }
2932
2933 static int dr_interception(struct vcpu_svm *svm)
2934 {
2935 int reg, dr;
2936 unsigned long val;
2937
2938 if (svm->vcpu.guest_debug == 0) {
2939 /*
2940 * No more DR vmexits; force a reload of the debug registers
2941 * and reenter on this instruction. The next vmexit will
2942 * retrieve the full state of the debug registers.
2943 */
2944 clr_dr_intercepts(svm);
2945 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2946 return 1;
2947 }
2948
2949 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2950 return emulate_on_interception(svm);
2951
2952 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2953 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2954
2955 if (dr >= 16) { /* mov to DRn */
2956 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2957 return 1;
2958 val = kvm_register_read(&svm->vcpu, reg);
2959 kvm_set_dr(&svm->vcpu, dr - 16, val);
2960 } else {
2961 if (!kvm_require_dr(&svm->vcpu, dr))
2962 return 1;
2963 kvm_get_dr(&svm->vcpu, dr, &val);
2964 kvm_register_write(&svm->vcpu, reg, val);
2965 }
2966
2967 skip_emulated_instruction(&svm->vcpu);
2968
2969 return 1;
2970 }
2971
2972 static int cr8_write_interception(struct vcpu_svm *svm)
2973 {
2974 struct kvm_run *kvm_run = svm->vcpu.run;
2975 int r;
2976
2977 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2978 /* instruction emulation calls kvm_set_cr8() */
2979 r = cr_interception(svm);
2980 if (lapic_in_kernel(&svm->vcpu))
2981 return r;
2982 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2983 return r;
2984 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2985 return 0;
2986 }
2987
2988 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2989 {
2990 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2991 return vmcb->control.tsc_offset + host_tsc;
2992 }
2993
2994 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2995 {
2996 struct vcpu_svm *svm = to_svm(vcpu);
2997
2998 switch (msr_info->index) {
2999 case MSR_IA32_TSC: {
3000 msr_info->data = svm->vmcb->control.tsc_offset +
3001 kvm_scale_tsc(vcpu, rdtsc());
3002
3003 break;
3004 }
3005 case MSR_STAR:
3006 msr_info->data = svm->vmcb->save.star;
3007 break;
3008 #ifdef CONFIG_X86_64
3009 case MSR_LSTAR:
3010 msr_info->data = svm->vmcb->save.lstar;
3011 break;
3012 case MSR_CSTAR:
3013 msr_info->data = svm->vmcb->save.cstar;
3014 break;
3015 case MSR_KERNEL_GS_BASE:
3016 msr_info->data = svm->vmcb->save.kernel_gs_base;
3017 break;
3018 case MSR_SYSCALL_MASK:
3019 msr_info->data = svm->vmcb->save.sfmask;
3020 break;
3021 #endif
3022 case MSR_IA32_SYSENTER_CS:
3023 msr_info->data = svm->vmcb->save.sysenter_cs;
3024 break;
3025 case MSR_IA32_SYSENTER_EIP:
3026 msr_info->data = svm->sysenter_eip;
3027 break;
3028 case MSR_IA32_SYSENTER_ESP:
3029 msr_info->data = svm->sysenter_esp;
3030 break;
3031 case MSR_TSC_AUX:
3032 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3033 return 1;
3034 msr_info->data = svm->tsc_aux;
3035 break;
3036 /*
3037 * Nobody will change the following 5 values in the VMCB so we can
3038 * safely return them on rdmsr. They will always be 0 until LBRV is
3039 * implemented.
3040 */
3041 case MSR_IA32_DEBUGCTLMSR:
3042 msr_info->data = svm->vmcb->save.dbgctl;
3043 break;
3044 case MSR_IA32_LASTBRANCHFROMIP:
3045 msr_info->data = svm->vmcb->save.br_from;
3046 break;
3047 case MSR_IA32_LASTBRANCHTOIP:
3048 msr_info->data = svm->vmcb->save.br_to;
3049 break;
3050 case MSR_IA32_LASTINTFROMIP:
3051 msr_info->data = svm->vmcb->save.last_excp_from;
3052 break;
3053 case MSR_IA32_LASTINTTOIP:
3054 msr_info->data = svm->vmcb->save.last_excp_to;
3055 break;
3056 case MSR_VM_HSAVE_PA:
3057 msr_info->data = svm->nested.hsave_msr;
3058 break;
3059 case MSR_VM_CR:
3060 msr_info->data = svm->nested.vm_cr_msr;
3061 break;
3062 case MSR_IA32_UCODE_REV:
3063 msr_info->data = 0x01000065;
3064 break;
3065 case MSR_F15H_IC_CFG: {
3066
3067 int family, model;
3068
3069 family = guest_cpuid_family(vcpu);
3070 model = guest_cpuid_model(vcpu);
3071
3072 if (family < 0 || model < 0)
3073 return kvm_get_msr_common(vcpu, msr_info);
3074
3075 msr_info->data = 0;
3076
3077 if (family == 0x15 &&
3078 (model >= 0x2 && model < 0x20))
3079 msr_info->data = 0x1E;
3080 }
3081 break;
3082 default:
3083 return kvm_get_msr_common(vcpu, msr_info);
3084 }
3085 return 0;
3086 }
3087
3088 static int rdmsr_interception(struct vcpu_svm *svm)
3089 {
3090 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3091 struct msr_data msr_info;
3092
3093 msr_info.index = ecx;
3094 msr_info.host_initiated = false;
3095 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3096 trace_kvm_msr_read_ex(ecx);
3097 kvm_inject_gp(&svm->vcpu, 0);
3098 } else {
3099 trace_kvm_msr_read(ecx, msr_info.data);
3100
3101 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3102 msr_info.data & 0xffffffff);
3103 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3104 msr_info.data >> 32);
3105 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3106 skip_emulated_instruction(&svm->vcpu);
3107 }
3108 return 1;
3109 }
3110
3111 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3112 {
3113 struct vcpu_svm *svm = to_svm(vcpu);
3114 int svm_dis, chg_mask;
3115
3116 if (data & ~SVM_VM_CR_VALID_MASK)
3117 return 1;
3118
3119 chg_mask = SVM_VM_CR_VALID_MASK;
3120
3121 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3122 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3123
3124 svm->nested.vm_cr_msr &= ~chg_mask;
3125 svm->nested.vm_cr_msr |= (data & chg_mask);
3126
3127 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3128
3129 /* check for svm_disable while efer.svme is set */
3130 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3131 return 1;
3132
3133 return 0;
3134 }
3135
3136 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3137 {
3138 struct vcpu_svm *svm = to_svm(vcpu);
3139
3140 u32 ecx = msr->index;
3141 u64 data = msr->data;
3142 switch (ecx) {
3143 case MSR_IA32_TSC:
3144 kvm_write_tsc(vcpu, msr);
3145 break;
3146 case MSR_STAR:
3147 svm->vmcb->save.star = data;
3148 break;
3149 #ifdef CONFIG_X86_64
3150 case MSR_LSTAR:
3151 svm->vmcb->save.lstar = data;
3152 break;
3153 case MSR_CSTAR:
3154 svm->vmcb->save.cstar = data;
3155 break;
3156 case MSR_KERNEL_GS_BASE:
3157 svm->vmcb->save.kernel_gs_base = data;
3158 break;
3159 case MSR_SYSCALL_MASK:
3160 svm->vmcb->save.sfmask = data;
3161 break;
3162 #endif
3163 case MSR_IA32_SYSENTER_CS:
3164 svm->vmcb->save.sysenter_cs = data;
3165 break;
3166 case MSR_IA32_SYSENTER_EIP:
3167 svm->sysenter_eip = data;
3168 svm->vmcb->save.sysenter_eip = data;
3169 break;
3170 case MSR_IA32_SYSENTER_ESP:
3171 svm->sysenter_esp = data;
3172 svm->vmcb->save.sysenter_esp = data;
3173 break;
3174 case MSR_TSC_AUX:
3175 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3176 return 1;
3177
3178 /*
3179 * This is rare, so we update the MSR here instead of using
3180 * direct_access_msrs. Doing that would require a rdmsr in
3181 * svm_vcpu_put.
3182 */
3183 svm->tsc_aux = data;
3184 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3185 break;
3186 case MSR_IA32_DEBUGCTLMSR:
3187 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3188 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3189 __func__, data);
3190 break;
3191 }
3192 if (data & DEBUGCTL_RESERVED_BITS)
3193 return 1;
3194
3195 svm->vmcb->save.dbgctl = data;
3196 mark_dirty(svm->vmcb, VMCB_LBR);
3197 if (data & (1ULL<<0))
3198 svm_enable_lbrv(svm);
3199 else
3200 svm_disable_lbrv(svm);
3201 break;
3202 case MSR_VM_HSAVE_PA:
3203 svm->nested.hsave_msr = data;
3204 break;
3205 case MSR_VM_CR:
3206 return svm_set_vm_cr(vcpu, data);
3207 case MSR_VM_IGNNE:
3208 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3209 break;
3210 default:
3211 return kvm_set_msr_common(vcpu, msr);
3212 }
3213 return 0;
3214 }
3215
3216 static int wrmsr_interception(struct vcpu_svm *svm)
3217 {
3218 struct msr_data msr;
3219 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3220 u64 data = kvm_read_edx_eax(&svm->vcpu);
3221
3222 msr.data = data;
3223 msr.index = ecx;
3224 msr.host_initiated = false;
3225
3226 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3227 if (kvm_set_msr(&svm->vcpu, &msr)) {
3228 trace_kvm_msr_write_ex(ecx, data);
3229 kvm_inject_gp(&svm->vcpu, 0);
3230 } else {
3231 trace_kvm_msr_write(ecx, data);
3232 skip_emulated_instruction(&svm->vcpu);
3233 }
3234 return 1;
3235 }
3236
3237 static int msr_interception(struct vcpu_svm *svm)
3238 {
3239 if (svm->vmcb->control.exit_info_1)
3240 return wrmsr_interception(svm);
3241 else
3242 return rdmsr_interception(svm);
3243 }
3244
3245 static int interrupt_window_interception(struct vcpu_svm *svm)
3246 {
3247 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3248 svm_clear_vintr(svm);
3249 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3250 mark_dirty(svm->vmcb, VMCB_INTR);
3251 ++svm->vcpu.stat.irq_window_exits;
3252 return 1;
3253 }
3254
3255 static int pause_interception(struct vcpu_svm *svm)
3256 {
3257 kvm_vcpu_on_spin(&(svm->vcpu));
3258 return 1;
3259 }
3260
3261 static int nop_interception(struct vcpu_svm *svm)
3262 {
3263 skip_emulated_instruction(&(svm->vcpu));
3264 return 1;
3265 }
3266
3267 static int monitor_interception(struct vcpu_svm *svm)
3268 {
3269 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3270 return nop_interception(svm);
3271 }
3272
3273 static int mwait_interception(struct vcpu_svm *svm)
3274 {
3275 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3276 return nop_interception(svm);
3277 }
3278
3279 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3280 [SVM_EXIT_READ_CR0] = cr_interception,
3281 [SVM_EXIT_READ_CR3] = cr_interception,
3282 [SVM_EXIT_READ_CR4] = cr_interception,
3283 [SVM_EXIT_READ_CR8] = cr_interception,
3284 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3285 [SVM_EXIT_WRITE_CR0] = cr_interception,
3286 [SVM_EXIT_WRITE_CR3] = cr_interception,
3287 [SVM_EXIT_WRITE_CR4] = cr_interception,
3288 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3289 [SVM_EXIT_READ_DR0] = dr_interception,
3290 [SVM_EXIT_READ_DR1] = dr_interception,
3291 [SVM_EXIT_READ_DR2] = dr_interception,
3292 [SVM_EXIT_READ_DR3] = dr_interception,
3293 [SVM_EXIT_READ_DR4] = dr_interception,
3294 [SVM_EXIT_READ_DR5] = dr_interception,
3295 [SVM_EXIT_READ_DR6] = dr_interception,
3296 [SVM_EXIT_READ_DR7] = dr_interception,
3297 [SVM_EXIT_WRITE_DR0] = dr_interception,
3298 [SVM_EXIT_WRITE_DR1] = dr_interception,
3299 [SVM_EXIT_WRITE_DR2] = dr_interception,
3300 [SVM_EXIT_WRITE_DR3] = dr_interception,
3301 [SVM_EXIT_WRITE_DR4] = dr_interception,
3302 [SVM_EXIT_WRITE_DR5] = dr_interception,
3303 [SVM_EXIT_WRITE_DR6] = dr_interception,
3304 [SVM_EXIT_WRITE_DR7] = dr_interception,
3305 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3306 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3307 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3308 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3309 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3310 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3311 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
3312 [SVM_EXIT_INTR] = intr_interception,
3313 [SVM_EXIT_NMI] = nmi_interception,
3314 [SVM_EXIT_SMI] = nop_on_interception,
3315 [SVM_EXIT_INIT] = nop_on_interception,
3316 [SVM_EXIT_VINTR] = interrupt_window_interception,
3317 [SVM_EXIT_RDPMC] = rdpmc_interception,
3318 [SVM_EXIT_CPUID] = cpuid_interception,
3319 [SVM_EXIT_IRET] = iret_interception,
3320 [SVM_EXIT_INVD] = emulate_on_interception,
3321 [SVM_EXIT_PAUSE] = pause_interception,
3322 [SVM_EXIT_HLT] = halt_interception,
3323 [SVM_EXIT_INVLPG] = invlpg_interception,
3324 [SVM_EXIT_INVLPGA] = invlpga_interception,
3325 [SVM_EXIT_IOIO] = io_interception,
3326 [SVM_EXIT_MSR] = msr_interception,
3327 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3328 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3329 [SVM_EXIT_VMRUN] = vmrun_interception,
3330 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3331 [SVM_EXIT_VMLOAD] = vmload_interception,
3332 [SVM_EXIT_VMSAVE] = vmsave_interception,
3333 [SVM_EXIT_STGI] = stgi_interception,
3334 [SVM_EXIT_CLGI] = clgi_interception,
3335 [SVM_EXIT_SKINIT] = skinit_interception,
3336 [SVM_EXIT_WBINVD] = wbinvd_interception,
3337 [SVM_EXIT_MONITOR] = monitor_interception,
3338 [SVM_EXIT_MWAIT] = mwait_interception,
3339 [SVM_EXIT_XSETBV] = xsetbv_interception,
3340 [SVM_EXIT_NPF] = pf_interception,
3341 [SVM_EXIT_RSM] = emulate_on_interception,
3342 };
3343
3344 static void dump_vmcb(struct kvm_vcpu *vcpu)
3345 {
3346 struct vcpu_svm *svm = to_svm(vcpu);
3347 struct vmcb_control_area *control = &svm->vmcb->control;
3348 struct vmcb_save_area *save = &svm->vmcb->save;
3349
3350 pr_err("VMCB Control Area:\n");
3351 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3352 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3353 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3354 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3355 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3356 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3357 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3358 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3359 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3360 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3361 pr_err("%-20s%d\n", "asid:", control->asid);
3362 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3363 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3364 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3365 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3366 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3367 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3368 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3369 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3370 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3371 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3372 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3373 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3374 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3375 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3376 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3377 pr_err("VMCB State Save Area:\n");
3378 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3379 "es:",
3380 save->es.selector, save->es.attrib,
3381 save->es.limit, save->es.base);
3382 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3383 "cs:",
3384 save->cs.selector, save->cs.attrib,
3385 save->cs.limit, save->cs.base);
3386 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3387 "ss:",
3388 save->ss.selector, save->ss.attrib,
3389 save->ss.limit, save->ss.base);
3390 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3391 "ds:",
3392 save->ds.selector, save->ds.attrib,
3393 save->ds.limit, save->ds.base);
3394 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3395 "fs:",
3396 save->fs.selector, save->fs.attrib,
3397 save->fs.limit, save->fs.base);
3398 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3399 "gs:",
3400 save->gs.selector, save->gs.attrib,
3401 save->gs.limit, save->gs.base);
3402 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3403 "gdtr:",
3404 save->gdtr.selector, save->gdtr.attrib,
3405 save->gdtr.limit, save->gdtr.base);
3406 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3407 "ldtr:",
3408 save->ldtr.selector, save->ldtr.attrib,
3409 save->ldtr.limit, save->ldtr.base);
3410 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3411 "idtr:",
3412 save->idtr.selector, save->idtr.attrib,
3413 save->idtr.limit, save->idtr.base);
3414 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3415 "tr:",
3416 save->tr.selector, save->tr.attrib,
3417 save->tr.limit, save->tr.base);
3418 pr_err("cpl: %d efer: %016llx\n",
3419 save->cpl, save->efer);
3420 pr_err("%-15s %016llx %-13s %016llx\n",
3421 "cr0:", save->cr0, "cr2:", save->cr2);
3422 pr_err("%-15s %016llx %-13s %016llx\n",
3423 "cr3:", save->cr3, "cr4:", save->cr4);
3424 pr_err("%-15s %016llx %-13s %016llx\n",
3425 "dr6:", save->dr6, "dr7:", save->dr7);
3426 pr_err("%-15s %016llx %-13s %016llx\n",
3427 "rip:", save->rip, "rflags:", save->rflags);
3428 pr_err("%-15s %016llx %-13s %016llx\n",
3429 "rsp:", save->rsp, "rax:", save->rax);
3430 pr_err("%-15s %016llx %-13s %016llx\n",
3431 "star:", save->star, "lstar:", save->lstar);
3432 pr_err("%-15s %016llx %-13s %016llx\n",
3433 "cstar:", save->cstar, "sfmask:", save->sfmask);
3434 pr_err("%-15s %016llx %-13s %016llx\n",
3435 "kernel_gs_base:", save->kernel_gs_base,
3436 "sysenter_cs:", save->sysenter_cs);
3437 pr_err("%-15s %016llx %-13s %016llx\n",
3438 "sysenter_esp:", save->sysenter_esp,
3439 "sysenter_eip:", save->sysenter_eip);
3440 pr_err("%-15s %016llx %-13s %016llx\n",
3441 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3442 pr_err("%-15s %016llx %-13s %016llx\n",
3443 "br_from:", save->br_from, "br_to:", save->br_to);
3444 pr_err("%-15s %016llx %-13s %016llx\n",
3445 "excp_from:", save->last_excp_from,
3446 "excp_to:", save->last_excp_to);
3447 }
3448
3449 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3450 {
3451 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3452
3453 *info1 = control->exit_info_1;
3454 *info2 = control->exit_info_2;
3455 }
3456
3457 static int handle_exit(struct kvm_vcpu *vcpu)
3458 {
3459 struct vcpu_svm *svm = to_svm(vcpu);
3460 struct kvm_run *kvm_run = vcpu->run;
3461 u32 exit_code = svm->vmcb->control.exit_code;
3462
3463 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3464
3465 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3466 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3467 if (npt_enabled)
3468 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3469
3470 if (unlikely(svm->nested.exit_required)) {
3471 nested_svm_vmexit(svm);
3472 svm->nested.exit_required = false;
3473
3474 return 1;
3475 }
3476
3477 if (is_guest_mode(vcpu)) {
3478 int vmexit;
3479
3480 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3481 svm->vmcb->control.exit_info_1,
3482 svm->vmcb->control.exit_info_2,
3483 svm->vmcb->control.exit_int_info,
3484 svm->vmcb->control.exit_int_info_err,
3485 KVM_ISA_SVM);
3486
3487 vmexit = nested_svm_exit_special(svm);
3488
3489 if (vmexit == NESTED_EXIT_CONTINUE)
3490 vmexit = nested_svm_exit_handled(svm);
3491
3492 if (vmexit == NESTED_EXIT_DONE)
3493 return 1;
3494 }
3495
3496 svm_complete_interrupts(svm);
3497
3498 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3499 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3500 kvm_run->fail_entry.hardware_entry_failure_reason
3501 = svm->vmcb->control.exit_code;
3502 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3503 dump_vmcb(vcpu);
3504 return 0;
3505 }
3506
3507 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3508 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3509 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3510 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3511 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3512 "exit_code 0x%x\n",
3513 __func__, svm->vmcb->control.exit_int_info,
3514 exit_code);
3515
3516 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3517 || !svm_exit_handlers[exit_code]) {
3518 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3519 kvm_queue_exception(vcpu, UD_VECTOR);
3520 return 1;
3521 }
3522
3523 return svm_exit_handlers[exit_code](svm);
3524 }
3525
3526 static void reload_tss(struct kvm_vcpu *vcpu)
3527 {
3528 int cpu = raw_smp_processor_id();
3529
3530 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3531 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3532 load_TR_desc();
3533 }
3534
3535 static void pre_svm_run(struct vcpu_svm *svm)
3536 {
3537 int cpu = raw_smp_processor_id();
3538
3539 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3540
3541 /* FIXME: handle wraparound of asid_generation */
3542 if (svm->asid_generation != sd->asid_generation)
3543 new_asid(svm, sd);
3544 }
3545
3546 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3547 {
3548 struct vcpu_svm *svm = to_svm(vcpu);
3549
3550 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3551 vcpu->arch.hflags |= HF_NMI_MASK;
3552 set_intercept(svm, INTERCEPT_IRET);
3553 ++vcpu->stat.nmi_injections;
3554 }
3555
3556 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3557 {
3558 struct vmcb_control_area *control;
3559
3560 control = &svm->vmcb->control;
3561 control->int_vector = irq;
3562 control->int_ctl &= ~V_INTR_PRIO_MASK;
3563 control->int_ctl |= V_IRQ_MASK |
3564 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3565 mark_dirty(svm->vmcb, VMCB_INTR);
3566 }
3567
3568 static void svm_set_irq(struct kvm_vcpu *vcpu)
3569 {
3570 struct vcpu_svm *svm = to_svm(vcpu);
3571
3572 BUG_ON(!(gif_set(svm)));
3573
3574 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3575 ++vcpu->stat.irq_injections;
3576
3577 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3578 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3579 }
3580
3581 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3582 {
3583 struct vcpu_svm *svm = to_svm(vcpu);
3584
3585 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3586 return;
3587
3588 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3589
3590 if (irr == -1)
3591 return;
3592
3593 if (tpr >= irr)
3594 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3595 }
3596
3597 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3598 {
3599 return;
3600 }
3601
3602 static bool svm_get_enable_apicv(void)
3603 {
3604 return false;
3605 }
3606
3607 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3608 {
3609 }
3610
3611 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3612 {
3613 return;
3614 }
3615
3616 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3617 {
3618 return;
3619 }
3620
3621 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3622 {
3623 struct vcpu_svm *svm = to_svm(vcpu);
3624 struct vmcb *vmcb = svm->vmcb;
3625 int ret;
3626 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3627 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3628 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3629
3630 return ret;
3631 }
3632
3633 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3634 {
3635 struct vcpu_svm *svm = to_svm(vcpu);
3636
3637 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3638 }
3639
3640 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3641 {
3642 struct vcpu_svm *svm = to_svm(vcpu);
3643
3644 if (masked) {
3645 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3646 set_intercept(svm, INTERCEPT_IRET);
3647 } else {
3648 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3649 clr_intercept(svm, INTERCEPT_IRET);
3650 }
3651 }
3652
3653 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3654 {
3655 struct vcpu_svm *svm = to_svm(vcpu);
3656 struct vmcb *vmcb = svm->vmcb;
3657 int ret;
3658
3659 if (!gif_set(svm) ||
3660 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3661 return 0;
3662
3663 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3664
3665 if (is_guest_mode(vcpu))
3666 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3667
3668 return ret;
3669 }
3670
3671 static void enable_irq_window(struct kvm_vcpu *vcpu)
3672 {
3673 struct vcpu_svm *svm = to_svm(vcpu);
3674
3675 /*
3676 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3677 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3678 * get that intercept, this function will be called again though and
3679 * we'll get the vintr intercept.
3680 */
3681 if (gif_set(svm) && nested_svm_intr(svm)) {
3682 svm_set_vintr(svm);
3683 svm_inject_irq(svm, 0x0);
3684 }
3685 }
3686
3687 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3688 {
3689 struct vcpu_svm *svm = to_svm(vcpu);
3690
3691 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3692 == HF_NMI_MASK)
3693 return; /* IRET will cause a vm exit */
3694
3695 /*
3696 * Something prevents NMI from been injected. Single step over possible
3697 * problem (IRET or exception injection or interrupt shadow)
3698 */
3699 svm->nmi_singlestep = true;
3700 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3701 }
3702
3703 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3704 {
3705 return 0;
3706 }
3707
3708 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3709 {
3710 struct vcpu_svm *svm = to_svm(vcpu);
3711
3712 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3713 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3714 else
3715 svm->asid_generation--;
3716 }
3717
3718 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3719 {
3720 }
3721
3722 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3723 {
3724 struct vcpu_svm *svm = to_svm(vcpu);
3725
3726 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3727 return;
3728
3729 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3730 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3731 kvm_set_cr8(vcpu, cr8);
3732 }
3733 }
3734
3735 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3736 {
3737 struct vcpu_svm *svm = to_svm(vcpu);
3738 u64 cr8;
3739
3740 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3741 return;
3742
3743 cr8 = kvm_get_cr8(vcpu);
3744 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3745 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3746 }
3747
3748 static void svm_complete_interrupts(struct vcpu_svm *svm)
3749 {
3750 u8 vector;
3751 int type;
3752 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3753 unsigned int3_injected = svm->int3_injected;
3754
3755 svm->int3_injected = 0;
3756
3757 /*
3758 * If we've made progress since setting HF_IRET_MASK, we've
3759 * executed an IRET and can allow NMI injection.
3760 */
3761 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3762 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3763 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3764 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3765 }
3766
3767 svm->vcpu.arch.nmi_injected = false;
3768 kvm_clear_exception_queue(&svm->vcpu);
3769 kvm_clear_interrupt_queue(&svm->vcpu);
3770
3771 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3772 return;
3773
3774 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3775
3776 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3777 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3778
3779 switch (type) {
3780 case SVM_EXITINTINFO_TYPE_NMI:
3781 svm->vcpu.arch.nmi_injected = true;
3782 break;
3783 case SVM_EXITINTINFO_TYPE_EXEPT:
3784 /*
3785 * In case of software exceptions, do not reinject the vector,
3786 * but re-execute the instruction instead. Rewind RIP first
3787 * if we emulated INT3 before.
3788 */
3789 if (kvm_exception_is_soft(vector)) {
3790 if (vector == BP_VECTOR && int3_injected &&
3791 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3792 kvm_rip_write(&svm->vcpu,
3793 kvm_rip_read(&svm->vcpu) -
3794 int3_injected);
3795 break;
3796 }
3797 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3798 u32 err = svm->vmcb->control.exit_int_info_err;
3799 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3800
3801 } else
3802 kvm_requeue_exception(&svm->vcpu, vector);
3803 break;
3804 case SVM_EXITINTINFO_TYPE_INTR:
3805 kvm_queue_interrupt(&svm->vcpu, vector, false);
3806 break;
3807 default:
3808 break;
3809 }
3810 }
3811
3812 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3813 {
3814 struct vcpu_svm *svm = to_svm(vcpu);
3815 struct vmcb_control_area *control = &svm->vmcb->control;
3816
3817 control->exit_int_info = control->event_inj;
3818 control->exit_int_info_err = control->event_inj_err;
3819 control->event_inj = 0;
3820 svm_complete_interrupts(svm);
3821 }
3822
3823 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3824 {
3825 struct vcpu_svm *svm = to_svm(vcpu);
3826
3827 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3828 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3829 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3830
3831 /*
3832 * A vmexit emulation is required before the vcpu can be executed
3833 * again.
3834 */
3835 if (unlikely(svm->nested.exit_required))
3836 return;
3837
3838 pre_svm_run(svm);
3839
3840 sync_lapic_to_cr8(vcpu);
3841
3842 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3843
3844 clgi();
3845
3846 local_irq_enable();
3847
3848 asm volatile (
3849 "push %%" _ASM_BP "; \n\t"
3850 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3851 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3852 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3853 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3854 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3855 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3856 #ifdef CONFIG_X86_64
3857 "mov %c[r8](%[svm]), %%r8 \n\t"
3858 "mov %c[r9](%[svm]), %%r9 \n\t"
3859 "mov %c[r10](%[svm]), %%r10 \n\t"
3860 "mov %c[r11](%[svm]), %%r11 \n\t"
3861 "mov %c[r12](%[svm]), %%r12 \n\t"
3862 "mov %c[r13](%[svm]), %%r13 \n\t"
3863 "mov %c[r14](%[svm]), %%r14 \n\t"
3864 "mov %c[r15](%[svm]), %%r15 \n\t"
3865 #endif
3866
3867 /* Enter guest mode */
3868 "push %%" _ASM_AX " \n\t"
3869 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3870 __ex(SVM_VMLOAD) "\n\t"
3871 __ex(SVM_VMRUN) "\n\t"
3872 __ex(SVM_VMSAVE) "\n\t"
3873 "pop %%" _ASM_AX " \n\t"
3874
3875 /* Save guest registers, load host registers */
3876 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3877 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3878 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3879 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3880 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3881 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3882 #ifdef CONFIG_X86_64
3883 "mov %%r8, %c[r8](%[svm]) \n\t"
3884 "mov %%r9, %c[r9](%[svm]) \n\t"
3885 "mov %%r10, %c[r10](%[svm]) \n\t"
3886 "mov %%r11, %c[r11](%[svm]) \n\t"
3887 "mov %%r12, %c[r12](%[svm]) \n\t"
3888 "mov %%r13, %c[r13](%[svm]) \n\t"
3889 "mov %%r14, %c[r14](%[svm]) \n\t"
3890 "mov %%r15, %c[r15](%[svm]) \n\t"
3891 #endif
3892 "pop %%" _ASM_BP
3893 :
3894 : [svm]"a"(svm),
3895 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3896 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3897 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3898 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3899 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3900 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3901 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3902 #ifdef CONFIG_X86_64
3903 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3904 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3905 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3906 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3907 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3908 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3909 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3910 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3911 #endif
3912 : "cc", "memory"
3913 #ifdef CONFIG_X86_64
3914 , "rbx", "rcx", "rdx", "rsi", "rdi"
3915 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3916 #else
3917 , "ebx", "ecx", "edx", "esi", "edi"
3918 #endif
3919 );
3920
3921 #ifdef CONFIG_X86_64
3922 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3923 #else
3924 loadsegment(fs, svm->host.fs);
3925 #ifndef CONFIG_X86_32_LAZY_GS
3926 loadsegment(gs, svm->host.gs);
3927 #endif
3928 #endif
3929
3930 reload_tss(vcpu);
3931
3932 local_irq_disable();
3933
3934 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3935 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3936 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3937 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3938
3939 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3940 kvm_before_handle_nmi(&svm->vcpu);
3941
3942 stgi();
3943
3944 /* Any pending NMI will happen here */
3945
3946 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3947 kvm_after_handle_nmi(&svm->vcpu);
3948
3949 sync_cr8_to_lapic(vcpu);
3950
3951 svm->next_rip = 0;
3952
3953 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3954
3955 /* if exit due to PF check for async PF */
3956 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3957 svm->apf_reason = kvm_read_and_reset_pf_reason();
3958
3959 if (npt_enabled) {
3960 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3961 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3962 }
3963
3964 /*
3965 * We need to handle MC intercepts here before the vcpu has a chance to
3966 * change the physical cpu
3967 */
3968 if (unlikely(svm->vmcb->control.exit_code ==
3969 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3970 svm_handle_mce(svm);
3971
3972 mark_all_clean(svm->vmcb);
3973 }
3974
3975 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3976 {
3977 struct vcpu_svm *svm = to_svm(vcpu);
3978
3979 svm->vmcb->save.cr3 = root;
3980 mark_dirty(svm->vmcb, VMCB_CR);
3981 svm_flush_tlb(vcpu);
3982 }
3983
3984 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3985 {
3986 struct vcpu_svm *svm = to_svm(vcpu);
3987
3988 svm->vmcb->control.nested_cr3 = root;
3989 mark_dirty(svm->vmcb, VMCB_NPT);
3990
3991 /* Also sync guest cr3 here in case we live migrate */
3992 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3993 mark_dirty(svm->vmcb, VMCB_CR);
3994
3995 svm_flush_tlb(vcpu);
3996 }
3997
3998 static int is_disabled(void)
3999 {
4000 u64 vm_cr;
4001
4002 rdmsrl(MSR_VM_CR, vm_cr);
4003 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4004 return 1;
4005
4006 return 0;
4007 }
4008
4009 static void
4010 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4011 {
4012 /*
4013 * Patch in the VMMCALL instruction:
4014 */
4015 hypercall[0] = 0x0f;
4016 hypercall[1] = 0x01;
4017 hypercall[2] = 0xd9;
4018 }
4019
4020 static void svm_check_processor_compat(void *rtn)
4021 {
4022 *(int *)rtn = 0;
4023 }
4024
4025 static bool svm_cpu_has_accelerated_tpr(void)
4026 {
4027 return false;
4028 }
4029
4030 static bool svm_has_high_real_mode_segbase(void)
4031 {
4032 return true;
4033 }
4034
4035 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4036 {
4037 return 0;
4038 }
4039
4040 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4041 {
4042 struct vcpu_svm *svm = to_svm(vcpu);
4043
4044 /* Update nrips enabled cache */
4045 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4046 }
4047
4048 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4049 {
4050 switch (func) {
4051 case 0x80000001:
4052 if (nested)
4053 entry->ecx |= (1 << 2); /* Set SVM bit */
4054 break;
4055 case 0x8000000A:
4056 entry->eax = 1; /* SVM revision 1 */
4057 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4058 ASID emulation to nested SVM */
4059 entry->ecx = 0; /* Reserved */
4060 entry->edx = 0; /* Per default do not support any
4061 additional features */
4062
4063 /* Support next_rip if host supports it */
4064 if (boot_cpu_has(X86_FEATURE_NRIPS))
4065 entry->edx |= SVM_FEATURE_NRIP;
4066
4067 /* Support NPT for the guest if enabled */
4068 if (npt_enabled)
4069 entry->edx |= SVM_FEATURE_NPT;
4070
4071 break;
4072 }
4073 }
4074
4075 static int svm_get_lpage_level(void)
4076 {
4077 return PT_PDPE_LEVEL;
4078 }
4079
4080 static bool svm_rdtscp_supported(void)
4081 {
4082 return boot_cpu_has(X86_FEATURE_RDTSCP);
4083 }
4084
4085 static bool svm_invpcid_supported(void)
4086 {
4087 return false;
4088 }
4089
4090 static bool svm_mpx_supported(void)
4091 {
4092 return false;
4093 }
4094
4095 static bool svm_xsaves_supported(void)
4096 {
4097 return false;
4098 }
4099
4100 static bool svm_has_wbinvd_exit(void)
4101 {
4102 return true;
4103 }
4104
4105 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4106 {
4107 struct vcpu_svm *svm = to_svm(vcpu);
4108
4109 set_exception_intercept(svm, NM_VECTOR);
4110 update_cr0_intercept(svm);
4111 }
4112
4113 #define PRE_EX(exit) { .exit_code = (exit), \
4114 .stage = X86_ICPT_PRE_EXCEPT, }
4115 #define POST_EX(exit) { .exit_code = (exit), \
4116 .stage = X86_ICPT_POST_EXCEPT, }
4117 #define POST_MEM(exit) { .exit_code = (exit), \
4118 .stage = X86_ICPT_POST_MEMACCESS, }
4119
4120 static const struct __x86_intercept {
4121 u32 exit_code;
4122 enum x86_intercept_stage stage;
4123 } x86_intercept_map[] = {
4124 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4125 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4126 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4127 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4128 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4129 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4130 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4131 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4132 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4133 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4134 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4135 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4136 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4137 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4138 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4139 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4140 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4141 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4142 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4143 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4144 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4145 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4146 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4147 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4148 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4149 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4150 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4151 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4152 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4153 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4154 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4155 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4156 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4157 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4158 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4159 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4160 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4161 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4162 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4163 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4164 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4165 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4166 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4167 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4168 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4169 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4170 };
4171
4172 #undef PRE_EX
4173 #undef POST_EX
4174 #undef POST_MEM
4175
4176 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4177 struct x86_instruction_info *info,
4178 enum x86_intercept_stage stage)
4179 {
4180 struct vcpu_svm *svm = to_svm(vcpu);
4181 int vmexit, ret = X86EMUL_CONTINUE;
4182 struct __x86_intercept icpt_info;
4183 struct vmcb *vmcb = svm->vmcb;
4184
4185 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4186 goto out;
4187
4188 icpt_info = x86_intercept_map[info->intercept];
4189
4190 if (stage != icpt_info.stage)
4191 goto out;
4192
4193 switch (icpt_info.exit_code) {
4194 case SVM_EXIT_READ_CR0:
4195 if (info->intercept == x86_intercept_cr_read)
4196 icpt_info.exit_code += info->modrm_reg;
4197 break;
4198 case SVM_EXIT_WRITE_CR0: {
4199 unsigned long cr0, val;
4200 u64 intercept;
4201
4202 if (info->intercept == x86_intercept_cr_write)
4203 icpt_info.exit_code += info->modrm_reg;
4204
4205 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4206 info->intercept == x86_intercept_clts)
4207 break;
4208
4209 intercept = svm->nested.intercept;
4210
4211 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4212 break;
4213
4214 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4215 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4216
4217 if (info->intercept == x86_intercept_lmsw) {
4218 cr0 &= 0xfUL;
4219 val &= 0xfUL;
4220 /* lmsw can't clear PE - catch this here */
4221 if (cr0 & X86_CR0_PE)
4222 val |= X86_CR0_PE;
4223 }
4224
4225 if (cr0 ^ val)
4226 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4227
4228 break;
4229 }
4230 case SVM_EXIT_READ_DR0:
4231 case SVM_EXIT_WRITE_DR0:
4232 icpt_info.exit_code += info->modrm_reg;
4233 break;
4234 case SVM_EXIT_MSR:
4235 if (info->intercept == x86_intercept_wrmsr)
4236 vmcb->control.exit_info_1 = 1;
4237 else
4238 vmcb->control.exit_info_1 = 0;
4239 break;
4240 case SVM_EXIT_PAUSE:
4241 /*
4242 * We get this for NOP only, but pause
4243 * is rep not, check this here
4244 */
4245 if (info->rep_prefix != REPE_PREFIX)
4246 goto out;
4247 case SVM_EXIT_IOIO: {
4248 u64 exit_info;
4249 u32 bytes;
4250
4251 if (info->intercept == x86_intercept_in ||
4252 info->intercept == x86_intercept_ins) {
4253 exit_info = ((info->src_val & 0xffff) << 16) |
4254 SVM_IOIO_TYPE_MASK;
4255 bytes = info->dst_bytes;
4256 } else {
4257 exit_info = (info->dst_val & 0xffff) << 16;
4258 bytes = info->src_bytes;
4259 }
4260
4261 if (info->intercept == x86_intercept_outs ||
4262 info->intercept == x86_intercept_ins)
4263 exit_info |= SVM_IOIO_STR_MASK;
4264
4265 if (info->rep_prefix)
4266 exit_info |= SVM_IOIO_REP_MASK;
4267
4268 bytes = min(bytes, 4u);
4269
4270 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4271
4272 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4273
4274 vmcb->control.exit_info_1 = exit_info;
4275 vmcb->control.exit_info_2 = info->next_rip;
4276
4277 break;
4278 }
4279 default:
4280 break;
4281 }
4282
4283 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4284 if (static_cpu_has(X86_FEATURE_NRIPS))
4285 vmcb->control.next_rip = info->next_rip;
4286 vmcb->control.exit_code = icpt_info.exit_code;
4287 vmexit = nested_svm_exit_handled(svm);
4288
4289 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4290 : X86EMUL_CONTINUE;
4291
4292 out:
4293 return ret;
4294 }
4295
4296 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4297 {
4298 local_irq_enable();
4299 }
4300
4301 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4302 {
4303 }
4304
4305 static struct kvm_x86_ops svm_x86_ops = {
4306 .cpu_has_kvm_support = has_svm,
4307 .disabled_by_bios = is_disabled,
4308 .hardware_setup = svm_hardware_setup,
4309 .hardware_unsetup = svm_hardware_unsetup,
4310 .check_processor_compatibility = svm_check_processor_compat,
4311 .hardware_enable = svm_hardware_enable,
4312 .hardware_disable = svm_hardware_disable,
4313 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4314 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4315
4316 .vcpu_create = svm_create_vcpu,
4317 .vcpu_free = svm_free_vcpu,
4318 .vcpu_reset = svm_vcpu_reset,
4319
4320 .prepare_guest_switch = svm_prepare_guest_switch,
4321 .vcpu_load = svm_vcpu_load,
4322 .vcpu_put = svm_vcpu_put,
4323
4324 .update_bp_intercept = update_bp_intercept,
4325 .get_msr = svm_get_msr,
4326 .set_msr = svm_set_msr,
4327 .get_segment_base = svm_get_segment_base,
4328 .get_segment = svm_get_segment,
4329 .set_segment = svm_set_segment,
4330 .get_cpl = svm_get_cpl,
4331 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4332 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4333 .decache_cr3 = svm_decache_cr3,
4334 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4335 .set_cr0 = svm_set_cr0,
4336 .set_cr3 = svm_set_cr3,
4337 .set_cr4 = svm_set_cr4,
4338 .set_efer = svm_set_efer,
4339 .get_idt = svm_get_idt,
4340 .set_idt = svm_set_idt,
4341 .get_gdt = svm_get_gdt,
4342 .set_gdt = svm_set_gdt,
4343 .get_dr6 = svm_get_dr6,
4344 .set_dr6 = svm_set_dr6,
4345 .set_dr7 = svm_set_dr7,
4346 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4347 .cache_reg = svm_cache_reg,
4348 .get_rflags = svm_get_rflags,
4349 .set_rflags = svm_set_rflags,
4350 .fpu_activate = svm_fpu_activate,
4351 .fpu_deactivate = svm_fpu_deactivate,
4352
4353 .tlb_flush = svm_flush_tlb,
4354
4355 .run = svm_vcpu_run,
4356 .handle_exit = handle_exit,
4357 .skip_emulated_instruction = skip_emulated_instruction,
4358 .set_interrupt_shadow = svm_set_interrupt_shadow,
4359 .get_interrupt_shadow = svm_get_interrupt_shadow,
4360 .patch_hypercall = svm_patch_hypercall,
4361 .set_irq = svm_set_irq,
4362 .set_nmi = svm_inject_nmi,
4363 .queue_exception = svm_queue_exception,
4364 .cancel_injection = svm_cancel_injection,
4365 .interrupt_allowed = svm_interrupt_allowed,
4366 .nmi_allowed = svm_nmi_allowed,
4367 .get_nmi_mask = svm_get_nmi_mask,
4368 .set_nmi_mask = svm_set_nmi_mask,
4369 .enable_nmi_window = enable_nmi_window,
4370 .enable_irq_window = enable_irq_window,
4371 .update_cr8_intercept = update_cr8_intercept,
4372 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4373 .get_enable_apicv = svm_get_enable_apicv,
4374 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4375 .load_eoi_exitmap = svm_load_eoi_exitmap,
4376 .sync_pir_to_irr = svm_sync_pir_to_irr,
4377
4378 .set_tss_addr = svm_set_tss_addr,
4379 .get_tdp_level = get_npt_level,
4380 .get_mt_mask = svm_get_mt_mask,
4381
4382 .get_exit_info = svm_get_exit_info,
4383
4384 .get_lpage_level = svm_get_lpage_level,
4385
4386 .cpuid_update = svm_cpuid_update,
4387
4388 .rdtscp_supported = svm_rdtscp_supported,
4389 .invpcid_supported = svm_invpcid_supported,
4390 .mpx_supported = svm_mpx_supported,
4391 .xsaves_supported = svm_xsaves_supported,
4392
4393 .set_supported_cpuid = svm_set_supported_cpuid,
4394
4395 .has_wbinvd_exit = svm_has_wbinvd_exit,
4396
4397 .read_tsc_offset = svm_read_tsc_offset,
4398 .write_tsc_offset = svm_write_tsc_offset,
4399 .adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
4400 .read_l1_tsc = svm_read_l1_tsc,
4401
4402 .set_tdp_cr3 = set_tdp_cr3,
4403
4404 .check_intercept = svm_check_intercept,
4405 .handle_external_intr = svm_handle_external_intr,
4406
4407 .sched_in = svm_sched_in,
4408
4409 .pmu_ops = &amd_pmu_ops,
4410 };
4411
4412 static int __init svm_init(void)
4413 {
4414 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4415 __alignof__(struct vcpu_svm), THIS_MODULE);
4416 }
4417
4418 static void __exit svm_exit(void)
4419 {
4420 kvm_exit();
4421 }
4422
4423 module_init(svm_init)
4424 module_exit(svm_exit)