]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
Revert "KVM: x86: apply guest MTRR virtualization on host reserved pages"
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50 X86_FEATURE_MATCH(X86_FEATURE_SVM),
51 {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT (1 << 0)
62 #define SVM_FEATURE_LBRV (1 << 1)
63 #define SVM_FEATURE_SVML (1 << 2)
64 #define SVM_FEATURE_NRIP (1 << 3)
65 #define SVM_FEATURE_TSC_RATE (1 << 4)
66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
67 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
70
71 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
72 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
73 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
78 #define TSC_RATIO_MIN 0x0000000000000001ULL
79 #define TSC_RATIO_MAX 0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86 MSR_FS_BASE,
87 #endif
88 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96 struct vmcb *hsave;
97 u64 hsave_msr;
98 u64 vm_cr_msr;
99 u64 vmcb;
100
101 /* These are the merged vectors */
102 u32 *msrpm;
103
104 /* gpa pointers to the real vectors */
105 u64 vmcb_msrpm;
106 u64 vmcb_iopm;
107
108 /* A VMEXIT is required but not yet emulated */
109 bool exit_required;
110
111 /* cache for intercepts of the guest */
112 u32 intercept_cr;
113 u32 intercept_dr;
114 u32 intercept_exceptions;
115 u64 intercept;
116
117 /* Nested Paging related state */
118 u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS 16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125 * Set osvw_len to higher value when updated Revision Guides
126 * are published and we know what the new status bits are
127 */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131 struct kvm_vcpu vcpu;
132 struct vmcb *vmcb;
133 unsigned long vmcb_pa;
134 struct svm_cpu_data *svm_data;
135 uint64_t asid_generation;
136 uint64_t sysenter_esp;
137 uint64_t sysenter_eip;
138
139 u64 next_rip;
140
141 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142 struct {
143 u16 fs;
144 u16 gs;
145 u16 ldt;
146 u64 gs_base;
147 } host;
148
149 u32 *msrpm;
150
151 ulong nmi_iret_rip;
152
153 struct nested_state nested;
154
155 bool nmi_singlestep;
156
157 unsigned int3_injected;
158 unsigned long int3_rip;
159 u32 apf_reason;
160
161 u64 tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT 0x0100000000ULL
166
167 #define MSR_INVALID 0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170 u32 index; /* Index of the MSR */
171 bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173 { .index = MSR_STAR, .always = true },
174 { .index = MSR_IA32_SYSENTER_CS, .always = true },
175 #ifdef CONFIG_X86_64
176 { .index = MSR_GS_BASE, .always = true },
177 { .index = MSR_FS_BASE, .always = true },
178 { .index = MSR_KERNEL_GS_BASE, .always = true },
179 { .index = MSR_LSTAR, .always = true },
180 { .index = MSR_CSTAR, .always = true },
181 { .index = MSR_SYSCALL_MASK, .always = true },
182 #endif
183 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
184 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
185 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
186 { .index = MSR_IA32_LASTINTTOIP, .always = false },
187 { .index = MSR_INVALID, .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
206 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
207 static void svm_complete_interrupts(struct vcpu_svm *svm);
208
209 static int nested_svm_exit_handled(struct vcpu_svm *svm);
210 static int nested_svm_intercept(struct vcpu_svm *svm);
211 static int nested_svm_vmexit(struct vcpu_svm *svm);
212 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
213 bool has_error_code, u32 error_code);
214 static u64 __scale_tsc(u64 ratio, u64 tsc);
215
216 enum {
217 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218 pause filter count */
219 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
220 VMCB_ASID, /* ASID */
221 VMCB_INTR, /* int_ctl, int_vector */
222 VMCB_NPT, /* npt_en, nCR3, gPAT */
223 VMCB_CR, /* CR0, CR3, CR4, EFER */
224 VMCB_DR, /* DR6, DR7 */
225 VMCB_DT, /* GDT, IDT */
226 VMCB_SEG, /* CS, DS, SS, ES, CPL */
227 VMCB_CR2, /* CR2 only */
228 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229 VMCB_DIRTY_MAX,
230 };
231
232 /* TPR and CR2 are always written before VMRUN */
233 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
234
235 static inline void mark_all_dirty(struct vmcb *vmcb)
236 {
237 vmcb->control.clean = 0;
238 }
239
240 static inline void mark_all_clean(struct vmcb *vmcb)
241 {
242 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243 & ~VMCB_ALWAYS_DIRTY_MASK;
244 }
245
246 static inline void mark_dirty(struct vmcb *vmcb, int bit)
247 {
248 vmcb->control.clean &= ~(1 << bit);
249 }
250
251 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252 {
253 return container_of(vcpu, struct vcpu_svm, vcpu);
254 }
255
256 static void recalc_intercepts(struct vcpu_svm *svm)
257 {
258 struct vmcb_control_area *c, *h;
259 struct nested_state *g;
260
261 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262
263 if (!is_guest_mode(&svm->vcpu))
264 return;
265
266 c = &svm->vmcb->control;
267 h = &svm->nested.hsave->control;
268 g = &svm->nested;
269
270 c->intercept_cr = h->intercept_cr | g->intercept_cr;
271 c->intercept_dr = h->intercept_dr | g->intercept_dr;
272 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273 c->intercept = h->intercept | g->intercept;
274 }
275
276 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277 {
278 if (is_guest_mode(&svm->vcpu))
279 return svm->nested.hsave;
280 else
281 return svm->vmcb;
282 }
283
284 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285 {
286 struct vmcb *vmcb = get_host_vmcb(svm);
287
288 vmcb->control.intercept_cr |= (1U << bit);
289
290 recalc_intercepts(svm);
291 }
292
293 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294 {
295 struct vmcb *vmcb = get_host_vmcb(svm);
296
297 vmcb->control.intercept_cr &= ~(1U << bit);
298
299 recalc_intercepts(svm);
300 }
301
302 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303 {
304 struct vmcb *vmcb = get_host_vmcb(svm);
305
306 return vmcb->control.intercept_cr & (1U << bit);
307 }
308
309 static inline void set_dr_intercepts(struct vcpu_svm *svm)
310 {
311 struct vmcb *vmcb = get_host_vmcb(svm);
312
313 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314 | (1 << INTERCEPT_DR1_READ)
315 | (1 << INTERCEPT_DR2_READ)
316 | (1 << INTERCEPT_DR3_READ)
317 | (1 << INTERCEPT_DR4_READ)
318 | (1 << INTERCEPT_DR5_READ)
319 | (1 << INTERCEPT_DR6_READ)
320 | (1 << INTERCEPT_DR7_READ)
321 | (1 << INTERCEPT_DR0_WRITE)
322 | (1 << INTERCEPT_DR1_WRITE)
323 | (1 << INTERCEPT_DR2_WRITE)
324 | (1 << INTERCEPT_DR3_WRITE)
325 | (1 << INTERCEPT_DR4_WRITE)
326 | (1 << INTERCEPT_DR5_WRITE)
327 | (1 << INTERCEPT_DR6_WRITE)
328 | (1 << INTERCEPT_DR7_WRITE);
329
330 recalc_intercepts(svm);
331 }
332
333 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334 {
335 struct vmcb *vmcb = get_host_vmcb(svm);
336
337 vmcb->control.intercept_dr = 0;
338
339 recalc_intercepts(svm);
340 }
341
342 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343 {
344 struct vmcb *vmcb = get_host_vmcb(svm);
345
346 vmcb->control.intercept_exceptions |= (1U << bit);
347
348 recalc_intercepts(svm);
349 }
350
351 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352 {
353 struct vmcb *vmcb = get_host_vmcb(svm);
354
355 vmcb->control.intercept_exceptions &= ~(1U << bit);
356
357 recalc_intercepts(svm);
358 }
359
360 static inline void set_intercept(struct vcpu_svm *svm, int bit)
361 {
362 struct vmcb *vmcb = get_host_vmcb(svm);
363
364 vmcb->control.intercept |= (1ULL << bit);
365
366 recalc_intercepts(svm);
367 }
368
369 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370 {
371 struct vmcb *vmcb = get_host_vmcb(svm);
372
373 vmcb->control.intercept &= ~(1ULL << bit);
374
375 recalc_intercepts(svm);
376 }
377
378 static inline void enable_gif(struct vcpu_svm *svm)
379 {
380 svm->vcpu.arch.hflags |= HF_GIF_MASK;
381 }
382
383 static inline void disable_gif(struct vcpu_svm *svm)
384 {
385 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386 }
387
388 static inline bool gif_set(struct vcpu_svm *svm)
389 {
390 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391 }
392
393 static unsigned long iopm_base;
394
395 struct kvm_ldttss_desc {
396 u16 limit0;
397 u16 base0;
398 unsigned base1:8, type:5, dpl:2, p:1;
399 unsigned limit1:4, zero0:3, g:1, base2:8;
400 u32 base3;
401 u32 zero1;
402 } __attribute__((packed));
403
404 struct svm_cpu_data {
405 int cpu;
406
407 u64 asid_generation;
408 u32 max_asid;
409 u32 next_asid;
410 struct kvm_ldttss_desc *tss_desc;
411
412 struct page *save_area;
413 };
414
415 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416
417 struct svm_init_data {
418 int cpu;
419 int r;
420 };
421
422 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423
424 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425 #define MSRS_RANGE_SIZE 2048
426 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427
428 static u32 svm_msrpm_offset(u32 msr)
429 {
430 u32 offset;
431 int i;
432
433 for (i = 0; i < NUM_MSR_MAPS; i++) {
434 if (msr < msrpm_ranges[i] ||
435 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436 continue;
437
438 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
440
441 /* Now we have the u8 offset - but need the u32 offset */
442 return offset / 4;
443 }
444
445 /* MSR not in any range */
446 return MSR_INVALID;
447 }
448
449 #define MAX_INST_SIZE 15
450
451 static inline void clgi(void)
452 {
453 asm volatile (__ex(SVM_CLGI));
454 }
455
456 static inline void stgi(void)
457 {
458 asm volatile (__ex(SVM_STGI));
459 }
460
461 static inline void invlpga(unsigned long addr, u32 asid)
462 {
463 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464 }
465
466 static int get_npt_level(void)
467 {
468 #ifdef CONFIG_X86_64
469 return PT64_ROOT_LEVEL;
470 #else
471 return PT32E_ROOT_LEVEL;
472 #endif
473 }
474
475 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476 {
477 vcpu->arch.efer = efer;
478 if (!npt_enabled && !(efer & EFER_LMA))
479 efer &= ~EFER_LME;
480
481 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483 }
484
485 static int is_external_interrupt(u32 info)
486 {
487 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489 }
490
491 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492 {
493 struct vcpu_svm *svm = to_svm(vcpu);
494 u32 ret = 0;
495
496 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498 return ret;
499 }
500
501 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502 {
503 struct vcpu_svm *svm = to_svm(vcpu);
504
505 if (mask == 0)
506 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507 else
508 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509
510 }
511
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513 {
514 struct vcpu_svm *svm = to_svm(vcpu);
515
516 if (svm->vmcb->control.next_rip != 0) {
517 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
518 svm->next_rip = svm->vmcb->control.next_rip;
519 }
520
521 if (!svm->next_rip) {
522 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523 EMULATE_DONE)
524 printk(KERN_DEBUG "%s: NOP\n", __func__);
525 return;
526 }
527 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529 __func__, kvm_rip_read(vcpu), svm->next_rip);
530
531 kvm_rip_write(vcpu, svm->next_rip);
532 svm_set_interrupt_shadow(vcpu, 0);
533 }
534
535 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536 bool has_error_code, u32 error_code,
537 bool reinject)
538 {
539 struct vcpu_svm *svm = to_svm(vcpu);
540
541 /*
542 * If we are within a nested VM we'd better #VMEXIT and let the guest
543 * handle the exception
544 */
545 if (!reinject &&
546 nested_svm_check_exception(svm, nr, has_error_code, error_code))
547 return;
548
549 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551
552 /*
553 * For guest debugging where we have to reinject #BP if some
554 * INT3 is guest-owned:
555 * Emulate nRIP by moving RIP forward. Will fail if injection
556 * raises a fault that is not intercepted. Still better than
557 * failing in all cases.
558 */
559 skip_emulated_instruction(&svm->vcpu);
560 rip = kvm_rip_read(&svm->vcpu);
561 svm->int3_rip = rip + svm->vmcb->save.cs.base;
562 svm->int3_injected = rip - old_rip;
563 }
564
565 svm->vmcb->control.event_inj = nr
566 | SVM_EVTINJ_VALID
567 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568 | SVM_EVTINJ_TYPE_EXEPT;
569 svm->vmcb->control.event_inj_err = error_code;
570 }
571
572 static void svm_init_erratum_383(void)
573 {
574 u32 low, high;
575 int err;
576 u64 val;
577
578 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579 return;
580
581 /* Use _safe variants to not break nested virtualization */
582 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583 if (err)
584 return;
585
586 val |= (1ULL << 47);
587
588 low = lower_32_bits(val);
589 high = upper_32_bits(val);
590
591 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592
593 erratum_383_found = true;
594 }
595
596 static void svm_init_osvw(struct kvm_vcpu *vcpu)
597 {
598 /*
599 * Guests should see errata 400 and 415 as fixed (assuming that
600 * HLT and IO instructions are intercepted).
601 */
602 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604
605 /*
606 * By increasing VCPU's osvw.length to 3 we are telling the guest that
607 * all osvw.status bits inside that length, including bit 0 (which is
608 * reserved for erratum 298), are valid. However, if host processor's
609 * osvw_len is 0 then osvw_status[0] carries no information. We need to
610 * be conservative here and therefore we tell the guest that erratum 298
611 * is present (because we really don't know).
612 */
613 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614 vcpu->arch.osvw.status |= 1;
615 }
616
617 static int has_svm(void)
618 {
619 const char *msg;
620
621 if (!cpu_has_svm(&msg)) {
622 printk(KERN_INFO "has_svm: %s\n", msg);
623 return 0;
624 }
625
626 return 1;
627 }
628
629 static void svm_hardware_disable(void)
630 {
631 /* Make sure we clean up behind us */
632 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634
635 cpu_svm_disable();
636
637 amd_pmu_disable_virt();
638 }
639
640 static int svm_hardware_enable(void)
641 {
642
643 struct svm_cpu_data *sd;
644 uint64_t efer;
645 struct desc_ptr gdt_descr;
646 struct desc_struct *gdt;
647 int me = raw_smp_processor_id();
648
649 rdmsrl(MSR_EFER, efer);
650 if (efer & EFER_SVME)
651 return -EBUSY;
652
653 if (!has_svm()) {
654 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655 return -EINVAL;
656 }
657 sd = per_cpu(svm_data, me);
658 if (!sd) {
659 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660 return -EINVAL;
661 }
662
663 sd->asid_generation = 1;
664 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665 sd->next_asid = sd->max_asid + 1;
666
667 native_store_gdt(&gdt_descr);
668 gdt = (struct desc_struct *)gdt_descr.address;
669 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670
671 wrmsrl(MSR_EFER, efer | EFER_SVME);
672
673 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674
675 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678 }
679
680
681 /*
682 * Get OSVW bits.
683 *
684 * Note that it is possible to have a system with mixed processor
685 * revisions and therefore different OSVW bits. If bits are not the same
686 * on different processors then choose the worst case (i.e. if erratum
687 * is present on one processor and not on another then assume that the
688 * erratum is present everywhere).
689 */
690 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691 uint64_t len, status = 0;
692 int err;
693
694 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695 if (!err)
696 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697 &err);
698
699 if (err)
700 osvw_status = osvw_len = 0;
701 else {
702 if (len < osvw_len)
703 osvw_len = len;
704 osvw_status |= status;
705 osvw_status &= (1ULL << osvw_len) - 1;
706 }
707 } else
708 osvw_status = osvw_len = 0;
709
710 svm_init_erratum_383();
711
712 amd_pmu_enable_virt();
713
714 return 0;
715 }
716
717 static void svm_cpu_uninit(int cpu)
718 {
719 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720
721 if (!sd)
722 return;
723
724 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725 __free_page(sd->save_area);
726 kfree(sd);
727 }
728
729 static int svm_cpu_init(int cpu)
730 {
731 struct svm_cpu_data *sd;
732 int r;
733
734 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735 if (!sd)
736 return -ENOMEM;
737 sd->cpu = cpu;
738 sd->save_area = alloc_page(GFP_KERNEL);
739 r = -ENOMEM;
740 if (!sd->save_area)
741 goto err_1;
742
743 per_cpu(svm_data, cpu) = sd;
744
745 return 0;
746
747 err_1:
748 kfree(sd);
749 return r;
750
751 }
752
753 static bool valid_msr_intercept(u32 index)
754 {
755 int i;
756
757 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758 if (direct_access_msrs[i].index == index)
759 return true;
760
761 return false;
762 }
763
764 static void set_msr_interception(u32 *msrpm, unsigned msr,
765 int read, int write)
766 {
767 u8 bit_read, bit_write;
768 unsigned long tmp;
769 u32 offset;
770
771 /*
772 * If this warning triggers extend the direct_access_msrs list at the
773 * beginning of the file
774 */
775 WARN_ON(!valid_msr_intercept(msr));
776
777 offset = svm_msrpm_offset(msr);
778 bit_read = 2 * (msr & 0x0f);
779 bit_write = 2 * (msr & 0x0f) + 1;
780 tmp = msrpm[offset];
781
782 BUG_ON(offset == MSR_INVALID);
783
784 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
785 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786
787 msrpm[offset] = tmp;
788 }
789
790 static void svm_vcpu_init_msrpm(u32 *msrpm)
791 {
792 int i;
793
794 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795
796 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797 if (!direct_access_msrs[i].always)
798 continue;
799
800 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801 }
802 }
803
804 static void add_msr_offset(u32 offset)
805 {
806 int i;
807
808 for (i = 0; i < MSRPM_OFFSETS; ++i) {
809
810 /* Offset already in list? */
811 if (msrpm_offsets[i] == offset)
812 return;
813
814 /* Slot used by another offset? */
815 if (msrpm_offsets[i] != MSR_INVALID)
816 continue;
817
818 /* Add offset to list */
819 msrpm_offsets[i] = offset;
820
821 return;
822 }
823
824 /*
825 * If this BUG triggers the msrpm_offsets table has an overflow. Just
826 * increase MSRPM_OFFSETS in this case.
827 */
828 BUG();
829 }
830
831 static void init_msrpm_offsets(void)
832 {
833 int i;
834
835 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836
837 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838 u32 offset;
839
840 offset = svm_msrpm_offset(direct_access_msrs[i].index);
841 BUG_ON(offset == MSR_INVALID);
842
843 add_msr_offset(offset);
844 }
845 }
846
847 static void svm_enable_lbrv(struct vcpu_svm *svm)
848 {
849 u32 *msrpm = svm->msrpm;
850
851 svm->vmcb->control.lbr_ctl = 1;
852 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856 }
857
858 static void svm_disable_lbrv(struct vcpu_svm *svm)
859 {
860 u32 *msrpm = svm->msrpm;
861
862 svm->vmcb->control.lbr_ctl = 0;
863 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867 }
868
869 #define MTRR_TYPE_UC_MINUS 7
870 #define MTRR2PROTVAL_INVALID 0xff
871
872 static u8 mtrr2protval[8];
873
874 static u8 fallback_mtrr_type(int mtrr)
875 {
876 /*
877 * WT and WP aren't always available in the host PAT. Treat
878 * them as UC and UC- respectively. Everything else should be
879 * there.
880 */
881 switch (mtrr)
882 {
883 case MTRR_TYPE_WRTHROUGH:
884 return MTRR_TYPE_UNCACHABLE;
885 case MTRR_TYPE_WRPROT:
886 return MTRR_TYPE_UC_MINUS;
887 default:
888 BUG();
889 }
890 }
891
892 static void build_mtrr2protval(void)
893 {
894 int i;
895 u64 pat;
896
897 for (i = 0; i < 8; i++)
898 mtrr2protval[i] = MTRR2PROTVAL_INVALID;
899
900 /* Ignore the invalid MTRR types. */
901 mtrr2protval[2] = 0;
902 mtrr2protval[3] = 0;
903
904 /*
905 * Use host PAT value to figure out the mapping from guest MTRR
906 * values to nested page table PAT/PCD/PWT values. We do not
907 * want to change the host PAT value every time we enter the
908 * guest.
909 */
910 rdmsrl(MSR_IA32_CR_PAT, pat);
911 for (i = 0; i < 8; i++) {
912 u8 mtrr = pat >> (8 * i);
913
914 if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID)
915 mtrr2protval[mtrr] = __cm_idx2pte(i);
916 }
917
918 for (i = 0; i < 8; i++) {
919 if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) {
920 u8 fallback = fallback_mtrr_type(i);
921 mtrr2protval[i] = mtrr2protval[fallback];
922 BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID);
923 }
924 }
925 }
926
927 static __init int svm_hardware_setup(void)
928 {
929 int cpu;
930 struct page *iopm_pages;
931 void *iopm_va;
932 int r;
933
934 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
935
936 if (!iopm_pages)
937 return -ENOMEM;
938
939 iopm_va = page_address(iopm_pages);
940 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
941 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
942
943 init_msrpm_offsets();
944
945 if (boot_cpu_has(X86_FEATURE_NX))
946 kvm_enable_efer_bits(EFER_NX);
947
948 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
949 kvm_enable_efer_bits(EFER_FFXSR);
950
951 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
952 u64 max;
953
954 kvm_has_tsc_control = true;
955
956 /*
957 * Make sure the user can only configure tsc_khz values that
958 * fit into a signed integer.
959 * A min value is not calculated needed because it will always
960 * be 1 on all machines and a value of 0 is used to disable
961 * tsc-scaling for the vcpu.
962 */
963 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
964
965 kvm_max_guest_tsc_khz = max;
966 }
967
968 if (nested) {
969 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
970 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
971 }
972
973 for_each_possible_cpu(cpu) {
974 r = svm_cpu_init(cpu);
975 if (r)
976 goto err;
977 }
978
979 if (!boot_cpu_has(X86_FEATURE_NPT))
980 npt_enabled = false;
981
982 if (npt_enabled && !npt) {
983 printk(KERN_INFO "kvm: Nested Paging disabled\n");
984 npt_enabled = false;
985 }
986
987 if (npt_enabled) {
988 printk(KERN_INFO "kvm: Nested Paging enabled\n");
989 kvm_enable_tdp();
990 } else
991 kvm_disable_tdp();
992
993 build_mtrr2protval();
994 return 0;
995
996 err:
997 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
998 iopm_base = 0;
999 return r;
1000 }
1001
1002 static __exit void svm_hardware_unsetup(void)
1003 {
1004 int cpu;
1005
1006 for_each_possible_cpu(cpu)
1007 svm_cpu_uninit(cpu);
1008
1009 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1010 iopm_base = 0;
1011 }
1012
1013 static void init_seg(struct vmcb_seg *seg)
1014 {
1015 seg->selector = 0;
1016 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1017 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1018 seg->limit = 0xffff;
1019 seg->base = 0;
1020 }
1021
1022 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1023 {
1024 seg->selector = 0;
1025 seg->attrib = SVM_SELECTOR_P_MASK | type;
1026 seg->limit = 0xffff;
1027 seg->base = 0;
1028 }
1029
1030 static u64 __scale_tsc(u64 ratio, u64 tsc)
1031 {
1032 u64 mult, frac, _tsc;
1033
1034 mult = ratio >> 32;
1035 frac = ratio & ((1ULL << 32) - 1);
1036
1037 _tsc = tsc;
1038 _tsc *= mult;
1039 _tsc += (tsc >> 32) * frac;
1040 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
1041
1042 return _tsc;
1043 }
1044
1045 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1046 {
1047 struct vcpu_svm *svm = to_svm(vcpu);
1048 u64 _tsc = tsc;
1049
1050 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1051 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
1052
1053 return _tsc;
1054 }
1055
1056 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1057 {
1058 struct vcpu_svm *svm = to_svm(vcpu);
1059 u64 ratio;
1060 u64 khz;
1061
1062 /* Guest TSC same frequency as host TSC? */
1063 if (!scale) {
1064 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1065 return;
1066 }
1067
1068 /* TSC scaling supported? */
1069 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1070 if (user_tsc_khz > tsc_khz) {
1071 vcpu->arch.tsc_catchup = 1;
1072 vcpu->arch.tsc_always_catchup = 1;
1073 } else
1074 WARN(1, "user requested TSC rate below hardware speed\n");
1075 return;
1076 }
1077
1078 khz = user_tsc_khz;
1079
1080 /* TSC scaling required - calculate ratio */
1081 ratio = khz << 32;
1082 do_div(ratio, tsc_khz);
1083
1084 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1085 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1086 user_tsc_khz);
1087 return;
1088 }
1089 svm->tsc_ratio = ratio;
1090 }
1091
1092 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1093 {
1094 struct vcpu_svm *svm = to_svm(vcpu);
1095
1096 return svm->vmcb->control.tsc_offset;
1097 }
1098
1099 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1100 {
1101 struct vcpu_svm *svm = to_svm(vcpu);
1102 u64 g_tsc_offset = 0;
1103
1104 if (is_guest_mode(vcpu)) {
1105 g_tsc_offset = svm->vmcb->control.tsc_offset -
1106 svm->nested.hsave->control.tsc_offset;
1107 svm->nested.hsave->control.tsc_offset = offset;
1108 } else
1109 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1110 svm->vmcb->control.tsc_offset,
1111 offset);
1112
1113 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1114
1115 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1116 }
1117
1118 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1119 {
1120 struct vcpu_svm *svm = to_svm(vcpu);
1121
1122 if (host) {
1123 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1124 WARN_ON(adjustment < 0);
1125 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1126 }
1127
1128 svm->vmcb->control.tsc_offset += adjustment;
1129 if (is_guest_mode(vcpu))
1130 svm->nested.hsave->control.tsc_offset += adjustment;
1131 else
1132 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1133 svm->vmcb->control.tsc_offset - adjustment,
1134 svm->vmcb->control.tsc_offset);
1135
1136 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1137 }
1138
1139 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1140 {
1141 u64 tsc;
1142
1143 tsc = svm_scale_tsc(vcpu, rdtsc());
1144
1145 return target_tsc - tsc;
1146 }
1147
1148 static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat)
1149 {
1150 struct kvm_vcpu *vcpu = &svm->vcpu;
1151
1152 /* Unlike Intel, AMD takes the guest's CR0.CD into account.
1153 *
1154 * AMD does not have IPAT. To emulate it for the case of guests
1155 * with no assigned devices, just set everything to WB. If guests
1156 * have assigned devices, however, we cannot force WB for RAM
1157 * pages only, so use the guest PAT directly.
1158 */
1159 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1160 *g_pat = 0x0606060606060606;
1161 else
1162 *g_pat = vcpu->arch.pat;
1163 }
1164
1165 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
1166 {
1167 u8 mtrr;
1168
1169 /*
1170 * 1. MMIO: always map as UC
1171 * 2. No passthrough: always map as WB, and force guest PAT to WB as well
1172 * 3. Passthrough: can't guarantee the result, try to trust guest.
1173 */
1174 if (is_mmio)
1175 return _PAGE_NOCACHE;
1176
1177 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1178 return 0;
1179
1180 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED) &&
1181 kvm_read_cr0(vcpu) & X86_CR0_CD)
1182 return _PAGE_NOCACHE;
1183
1184 mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
1185 return mtrr2protval[mtrr];
1186 }
1187
1188 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1189 {
1190 struct vmcb_control_area *control = &svm->vmcb->control;
1191 struct vmcb_save_area *save = &svm->vmcb->save;
1192
1193 svm->vcpu.fpu_active = 1;
1194 svm->vcpu.arch.hflags = 0;
1195
1196 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1197 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1198 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1199 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1200 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1201 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1202 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1203
1204 set_dr_intercepts(svm);
1205
1206 set_exception_intercept(svm, PF_VECTOR);
1207 set_exception_intercept(svm, UD_VECTOR);
1208 set_exception_intercept(svm, MC_VECTOR);
1209
1210 set_intercept(svm, INTERCEPT_INTR);
1211 set_intercept(svm, INTERCEPT_NMI);
1212 set_intercept(svm, INTERCEPT_SMI);
1213 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1214 set_intercept(svm, INTERCEPT_RDPMC);
1215 set_intercept(svm, INTERCEPT_CPUID);
1216 set_intercept(svm, INTERCEPT_INVD);
1217 set_intercept(svm, INTERCEPT_HLT);
1218 set_intercept(svm, INTERCEPT_INVLPG);
1219 set_intercept(svm, INTERCEPT_INVLPGA);
1220 set_intercept(svm, INTERCEPT_IOIO_PROT);
1221 set_intercept(svm, INTERCEPT_MSR_PROT);
1222 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1223 set_intercept(svm, INTERCEPT_SHUTDOWN);
1224 set_intercept(svm, INTERCEPT_VMRUN);
1225 set_intercept(svm, INTERCEPT_VMMCALL);
1226 set_intercept(svm, INTERCEPT_VMLOAD);
1227 set_intercept(svm, INTERCEPT_VMSAVE);
1228 set_intercept(svm, INTERCEPT_STGI);
1229 set_intercept(svm, INTERCEPT_CLGI);
1230 set_intercept(svm, INTERCEPT_SKINIT);
1231 set_intercept(svm, INTERCEPT_WBINVD);
1232 set_intercept(svm, INTERCEPT_MONITOR);
1233 set_intercept(svm, INTERCEPT_MWAIT);
1234 set_intercept(svm, INTERCEPT_XSETBV);
1235
1236 control->iopm_base_pa = iopm_base;
1237 control->msrpm_base_pa = __pa(svm->msrpm);
1238 control->int_ctl = V_INTR_MASKING_MASK;
1239
1240 init_seg(&save->es);
1241 init_seg(&save->ss);
1242 init_seg(&save->ds);
1243 init_seg(&save->fs);
1244 init_seg(&save->gs);
1245
1246 save->cs.selector = 0xf000;
1247 save->cs.base = 0xffff0000;
1248 /* Executable/Readable Code Segment */
1249 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1250 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1251 save->cs.limit = 0xffff;
1252
1253 save->gdtr.limit = 0xffff;
1254 save->idtr.limit = 0xffff;
1255
1256 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1257 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1258
1259 if (!init_event)
1260 svm_set_efer(&svm->vcpu, 0);
1261 save->dr6 = 0xffff0ff0;
1262 kvm_set_rflags(&svm->vcpu, 2);
1263 save->rip = 0x0000fff0;
1264 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1265
1266 /*
1267 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1268 * It also updates the guest-visible cr0 value.
1269 */
1270 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1271 kvm_mmu_reset_context(&svm->vcpu);
1272
1273 save->cr4 = X86_CR4_PAE;
1274 /* rdx = ?? */
1275
1276 if (npt_enabled) {
1277 /* Setup VMCB for Nested Paging */
1278 control->nested_ctl = 1;
1279 clr_intercept(svm, INTERCEPT_INVLPG);
1280 clr_exception_intercept(svm, PF_VECTOR);
1281 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1282 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1283 save->g_pat = svm->vcpu.arch.pat;
1284 svm_set_guest_pat(svm, &save->g_pat);
1285 save->cr3 = 0;
1286 save->cr4 = 0;
1287 }
1288 svm->asid_generation = 0;
1289
1290 svm->nested.vmcb = 0;
1291 svm->vcpu.arch.hflags = 0;
1292
1293 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1294 control->pause_filter_count = 3000;
1295 set_intercept(svm, INTERCEPT_PAUSE);
1296 }
1297
1298 mark_all_dirty(svm->vmcb);
1299
1300 enable_gif(svm);
1301 }
1302
1303 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1304 {
1305 struct vcpu_svm *svm = to_svm(vcpu);
1306 u32 dummy;
1307 u32 eax = 1;
1308
1309 if (!init_event) {
1310 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1311 MSR_IA32_APICBASE_ENABLE;
1312 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1313 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1314 }
1315 init_vmcb(svm, init_event);
1316
1317 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1318 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1319 }
1320
1321 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1322 {
1323 struct vcpu_svm *svm;
1324 struct page *page;
1325 struct page *msrpm_pages;
1326 struct page *hsave_page;
1327 struct page *nested_msrpm_pages;
1328 int err;
1329
1330 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1331 if (!svm) {
1332 err = -ENOMEM;
1333 goto out;
1334 }
1335
1336 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1337
1338 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1339 if (err)
1340 goto free_svm;
1341
1342 err = -ENOMEM;
1343 page = alloc_page(GFP_KERNEL);
1344 if (!page)
1345 goto uninit;
1346
1347 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1348 if (!msrpm_pages)
1349 goto free_page1;
1350
1351 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1352 if (!nested_msrpm_pages)
1353 goto free_page2;
1354
1355 hsave_page = alloc_page(GFP_KERNEL);
1356 if (!hsave_page)
1357 goto free_page3;
1358
1359 svm->nested.hsave = page_address(hsave_page);
1360
1361 svm->msrpm = page_address(msrpm_pages);
1362 svm_vcpu_init_msrpm(svm->msrpm);
1363
1364 svm->nested.msrpm = page_address(nested_msrpm_pages);
1365 svm_vcpu_init_msrpm(svm->nested.msrpm);
1366
1367 svm->vmcb = page_address(page);
1368 clear_page(svm->vmcb);
1369 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1370 svm->asid_generation = 0;
1371 init_vmcb(svm, false);
1372
1373 svm_init_osvw(&svm->vcpu);
1374
1375 return &svm->vcpu;
1376
1377 free_page3:
1378 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1379 free_page2:
1380 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1381 free_page1:
1382 __free_page(page);
1383 uninit:
1384 kvm_vcpu_uninit(&svm->vcpu);
1385 free_svm:
1386 kmem_cache_free(kvm_vcpu_cache, svm);
1387 out:
1388 return ERR_PTR(err);
1389 }
1390
1391 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1392 {
1393 struct vcpu_svm *svm = to_svm(vcpu);
1394
1395 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1396 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1397 __free_page(virt_to_page(svm->nested.hsave));
1398 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1399 kvm_vcpu_uninit(vcpu);
1400 kmem_cache_free(kvm_vcpu_cache, svm);
1401 }
1402
1403 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1404 {
1405 struct vcpu_svm *svm = to_svm(vcpu);
1406 int i;
1407
1408 if (unlikely(cpu != vcpu->cpu)) {
1409 svm->asid_generation = 0;
1410 mark_all_dirty(svm->vmcb);
1411 }
1412
1413 #ifdef CONFIG_X86_64
1414 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1415 #endif
1416 savesegment(fs, svm->host.fs);
1417 savesegment(gs, svm->host.gs);
1418 svm->host.ldt = kvm_read_ldt();
1419
1420 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1421 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1422
1423 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1424 svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1425 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1426 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1427 }
1428 }
1429
1430 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1431 {
1432 struct vcpu_svm *svm = to_svm(vcpu);
1433 int i;
1434
1435 ++vcpu->stat.host_state_reload;
1436 kvm_load_ldt(svm->host.ldt);
1437 #ifdef CONFIG_X86_64
1438 loadsegment(fs, svm->host.fs);
1439 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1440 load_gs_index(svm->host.gs);
1441 #else
1442 #ifdef CONFIG_X86_32_LAZY_GS
1443 loadsegment(gs, svm->host.gs);
1444 #endif
1445 #endif
1446 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1447 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1448 }
1449
1450 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1451 {
1452 return to_svm(vcpu)->vmcb->save.rflags;
1453 }
1454
1455 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1456 {
1457 /*
1458 * Any change of EFLAGS.VM is accompained by a reload of SS
1459 * (caused by either a task switch or an inter-privilege IRET),
1460 * so we do not need to update the CPL here.
1461 */
1462 to_svm(vcpu)->vmcb->save.rflags = rflags;
1463 }
1464
1465 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1466 {
1467 switch (reg) {
1468 case VCPU_EXREG_PDPTR:
1469 BUG_ON(!npt_enabled);
1470 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1471 break;
1472 default:
1473 BUG();
1474 }
1475 }
1476
1477 static void svm_set_vintr(struct vcpu_svm *svm)
1478 {
1479 set_intercept(svm, INTERCEPT_VINTR);
1480 }
1481
1482 static void svm_clear_vintr(struct vcpu_svm *svm)
1483 {
1484 clr_intercept(svm, INTERCEPT_VINTR);
1485 }
1486
1487 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1488 {
1489 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1490
1491 switch (seg) {
1492 case VCPU_SREG_CS: return &save->cs;
1493 case VCPU_SREG_DS: return &save->ds;
1494 case VCPU_SREG_ES: return &save->es;
1495 case VCPU_SREG_FS: return &save->fs;
1496 case VCPU_SREG_GS: return &save->gs;
1497 case VCPU_SREG_SS: return &save->ss;
1498 case VCPU_SREG_TR: return &save->tr;
1499 case VCPU_SREG_LDTR: return &save->ldtr;
1500 }
1501 BUG();
1502 return NULL;
1503 }
1504
1505 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1506 {
1507 struct vmcb_seg *s = svm_seg(vcpu, seg);
1508
1509 return s->base;
1510 }
1511
1512 static void svm_get_segment(struct kvm_vcpu *vcpu,
1513 struct kvm_segment *var, int seg)
1514 {
1515 struct vmcb_seg *s = svm_seg(vcpu, seg);
1516
1517 var->base = s->base;
1518 var->limit = s->limit;
1519 var->selector = s->selector;
1520 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1521 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1522 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1523 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1524 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1525 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1526 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1527
1528 /*
1529 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1530 * However, the SVM spec states that the G bit is not observed by the
1531 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1532 * So let's synthesize a legal G bit for all segments, this helps
1533 * running KVM nested. It also helps cross-vendor migration, because
1534 * Intel's vmentry has a check on the 'G' bit.
1535 */
1536 var->g = s->limit > 0xfffff;
1537
1538 /*
1539 * AMD's VMCB does not have an explicit unusable field, so emulate it
1540 * for cross vendor migration purposes by "not present"
1541 */
1542 var->unusable = !var->present || (var->type == 0);
1543
1544 switch (seg) {
1545 case VCPU_SREG_TR:
1546 /*
1547 * Work around a bug where the busy flag in the tr selector
1548 * isn't exposed
1549 */
1550 var->type |= 0x2;
1551 break;
1552 case VCPU_SREG_DS:
1553 case VCPU_SREG_ES:
1554 case VCPU_SREG_FS:
1555 case VCPU_SREG_GS:
1556 /*
1557 * The accessed bit must always be set in the segment
1558 * descriptor cache, although it can be cleared in the
1559 * descriptor, the cached bit always remains at 1. Since
1560 * Intel has a check on this, set it here to support
1561 * cross-vendor migration.
1562 */
1563 if (!var->unusable)
1564 var->type |= 0x1;
1565 break;
1566 case VCPU_SREG_SS:
1567 /*
1568 * On AMD CPUs sometimes the DB bit in the segment
1569 * descriptor is left as 1, although the whole segment has
1570 * been made unusable. Clear it here to pass an Intel VMX
1571 * entry check when cross vendor migrating.
1572 */
1573 if (var->unusable)
1574 var->db = 0;
1575 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1576 break;
1577 }
1578 }
1579
1580 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1581 {
1582 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1583
1584 return save->cpl;
1585 }
1586
1587 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1588 {
1589 struct vcpu_svm *svm = to_svm(vcpu);
1590
1591 dt->size = svm->vmcb->save.idtr.limit;
1592 dt->address = svm->vmcb->save.idtr.base;
1593 }
1594
1595 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1596 {
1597 struct vcpu_svm *svm = to_svm(vcpu);
1598
1599 svm->vmcb->save.idtr.limit = dt->size;
1600 svm->vmcb->save.idtr.base = dt->address ;
1601 mark_dirty(svm->vmcb, VMCB_DT);
1602 }
1603
1604 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1605 {
1606 struct vcpu_svm *svm = to_svm(vcpu);
1607
1608 dt->size = svm->vmcb->save.gdtr.limit;
1609 dt->address = svm->vmcb->save.gdtr.base;
1610 }
1611
1612 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1613 {
1614 struct vcpu_svm *svm = to_svm(vcpu);
1615
1616 svm->vmcb->save.gdtr.limit = dt->size;
1617 svm->vmcb->save.gdtr.base = dt->address ;
1618 mark_dirty(svm->vmcb, VMCB_DT);
1619 }
1620
1621 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1622 {
1623 }
1624
1625 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1626 {
1627 }
1628
1629 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1630 {
1631 }
1632
1633 static void update_cr0_intercept(struct vcpu_svm *svm)
1634 {
1635 ulong gcr0 = svm->vcpu.arch.cr0;
1636 u64 *hcr0 = &svm->vmcb->save.cr0;
1637
1638 if (!svm->vcpu.fpu_active)
1639 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1640 else
1641 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1642 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1643
1644 mark_dirty(svm->vmcb, VMCB_CR);
1645
1646 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1647 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1648 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1649 } else {
1650 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1651 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1652 }
1653 }
1654
1655 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1656 {
1657 struct vcpu_svm *svm = to_svm(vcpu);
1658
1659 #ifdef CONFIG_X86_64
1660 if (vcpu->arch.efer & EFER_LME) {
1661 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1662 vcpu->arch.efer |= EFER_LMA;
1663 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1664 }
1665
1666 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1667 vcpu->arch.efer &= ~EFER_LMA;
1668 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1669 }
1670 }
1671 #endif
1672 vcpu->arch.cr0 = cr0;
1673
1674 if (!npt_enabled)
1675 cr0 |= X86_CR0_PG | X86_CR0_WP;
1676
1677 if (!vcpu->fpu_active)
1678 cr0 |= X86_CR0_TS;
1679
1680 /* These are emulated via page tables. */
1681 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1682
1683 svm->vmcb->save.cr0 = cr0;
1684 mark_dirty(svm->vmcb, VMCB_CR);
1685 update_cr0_intercept(svm);
1686 }
1687
1688 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1689 {
1690 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1691 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1692
1693 if (cr4 & X86_CR4_VMXE)
1694 return 1;
1695
1696 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1697 svm_flush_tlb(vcpu);
1698
1699 vcpu->arch.cr4 = cr4;
1700 if (!npt_enabled)
1701 cr4 |= X86_CR4_PAE;
1702 cr4 |= host_cr4_mce;
1703 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1704 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1705 return 0;
1706 }
1707
1708 static void svm_set_segment(struct kvm_vcpu *vcpu,
1709 struct kvm_segment *var, int seg)
1710 {
1711 struct vcpu_svm *svm = to_svm(vcpu);
1712 struct vmcb_seg *s = svm_seg(vcpu, seg);
1713
1714 s->base = var->base;
1715 s->limit = var->limit;
1716 s->selector = var->selector;
1717 if (var->unusable)
1718 s->attrib = 0;
1719 else {
1720 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1721 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1722 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1723 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1724 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1725 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1726 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1727 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1728 }
1729
1730 /*
1731 * This is always accurate, except if SYSRET returned to a segment
1732 * with SS.DPL != 3. Intel does not have this quirk, and always
1733 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1734 * would entail passing the CPL to userspace and back.
1735 */
1736 if (seg == VCPU_SREG_SS)
1737 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1738
1739 mark_dirty(svm->vmcb, VMCB_SEG);
1740 }
1741
1742 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1743 {
1744 struct vcpu_svm *svm = to_svm(vcpu);
1745
1746 clr_exception_intercept(svm, DB_VECTOR);
1747 clr_exception_intercept(svm, BP_VECTOR);
1748
1749 if (svm->nmi_singlestep)
1750 set_exception_intercept(svm, DB_VECTOR);
1751
1752 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1753 if (vcpu->guest_debug &
1754 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1755 set_exception_intercept(svm, DB_VECTOR);
1756 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1757 set_exception_intercept(svm, BP_VECTOR);
1758 } else
1759 vcpu->guest_debug = 0;
1760 }
1761
1762 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1763 {
1764 if (sd->next_asid > sd->max_asid) {
1765 ++sd->asid_generation;
1766 sd->next_asid = 1;
1767 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1768 }
1769
1770 svm->asid_generation = sd->asid_generation;
1771 svm->vmcb->control.asid = sd->next_asid++;
1772
1773 mark_dirty(svm->vmcb, VMCB_ASID);
1774 }
1775
1776 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1777 {
1778 return to_svm(vcpu)->vmcb->save.dr6;
1779 }
1780
1781 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1782 {
1783 struct vcpu_svm *svm = to_svm(vcpu);
1784
1785 svm->vmcb->save.dr6 = value;
1786 mark_dirty(svm->vmcb, VMCB_DR);
1787 }
1788
1789 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1790 {
1791 struct vcpu_svm *svm = to_svm(vcpu);
1792
1793 get_debugreg(vcpu->arch.db[0], 0);
1794 get_debugreg(vcpu->arch.db[1], 1);
1795 get_debugreg(vcpu->arch.db[2], 2);
1796 get_debugreg(vcpu->arch.db[3], 3);
1797 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1798 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1799
1800 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1801 set_dr_intercepts(svm);
1802 }
1803
1804 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1805 {
1806 struct vcpu_svm *svm = to_svm(vcpu);
1807
1808 svm->vmcb->save.dr7 = value;
1809 mark_dirty(svm->vmcb, VMCB_DR);
1810 }
1811
1812 static int pf_interception(struct vcpu_svm *svm)
1813 {
1814 u64 fault_address = svm->vmcb->control.exit_info_2;
1815 u32 error_code;
1816 int r = 1;
1817
1818 switch (svm->apf_reason) {
1819 default:
1820 error_code = svm->vmcb->control.exit_info_1;
1821
1822 trace_kvm_page_fault(fault_address, error_code);
1823 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1824 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1825 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1826 svm->vmcb->control.insn_bytes,
1827 svm->vmcb->control.insn_len);
1828 break;
1829 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1830 svm->apf_reason = 0;
1831 local_irq_disable();
1832 kvm_async_pf_task_wait(fault_address);
1833 local_irq_enable();
1834 break;
1835 case KVM_PV_REASON_PAGE_READY:
1836 svm->apf_reason = 0;
1837 local_irq_disable();
1838 kvm_async_pf_task_wake(fault_address);
1839 local_irq_enable();
1840 break;
1841 }
1842 return r;
1843 }
1844
1845 static int db_interception(struct vcpu_svm *svm)
1846 {
1847 struct kvm_run *kvm_run = svm->vcpu.run;
1848
1849 if (!(svm->vcpu.guest_debug &
1850 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1851 !svm->nmi_singlestep) {
1852 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1853 return 1;
1854 }
1855
1856 if (svm->nmi_singlestep) {
1857 svm->nmi_singlestep = false;
1858 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1859 svm->vmcb->save.rflags &=
1860 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1861 update_db_bp_intercept(&svm->vcpu);
1862 }
1863
1864 if (svm->vcpu.guest_debug &
1865 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1866 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1867 kvm_run->debug.arch.pc =
1868 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1869 kvm_run->debug.arch.exception = DB_VECTOR;
1870 return 0;
1871 }
1872
1873 return 1;
1874 }
1875
1876 static int bp_interception(struct vcpu_svm *svm)
1877 {
1878 struct kvm_run *kvm_run = svm->vcpu.run;
1879
1880 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1881 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1882 kvm_run->debug.arch.exception = BP_VECTOR;
1883 return 0;
1884 }
1885
1886 static int ud_interception(struct vcpu_svm *svm)
1887 {
1888 int er;
1889
1890 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1891 if (er != EMULATE_DONE)
1892 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1893 return 1;
1894 }
1895
1896 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1897 {
1898 struct vcpu_svm *svm = to_svm(vcpu);
1899
1900 clr_exception_intercept(svm, NM_VECTOR);
1901
1902 svm->vcpu.fpu_active = 1;
1903 update_cr0_intercept(svm);
1904 }
1905
1906 static int nm_interception(struct vcpu_svm *svm)
1907 {
1908 svm_fpu_activate(&svm->vcpu);
1909 return 1;
1910 }
1911
1912 static bool is_erratum_383(void)
1913 {
1914 int err, i;
1915 u64 value;
1916
1917 if (!erratum_383_found)
1918 return false;
1919
1920 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1921 if (err)
1922 return false;
1923
1924 /* Bit 62 may or may not be set for this mce */
1925 value &= ~(1ULL << 62);
1926
1927 if (value != 0xb600000000010015ULL)
1928 return false;
1929
1930 /* Clear MCi_STATUS registers */
1931 for (i = 0; i < 6; ++i)
1932 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1933
1934 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1935 if (!err) {
1936 u32 low, high;
1937
1938 value &= ~(1ULL << 2);
1939 low = lower_32_bits(value);
1940 high = upper_32_bits(value);
1941
1942 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1943 }
1944
1945 /* Flush tlb to evict multi-match entries */
1946 __flush_tlb_all();
1947
1948 return true;
1949 }
1950
1951 static void svm_handle_mce(struct vcpu_svm *svm)
1952 {
1953 if (is_erratum_383()) {
1954 /*
1955 * Erratum 383 triggered. Guest state is corrupt so kill the
1956 * guest.
1957 */
1958 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1959
1960 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1961
1962 return;
1963 }
1964
1965 /*
1966 * On an #MC intercept the MCE handler is not called automatically in
1967 * the host. So do it by hand here.
1968 */
1969 asm volatile (
1970 "int $0x12\n");
1971 /* not sure if we ever come back to this point */
1972
1973 return;
1974 }
1975
1976 static int mc_interception(struct vcpu_svm *svm)
1977 {
1978 return 1;
1979 }
1980
1981 static int shutdown_interception(struct vcpu_svm *svm)
1982 {
1983 struct kvm_run *kvm_run = svm->vcpu.run;
1984
1985 /*
1986 * VMCB is undefined after a SHUTDOWN intercept
1987 * so reinitialize it.
1988 */
1989 clear_page(svm->vmcb);
1990 init_vmcb(svm, false);
1991
1992 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1993 return 0;
1994 }
1995
1996 static int io_interception(struct vcpu_svm *svm)
1997 {
1998 struct kvm_vcpu *vcpu = &svm->vcpu;
1999 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2000 int size, in, string;
2001 unsigned port;
2002
2003 ++svm->vcpu.stat.io_exits;
2004 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2005 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2006 if (string || in)
2007 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2008
2009 port = io_info >> 16;
2010 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2011 svm->next_rip = svm->vmcb->control.exit_info_2;
2012 skip_emulated_instruction(&svm->vcpu);
2013
2014 return kvm_fast_pio_out(vcpu, size, port);
2015 }
2016
2017 static int nmi_interception(struct vcpu_svm *svm)
2018 {
2019 return 1;
2020 }
2021
2022 static int intr_interception(struct vcpu_svm *svm)
2023 {
2024 ++svm->vcpu.stat.irq_exits;
2025 return 1;
2026 }
2027
2028 static int nop_on_interception(struct vcpu_svm *svm)
2029 {
2030 return 1;
2031 }
2032
2033 static int halt_interception(struct vcpu_svm *svm)
2034 {
2035 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2036 return kvm_emulate_halt(&svm->vcpu);
2037 }
2038
2039 static int vmmcall_interception(struct vcpu_svm *svm)
2040 {
2041 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2042 kvm_emulate_hypercall(&svm->vcpu);
2043 return 1;
2044 }
2045
2046 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2047 {
2048 struct vcpu_svm *svm = to_svm(vcpu);
2049
2050 return svm->nested.nested_cr3;
2051 }
2052
2053 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2054 {
2055 struct vcpu_svm *svm = to_svm(vcpu);
2056 u64 cr3 = svm->nested.nested_cr3;
2057 u64 pdpte;
2058 int ret;
2059
2060 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2061 offset_in_page(cr3) + index * 8, 8);
2062 if (ret)
2063 return 0;
2064 return pdpte;
2065 }
2066
2067 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2068 unsigned long root)
2069 {
2070 struct vcpu_svm *svm = to_svm(vcpu);
2071
2072 svm->vmcb->control.nested_cr3 = root;
2073 mark_dirty(svm->vmcb, VMCB_NPT);
2074 svm_flush_tlb(vcpu);
2075 }
2076
2077 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2078 struct x86_exception *fault)
2079 {
2080 struct vcpu_svm *svm = to_svm(vcpu);
2081
2082 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2083 /*
2084 * TODO: track the cause of the nested page fault, and
2085 * correctly fill in the high bits of exit_info_1.
2086 */
2087 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2088 svm->vmcb->control.exit_code_hi = 0;
2089 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2090 svm->vmcb->control.exit_info_2 = fault->address;
2091 }
2092
2093 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2094 svm->vmcb->control.exit_info_1 |= fault->error_code;
2095
2096 /*
2097 * The present bit is always zero for page structure faults on real
2098 * hardware.
2099 */
2100 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2101 svm->vmcb->control.exit_info_1 &= ~1;
2102
2103 nested_svm_vmexit(svm);
2104 }
2105
2106 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2107 {
2108 WARN_ON(mmu_is_nested(vcpu));
2109 kvm_init_shadow_mmu(vcpu);
2110 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2111 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2112 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2113 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2114 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2115 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2116 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2117 }
2118
2119 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2120 {
2121 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2122 }
2123
2124 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2125 {
2126 if (!(svm->vcpu.arch.efer & EFER_SVME)
2127 || !is_paging(&svm->vcpu)) {
2128 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2129 return 1;
2130 }
2131
2132 if (svm->vmcb->save.cpl) {
2133 kvm_inject_gp(&svm->vcpu, 0);
2134 return 1;
2135 }
2136
2137 return 0;
2138 }
2139
2140 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2141 bool has_error_code, u32 error_code)
2142 {
2143 int vmexit;
2144
2145 if (!is_guest_mode(&svm->vcpu))
2146 return 0;
2147
2148 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2149 svm->vmcb->control.exit_code_hi = 0;
2150 svm->vmcb->control.exit_info_1 = error_code;
2151 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2152
2153 vmexit = nested_svm_intercept(svm);
2154 if (vmexit == NESTED_EXIT_DONE)
2155 svm->nested.exit_required = true;
2156
2157 return vmexit;
2158 }
2159
2160 /* This function returns true if it is save to enable the irq window */
2161 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2162 {
2163 if (!is_guest_mode(&svm->vcpu))
2164 return true;
2165
2166 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2167 return true;
2168
2169 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2170 return false;
2171
2172 /*
2173 * if vmexit was already requested (by intercepted exception
2174 * for instance) do not overwrite it with "external interrupt"
2175 * vmexit.
2176 */
2177 if (svm->nested.exit_required)
2178 return false;
2179
2180 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2181 svm->vmcb->control.exit_info_1 = 0;
2182 svm->vmcb->control.exit_info_2 = 0;
2183
2184 if (svm->nested.intercept & 1ULL) {
2185 /*
2186 * The #vmexit can't be emulated here directly because this
2187 * code path runs with irqs and preemption disabled. A
2188 * #vmexit emulation might sleep. Only signal request for
2189 * the #vmexit here.
2190 */
2191 svm->nested.exit_required = true;
2192 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2193 return false;
2194 }
2195
2196 return true;
2197 }
2198
2199 /* This function returns true if it is save to enable the nmi window */
2200 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2201 {
2202 if (!is_guest_mode(&svm->vcpu))
2203 return true;
2204
2205 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2206 return true;
2207
2208 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2209 svm->nested.exit_required = true;
2210
2211 return false;
2212 }
2213
2214 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2215 {
2216 struct page *page;
2217
2218 might_sleep();
2219
2220 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2221 if (is_error_page(page))
2222 goto error;
2223
2224 *_page = page;
2225
2226 return kmap(page);
2227
2228 error:
2229 kvm_inject_gp(&svm->vcpu, 0);
2230
2231 return NULL;
2232 }
2233
2234 static void nested_svm_unmap(struct page *page)
2235 {
2236 kunmap(page);
2237 kvm_release_page_dirty(page);
2238 }
2239
2240 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2241 {
2242 unsigned port, size, iopm_len;
2243 u16 val, mask;
2244 u8 start_bit;
2245 u64 gpa;
2246
2247 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2248 return NESTED_EXIT_HOST;
2249
2250 port = svm->vmcb->control.exit_info_1 >> 16;
2251 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2252 SVM_IOIO_SIZE_SHIFT;
2253 gpa = svm->nested.vmcb_iopm + (port / 8);
2254 start_bit = port % 8;
2255 iopm_len = (start_bit + size > 8) ? 2 : 1;
2256 mask = (0xf >> (4 - size)) << start_bit;
2257 val = 0;
2258
2259 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2260 return NESTED_EXIT_DONE;
2261
2262 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2263 }
2264
2265 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2266 {
2267 u32 offset, msr, value;
2268 int write, mask;
2269
2270 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2271 return NESTED_EXIT_HOST;
2272
2273 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2274 offset = svm_msrpm_offset(msr);
2275 write = svm->vmcb->control.exit_info_1 & 1;
2276 mask = 1 << ((2 * (msr & 0xf)) + write);
2277
2278 if (offset == MSR_INVALID)
2279 return NESTED_EXIT_DONE;
2280
2281 /* Offset is in 32 bit units but need in 8 bit units */
2282 offset *= 4;
2283
2284 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2285 return NESTED_EXIT_DONE;
2286
2287 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2288 }
2289
2290 static int nested_svm_exit_special(struct vcpu_svm *svm)
2291 {
2292 u32 exit_code = svm->vmcb->control.exit_code;
2293
2294 switch (exit_code) {
2295 case SVM_EXIT_INTR:
2296 case SVM_EXIT_NMI:
2297 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2298 return NESTED_EXIT_HOST;
2299 case SVM_EXIT_NPF:
2300 /* For now we are always handling NPFs when using them */
2301 if (npt_enabled)
2302 return NESTED_EXIT_HOST;
2303 break;
2304 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2305 /* When we're shadowing, trap PFs, but not async PF */
2306 if (!npt_enabled && svm->apf_reason == 0)
2307 return NESTED_EXIT_HOST;
2308 break;
2309 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2310 nm_interception(svm);
2311 break;
2312 default:
2313 break;
2314 }
2315
2316 return NESTED_EXIT_CONTINUE;
2317 }
2318
2319 /*
2320 * If this function returns true, this #vmexit was already handled
2321 */
2322 static int nested_svm_intercept(struct vcpu_svm *svm)
2323 {
2324 u32 exit_code = svm->vmcb->control.exit_code;
2325 int vmexit = NESTED_EXIT_HOST;
2326
2327 switch (exit_code) {
2328 case SVM_EXIT_MSR:
2329 vmexit = nested_svm_exit_handled_msr(svm);
2330 break;
2331 case SVM_EXIT_IOIO:
2332 vmexit = nested_svm_intercept_ioio(svm);
2333 break;
2334 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2335 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2336 if (svm->nested.intercept_cr & bit)
2337 vmexit = NESTED_EXIT_DONE;
2338 break;
2339 }
2340 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2341 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2342 if (svm->nested.intercept_dr & bit)
2343 vmexit = NESTED_EXIT_DONE;
2344 break;
2345 }
2346 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2347 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2348 if (svm->nested.intercept_exceptions & excp_bits)
2349 vmexit = NESTED_EXIT_DONE;
2350 /* async page fault always cause vmexit */
2351 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2352 svm->apf_reason != 0)
2353 vmexit = NESTED_EXIT_DONE;
2354 break;
2355 }
2356 case SVM_EXIT_ERR: {
2357 vmexit = NESTED_EXIT_DONE;
2358 break;
2359 }
2360 default: {
2361 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2362 if (svm->nested.intercept & exit_bits)
2363 vmexit = NESTED_EXIT_DONE;
2364 }
2365 }
2366
2367 return vmexit;
2368 }
2369
2370 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2371 {
2372 int vmexit;
2373
2374 vmexit = nested_svm_intercept(svm);
2375
2376 if (vmexit == NESTED_EXIT_DONE)
2377 nested_svm_vmexit(svm);
2378
2379 return vmexit;
2380 }
2381
2382 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2383 {
2384 struct vmcb_control_area *dst = &dst_vmcb->control;
2385 struct vmcb_control_area *from = &from_vmcb->control;
2386
2387 dst->intercept_cr = from->intercept_cr;
2388 dst->intercept_dr = from->intercept_dr;
2389 dst->intercept_exceptions = from->intercept_exceptions;
2390 dst->intercept = from->intercept;
2391 dst->iopm_base_pa = from->iopm_base_pa;
2392 dst->msrpm_base_pa = from->msrpm_base_pa;
2393 dst->tsc_offset = from->tsc_offset;
2394 dst->asid = from->asid;
2395 dst->tlb_ctl = from->tlb_ctl;
2396 dst->int_ctl = from->int_ctl;
2397 dst->int_vector = from->int_vector;
2398 dst->int_state = from->int_state;
2399 dst->exit_code = from->exit_code;
2400 dst->exit_code_hi = from->exit_code_hi;
2401 dst->exit_info_1 = from->exit_info_1;
2402 dst->exit_info_2 = from->exit_info_2;
2403 dst->exit_int_info = from->exit_int_info;
2404 dst->exit_int_info_err = from->exit_int_info_err;
2405 dst->nested_ctl = from->nested_ctl;
2406 dst->event_inj = from->event_inj;
2407 dst->event_inj_err = from->event_inj_err;
2408 dst->nested_cr3 = from->nested_cr3;
2409 dst->lbr_ctl = from->lbr_ctl;
2410 }
2411
2412 static int nested_svm_vmexit(struct vcpu_svm *svm)
2413 {
2414 struct vmcb *nested_vmcb;
2415 struct vmcb *hsave = svm->nested.hsave;
2416 struct vmcb *vmcb = svm->vmcb;
2417 struct page *page;
2418
2419 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2420 vmcb->control.exit_info_1,
2421 vmcb->control.exit_info_2,
2422 vmcb->control.exit_int_info,
2423 vmcb->control.exit_int_info_err,
2424 KVM_ISA_SVM);
2425
2426 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2427 if (!nested_vmcb)
2428 return 1;
2429
2430 /* Exit Guest-Mode */
2431 leave_guest_mode(&svm->vcpu);
2432 svm->nested.vmcb = 0;
2433
2434 /* Give the current vmcb to the guest */
2435 disable_gif(svm);
2436
2437 nested_vmcb->save.es = vmcb->save.es;
2438 nested_vmcb->save.cs = vmcb->save.cs;
2439 nested_vmcb->save.ss = vmcb->save.ss;
2440 nested_vmcb->save.ds = vmcb->save.ds;
2441 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2442 nested_vmcb->save.idtr = vmcb->save.idtr;
2443 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2444 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2445 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2446 nested_vmcb->save.cr2 = vmcb->save.cr2;
2447 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2448 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2449 nested_vmcb->save.rip = vmcb->save.rip;
2450 nested_vmcb->save.rsp = vmcb->save.rsp;
2451 nested_vmcb->save.rax = vmcb->save.rax;
2452 nested_vmcb->save.dr7 = vmcb->save.dr7;
2453 nested_vmcb->save.dr6 = vmcb->save.dr6;
2454 nested_vmcb->save.cpl = vmcb->save.cpl;
2455
2456 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2457 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2458 nested_vmcb->control.int_state = vmcb->control.int_state;
2459 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2460 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2461 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2462 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2463 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2464 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2465 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2466
2467 /*
2468 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2469 * to make sure that we do not lose injected events. So check event_inj
2470 * here and copy it to exit_int_info if it is valid.
2471 * Exit_int_info and event_inj can't be both valid because the case
2472 * below only happens on a VMRUN instruction intercept which has
2473 * no valid exit_int_info set.
2474 */
2475 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2476 struct vmcb_control_area *nc = &nested_vmcb->control;
2477
2478 nc->exit_int_info = vmcb->control.event_inj;
2479 nc->exit_int_info_err = vmcb->control.event_inj_err;
2480 }
2481
2482 nested_vmcb->control.tlb_ctl = 0;
2483 nested_vmcb->control.event_inj = 0;
2484 nested_vmcb->control.event_inj_err = 0;
2485
2486 /* We always set V_INTR_MASKING and remember the old value in hflags */
2487 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2488 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2489
2490 /* Restore the original control entries */
2491 copy_vmcb_control_area(vmcb, hsave);
2492
2493 kvm_clear_exception_queue(&svm->vcpu);
2494 kvm_clear_interrupt_queue(&svm->vcpu);
2495
2496 svm->nested.nested_cr3 = 0;
2497
2498 /* Restore selected save entries */
2499 svm->vmcb->save.es = hsave->save.es;
2500 svm->vmcb->save.cs = hsave->save.cs;
2501 svm->vmcb->save.ss = hsave->save.ss;
2502 svm->vmcb->save.ds = hsave->save.ds;
2503 svm->vmcb->save.gdtr = hsave->save.gdtr;
2504 svm->vmcb->save.idtr = hsave->save.idtr;
2505 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2506 svm_set_efer(&svm->vcpu, hsave->save.efer);
2507 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2508 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2509 if (npt_enabled) {
2510 svm->vmcb->save.cr3 = hsave->save.cr3;
2511 svm->vcpu.arch.cr3 = hsave->save.cr3;
2512 } else {
2513 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2514 }
2515 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2516 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2517 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2518 svm->vmcb->save.dr7 = 0;
2519 svm->vmcb->save.cpl = 0;
2520 svm->vmcb->control.exit_int_info = 0;
2521
2522 mark_all_dirty(svm->vmcb);
2523
2524 nested_svm_unmap(page);
2525
2526 nested_svm_uninit_mmu_context(&svm->vcpu);
2527 kvm_mmu_reset_context(&svm->vcpu);
2528 kvm_mmu_load(&svm->vcpu);
2529
2530 return 0;
2531 }
2532
2533 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2534 {
2535 /*
2536 * This function merges the msr permission bitmaps of kvm and the
2537 * nested vmcb. It is optimized in that it only merges the parts where
2538 * the kvm msr permission bitmap may contain zero bits
2539 */
2540 int i;
2541
2542 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2543 return true;
2544
2545 for (i = 0; i < MSRPM_OFFSETS; i++) {
2546 u32 value, p;
2547 u64 offset;
2548
2549 if (msrpm_offsets[i] == 0xffffffff)
2550 break;
2551
2552 p = msrpm_offsets[i];
2553 offset = svm->nested.vmcb_msrpm + (p * 4);
2554
2555 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2556 return false;
2557
2558 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2559 }
2560
2561 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2562
2563 return true;
2564 }
2565
2566 static bool nested_vmcb_checks(struct vmcb *vmcb)
2567 {
2568 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2569 return false;
2570
2571 if (vmcb->control.asid == 0)
2572 return false;
2573
2574 if (vmcb->control.nested_ctl && !npt_enabled)
2575 return false;
2576
2577 return true;
2578 }
2579
2580 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2581 {
2582 struct vmcb *nested_vmcb;
2583 struct vmcb *hsave = svm->nested.hsave;
2584 struct vmcb *vmcb = svm->vmcb;
2585 struct page *page;
2586 u64 vmcb_gpa;
2587
2588 vmcb_gpa = svm->vmcb->save.rax;
2589
2590 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2591 if (!nested_vmcb)
2592 return false;
2593
2594 if (!nested_vmcb_checks(nested_vmcb)) {
2595 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2596 nested_vmcb->control.exit_code_hi = 0;
2597 nested_vmcb->control.exit_info_1 = 0;
2598 nested_vmcb->control.exit_info_2 = 0;
2599
2600 nested_svm_unmap(page);
2601
2602 return false;
2603 }
2604
2605 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2606 nested_vmcb->save.rip,
2607 nested_vmcb->control.int_ctl,
2608 nested_vmcb->control.event_inj,
2609 nested_vmcb->control.nested_ctl);
2610
2611 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2612 nested_vmcb->control.intercept_cr >> 16,
2613 nested_vmcb->control.intercept_exceptions,
2614 nested_vmcb->control.intercept);
2615
2616 /* Clear internal status */
2617 kvm_clear_exception_queue(&svm->vcpu);
2618 kvm_clear_interrupt_queue(&svm->vcpu);
2619
2620 /*
2621 * Save the old vmcb, so we don't need to pick what we save, but can
2622 * restore everything when a VMEXIT occurs
2623 */
2624 hsave->save.es = vmcb->save.es;
2625 hsave->save.cs = vmcb->save.cs;
2626 hsave->save.ss = vmcb->save.ss;
2627 hsave->save.ds = vmcb->save.ds;
2628 hsave->save.gdtr = vmcb->save.gdtr;
2629 hsave->save.idtr = vmcb->save.idtr;
2630 hsave->save.efer = svm->vcpu.arch.efer;
2631 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2632 hsave->save.cr4 = svm->vcpu.arch.cr4;
2633 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2634 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2635 hsave->save.rsp = vmcb->save.rsp;
2636 hsave->save.rax = vmcb->save.rax;
2637 if (npt_enabled)
2638 hsave->save.cr3 = vmcb->save.cr3;
2639 else
2640 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2641
2642 copy_vmcb_control_area(hsave, vmcb);
2643
2644 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2645 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2646 else
2647 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2648
2649 if (nested_vmcb->control.nested_ctl) {
2650 kvm_mmu_unload(&svm->vcpu);
2651 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2652 nested_svm_init_mmu_context(&svm->vcpu);
2653 }
2654
2655 /* Load the nested guest state */
2656 svm->vmcb->save.es = nested_vmcb->save.es;
2657 svm->vmcb->save.cs = nested_vmcb->save.cs;
2658 svm->vmcb->save.ss = nested_vmcb->save.ss;
2659 svm->vmcb->save.ds = nested_vmcb->save.ds;
2660 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2661 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2662 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2663 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2664 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2665 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2666 if (npt_enabled) {
2667 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2668 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2669 } else
2670 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2671
2672 /* Guest paging mode is active - reset mmu */
2673 kvm_mmu_reset_context(&svm->vcpu);
2674
2675 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2676 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2677 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2678 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2679
2680 /* In case we don't even reach vcpu_run, the fields are not updated */
2681 svm->vmcb->save.rax = nested_vmcb->save.rax;
2682 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2683 svm->vmcb->save.rip = nested_vmcb->save.rip;
2684 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2685 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2686 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2687
2688 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2689 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2690
2691 /* cache intercepts */
2692 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2693 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2694 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2695 svm->nested.intercept = nested_vmcb->control.intercept;
2696
2697 svm_flush_tlb(&svm->vcpu);
2698 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2699 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2700 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2701 else
2702 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2703
2704 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2705 /* We only want the cr8 intercept bits of the guest */
2706 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2707 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2708 }
2709
2710 /* We don't want to see VMMCALLs from a nested guest */
2711 clr_intercept(svm, INTERCEPT_VMMCALL);
2712
2713 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2714 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2715 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2716 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2717 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2718 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2719
2720 nested_svm_unmap(page);
2721
2722 /* Enter Guest-Mode */
2723 enter_guest_mode(&svm->vcpu);
2724
2725 /*
2726 * Merge guest and host intercepts - must be called with vcpu in
2727 * guest-mode to take affect here
2728 */
2729 recalc_intercepts(svm);
2730
2731 svm->nested.vmcb = vmcb_gpa;
2732
2733 enable_gif(svm);
2734
2735 mark_all_dirty(svm->vmcb);
2736
2737 return true;
2738 }
2739
2740 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2741 {
2742 to_vmcb->save.fs = from_vmcb->save.fs;
2743 to_vmcb->save.gs = from_vmcb->save.gs;
2744 to_vmcb->save.tr = from_vmcb->save.tr;
2745 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2746 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2747 to_vmcb->save.star = from_vmcb->save.star;
2748 to_vmcb->save.lstar = from_vmcb->save.lstar;
2749 to_vmcb->save.cstar = from_vmcb->save.cstar;
2750 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2751 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2752 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2753 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2754 }
2755
2756 static int vmload_interception(struct vcpu_svm *svm)
2757 {
2758 struct vmcb *nested_vmcb;
2759 struct page *page;
2760
2761 if (nested_svm_check_permissions(svm))
2762 return 1;
2763
2764 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2765 if (!nested_vmcb)
2766 return 1;
2767
2768 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2769 skip_emulated_instruction(&svm->vcpu);
2770
2771 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2772 nested_svm_unmap(page);
2773
2774 return 1;
2775 }
2776
2777 static int vmsave_interception(struct vcpu_svm *svm)
2778 {
2779 struct vmcb *nested_vmcb;
2780 struct page *page;
2781
2782 if (nested_svm_check_permissions(svm))
2783 return 1;
2784
2785 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2786 if (!nested_vmcb)
2787 return 1;
2788
2789 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2790 skip_emulated_instruction(&svm->vcpu);
2791
2792 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2793 nested_svm_unmap(page);
2794
2795 return 1;
2796 }
2797
2798 static int vmrun_interception(struct vcpu_svm *svm)
2799 {
2800 if (nested_svm_check_permissions(svm))
2801 return 1;
2802
2803 /* Save rip after vmrun instruction */
2804 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2805
2806 if (!nested_svm_vmrun(svm))
2807 return 1;
2808
2809 if (!nested_svm_vmrun_msrpm(svm))
2810 goto failed;
2811
2812 return 1;
2813
2814 failed:
2815
2816 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2817 svm->vmcb->control.exit_code_hi = 0;
2818 svm->vmcb->control.exit_info_1 = 0;
2819 svm->vmcb->control.exit_info_2 = 0;
2820
2821 nested_svm_vmexit(svm);
2822
2823 return 1;
2824 }
2825
2826 static int stgi_interception(struct vcpu_svm *svm)
2827 {
2828 if (nested_svm_check_permissions(svm))
2829 return 1;
2830
2831 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2832 skip_emulated_instruction(&svm->vcpu);
2833 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2834
2835 enable_gif(svm);
2836
2837 return 1;
2838 }
2839
2840 static int clgi_interception(struct vcpu_svm *svm)
2841 {
2842 if (nested_svm_check_permissions(svm))
2843 return 1;
2844
2845 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2846 skip_emulated_instruction(&svm->vcpu);
2847
2848 disable_gif(svm);
2849
2850 /* After a CLGI no interrupts should come */
2851 svm_clear_vintr(svm);
2852 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2853
2854 mark_dirty(svm->vmcb, VMCB_INTR);
2855
2856 return 1;
2857 }
2858
2859 static int invlpga_interception(struct vcpu_svm *svm)
2860 {
2861 struct kvm_vcpu *vcpu = &svm->vcpu;
2862
2863 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2864 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2865
2866 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2867 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2868
2869 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2870 skip_emulated_instruction(&svm->vcpu);
2871 return 1;
2872 }
2873
2874 static int skinit_interception(struct vcpu_svm *svm)
2875 {
2876 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2877
2878 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2879 return 1;
2880 }
2881
2882 static int wbinvd_interception(struct vcpu_svm *svm)
2883 {
2884 kvm_emulate_wbinvd(&svm->vcpu);
2885 return 1;
2886 }
2887
2888 static int xsetbv_interception(struct vcpu_svm *svm)
2889 {
2890 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2891 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2892
2893 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2894 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2895 skip_emulated_instruction(&svm->vcpu);
2896 }
2897
2898 return 1;
2899 }
2900
2901 static int task_switch_interception(struct vcpu_svm *svm)
2902 {
2903 u16 tss_selector;
2904 int reason;
2905 int int_type = svm->vmcb->control.exit_int_info &
2906 SVM_EXITINTINFO_TYPE_MASK;
2907 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2908 uint32_t type =
2909 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2910 uint32_t idt_v =
2911 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2912 bool has_error_code = false;
2913 u32 error_code = 0;
2914
2915 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2916
2917 if (svm->vmcb->control.exit_info_2 &
2918 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2919 reason = TASK_SWITCH_IRET;
2920 else if (svm->vmcb->control.exit_info_2 &
2921 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2922 reason = TASK_SWITCH_JMP;
2923 else if (idt_v)
2924 reason = TASK_SWITCH_GATE;
2925 else
2926 reason = TASK_SWITCH_CALL;
2927
2928 if (reason == TASK_SWITCH_GATE) {
2929 switch (type) {
2930 case SVM_EXITINTINFO_TYPE_NMI:
2931 svm->vcpu.arch.nmi_injected = false;
2932 break;
2933 case SVM_EXITINTINFO_TYPE_EXEPT:
2934 if (svm->vmcb->control.exit_info_2 &
2935 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2936 has_error_code = true;
2937 error_code =
2938 (u32)svm->vmcb->control.exit_info_2;
2939 }
2940 kvm_clear_exception_queue(&svm->vcpu);
2941 break;
2942 case SVM_EXITINTINFO_TYPE_INTR:
2943 kvm_clear_interrupt_queue(&svm->vcpu);
2944 break;
2945 default:
2946 break;
2947 }
2948 }
2949
2950 if (reason != TASK_SWITCH_GATE ||
2951 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2952 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2953 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2954 skip_emulated_instruction(&svm->vcpu);
2955
2956 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2957 int_vec = -1;
2958
2959 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2960 has_error_code, error_code) == EMULATE_FAIL) {
2961 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2962 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2963 svm->vcpu.run->internal.ndata = 0;
2964 return 0;
2965 }
2966 return 1;
2967 }
2968
2969 static int cpuid_interception(struct vcpu_svm *svm)
2970 {
2971 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2972 kvm_emulate_cpuid(&svm->vcpu);
2973 return 1;
2974 }
2975
2976 static int iret_interception(struct vcpu_svm *svm)
2977 {
2978 ++svm->vcpu.stat.nmi_window_exits;
2979 clr_intercept(svm, INTERCEPT_IRET);
2980 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2981 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2982 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2983 return 1;
2984 }
2985
2986 static int invlpg_interception(struct vcpu_svm *svm)
2987 {
2988 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2989 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2990
2991 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2992 skip_emulated_instruction(&svm->vcpu);
2993 return 1;
2994 }
2995
2996 static int emulate_on_interception(struct vcpu_svm *svm)
2997 {
2998 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2999 }
3000
3001 static int rdpmc_interception(struct vcpu_svm *svm)
3002 {
3003 int err;
3004
3005 if (!static_cpu_has(X86_FEATURE_NRIPS))
3006 return emulate_on_interception(svm);
3007
3008 err = kvm_rdpmc(&svm->vcpu);
3009 kvm_complete_insn_gp(&svm->vcpu, err);
3010
3011 return 1;
3012 }
3013
3014 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3015 unsigned long val)
3016 {
3017 unsigned long cr0 = svm->vcpu.arch.cr0;
3018 bool ret = false;
3019 u64 intercept;
3020
3021 intercept = svm->nested.intercept;
3022
3023 if (!is_guest_mode(&svm->vcpu) ||
3024 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3025 return false;
3026
3027 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3028 val &= ~SVM_CR0_SELECTIVE_MASK;
3029
3030 if (cr0 ^ val) {
3031 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3032 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3033 }
3034
3035 return ret;
3036 }
3037
3038 #define CR_VALID (1ULL << 63)
3039
3040 static int cr_interception(struct vcpu_svm *svm)
3041 {
3042 int reg, cr;
3043 unsigned long val;
3044 int err;
3045
3046 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3047 return emulate_on_interception(svm);
3048
3049 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3050 return emulate_on_interception(svm);
3051
3052 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3053 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3054 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3055 else
3056 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3057
3058 err = 0;
3059 if (cr >= 16) { /* mov to cr */
3060 cr -= 16;
3061 val = kvm_register_read(&svm->vcpu, reg);
3062 switch (cr) {
3063 case 0:
3064 if (!check_selective_cr0_intercepted(svm, val))
3065 err = kvm_set_cr0(&svm->vcpu, val);
3066 else
3067 return 1;
3068
3069 break;
3070 case 3:
3071 err = kvm_set_cr3(&svm->vcpu, val);
3072 break;
3073 case 4:
3074 err = kvm_set_cr4(&svm->vcpu, val);
3075 break;
3076 case 8:
3077 err = kvm_set_cr8(&svm->vcpu, val);
3078 break;
3079 default:
3080 WARN(1, "unhandled write to CR%d", cr);
3081 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3082 return 1;
3083 }
3084 } else { /* mov from cr */
3085 switch (cr) {
3086 case 0:
3087 val = kvm_read_cr0(&svm->vcpu);
3088 break;
3089 case 2:
3090 val = svm->vcpu.arch.cr2;
3091 break;
3092 case 3:
3093 val = kvm_read_cr3(&svm->vcpu);
3094 break;
3095 case 4:
3096 val = kvm_read_cr4(&svm->vcpu);
3097 break;
3098 case 8:
3099 val = kvm_get_cr8(&svm->vcpu);
3100 break;
3101 default:
3102 WARN(1, "unhandled read from CR%d", cr);
3103 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3104 return 1;
3105 }
3106 kvm_register_write(&svm->vcpu, reg, val);
3107 }
3108 kvm_complete_insn_gp(&svm->vcpu, err);
3109
3110 return 1;
3111 }
3112
3113 static int dr_interception(struct vcpu_svm *svm)
3114 {
3115 int reg, dr;
3116 unsigned long val;
3117
3118 if (svm->vcpu.guest_debug == 0) {
3119 /*
3120 * No more DR vmexits; force a reload of the debug registers
3121 * and reenter on this instruction. The next vmexit will
3122 * retrieve the full state of the debug registers.
3123 */
3124 clr_dr_intercepts(svm);
3125 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3126 return 1;
3127 }
3128
3129 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3130 return emulate_on_interception(svm);
3131
3132 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3133 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3134
3135 if (dr >= 16) { /* mov to DRn */
3136 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3137 return 1;
3138 val = kvm_register_read(&svm->vcpu, reg);
3139 kvm_set_dr(&svm->vcpu, dr - 16, val);
3140 } else {
3141 if (!kvm_require_dr(&svm->vcpu, dr))
3142 return 1;
3143 kvm_get_dr(&svm->vcpu, dr, &val);
3144 kvm_register_write(&svm->vcpu, reg, val);
3145 }
3146
3147 skip_emulated_instruction(&svm->vcpu);
3148
3149 return 1;
3150 }
3151
3152 static int cr8_write_interception(struct vcpu_svm *svm)
3153 {
3154 struct kvm_run *kvm_run = svm->vcpu.run;
3155 int r;
3156
3157 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3158 /* instruction emulation calls kvm_set_cr8() */
3159 r = cr_interception(svm);
3160 if (irqchip_in_kernel(svm->vcpu.kvm))
3161 return r;
3162 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3163 return r;
3164 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3165 return 0;
3166 }
3167
3168 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3169 {
3170 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3171 return vmcb->control.tsc_offset +
3172 svm_scale_tsc(vcpu, host_tsc);
3173 }
3174
3175 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3176 {
3177 struct vcpu_svm *svm = to_svm(vcpu);
3178
3179 switch (msr_info->index) {
3180 case MSR_IA32_TSC: {
3181 msr_info->data = svm->vmcb->control.tsc_offset +
3182 svm_scale_tsc(vcpu, rdtsc());
3183
3184 break;
3185 }
3186 case MSR_STAR:
3187 msr_info->data = svm->vmcb->save.star;
3188 break;
3189 #ifdef CONFIG_X86_64
3190 case MSR_LSTAR:
3191 msr_info->data = svm->vmcb->save.lstar;
3192 break;
3193 case MSR_CSTAR:
3194 msr_info->data = svm->vmcb->save.cstar;
3195 break;
3196 case MSR_KERNEL_GS_BASE:
3197 msr_info->data = svm->vmcb->save.kernel_gs_base;
3198 break;
3199 case MSR_SYSCALL_MASK:
3200 msr_info->data = svm->vmcb->save.sfmask;
3201 break;
3202 #endif
3203 case MSR_IA32_SYSENTER_CS:
3204 msr_info->data = svm->vmcb->save.sysenter_cs;
3205 break;
3206 case MSR_IA32_SYSENTER_EIP:
3207 msr_info->data = svm->sysenter_eip;
3208 break;
3209 case MSR_IA32_SYSENTER_ESP:
3210 msr_info->data = svm->sysenter_esp;
3211 break;
3212 /*
3213 * Nobody will change the following 5 values in the VMCB so we can
3214 * safely return them on rdmsr. They will always be 0 until LBRV is
3215 * implemented.
3216 */
3217 case MSR_IA32_DEBUGCTLMSR:
3218 msr_info->data = svm->vmcb->save.dbgctl;
3219 break;
3220 case MSR_IA32_LASTBRANCHFROMIP:
3221 msr_info->data = svm->vmcb->save.br_from;
3222 break;
3223 case MSR_IA32_LASTBRANCHTOIP:
3224 msr_info->data = svm->vmcb->save.br_to;
3225 break;
3226 case MSR_IA32_LASTINTFROMIP:
3227 msr_info->data = svm->vmcb->save.last_excp_from;
3228 break;
3229 case MSR_IA32_LASTINTTOIP:
3230 msr_info->data = svm->vmcb->save.last_excp_to;
3231 break;
3232 case MSR_VM_HSAVE_PA:
3233 msr_info->data = svm->nested.hsave_msr;
3234 break;
3235 case MSR_VM_CR:
3236 msr_info->data = svm->nested.vm_cr_msr;
3237 break;
3238 case MSR_IA32_UCODE_REV:
3239 msr_info->data = 0x01000065;
3240 break;
3241 default:
3242 return kvm_get_msr_common(vcpu, msr_info);
3243 }
3244 return 0;
3245 }
3246
3247 static int rdmsr_interception(struct vcpu_svm *svm)
3248 {
3249 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3250 struct msr_data msr_info;
3251
3252 msr_info.index = ecx;
3253 msr_info.host_initiated = false;
3254 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3255 trace_kvm_msr_read_ex(ecx);
3256 kvm_inject_gp(&svm->vcpu, 0);
3257 } else {
3258 trace_kvm_msr_read(ecx, msr_info.data);
3259
3260 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3261 msr_info.data & 0xffffffff);
3262 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3263 msr_info.data >> 32);
3264 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3265 skip_emulated_instruction(&svm->vcpu);
3266 }
3267 return 1;
3268 }
3269
3270 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3271 {
3272 struct vcpu_svm *svm = to_svm(vcpu);
3273 int svm_dis, chg_mask;
3274
3275 if (data & ~SVM_VM_CR_VALID_MASK)
3276 return 1;
3277
3278 chg_mask = SVM_VM_CR_VALID_MASK;
3279
3280 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3281 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3282
3283 svm->nested.vm_cr_msr &= ~chg_mask;
3284 svm->nested.vm_cr_msr |= (data & chg_mask);
3285
3286 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3287
3288 /* check for svm_disable while efer.svme is set */
3289 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3290 return 1;
3291
3292 return 0;
3293 }
3294
3295 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3296 {
3297 struct vcpu_svm *svm = to_svm(vcpu);
3298
3299 u32 ecx = msr->index;
3300 u64 data = msr->data;
3301 switch (ecx) {
3302 case MSR_IA32_TSC:
3303 kvm_write_tsc(vcpu, msr);
3304 break;
3305 case MSR_STAR:
3306 svm->vmcb->save.star = data;
3307 break;
3308 #ifdef CONFIG_X86_64
3309 case MSR_LSTAR:
3310 svm->vmcb->save.lstar = data;
3311 break;
3312 case MSR_CSTAR:
3313 svm->vmcb->save.cstar = data;
3314 break;
3315 case MSR_KERNEL_GS_BASE:
3316 svm->vmcb->save.kernel_gs_base = data;
3317 break;
3318 case MSR_SYSCALL_MASK:
3319 svm->vmcb->save.sfmask = data;
3320 break;
3321 #endif
3322 case MSR_IA32_SYSENTER_CS:
3323 svm->vmcb->save.sysenter_cs = data;
3324 break;
3325 case MSR_IA32_SYSENTER_EIP:
3326 svm->sysenter_eip = data;
3327 svm->vmcb->save.sysenter_eip = data;
3328 break;
3329 case MSR_IA32_SYSENTER_ESP:
3330 svm->sysenter_esp = data;
3331 svm->vmcb->save.sysenter_esp = data;
3332 break;
3333 case MSR_IA32_DEBUGCTLMSR:
3334 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3335 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3336 __func__, data);
3337 break;
3338 }
3339 if (data & DEBUGCTL_RESERVED_BITS)
3340 return 1;
3341
3342 svm->vmcb->save.dbgctl = data;
3343 mark_dirty(svm->vmcb, VMCB_LBR);
3344 if (data & (1ULL<<0))
3345 svm_enable_lbrv(svm);
3346 else
3347 svm_disable_lbrv(svm);
3348 break;
3349 case MSR_VM_HSAVE_PA:
3350 svm->nested.hsave_msr = data;
3351 break;
3352 case MSR_VM_CR:
3353 return svm_set_vm_cr(vcpu, data);
3354 case MSR_VM_IGNNE:
3355 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3356 break;
3357 case MSR_IA32_CR_PAT:
3358 if (npt_enabled) {
3359 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3360 return 1;
3361 vcpu->arch.pat = data;
3362 svm_set_guest_pat(svm, &svm->vmcb->save.g_pat);
3363 mark_dirty(svm->vmcb, VMCB_NPT);
3364 break;
3365 }
3366 /* fall through */
3367 default:
3368 return kvm_set_msr_common(vcpu, msr);
3369 }
3370 return 0;
3371 }
3372
3373 static int wrmsr_interception(struct vcpu_svm *svm)
3374 {
3375 struct msr_data msr;
3376 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3377 u64 data = kvm_read_edx_eax(&svm->vcpu);
3378
3379 msr.data = data;
3380 msr.index = ecx;
3381 msr.host_initiated = false;
3382
3383 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3384 if (kvm_set_msr(&svm->vcpu, &msr)) {
3385 trace_kvm_msr_write_ex(ecx, data);
3386 kvm_inject_gp(&svm->vcpu, 0);
3387 } else {
3388 trace_kvm_msr_write(ecx, data);
3389 skip_emulated_instruction(&svm->vcpu);
3390 }
3391 return 1;
3392 }
3393
3394 static int msr_interception(struct vcpu_svm *svm)
3395 {
3396 if (svm->vmcb->control.exit_info_1)
3397 return wrmsr_interception(svm);
3398 else
3399 return rdmsr_interception(svm);
3400 }
3401
3402 static int interrupt_window_interception(struct vcpu_svm *svm)
3403 {
3404 struct kvm_run *kvm_run = svm->vcpu.run;
3405
3406 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3407 svm_clear_vintr(svm);
3408 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3409 mark_dirty(svm->vmcb, VMCB_INTR);
3410 ++svm->vcpu.stat.irq_window_exits;
3411 /*
3412 * If the user space waits to inject interrupts, exit as soon as
3413 * possible
3414 */
3415 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3416 kvm_run->request_interrupt_window &&
3417 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3418 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3419 return 0;
3420 }
3421
3422 return 1;
3423 }
3424
3425 static int pause_interception(struct vcpu_svm *svm)
3426 {
3427 kvm_vcpu_on_spin(&(svm->vcpu));
3428 return 1;
3429 }
3430
3431 static int nop_interception(struct vcpu_svm *svm)
3432 {
3433 skip_emulated_instruction(&(svm->vcpu));
3434 return 1;
3435 }
3436
3437 static int monitor_interception(struct vcpu_svm *svm)
3438 {
3439 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3440 return nop_interception(svm);
3441 }
3442
3443 static int mwait_interception(struct vcpu_svm *svm)
3444 {
3445 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3446 return nop_interception(svm);
3447 }
3448
3449 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3450 [SVM_EXIT_READ_CR0] = cr_interception,
3451 [SVM_EXIT_READ_CR3] = cr_interception,
3452 [SVM_EXIT_READ_CR4] = cr_interception,
3453 [SVM_EXIT_READ_CR8] = cr_interception,
3454 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
3455 [SVM_EXIT_WRITE_CR0] = cr_interception,
3456 [SVM_EXIT_WRITE_CR3] = cr_interception,
3457 [SVM_EXIT_WRITE_CR4] = cr_interception,
3458 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3459 [SVM_EXIT_READ_DR0] = dr_interception,
3460 [SVM_EXIT_READ_DR1] = dr_interception,
3461 [SVM_EXIT_READ_DR2] = dr_interception,
3462 [SVM_EXIT_READ_DR3] = dr_interception,
3463 [SVM_EXIT_READ_DR4] = dr_interception,
3464 [SVM_EXIT_READ_DR5] = dr_interception,
3465 [SVM_EXIT_READ_DR6] = dr_interception,
3466 [SVM_EXIT_READ_DR7] = dr_interception,
3467 [SVM_EXIT_WRITE_DR0] = dr_interception,
3468 [SVM_EXIT_WRITE_DR1] = dr_interception,
3469 [SVM_EXIT_WRITE_DR2] = dr_interception,
3470 [SVM_EXIT_WRITE_DR3] = dr_interception,
3471 [SVM_EXIT_WRITE_DR4] = dr_interception,
3472 [SVM_EXIT_WRITE_DR5] = dr_interception,
3473 [SVM_EXIT_WRITE_DR6] = dr_interception,
3474 [SVM_EXIT_WRITE_DR7] = dr_interception,
3475 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3476 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3477 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3478 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3479 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3480 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3481 [SVM_EXIT_INTR] = intr_interception,
3482 [SVM_EXIT_NMI] = nmi_interception,
3483 [SVM_EXIT_SMI] = nop_on_interception,
3484 [SVM_EXIT_INIT] = nop_on_interception,
3485 [SVM_EXIT_VINTR] = interrupt_window_interception,
3486 [SVM_EXIT_RDPMC] = rdpmc_interception,
3487 [SVM_EXIT_CPUID] = cpuid_interception,
3488 [SVM_EXIT_IRET] = iret_interception,
3489 [SVM_EXIT_INVD] = emulate_on_interception,
3490 [SVM_EXIT_PAUSE] = pause_interception,
3491 [SVM_EXIT_HLT] = halt_interception,
3492 [SVM_EXIT_INVLPG] = invlpg_interception,
3493 [SVM_EXIT_INVLPGA] = invlpga_interception,
3494 [SVM_EXIT_IOIO] = io_interception,
3495 [SVM_EXIT_MSR] = msr_interception,
3496 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3497 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3498 [SVM_EXIT_VMRUN] = vmrun_interception,
3499 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3500 [SVM_EXIT_VMLOAD] = vmload_interception,
3501 [SVM_EXIT_VMSAVE] = vmsave_interception,
3502 [SVM_EXIT_STGI] = stgi_interception,
3503 [SVM_EXIT_CLGI] = clgi_interception,
3504 [SVM_EXIT_SKINIT] = skinit_interception,
3505 [SVM_EXIT_WBINVD] = wbinvd_interception,
3506 [SVM_EXIT_MONITOR] = monitor_interception,
3507 [SVM_EXIT_MWAIT] = mwait_interception,
3508 [SVM_EXIT_XSETBV] = xsetbv_interception,
3509 [SVM_EXIT_NPF] = pf_interception,
3510 [SVM_EXIT_RSM] = emulate_on_interception,
3511 };
3512
3513 static void dump_vmcb(struct kvm_vcpu *vcpu)
3514 {
3515 struct vcpu_svm *svm = to_svm(vcpu);
3516 struct vmcb_control_area *control = &svm->vmcb->control;
3517 struct vmcb_save_area *save = &svm->vmcb->save;
3518
3519 pr_err("VMCB Control Area:\n");
3520 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3521 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3522 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3523 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3524 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3525 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3526 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3527 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3528 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3529 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3530 pr_err("%-20s%d\n", "asid:", control->asid);
3531 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3532 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3533 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3534 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3535 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3536 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3537 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3538 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3539 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3540 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3541 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3542 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3543 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3544 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3545 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3546 pr_err("VMCB State Save Area:\n");
3547 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3548 "es:",
3549 save->es.selector, save->es.attrib,
3550 save->es.limit, save->es.base);
3551 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3552 "cs:",
3553 save->cs.selector, save->cs.attrib,
3554 save->cs.limit, save->cs.base);
3555 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3556 "ss:",
3557 save->ss.selector, save->ss.attrib,
3558 save->ss.limit, save->ss.base);
3559 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3560 "ds:",
3561 save->ds.selector, save->ds.attrib,
3562 save->ds.limit, save->ds.base);
3563 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3564 "fs:",
3565 save->fs.selector, save->fs.attrib,
3566 save->fs.limit, save->fs.base);
3567 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3568 "gs:",
3569 save->gs.selector, save->gs.attrib,
3570 save->gs.limit, save->gs.base);
3571 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3572 "gdtr:",
3573 save->gdtr.selector, save->gdtr.attrib,
3574 save->gdtr.limit, save->gdtr.base);
3575 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3576 "ldtr:",
3577 save->ldtr.selector, save->ldtr.attrib,
3578 save->ldtr.limit, save->ldtr.base);
3579 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3580 "idtr:",
3581 save->idtr.selector, save->idtr.attrib,
3582 save->idtr.limit, save->idtr.base);
3583 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3584 "tr:",
3585 save->tr.selector, save->tr.attrib,
3586 save->tr.limit, save->tr.base);
3587 pr_err("cpl: %d efer: %016llx\n",
3588 save->cpl, save->efer);
3589 pr_err("%-15s %016llx %-13s %016llx\n",
3590 "cr0:", save->cr0, "cr2:", save->cr2);
3591 pr_err("%-15s %016llx %-13s %016llx\n",
3592 "cr3:", save->cr3, "cr4:", save->cr4);
3593 pr_err("%-15s %016llx %-13s %016llx\n",
3594 "dr6:", save->dr6, "dr7:", save->dr7);
3595 pr_err("%-15s %016llx %-13s %016llx\n",
3596 "rip:", save->rip, "rflags:", save->rflags);
3597 pr_err("%-15s %016llx %-13s %016llx\n",
3598 "rsp:", save->rsp, "rax:", save->rax);
3599 pr_err("%-15s %016llx %-13s %016llx\n",
3600 "star:", save->star, "lstar:", save->lstar);
3601 pr_err("%-15s %016llx %-13s %016llx\n",
3602 "cstar:", save->cstar, "sfmask:", save->sfmask);
3603 pr_err("%-15s %016llx %-13s %016llx\n",
3604 "kernel_gs_base:", save->kernel_gs_base,
3605 "sysenter_cs:", save->sysenter_cs);
3606 pr_err("%-15s %016llx %-13s %016llx\n",
3607 "sysenter_esp:", save->sysenter_esp,
3608 "sysenter_eip:", save->sysenter_eip);
3609 pr_err("%-15s %016llx %-13s %016llx\n",
3610 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3611 pr_err("%-15s %016llx %-13s %016llx\n",
3612 "br_from:", save->br_from, "br_to:", save->br_to);
3613 pr_err("%-15s %016llx %-13s %016llx\n",
3614 "excp_from:", save->last_excp_from,
3615 "excp_to:", save->last_excp_to);
3616 }
3617
3618 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3619 {
3620 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3621
3622 *info1 = control->exit_info_1;
3623 *info2 = control->exit_info_2;
3624 }
3625
3626 static int handle_exit(struct kvm_vcpu *vcpu)
3627 {
3628 struct vcpu_svm *svm = to_svm(vcpu);
3629 struct kvm_run *kvm_run = vcpu->run;
3630 u32 exit_code = svm->vmcb->control.exit_code;
3631
3632 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3633 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3634 if (npt_enabled)
3635 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3636
3637 if (unlikely(svm->nested.exit_required)) {
3638 nested_svm_vmexit(svm);
3639 svm->nested.exit_required = false;
3640
3641 return 1;
3642 }
3643
3644 if (is_guest_mode(vcpu)) {
3645 int vmexit;
3646
3647 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3648 svm->vmcb->control.exit_info_1,
3649 svm->vmcb->control.exit_info_2,
3650 svm->vmcb->control.exit_int_info,
3651 svm->vmcb->control.exit_int_info_err,
3652 KVM_ISA_SVM);
3653
3654 vmexit = nested_svm_exit_special(svm);
3655
3656 if (vmexit == NESTED_EXIT_CONTINUE)
3657 vmexit = nested_svm_exit_handled(svm);
3658
3659 if (vmexit == NESTED_EXIT_DONE)
3660 return 1;
3661 }
3662
3663 svm_complete_interrupts(svm);
3664
3665 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3666 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3667 kvm_run->fail_entry.hardware_entry_failure_reason
3668 = svm->vmcb->control.exit_code;
3669 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3670 dump_vmcb(vcpu);
3671 return 0;
3672 }
3673
3674 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3675 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3676 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3677 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3678 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3679 "exit_code 0x%x\n",
3680 __func__, svm->vmcb->control.exit_int_info,
3681 exit_code);
3682
3683 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3684 || !svm_exit_handlers[exit_code]) {
3685 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3686 kvm_queue_exception(vcpu, UD_VECTOR);
3687 return 1;
3688 }
3689
3690 return svm_exit_handlers[exit_code](svm);
3691 }
3692
3693 static void reload_tss(struct kvm_vcpu *vcpu)
3694 {
3695 int cpu = raw_smp_processor_id();
3696
3697 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3698 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3699 load_TR_desc();
3700 }
3701
3702 static void pre_svm_run(struct vcpu_svm *svm)
3703 {
3704 int cpu = raw_smp_processor_id();
3705
3706 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3707
3708 /* FIXME: handle wraparound of asid_generation */
3709 if (svm->asid_generation != sd->asid_generation)
3710 new_asid(svm, sd);
3711 }
3712
3713 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3714 {
3715 struct vcpu_svm *svm = to_svm(vcpu);
3716
3717 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3718 vcpu->arch.hflags |= HF_NMI_MASK;
3719 set_intercept(svm, INTERCEPT_IRET);
3720 ++vcpu->stat.nmi_injections;
3721 }
3722
3723 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3724 {
3725 struct vmcb_control_area *control;
3726
3727 control = &svm->vmcb->control;
3728 control->int_vector = irq;
3729 control->int_ctl &= ~V_INTR_PRIO_MASK;
3730 control->int_ctl |= V_IRQ_MASK |
3731 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3732 mark_dirty(svm->vmcb, VMCB_INTR);
3733 }
3734
3735 static void svm_set_irq(struct kvm_vcpu *vcpu)
3736 {
3737 struct vcpu_svm *svm = to_svm(vcpu);
3738
3739 BUG_ON(!(gif_set(svm)));
3740
3741 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3742 ++vcpu->stat.irq_injections;
3743
3744 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3745 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3746 }
3747
3748 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3749 {
3750 struct vcpu_svm *svm = to_svm(vcpu);
3751
3752 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3753 return;
3754
3755 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3756
3757 if (irr == -1)
3758 return;
3759
3760 if (tpr >= irr)
3761 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3762 }
3763
3764 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3765 {
3766 return;
3767 }
3768
3769 static int svm_vm_has_apicv(struct kvm *kvm)
3770 {
3771 return 0;
3772 }
3773
3774 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3775 {
3776 return;
3777 }
3778
3779 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3780 {
3781 return;
3782 }
3783
3784 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3785 {
3786 struct vcpu_svm *svm = to_svm(vcpu);
3787 struct vmcb *vmcb = svm->vmcb;
3788 int ret;
3789 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3790 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3791 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3792
3793 return ret;
3794 }
3795
3796 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3797 {
3798 struct vcpu_svm *svm = to_svm(vcpu);
3799
3800 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3801 }
3802
3803 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3804 {
3805 struct vcpu_svm *svm = to_svm(vcpu);
3806
3807 if (masked) {
3808 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3809 set_intercept(svm, INTERCEPT_IRET);
3810 } else {
3811 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3812 clr_intercept(svm, INTERCEPT_IRET);
3813 }
3814 }
3815
3816 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3817 {
3818 struct vcpu_svm *svm = to_svm(vcpu);
3819 struct vmcb *vmcb = svm->vmcb;
3820 int ret;
3821
3822 if (!gif_set(svm) ||
3823 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3824 return 0;
3825
3826 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3827
3828 if (is_guest_mode(vcpu))
3829 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3830
3831 return ret;
3832 }
3833
3834 static void enable_irq_window(struct kvm_vcpu *vcpu)
3835 {
3836 struct vcpu_svm *svm = to_svm(vcpu);
3837
3838 /*
3839 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3840 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3841 * get that intercept, this function will be called again though and
3842 * we'll get the vintr intercept.
3843 */
3844 if (gif_set(svm) && nested_svm_intr(svm)) {
3845 svm_set_vintr(svm);
3846 svm_inject_irq(svm, 0x0);
3847 }
3848 }
3849
3850 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3851 {
3852 struct vcpu_svm *svm = to_svm(vcpu);
3853
3854 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3855 == HF_NMI_MASK)
3856 return; /* IRET will cause a vm exit */
3857
3858 /*
3859 * Something prevents NMI from been injected. Single step over possible
3860 * problem (IRET or exception injection or interrupt shadow)
3861 */
3862 svm->nmi_singlestep = true;
3863 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3864 update_db_bp_intercept(vcpu);
3865 }
3866
3867 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3868 {
3869 return 0;
3870 }
3871
3872 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3873 {
3874 struct vcpu_svm *svm = to_svm(vcpu);
3875
3876 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3877 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3878 else
3879 svm->asid_generation--;
3880 }
3881
3882 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3883 {
3884 }
3885
3886 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3887 {
3888 struct vcpu_svm *svm = to_svm(vcpu);
3889
3890 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3891 return;
3892
3893 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3894 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3895 kvm_set_cr8(vcpu, cr8);
3896 }
3897 }
3898
3899 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3900 {
3901 struct vcpu_svm *svm = to_svm(vcpu);
3902 u64 cr8;
3903
3904 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3905 return;
3906
3907 cr8 = kvm_get_cr8(vcpu);
3908 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3909 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3910 }
3911
3912 static void svm_complete_interrupts(struct vcpu_svm *svm)
3913 {
3914 u8 vector;
3915 int type;
3916 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3917 unsigned int3_injected = svm->int3_injected;
3918
3919 svm->int3_injected = 0;
3920
3921 /*
3922 * If we've made progress since setting HF_IRET_MASK, we've
3923 * executed an IRET and can allow NMI injection.
3924 */
3925 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3926 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3927 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3928 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3929 }
3930
3931 svm->vcpu.arch.nmi_injected = false;
3932 kvm_clear_exception_queue(&svm->vcpu);
3933 kvm_clear_interrupt_queue(&svm->vcpu);
3934
3935 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3936 return;
3937
3938 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3939
3940 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3941 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3942
3943 switch (type) {
3944 case SVM_EXITINTINFO_TYPE_NMI:
3945 svm->vcpu.arch.nmi_injected = true;
3946 break;
3947 case SVM_EXITINTINFO_TYPE_EXEPT:
3948 /*
3949 * In case of software exceptions, do not reinject the vector,
3950 * but re-execute the instruction instead. Rewind RIP first
3951 * if we emulated INT3 before.
3952 */
3953 if (kvm_exception_is_soft(vector)) {
3954 if (vector == BP_VECTOR && int3_injected &&
3955 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3956 kvm_rip_write(&svm->vcpu,
3957 kvm_rip_read(&svm->vcpu) -
3958 int3_injected);
3959 break;
3960 }
3961 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3962 u32 err = svm->vmcb->control.exit_int_info_err;
3963 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3964
3965 } else
3966 kvm_requeue_exception(&svm->vcpu, vector);
3967 break;
3968 case SVM_EXITINTINFO_TYPE_INTR:
3969 kvm_queue_interrupt(&svm->vcpu, vector, false);
3970 break;
3971 default:
3972 break;
3973 }
3974 }
3975
3976 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3977 {
3978 struct vcpu_svm *svm = to_svm(vcpu);
3979 struct vmcb_control_area *control = &svm->vmcb->control;
3980
3981 control->exit_int_info = control->event_inj;
3982 control->exit_int_info_err = control->event_inj_err;
3983 control->event_inj = 0;
3984 svm_complete_interrupts(svm);
3985 }
3986
3987 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3988 {
3989 struct vcpu_svm *svm = to_svm(vcpu);
3990
3991 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3992 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3993 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3994
3995 /*
3996 * A vmexit emulation is required before the vcpu can be executed
3997 * again.
3998 */
3999 if (unlikely(svm->nested.exit_required))
4000 return;
4001
4002 pre_svm_run(svm);
4003
4004 sync_lapic_to_cr8(vcpu);
4005
4006 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4007
4008 clgi();
4009
4010 local_irq_enable();
4011
4012 asm volatile (
4013 "push %%" _ASM_BP "; \n\t"
4014 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4015 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4016 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4017 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4018 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4019 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4020 #ifdef CONFIG_X86_64
4021 "mov %c[r8](%[svm]), %%r8 \n\t"
4022 "mov %c[r9](%[svm]), %%r9 \n\t"
4023 "mov %c[r10](%[svm]), %%r10 \n\t"
4024 "mov %c[r11](%[svm]), %%r11 \n\t"
4025 "mov %c[r12](%[svm]), %%r12 \n\t"
4026 "mov %c[r13](%[svm]), %%r13 \n\t"
4027 "mov %c[r14](%[svm]), %%r14 \n\t"
4028 "mov %c[r15](%[svm]), %%r15 \n\t"
4029 #endif
4030
4031 /* Enter guest mode */
4032 "push %%" _ASM_AX " \n\t"
4033 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4034 __ex(SVM_VMLOAD) "\n\t"
4035 __ex(SVM_VMRUN) "\n\t"
4036 __ex(SVM_VMSAVE) "\n\t"
4037 "pop %%" _ASM_AX " \n\t"
4038
4039 /* Save guest registers, load host registers */
4040 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4041 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4042 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4043 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4044 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4045 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4046 #ifdef CONFIG_X86_64
4047 "mov %%r8, %c[r8](%[svm]) \n\t"
4048 "mov %%r9, %c[r9](%[svm]) \n\t"
4049 "mov %%r10, %c[r10](%[svm]) \n\t"
4050 "mov %%r11, %c[r11](%[svm]) \n\t"
4051 "mov %%r12, %c[r12](%[svm]) \n\t"
4052 "mov %%r13, %c[r13](%[svm]) \n\t"
4053 "mov %%r14, %c[r14](%[svm]) \n\t"
4054 "mov %%r15, %c[r15](%[svm]) \n\t"
4055 #endif
4056 "pop %%" _ASM_BP
4057 :
4058 : [svm]"a"(svm),
4059 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4060 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4061 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4062 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4063 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4064 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4065 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4066 #ifdef CONFIG_X86_64
4067 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4068 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4069 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4070 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4071 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4072 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4073 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4074 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4075 #endif
4076 : "cc", "memory"
4077 #ifdef CONFIG_X86_64
4078 , "rbx", "rcx", "rdx", "rsi", "rdi"
4079 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4080 #else
4081 , "ebx", "ecx", "edx", "esi", "edi"
4082 #endif
4083 );
4084
4085 #ifdef CONFIG_X86_64
4086 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4087 #else
4088 loadsegment(fs, svm->host.fs);
4089 #ifndef CONFIG_X86_32_LAZY_GS
4090 loadsegment(gs, svm->host.gs);
4091 #endif
4092 #endif
4093
4094 reload_tss(vcpu);
4095
4096 local_irq_disable();
4097
4098 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4099 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4100 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4101 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4102
4103 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
4104
4105 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4106 kvm_before_handle_nmi(&svm->vcpu);
4107
4108 stgi();
4109
4110 /* Any pending NMI will happen here */
4111
4112 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4113 kvm_after_handle_nmi(&svm->vcpu);
4114
4115 sync_cr8_to_lapic(vcpu);
4116
4117 svm->next_rip = 0;
4118
4119 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4120
4121 /* if exit due to PF check for async PF */
4122 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4123 svm->apf_reason = kvm_read_and_reset_pf_reason();
4124
4125 if (npt_enabled) {
4126 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4127 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4128 }
4129
4130 /*
4131 * We need to handle MC intercepts here before the vcpu has a chance to
4132 * change the physical cpu
4133 */
4134 if (unlikely(svm->vmcb->control.exit_code ==
4135 SVM_EXIT_EXCP_BASE + MC_VECTOR))
4136 svm_handle_mce(svm);
4137
4138 mark_all_clean(svm->vmcb);
4139 }
4140
4141 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4142 {
4143 struct vcpu_svm *svm = to_svm(vcpu);
4144
4145 svm->vmcb->save.cr3 = root;
4146 mark_dirty(svm->vmcb, VMCB_CR);
4147 svm_flush_tlb(vcpu);
4148 }
4149
4150 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4151 {
4152 struct vcpu_svm *svm = to_svm(vcpu);
4153
4154 svm->vmcb->control.nested_cr3 = root;
4155 mark_dirty(svm->vmcb, VMCB_NPT);
4156
4157 /* Also sync guest cr3 here in case we live migrate */
4158 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4159 mark_dirty(svm->vmcb, VMCB_CR);
4160
4161 svm_flush_tlb(vcpu);
4162 }
4163
4164 static int is_disabled(void)
4165 {
4166 u64 vm_cr;
4167
4168 rdmsrl(MSR_VM_CR, vm_cr);
4169 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4170 return 1;
4171
4172 return 0;
4173 }
4174
4175 static void
4176 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4177 {
4178 /*
4179 * Patch in the VMMCALL instruction:
4180 */
4181 hypercall[0] = 0x0f;
4182 hypercall[1] = 0x01;
4183 hypercall[2] = 0xd9;
4184 }
4185
4186 static void svm_check_processor_compat(void *rtn)
4187 {
4188 *(int *)rtn = 0;
4189 }
4190
4191 static bool svm_cpu_has_accelerated_tpr(void)
4192 {
4193 return false;
4194 }
4195
4196 static bool svm_has_high_real_mode_segbase(void)
4197 {
4198 return true;
4199 }
4200
4201 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4202 {
4203 }
4204
4205 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4206 {
4207 switch (func) {
4208 case 0x80000001:
4209 if (nested)
4210 entry->ecx |= (1 << 2); /* Set SVM bit */
4211 break;
4212 case 0x8000000A:
4213 entry->eax = 1; /* SVM revision 1 */
4214 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4215 ASID emulation to nested SVM */
4216 entry->ecx = 0; /* Reserved */
4217 entry->edx = 0; /* Per default do not support any
4218 additional features */
4219
4220 /* Support next_rip if host supports it */
4221 if (boot_cpu_has(X86_FEATURE_NRIPS))
4222 entry->edx |= SVM_FEATURE_NRIP;
4223
4224 /* Support NPT for the guest if enabled */
4225 if (npt_enabled)
4226 entry->edx |= SVM_FEATURE_NPT;
4227
4228 break;
4229 }
4230 }
4231
4232 static int svm_get_lpage_level(void)
4233 {
4234 return PT_PDPE_LEVEL;
4235 }
4236
4237 static bool svm_rdtscp_supported(void)
4238 {
4239 return false;
4240 }
4241
4242 static bool svm_invpcid_supported(void)
4243 {
4244 return false;
4245 }
4246
4247 static bool svm_mpx_supported(void)
4248 {
4249 return false;
4250 }
4251
4252 static bool svm_xsaves_supported(void)
4253 {
4254 return false;
4255 }
4256
4257 static bool svm_has_wbinvd_exit(void)
4258 {
4259 return true;
4260 }
4261
4262 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4263 {
4264 struct vcpu_svm *svm = to_svm(vcpu);
4265
4266 set_exception_intercept(svm, NM_VECTOR);
4267 update_cr0_intercept(svm);
4268 }
4269
4270 #define PRE_EX(exit) { .exit_code = (exit), \
4271 .stage = X86_ICPT_PRE_EXCEPT, }
4272 #define POST_EX(exit) { .exit_code = (exit), \
4273 .stage = X86_ICPT_POST_EXCEPT, }
4274 #define POST_MEM(exit) { .exit_code = (exit), \
4275 .stage = X86_ICPT_POST_MEMACCESS, }
4276
4277 static const struct __x86_intercept {
4278 u32 exit_code;
4279 enum x86_intercept_stage stage;
4280 } x86_intercept_map[] = {
4281 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4282 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4283 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4284 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4285 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4286 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4287 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4288 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4289 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4290 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4291 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4292 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4293 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4294 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4295 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4296 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4297 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4298 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4299 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4300 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4301 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4302 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4303 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4304 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4305 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4306 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4307 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4308 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4309 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4310 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4311 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4312 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4313 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4314 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4315 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4316 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4317 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4318 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4319 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4320 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4321 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4322 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4323 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4324 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4325 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4326 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4327 };
4328
4329 #undef PRE_EX
4330 #undef POST_EX
4331 #undef POST_MEM
4332
4333 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4334 struct x86_instruction_info *info,
4335 enum x86_intercept_stage stage)
4336 {
4337 struct vcpu_svm *svm = to_svm(vcpu);
4338 int vmexit, ret = X86EMUL_CONTINUE;
4339 struct __x86_intercept icpt_info;
4340 struct vmcb *vmcb = svm->vmcb;
4341
4342 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4343 goto out;
4344
4345 icpt_info = x86_intercept_map[info->intercept];
4346
4347 if (stage != icpt_info.stage)
4348 goto out;
4349
4350 switch (icpt_info.exit_code) {
4351 case SVM_EXIT_READ_CR0:
4352 if (info->intercept == x86_intercept_cr_read)
4353 icpt_info.exit_code += info->modrm_reg;
4354 break;
4355 case SVM_EXIT_WRITE_CR0: {
4356 unsigned long cr0, val;
4357 u64 intercept;
4358
4359 if (info->intercept == x86_intercept_cr_write)
4360 icpt_info.exit_code += info->modrm_reg;
4361
4362 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4363 info->intercept == x86_intercept_clts)
4364 break;
4365
4366 intercept = svm->nested.intercept;
4367
4368 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4369 break;
4370
4371 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4372 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4373
4374 if (info->intercept == x86_intercept_lmsw) {
4375 cr0 &= 0xfUL;
4376 val &= 0xfUL;
4377 /* lmsw can't clear PE - catch this here */
4378 if (cr0 & X86_CR0_PE)
4379 val |= X86_CR0_PE;
4380 }
4381
4382 if (cr0 ^ val)
4383 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4384
4385 break;
4386 }
4387 case SVM_EXIT_READ_DR0:
4388 case SVM_EXIT_WRITE_DR0:
4389 icpt_info.exit_code += info->modrm_reg;
4390 break;
4391 case SVM_EXIT_MSR:
4392 if (info->intercept == x86_intercept_wrmsr)
4393 vmcb->control.exit_info_1 = 1;
4394 else
4395 vmcb->control.exit_info_1 = 0;
4396 break;
4397 case SVM_EXIT_PAUSE:
4398 /*
4399 * We get this for NOP only, but pause
4400 * is rep not, check this here
4401 */
4402 if (info->rep_prefix != REPE_PREFIX)
4403 goto out;
4404 case SVM_EXIT_IOIO: {
4405 u64 exit_info;
4406 u32 bytes;
4407
4408 if (info->intercept == x86_intercept_in ||
4409 info->intercept == x86_intercept_ins) {
4410 exit_info = ((info->src_val & 0xffff) << 16) |
4411 SVM_IOIO_TYPE_MASK;
4412 bytes = info->dst_bytes;
4413 } else {
4414 exit_info = (info->dst_val & 0xffff) << 16;
4415 bytes = info->src_bytes;
4416 }
4417
4418 if (info->intercept == x86_intercept_outs ||
4419 info->intercept == x86_intercept_ins)
4420 exit_info |= SVM_IOIO_STR_MASK;
4421
4422 if (info->rep_prefix)
4423 exit_info |= SVM_IOIO_REP_MASK;
4424
4425 bytes = min(bytes, 4u);
4426
4427 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4428
4429 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4430
4431 vmcb->control.exit_info_1 = exit_info;
4432 vmcb->control.exit_info_2 = info->next_rip;
4433
4434 break;
4435 }
4436 default:
4437 break;
4438 }
4439
4440 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4441 if (static_cpu_has(X86_FEATURE_NRIPS))
4442 vmcb->control.next_rip = info->next_rip;
4443 vmcb->control.exit_code = icpt_info.exit_code;
4444 vmexit = nested_svm_exit_handled(svm);
4445
4446 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4447 : X86EMUL_CONTINUE;
4448
4449 out:
4450 return ret;
4451 }
4452
4453 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4454 {
4455 local_irq_enable();
4456 }
4457
4458 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4459 {
4460 }
4461
4462 static struct kvm_x86_ops svm_x86_ops = {
4463 .cpu_has_kvm_support = has_svm,
4464 .disabled_by_bios = is_disabled,
4465 .hardware_setup = svm_hardware_setup,
4466 .hardware_unsetup = svm_hardware_unsetup,
4467 .check_processor_compatibility = svm_check_processor_compat,
4468 .hardware_enable = svm_hardware_enable,
4469 .hardware_disable = svm_hardware_disable,
4470 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4471 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4472
4473 .vcpu_create = svm_create_vcpu,
4474 .vcpu_free = svm_free_vcpu,
4475 .vcpu_reset = svm_vcpu_reset,
4476
4477 .prepare_guest_switch = svm_prepare_guest_switch,
4478 .vcpu_load = svm_vcpu_load,
4479 .vcpu_put = svm_vcpu_put,
4480
4481 .update_db_bp_intercept = update_db_bp_intercept,
4482 .get_msr = svm_get_msr,
4483 .set_msr = svm_set_msr,
4484 .get_segment_base = svm_get_segment_base,
4485 .get_segment = svm_get_segment,
4486 .set_segment = svm_set_segment,
4487 .get_cpl = svm_get_cpl,
4488 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4489 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4490 .decache_cr3 = svm_decache_cr3,
4491 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4492 .set_cr0 = svm_set_cr0,
4493 .set_cr3 = svm_set_cr3,
4494 .set_cr4 = svm_set_cr4,
4495 .set_efer = svm_set_efer,
4496 .get_idt = svm_get_idt,
4497 .set_idt = svm_set_idt,
4498 .get_gdt = svm_get_gdt,
4499 .set_gdt = svm_set_gdt,
4500 .get_dr6 = svm_get_dr6,
4501 .set_dr6 = svm_set_dr6,
4502 .set_dr7 = svm_set_dr7,
4503 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4504 .cache_reg = svm_cache_reg,
4505 .get_rflags = svm_get_rflags,
4506 .set_rflags = svm_set_rflags,
4507 .fpu_activate = svm_fpu_activate,
4508 .fpu_deactivate = svm_fpu_deactivate,
4509
4510 .tlb_flush = svm_flush_tlb,
4511
4512 .run = svm_vcpu_run,
4513 .handle_exit = handle_exit,
4514 .skip_emulated_instruction = skip_emulated_instruction,
4515 .set_interrupt_shadow = svm_set_interrupt_shadow,
4516 .get_interrupt_shadow = svm_get_interrupt_shadow,
4517 .patch_hypercall = svm_patch_hypercall,
4518 .set_irq = svm_set_irq,
4519 .set_nmi = svm_inject_nmi,
4520 .queue_exception = svm_queue_exception,
4521 .cancel_injection = svm_cancel_injection,
4522 .interrupt_allowed = svm_interrupt_allowed,
4523 .nmi_allowed = svm_nmi_allowed,
4524 .get_nmi_mask = svm_get_nmi_mask,
4525 .set_nmi_mask = svm_set_nmi_mask,
4526 .enable_nmi_window = enable_nmi_window,
4527 .enable_irq_window = enable_irq_window,
4528 .update_cr8_intercept = update_cr8_intercept,
4529 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4530 .vm_has_apicv = svm_vm_has_apicv,
4531 .load_eoi_exitmap = svm_load_eoi_exitmap,
4532 .sync_pir_to_irr = svm_sync_pir_to_irr,
4533
4534 .set_tss_addr = svm_set_tss_addr,
4535 .get_tdp_level = get_npt_level,
4536 .get_mt_mask = svm_get_mt_mask,
4537
4538 .get_exit_info = svm_get_exit_info,
4539
4540 .get_lpage_level = svm_get_lpage_level,
4541
4542 .cpuid_update = svm_cpuid_update,
4543
4544 .rdtscp_supported = svm_rdtscp_supported,
4545 .invpcid_supported = svm_invpcid_supported,
4546 .mpx_supported = svm_mpx_supported,
4547 .xsaves_supported = svm_xsaves_supported,
4548
4549 .set_supported_cpuid = svm_set_supported_cpuid,
4550
4551 .has_wbinvd_exit = svm_has_wbinvd_exit,
4552
4553 .set_tsc_khz = svm_set_tsc_khz,
4554 .read_tsc_offset = svm_read_tsc_offset,
4555 .write_tsc_offset = svm_write_tsc_offset,
4556 .adjust_tsc_offset = svm_adjust_tsc_offset,
4557 .compute_tsc_offset = svm_compute_tsc_offset,
4558 .read_l1_tsc = svm_read_l1_tsc,
4559
4560 .set_tdp_cr3 = set_tdp_cr3,
4561
4562 .check_intercept = svm_check_intercept,
4563 .handle_external_intr = svm_handle_external_intr,
4564
4565 .sched_in = svm_sched_in,
4566
4567 .pmu_ops = &amd_pmu_ops,
4568 };
4569
4570 static int __init svm_init(void)
4571 {
4572 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4573 __alignof__(struct vcpu_svm), THIS_MODULE);
4574 }
4575
4576 static void __exit svm_exit(void)
4577 {
4578 kvm_exit();
4579 }
4580
4581 module_init(svm_init)
4582 module_exit(svm_exit)